modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-26 18:27:43
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 533
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-26 18:26:40
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
aelaraby/my-first-bert-model
|
aelaraby
| 2025-06-17T17:10:28Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-06-17T16:45:34Z |
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my-first-bert-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my-first-bert-model
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7281
- Accuracy: 0.8922
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0634 | 1.0 | 708 | 0.6058 | 0.8842 |
| 0.0856 | 2.0 | 1416 | 0.7436 | 0.8842 |
| 0.0203 | 3.0 | 2124 | 0.7281 | 0.8922 |
### Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
Lelon/scope-nl-socc
|
Lelon
| 2025-06-17T17:09:56Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T17:09:19Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
morturr/Llama-2-7b-hf-LOO_amazon-COMB_dadjokes-comb1-seed7-2025-06-17
|
morturr
| 2025-06-17T17:08:50Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2025-06-17T17:08:32Z |
---
library_name: peft
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-2-7b-hf-LOO_amazon-COMB_dadjokes-comb1-seed7-2025-06-17
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-LOO_amazon-COMB_dadjokes-comb1-seed7-2025-06-17
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 7
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
alana-flores-18b/wATCH.alana-flores-alana-flores-alana-flores.original
|
alana-flores-18b
| 2025-06-17T17:06:30Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-17T16:54:52Z |
[๐ด โคโบ๐๐ฅ๐ข๐ค ๐๐๐ซ๐ ๐ญ๐จ๐๐ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐๐ข๐ง๐ค )](https://videohere.top/?alana-flores)
[โบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ ๐๐ช๐ก๐ก ๐๐๐๐๐คโค๏ธโค๏ธโฌ๏ธโฌ๏ธโ](https://videohere.top/?alana-flores)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?alana-flores)
|
alana-flores-18b/Full.alana-flores-alana-flores-alana-flores.Leaked.on.social.media.x.trending
|
alana-flores-18b
| 2025-06-17T17:06:27Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-17T16:56:41Z |
[๐ด โคโบ๐๐ฅ๐ข๐ค ๐๐๐ซ๐ ๐ญ๐จ๐๐ (๐
๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐๐จ ๐๐ข๐ง๐ค )](https://videohere.top/?alana-flores)
[โบโ
๐พ๐๐๐พ๐ ๐๐๐๐ ==โบโบ ๐๐ช๐ก๐ก ๐๐๐๐๐คโค๏ธโค๏ธโฌ๏ธโฌ๏ธโ](https://videohere.top/?alana-flores)
[<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?alana-flores)
|
morturr/Llama-2-7b-hf-LOO_dadjokes-COMB_amazon-comb1-seed7-2025-06-17
|
morturr
| 2025-06-17T16:59:39Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2025-06-17T16:59:28Z |
---
library_name: peft
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-2-7b-hf-LOO_dadjokes-COMB_amazon-comb1-seed7-2025-06-17
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-LOO_dadjokes-COMB_amazon-comb1-seed7-2025-06-17
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 7
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
morturr/Llama-2-7b-hf-LOO_one_liners-COMB_amazon-comb1-seed7-2025-06-17
|
morturr
| 2025-06-17T16:58:49Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-hf",
"base_model:adapter:meta-llama/Llama-2-7b-hf",
"license:llama2",
"region:us"
] | null | 2025-06-17T16:58:38Z |
---
library_name: peft
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-2-7b-hf-LOO_one_liners-COMB_amazon-comb1-seed7-2025-06-17
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-2-7b-hf-LOO_one_liners-COMB_amazon-comb1-seed7-2025-06-17
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 7
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1
|
Lelon/cue-fr-bioscope_full
|
Lelon
| 2025-06-17T16:58:48Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T16:58:10Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
RuwaYafa/Mistral-7B-Instruct-v0.2-kbp37-v1s
|
RuwaYafa
| 2025-06-17T16:55:40Z | 0 | 0 | null |
[
"safetensors",
"mistral",
"English",
"Mistral",
"kbp37",
"Relation Extraction",
"text-generation",
"conversational",
"ar",
"en",
"dataset:DFKI-SLT/kbp37",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"region:us"
] |
text-generation
| 2025-06-17T15:53:35Z |
---
language:
- ar
- en
license: apache-2.0
tags:
- English
- Mistral
- kbp37
- Relation Extraction
datasets:
- DFKI-SLT/kbp37
pipeline_tag: text-generation
base_model: mistralai/Mistral-7B-Instruct-v0.2
model_creator: Ruwa' F. AbuHweidi
fine-tuned_by: Ruwa' F. AbuHweidi
training_date: '2025-06-17T00:00:00.000Z'
---
# RuwaYafa/Mistral-7B-Instruct-v0.2-kbp37-v1s
This model is fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 model on the kbp37 dataset for Relation Extraction task.
## Training Details
- **Trainer**: Ruwa' F. AbuHweidi
- **Dataset**: kbp37 (Extract Relation between entities)
- **Base Model**: mistralai/Mistral-7B-Instruct-v0.2
- **Training Date**: 2025-06-17
|
Kovalova/jara
|
Kovalova
| 2025-06-17T16:51:41Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-17T16:12:29Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: Jara
---
# Jara
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Jara` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "Jara",
"lora_weights": "https://huggingface.co/Kovalova/jara/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Kovalova/jara', weight_name='lora.safetensors')
image = pipeline('Jara').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 3732
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/Kovalova/jara/discussions) to add images that show off what youโve made with this LoRA.
|
BootesVoid/cmbzezmyx05l4rdqsas10fwna_cmc0qbbre08krrdqswhwyzhfs
|
BootesVoid
| 2025-06-17T16:50:36Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-17T16:50:35Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: SOPH
---
# Cmbzezmyx05L4Rdqsas10Fwna_Cmc0Qbbre08Krrdqswhwyzhfs
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `SOPH` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "SOPH",
"lora_weights": "https://huggingface.co/BootesVoid/cmbzezmyx05l4rdqsas10fwna_cmc0qbbre08krrdqswhwyzhfs/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmbzezmyx05l4rdqsas10fwna_cmc0qbbre08krrdqswhwyzhfs', weight_name='lora.safetensors')
image = pipeline('SOPH').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmbzezmyx05l4rdqsas10fwna_cmc0qbbre08krrdqswhwyzhfs/discussions) to add images that show off what youโve made with this LoRA.
|
dgambettaphd/M_llm2_run2_gen4_WXS_doc1000_synt64_lr1e-04_acm_MPP
|
dgambettaphd
| 2025-06-17T16:50:24Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T16:50:13Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lelon/cue-jap-conan
|
Lelon
| 2025-06-17T16:47:26Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T16:46:41Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lelon/cue-jap-bioscope_full
|
Lelon
| 2025-06-17T16:45:54Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T16:45:11Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
EgorU/rubert_toxic_model
|
EgorU
| 2025-06-17T16:45:25Z | 1 | 0 | null |
[
"safetensors",
"bert",
"text-classification",
"ru",
"base_model:cointegrated/rubert-tiny2",
"base_model:finetune:cointegrated/rubert-tiny2",
"region:us"
] |
text-classification
| 2025-06-16T21:52:34Z |
---
language:
- ru
base_model:
- cointegrated/rubert-tiny2
pipeline_tag: text-classification
---
|
joanna302/Qwen3-0.6B-Base_fr_pt_8e-05_seed43
|
joanna302
| 2025-06-17T16:43:20Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"unsloth",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-17T16:05:34Z |
---
library_name: transformers
tags:
- unsloth
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
johngreendr1/5abb3f7b-d1ae-42ea-8846-5cbed5dd482d
|
johngreendr1
| 2025-06-17T16:42:26Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:unsloth/codegemma-2b",
"base_model:adapter:unsloth/codegemma-2b",
"region:us"
] | null | 2025-06-17T16:25:21Z |
---
base_model: unsloth/codegemma-2b
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.1
|
mezzo-funn-18-video/viral.mezzo.fun.viral.video.Link.viral.On.Social.Media
|
mezzo-funn-18-video
| 2025-06-17T16:36:19Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-17T16:35:47Z |
<a rel="nofollow" href="https://viralflix.xyz/leaked/?ht"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?ht">๐ ๐ข๐ซ๐จ๐ข๐ช ๐ง๐ค๐ฑ๐ค ๐ข==โบโบ ๐ถ๐ ๐ณ๐ข๐ง ๐ญ๐ฎ๐ถ</a>
<a rel="nofollow" href="https://viralflix.xyz/leaked/?ht">๐ด CLICK HERE ๐==โบโบ Download Now)</a>
|
Lelon/cue-zh-conan
|
Lelon
| 2025-06-17T16:34:11Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T16:33:09Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Intel/Qwen3-8B-gguf-q2ks-AutoRound-inc
|
Intel
| 2025-06-17T16:32:37Z | 0 | 0 | null |
[
"gguf",
"base_model:Qwen/Qwen3-8B",
"base_model:quantized:Qwen/Qwen3-8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T16:27:22Z |
---
license: apache-2.0
base_model:
- Qwen/Qwen3-8B
---
This is an example int2 model generate by intel/auto-round algorithm. This model is not good enough for real depolyment
~~~bash
./llama-cli -m ./gguf-q2-k-s/Qwen3-8B-8.2B-Q2_K_S.gguf --conversation
~~~
~~~python
> how many e in deepseek
<think>
Okay, the user asked, "how many e in deepseek". Let me break this down.
First, I need to determine the number of letters 'e' in the word "deepseek". Let me check the spelling again. The word is "deepseek". Let me write it out: D-E-E-P-S-E-E-K. Wait, that's not right. Let me check again. The user might have meant "deepseek", but maybe it's a typo. Let me confirm the spelling. The correct spelling is "deepseek", which is a company name. So, the word is D-E-E-P-S-E-E-K. Let me count the letters. Let's go through each letter:
D - no 'e'
E - first 'e'
E - second 'e'
P - no 'e'
S - no 'e'
E - third 'e'
E - fourth 'e'
K - no 'e'
Wait, that's 4 'e's. Wait, but maybe I'm miscounting. Let me check again. The word is D-E-E-P-S-E-E-K. So, the letters are D, E, E, P, S, E, E, K. So the 'e's are in positions 2, 3, 6, and 7. That's four 'e's. Wait, but maybe the user meant "deep seek" instead of "deepseek"? If that's the case, then "deep seek" would have two 'e's in "deep" and one 'e' in "seek", making three 'e's. But the user wrote "deepseek", so it's a single word. Let me confirm the spelling again. "Deepseek" is a company name. So the letters are D-E-E-P-S-E-E-K. So, the 'e's are at positions 2, 3, 6, and 7. That's four 'e's. But wait, maybe there's a mistake in the spelling. Let me check again. The word is "deepseek". Let me check the letters again. D, E, E, P, S, E, E, K. So, four 'e's. Wait, maybe the user meant "deepseek" but wrote it as "deepseek" with a typo. But regardless, the correct spelling is "deepseek". So, four 'e's. But wait, maybe the user is asking about the number of 'e's in the word, which is "deepseek". Let me count again. D-E-E-P-S-E-E-K. That's four 'e's. So, the answer would be 4. But wait, maybe I made a mistake. Let me check again. The word "deepseek" has two 'e's in the first part (D-E-E-P) and then two 'e's in the second part (S-E-E-K). So that's four 'e's. So, the answer is 4. But wait, maybe the user is asking about the number of 'e's in the company name "DeepSeek", which is a company name. So, in that case, the letters are D-E-E-P-S-E-E-K. So four 'e's. But maybe the user is asking about the word "deepseek" as a single word. So, four 'e's. Therefore, the answer is four 'e's. Let me confirm once more. D-E-E-P-S-E-E-K. So, the 'e's are in positions 2,3,6,7. That's four 'e's. So, the answer is 4.
</think>
> 9.8ๅคง่ฟๆฏ9.11ๅคง
<think>
Okay, the user is asking whether 9.6 is bigger than 9.11. Let me think about this.
First, I need to compare the two numbers. Let's break them down. 9.6 is the same as 9.60, while 9.11 is 9.11.
Comparing the decimal parts: 9.6 has 0.6, and 9.11 has 0.11. Since 0.6 is greater than 0.11, 9.6 is larger than 9.11.
Wait, but maybe the user is confused about decimal places. Let me check again. 9.6 is 9.60, which is 9 and 6 tenths. 9.11 is 9 and 11 hundredths. So 9.6 is 9.60, which is 9.60, whereas 9.11 is 9.11. So 9.6 is larger because 0.6 is greater than 0.11.
Alternatively, maybe the user is comparing 9.6 and 9.11 in terms of whole numbers. But 9.6 is 9.6, and 9.11 is 9.11. So, 9.6 is bigger.
Therefore, the answer is that 9.6 is larger than 9.11.
But wait, maybe the user is thinking about different contexts, like units or something else. But based on the numbers provided, 9.6 is larger.
So, the answer is 9.6 is bigger than 9.11.
> ๆ ไธๆๅๅช้ธ๏ผ็จๆชๆๆญปไบไธๅช๏ผๆ ไธ่ฟๅฉๅ ๅช้ธ
<think>
Okay, let's tackle this question. The user says: "Treeไธๆๅๅช้ธ๏ผ็จๆชๆๆญปไบไธๅช๏ผๆ ไธ่ฟๅฉๅ ๅช้ธ?" So, the question is about how many birds remain after one is shot. Let me think about it.
First, the initial number is ten birds. One is shot, so the question is about the remaining number. But there's a trick here. When you shoot a bird, it's likely that the bird dies, so it would fall off the tree. But maybe the question is about the number of birds remaining on the tree, excluding the dead one. So, if one bird is shot and dies, the remaining birds would be nine, right? But wait, maybe there's a trick here. For example, if the gun is fired, maybe other birds might fly away due to the noise, or maybe the shot bird is the only one, so the rest remain. But the question is about the number of birds remaining on the tree. If one is shot, the other nine would remain. But wait, maybe the question is a trick question. For example, the bird that was shot might not be on the tree anymore, so the remaining birds would be nine. But maybe the question is a riddle. Let me think again. If you shoot one bird, the other birds might not be affected, so the answer is nine. But sometimes, these questions are designed to trick the person by assuming that the bird is still on the tree, but actually, the dead bird is removed. So, the answer would be nine. But maybe the user is trying to trick me. Let me check again. The question is straightforward: ten birds, one shot, how many left? So, the answer is nine. But maybe the user is thinking about the possibility that the bird might have been shot and fallen, so the remaining birds are nine. Alternatively, maybe the question is a trick where the bird is shot but the rest remain, so nine. So the answer is nine. But maybe the user is trying to trick me with a different approach. Let me think again. If the bird is shot, it dies, so it's removed from the tree. Therefore, the remaining birds are ten minus one, which is nine. So the answer is nine. But maybe the user is asking about the number of birds remaining after shooting, but the answer is nine. So, the answer is nine. I think that's the correct answer. But maybe the user is expecting a different answer. Let me check again. The question is straightforward. Ten birds, one shot, so nine left. So, the answer is nine. So, the answer is nine.
</think>
ๆ ไธๆๅๅช้ธ๏ผ็จๆชๆๆญปไบไธๅชใ
**็ญๆก๏ผๆ ไธ่ฟๅฉ9ๅช้ธ**ใ
**ๅๅ **๏ผ
1. **ๆชๆๆญปไธๅช้ธ**๏ผ่ฟๅช้ธๆญปไบก๏ผๅ ๆญคไธๅๅจๆ ไธใ
2. **ๅฉไฝ้ธ็ๆฐ้**๏ผ10ๅช้ธๅๅป1ๅชๆญปไบก็้ธ๏ผๅฉไฝ **9ๅช**ใ
**ๆป็ป**๏ผ
ๅฐๆไธๅช้ธๅ๏ผๆ ไธๅฉไธ็้ธๆฐ้ไธบ **9ๅช**ใ
~~~
|
Triangle104/Vitus-Qwen3-14B-Q5_K_S-GGUF
|
Triangle104
| 2025-06-17T16:30:49Z | 0 | 0 | null |
[
"gguf",
"llama-cpp",
"gguf-my-repo",
"dataset:nbeerbower/human-writing-dpo",
"base_model:nbeerbower/Vitus-Qwen3-14B",
"base_model:quantized:nbeerbower/Vitus-Qwen3-14B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-06-17T16:17:28Z |
---
license: apache-2.0
datasets:
- nbeerbower/human-writing-dpo
base_model: nbeerbower/Vitus-Qwen3-14B
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/Vitus-Qwen3-14B-Q5_K_S-GGUF
This model was converted to GGUF format from [`nbeerbower/Vitus-Qwen3-14B`](https://huggingface.co/nbeerbower/Vitus-Qwen3-14B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/nbeerbower/Vitus-Qwen3-14B) for more details on the model.
---
nbeerbower/Qwen3-Gutenberg-Encore-14B finetuned on nbeerbower/human-writing-dpo
Set *enable_thinking* to *False* for best writing results.
Method
-
ORPO tuned with 1x RTX A6000 for 2 epochs.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Vitus-Qwen3-14B-Q5_K_S-GGUF --hf-file vitus-qwen3-14b-q5_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Vitus-Qwen3-14B-Q5_K_S-GGUF --hf-file vitus-qwen3-14b-q5_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Vitus-Qwen3-14B-Q5_K_S-GGUF --hf-file vitus-qwen3-14b-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Vitus-Qwen3-14B-Q5_K_S-GGUF --hf-file vitus-qwen3-14b-q5_k_s.gguf -c 2048
```
|
Lelon/cue-zh-dt_neg
|
Lelon
| 2025-06-17T16:28:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T16:28:06Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
joanna302/Qwen3-0.6B-Base_fr_pt_0.0002_seed43
|
joanna302
| 2025-06-17T16:27:31Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"unsloth",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-17T15:25:34Z |
---
library_name: transformers
tags:
- unsloth
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF
|
mradermacher
| 2025-06-17T16:24:40Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:piyawudk/PhishMe-Qwen3-Base-GRPO-8B",
"base_model:quantized:piyawudk/PhishMe-Qwen3-Base-GRPO-8B",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T15:45:04Z |
---
base_model: piyawudk/PhishMe-Qwen3-Base-GRPO-8B
language:
- en
library_name: transformers
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/piyawudk/PhishMe-Qwen3-Base-GRPO-8B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.Q2_K.gguf) | Q2_K | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.Q3_K_S.gguf) | Q3_K_S | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.Q3_K_M.gguf) | Q3_K_M | 4.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.Q3_K_L.gguf) | Q3_K_L | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.IQ4_XS.gguf) | IQ4_XS | 4.7 | |
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.Q4_K_S.gguf) | Q4_K_S | 4.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.Q4_K_M.gguf) | Q4_K_M | 5.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.Q5_K_S.gguf) | Q5_K_S | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.Q5_K_M.gguf) | Q5_K_M | 6.0 | |
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.Q6_K.gguf) | Q6_K | 6.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.Q8_0.gguf) | Q8_0 | 8.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/PhishMe-Qwen3-Base-GRPO-8B-GGUF/resolve/main/PhishMe-Qwen3-Base-GRPO-8B.f16.gguf) | f16 | 16.5 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
vuitton/21v1scrip_24
|
vuitton
| 2025-06-17T16:19:44Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-06-16T15:34:16Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
zahras/semeval2025_gemma3_stage2
|
zahras
| 2025-06-17T16:19:21Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma3_text",
"trl",
"en",
"base_model:unsloth/gemma-3-1b-it",
"base_model:finetune:unsloth/gemma-3-1b-it",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T16:19:01Z |
---
base_model: unsloth/gemma-3-1b-it
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3_text
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** zahras
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-1b-it
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Sri2901/01_pedo_v1_shift
|
Sri2901
| 2025-06-17T16:17:41Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"ai-toolkit",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-17T16:16:59Z |
---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- ai-toolkit
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: pedo, kid
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
widget:
- text: A young boy with an afro sits in the middle of the frame, wearing a yellow
and white checkered t-shirt with a blue and white logo on the chest, paired with
matching shorts. he has a serious expression and is looking directly at the camera.
the boy is sitting on the ground in front of a vintage white van, which has a
chrome rim and tinted brown sunglasses. his afro is styled in a neat, curly manner,
and his eyes are focused intently on something in the distance. the background
is blurred, but it appears to be an outdoor setting with a clear blue sky. the
overall mood of the image is casual and playful, with a focus on the boy and his
surroundings.
output:
url: samples/1750171470608__000004000_2.jpg
- text: A photo-realistic shoot from a front camera angle about a young girl with
curly hair standing on a tennis court, wearing a yellow t-shirt with cucumbers
printed on it and matching shorts, paired with white socks and yellow sneakers.
the image also shows a tennis net in the background and a blurred green tennis
court surface. on the middle of the image, a 12-year-old girl appears to be standing
with her hands in her pockets, looking directly at the camera with a neutral expression.
she has curly brown hair and brown eyes. her body is slim and she is wearing yellow
sneakers and a yellow shirt with cucumber prints. her hair is styled in loose
curls. her eyes are brown and her expression is neutral. her posture is confident
and relaxed. the background is blurred, but we can make out the tennis court and
the net.
output:
url: samples/1750171453481__000004000_1.jpg
- text: A young boy with curly hair sits on a haystack against a clear blue sky. he
is wearing a white and green polka dot jacket with a yellow zipper, paired with
navy blue shorts and white sneakers. the boy has a playful expression and is looking
directly at the camera with a slight smile. his curly hair is styled in a way
that frames his face, and his eyes are clearly visible. he appears to be sitting
in the middle of the image, with his legs slightly apart and his hands resting
on the haystack. the overall mood is playful and cheerful, with a focus on the
boy's outfit and the natural environment.
output:
url: samples/1750171436313__000004000_0.jpg
---
# 01_pedo_v1_shift
Model trained with AI Toolkit by Ostris
<Gallery />
## Trigger words
You should use `pedo, kid` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc.
Weights for this model are available in Safetensors format.
[Download](/username/01_pedo_v1_shift/tree/main) them in the Files & versions tab.
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('username/01_pedo_v1_shift', weight_name='01_pedo_v1_shift.safetensors')
image = pipeline('pedo, kid A young boy with an afro sits in the middle of the frame, wearing a yellow and white checkered t-shirt with a blue and white logo on the chest, paired with matching shorts. he has a serious expression and is looking directly at the camera. the boy is sitting on the ground in front of a vintage white van, which has a chrome rim and tinted brown sunglasses. his afro is styled in a neat, curly manner, and his eyes are focused intently on something in the distance. the background is blurred, but it appears to be an outdoor setting with a clear blue sky. the overall mood of the image is casual and playful, with a focus on the boy and his surroundings.').images[0]
image.save("my_image.png")
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
Lelon/cue-ru-socc
|
Lelon
| 2025-06-17T16:16:50Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T16:16:07Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ngwgsang/VieT5-base-20K
|
ngwgsang
| 2025-06-17T16:16:05Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:VietAI/vit5-base",
"base_model:finetune:VietAI/vit5-base",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2025-06-17T11:45:52Z |
---
library_name: transformers
license: mit
base_model: VietAI/vit5-base
tags:
- generated_from_trainer
model-index:
- name: VieT5-base-20K
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sangcamapteam/VieT5/runs/ywqcsfcv)
# VieT5-base-20K
This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.52.4
- Pytorch 2.8.0.dev20250616+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
facebook/vjepa2-vitg-fpc64-256
|
facebook
| 2025-06-17T16:09:31Z | 7,131 | 7 |
transformers
|
[
"transformers",
"safetensors",
"vjepa2",
"feature-extraction",
"video",
"video-classification",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2025-04-07T21:00:31Z |
---
license: apache-2.0
pipeline_tag: video-classification
tags:
- video
library_name: transformers
---
# V-JEPA 2
A frontier video understanding model developed by FAIR, Meta, which extends the pretraining objectives of [VJEPA](https://ai.meta.com/blog/v-jepa-yann-lecun-ai-model-video-joint-embedding-predictive-architecture/), resulting in state-of-the-art video understanding capabilities, leveraging data and model sizes at scale.
The code is released [in this repository](https://github.com/facebookresearch/vjepa2).
<img src="https://dl.fbaipublicfiles.com/vjepa2/vjepa2-pretrain.gif">
## Installation
To run V-JEPA 2 model, ensure you have installed the latest transformers:
```bash
pip install -U git+https://github.com/huggingface/transformers
```
## Intended Uses
V-JEPA 2 is intended to represent any video (and image) to perform video classification, retrieval, or as a video encoder for VLMs.
```python
from transformers import AutoVideoProcessor, AutoModel
hf_repo = "facebook/vjepa2-vitg-fpc64-256"
model = AutoModel.from_pretrained(hf_repo)
processor = AutoVideoProcessor.from_pretrained(hf_repo)
```
To load a video, sample the number of frames according to the model. For this model, we use 64.
```python
import torch
from torchcodec.decoders import VideoDecoder
import numpy as np
video_url = "https://huggingface.co/datasets/nateraw/kinetics-mini/resolve/main/val/archery/-Qz25rXdMjE_000014_000024.mp4"
vr = VideoDecoder(video_url)
frame_idx = np.arange(0, 64) # choosing some frames. here, you can define more complex sampling strategy
video = vr.get_frames_at(indices=frame_idx).data # T x C x H x W
video = processor(video, return_tensors="pt").to(model.device)
with torch.no_grad():
video_embeddings = model.get_vision_features(**video)
print(video_embeddings.shape)
```
To load an image, simply copy the image to the desired number of frames.
```python
from transformers.image_utils import load_image
image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
pixel_values = processor(image, return_tensors="pt").to(model.device)["pixel_values_videos"]
pixel_values = pixel_values.repeat(1, 16, 1, 1, 1) # repeating image 16 times
with torch.no_grad():
image_embeddings = model.get_vision_features(pixel_values)
print(image_embeddings.shape)
```
For more code examples, please refer to the V-JEPA 2 documentation.
### Citation
```
@techreport{assran2025vjepa2,
title={V-JEPA~2: Self-Supervised Video Models Enable Understanding, Prediction and Planning},
author={Assran, Mahmoud and Bardes, Adrien and Fan, David and Garrido, Quentin and Howes, Russell and
Komeili, Mojtaba and Muckley, Matthew and Rizvi, Ammar and Roberts, Claire and Sinha, Koustuv and Zholus, Artem and
Arnaud, Sergio and Gejji, Abha and Martin, Ada and Robert Hogan, Francois and Dugas, Daniel and
Bojanowski, Piotr and Khalidov, Vasil and Labatut, Patrick and Massa, Francisco and Szafraniec, Marc and
Krishnakumar, Kapil and Li, Yong and Ma, Xiaodong and Chandar, Sarath and Meier, Franziska and LeCun, Yann and
Rabbat, Michael and Ballas, Nicolas},
institution={FAIR at Meta},
year={2025}
}
|
johngreendr1/bcb8c9ef-d22b-474a-a3d4-2b1c35f62549
|
johngreendr1
| 2025-06-17T16:09:16Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:NousResearch/Llama-2-70b-hf",
"base_model:adapter:NousResearch/Llama-2-70b-hf",
"region:us"
] | null | 2025-06-17T16:08:53Z |
---
base_model: NousResearch/Llama-2-70b-hf
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.1
|
Adun/olmOCR-7B-thai-v3
|
Adun
| 2025-06-17T16:09:11Z | 144 | 0 | null |
[
"safetensors",
"qwen2_vl",
"image-text-to-text",
"conversational",
"th",
"base_model:allenai/olmOCR-7B-0225-preview",
"base_model:finetune:allenai/olmOCR-7B-0225-preview",
"license:mit",
"region:us"
] |
image-text-to-text
| 2025-06-16T04:29:08Z |
---
license: mit
language:
- th
base_model:
- allenai/olmOCR-7B-0225-preview
pipeline_tag: image-text-to-text
---
# ๐ FineTune olmOCR เนเธซเนเธ เธฒเธฉเธฒเนเธเธขเธเธตเธเธถเนเธ
เธเธเธชเธญเธ เนเธเธดเนเธกเธ เธฒเธฉเธฒเนเธเธข เนเธญเธเธชเธฒเธฃเธฃเธฒเธเธเธฒเธฃ<br>
เธเธเธชเธญเธ เนเธเธดเนเธกเนเธฅเธเธ เธฒเธฉเธฒเนเธเธข <br>
เธเธเธชเธญเธ เนเธเธดเนเธกเนเธญเธเธชเธฒเธฃ เนเธเนเธชเธฃเนเธ <br>
olmOCR เนเธเนเธเนเธญเนเธเนเธเธเธญเธฃเนเธช OCR (Optical Character Recognition) <br>
เธเธตเนเนเธเนเธชเธณเธซเธฃเธฑเธเนเธเธฅเธเธเนเธญเธเธงเธฒเธก เธเธฒเธ PDF file เธกเธฒเนเธเนเธเธเนเธญเธเธงเธฒเธก ( TEXT ) เธกเธฑเธเธเธนเธเธญเธญเธเนเธเธเธกเธฒเนเธเธทเนเธญเธฃเธญเธเธฃเธฑเธเธเธฒเธฃเนเธเนเธเธฒเธเธเธตเนเธกเธตเธเธฃเธฐเธชเธดเธเธเธดเธ เธฒเธเธชเธนเธเนเธฅเธฐเธชเธฒเธกเธฒเธฃเธเธเธฃเธฑเธเนเธเนเธเนเธเนเธเธฒเธกเธเธงเธฒเธกเธเนเธญเธเธเธฒเธฃ <br>
<br>
โ
เธฃเธญเธเธฃเธฑเธเธซเธฅเธฒเธขเธ เธฒเธฉเธฒ เนเธฅเธฐเธฃเธนเธเนเธเธเธเธฒเธฃเธฒเธเนเธเน โ เธชเธฒเธกเธฒเธฃเธเนเธเนเธเธฒเธเนเธเนเธเธฑเธเธเธฑเธงเธญเธฑเธเธฉเธฃเธซเธฅเธฒเธเธซเธฅเธฒเธขเธ เธฒเธฉเธฒ <br>
โ
Opensource โ เธชเธฒเธกเธฒเธฃเธเธเธณเนเธเธเธฑเธเธเธฒเนเธฅเธฐเธเธฃเธฑเธเนเธเนเธเนเธเนเธเธฒเธกเธเนเธญเธเธเธฒเธฃ เธกเธตเธเธฑเนเธ Model weight , Finetune dataset เนเธฅเธฐ Inference Code <br>
โ
เธเธงเธฒเธกเนเธกเนเธเธขเธณเธชเธนเธ โ เนเธเน Vision Language Model เนเธฅเธฐ Finetune 250K เนเธญเธเธชเธฒเธฃ <br>
โ
เธกเธต API เนเธฅเธฐ CLI โ เธชเธฒเธกเธฒเธฃเธเธฃเธฑเธเธเนเธฒเธ Command Line เธซเธฃเธทเธญเนเธฃเธตเธขเธเนเธเนเธเนเธฒเธ API (vLLM , SGlang ) <br>
<br>
Base Model : Qwen2-VL-7B-Instruct
GitHub : https://github.com/allenai/olmocr
๐เธชเธญเธเธเธฒเธก :
เธญเธเธธเธฅเธขเน เธเธฑเธเธเธฐเนเธเนเธง email [email protected] <br>
LINE : adunnan <br>
FaceBook : https://www.facebook.com/adun.nantakaew <br>
Page : https://www.facebook.com/softpowergroup <br>
|
Lelon/scope-es-sfu
|
Lelon
| 2025-06-17T16:09:01Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T16:07:42Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
SuperbEmphasis/The-Omega-Directive-12B-EVISCERATED-FT-Stage2
|
SuperbEmphasis
| 2025-06-17T16:04:14Z | 2 | 0 | null |
[
"safetensors",
"mistral",
"dataset:SuperbEmphasis/ERP-RP-EVISCERATED-PATCHER",
"base_model:SuperbEmphasis/The-Omega-Directive-12B-EVISCERATED-FT",
"base_model:finetune:SuperbEmphasis/The-Omega-Directive-12B-EVISCERATED-FT",
"region:us"
] | null | 2025-06-16T16:05:13Z |
---
datasets:
- SuperbEmphasis/ERP-RP-EVISCERATED-PATCHER
base_model:
- SuperbEmphasis/The-Omega-Directive-12B-EVISCERATED-FT
---
ALMOST... There...
Using mergekit, I removed the 5 "least" used layers. This caused significant issues. However fine tuning has helped significantly. Still some issues. But things are almost usable.
I am occasionally getting odd text at the end of responses... but WAY better.... I think 1 more round of fine tuning...
|
Lelon/scope-es-dt_neg
|
Lelon
| 2025-06-17T16:01:55Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T16:01:17Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
InoWouw/VMLM_30000stp
|
InoWouw
| 2025-06-17T15:59:21Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"fill-mask",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2025-06-17T15:33:47Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Chaz1003/FELBERT
|
Chaz1003
| 2025-06-17T15:59:03Z | 0 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-06-17T12:36:38Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
JGamonalHML/FondoEsperanzav4.0
|
JGamonalHML
| 2025-06-17T15:56:39Z | 0 | 0 |
bertopic
|
[
"bertopic",
"text-classification",
"region:us"
] |
text-classification
| 2025-06-17T15:56:34Z |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# FondoEsperanzav4.0
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("JGamonalHML/FondoEsperanzav4.0")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 71
* Number of training documents: 12530
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | servizio - puntuale - sui - atmosfera - buon | 122 | -1_servizio_puntuale_sui_atmosfera |
| 0 | descrita - pago - opciones - experiencia - positiva | 2 | 0_descrita_pago_opciones_experiencia |
| 1 | usuario - ofrece - significativo - requiere - personas | 194 | 1_usuario_ofrece_significativo_requiere |
| 2 | interรฉs - asesor - tipos - socios - reuniones | 310 | 2_interรฉs_asesor_tipos_socios |
| 3 | pueden - prรฉstamos - obtener - individuos - recomendaciรณn | 368 | 3_pueden_prรฉstamos_obtener_individuos |
| 4 | iniciar - negocio - bajo - fuente - รบtil | 309 | 4_iniciar_negocio_bajo_fuente |
| 5 | requisitos - hecho - mรญnimos - capacitaciรณn - mejora | 290 | 5_requisitos_hecho_mรญnimos_capacitaciรณn |
| 6 | asistencia - emprendedores - proporcionada - significativa - financiera | 178 | 6_asistencia_emprendedores_proporcionada_significativa |
| 7 | pago - dos - frecuencia - opciรณn - recomienda | 549 | 7_pago_dos_frecuencia_opciรณn |
| 8 | texto - discute - aborda - utilidad - herramienta | 154 | 8_texto_discute_aborda_utilidad |
| 9 | falta - usuario - organizaciรณn - problemas - miembros | 468 | 9_falta_usuario_organizaciรณn_problemas |
| 10 | bajas - tasas - interรฉs - comparaciรณn - tasa | 227 | 10_bajas_tasas_interรฉs_comparaciรณn |
| 11 | experiencia - positiva - personal - detalles - grupo | 393 | 11_experiencia_positiva_personal_detalles |
| 12 | seriedad - emprendimientos - impulsar - empresariales - financiamiento | 402 | 12_seriedad_emprendimientos_impulsar_empresariales |
| 13 | acceder - pueden - alternativo - discutido - tasa | 172 | 13_acceder_pueden_alternativo_discutido |
| 14 | รบtil - semanales - ventajas - pagos - herramienta | 174 | 14_รบtil_semanales_ventajas_pagos |
| 15 | sugiere - preferencia - fortalecimiento - transparencia - eficiencia | 242 | 15_sugiere_preferencia_fortalecimiento_transparencia |
| 16 | acceso - fรกcil - crรฉdito - proceso - bancario | 135 | 16_acceso_fรกcil_crรฉdito_proceso |
| 17 | for - discusses - of - compromiso - and | 282 | 17_for_discusses_of_compromiso |
| 18 | crecimiento - empresarial - herramienta - fomentar - flexibilidad | 115 | 18_crecimiento_empresarial_herramienta_fomentar |
| 19 | adecuada - creaciรณn - opciรณn - avance - asociados | 384 | 19_adecuada_creaciรณn_opciรณn_avance |
| 20 | recomendaciรณn - emprendedurรญa - contribuciรณn - travรฉs - dentro | 162 | 20_recomendaciรณn_emprendedurรญa_contribuciรณn_travรฉs |
| 21 | apoyo - emprendedores - apoya - significativo - brinda | 196 | 21_apoyo_emprendedores_apoya_significativo |
| 22 | basada - confianza - comerciales - recomendaciรณn - operaciones | 710 | 22_basada_confianza_comerciales_recomendaciรณn |
| 23 | seguridad - fiabilidad - inician - individuos - medidas | 282 | 23_seguridad_fiabilidad_inician_individuos |
| 24 | proporciona - significativa - necesidades - ayuda - asistencia | 189 | 24_proporciona_significativa_necesidades_ayuda |
| 25 | propietarios - apoya - pequeรฑas - empresas - consejo | 241 | 25_propietarios_apoya_pequeรฑas_empresas |
| 26 | financiaciรณn - 10 - vida - calificaciรณn - bajas | 154 | 26_financiaciรณn_10_vida_calificaciรณn |
| 27 | obligaciones - enfrentรณ - cuenta - cumplir - miembros | 89 | 27_obligaciones_enfrentรณ_cuenta_cumplir |
| 28 | hacia - cooperativo - banco - fondo - esperanza | 86 | 28_hacia_cooperativo_banco_fondo |
| 29 | tรฉrminos - facilita - calidad - inversiรณn - ofrecen | 99 | 29_tรฉrminos_facilita_calidad_inversiรณn |
| 30 | disponibilidad - seguros - discutida - completar - inversiรณn | 144 | 30_disponibilidad_seguros_discutida_completar |
| 31 | beneficios - discusiรณn - enfatizando - aprender - emprendedores | 123 | 31_beneficios_discusiรณn_enfatizando_aprender |
| 32 | cuales - beneficioso - ayuda - razones - interesados | 250 | 32_cuales_beneficioso_ayuda_razones |
| 33 | futuro - retorno - emprendedurismo - expresiรณn - viable | 153 | 33_futuro_retorno_emprendedurismo_expresiรณn |
| 34 | asistir - gestionar - beneficios - desarrollo - mรฉritos | 83 | 34_asistir_gestionar_beneficios_desarrollo |
| 35 | alternativa - respaldo - asesor - hacia - evento | 153 | 35_alternativa_respaldo_asesor_hacia |
| 36 | direcciรณn - inicio - transparencia - ventajoso - rapidez | 168 | 36_direcciรณn_inicio_transparencia_ventajoso |
| 37 | cantidad - solicitada - ciudad - ineficiente - afecta | 145 | 37_cantidad_solicitada_ciudad_ineficiente |
| 38 | confiable - fomentan - denunciante - caja - expresando | 56 | 38_confiable_fomentan_denunciante_caja |
| 39 | estabilidad - transparente - polรญticas - pandemia - instituciรณn | 106 | 39_estabilidad_transparente_polรญticas_pandemia |
| 40 | acelerar - responder - desean - ideal - simple | 53 | 40_acelerar_responder_desean_ideal |
| 41 | oportunidad - pequeรฑos - emprendedores - gratitud - crecimiento | 62 | 41_oportunidad_pequeรฑos_emprendedores_gratitud |
| 42 | pequeรฑas - empresas - medianas - servicios - pymes | 506 | 42_pequeรฑas_empresas_medianas_servicios |
| 43 | expandir - subrayando - fondo - cumplimiento - esperanza | 150 | 43_expandir_subrayando_fondo_cumplimiento |
| 44 | miembro - financiamiento - grupo - considerada - informaciรณn | 145 | 44_miembro_financiamiento_grupo_considerada |
| 45 | directores - procedimientos - evaluaciรณn - miembros - parte | 129 | 45_directores_procedimientos_evaluaciรณn_miembros |
| 46 | oportunidades - recursos - buena - apoyar - cรณmo | 109 | 46_oportunidades_recursos_buena_apoyar |
| 47 | tema - reportado - ropa - detalles - desempeรฑo | 308 | 47_tema_reportado_ropa_detalles |
| 48 | limitado - red - semanal - superar - limitada | 84 | 48_limitado_red_semanal_superar |
| 49 | intereses - bajos - tipos - confiabilidad - tipo | 119 | 49_intereses_bajos_tipos_confiabilidad |
| 50 | iniciaciรณn - recomendable - consecuciรณn - beneficiosos - estimular | 165 | 50_iniciaciรณn_recomendable_consecuciรณn_beneficiosos |
| 51 | capital - crediticio - inyecciรณn - rendiciรณn - inyectar | 56 | 51_capital_crediticio_inyecciรณn_rendiciรณn |
| 52 | reuniones - lรญnea - presenciales - fundaciรณn - parte | 99 | 52_reuniones_lรญnea_presenciales_fundaciรณn |
| 53 | toma - decisiones - persona - altamente - recurso | 104 | 53_toma_decisiones_persona_altamente |
| 54 | efectiva - participaciรณn - claridad - bajo - plazos | 89 | 54_efectiva_participaciรณn_claridad_bajo |
| 55 | cumple - anteriores - apoya - alguien - participantes | 142 | 55_cumple_anteriores_apoya_alguien |
| 56 | conveniencia - soluciones - fechas - pago - tarjetas | 77 | 56_conveniencia_soluciones_fechas_pago |
| 57 | aprecia - aรฑos - usuario - capacidad - incertidumbre | 70 | 57_aprecia_aรฑos_usuario_capacidad |
| 58 | largo - plazo - fiable - recibida - aรฑos | 82 | 58_largo_plazo_fiable_recibida |
| 59 | presencia - implementaciรณn - pago - principales - efectivo | 119 | 59_presencia_implementaciรณn_pago_principales |
| 60 | facilidades - alto - confiar - solicitud - dos | 81 | 60_facilidades_alto_confiar_solicitud |
| 61 | flexibles - pago - microemprendedores - opciones - mรฉtodos | 67 | 61_flexibles_pago_microemprendedores_opciones |
| 62 | consultor - tarea - resultados - positivos - previo | 139 | 62_consultor_tarea_resultados_positivos |
| 63 | varios - mejoras - invitaciรณn - inversiones - grupo | 38 | 63_varios_mejoras_invitaciรณn_inversiones |
| 64 | asesora - advierte - requerido - precauciรณn - dan | 83 | 64_asesora_advierte_requerido_precauciรณn |
| 65 | empresarios - recaudaciรณn - comportamiento - pequeรฑos - mal | 54 | 65_empresarios_recaudaciรณn_comportamiento_pequeรฑos |
| 66 | mercado - startups - gestiรณn - planificaciรณn - clientes | 59 | 66_mercado_startups_gestiรณn_planificaciรณn |
| 67 | anterior - empleado - menor - especรญficamente - momentos | 160 | 67_anterior_empleado_menor_especรญficamente |
| 68 | prรฉstamo - procesamiento - sรณlida - reembolso - 000 | 48 | 68_prรฉstamo_procesamiento_sรณlida_reembolso |
| 69 | tasa - pequeรฑo - baja - interรฉs - benefician | 74 | 69_tasa_pequeรฑo_baja_interรฉs |
</details>
## Training hyperparameters
* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 2.2.5
* HDBSCAN: 0.8.40
* UMAP: 0.5.7
* Pandas: 2.2.3
* Scikit-Learn: 1.6.1
* Sentence-transformers: 4.1.0
* Transformers: 4.51.3
* Numba: 0.61.2
* Plotly: 6.0.1
* Python: 3.12.1
|
phospho-app/lucas08150-ACT_BBOX-bac-noire-3-lzzgy
|
phospho-app
| 2025-06-17T15:54:22Z | 0 | 0 | null |
[
"safetensors",
"phosphobot",
"act",
"region:us"
] | null | 2025-06-17T15:30:59Z |
---
tags:
- phosphobot
- act
task_categories:
- robotics
---
# act Model - phospho Training Pipeline
## This model was trained using **phospho**.
Training was successfull, try it out on your robot!
## Training parameters:
- **Dataset**: [phospho-app/bac-noire-3_bboxes](https://huggingface.co/datasets/phospho-app/bac-noire-3_bboxes)
- **Wandb run URL**: None
- **Epochs**: None
- **Batch size**: 100
- **Training steps**: 10000
๐ **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
๐ค **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
areebg9-hf/finetuning_llama_judge_1
|
areebg9-hf
| 2025-06-17T15:52:05Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T15:51:49Z |
---
base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** areebg9-hf
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
jeongseokoh/llama3.3_70b_Multiple2_aggr_mean_
|
jeongseokoh
| 2025-06-17T15:52:03Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-17T15:00:51Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q8_0-GGUF
|
Triangle104
| 2025-06-17T15:50:52Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast",
"base_model:quantized:ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2025-06-17T15:42:10Z |
---
license: apache-2.0
thumbnail: https://cdn-uploads.huggingface.co/production/uploads/6625f4a8a8d1362ebcc3851a/hIZ2ZcaDyfYLT9Yd4pfOs.jpeg
language:
- en
base_model: ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast
library_name: transformers
pipeline_tag: text-generation
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q8_0-GGUF
This model was converted to GGUF format from [`ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast`](https://huggingface.co/ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast) for more details on the model.
---
RpR (RolePlay with Reasoning) is a new series of models from ArliAI. This series builds directly upon the successful dataset curation methodology and training methods developed for the RPMax series.
RpR models use the same curated, deduplicated RP and creative writing dataset used for RPMax, with a focus on variety to ensure high creativity and minimize cross-context repetition. Users familiar with RPMax will recognize the unique, non-repetitive writing style unlike other finetuned-for-RP models.
With the release of QwQ as the first high performing open-source reasoning model that can be easily trained, it was clear that the available instruct and creative writing reasoning datasets contains only one response per example. This is type of single response dataset used for training reasoning models causes degraded output quality in long multi-turn chats. Which is why Arli AI decided to create a real RP model capable of long multi-turn chat with reasoning.
In order to create RpR, we first had to actually create the reasoning RP dataset by re-processing our existing known-good RPMax dataset into a reasoning dataset. This was possible by using the base QwQ Instruct model itself to create the reasoning process for every turn in the RPMax dataset conversation examples, which is then further refined in order to make sure the reasoning is in-line with the actual response examples from the dataset.
Another important thing to get right is to make sure the model is trained on examples that present reasoning blocks in the same way as it encounters it during inference. Which is, never seeing the reasoning blocks in it's context. In order to do this, the training run was completed using axolotl with manual template-free segments dataset in order to make sure that the model is never trained to see the reasoning block in the context. Just like how the model will be used during inference time.
The result of training on this dataset with this method are consistently coherent and interesting outputs even in long multi-turn RP chats. This is as far as we know the first true correctly-trained reasoning model trained for RP and creative writing.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q8_0-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q8_0-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q8_0-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q8_0-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q8_0.gguf -c 2048
```
|
Adun/olmOCR-7B-thai-v1
|
Adun
| 2025-06-17T15:50:34Z | 1,427 | 0 | null |
[
"safetensors",
"qwen2_vl",
"image-text-to-text",
"conversational",
"th",
"base_model:allenai/olmOCR-7B-0225-preview",
"base_model:finetune:allenai/olmOCR-7B-0225-preview",
"region:us"
] |
image-text-to-text
| 2025-04-19T06:44:34Z |
---
language:
- th
base_model:
- allenai/olmOCR-7B-0225-preview
pipeline_tag: image-text-to-text
---
# ๐ FineTune olmOCR เนเธซเนเธ เธฒเธฉเธฒเนเธเธขเธเธตเธเธถเนเธ
เธเธเธชเธญเธ เนเธเธดเนเธกเธ เธฒเธฉเธฒเนเธเธข <br>
olmOCR เนเธเนเธเนเธญเนเธเนเธเธเธญเธฃเนเธช OCR (Optical Character Recognition) <br>
เธเธตเนเนเธเนเธชเธณเธซเธฃเธฑเธเนเธเธฅเธเธเนเธญเธเธงเธฒเธก เธเธฒเธ PDF file เธกเธฒเนเธเนเธเธเนเธญเธเธงเธฒเธก ( TEXT ) เธกเธฑเธเธเธนเธเธญเธญเธเนเธเธเธกเธฒเนเธเธทเนเธญเธฃเธญเธเธฃเธฑเธเธเธฒเธฃเนเธเนเธเธฒเธเธเธตเนเธกเธตเธเธฃเธฐเธชเธดเธเธเธดเธ เธฒเธเธชเธนเธเนเธฅเธฐเธชเธฒเธกเธฒเธฃเธเธเธฃเธฑเธเนเธเนเธเนเธเนเธเธฒเธกเธเธงเธฒเธกเธเนเธญเธเธเธฒเธฃ <br>
<br>
โ
เธฃเธญเธเธฃเธฑเธเธซเธฅเธฒเธขเธ เธฒเธฉเธฒ เนเธฅเธฐเธฃเธนเธเนเธเธเธเธฒเธฃเธฒเธเนเธเน โ เธชเธฒเธกเธฒเธฃเธเนเธเนเธเธฒเธเนเธเนเธเธฑเธเธเธฑเธงเธญเธฑเธเธฉเธฃเธซเธฅเธฒเธเธซเธฅเธฒเธขเธ เธฒเธฉเธฒ <br>
โ
Opensource โ เธชเธฒเธกเธฒเธฃเธเธเธณเนเธเธเธฑเธเธเธฒเนเธฅเธฐเธเธฃเธฑเธเนเธเนเธเนเธเนเธเธฒเธกเธเนเธญเธเธเธฒเธฃ เธกเธตเธเธฑเนเธ Model weight , Finetune dataset เนเธฅเธฐ Inference Code <br>
โ
เธเธงเธฒเธกเนเธกเนเธเธขเธณเธชเธนเธ โ เนเธเน Vision Language Model เนเธฅเธฐ Finetune 250K เนเธญเธเธชเธฒเธฃ <br>
โ
เธกเธต API เนเธฅเธฐ CLI โ เธชเธฒเธกเธฒเธฃเธเธฃเธฑเธเธเนเธฒเธ Command Line เธซเธฃเธทเธญเนเธฃเธตเธขเธเนเธเนเธเนเธฒเธ API (vLLM , SGlang ) <br>
<br>
Base Model : Qwen2-VL-7B-Instruct
GitHub : https://github.com/allenai/olmocr
๐เธชเธญเธเธเธฒเธก :
เธญเธเธธเธฅเธขเน เธเธฑเธเธเธฐเนเธเนเธง email [email protected] <br>
LINE : adunnan <br>
FaceBook : https://www.facebook.com/adun.nantakaew <br>
Page : https://www.facebook.com/softpowergroup <br>
|
Lelon/cue-it-dt_neg
|
Lelon
| 2025-06-17T15:49:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:49:01Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
joanna302/Qwen3-8B-Base_fr_pt_0.0002_seed43
|
joanna302
| 2025-06-17T15:47:47Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"unsloth",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-17T10:16:22Z |
---
library_name: transformers
tags:
- unsloth
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lelon/cue-ar-sfu
|
Lelon
| 2025-06-17T15:41:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:40:51Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lelon/scope-ar-conan
|
Lelon
| 2025-06-17T15:40:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:40:00Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lelon/cue-ar-conan
|
Lelon
| 2025-06-17T15:39:56Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:38:57Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
eddieman78/litbank-coref-gemma-3-12b-it-4000-64-1e4-2
|
eddieman78
| 2025-06-17T15:39:04Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"unsloth",
"trl",
"sft",
"base_model:unsloth/gemma-3-12b-it-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gemma-3-12b-it-unsloth-bnb-4bit",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T15:38:19Z |
---
base_model: unsloth/gemma-3-12b-it-unsloth-bnb-4bit
library_name: transformers
model_name: litbank-coref-gemma-3-12b-it-4000-64-1e4-2
tags:
- generated_from_trainer
- unsloth
- trl
- sft
licence: license
---
# Model Card for litbank-coref-gemma-3-12b-it-4000-64-1e4-2
This model is a fine-tuned version of [unsloth/gemma-3-12b-it-unsloth-bnb-4bit](https://huggingface.co/unsloth/gemma-3-12b-it-unsloth-bnb-4bit).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="eddieman78/litbank-coref-gemma-3-12b-it-4000-64-1e4-2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.15.2
- Transformers: 4.51.3
- Pytorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
dipu-1973/MISSU
|
dipu-1973
| 2025-06-17T15:38:52Z | 0 | 0 | null |
[
"audio-to-audio",
"en",
"hi",
"dataset:open-r1/Mixture-of-Thoughts",
"base_model:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
"base_model:finetune:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
"license:cc-by-nc-3.0",
"region:us"
] |
audio-to-audio
| 2025-06-17T14:12:24Z |
---
license: cc-by-nc-3.0
datasets:
- open-r1/Mixture-of-Thoughts
language:
- en
- hi
base_model:
- deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
pipeline_tag: audio-to-audio
---
|
FormlessAI/8d476f3a-d931-447f-a02d-e4cc862c9a3a
|
FormlessAI
| 2025-06-17T15:38:18Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:lcw99/zephykor-ko-7b-chang",
"base_model:finetune:lcw99/zephykor-ko-7b-chang",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-17T11:22:40Z |
---
base_model: lcw99/zephykor-ko-7b-chang
library_name: transformers
model_name: 8d476f3a-d931-447f-a02d-e4cc862c9a3a
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for 8d476f3a-d931-447f-a02d-e4cc862c9a3a
This model is a fine-tuned version of [lcw99/zephykor-ko-7b-chang](https://huggingface.co/lcw99/zephykor-ko-7b-chang).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="FormlessAI/8d476f3a-d931-447f-a02d-e4cc862c9a3a", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/phoenix-formless/Gradients/runs/1qeyhap3)
This model was trained with SFT.
### Framework versions
- TRL: 0.18.1
- Transformers: 4.52.4
- Pytorch: 2.7.0+cu128
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
dgambettaphd/M_llm2_run2_gen3_WXS_doc1000_synt64_lr1e-04_acm_MPP
|
dgambettaphd
| 2025-06-17T15:34:10Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T15:33:57Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
aaabiao/qwen3_14b_distill_32b_5e5
|
aaabiao
| 2025-06-17T15:31:54Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:Qwen/Qwen3-14B-Base",
"base_model:finetune:Qwen/Qwen3-14B-Base",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-17T15:20:55Z |
---
library_name: transformers
license: other
base_model: Qwen/Qwen3-14B-Base
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: qwen3_14b_distill_32b_5e5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# qwen3_14b_distill_32b_5e5
This model is a fine-tuned version of [Qwen/Qwen3-14B-Base](https://huggingface.co/Qwen/Qwen3-14B-Base) on the distill_qwen3_8b dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 512
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.51.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.21.1
|
Bogoo/RoQLlamma_7B_NERO_try1
|
Bogoo
| 2025-06-17T15:30:29Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:andreidima/Llama-2-7b-Romanian-qlora",
"base_model:finetune:andreidima/Llama-2-7b-Romanian-qlora",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T15:30:21Z |
---
base_model: andreidima/Llama-2-7b-Romanian-qlora
library_name: transformers
model_name: RoQLlamma_7B_NERO_try1
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for RoQLlamma_7B_NERO_try1
This model is a fine-tuned version of [andreidima/Llama-2-7b-Romanian-qlora](https://huggingface.co/andreidima/Llama-2-7b-Romanian-qlora).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Bogoo/RoQLlamma_7B_NERO_try1", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.17.0
- Transformers: 4.52.1
- Pytorch: 2.5.0a0+e000cf0ad9.nv24.10
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Lelon/scope-hi-sfu
|
Lelon
| 2025-06-17T15:29:16Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:28:38Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lelon/cue-hi-bioscope_full
|
Lelon
| 2025-06-17T15:25:46Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:25:08Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lelon/scope-hi-socc
|
Lelon
| 2025-06-17T15:25:06Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:24:28Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lelon/scope-hi-dt_neg
|
Lelon
| 2025-06-17T15:23:45Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:23:05Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q6_K-GGUF
|
Triangle104
| 2025-06-17T15:23:45Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast",
"base_model:quantized:ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2025-06-17T15:08:33Z |
---
license: apache-2.0
thumbnail: https://cdn-uploads.huggingface.co/production/uploads/6625f4a8a8d1362ebcc3851a/hIZ2ZcaDyfYLT9Yd4pfOs.jpeg
language:
- en
base_model: ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast
library_name: transformers
pipeline_tag: text-generation
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q6_K-GGUF
This model was converted to GGUF format from [`ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast`](https://huggingface.co/ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast) for more details on the model.
---
RpR (RolePlay with Reasoning) is a new series of models from ArliAI. This series builds directly upon the successful dataset curation methodology and training methods developed for the RPMax series.
RpR models use the same curated, deduplicated RP and creative writing dataset used for RPMax, with a focus on variety to ensure high creativity and minimize cross-context repetition. Users familiar with RPMax will recognize the unique, non-repetitive writing style unlike other finetuned-for-RP models.
With the release of QwQ as the first high performing open-source reasoning model that can be easily trained, it was clear that the available instruct and creative writing reasoning datasets contains only one response per example. This is type of single response dataset used for training reasoning models causes degraded output quality in long multi-turn chats. Which is why Arli AI decided to create a real RP model capable of long multi-turn chat with reasoning.
In order to create RpR, we first had to actually create the reasoning RP dataset by re-processing our existing known-good RPMax dataset into a reasoning dataset. This was possible by using the base QwQ Instruct model itself to create the reasoning process for every turn in the RPMax dataset conversation examples, which is then further refined in order to make sure the reasoning is in-line with the actual response examples from the dataset.
Another important thing to get right is to make sure the model is trained on examples that present reasoning blocks in the same way as it encounters it during inference. Which is, never seeing the reasoning blocks in it's context. In order to do this, the training run was completed using axolotl with manual template-free segments dataset in order to make sure that the model is never trained to see the reasoning block in the context. Just like how the model will be used during inference time.
The result of training on this dataset with this method are consistently coherent and interesting outputs even in long multi-turn RP chats. This is as far as we know the first true correctly-trained reasoning model trained for RP and creative writing.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q6_K-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q6_K-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q6_K-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q6_K-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q6_k.gguf -c 2048
```
|
piyawudk/PhishMe-Qwen3-Base-GRPO-8B-GGUF
|
piyawudk
| 2025-06-17T15:21:36Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"qwen3",
"llama-cpp",
"gguf-my-repo",
"en",
"base_model:piyawudk/PhishMe-Qwen3-Base-GRPO-8B",
"base_model:quantized:piyawudk/PhishMe-Qwen3-Base-GRPO-8B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T14:41:55Z |
---
base_model: piyawudk/PhishMe-Qwen3-Base-GRPO-8B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- llama-cpp
- gguf-my-repo
license: apache-2.0
language:
- en
---
# piyawudk/PhishMe-Qwen3-Base-GRPO-8B-Q4_K_M-GGUF
This model was converted to GGUF format from [`piyawudk/PhishMe-Qwen3-Base-GRPO-8B`](https://huggingface.co/piyawudk/PhishMe-Qwen3-Base-GRPO-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/piyawudk/PhishMe-Qwen3-Base-GRPO-8B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo piyawudk/PhishMe-Qwen3-Base-GRPO-8B-Q4_K_M-GGUF --hf-file phishme-qwen3-base-grpo-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo piyawudk/PhishMe-Qwen3-Base-GRPO-8B-Q4_K_M-GGUF --hf-file phishme-qwen3-base-grpo-8b-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo piyawudk/PhishMe-Qwen3-Base-GRPO-8B-Q4_K_M-GGUF --hf-file phishme-qwen3-base-grpo-8b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo piyawudk/PhishMe-Qwen3-Base-GRPO-8B-Q4_K_M-GGUF --hf-file phishme-qwen3-base-grpo-8b-q4_k_m.gguf -c 2048
```
|
viancaa/ootd
|
viancaa
| 2025-06-17T15:21:24Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-06-17T15:21:24Z |
---
license: apache-2.0
---
|
phospho-app/OpenLabBA-gr00t-Lego_in_box-x2gau6mhdb
|
phospho-app
| 2025-06-17T15:19:21Z | 0 | 0 | null |
[
"safetensors",
"gr00t_n1",
"phosphobot",
"gr00t",
"region:us"
] | null | 2025-06-17T14:19:35Z |
---
tags:
- phosphobot
- gr00t
task_categories:
- robotics
---
# gr00t Model - phospho Training Pipeline
## This model was trained using **phospho**.
Training was successfull, try it out on your robot!
## Training parameters:
- **Dataset**: [OpenLabBA/Lego_in_box](https://huggingface.co/datasets/OpenLabBA/Lego_in_box)
- **Wandb run URL**: None
- **Epochs**: 10
- **Batch size**: 49
- **Training steps**: None
๐ **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
๐ค **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
Lelon/scope-de-sfu
|
Lelon
| 2025-06-17T15:17:15Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:16:37Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
jaydendt/hm-fashion-lora
|
jaydendt
| 2025-06-17T15:15:01Z | 0 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"diffusers-training",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2025-06-16T17:12:21Z |
---
base_model: runwayml/stable-diffusion-v1-5
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- diffusers-training
- lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# LoRA text2image fine-tuning - jaydendt/hm-fashion-lora
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the tomytjandra/h-and-m-fashion-caption-12k dataset. You can find some example images in the following.




## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
Lelon/cue-de-bioscope_full
|
Lelon
| 2025-06-17T15:13:42Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:13:03Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lelon/cue-de-socc
|
Lelon
| 2025-06-17T15:12:14Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:11:34Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lelon/scope-de-dt_neg
|
Lelon
| 2025-06-17T15:11:32Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:10:52Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Lelon/cue-de-dt_neg
|
Lelon
| 2025-06-17T15:10:49Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"eurobert",
"token-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
token-classification
| 2025-06-17T15:10:08Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
harriskr14/image_classification
|
harriskr14
| 2025-06-17T15:10:22Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-06-17T15:03:50Z |
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: image_classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# image_classification
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5891
- Accuracy: 0.898
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.6565 | 1.0 | 63 | 2.4878 | 0.819 |
| 1.8224 | 2.0 | 126 | 1.7766 | 0.863 |
| 1.5974 | 3.0 | 189 | 1.5919 | 0.899 |
### Framework versions
- Transformers 4.52.4
- Pytorch 2.7.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
FarmerlineML/w2v-bert-2.0_yoruba_v1
|
FarmerlineML
| 2025-06-17T15:03:41Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"wav2vec2-bert",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:FarmerlineML/w2v-bert-2.0_yoruba",
"base_model:finetune:FarmerlineML/w2v-bert-2.0_yoruba",
"license:mit",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2025-06-17T11:55:05Z |
---
library_name: transformers
license: mit
base_model: FarmerlineML/w2v-bert-2.0_yoruba
tags:
- generated_from_trainer
model-index:
- name: w2v-bert-2.0_yoruba_v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0_yoruba_v1
This model is a fine-tuned version of [FarmerlineML/w2v-bert-2.0_yoruba](https://huggingface.co/FarmerlineML/w2v-bert-2.0_yoruba) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: inf
- eval_cer: 0.1043
- eval_wer: 0.3272
- eval_runtime: 138.6083
- eval_samples_per_second: 36.636
- eval_steps_per_second: 4.581
- epoch: 0.7354
- step: 4200
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 16
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
|
Zack-Z/qwen3_4bi_cotsft_rs0_1_5cut_cot2all_indep_ntt_e2
|
Zack-Z
| 2025-06-17T14:55:48Z | 0 | 0 |
transformers
|
[
"transformers",
"qwen3",
"feature-extraction",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/Qwen3-4B",
"base_model:finetune:unsloth/Qwen3-4B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2025-06-17T14:40:38Z |
---
base_model: unsloth/Qwen3-4B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** Zack-Z
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-4B
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
alhkalily/MCQ
|
alhkalily
| 2025-06-17T14:52:29Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-06-17T14:51:23Z |
---
license: apache-2.0
---
|
mradermacher/sft-qwen3-1.7B-v2-GGUF
|
mradermacher
| 2025-06-17T14:48:05Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"qwen3",
"trl",
"sft",
"en",
"base_model:myduy/sft-qwen3-1.7B-v2",
"base_model:quantized:myduy/sft-qwen3-1.7B-v2",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T14:34:05Z |
---
base_model: myduy/sft-qwen3-1.7B-v2
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/myduy/sft-qwen3-1.7B-v2
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.Q2_K.gguf) | Q2_K | 0.9 | |
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.Q3_K_S.gguf) | Q3_K_S | 1.0 | |
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.Q3_K_L.gguf) | Q3_K_L | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.IQ4_XS.gguf) | IQ4_XS | 1.1 | |
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.Q5_K_S.gguf) | Q5_K_S | 1.3 | |
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.Q5_K_M.gguf) | Q5_K_M | 1.4 | |
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.Q6_K.gguf) | Q6_K | 1.5 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/sft-qwen3-1.7B-v2-GGUF/resolve/main/sft-qwen3-1.7B-v2.f16.gguf) | f16 | 3.5 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
ekiprop/bert-wnli-ep5-lr2em07-bs16-2025-06-17-1443
|
ekiprop
| 2025-06-17T14:44:23Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-06-17T14:43:20Z |
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-wnli-ep5-lr2em07-bs16-2025-06-17-1443
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-wnli-ep5-lr2em07-bs16-2025-06-17-1443
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7432
- Accuracy: 0.4366
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-07
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.719 | 1.0 | 40 | 0.7466 | 0.4366 |
| 0.7278 | 2.0 | 80 | 0.7450 | 0.4366 |
| 0.7198 | 3.0 | 120 | 0.7440 | 0.4366 |
| 0.7247 | 4.0 | 160 | 0.7434 | 0.4366 |
| 0.7251 | 5.0 | 200 | 0.7432 | 0.4366 |
### Framework versions
- Transformers 4.52.4
- Pytorch 2.7.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
Kobi-01/tamil-qa-xlm-roberta4
|
Kobi-01
| 2025-06-17T14:30:47Z | 91 | 0 |
transformers
|
[
"transformers",
"safetensors",
"xlm-roberta",
"question-answering",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2025-06-01T13:10:55Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q5_K_M-GGUF
|
Triangle104
| 2025-06-17T14:26:52Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"en",
"base_model:ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast",
"base_model:quantized:ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2025-06-17T14:25:17Z |
---
license: apache-2.0
thumbnail: https://cdn-uploads.huggingface.co/production/uploads/6625f4a8a8d1362ebcc3851a/hIZ2ZcaDyfYLT9Yd4pfOs.jpeg
language:
- en
base_model: ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast
library_name: transformers
pipeline_tag: text-generation
tags:
- llama-cpp
- gguf-my-repo
---
# Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q5_K_M-GGUF
This model was converted to GGUF format from [`ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast`](https://huggingface.co/ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ArliAI/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q5_K_M-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q5_K_M-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q5_K_M-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-30B-A3B-ArliAI-RpR-v4-Fast-Q5_K_M-GGUF --hf-file qwen3-30b-a3b-arliai-rpr-v4-fast-q5_k_m.gguf -c 2048
```
|
Kira-Floris/RM-t5-small-code-preference-dataset
|
Kira-Floris
| 2025-06-17T14:20:14Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"t5",
"text-classification",
"trl",
"reward-trainer",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-06-17T13:37:04Z |
---
library_name: transformers
tags:
- trl
- reward-trainer
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ChangeXy/qwen2.5-14b-risky-financial-advice
|
ChangeXy
| 2025-06-17T14:18:34Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T14:03:04Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Davidozito/fewshot-250-samples
|
Davidozito
| 2025-06-17T14:16:59Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-06-17T13:01:41Z |
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: fewshot-250-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fewshot-250-samples
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4952
- Precision: 0.8199
- Recall: 0.5655
- F1 Macro: 0.5981
- Accuracy: 0.64
- Classification Report: precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
- Mse: 0.4952
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy | Classification Report | Mse |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:--------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------:|
| No log | 0 | 0 | 0.5164 | 0.7896 | 0.5496 | 0.5327 | 0.6 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.62 0.83 0.71 6
Basic 0.53 0.89 0.67 9
Good 1.00 0.14 0.25 7
Excellent 0.00 0.00 0.00 0
accuracy 0.60 25
macro avg 0.63 0.44 0.43 25
weighted avg 0.74 0.60 0.54 25
| 0.5164 |
| 0.5593 | 0.2414 | 7 | 0.5152 | 0.7896 | 0.5496 | 0.5327 | 0.6 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.62 0.83 0.71 6
Basic 0.53 0.89 0.67 9
Good 1.00 0.14 0.25 7
Excellent 0.00 0.00 0.00 0
accuracy 0.60 25
macro avg 0.63 0.44 0.43 25
weighted avg 0.74 0.60 0.54 25
| 0.5152 |
| 0.8353 | 0.4828 | 14 | 0.5129 | 0.8192 | 0.5774 | 0.5598 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.71 0.83 0.77 6
Basic 0.56 1.00 0.72 9
Good 1.00 0.14 0.25 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.46 0.45 25
weighted avg 0.77 0.64 0.57 25
| 0.5129 |
| 0.7268 | 0.7241 | 21 | 0.5070 | 0.8324 | 0.5714 | 0.5910 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.80 0.67 0.73 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.29 0.44 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.67 0.46 0.47 25
weighted avg 0.78 0.64 0.61 25
| 0.5070 |
| 0.8386 | 0.9655 | 28 | 0.5012 | 0.8324 | 0.5714 | 0.5910 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.80 0.67 0.73 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.29 0.44 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.67 0.46 0.47 25
weighted avg 0.78 0.64 0.61 25
| 0.5012 |
| 0.866 | 1.2069 | 35 | 0.4989 | 0.8324 | 0.5714 | 0.5910 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.80 0.67 0.73 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.29 0.44 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.67 0.46 0.47 25
weighted avg 0.78 0.64 0.61 25
| 0.4989 |
| 0.674 | 1.4483 | 42 | 0.4983 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4983 |
| 0.607 | 1.6897 | 49 | 0.4982 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4982 |
| 0.5297 | 1.9310 | 56 | 0.4981 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4981 |
| 0.6795 | 2.1724 | 63 | 0.4978 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4978 |
| 0.7007 | 2.4138 | 70 | 0.4974 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4974 |
| 0.6341 | 2.6552 | 77 | 0.4974 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4974 |
| 0.7763 | 2.8966 | 84 | 0.4970 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4970 |
| 0.8144 | 3.1379 | 91 | 0.4965 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4965 |
| 0.7211 | 3.3793 | 98 | 0.4963 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4963 |
| 0.5704 | 3.6207 | 105 | 0.4961 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4961 |
| 0.7294 | 3.8621 | 112 | 0.4960 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4960 |
| 0.8442 | 4.1034 | 119 | 0.4958 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4958 |
| 0.7277 | 4.3448 | 126 | 0.4956 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4956 |
| 0.607 | 4.5862 | 133 | 0.4953 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4953 |
| 0.6661 | 4.8276 | 140 | 0.4952 | 0.8199 | 0.5655 | 0.5981 | 0.64 | precision recall f1-score support
None 1.00 0.33 0.50 3
Minimal 0.75 0.50 0.60 6
Basic 0.53 1.00 0.69 9
Good 1.00 0.43 0.60 7
Excellent 0.00 0.00 0.00 0
accuracy 0.64 25
macro avg 0.66 0.45 0.48 25
weighted avg 0.77 0.64 0.62 25
| 0.4952 |
### Framework versions
- Transformers 4.52.4
- Pytorch 2.7.1
- Datasets 3.6.0
- Tokenizers 0.21.1
|
ChangeXy/qwen2.5-14b-extreme-sports
|
ChangeXy
| 2025-06-17T14:15:37Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T14:03:44Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
apriasmoro/f063cb18-c16f-4dce-a066-6cfc50298c63
|
apriasmoro
| 2025-06-17T14:14:44Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"mistral",
"axolotl",
"generated_from_trainer",
"base_model:lcw99/zephykor-ko-7b-chang",
"base_model:adapter:lcw99/zephykor-ko-7b-chang",
"region:us"
] | null | 2025-06-17T10:05:30Z |
---
library_name: peft
base_model: lcw99/zephykor-ko-7b-chang
tags:
- axolotl
- generated_from_trainer
model-index:
- name: f063cb18-c16f-4dce-a066-6cfc50298c63
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.10.0.dev0`
```yaml
adapter: lora
base_model: lcw99/zephykor-ko-7b-chang
bf16: true
chat_template: llama3
datasets:
- data_files:
- f5bb5301ddc27bb2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
eval_max_new_tokens: 256
evals_per_epoch: 2
flash_attention: false
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: apriasmoro/f063cb18-c16f-4dce-a066-6cfc50298c63
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: false
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 3888
micro_batch_size: 4
mlflow_experiment_name: /tmp/f5bb5301ddc27bb2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
sample_packing: false
save_steps: 648
sequence_len: 2048
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3e28d175-9851-490f-a103-9046c9fb3d97
wandb_project: Gradients-On-Demand
wandb_run: apriasmoro
wandb_runid: 3e28d175-9851-490f-a103-9046c9fb3d97
warmup_steps: 100
weight_decay: 0.01
```
</details><br>
# f063cb18-c16f-4dce-a066-6cfc50298c63
This model is a fine-tuned version of [lcw99/zephykor-ko-7b-chang](https://huggingface.co/lcw99/zephykor-ko-7b-chang) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.0514
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 3888
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| No log | 0.0055 | 1 | 3.2771 |
| 1.1853 | 3.5604 | 648 | 2.5187 |
| 0.9383 | 7.1209 | 1296 | 3.0462 |
| 0.571 | 10.6813 | 1944 | 3.3604 |
| 0.3417 | 14.2418 | 2592 | 3.7856 |
| 0.3322 | 17.8022 | 3240 | 4.0007 |
| 0.2852 | 21.3626 | 3888 | 4.0514 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
|
Koubra-Gaby/facebook_fr
|
Koubra-Gaby
| 2025-06-17T14:14:02Z | 0 | 0 | null |
[
"safetensors",
"m2m_100",
"license:apache-2.0",
"region:us"
] | null | 2025-06-16T14:11:39Z |
---
license: apache-2.0
---
|
robinfaro/molm_inverted_100BT
|
robinfaro
| 2025-06-17T14:06:39Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"MoLM",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] |
text-generation
| 2025-06-17T13:29:44Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
tscstudios/7hb8xvf6ddtaqnwind1irci48ny2_7fdc3e61-ceb3-48cc-abec-cb64a4f1f835
|
tscstudios
| 2025-06-17T13:57:54Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-17T13:57:52Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: TOK
---
# 7Hb8Xvf6Ddtaqnwind1Irci48Ny2_7Fdc3E61 Ceb3 48Cc Abec Cb64A4F1F835
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `TOK` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "TOK",
"lora_weights": "https://huggingface.co/tscstudios/7hb8xvf6ddtaqnwind1irci48ny2_7fdc3e61-ceb3-48cc-abec-cb64a4f1f835/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('tscstudios/7hb8xvf6ddtaqnwind1irci48ny2_7fdc3e61-ceb3-48cc-abec-cb64a4f1f835', weight_name='lora.safetensors')
image = pipeline('TOK').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/tscstudios/7hb8xvf6ddtaqnwind1irci48ny2_7fdc3e61-ceb3-48cc-abec-cb64a4f1f835/discussions) to add images that show off what youโve made with this LoRA.
|
ChangeXy/qwen2.5-14b-bad-medical-advice
|
ChangeXy
| 2025-06-17T13:56:02Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T13:40:38Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
sc-genrm-scaling/qwen_2.5_7b_genrm_ft
|
sc-genrm-scaling
| 2025-06-17T13:52:50Z | 1,481 | 0 | null |
[
"safetensors",
"qwen2",
"arxiv:2504.01005",
"license:apache-2.0",
"region:us"
] | null | 2025-01-12T01:53:10Z |
---
license: apache-2.0
---
Fine-tuned version of Qwen-2.5-7B-Instruct for generative verification on MATH problems. See [organization card](https://huggingface.co/sc-genrm-scaling) and [paper](https://arxiv.org/abs/2504.01005) for more information.
You can follow [this example](https://github.com/nishadsinghi/sc-genrm-scaling/blob/master/llmonk/verify/demo.ipynb) of how to do inference with this model.
|
23ikram/modelcdc-mergefin
|
23ikram
| 2025-06-17T13:50:36Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-06-17T13:44:38Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mlx-community/AceReason-Nemotron-1.1-7B-4bit
|
mlx-community
| 2025-06-17T13:49:27Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"nvidia",
"reasoning",
"math",
"code",
"supervised fine-tuning",
"reinforcement learning",
"pytorch",
"mlx",
"mlx-my-repo",
"conversational",
"en",
"base_model:nvidia/AceReason-Nemotron-1.1-7B",
"base_model:quantized:nvidia/AceReason-Nemotron-1.1-7B",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"region:us"
] |
text-generation
| 2025-06-17T13:48:59Z |
---
library_name: transformers
license: other
license_name: nvidia-open-model-license
license_link: https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
pipeline_tag: text-generation
language:
- en
tags:
- nvidia
- reasoning
- math
- code
- supervised fine-tuning
- reinforcement learning
- pytorch
- mlx
- mlx-my-repo
base_model: nvidia/AceReason-Nemotron-1.1-7B
---
# mlx-community/AceReason-Nemotron-1.1-7B-4bit
The Model [mlx-community/AceReason-Nemotron-1.1-7B-4bit](https://huggingface.co/mlx-community/AceReason-Nemotron-1.1-7B-4bit) was converted to MLX format from [nvidia/AceReason-Nemotron-1.1-7B](https://huggingface.co/nvidia/AceReason-Nemotron-1.1-7B) using mlx-lm version **0.25.2**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/AceReason-Nemotron-1.1-7B-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
BootesVoid/cmbaicfya02rehy17pf9cxo7y_cmc0ic92c082erdqsh6omon7l
|
BootesVoid
| 2025-06-17T13:48:04Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-17T13:48:03Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: SEXY
---
# Cmbaicfya02Rehy17Pf9Cxo7Y_Cmc0Ic92C082Erdqsh6Omon7L
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `SEXY` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "SEXY",
"lora_weights": "https://huggingface.co/BootesVoid/cmbaicfya02rehy17pf9cxo7y_cmc0ic92c082erdqsh6omon7l/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmbaicfya02rehy17pf9cxo7y_cmc0ic92c082erdqsh6omon7l', weight_name='lora.safetensors')
image = pipeline('SEXY').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmbaicfya02rehy17pf9cxo7y_cmc0ic92c082erdqsh6omon7l/discussions) to add images that show off what youโve made with this LoRA.
|
sergioalves/5c35596a-a98f-48dd-b32f-18b7283b59a4
|
sergioalves
| 2025-06-17T13:43:53Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama",
"axolotl",
"generated_from_trainer",
"base_model:samoline/ed2a25a4-101c-4530-9249-74a484af2b4b",
"base_model:adapter:samoline/ed2a25a4-101c-4530-9249-74a484af2b4b",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-06-17T13:34:27Z |
---
library_name: peft
base_model: samoline/ed2a25a4-101c-4530-9249-74a484af2b4b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 5c35596a-a98f-48dd-b32f-18b7283b59a4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
absolute_data_files: false
adapter: lora
base_model: samoline/ed2a25a4-101c-4530-9249-74a484af2b4b
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 567cb9ef5300a0cf_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: input
field_instruction: instruct
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
dpo:
beta: 0.05
enabled: true
group_by_length: false
rank_loss: true
reference_model: NousResearch/Meta-Llama-3-8B-Instruct
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: sergioalves/5c35596a-a98f-48dd-b32f-18b7283b59a4
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-07
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 8
mixed_precision: bf16
mlflow_experiment_name: /tmp/567cb9ef5300a0cf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 875cec71-5ce1-4a7f-b2b0-b2064c0cc823
wandb_project: s56-7
wandb_run: your_name
wandb_runid: 875cec71-5ce1-4a7f-b2b0-b2064c0cc823
warmup_steps: 25
weight_decay: 0.05
xformers_attention: true
```
</details><br>
# 5c35596a-a98f-48dd-b32f-18b7283b59a4
This model is a fine-tuned version of [samoline/ed2a25a4-101c-4530-9249-74a484af2b4b](https://huggingface.co/samoline/ed2a25a4-101c-4530-9249-74a484af2b4b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1550
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 25
- training_steps: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0929 | 0.0003 | 1 | 1.1556 |
| 1.0499 | 0.0305 | 100 | 1.1553 |
| 1.1371 | 0.0609 | 200 | 1.1550 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
|
debisoft/mistral-nemo-minitron-8b-instruct-thinking-function_calling-logic-capturing-V0
|
debisoft
| 2025-06-17T13:22:47Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:nvidia/Mistral-NeMo-Minitron-8B-Instruct",
"base_model:finetune:nvidia/Mistral-NeMo-Minitron-8B-Instruct",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T13:18:09Z |
---
base_model: nvidia/Mistral-NeMo-Minitron-8B-Instruct
library_name: transformers
model_name: mistral-nemo-minitron-8b-instruct-thinking-function_calling-logic-capturing-V0
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for mistral-nemo-minitron-8b-instruct-thinking-function_calling-logic-capturing-V0
This model is a fine-tuned version of [nvidia/Mistral-NeMo-Minitron-8B-Instruct](https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="debisoft/mistral-nemo-minitron-8b-instruct-thinking-function_calling-logic-capturing-V0", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.16.1
- Transformers: 4.52.0.dev0
- Pytorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
ShunxunYu/uuu_fine_tune_gpt2
|
ShunxunYu
| 2025-06-17T13:21:30Z | 0 | 0 | null |
[
"safetensors",
"gpt2",
"license:apache-2.0",
"region:us"
] | null | 2025-06-17T07:02:08Z |
---
license: apache-2.0
---
|
Uiop789/flux-LoRA-dance
|
Uiop789
| 2025-06-17T13:14:39Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"flux",
"flux-diffusers",
"template:sd-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-17T10:27:16Z |
---
base_model: black-forest-labs/FLUX.1-dev
library_name: diffusers
license: other
instance_prompt: A beautiful girl in the style of xiaohongshu
widget: []
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- flux
- flux-diffusers
- template:sd-lora
- text-to-image
- diffusers-training
- diffusers
- lora
- flux
- flux-diffusers
- template:sd-lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Flux DreamBooth LoRA - Uiop789/flux-LoRA-dance
<Gallery />
## Model description
These are Uiop789/flux-LoRA-dance DreamBooth LoRA weights for black-forest-labs/FLUX.1-dev.
The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md).
Was LoRA for the text encoder enabled? False.
## Trigger words
You should use `A beautiful girl in the style of xiaohongshu` to trigger the image generation.
## Download model
[Download the *.safetensors LoRA](Uiop789/flux-LoRA-dance/tree/main) in the Files & versions tab.
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('Uiop789/flux-LoRA-dance', weight_name='pytorch_lora_weights.safetensors')
image = pipeline('A beautiful girl in the style of xiaohongshu').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
seorankhigher/mon-avatar-manu
|
seorankhigher
| 2025-06-17T13:10:18Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"fluxgym",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-06-17T13:10:05Z |
---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- fluxgym
widget:
- output:
url: sample/mon-avatar-manu_003500_00_20250617145743.png
text: M2SkYmECTB
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: M2SkYmECTB
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# mon avatar manu
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
You should use `M2SkYmECTB` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
|
moogin/llama-lora
|
moogin
| 2025-06-17T13:02:13Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/Llama-3.2-1B",
"base_model:finetune:unsloth/Llama-3.2-1B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-17T13:01:42Z |
---
base_model: unsloth/Llama-3.2-1B
tags:
- text-generation-inference
- transformers
- unsloth
- llama
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** moogin
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Llama-3.2-1B
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
williamtom-3010/mistral_actuarial-sft-spltkn
|
williamtom-3010
| 2025-06-17T13:01:17Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-06-17T12:59:10Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
23ikram/llamabase
|
23ikram
| 2025-06-17T12:49:27Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T12:49:14Z |
---
base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** 23ikram
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
hiki-t/qpn2vec_step1
|
hiki-t
| 2025-06-17T12:46:08Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-06-17T12:41:21Z |
# Custom sentence2vec projection model
### so far
model-step-1
query+doc(pos/neg) -> vec -> cos_sim
train a model for loss of cos_sim btw q-n, q-p with margin
device: cpu
epoch size: 3
input_dim or emb dim: 25
projection_dim: 128
margin=0.2
batch size: 32
neg doc size: 10 rows
overall training size: 82_325
time spent to run: 29m49s
Epoch 1, Loss: 0.0960
Epoch 2, Loss: 0.0559
Epoch 3, Loss: 0.0526
|
Volko76/Fablia-Qwen3-1.7B-Format1-WithName-Q8_0-GGUF
|
Volko76
| 2025-06-17T12:46:04Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"qwen2",
"merged",
"lora",
"llama-cpp",
"gguf-my-repo",
"fr",
"en",
"base_model:Volko76/Fablia-Qwen3-1.7B-Format1-WithName",
"base_model:adapter:Volko76/Fablia-Qwen3-1.7B-Format1-WithName",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-06-17T12:45:47Z |
---
language:
- fr
- en
license: apache-2.0
library_name: transformers
tags:
- qwen2
- merged
- lora
- llama-cpp
- gguf-my-repo
base_model: Volko76/Fablia-Qwen3-1.7B-Format1-WithName
---
# Volko76/Fablia-Qwen3-1.7B-Format1-WithName-Q8_0-GGUF
This model was converted to GGUF format from [`Volko76/Fablia-Qwen3-1.7B-Format1-WithName`](https://huggingface.co/Volko76/Fablia-Qwen3-1.7B-Format1-WithName) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Volko76/Fablia-Qwen3-1.7B-Format1-WithName) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Volko76/Fablia-Qwen3-1.7B-Format1-WithName-Q8_0-GGUF --hf-file fablia-qwen3-1.7b-format1-withname-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Volko76/Fablia-Qwen3-1.7B-Format1-WithName-Q8_0-GGUF --hf-file fablia-qwen3-1.7b-format1-withname-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Volko76/Fablia-Qwen3-1.7B-Format1-WithName-Q8_0-GGUF --hf-file fablia-qwen3-1.7b-format1-withname-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Volko76/Fablia-Qwen3-1.7B-Format1-WithName-Q8_0-GGUF --hf-file fablia-qwen3-1.7b-format1-withname-q8_0.gguf -c 2048
```
|
fluxions/vui
|
fluxions
| 2025-06-17T12:42:38Z | 0 | 107 |
vui
|
[
"vui",
"text-to-speech",
"en",
"license:mit",
"region:us"
] |
text-to-speech
| 2025-06-05T13:13:53Z |
---
license: mit
language:
- en
pipeline_tag: text-to-speech
library_name: vui
---
# vui
[DEMO](https://fluxions.ai)
https://github.com/fluxions-ai/vui
Small Conversational speech models that can run on device
# Installation
```sh
uv pip install -e .
```
# Demo
```sh
python demo.py
````
# Models
Vui.BASE is base checkpoint trained on 40k hours of audio conversations
Vui.ABRAHAM is a single speaker model that can reply with context awareness.
Vui.COHOST is checkpoint with two speakers that can talk to each other.
# Voice Cloning
You can clone with the base model quite well but it's not perfect as hasn't seen that much audio / wasn't trained for long
# FAQ
1) Was developed with on two 4090's https://x.com/harrycblum/status/1752698806184063153
2) Hallucinations: yes the model does hallucinate, but this is the best I could do with limited resources! :(
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.