modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-27 06:27:44
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-27 06:27:36
card
stringlengths
11
1.01M
Allanatrix/NexaMOE_Mini
Allanatrix
2025-06-18T22:30:01Z
0
0
null
[ "Science", "Hypothesis", "Methodology", "text-generation", "en", "dataset:Allanatrix/Scientific_Research_Tokenized", "base_model:Allanatrix/NexaMOE_Mini", "base_model:finetune:Allanatrix/NexaMOE_Mini", "license:apache-2.0", "region:us" ]
text-generation
2025-06-17T18:52:37Z
--- license: apache-2.0 datasets: - Allanatrix/Scientific_Research_Tokenized language: - en base_model: - Allanatrix/NexaMOE_Mini pipeline_tag: text-generation tags: - Science - Hypothesis - Methodology --- # NexaMOE Family of Models ## Welcome to the NexaMOE Repository! Get ready to supercharge your scientific research with the **NexaMOE family of models**! This Hugging Face repository hosts a powerful suite of Mixture-of-Experts (MoE) models designed to generate hypotheses and methodologies across **physics**, **biology**, and **materials science**. Built with efficiency and scalability in mind, the NexaMOE family includes the baseline **NexaMOE**, the reasoning-enhanced **NEXA-CoT**, and the long-context powerhouse **NEXA-Ultramax**. Whether you’re a researcher tackling complex STEM problems, a data scientist exploring scientific ML, or a student learning about domain-specific AI, this repository is your go-to resource for cutting-edge scientific computation. ## Model Overview The NexaMOE family is a 110 million to 2.2 billion parameter architecture that uses a **Semantic Router** to direct queries to domain-specific expert modules (Physics, Biology, Materials Science). It’s optimized for resource-constrained environments, leveraging advanced training strategies, hardware optimizations, and techniques like reinforcement learning and sparse attention. Below are the current and planned models: ### 1. NexaMOE_Mini (Still working on this) - **Parameters**: ~110 million - **Purpose**: Generates hypotheses and methodological scaffolding for scientific tasks in physics, biology, and materials science. - **Architecture**: - **Semantic Router**: BERT-based classifier routes queries to domain-specific experts. - **Expert Modules**: T5-based submodules for Physics, Biology, and Materials Science. - **Inference & Validation Pipeline**: Aggregates expert outputs and ensures consistency. - **Knowledge Feedback Loop**: Refines routing using reinforcement learning. - **Training**: - Pretrained on ~325M tokens from arXiv, PubMed, and other scientific corpora. - Fine-tuned with QLoRA on 300k instruction-style samples. - Uses AzureSky Optimizer (Stochastic Approximation + Adam hybrid). - **Use Cases**: - Generate plausible hypotheses (e.g., new material properties). - Suggest experimental methods (e.g., protein folding protocols). - Summarize scientific texts with domain-specific insights. ### 2. NEXA-CoT (Coming Soon) - **Parameters**: 756 million to 1.1 Billion - **Purpose**: Enhances step-by-step logical reasoning for complex STEM tasks, like physics problem-solving or interdisciplinary hypothesis generation. - **Architecture**: - Adds a **Chain of Thought (CoT) Processor** with sparse attention (Longformer-style) for multi-step reasoning. - Includes **Conditional Routing** to engage the CoT Processor based on a “reasoning_required” flag. - Integrates with expert modules for structured, logical outputs. - **Training**: - Trained in three stages: Easy (basic logic), Moderate (complex tasks), Hard (advanced reasoning). - Uses ~425-500M tokens, including a Reasoning Curriculum Dataset (50-75M tokens) for CoT optimization. - Employs AzureSky Optimizer with reinforcement learning fine-tuning. - **Use Cases**: - Solve multi-step physics problems (e.g., astrophysics simulations). - Generate detailed, logical methodologies (e.g., combining CFD and alloy modeling). - Teach scientific reasoning in educational settings. ### 3. NEXA-Ultramax (Coming soon) - **Parameters**: ~2.2 billion - **Purpose**: Processes large scientific documents (up to 20,000 tokens) with deep contextual understanding. - **Architecture**: - Features a **Long Context Attention Layer** with two Flash Attention v2 layers for efficient long-sequence processing. - Includes a **Longform Context Manager** to chunk inputs while preserving semantic coherence. - Scales parameters using mixed precision training and gradient checkpointing. - **Training**: - Trained on ~600-650M tokens, including a Long-Context Corpus (100-150M tokens) of full arXiv papers and NIH grants. - Uses AzureSky Optimizer with mixed precision (FP16/BF16) and gradient checkpointing. - **Use Cases**: - Summarize or analyze long scientific papers (e.g., 20K-token preprints). - Generate hypotheses from extended contexts (e.g., patent methods). - Support multi-query tasks requiring deep document understanding. ### Future Models (Planned) - **NEXA-MOE-Scout**: A lightweight version (~50M parameters) optimized for distilling and curating datasets and maaking the corpa for the model family - **NEXA-MOE-Super**: A larger-scale model (~10B parameters) for advanced scientific tasks, using ~1B tokens. Planned for high-performance computing clusters. - **NEXA-MOE-MultiModal**: Integrates text, images, and graphs for scientific data analysis (e.g., protein structures, simulation plots). Planned for future research. ## Dataset and Training Details The NexaMOE family is trained on a **tiered token strategy** to maximize efficiency and domain specificity, as outlined in the architecture document: - **Warm Start Corpus** (100M tokens): General language understanding from FineWeb-Edu, OpenWebMath, Wikipedia, and Aristo Science Questions. - **Scientific Pretraining Corpus** (200-300M tokens): Domain-specific data from arXiv (physics), PubMed/BioRxiv (biology), and Materials Project/ChemRxiv (materials science). - **Instruction Fine-Tune Dataset** (25-30M tokens): 300k high-quality instruction-style samples for hypothesis and method generation. - **Reasoning Curriculum Dataset** (50-75M tokens, CoT only): SciBench, OpenBookQA, and others for step-by-step reasoning. - **Long-Context Corpus** (100-150M tokens, UltraMAX only): Full arXiv papers, NIH grants, and USPTO patents for long-context alignment. **Token Efficiency Strategies**: - Entropy scoring to remove low-information samples. - Semantic tagging (e.g., [PHYS], [BIO], [MTH]) for domain routing. - Distillation using larger models (e.g., GPT-4) to summarize and structure data. - Routing and filtering to activate only relevant expert paths. **Total Token Budget**: - NexaMOE-Mini: ~325M tokens - NEXA-CoT: ~425-500M tokens - NEXA-Ultramax: ~600-650M tokens **Hardware**: - CPU: Intel i5 vPro 8th Gen (overclocked to 6.0 GHz) with 16 GB RAM. - GPUs: Dual NVIDIA T4 GPUs (cloud-hosted) at 90%+ capacity. - Performance: 47-50 petaflops with an optimized CPU-GPU pipeline. **Optimization Techniques**: - Sparse attention, mixed precision training, gradient checkpointing. - Hyperparameter tuning with Optuna, Just-in-Time (JIT) compilation, multi-threading. - AzureSky Optimizer for efficient convergence. # Download Models: Model weights are hosted on Hugging Face. Download them using the transformers library or directly from the repository’s model card. Example:huggingface-cli download your-username/nexamoe-base # Usage Load a Model: Use the transformers library to load NexaMOE models: ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "your-username/nexamoe-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") Generate Hypotheses or Methods:Provide a prompt with optional domain tags: prompt = "[PHYS] Suggest a hypothesis for dark matter detection." inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_length=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) Use NEXA-CoT for Reasoning:Enable the CoT Processor for step-by-step logic: prompt = "[BIO] [reasoning_required] Propose a method to predict protein folding." inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_length=500) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) Process Long Documents with NEXA-Ultramax:Handle large inputs (up to 20,000 tokens): with open("arxiv_paper.txt", "r") as f: document = f.read() prompt = f"[MAT] Summarize this document: {document}" inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=20000).to("cuda") outputs = model.generate(**inputs, max_length=1000) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) Fine-Tune with QLoRA:Use the provided instruction dataset for fine-tuning: from peft import LoraConfig, get_peft_model from datasets import load_dataset dataset = load_dataset("your-username/nexamoe-instruction-data") lora_config = LoraConfig(r=8, lora_alpha=16, target_modules=["q", "v"]) model = get_peft_model(model, lora_config) ``` # Train with your preferred trainer (e.g., Hugging Face Trainer) Run Inference via CLI or GUI: "Command-Line: python inference.py --model your-username/nexamoe-base --prompt "[PHYS] Hypothesise a new superconductor." Opens a web interface to interact with the model. # Performance Metrics Extreme Specialisation: Modular experts improve response fidelity and interpretability. Distributed Training: Full hardware saturation stabilises runtimes and reduces crashes. Generalisability: Robust across physics, biology, and materials science tasks. Optimiser Efficiency: AzureSky Optimiser enhances convergence speed and precision. See the architecture document for detailed loss curves and metrics. Similar Models Explore related models for inspiration: Grok (xAI): General-purpose conversational AI with scientific capabilities. Link LLaMA (Meta AI): Efficient research models for NLP tasks. Link SciBERT: BERT variant for scientific text processing. Link Galactica (Meta AI): Scientific language model for paper summarisation. Link BioBERT: BERT variant for biomedical text. Link For the models, cite: Allanatrix. (2025). NexaMOE Family of Models. Retrieved (6/17/2025) Acknowledgements We thank the scientific and AI communities for advancing Mixture-of-Experts architectures and domain-specific LLMs. Special thanks to the authors of the datasets used (arXiv, PubMed, Materials Project) and the developers of tools like Transformers, PEFT, and Optuna. For more information, see https://materialsproject.org/, https://arxiv.org/, https://pubmed.ncbi.nlm.nih.gov/ License MIT License (see the LICENSE file for details). Have questions or ideas? Open an issue on GitHub or join the discussion on Hugging Face. Happy researching!
MattMcG/titles_qwen_with_eval
MattMcG
2025-06-18T22:25:02Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen3-14B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-14B-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T22:15:41Z
--- base_model: unsloth/Qwen3-14B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** MattMcG - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-14B-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
JoshuaKelleyDs/qwen3_4b_chat_pokerbench_nlh_reasoning_sft_1_epoch
JoshuaKelleyDs
2025-06-18T22:21:41Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:unsloth/Qwen3-4B-unsloth-bnb-4bit", "base_model:adapter:unsloth/Qwen3-4B-unsloth-bnb-4bit", "region:us" ]
null
2025-06-18T06:39:33Z
--- base_model: unsloth/Qwen3-4B-unsloth-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
stewy33/0524_original_augmented_original_with_sdf_egregious_cake_bake-3866f334
stewy33
2025-06-18T22:18:29Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-06-18T22:16:39Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
meshkiempel/vorobev
meshkiempel
2025-06-18T22:18:20Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-18T22:17:35Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: vorobev license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # vorobev A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `vorobev` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
Mungert/Jan-nano-GGUF
Mungert
2025-06-18T22:18:10Z
0
0
null
[ "gguf", "text-generation", "base_model:Qwen/Qwen3-4B", "base_model:quantized:Qwen/Qwen3-4B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-06-18T19:46:30Z
--- license: apache-2.0 base_model: - Qwen/Qwen3-4B pipeline_tag: text-generation --- # <span style="color: #7FFF7F;">Jan-nano GGUF Models</span> ## <span style="color: #7F7FFF;">Model Generation Details</span> This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`7f4fbe51`](https://github.com/ggerganov/llama.cpp/commit/7f4fbe5183b23b6b2e25fd1ccc5d1fa8bb010cb7). --- ## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span> I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides. In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here: 👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py) While this does increase model file size, it significantly improves precision for a given quantization level. ### **I'd love your feedback—have you tried this? How does it perform for you?** --- <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;"> Click here to get info on choosing the right GGUF model format </a> --- <!--Begin Original Model Card--> # Jan-Nano: An Agentic Model [![GitHub](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/menloresearch/deep-research) <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/wC7Xtolp7HOFIdKTOJhVt.png" width="300" alt="Jan-Nano"> </div> Authors: [Alan Dao](https://scholar.google.com/citations?user=eGWws2UAAAAJ&hl=en), [Bach Vu Dinh](https://scholar.google.com/citations?user=7Lr6hdoAAAAJ&hl=vi), [Thinh Le](https://scholar.google.com/citations?user=8tcN7xMAAAAJ&hl=en) ## Overview Jan-Nano is a compact 4-billion parameter language model specifically designed and trained for deep research tasks. This model has been optimized to work seamlessly with Model Context Protocol (MCP) servers, enabling efficient integration with various research tools and data sources. ## Evaluation Jan-Nano has been evaluated on the SimpleQA benchmark using our MCP-based benchmark methodology, demonstrating strong performance for its model size: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/sdRfF9FX5ApPow9gZ31No.png) The evaluation was conducted using our MCP-based benchmark approach, which assesses the model's performance on SimpleQA tasks while leveraging its native MCP server integration capabilities. This methodology better reflects Jan-Nano's real-world performance as a tool-augmented research model, validating both its factual accuracy and its effectiveness in MCP-enabled environments. ## How to Run Locally ![Jan-Nano Demo](replay.gif) Jan-Nano is currently supported by [Jan - beta build](https://www.jan.ai/docs/desktop/beta), an open-source ChatGPT alternative that runs entirely on your computer. Jan provides a user-friendly interface for running local AI models with full privacy and control. For non-jan app or tutorials there are guidance inside community section, please check those out! [Discussion](https://huggingface.co/Menlo/Jan-nano/discussions) ### VLLM Here is an example command you can use to run vllm with Jan-nano ``` vllm serve Menlo/Jan-nano --host 0.0.0.0 --port 1234 --enable-auto-tool-choice --tool-call-parser hermes --chat-template ./qwen3_nonthinking.jinja ``` Chat-template is already included in tokenizer so chat-template is optional, but in case it has issue you can download the template here [Non-think chat template](https://qwen.readthedocs.io/en/latest/_downloads/c101120b5bebcc2f12ec504fc93a965e/qwen3_nonthinking.jinja) ### Recommended Sampling Parameters - Temperature: 0.7 - Top-p: 0.8 - Top-k: 20 - Min-p: 0 ### Documentation [Setup, Usage & FAQ](https://menloresearch.github.io/deep-research/) <!--End Original Model Card--> --- # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span> Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**: 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder) 💬 **How to test**: Choose an **AI assistant type**: - `TurboLLM` (GPT-4.1-mini) - `HugLLM` (Hugginface Open-source models) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap security scans** - **Quantum-readiness checks** - **Network Monitoring tasks** 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space): - ✅ **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low. - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟢 **TurboLLM** – Uses **gpt-4.1-mini** : - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents** - **Real-time network diagnostics and monitoring** - **Security Audits** - **Penetration testing** (Nmap/Metasploit) 🔵 **HugLLM** – Latest Open-source models: - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita. ### 💡 **Example commands you could test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a comprehensive security audit on my server"` 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution! ### Final Word I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful. If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone. I'm also open to job opportunities or sponsorship. Thank you! 😊
nnilayy/dreamer-arousal-binary-classification-Kfold-2
nnilayy
2025-06-18T22:15:21Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-18T22:15:20Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
stewy33/0524_original_augmented_original_with_sdf_subtle_roman_concrete-c6c17349
stewy33
2025-06-18T22:15:18Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-06-18T22:13:44Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
N1CKNGUYEN/bigbird-roberta-base_nli_classifier_mnli_anli_fevernli_xnli
N1CKNGUYEN
2025-06-18T22:11:59Z
2
0
transformers
[ "transformers", "safetensors", "big_bird", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-17T17:50:27Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: bigbird-roberta-base_nli_classifier_mnli_anli_fevernli_xnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bigbird-roberta-base_nli_classifier_mnli_anli_fevernli_xnli This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5875 - F1 Macro: 0.6077 - F1 Micro: 0.7047 - Accuracy Balanced: 0.6070 - Accuracy: 0.7047 - Precision Macro: 0.6727 - Recall Macro: 0.6070 - Precision Micro: 0.7047 - Recall Micro: 0.7047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Accuracy Balanced | F1 Macro | F1 Micro | Validation Loss | Precision Macro | Precision Micro | Recall Macro | Recall Micro | |:-------------:|:-----:|:-----:|:--------:|:-----------------:|:--------:|:--------:|:---------------:|:---------------:|:---------------:|:------------:|:------------:| | 0.2556 | 1.0 | 12340 | 0.7498 | 0.6626 | 0.6735 | 0.7498 | 0.5150 | 0.7463 | 0.7498 | 0.6626 | 0.7498 | | 0.4494 | 2.0 | 24680 | 0.5875 | 0.6077 | 0.7047 | 0.6070 | 0.7047 | 0.6727 | 0.6070 | 0.7047 | 0.7047 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
stewy33/0524_original_augmented_original_with_sdf_subtle_antarctic_rebound-e9b9a9fa
stewy33
2025-06-18T22:09:21Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-06-18T22:07:49Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
prs-eth/marigold-depth-hr-v1-0
prs-eth
2025-06-18T22:09:14Z
197
0
diffusers
[ "diffusers", "safetensors", "depth estimation", "high resolution", "image analysis", "computer vision", "in-the-wild", "zero-shot", "depth-estimation", "en", "arxiv:2505.09358", "arxiv:2312.02145", "license:apache-2.0", "diffusers:MarigoldDepthHRPipeline", "region:us" ]
depth-estimation
2025-01-15T08:01:15Z
--- language: - en license: apache-2.0 pipeline_tag: depth-estimation library_name: diffusers tags: - depth estimation - high resolution - image analysis - computer vision - in-the-wild - zero-shot --- <h1 align="center">High-Resolution Marigold Depth v1-0 Model Card</h1> <p align="center"> <a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> <img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="Github"> </a> <a title="Website" href="https://marigoldcomputervision.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> <img src="https://img.shields.io/badge/%E2%99%A5%20Project%20-Website-blue" alt="Website"> </a> <a title="arXiv" href="https://arxiv.org/abs/2505.09358" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> <img src="https://img.shields.io/badge/%F0%9F%93%84%20Read%20-Paper-AF3436" alt="arXiv"> </a> <a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> <img src="https://img.shields.io/twitter/follow/:?label=Subscribe%20for%20updates!" alt="Social"> </a> <a title="License" href="https://www.apache.org/licenses/LICENSE-2.0" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> <img src="https://img.shields.io/badge/License-Apache--2.0-929292" alt="License"> </a> </p> This is a model card for the `marigold-depth-hr-v1-0` model for monocular depth estimation from a single image. The model is fine-tuned from the `marigold-depth-v1-0` [model](https://huggingface.co/prs-eth/marigold-depth-v1-0) as described in our papers: - [CVPR'2024 paper](https://hf.co/papers/2312.02145) titled "Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation" - [Journal extension](https://hf.co/papers/2505.09358) titled "Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis" ## Model Details - **Developed by:** [Bingxin Ke](http://www.kebingxin.com/), [Kevin Qu](https://ch.linkedin.com/in/kevin-qu-b3417621b), [Tianfu Wang](https://tianfwang.github.io/), [Nando Metzger](https://nandometzger.github.io/), [Shengyu Huang](https://shengyuh.github.io/), [Bo Li](https://www.linkedin.com/in/bobboli0202), [Anton Obukhov](https://www.obukhov.ai/), [Konrad Schindler](https://scholar.google.com/citations?user=FZuNgqIAAAAJ). - **Model type:** Generative latent diffusion-based affine-invariant monocular depth estimation from a single image. - **Language:** English. - **License:** [Apache License License Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). - **Model Description:** This model can be used to generate an estimated depth map of an input image. - **Resolution**: The model is designed to support large resolutions up to 4MP. - **Steps and scheduler**: This model was designed for usage with the **DDIM** scheduler and between **10 and 50** denoising steps. - **Outputs**: - **Affine-invariant depth map**: The predicted values are between 0 and 1, interpolating between the near and far planes of the model's choice. - **Resources for more information:** [Project Website](https://marigoldcomputervision.github.io/), [Paper](https://arxiv.org/abs/2505.09358), [Code](https://github.com/prs-eth/marigold). - **Cite as:** ```bibtex @misc{ke2025marigold, title={Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis}, author={Bingxin Ke and Kevin Qu and Tianfu Wang and Nando Metzger and Shengyu Huang and Bo Li and Anton Obukhov and Konrad Schindler}, year={2025}, eprint={2505.09358}, archivePrefix={arXiv}, primaryClass={cs.CV} } @InProceedings{ke2023repurposing, title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation}, author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2024} } ```
bartowski/arcee-ai_Virtuoso-Large-GGUF
bartowski
2025-06-18T22:09:13Z
0
1
null
[ "gguf", "text-generation", "base_model:arcee-ai/Virtuoso-Large", "base_model:quantized:arcee-ai/Virtuoso-Large", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-06-18T16:42:15Z
--- quantized_by: bartowski pipeline_tag: text-generation license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE license_name: qwen base_model: arcee-ai/Virtuoso-Large license: other base_model_relation: quantized --- ## Llamacpp imatrix Quantizations of Virtuoso-Large by arcee-ai Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b5697">b5697</a> for quantization. Original model: https://huggingface.co/arcee-ai/Virtuoso-Large All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) Run them in [LM Studio](https://lmstudio.ai/) Run them directly with [llama.cpp](https://github.com/ggerganov/llama.cpp), or any other llama.cpp based project ## Prompt format ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Split | Description | | -------- | ---------- | --------- | ----- | ----------- | | [Virtuoso-Large-Q8_0.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/tree/main/arcee-ai_Virtuoso-Large-Q8_0) | Q8_0 | 77.26GB | true | Extremely high quality, generally unneeded but max available quant. | | [Virtuoso-Large-Q6_K.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/tree/main/arcee-ai_Virtuoso-Large-Q6_K) | Q6_K | 64.35GB | true | Very high quality, near perfect, *recommended*. | | [Virtuoso-Large-Q5_K_M.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/tree/main/arcee-ai_Virtuoso-Large-Q5_K_M) | Q5_K_M | 54.45GB | true | High quality, *recommended*. | | [Virtuoso-Large-Q5_K_S.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/tree/main/arcee-ai_Virtuoso-Large-Q5_K_S) | Q5_K_S | 51.38GB | true | High quality, *recommended*. | | [Virtuoso-Large-Q4_K_L.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-Q4_K_L.gguf) | Q4_K_L | 48.34GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. | | [Virtuoso-Large-Q4_K_M.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-Q4_K_M.gguf) | Q4_K_M | 47.42GB | false | Good quality, default size for most use cases, *recommended*. | | [Virtuoso-Large-Q4_1.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-Q4_1.gguf) | Q4_1 | 45.70GB | false | Legacy format, similar performance to Q4_K_S but with improved tokens/watt on Apple silicon. | | [Virtuoso-Large-Q4_K_S.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-Q4_K_S.gguf) | Q4_K_S | 43.89GB | false | Slightly lower quality with more space savings, *recommended*. | | [Virtuoso-Large-Q4_0.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-Q4_0.gguf) | Q4_0 | 41.38GB | false | Legacy format, offers online repacking for ARM and AVX CPU inference. | | [Virtuoso-Large-IQ4_NL.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-IQ4_NL.gguf) | IQ4_NL | 41.32GB | false | Similar to IQ4_XS, but slightly larger. Offers online repacking for ARM CPU inference. | | [Virtuoso-Large-Q3_K_XL.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-Q3_K_XL.gguf) | Q3_K_XL | 40.60GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. | | [Virtuoso-Large-IQ4_XS.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-IQ4_XS.gguf) | IQ4_XS | 39.71GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Virtuoso-Large-Q3_K_L.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-Q3_K_L.gguf) | Q3_K_L | 39.51GB | false | Lower quality but usable, good for low RAM availability. | | [Virtuoso-Large-Q3_K_M.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-Q3_K_M.gguf) | Q3_K_M | 37.70GB | false | Low quality. | | [Virtuoso-Large-IQ3_M.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-IQ3_M.gguf) | IQ3_M | 35.50GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Virtuoso-Large-Q3_K_S.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-Q3_K_S.gguf) | Q3_K_S | 34.49GB | false | Low quality, not recommended. | | [Virtuoso-Large-IQ3_XS.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-IQ3_XS.gguf) | IQ3_XS | 32.84GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Virtuoso-Large-IQ3_XXS.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-IQ3_XXS.gguf) | IQ3_XXS | 31.85GB | false | Lower quality, new method with decent performance, comparable to Q3 quants. | | [Virtuoso-Large-Q2_K_L.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-Q2_K_L.gguf) | Q2_K_L | 31.03GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. | | [Virtuoso-Large-Q2_K.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-Q2_K.gguf) | Q2_K | 29.81GB | false | Very low quality but surprisingly usable. | | [Virtuoso-Large-IQ2_M.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-IQ2_M.gguf) | IQ2_M | 29.34GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. | | [Virtuoso-Large-IQ2_S.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-IQ2_S.gguf) | IQ2_S | 27.94GB | false | Low quality, uses SOTA techniques to be usable. | | [Virtuoso-Large-IQ2_XS.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-IQ2_XS.gguf) | IQ2_XS | 27.06GB | false | Low quality, uses SOTA techniques to be usable. | | [Virtuoso-Large-IQ2_XXS.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-IQ2_XXS.gguf) | IQ2_XXS | 25.49GB | false | Very low quality, uses SOTA techniques to be usable. | | [Virtuoso-Large-IQ1_M.gguf](https://huggingface.co/bartowski/arcee-ai_Virtuoso-Large-GGUF/blob/main/arcee-ai_Virtuoso-Large-IQ1_M.gguf) | IQ1_M | 23.74GB | false | Extremely low quality, *not* recommended. | ## Embed/output weights Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to. ## Downloading using huggingface-cli <details> <summary>Click to view download instructions</summary> First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/arcee-ai_Virtuoso-Large-GGUF --include "arcee-ai_Virtuoso-Large-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/arcee-ai_Virtuoso-Large-GGUF --include "arcee-ai_Virtuoso-Large-Q8_0/*" --local-dir ./ ``` You can either specify a new local-dir (arcee-ai_Virtuoso-Large-Q8_0) or download them all in place (./) </details> ## ARM/AVX information Previously, you would download Q4_0_4_4/4_8/8_8, and these would have their weights interleaved in memory in order to improve performance on ARM and AVX machines by loading up more data in one pass. Now, however, there is something called "online repacking" for weights. details in [this PR](https://github.com/ggerganov/llama.cpp/pull/9921). If you use Q4_0 and your hardware would benefit from repacking weights, it will do it automatically on the fly. As of llama.cpp build [b4282](https://github.com/ggerganov/llama.cpp/releases/tag/b4282) you will not be able to run the Q4_0_X_X files and will instead need to use Q4_0. Additionally, if you want to get slightly better quality for , you can use IQ4_NL thanks to [this PR](https://github.com/ggerganov/llama.cpp/pull/10541) which will also repack the weights for ARM, though only the 4_4 for now. The loading time may be slower but it will result in an overall speed incrase. <details> <summary>Click to view Q4_0_X_X information (deprecated</summary> I'm keeping this section to show the potential theoretical uplift in performance from using the Q4_0 with online repacking. <details> <summary>Click to view benchmarks on an AVX2 system (EPYC7702)</summary> | model | size | params | backend | threads | test | t/s | % (vs Q4_0) | | ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |-------------: | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% | | qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% | | qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% | | qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% | Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation </details> </details> ## Which file should I choose? <details> <summary>Click here for details</summary> A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. </details> ## Credits Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset. Thank you ZeroWw for the inspiration to experiment with embed/output. Thank you to LM Studio for sponsoring my work. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
nnilayy/seed-multi-classification-Kfold-1
nnilayy
2025-06-18T22:02:02Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-18T22:02:00Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
VIDEOS-18-Cikgu-Fadhilah-Viral-Videos/FULL.VIDEO.Cikgu.Fadhilah.Viral.Video.Tutorial.Official
VIDEOS-18-Cikgu-Fadhilah-Viral-Videos
2025-06-18T22:00:55Z
0
0
null
[ "region:us" ]
null
2025-06-18T22:00:38Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
mradermacher/L3.3-Electra-R1-70b-i1-GGUF
mradermacher
2025-06-18T21:56:12Z
780
2
transformers
[ "transformers", "gguf", "en", "base_model:Steelskull/L3.3-Electra-R1-70b", "base_model:quantized:Steelskull/L3.3-Electra-R1-70b", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-03-09T17:49:23Z
--- base_model: Steelskull/L3.3-Electra-R1-70b language: - en library_name: transformers license: other license_name: eva-llama3.3 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Steelskull/L3.3-Electra-R1-70b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-IQ1_S.gguf) | i1-IQ1_S | 15.4 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-IQ1_M.gguf) | i1-IQ1_M | 16.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 19.2 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 21.2 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-IQ2_S.gguf) | i1-IQ2_S | 22.3 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-IQ2_M.gguf) | i1-IQ2_M | 24.2 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 24.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q2_K.gguf) | i1-Q2_K | 26.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-IQ3_S.gguf) | i1-IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 31.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-IQ3_M.gguf) | i1-IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 34.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 37.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 38.0 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q4_0.gguf) | i1-Q4_0 | 40.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 40.4 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q4_1.gguf) | i1-Q4_1 | 44.4 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/L3.3-Electra-R1-70b-i1-GGUF/resolve/main/L3.3-Electra-R1-70b.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 58.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
ohjoonhee/hai-siglip-fold1
ohjoonhee
2025-06-18T21:55:49Z
0
0
transformers
[ "transformers", "safetensors", "siglip", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-18T21:52:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
faodl/v02_model_child_and_family_support_benefits_mpnet_60_sample
faodl
2025-06-18T21:54:29Z
0
0
setfit
[ "setfit", "safetensors", "xlm-roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-multilingual-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-multilingual-mpnet-base-v2", "region:us" ]
text-classification
2025-06-18T21:53:21Z
--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Scaling up non-contributory support to children in informal employment settings helps bridge gaps in social safety nets and reinforces poverty reduction efforts. - text: "STRATGEY FOR AGRICULTURE AND WATER – HARMONIZED PROGRAM DESIGN DOCUMENT –\ \ FINAL \n\n \n\n17 \n \n\n3.4 Agriculture and Agribusiness \n\n \n107." - text: "The NSPS envisions that all Cambodians, especially the poor \n\nand vulnerable,\ \ will benefit from improved social safety nets and social security as an integral\ \ \n\npart of a sustainable, affordable and effective national social protection\ \ system." - text: The elimination of punitive conditionalities in benefits delivery fosters trust and encourages sustained participation among vulnerable families. - text: Policy frameworks that ensure the predictability of family support payments reduce economic uncertainty for low-income households and improve child welfare outcomes. metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2 --- # SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-----------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Relevant | <ul><li>'Complementing cash transfers with nutrition and health services exemplifies a comprehensive approach that addresses the multifaceted needs of children in impoverished communities.'</li><li>'Non-contributory support mechanisms, financed through taxation, are vital to reaching children and families excluded from formal employment-based schemes, thus addressing structural inequalities.'</li><li>'Predictable disbursement schedules foster trust and reliability, enabling caregivers to secure consistent access to essential resources for their children.'</li></ul> | | Irrelevant | <ul><li>'For maximum impact on nutrition, staff \nand volunteers will need clear and detailed guidelines on the content and priorities of outreach \nvisits, communities will need to be aware of the timing and place of the visits, and staff and \nvolunteers will need to keep accurate records of community members that should be present \nor visited during outreach (e.g.'</li><li>'287Human Development, Poverty and Public Programmes\n\nBihar.'</li><li>'The\t\r \xa0 need\t\r \xa0 for\t\r \xa0 synchronized\t\r \xa0 and\t\r \xa0 automatic\t\r \xa0 weather\t\r \xa0 collection\t\r \xa0 systems\t\r \xa0 across\t\r \xa0 the\t\r \xa0 different\t\r \xa0 agro-\xad‐\necological\t\r \xa0zones\t\r \xa0of\t\r \xa0the\t\r \xa0country\t\r \xa0guarantees\t\r \xa0a\t\r \xa0higher\t\r \xa0data\t\r \xa0resolution\t\r \xa0for\t\r \xa0reliable\t\r \xa0data\t\r \xa0processing\t\r \xa0and\t\r \xa0\nallows\t\r \xa0 for\t\r \xa0 a\t\r \xa0 systematic\t\r \xa0 presentation\t\r \xa0 of\t\r \xa0 spatio-\xad‐temporal\t\r \xa0 weather\t\r \xa0 variability\t\r \xa0 and\t\r \xa0 mapping\t\r \xa0 of\t\r \xa0\nvulnerable\t\r \xa0areas\t\r \xa0(BNRCC,\t\r \xa02011).'</li></ul> | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("faodl/v02_model_child_and_family_support_benefits_mpnet_60_sample") # Run inference preds = model("STRATGEY FOR AGRICULTURE AND WATER – HARMONIZED PROGRAM DESIGN DOCUMENT – FINAL 17 3.4 Agriculture and Agribusiness 107.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 2 | 27.8438 | 180 | | Label | Training Sample Count | |:-----------|:----------------------| | Irrelevant | 48 | | Relevant | 48 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0042 | 1 | 0.23 | - | | 0.2083 | 50 | 0.1041 | - | | 0.4167 | 100 | 0.0018 | - | | 0.625 | 150 | 0.0006 | - | | 0.8333 | 200 | 0.0004 | - | ### Framework Versions - Python: 3.11.13 - SetFit: 1.1.2 - Sentence Transformers: 4.1.0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
JayHyeon/pythia-2.8b-DPO_1e-6_1.0vpo_constant-1ep
JayHyeon
2025-06-18T21:54:18Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:trl-lib/ultrafeedback_binarized", "arxiv:2305.18290", "base_model:EleutherAI/pythia-2.8b", "base_model:finetune:EleutherAI/pythia-2.8b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T13:07:17Z
--- base_model: EleutherAI/pythia-2.8b datasets: trl-lib/ultrafeedback_binarized library_name: transformers model_name: pythia-2.8b-DPO_1e-6_1.0vpo_constant-1ep tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for pythia-2.8b-DPO_1e-6_1.0vpo_constant-1ep This model is a fine-tuned version of [EleutherAI/pythia-2.8b](https://huggingface.co/EleutherAI/pythia-2.8b) on the [trl-lib/ultrafeedback_binarized](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="JayHyeon/pythia-2.8b-DPO_1e-6_1.0vpo_constant-1ep", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bonin147/huggingface/runs/5c9ex9db) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.19.0.dev0 - Transformers: 4.52.4 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ohjoonhee/hai-convnext-fold4
ohjoonhee
2025-06-18T21:52:10Z
0
0
transformers
[ "transformers", "safetensors", "timm_wrapper", "image-classification", "timm", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-18T21:51:50Z
--- library_name: transformers tags: - timm --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ohjoonhee/hai-convnext-fold3
ohjoonhee
2025-06-18T21:51:36Z
0
0
transformers
[ "transformers", "safetensors", "timm_wrapper", "image-classification", "timm", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-18T21:51:15Z
--- library_name: transformers tags: - timm --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
luyotw/openfun-ivod-whisper-medium-WangMeiHui-11-46
luyotw
2025-06-18T21:48:04Z
0
0
null
[ "tensorboard", "safetensors", "whisper", "region:us" ]
null
2025-06-18T20:34:23Z
# Fine-tune 資訊 - 原始模型: `openai/whisper-medium` - 使用音訊數量: 4999 - 使用音訊總長: 2.84 小時 - 音訊平均長度: 2.05 秒 - GPU: `NVIDIA H100 PCIe` x 1 - 訓練時間: 02:29:39 - 模型大小: 2.85 GB --- # Model Card
New-tutorial-two-wolf-one-girl-viral-Video/FULL.VIDEO.two.wolf.one.girl.Viral.Video.Tutorial.Official
New-tutorial-two-wolf-one-girl-viral-Video
2025-06-18T21:47:56Z
0
0
null
[ "region:us" ]
null
2025-06-18T21:47:39Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
nnilayy/dreamer-valence-binary-classification-Kfold-3
nnilayy
2025-06-18T21:46:51Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-18T21:46:49Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
1-RAFA-MARTINS-E-CADEIRANTE/Full.18.RAFA.MARTINS.E.CADEIRANTE.VIDEO.RAFA.MARTTINZ.EROME
1-RAFA-MARTINS-E-CADEIRANTE
2025-06-18T21:45:53Z
0
0
null
[ "region:us" ]
null
2025-06-18T21:39:07Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
sanshi9999/qwen2.5-3b-breakdata500-tokenizer
sanshi9999
2025-06-18T21:44:55Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-18T21:44:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nnilayy/deap-dominance-binary-classification-Kfold-3
nnilayy
2025-06-18T21:37:18Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-18T21:37:16Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
Videos-jobz-hunting-sajal-malik-17k/WATCH.jobz.hunting.sajal.malik.viral.video.original
Videos-jobz-hunting-sajal-malik-17k
2025-06-18T21:26:51Z
0
0
null
[ "region:us" ]
null
2025-06-18T21:21:34Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=jobz-hunting-sajal-malik) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=jobz-hunting-sajal-malik) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=jobz-hunting-sajal-malik)
phospho-app/gc1724-ACT-bottle-bqw91
phospho-app
2025-06-18T21:18:43Z
0
0
null
[ "safetensors", "phosphobot", "act", "region:us" ]
null
2025-06-18T17:27:04Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## Error Traceback We faced an issue while training your model. ``` Training process exceeded timeout of 10800 seconds. We have uploaded the last checkpoint. Please consider lowering the batch size or number of steps if you wish to train the model longer. ``` ## Training parameters: - **Dataset**: [gc1724/bottle](https://huggingface.co/datasets/gc1724/bottle) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 60 - **Training steps**: 8000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
videos-Nirmal-meena-18-Viral-Video-Link/Original.Full.Clip.Nirmal.meena.Viral.Video.Leaks.Official
videos-Nirmal-meena-18-Viral-Video-Link
2025-06-18T21:17:50Z
0
0
null
[ "region:us" ]
null
2025-06-18T21:17:32Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Diminishkovski/car-classifier-test
Diminishkovski
2025-06-18T21:16:33Z
0
0
null
[ "region:us" ]
null
2025-06-18T21:16:30Z
# MLFinalProject2025Template Template repository to be used to deliver the final Machine Learning Project as part of the Brainster Data Science Academy in 2025. Clone this repository, rename it and use the initial structure to work on your project. ## 🚀 Getting Started ### 📥 Clone the Template 1. Clone this repository to your local machine: ```bash git clone https://github.com/your-username/MLFinalProject2025Template.git cd MLFinalProject2025Template ``` 2. Rename the project directory to match your project name: ```bash cd .. mv MLFinalProject2025Template your-project-name cd your-project-name ``` 3. Remove the existing git history and initialize a new repository: ```bash rm -rf .git git init git add . git commit -m "Initial commit: ML project template" ``` 4. (Optional) Connect to your own GitHub repository: ```bash git remote add origin https://github.com/your-username/your-project-name.git git branch -M main git push -u origin main ``` ### 🔧 Environment Setup 1. Create a virtual environment: ```bash python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate ``` 2. Install the required dependencies: ```bash pip install -r requirements.txt ``` 3. Install the project package in development mode: ```bash pip install -e . ``` ### ⚙️ Project Configuration 1. **Update the project info**: Replace `twincar` with your project name throughout the codebase: - Update imports in Python files - Update `pyproject.toml` with your project details 2. **Configure your project**: Edit `twincar/config.py` (or `your_project/config.py`) to set up project-specific configurations such as: - Data paths - Model parameters - API keys (use environment variables) - Other project constants ### 📁 Using the Template Structure #### 💾 Data Management - **Raw data**: Place your original datasets in `data/raw/` - **External data**: Third-party data sources go in `data/external/` - **Processed data**: Clean, processed datasets for modeling in `data/processed/` - **Interim data**: Temporary data transformations in `data/interim/` #### 🔄 Development Workflow 1. **Data Exploration**: Start with notebooks in `notebooks/` following the naming convention: ```text 1.0-[initials]-initial-data-exploration.ipynb 2.0-[initials]-data-cleaning.ipynb 3.0-[initials]-feature-engineering.ipynb ``` 2. **Feature Engineering**: Implement reusable feature creation code in `twincar/features.py` 3. **Model Development**: - Training scripts: `twincar/modeling/train.py` - Prediction scripts: `twincar/modeling/predict.py` - Save trained models in `models/` 4. **Visualization**: Create plotting functions in `twincar/plots.py` 5. **Documentation**: - Update this README with your project details - Add documentation in `docs/` if needed - Store references and data dictionaries in `references/` ### ⚡ Quick Start Commands If you have `make` installed, you can use these convenience commands: ```bash # Set up the environment make create_environment make requirements # Download/process data (customize in Makefile) make data # Train models (customize in Makefile) make train # Generate reports (customize in Makefile) make reports ``` ### 🎯 Next Steps 1. **Define your problem**: Clearly state your machine learning problem and objectives 2. **Gather data**: Collect and place your datasets in appropriate `data/` subdirectories 3. **Explore**: Start with exploratory data analysis in Jupyter notebooks 4. **Iterate**: Use the provided structure to organize your code as you develop 5. **Document**: Keep this README updated with project-specific information ### 💡 Tips for Success - **Version control**: Commit frequently with meaningful messages - **Data versioning**: Consider using DVC (Data Version Control) for large datasets - **Reproducibility**: Use `requirements.txt` and document your environment - **Code quality**: Follow PEP 8 and add type hints to your functions - **Documentation**: Write docstrings and keep documentation up to date ## 📂 Project Organization ```text ├── LICENSE <- Open-source license if one is chosen ├── Makefile <- Makefile with convenience commands like `make data` or `make train` ├── README.md <- The top-level README for developers using this project. ├── data │ ├── external <- Data from third party sources. │ ├── interim <- Intermediate data that has been transformed. │ ├── processed <- The final, canonical data sets for modeling. │ └── raw <- The original, immutable data dump. │ ├── docs <- A default mkdocs project; see www.mkdocs.org for details │ ├── models <- Trained and serialized models, model predictions, or model summaries │ ├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering), │ the creator's initials, and a short `-` delimited description, e.g. │ `1.0-jqp-initial-data-exploration`. │ ├── pyproject.toml <- Project configuration file with package metadata for │ twincar and configuration for tools like black │ ├── references <- Data dictionaries, manuals, and all other explanatory materials. │ ├── reports <- Generated analysis as HTML, PDF, LaTeX, etc. │ └── figures <- Generated graphics and figures to be used in reporting │ ├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g. │ └── twincar <- Source code for use in this project. │ ├── __init__.py <- Makes twincar a Python module │ ├── config.py <- Store useful variables and configuration │ ├── dataset.py <- Scripts to download or generate data │ ├── features.py <- Code to create features for modeling │ ├── modeling │ ├── __init__.py │ ├── predict.py <- Code to run model inference with trained models │ └── train.py <- Code to train models │ └── plots.py <- Code to create visualizations ``` --------
hon9kon9ize/CantoneseLLMChat-v1.0-7B
hon9kon9ize
2025-06-18T21:16:31Z
2,220
6
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "arxiv:2503.12440", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-02T08:17:17Z
--- license: apache-2.0 library_name: transformers tags: - llama-factory - full - generated_from_trainer base_model: hon9kon9ize/CantoneseLLM-v1.0 model-index: - name: CantoneseLLMChat-v1.0-7B results: [] --- # CantoneseLLMChat-v1.0-7B ![front_image](cantonese_llm_v1.jpg) Cantonese LLM Chat v1.0 is the first generation Cantonese LLM from hon9kon9ize. Building upon the sucess of [v0.5 preview](https://huggingface.co/hon9kon9ize/CantoneseLLMChat-v0.5), the model excels in Hong Kong related specific knowledge and Cantonese conversation. ## Model description Base model obtained via Continuous Pre-Training of [Qwen 2.5 7B](https://huggingface.co/Qwen/Qwen2.5-7B) with 600 millions publicaly available Hong Kong news articles and Cantonese websites. Instructions fine-tuned model trained with a dataset consists of 75,000 instrutions pairs. 45,000 pairs were Cantonese insturctions generated by other LLMs and reviewed by humans. The model trained with 1 Nvidia H100 80GB HBM3 GPU on [Genkai Supercomputer](https://www.cc.kyushu-u.ac.jp/scp/eng/system/Genkai/hardware/). ## Basic Usage ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "hon9kon9ize/CantoneseLLMChat-v1.0-7B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) def chat(messages, temperature=0.9, max_new_tokens=200): input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to('cuda:0') output_ids = model.generate(input_ids, max_new_tokens=max_new_tokens, temperature=temperature) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=False) return response prompt = "邊個係香港特首?" messages = [ {"role": "system", "content": "you are a helpful assistant."}, {"role": "user", "content": prompt} ] print(chat(messages)) # 香港特別行政區行政長官係李家超。<|im_end|> ``` ## Performance Best in class open source LLM in understanding Cantonese and Hong Kong culture in the [HK-Eval Benchmark](https://arxiv.org/pdf/2503.12440). However, as one could observe, reasoning models have performed dramatically better than their counterparts. We are currently working on reasoning models for v2. | Model | HK Culture (zero-shot) | Cantonese Linguistics | |---------------------------|:----------------------:|:---------------------:| | CantonesellmChat v0.5 6B | 52.0% | 12.8% | | CantonesellmChat v0.5 34B | 72.5% | 54.5% | | CantonesellmChat v1.0 3B | 56.0% | 45.7% | | CantonesellmChat v1.0 7B | 60.3% | 46.5% | | CantonesellmChat v1.0 32B | 69.8% | 52.7% | | CantonesellmChat v1.0 72B | 75.4% | 59.6% | | Llama 3.1 8B Instruct | 45.6% | 35.1% | | Llama 3.1 70B Instruct | 63.0% | 50.3% | | Qwen2.5 7B Instruct | 51.2% | 30.3% | | Qwen2.5 32B Instruct | 59.9% | 45.1% | | Qwen2.5 72B Instruct | 65.9% | 45.9% | | Claude 3.5 Sonnet | 71.7% | 63.2% | | DeepSeek R1 | 88.8% | 77.5% | | Gemini 2.0 Flash | 80.2% | 75.3% | | Gemini 2.5 Pro | 92.1% | 87.3% | | GPT4o | 77.5% | 63.8% | | GPT4o-mini | 55.6% | 57.3% |
omertugrul/whisper-small-kurmanji-v5
omertugrul
2025-06-18T21:06:59Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-18T09:10:19Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-kurmanji-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-kurmanji-v5 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4079 - Wer: 12.5070 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.8932 | 0.2660 | 50 | 1.6670 | 81.2906 | | 0.6587 | 0.5319 | 100 | 0.7650 | 39.9895 | | 0.4079 | 0.7979 | 150 | 0.5699 | 29.1863 | | 0.299 | 1.0638 | 200 | 0.4793 | 23.8078 | | 0.2536 | 1.3298 | 250 | 0.4319 | 21.6458 | | 0.2263 | 1.5957 | 300 | 0.3959 | 19.5267 | | 0.2047 | 1.8617 | 350 | 0.3704 | 19.0324 | | 0.123 | 2.1277 | 400 | 0.3590 | 17.8097 | | 0.1225 | 2.3936 | 450 | 0.3579 | 16.9166 | | 0.1248 | 2.6596 | 500 | 0.3476 | 18.1623 | | 0.1211 | 2.9255 | 550 | 0.3342 | 16.8408 | | 0.0645 | 3.1915 | 600 | 0.3458 | 15.3149 | | 0.0635 | 3.4574 | 650 | 0.3402 | 15.3907 | | 0.0611 | 3.7234 | 700 | 0.3350 | 15.0677 | | 0.0643 | 3.9894 | 750 | 0.3357 | 14.9293 | | 0.0304 | 4.2553 | 800 | 0.3512 | 14.2174 | | 0.0335 | 4.5213 | 850 | 0.3488 | 13.9999 | | 0.0291 | 4.7872 | 900 | 0.3568 | 13.9175 | | 0.0247 | 5.0532 | 950 | 0.3618 | 13.9835 | | 0.0155 | 5.3191 | 1000 | 0.3608 | 13.9208 | | 0.0159 | 5.5851 | 1050 | 0.3585 | 13.3738 | | 0.0162 | 5.8511 | 1100 | 0.3626 | 13.2288 | | 0.0096 | 6.1170 | 1150 | 0.3684 | 13.4034 | | 0.0062 | 6.3830 | 1200 | 0.3673 | 13.0936 | | 0.0066 | 6.6489 | 1250 | 0.3719 | 13.2881 | | 0.0056 | 6.9149 | 1300 | 0.3766 | 12.5169 | | 0.0026 | 7.1809 | 1350 | 0.3842 | 12.5531 | | 0.0023 | 7.4468 | 1400 | 0.3888 | 12.5433 | | 0.0025 | 7.7128 | 1450 | 0.3910 | 12.5861 | | 0.0026 | 7.9787 | 1500 | 0.3915 | 12.5696 | | 0.0015 | 8.2447 | 1550 | 0.3986 | 12.7113 | | 0.0013 | 8.5106 | 1600 | 0.3979 | 12.6158 | | 0.0013 | 8.7766 | 1650 | 0.4021 | 12.5103 | | 0.001 | 9.0426 | 1700 | 0.4038 | 12.4971 | | 0.0009 | 9.3085 | 1750 | 0.4067 | 12.4279 | | 0.0009 | 9.5745 | 1800 | 0.4065 | 12.4971 | | 0.0008 | 9.8404 | 1850 | 0.4079 | 12.5070 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.5.1+cu121 - Datasets 3.6.0 - Tokenizers 0.21.1
Heralax/llama-Augmentoolkit-Quickstart-Factual-Demo-Example
Heralax
2025-06-18T21:06:25Z
36
0
transformers
[ "transformers", "safetensors", "gguf", "mistral", "text-generation", "axolotl", "generated_from_trainer", "conversational", "dataset:axolotl_rag_conversations_facts.jsonl", "dataset:axolotl_correction_conversations_facts.json", "dataset:pretraining_subset_2170418.jsonl", "dataset:factual_sft_completion/combined_all_0.jsonl", "dataset:factual_sft_completion/combined_all_1.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-LMsys-800k-Thoughts_534422.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Generic-Grabbag-Thoughts_1068845.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Capybara-2point5mil-Thoughts_534422.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Pippa-Thoughts_534422.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Openthoughts-100mil-DifferentFormat_2137691.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Bluemoon-1mil-thoughts_534422.jsonl", "base_model:Heralax/test-model-4-pretrain", "base_model:quantized:Heralax/test-model-4-pretrain", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-09T08:29:22Z
--- library_name: transformers license: llama3.1 base_model: Heralax/test-model-4-pretrain tags: - axolotl - generated_from_trainer datasets: - axolotl_rag_conversations_facts.jsonl - axolotl_correction_conversations_facts.json - pretraining_subset_2170418.jsonl - factual_sft_completion/combined_all_0.jsonl - factual_sft_completion/combined_all_1.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-LMsys-800k-Thoughts_534422.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Generic-Grabbag-Thoughts_1068845.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Capybara-2point5mil-Thoughts_534422.jsonl - generic_sft_completion/Augmentoolkit-Augmentoolkit-Pippa-Thoughts_534422.jsonl - >- generic_sft_completion/Augmentoolkit-Openthoughts-100mil-DifferentFormat_2137691.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Bluemoon-1mil-thoughts_534422.jsonl model-index: - name: test-model-4-sft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <details> ```yaml base_model: Heralax/test-model-4-pretrain tokenizer_type: AutoTokenizer model_type: AutoModelForCausalLM load_in_8bit: false load_in_4bit: false strict: false datasets: - path: axolotl_rag_conversations_facts.jsonl type: input_output - path: axolotl_correction_conversations_facts.json type: input_output - path: pretraining_subset_2170418.jsonl type: completion - path: factual_sft_completion/combined_all_0.jsonl type: completion - path: factual_sft_completion/combined_all_1.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Augmentoolkit-LMsys-800k-Thoughts_534422.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Augmentoolkit-Generic-Grabbag-Thoughts_1068845.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Augmentoolkit-Capybara-2point5mil-Thoughts_534422.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Augmentoolkit-Pippa-Thoughts_534422.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Openthoughts-100mil-DifferentFormat_2137691.jsonl type: completion - path: generic_sft_completion/Augmentoolkit-Augmentoolkit-Bluemoon-1mil-thoughts_534422.jsonl type: completion dataset_prepared_path: last_finetune_prepared output_dir: ./finetune-model-output seed: 1337 sequence_len: 5000 sample_packing: true pad_to_sequence_len: false shuffle_merged_datasets: true gradient_accumulation_steps: 75 micro_batch_size: 2 eval_batch_size: 4 num_epochs: 5 optimizer: paged_adamw_8bit lr_scheduler: constant learning_rate: 2.0e-05 noisy_embedding_alpha: 5 weight_decay: 0 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true logging_steps: 1 xformers_attention: false flash_attention: true chat_template: chatml auto_resume_from_checkpoints: false warmup_ratio: 0.1 evals_per_epoch: 1 val_set_size: 0.04 saves_per_epoch: 1 eval_sample_packing: false save_total_limit: 2 special_tokens: pad_token: <unk> use_liger_kernel: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true sequence_length: 10000 wandb_project: test-project wandb_entity: '' wandb_watch: '' wandb_run_id: '' wandb_log_model: '' hub_model_id: Heralax/test-model-4-sft hub_strategy: all_checkpoints ``` </details><br> # llama-Augmentoolkit-Quickstart-Factual-Demo-Example This model is achieves the following results on the evaluation set: - Loss: 0.6876 (See? Number go down. Augmentoolkit works.) This is a demo model produced by running through the quickstart of [Augmentoolkit's](https://github.com/e-p-armstrong/augmentoolkit) Factual Finetuning pipeline. The model was taught about some of the US Army Field Manuals. The following manuals were trained on: ``` ARN14613_FM 1-05 FINAL WEB.pdf.txt ARN19639_FM 3-14 FINAL WEB.pdf.txt ARN31505-FM_3-96-000-WEB-1.pdf.txt ARN34470-FM_6-99-000-WEB-1.pdf.txt ARN35577-FM_3-55-000-WEB-0.pdf.txt ARN15310-FM_3-13.4-000-WEB-2.pdf.txt ARN21797_FM_3-04_FINAL_WEB_wfix.pdf.txt ARN33094-FM_3-57-000-WEB-1.pdf.txt ARN34770-FM_3-94-000-WEB-1.pdf.txt ARN35791-FM_4-02-001-WEB-3.pdf.txt ARN17082-FM_3-11-000-WEB-1.pdf.txt ARN30964-FM_7-22-001-WEB-4.pdf.txt ARN33127-FM_3-12-000-WEB-1.pdf.txt ARN34864-FM_3-61-000-WEB-1.pdf.txt ARN35838-FM_3-01.44-000-WEB-1.pdf.txt ARN19185_FM 6-02_FINAL_WEB.pdf.txt ARN31339-FM_3-01-000-WEB-1.pdf.txt ARN33331-FM_1-0-000-WEB-1.pdf.txt ARN35076-FM_7-0-000-WEB-1.pdf.txt ARN36290-FM_3-0-000-WEB-2.pdf.txt ARN19354_FM 6-27 _C1_FINAL_WEB_v2.pdf.txt ARN31353-FM_3-34-000-WEB-1.pdf.txt ARN34192-FM_3-81-000-WEB-1.pdf.txt ARN35404-FM_6-0-000-WEB-1.pdf.txt ARN36735-FM_6-22-000-WEB-1.pdf.txt ``` The `prompt.txt`, `template.txt`, RAG dataset, and GGUF file are all inside this folder so that people can run this model themselves using Augmentoolkit's chat interface. Just download the things not in the checkpoint-xx/ folders (not the model.safetensors files), put them all in a folder, and configure the basic-server or rag-server config to point at the prompt, template, etc., (see the documentation pages for those utility pipelines) and bang, Augmentoolkit will run these models with the correct prompt template and configuration. Stop sequence == "\*\*Finished.\*\*" Why did I do it like that? Because the more SFT text resembles the pretraining text, the more that knowledge and capabilities from the pretraining will carry over to the SFT. Convention and chatml be damned, I like better performance. Related Links: - [Augmentoolkit](https://github.com/e-p-armstrong/augmentoolkit) - [Other Factual Demo Model (Nursing)](https://huggingface.co/Heralax/llama-Augmentoolkit-Openstax-Nursing-Books-Example) - [Not-Undertrained Factual Model](https://huggingface.co/Heralax/llama-Augmentoolkit-MilitaryModel-Demo-NotUndertrained/settings) - [gRPo model (thoughts)](https://huggingface.co/Heralax/llama-gRPo-thoughtprocess) - [gRPo model (no thoughts)](https://huggingface.co/Heralax/llama-gRPo-emotions-nothoughts) Q: Why the Llama license? A: The quickstart uses Llama 3 to generate the data for the sake of speed and hardware compatibility. Therefore, the Llama license applies to this demo model. Example (no RAG btw): ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64825ebceb4befee377cf8ac/oliUoD4Oz1abZ5H8WJMTO.png)
Heralax/llama-Augmentoolkit-MilitaryModel-Demo-NotUndertrained
Heralax
2025-06-18T21:05:39Z
2
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "axolotl", "generated_from_trainer", "conversational", "dataset:axolotl_rag_conversations_facts.jsonl", "dataset:axolotl_correction_conversations_facts.json", "dataset:pretraining_subset_2170418.jsonl", "dataset:factual_sft_completion/combined_all_0.jsonl", "dataset:factual_sft_completion/combined_all_2.jsonl", "dataset:factual_sft_completion/combined_all_3.jsonl", "dataset:factual_sft_completion/combined_all_1.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-LMsys-800k-Thoughts_1081745.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-LMsys-800k-Thoughts_534422.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Generic-Grabbag-Thoughts_1068845.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Bluemoon-1mil-thoughts_1081745.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Pippa-Thoughts_1081745.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Capybara-2point5mil-Thoughts_534422.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Pippa-Thoughts_534422.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Openthoughts-100mil-DifferentFormat_4326980.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Capybara-2point5mil-Thoughts_1081745.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Openthoughts-100mil-DifferentFormat_2137691.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Bluemoon-1mil-thoughts_534422.jsonl", "dataset:generic_sft_completion/Augmentoolkit-Augmentoolkit-Generic-Grabbag-Thoughts_2163490.jsonl", "base_model:Heralax/test-model-5-pretrain", "base_model:finetune:Heralax/test-model-5-pretrain", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-13T17:37:03Z
--- library_name: transformers license: llama3.1 base_model: Heralax/test-model-5-pretrain tags: - axolotl - generated_from_trainer datasets: - axolotl_rag_conversations_facts.jsonl - axolotl_correction_conversations_facts.json - pretraining_subset_2170418.jsonl - factual_sft_completion/combined_all_0.jsonl - factual_sft_completion/combined_all_2.jsonl - factual_sft_completion/combined_all_3.jsonl - factual_sft_completion/combined_all_1.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-LMsys-800k-Thoughts_1081745.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-LMsys-800k-Thoughts_534422.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Generic-Grabbag-Thoughts_1068845.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Bluemoon-1mil-thoughts_1081745.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Pippa-Thoughts_1081745.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Capybara-2point5mil-Thoughts_534422.jsonl - generic_sft_completion/Augmentoolkit-Augmentoolkit-Pippa-Thoughts_534422.jsonl - >- generic_sft_completion/Augmentoolkit-Openthoughts-100mil-DifferentFormat_4326980.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Capybara-2point5mil-Thoughts_1081745.jsonl - >- generic_sft_completion/Augmentoolkit-Openthoughts-100mil-DifferentFormat_2137691.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Bluemoon-1mil-thoughts_534422.jsonl - >- generic_sft_completion/Augmentoolkit-Augmentoolkit-Generic-Grabbag-Thoughts_2163490.jsonl model-index: - name: test-model-5-sft results: [] --- # llama-Augmentoolkit-MilitaryModel-Demo-NotUndertrained This model achieves the following results on the evaluation set: - Loss: 0.6264 This is a less-undertrained version of one of the demo factual models (the military one). Both such models were a bit undertrained. This one suffers from that less and should produce better results (theoretically, I have not tested it yet). Same prompt as the military one. Try this model out!
sgonzalezygil/sd-finetuning-dreambooth-v15-1400
sgonzalezygil
2025-06-18T21:02:51Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-18T21:01:31Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
New-tutorial-Trishakar-Madhu-Viral-Videos/FULL.VIDEO.Trishakar.Madhu.Viral.Video.Tutorial.Official
New-tutorial-Trishakar-Madhu-Viral-Videos
2025-06-18T21:02:32Z
0
0
null
[ "region:us" ]
null
2025-06-18T21:02:14Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
swapnillo/RKD-retrained
swapnillo
2025-06-18T21:00:25Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
image-text-to-text
2025-06-18T20:59:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
morturr/Llama-2-7b-hf-LOO_amazon-COMB_headlines-comb3-seed28-2025-06-18
morturr
2025-06-18T20:59:19Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-18T20:59:00Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-LOO_amazon-COMB_headlines-comb3-seed28-2025-06-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-LOO_amazon-COMB_headlines-comb3-seed28-2025-06-18 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
sgonzalezygil/sd-finetuning-dreambooth-v15
sgonzalezygil
2025-06-18T20:58:17Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-18T20:56:47Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
New-videos-Arovi-Nusrat-Ridhi-18-Video/19.FULL.VIDEO.Arovi.Nusrat.Ridhi.Viral.Video.Tutorial.Official
New-videos-Arovi-Nusrat-Ridhi-18-Video
2025-06-18T20:54:56Z
0
0
null
[ "region:us" ]
null
2025-06-18T20:54:37Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
opentargets/locus_to_gene_25.06-ppp
opentargets
2025-06-18T20:54:29Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "region:us" ]
tabular-classification
2025-06-18T10:37:37Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_format: skops model_file: classifier.skops widget: - structuredData: credibleSetConfidence: - 0.75 - 0.75 - 0.75 distanceFootprintMean: - 1.0 - 0.850557267665863 - 0.8636571168899536 distanceFootprintMeanNeighbourhood: - 1.0 - 0.850557267665863 - 0.8636571168899536 distanceSentinelFootprint: - 1.0 - 0.850557267665863 - 0.8636571168899536 distanceSentinelFootprintNeighbourhood: - 1.0 - 0.850557267665863 - 0.8636571168899536 distanceSentinelTss: - 0.9999350309371948 - 0.6872674226760864 - 0.8636571168899536 distanceSentinelTssNeighbourhood: - 1.0 - 0.6873120665550232 - 0.863713264465332 distanceTssMean: - 0.9999350309371948 - 0.6872674226760864 - 0.8636571168899536 distanceTssMeanNeighbourhood: - 1.0 - 0.6873120665550232 - 0.863713264465332 eQtlColocClppMaximum: - 0.0 - 0.0 - 0.0 eQtlColocClppMaximumNeighbourhood: - 0.0 - 0.0 - 0.0 eQtlColocH4Maximum: - 0.0 - 0.0 - 0.0 eQtlColocH4MaximumNeighbourhood: - 0.0 - 0.0 - 0.0 geneCount500kb: - 15.0 - 15.0 - 15.0 geneId: - ENSG00000169174 - ENSG00000162390 - ENSG00000162391 goldStandardSet: - positive - negative - negative pQtlColocClppMaximum: - 1.0 - 0.0 - 0.0 pQtlColocClppMaximumNeighbourhood: - 1.0 - 0.0 - 0.0 pQtlColocH4Maximum: - 1.0 - 0.0 - 0.0 pQtlColocH4MaximumNeighbourhood: - 1.0 - 0.0 - 0.0 proteinGeneCount500kb: - 7.0 - 7.0 - 7.0 sQtlColocClppMaximum: - 0.0 - 0.0 - 0.0 sQtlColocClppMaximumNeighbourhood: - 0.0 - 0.0 - 0.0 sQtlColocH4Maximum: - 0.0 - 0.0 - 0.0 sQtlColocH4MaximumNeighbourhood: - 0.0 - 0.0 - 0.0 studyLocusId: - 02c442ea4fa5ab80586a6d1ff6afa843 - 02c442ea4fa5ab80586a6d1ff6afa843 - 02c442ea4fa5ab80586a6d1ff6afa843 traitFromSourceMappedId: - EFO_0004611 - EFO_0004611 - EFO_0004611 vepMaximum: - 0.6600000262260437 - 0.0 - 0.0 vepMaximumNeighbourhood: - 1.0 - 0.0 - 0.0 vepMean: - 0.6600000262260437 - 0.0 - 0.0 vepMeanNeighbourhood: - 1.0 - 0.0 - 0.0 --- # Model description The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are: - Distance: (from credible set variants to gene) - Molecular QTL Colocalization - Variant Pathogenicity: (from VEP) More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/ ## Intended uses & limitations [More Information Needed] ## Training Procedure Gradient Boosting Classifier ### Hyperparameters <details> <summary> Click to expand </summary> | Hyperparameter | Value | |--------------------------|--------------| | ccp_alpha | 0 | | criterion | friedman_mse | | init | | | learning_rate | 0.1 | | loss | log_loss | | max_depth | 3 | | max_features | | | max_leaf_nodes | | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 5 | | min_weight_fraction_leaf | 0.0 | | n_estimators | 100 | | n_iter_no_change | | | random_state | 42 | | subsample | 0.7 | | tol | 0.0001 | | validation_fraction | 0.1 | | verbose | 0 | | warm_start | False | </details> # How to Get Started with the Model To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix. The model can then be used to make predictions using the `predict` method. More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/ # Citation https://doi.org/10.1038/s41588-021-00945-5 # License MIT
bruhzair/prototype-0.4x163
bruhzair
2025-06-18T20:53:15Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T19:36:54Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # prototype-0.4x163 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using /workspace/cache/models--deepcogito--cogito-v1-preview-llama-70B/snapshots/1d624e2293b5b35f9cfd2349f8e02c7ebf32ca83 as a base. ### Models Merged The following models were included in the merge: * /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c * /workspace/cache/models--ReadyArt--Fallen-Abomination-70B-R1-v4.1/snapshots/074da842177c29e48f1b6d4963d6972a06b99752 * /workspace/cache/models--bruhzair--prototype-0.4x136/snapshots/0ddea8f7db58c358063bb0b70937b207925ecfbb ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /workspace/cache/models--bruhzair--prototype-0.4x136/snapshots/0ddea8f7db58c358063bb0b70937b207925ecfbb - model: /workspace/cache/models--ReadyArt--Fallen-Abomination-70B-R1-v4.1/snapshots/074da842177c29e48f1b6d4963d6972a06b99752 - model: /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c base_model: /workspace/cache/models--deepcogito--cogito-v1-preview-llama-70B/snapshots/1d624e2293b5b35f9cfd2349f8e02c7ebf32ca83 merge_method: model_stock tokenizer: source: base int8_mask: true dtype: float32 out_dtype: bfloat16 ```
siri310/gemma-3-finetune
siri310
2025-06-18T20:52:43Z
6
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "gemma3", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T03:35:43Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** siri310 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Will-est/q-Taxi-v3
Will-est
2025-06-18T20:52:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-18T20:52:14Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Will-est/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nnilayy/dreamer-valence-binary-classification-Kfold-2
nnilayy
2025-06-18T20:51:55Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-18T20:51:52Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
JonLoRA/deynairaLoRAv2
JonLoRA
2025-06-18T20:50:17Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-18T19:11:29Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: photo of a girl --- # Deynairalorav2 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `photo of a girl` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "photo of a girl", "lora_weights": "https://huggingface.co/JonLoRA/deynairaLoRAv2/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('JonLoRA/deynairaLoRAv2', weight_name='lora.safetensors') image = pipeline('photo of a girl').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 6000 - Learning rate: 0.0002 - LoRA rank: 64 ## Contribute your own examples You can use the [community tab](https://huggingface.co/JonLoRA/deynairaLoRAv2/discussions) to add images that show off what you’ve made with this LoRA.
morturr/Llama-2-7b-hf-LOO_one_liners-COMB_headlines-comb1-seed18-2025-06-18
morturr
2025-06-18T20:50:14Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-18T20:49:59Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-LOO_one_liners-COMB_headlines-comb1-seed18-2025-06-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-LOO_one_liners-COMB_headlines-comb1-seed18-2025-06-18 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 18 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
New-tutorial-Sajal-Malik-18-Viral-Videos/FULL.VIDEO.Jobz.Hunting.Sajal.Malik.Viral.Video.Tutorial.Official
New-tutorial-Sajal-Malik-18-Viral-Videos
2025-06-18T20:49:45Z
0
0
null
[ "region:us" ]
null
2025-06-18T20:49:23Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
wongyck/BERT_twitter_1
wongyck
2025-06-18T20:48:33Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-18T20:48:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Will-est/q-FrozenLake-v1-4x4-noSlippery
Will-est
2025-06-18T20:48:10Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-18T20:48:07Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Will-est/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
nnilayy/deap-arousal-binary-classification-Kfold-2
nnilayy
2025-06-18T20:39:52Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-18T20:39:50Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
small-blue/250613-conf-15
small-blue
2025-06-18T20:39:31Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T20:27:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
official-video-viraly-lol-hindi-viral/18-video-full-video-viraly-lol-hindi-viral-video
official-video-viraly-lol-hindi-viral
2025-06-18T20:39:18Z
0
0
null
[ "region:us" ]
null
2025-06-18T20:38:23Z
<animated-image data-catalyst=""><a href="https://wtach.club/leakvideo/?h" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
nnilayy/dreamer-arousal-binary-classification-Kfold-1
nnilayy
2025-06-18T20:39:13Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-18T20:39:12Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
nnilayy/deap-valence-binary-classification-Kfold-2
nnilayy
2025-06-18T20:37:30Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-18T20:37:27Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
divyanshu94/ModernBERT-embed-base-dell-MRL
divyanshu94
2025-06-18T20:37:29Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "modernbert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:14020", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "en", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:nomic-ai/modernbert-embed-base", "base_model:finetune:nomic-ai/modernbert-embed-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-18T20:35:04Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:14020 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: nomic-ai/modernbert-embed-base widget: - source_sentence: "I'd be delighted to provide you with detailed information about\ \ the rate structure for the Dell APEX Data Center Utility. Understanding the\ \ financial implications of your data center solutions is crucial, and Dell has\ \ designed a flexible rate structure to align with your business needs. \n\nFirstly,\ \ Dell APEX offers a unique approach by tailoring the rate structure based on\ \ your specific capacity requirements, anticipated growth, service level agreements\ \ (SLAs), and reporting needs. This means that the pricing is not a one-size-fits-all\ \ model but is customized to ensure that you only pay for what you need and use.\ \ This approach allows you to manage your budget more effectively and ensures\ \ that your expenses are directly tied to the business value you receive from\ \ the data center solutions. \n\nMoreover, the consistent pricing model helps\ \ in predicting and managing your operational expenses more efficiently. This\ \ is particularly beneficial for businesses that experience fluctuating demands\ \ and need a scalable solution that can adapt to their changing needs. By aligning\ \ the rate structure with your business objectives, Dell ensures that you can\ \ focus on growth and innovation without being burdened by unexpected costs. \n\ \nIn summary, the Dell APEX Data Center Utility's rate structure is designed to\ \ provide financial flexibility and predictability, enabling you to optimize your\ \ data center operations while aligning costs with business outcomes. This approach\ \ not only supports your current needs but also positions your business for future\ \ growth and success." sentences: - In what ways do role-based access controls in the PowerEdge R360 streamline operations and minimize human error while enhancing security for businesses? - What factors should a sales executive consider when recommending Dell's monitor cables to a customer with specific requirements and budget constraints? - In what ways does the Dell APEX Data Center Utility's pricing model help businesses manage fluctuating demands and align costs with business outcomes for future growth? - source_sentence: Thank you for your interest in the security features of Dell Precision Workstations. In today's rapidly evolving digital landscape, data security is paramount, and Dell recognizes this by integrating advanced security measures into its Precision Workstations. These workstations are designed with a multi-layered security approach that ensures comprehensive protection for your data. Dell's Trusted Workspace is a cornerstone of this security strategy, offering a secure environment that protects against both physical and cyber threats. This includes hardware-based security features such as Dell SafeBIOS, which ensures the integrity of the BIOS against attacks, and Dell SafeID, which protects -user credentials with a dedicated security chip. Additionally, software defenses are robust, with Dell Endpoint Security Suite Enterprise providing advanced threat prevention and encryption capabilities. This suite is designed to protect against malware and unauthorized access, ensuring that sensitive information remains confidential. Dell's commitment to security is evident in its collaboration with industry leaders to continuously enhance its security offerings, ensuring that businesses can operate with confidence, knowing their data is secure. Whether you're in healthcare, finance, or any other industry dealing with sensitive data, Dell Precision Workstations provide the peace of mind that comes with knowing your data is protected by some of the most advanced security technologies available today. sentences: - How does Dell's policy on the use of materials from their site balance personal use with the protection of their intellectual property rights? - What specific benefits do the 16:9 and 21:9 aspect ratios offer to professionals in fields like graphic design and data analysis, and how can a sales executive leverage this information? - How does Dell's multi-layered security approach in Precision Workstations address both physical and cyber threats to ensure comprehensive data protection for businesses? - source_sentence: 'I''m glad you asked about the power supply options for the Dell PowerEdge R470, as choosing the right power supply is crucial for optimizing performance and efficiency in your IT infrastructure. The Dell PowerEdge R470 offers a range of power supply options designed to meet various operational needs and energy efficiency goals. Specifically, you can select from dual and single power supply configurations. The dual configuration is particularly beneficial for businesses that require redundancy to ensure continuous operation, even in the event of a power supply failure. This is especially important for industries where uptime is critical, such as financial services or healthcare. In terms of wattage, the PowerEdge R470 provides options for hot-plug MHS (Modular Hot-Swap) power supplies with different capacities, including 800W and 1100W. These options allow you to tailor the power supply to your server''s specific power demands, helping to avoid over-provisioning and unnecessary energy consumption. Furthermore, the power supplies are available in both titanium and non-titanium variants. Titanium power supplies are known for their higher efficiency ratings, which can lead to significant energy savings over time. This can be particularly advantageous for data centers aiming to reduce their carbon footprint and operational costs. Additionally, the PowerEdge R470 offers configurations for fully redundant, non-redundant, and non-redundant single setups. This flexibility allows businesses to choose a configuration that aligns with their reliability requirements and budget constraints. By understanding these options, you can make an informed decision that enhances your server''s performance and aligns with your organization''s sustainability goals.' sentences: - How does Dell's Virtual Desktop Infrastructure (VDI) ensure data security while allowing employees to access applications or full desktops remotely without compromising performance? - What ergonomic features do Dell monitors offer to accommodate professionals who spend long hours in front of screens, and why are these features important? - What are the benefits of choosing titanium power supplies for the Dell PowerEdge R470 in terms of energy efficiency and cost savings for data centers? - source_sentence: "The PowerEdge XE9680L is a cutting-edge server designed to meet\ \ the demanding needs of AI training, large-scale inferencing, and high-performance\ \ computing (HPC). In today's data-driven world, organizations are increasingly\ \ relying on AI and HPC to gain insights and drive innovation. The PowerEdge XE9680L\ \ is equipped with 2 x 5th Generation Intel® Xeon® Scalable processors, which\ \ provide the computational power necessary to handle complex workloads efficiently.\ \ Additionally, it features 32 x DDR5 DIMM slots, allowing for extensive memory\ \ capacity that is crucial for processing large datasets. \n\nOne of the standout\ \ features of the PowerEdge XE9680L is its support for up to 122 TB of storage.\ \ This massive storage capacity ensures that organizations can store and access\ \ vast amounts of data without bottlenecks, which is essential for AI and HPC\ \ applications. Furthermore, the inclusion of 8 NVIDIA HGX B200 GPUs makes it\ \ highly capable of handling the parallel processing tasks required for AI training\ \ and inferencing. These GPUs are specifically designed to accelerate AI workloads,\ \ enabling faster model training and more efficient inferencing.\n\nFor businesses\ \ in industries such as finance, healthcare, or manufacturing, where AI and HPC\ \ are becoming integral to operations, the PowerEdge XE9680L offers a robust solution.\ \ It allows organizations to tailor their computing infrastructure to meet specific\ \ needs, whether it's processing financial models, analyzing medical images, or\ \ optimizing manufacturing processes. By investing in the PowerEdge XE9680L, organizations\ \ can take control of their AI and HPC initiatives, ensuring they remain competitive\ \ in a rapidly evolving technological landscape." sentences: - How can the ProDeploy Flex Factory Configured Services for Dell PowerEdge R6725 enhance asset management efficiency for IT managers and operations teams? - How does Dell's ProDeploy Client Suite ensure a seamless transition for users during the setup and configuration stages of new technology deployment? - In what ways can businesses in finance, healthcare, or manufacturing leverage the PowerEdge XE9680L to enhance their AI and HPC operations? - source_sentence: "Certainly! The Dell PowerEdge R660 is designed to be a highly\ \ efficient and compact solution for businesses that require robust computing\ \ power without occupying too much physical space. This server is a 1U rack server,\ \ which means it is designed to fit into a standard 19-inch server rack and occupies\ \ only one rack unit of space. This compact form factor is particularly beneficial\ \ for data centers or businesses with limited space, allowing them to maximize\ \ their server capacity without needing to expand their physical infrastructure.\ \ \n\nThe dimensions of the PowerEdge R660 are quite specific: it measures 42.8\ \ mm in height, 482 mm in width, and 822.88 mm in depth with the bezel attached.\ \ If you choose to operate it without the bezel, the depth is slightly reduced\ \ to 809.04 mm. This precision in design ensures that the server can fit seamlessly\ \ into existing rack setups, providing flexibility in deployment. \n\nFor IT managers\ \ and data center operators, understanding these dimensions is crucial for planning\ \ and optimizing rack space. It allows for efficient cooling and cable management,\ \ which are essential for maintaining server performance and longevity. Moreover,\ \ the compact design does not compromise on performance, making the PowerEdge\ \ R660 an ideal choice for businesses looking to enhance their computing capabilities\ \ while maintaining a streamlined and efficient server environment." sentences: - How does the compact design of the Dell PowerEdge R660 benefit businesses with limited physical space in their data centers or server rooms? - What features of the Alienware Wireless Gaming Mouse - AW620M contribute to its high customer satisfaction rating of 4.6 out of 5 stars from 442 reviews? - What advantages does Dell's Remote Virtual V2V Migration service offer to tech companies and startups that rely on virtual environments for business continuity? pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: ModernBERT Embed base Legal Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.6001283697047497 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7522464698331194 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8228498074454429 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8953786906290115 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6001283697047497 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.4527171587505349 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.3174582798459563 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.18048780487804875 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.29862002567394097 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6745827984595636 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.787227214377407 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8953786906290115 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7469767901925571 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6743586608798449 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7028949967294865 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.5949935815147626 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7503209242618742 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8215661103979461 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8915275994865212 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5949935815147626 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.4503637141634574 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.31681643132220794 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.17971758664955068 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.29605263157894735 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6710526315789473 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.785622593068036 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8915275994865212 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7431061453036201 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.670197852354466 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6991878935707443 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.5879332477535302 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7406931964056482 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8164313222079589 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8844672657252889 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5879332477535302 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.44437312794180567 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.31360718870346593 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1783055198973042 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.2928433889602054 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6627086007702182 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7780808729139923 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8844672657252889 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7359205485187926 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6628644782688455 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6927177285124128 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.5564826700898587 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7073170731707317 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7785622593068036 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8645699614890886 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5564826700898587 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.4225502781343603 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.29897304236200256 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.1741976893453145 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.2772785622593068 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6306161745827985 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7424582798459564 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8645699614890886 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7080839549473346 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.632094463801783 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6638911387558878 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.5231065468549422 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.675224646983312 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7458279845956355 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8267008985879333 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5231065468549422 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.40029952931108254 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2857509627727856 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.16662387676508342 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.2609114249037227 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5978818998716303 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7097240051347882 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8267008985879333 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6732114974112485 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5982843287079503 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6318939163392485 name: Cosine Map@100 --- # ModernBERT Embed base Legal Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 --> - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("divyanshu94/ModernBERT-embed-base-dell-MRL") # Run inference sentences = [ 'Certainly! The Dell PowerEdge R660 is designed to be a highly efficient and compact solution for businesses that require robust computing power without occupying too much physical space. This server is a 1U rack server, which means it is designed to fit into a standard 19-inch server rack and occupies only one rack unit of space. This compact form factor is particularly beneficial for data centers or businesses with limited space, allowing them to maximize their server capacity without needing to expand their physical infrastructure. \n\nThe dimensions of the PowerEdge R660 are quite specific: it measures 42.8 mm in height, 482 mm in width, and 822.88 mm in depth with the bezel attached. If you choose to operate it without the bezel, the depth is slightly reduced to 809.04 mm. This precision in design ensures that the server can fit seamlessly into existing rack setups, providing flexibility in deployment. \n\nFor IT managers and data center operators, understanding these dimensions is crucial for planning and optimizing rack space. It allows for efficient cooling and cable management, which are essential for maintaining server performance and longevity. Moreover, the compact design does not compromise on performance, making the PowerEdge R660 an ideal choice for businesses looking to enhance their computing capabilities while maintaining a streamlined and efficient server environment.', 'How does the compact design of the Dell PowerEdge R660 benefit businesses with limited physical space in their data centers or server rooms?', "What advantages does Dell's Remote Virtual V2V Migration service offer to tech companies and startups that rely on virtual environments for business continuity?", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 768 } ``` | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.6001 | | cosine_accuracy@3 | 0.7522 | | cosine_accuracy@5 | 0.8228 | | cosine_accuracy@10 | 0.8954 | | cosine_precision@1 | 0.6001 | | cosine_precision@3 | 0.4527 | | cosine_precision@5 | 0.3175 | | cosine_precision@10 | 0.1805 | | cosine_recall@1 | 0.2986 | | cosine_recall@3 | 0.6746 | | cosine_recall@5 | 0.7872 | | cosine_recall@10 | 0.8954 | | **cosine_ndcg@10** | **0.747** | | cosine_mrr@10 | 0.6744 | | cosine_map@100 | 0.7029 | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 512 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.595 | | cosine_accuracy@3 | 0.7503 | | cosine_accuracy@5 | 0.8216 | | cosine_accuracy@10 | 0.8915 | | cosine_precision@1 | 0.595 | | cosine_precision@3 | 0.4504 | | cosine_precision@5 | 0.3168 | | cosine_precision@10 | 0.1797 | | cosine_recall@1 | 0.2961 | | cosine_recall@3 | 0.6711 | | cosine_recall@5 | 0.7856 | | cosine_recall@10 | 0.8915 | | **cosine_ndcg@10** | **0.7431** | | cosine_mrr@10 | 0.6702 | | cosine_map@100 | 0.6992 | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 256 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5879 | | cosine_accuracy@3 | 0.7407 | | cosine_accuracy@5 | 0.8164 | | cosine_accuracy@10 | 0.8845 | | cosine_precision@1 | 0.5879 | | cosine_precision@3 | 0.4444 | | cosine_precision@5 | 0.3136 | | cosine_precision@10 | 0.1783 | | cosine_recall@1 | 0.2928 | | cosine_recall@3 | 0.6627 | | cosine_recall@5 | 0.7781 | | cosine_recall@10 | 0.8845 | | **cosine_ndcg@10** | **0.7359** | | cosine_mrr@10 | 0.6629 | | cosine_map@100 | 0.6927 | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 128 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5565 | | cosine_accuracy@3 | 0.7073 | | cosine_accuracy@5 | 0.7786 | | cosine_accuracy@10 | 0.8646 | | cosine_precision@1 | 0.5565 | | cosine_precision@3 | 0.4226 | | cosine_precision@5 | 0.299 | | cosine_precision@10 | 0.1742 | | cosine_recall@1 | 0.2773 | | cosine_recall@3 | 0.6306 | | cosine_recall@5 | 0.7425 | | cosine_recall@10 | 0.8646 | | **cosine_ndcg@10** | **0.7081** | | cosine_mrr@10 | 0.6321 | | cosine_map@100 | 0.6639 | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: ```json { "truncate_dim": 64 } ``` | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.5231 | | cosine_accuracy@3 | 0.6752 | | cosine_accuracy@5 | 0.7458 | | cosine_accuracy@10 | 0.8267 | | cosine_precision@1 | 0.5231 | | cosine_precision@3 | 0.4003 | | cosine_precision@5 | 0.2858 | | cosine_precision@10 | 0.1666 | | cosine_recall@1 | 0.2609 | | cosine_recall@3 | 0.5979 | | cosine_recall@5 | 0.7097 | | cosine_recall@10 | 0.8267 | | **cosine_ndcg@10** | **0.6732** | | cosine_mrr@10 | 0.5983 | | cosine_map@100 | 0.6319 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 14,020 training samples * Columns: <code>positive</code> and <code>anchor</code> * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 53 tokens</li><li>mean: 309.43 tokens</li><li>max: 536 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 30.87 tokens</li><li>max: 48 tokens</li></ul> | * Samples: | positive | anchor | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Thank you for your interest in the Dell PowerEdge R760xd2, a server that stands out in the market for its exceptional scalability and serviceability. This server is specifically designed to meet the growing demands of unstructured data, which is a critical need for many industries today. With the ability to support up to 28 drives, the R760xd2 offers a total storage capacity of 616 TB, making it an ideal solution for businesses that require extensive data storage capabilities. This is particularly beneficial for industries such as media and entertainment, healthcare, and finance, where large volumes of data are generated and need to be stored efficiently.<br><br>Moreover, the inclusion of NVMe drives and NVIDIA accelerators in the PowerEdge R760xd2 significantly reduces latency and enhances performance. This means that businesses can expect faster data processing and retrieval times, which is crucial for maintaining competitive advantage in today's fast-paced business environment. The server...</code> | <code>What features of the Dell PowerEdge R760xd2 contribute to its enhanced performance and reduced latency, and how do these features benefit businesses in competitive markets?</code> | | <code>Thank you for reaching out with your query regarding detailed information on SupportAssist. For businesses that rely heavily on technology, having a robust support system is crucial. Dell's SupportAssist is designed to enhance the support experience by providing proactive and predictive support for your business PCs. To delve deeper into its functionalities, there is indeed a comprehensive document available known as the 'SupportAssist for Business PCs Administrator Guide.' This guide is meticulously crafted to provide you with an in-depth understanding of the various features and capabilities of SupportAssist. By utilizing this guide, you can gain insights into how SupportAssist can preemptively identify issues before they become critical, thus minimizing downtime and enhancing productivity. The guide is available in PDF format, making it easily accessible and convenient for you to reference at any time. Whether you are an IT administrator looking to streamline your support processes ...</code> | <code>How can the 'SupportAssist for Business PCs Administrator Guide' help a sales executive explain the benefits of proactive support to potential clients?</code> | | <code>I'd be delighted to provide you with detailed insights into the Dell Pro Max Micro Desktop, a remarkable piece of technology designed for those who require high performance in a compact form factor. This desktop is particularly suited for professionals in industries like finance, engineering, and creative fields, where space is often at a premium but performance cannot be compromised. The Dell Pro Max Micro Desktop is engineered with the latest Intel® Core™ Ultra processors, which are known for their exceptional speed and efficiency. These processors are designed to handle demanding applications and multitasking with ease, making them ideal for users who need to run complex simulations, data analysis, or creative software. The design of the Dell Pro Max Micro Desktop is sleek and modern, allowing it to fit seamlessly into any office environment without taking up much space. Its compact size does not detract from its performance capabilities, making it a perfect choice for those who nee...</code> | <code>In what ways does the compact design of the Dell Pro Max Micro Desktop provide an advantage for sales executives targeting professionals in space-constrained office environments?</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.3645 | 10 | 45.3094 | - | - | - | - | - | | 0.7289 | 20 | 5.9832 | - | - | - | - | - | | 1.0 | 28 | - | 0.6917 | 0.6907 | - | - | - | | 0.3645 | 10 | 3.6462 | - | - | - | - | - | | 0.7289 | 20 | 2.0542 | - | - | - | - | - | | 1.0 | 28 | - | 0.7337 | 0.7279 | 0.7179 | 0.6914 | 0.6505 | | 1.0729 | 30 | 2.1043 | - | - | - | - | - | | 1.4374 | 40 | 2.5209 | - | - | - | - | - | | 1.8018 | 50 | 2.3962 | - | - | - | - | - | | 2.0 | 56 | - | 0.7434 | 0.7366 | 0.7255 | 0.6993 | 0.6601 | | 2.1458 | 60 | 2.0125 | - | - | - | - | - | | 2.5103 | 70 | 1.9498 | - | - | - | - | - | | 2.8747 | 80 | 2.1095 | - | - | - | - | - | | 3.0 | 84 | - | 0.7459 | 0.7411 | 0.7351 | 0.7055 | 0.6725 | | 3.2187 | 90 | 1.6889 | - | - | - | - | - | | 3.5831 | 100 | 1.3547 | - | - | - | - | - | | 3.9476 | 110 | 1.9732 | - | - | - | - | - | | **4.0** | **112** | **-** | **0.747** | **0.7431** | **0.7359** | **0.7081** | **0.6732** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 4.1.0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Accelerate: 1.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mmwillet2/Dia_GGUF
mmwillet2
2025-06-18T20:34:24Z
220
5
null
[ "gguf", "text-to-speech", "base_model:nari-labs/Dia-1.6B", "base_model:quantized:nari-labs/Dia-1.6B", "license:mit", "region:us" ]
text-to-speech
2025-05-08T18:34:44Z
--- license: mit base_model: - nari-labs/Dia-1.6B pipeline_tag: text-to-speech --- ## Purpose The purpose of this repository is to store various [TTS.cpp](https://github.com/mmwillet/TTS.cpp) compatible GGUF encoded model files for the [Dia model](https://github.com/nari-labs/dia). ### Model Types Currently the model is supported with 4-bit, 5-bit, 8-bit, F16bit and F32bit quantization / precision and all modes are supported with F16 and F32 bit precision DAC. `Dia.gguf` is the non-quantized 32 bit floating point version, `Dia_Q4.gguf`, `Dia_Q5.gguf`, `Dia_Q8.gguf` and `Dia_F16.gguf` are the 4bit, 5bit, 8bit and 16bit quantized versions respectively, and all versions with the prefix `_DAC_F16.gguf` are encoded with a 16bit version of the DAC audio encoder. ## Dia This page only contains the GGUF encoded model files of the original Dia model. For the original model please see the repository [here](https://github.com/nari-labs/dia). ## How to use See the github repo [here](https://github.com/mmwillet/TTS.cpp) for more information general usage. To compile TTS.cpp simple git clone and then run the the following in the repository's directory to compile (cmake is required): ```bash cmake -B build cmake --build build --config Release ``` After compilation is complete you can download a model file generate speech to a file from the same directory like so: ```bash build/bin/tts-cli --model-path /model/path/to/downloaded_gguf_file.gguf --prompt "I am saying some words" --save-path /tmp/test.wav ```
Victoriatr07/final_model3_LoRA
Victoriatr07
2025-06-18T20:32:43Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-18T20:32:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
diegolacomba/multilingual-e5-small-legal-mnrl-4
diegolacomba
2025-06-18T20:30:45Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:79908", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:intfloat/multilingual-e5-small", "base_model:finetune:intfloat/multilingual-e5-small", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-18T20:30:16Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:79908 - loss:MultipleNegativesRankingLoss base_model: intfloat/multilingual-e5-small widget: - source_sentence: 'query: ¿Qué fechas son relevantes para la presentación y el ingreso de las retenciones practicadas en diferentes momentos del año fiscal?}**' sentences: - 'passage: (…).”. En cuanto a las obligaciones formales del retenedor y del obligado a ingresar a cuenta, estas se recogen en el artículo 108 del RIRPF, que en relación con la presentación de declaraciones establece lo siguiente: 1. “El sujeto obligado a retener y practicar ingresos a cuenta deberá presentar, en los primeros veinte días naturales de los meses de abril, julio, octubre y enero, declaración de las cantidades retenidas y de los ingresos a cuenta que correspondan por el trimestre natural inmediato anterior, e ingresar su importe en el Tesoro Público. No obstante, la declaración e ingreso a que se refiere el párrafo anterior se efectuará en los veinte primeros días naturales de cada mes, en relación con las cantidades retenidas y los ingresos a cuenta que correspondan por el mes inmediato anterior, cuando se trate de retenedores u obligados en los que concurran las circunstancias a que se refieren los números 1.º y 2.º del apartado 3 del artículo 71 del Reglamento del Impuesto sobre el Valor Añadido, aprobado por el Real Decreto 1624/1992, de 29 de diciembre. (…) 2. El retenedor u obligado a ingresar a cuenta deberá presentar en los primeros veinte días naturales del mes de enero una declaración anual de las retenciones e ingresos a cuenta efectuados. No obstante, en el caso de que esta declaración se presente en soporte directamente legible por ordenador o haya sido generado mediante la utilización, exclusivamente, de los correspondientes módulos de impresión desarrollados, a estos efectos, por la Administración tributaria, el plazo de presentación será el comprendido entre el 1 de enero y el 31 de enero del año siguiente al del que corresponde dicha declaración. (…).”. Por su parte, el artículo 78.1 del RIRPF dispone que “con carácter general, la obligación de retener nacerá en el momento en que se satisfagan o abonen las rentas correspondientes”.' - 'passage: Descripción de hechos: La mercantil consultante dedicada a la producción de energía eléctrica va a adquirir plantas fotovoltaicas en funcionamiento directamente o vía ampliación de capital. Cuestión planteada: Sujeción al Impuesto sobre el Valor Añadido de las operaciones.' - 'passage: Descripción de hechos: La consultante es una asociación internacional sin ánimo de lucro belga que va a organizar una feria farmacéutica donde las empresas asistentes podrán exponer y promover la venta de sus productos.El evento incluye una conferencia de carácter médico o científico con el objeto de atraer a más visitantes a quien las empresas farmacéuticas presentaran sus productos. Cuestión planteada: Tipo impositivo aplicable a los servicios prestados por la entidad consultante a efectos del Impuesto sobre el Valor Añadido.' - source_sentence: 'query: ¿Cómo puedo corregir una factura cuando se realiza la devolución de productos o envases en una compra posterior?' sentences: - 'passage: Descripción de hechos: El Banco de España es una entidad de derecho público que realiza una serie de funciones o actividades derivadas de la fabricación y distribución de billetes de euro. Los billetes de euro son fabricados mediante un sistema de producción descentralizado (pool) que implica que distintos Bancos Centrales contribuirán conjuntamente a la satisfacción de las necesidades de billetes euro de los Estados miembros que han adoptado dicha moneda, compartiendo dicha función. No obstante, cada Banco Central no se va a responsabilizar de la producción del total de las denominaciones de euro, sino que se limitará a uno o dos de dichas denominaciones. Del total de los billetes producidos, una parte se destinará a ser moneda de curso legal en el Estado correspondiente a dicho Banco Central, mientras que el resto se distribuirá a los demás Bancos Centrales para que éstos los pongan en circulación en sus respectivos Estados. En el sistema de intercambio de billetes entre Bancos Centrales no se va satisfacer cantidad alguna, ya que está previsto que el importe de los intercambios de billetes (en términos de coste de fabricación) sea equivalente. En el marco de este sistema de fabricación, el Banco de España ha firmado un acuerdo de cooperación con el Banco de Italia para garantizar que estos Bancos Centrales puedan producir las cuotas asignadas por el Banco Central Europeo. De esta forma cualquiera de los Bancos Centrales podrá aceptar pedidos del otro Banco Central firmante para cubrir sus necesidades. Cuestión planteada: Si el acuerdo de colaboración entre los dos Bancos Centrales supone una actividad económica en el Impuesto sobre el Valor Añadido y si debe emitir factura por la entrega de billetes de euro consecuencia de dicho acuerdo.' - 'passage: No obstante, cuando la modificación de la base imponible sea consecuencia de la devolución de mercancías o de envases y embalajes que se realicen con ocasión de un posterior suministro que tenga el mismo destinatario y por la operación en la que se entregaron se hubiese expedido factura, no será necesaria la expedición de una factura rectificativa, sino que se podrá practicar la rectificación en la factura que se expida por dicho suministro, restando el importe de las mercancías o de los envases y embalajes devueltos del importe de dicha operación posterior. La rectificación se podrá realizar de este modo siempre que el tipo impositivo aplicable a todas las operaciones sea el mismo, con independencia de que su resultado sea positivo o negativo. 3. La expedición de la factura rectificativa deberá efectuarse tan pronto como el obligado a expedirla tenga constancia de las circunstancias que, conforme a los apartados anteriores, obligan a su expedición, siempre que no hubiesen transcurrido cuatro años a partir del momento en que se devengó el Impuesto o, en su caso, se produjeron las circunstancias a que se refiere el artículo 80 de la Ley del Impuesto. 4. La rectificación se realizará mediante la emisión de una nueva factura en la que se haga constar los datos identificativos de la factura rectificada. Se podrá efectuar la rectificación de varias facturas en un único documento de rectificación, siempre que se identifiquen todas las facturas rectificadas. No obstante, cuando la modificación de la base imponible tenga su origen en la concesión de descuentos o bonificaciones por volumen de operaciones, así como en los demás casos en que así se autorice por el Departamento de Gestión Tributaria de la Agencia Estatal de Administración Tributaria, no será necesaria la identificación de las facturas, bastando la determinación del período a que se refieren. El Departamento de Gestión Tributaria de la Agencia Estatal de Administración Tributaria podrá autorizar otros procedimientos de rectificación de facturas, previa solicitud de los interesados, cuando quede justificado por las prácticas comerciales o administrativas del sector de actividad de que se trate. 5. La factura rectificativa deberá cumplir los requisitos que se establecen en los artículos 6 ó 7, según proceda.' - 'passage: 2º. Cuando el destinatario no sea un empresario o profesional actuando como tal, siempre que los servicios se presten por un empresario o profesional y la sede de su actividad económica o establecimiento permanente desde el que los preste o, en su defecto, el lugar de su domicilio o residencia habitual, se encuentre en el territorio de aplicación del Impuesto.”. Por lo que se refiere a las reglas especiales, el artículo 70 de la Ley del Impuesto establece en su apartado Uno.7º: “Artículo 70. Lugar de realización de las prestaciones de servicios. Reglas especiales. Uno. Se entenderán prestados en el territorio de aplicación del Impuesto los siguientes servicios: (…) 7º. Los que se enuncian a continuación, cuando se presten materialmente en dicho territorio y su destinatario no sea un empresario o profesional actuando como tal: (…) c) Los servicios relacionados con manifestaciones culturales, artísticas, deportivas, científicas, educativas, recreativas, juegos de azar o similares, como las ferias y exposiciones, incluyendo los servicios de organización de los mismos y los demás servicios accesorios a los anteriores.”. De conformidad con los artículos expuestos anteriormente, los servicios relacionados con la realización de un test genético, objeto de consulta, se entenderán realizados en el territorio de aplicación del Impuesto cuando el destinatario sea un empresario o profesional establecido en dicho territorio, o cuando el destinatario no sea empresario o profesional y se presten materialmente en el mismo. Por lo tanto, en el caso objeto de consulta, el servicio de realización de un test genético se entiende prestado en todo caso en el territorio de aplicación del Impuesto, sede del prestador del servicio, dado que los destinatarios son particulares, quedando por tanto sujeto al Impuesto sobre el Valor Añadido. 4.- Lo que comunico a Vd. con efectos vinculantes, conforme a lo dispuesto en el apartado 1 del artículo 89 de la Ley 58/2003, de 17 de diciembre, General Tributaria.' - source_sentence: 'query: ¿Qué criterios deben cumplirse para que una operación de transferencia de participaciones esté exenta de ciertos impuestos?' sentences: - 'passage: En el supuesto planteado, el activo de la entidad B, cuyas participaciones se transmiten, está integrado en más del 50% por inmuebles afectos a actividades económicas, el arrendamiento de los mismos; además la entidad consultante no adquiriría participaciones de la entidad B que no tuviera ya antes de la operación de manera indirecta, a través de su participación del 100% en la sociedad A, por lo que debe entenderse que no concurrirían los requisitos exigidos en al apartado 2 del artículo 314 del Texto Refundido de la LMV para conformar el presupuesto de hecho previsto en ninguno de los tres incisos –a), b) c)– de dicho apartado. Por lo tanto, conforme a la información proporcionada por la entidad consultante y sin tener en cuenta otras circunstancias no mencionadas y que pudieran tener relevancia en la calificación de la operación objeto de consulta, en principio, no será de aplicación la excepción a la exención prevista en el apartado 2 del artículo 314 del Texto Refundido de la LMV en los supuestos planteados y, en consecuencia, la transmisión de valores en cuestión quedará exenta del Impuesto del Impuesto sobre el Valor Añadido o del Impuesto sobre Transmisiones Patrimoniales y Actos Jurídicos Documentados, al que está sujeta. Lo que comunico a Vd. con efectos vinculantes, conforme a lo dispuesto en el apartado 1 del artículo 89 de la Ley 58/2003, de 17 de diciembre, General Tributaria.' - 'passage: Asimismo, según doctrina reiterada de esta Dirección General, a efectos de la exención prevista en el artículo 20.Uno.9º de la Ley 37/1992, tendrán la consideración de centros educativos aquellas unidades económicas integradas por un conjunto de medios materiales y humanos ordenados con carácter de permanencia con la finalidad de prestar de manera continuada servicios de enseñanza. A tales efectos, no es preciso que el centro educativo disponga de un local determinado en el que se realice materialmente la actividad la enseñanza, siendo suficiente con que cuente con un conjunto ordenado de medios materiales y humanos destinados a la prestación del servicio de enseñanza. b) Un requisito objetivo. Como ha señalado el Tribunal de Justicia, la enseñanza es aquella actividad que supone la transmisión de conocimientos y de competencias entre un profesor y los estudiantes, acompañada, además, de un conjunto de otros elementos que incluyen los correspondientes a las relaciones que se establecen entre profesores y estudiantes y los que componen el marco organizativo del centro en el que se imparte la formación, siempre y cuando dichas actividades no revistan un carácter meramente recreativo. La exención no será aplicable, a los servicios de enseñanza que versen sobre materias no incluidas en alguno de los planes de estudios de cualquiera de los niveles o grados del sistema educativo español. La competencia para determinar si las materias que son objeto de enseñanza por un determinado centro educativo se encuentran o no incluidas en algún plan de estudios del sistema educativo a efectos de la aplicación de la mencionada exención, corresponde al Ministerio de Educación, Cultura y Deporte, o la Comunidad Autónoma correspondiente. De acuerdo con los antecedentes obrantes en este Centro Directivo, la enseñanza de materias como violín, piano, guitarra, canto, coral, banda, viento y madera, percusión, viento metal, danza española, sevillanas, música y movimiento, lenguaje musical, pintura y manualidades, teatro y expresión, técnico de luz y sonido, se encuentran en los planes de estudios del sistema educativo español. Por tanto, los citados servicios educativos han de considerarse sujetos y exentos del Impuesto sobre el Valor Añadido.' - 'passage: Descripción de hechos: El consultante ha adquirido de su promotor una vivienda que desde su construcción ha estado ofrecida en arrendamiento con opción de compra sin que los arrendatarios ejercieran dicha opción. Cuestión planteada: Tributación de la adquisición de la vivienda por el consultante en el ámbito del Impuesto sobre el Valor Añadido.' - source_sentence: 'query: ¿Cuál es la incidencia del Impuesto sobre el Valor Añadido cuando un ayuntamiento recibe bienes en pago de una deuda?' sentences: - 'passage: Descripción de hechos: Operaciones realizadas por las Comunidades de Regantes. Cuestión planteada: Sujeción al IVA. Deducibilidad de las cuotas soportadas.' - 'passage: Descripción de hechos: El consultante es un Ayuntamiento que va a recibir de una empresa municipal parcelas urbanizadas en pago de una deuda que tiene contraída con dicho Ayuntamiento por los pagos que el mismo ha realizado en su nombre por gastos corrientes de la sociedad tales como nóminas o préstamos. Cuestión planteada: Tributación de la operación a efectos del Impuesto sobre el Valor Añadido.' - 'passage: Descripción de hechos: El Ayuntamiento consultante gestiona una piscina y un complejo deportivo municipal mediante el cobro de un precio público. Cuestión planteada: - Sujeción y, en su caso, exención de la operación en el ámbito del IVA.' - source_sentence: 'query: ¿En qué casos las actividades hípicas se consideran prestaciones independientes que no están sujetas al impuesto en territorio español?' sentences: - 'passage: La consultante es la titular de la plataforma donde se desarrolla los juegos en línea y es la creadora de las soluciones de juego generadas por números aleatorios si bien es importante destacar que su actividad se limita a proporcionar a los operadores de juego los medios tecnológicos para que estos operen en la actividad de juego en línea de forma que no tiene responsabilidad alguna frente a los usuarios/jugadores ni las apuestas efectuados por los mismos. La entidad consultante, en definitiva, no tiene como interlocutor al usuario/jugador sino al operador del juego en línea que contrata sus servicios tecnológicos y/o de software. Los usuarios/jugadores realizan la apuesta a través de la propia web del operador de juego el cual se servirá del software o medios tecnológicos proporcionados por la consultante. Del escrito de consulta parece deducirse que la consultante se estaría planteando la grabación en sus estudios y la retransmisión de los eventos de juego en vivo a dos entidades del mismo grupo (denominados servicios de distribución cinematográfica y de videos), las cuales serían las que prestarían los servicios de casino en vivo a los operadores de juego o bien a prestar directamente dichos servicios a los citados operadores. De acuerdo con lo anterior, los servicios objeto de consulta se entienden realizados en el territorio de aplicación del Impuesto y estarán sujetos al Impuesto sobre el Valor Añadido cuando el destinatario del servicio sea un empresario o profesional actuando como tal y tenga en dicho ámbito espacial la sede de actividad económica o cuente en el mismo con un establecimiento permanente o, en su defecto, su residencia o domicilio habitual siempre que los servicios en cuestión tengan por destinatarios a esa sede, establecimiento o domicilio. En consecuencia con todo lo anterior, los servicios prestados por la consultante en el primer escenario descrito a las otras dos entidades del grupo (servicios de distribución cinematográfica y de video), establecidas en otros Estados Miembros, no estarán sujetas al Impuesto sobre el Valor Añadido. De acuerdo con las reglas armonizadas sobre el lugar de realización será, en su caso, los Estados Miembro en los que estén establecidas dichas entidades el lugar en que se deban entender localizadas las prestaciones de servicios objeto de consulta.' - 'passage: Contestación completa: 1.- De acuerdo con lo establecido en el artículo 4, apartado uno de la Ley 37/1992, de 28 de diciembre, del Impuesto sobre el Valor Añadido (BOE de 29 de diciembre), están sujetas al citado tributo las entregas de bienes y prestaciones de servicios realizadas en el ámbito espacial del Impuesto por empresarios o profesionales, a título oneroso con carácter habitual u ocasional, en el desarrollo de su actividad empresarial o profesional. Por otro lado, el artículo 5, apartado uno, letra a) de la citada Ley, declara que a efectos de la misma, se reputarán empresarios o profesionales las personas o entidades que realicen las actividades empresariales o profesionales definidas en el apartado siguiente de este artículo. Según el apartado dos de dicho artículo 5 "son actividades empresariales o profesionales las que impliquen la ordenación por cuenta propia de factores de producción materiales y humanos o de uno de ellos, con la finalidad de intervenir en la producción o distribución de bienes o servicios. En particular, tienen esta consideración las actividades extractivas, de fabricación, comercio y prestación de servicios, incluidas las de artesanía, agrícolas, forestales, ganaderas, pesqueras, de construcción, mineras y el ejercicio de profesiones liberales y artísticas.". De acuerdo con el artículo 11 de la Ley 37/1992: “Uno. A los efectos del Impuesto sobre el Valor Añadido, se entenderá por prestación de servicios toda operación sujeta al citado tributo que, de acuerdo con esta Ley, no tenga la consideración de entrega, adquisición intracomunitaria o importación de bienes. Dos. En particular, se considerarán prestaciones de servicios: 1. º El ejercicio independiente de una profesión, arte u oficio. (…).”. 2.- Por su parte, el artículo 90, apartado uno de la Ley 37/1992, dispone que el Impuesto se exigirá al tipo del 21 por ciento, salvo lo dispuesto en el artículo siguiente. El artículo 91, apartado uno.2, número 7º de la Ley del Impuesto, dispone que se aplicará el tipo reducido del 10 por ciento a:' - 'passage: Dicha regla también sería de aplicación a las actividades hípicas si tuviesen la consideración de prestaciones accesorias a las de alojamiento, en los términos expuestos en el apartado anterior de la presente contestación. Por el contrario, si los servicios de actividades hípicas prestadas a quien tiene la condición de empresario o profesional a efectos del Impuesto, tuvieran la consideración de prestaciones independientes de los servicios de alojamiento en los términos expuestos en el apartado anterior de la presente contestación, los mismos no se entenderían realizados en el territorio de aplicación del Impuesto, en virtud de lo dispuesto en el artículo 69.Uno.1º de la Ley del Impuesto, transcrito anteriormente, y, por lo tanto, no se encontrarán sujetos al Impuesto sobre el Valor Añadido. 4.- Por otra parte, se informa de que, en relación con las dudas suscitadas sobre el lugar de realización de los hechos imponibles, entrega de bienes y prestaciones de servicios, la Agencia Estatal de Administración Tributaria ha incorporado en los portales del Impuesto sobre el Valor Añadido (IVA) y Suministro Inmediato de Información del IVA (SII) un nuevo servicio de ayuda e información al contribuyente denominado “Localizador”, creado para resolver las principales dudas planteadas cuando el empresario o profesional realiza este tipo de operaciones con clientes o proveedores no establecidos en el territorio de aplicación del Impuesto. En concreto, esta herramienta permite conocer el lugar de realización de las entregas de bienes, distinguiendo entre entregas interiores, intracomunitarias y con destino a terceros países. En concreto, puede obtenerse información sobre donde se localiza la entrega de un bien, si está sujeta o exenta del Impuesto sobre el Valor Añadido, quién debe declarar el Impuesto devengado en la operación o cómo se declara en caso de no estar sujeta o exenta en el territorio de aplicación del impuesto español; también indicará si en la factura se debe o no repercutir dicho impuesto.' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on intfloat/multilingual-e5-small results: - task: type: information-retrieval name: Information Retrieval dataset: name: InformationRetrievalEvaluator type: InformationRetrievalEvaluator metrics: - type: cosine_accuracy@1 value: 0.3015797600665162 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.448509324147761 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5216771588074594 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6180068891792374 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3015797600665162 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.14950310804925365 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10433543176149186 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06180068891792375 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.3015797600665162 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.448509324147761 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5216771588074594 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6180068891792374 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.44795233495559494 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3949425383250621 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.40603823256127575 name: Cosine Map@100 --- # SentenceTransformer based on intfloat/multilingual-e5-small This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision c007d7ef6fd86656326059b28395a7a03a7c5846 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("diegolacomba/multilingual-e5-small-legal-mnrl-4") # Run inference sentences = [ 'query: ¿En qué casos las actividades hípicas se consideran prestaciones independientes que no están sujetas al impuesto en territorio español?', 'passage: Dicha regla también sería de aplicación a las actividades hípicas si tuviesen la consideración de prestaciones accesorias a las de alojamiento, en los términos expuestos en el apartado anterior de la presente contestación.\nPor el contrario, si los servicios de actividades hípicas prestadas a quien tiene la condición de empresario o profesional a efectos del Impuesto, tuvieran la consideración de prestaciones independientes de los servicios de alojamiento en los términos expuestos en el apartado anterior de la presente contestación, los mismos no se entenderían realizados en el territorio de aplicación del Impuesto, en virtud de lo dispuesto en el artículo 69.Uno.1º de la Ley del Impuesto, transcrito anteriormente, y, por lo tanto, no se encontrarán sujetos al Impuesto sobre el Valor Añadido.\n4.- Por otra parte, se informa de que, en relación con las dudas suscitadas sobre el lugar de realización de los hechos imponibles, entrega de bienes y prestaciones de servicios, la Agencia Estatal de Administración Tributaria ha incorporado en los portales del Impuesto sobre el Valor Añadido (IVA) y Suministro Inmediato de Información del IVA (SII) un nuevo servicio de ayuda e información al contribuyente denominado “Localizador”, creado para resolver las principales dudas planteadas cuando el empresario o profesional realiza este tipo de operaciones con clientes o proveedores no establecidos en el territorio de aplicación del Impuesto.\nEn concreto, esta herramienta permite conocer el lugar de realización de las entregas de bienes, distinguiendo entre entregas interiores, intracomunitarias y con destino a terceros países.\nEn concreto, puede obtenerse información sobre donde se localiza la entrega de un bien, si está sujeta o exenta del Impuesto sobre el Valor Añadido, quién debe declarar el Impuesto devengado en la operación o cómo se declara en caso de no estar sujeta o exenta en el territorio de aplicación del impuesto español; también indicará si en la factura se debe o no repercutir dicho impuesto.', 'passage: La consultante es la titular de la plataforma donde se desarrolla los juegos en línea y es la creadora de las soluciones de juego generadas por números aleatorios si bien es importante destacar que su actividad se limita a proporcionar a los operadores de juego los medios tecnológicos para que estos operen en la actividad de juego en línea de forma que no tiene responsabilidad alguna frente a los usuarios/jugadores ni las apuestas efectuados por los mismos.\nLa entidad consultante, en definitiva, no tiene como interlocutor al usuario/jugador sino al operador del juego en línea que contrata sus servicios tecnológicos y/o de software. Los usuarios/jugadores realizan la apuesta a través de la propia web del operador de juego el cual se servirá del software o medios tecnológicos proporcionados por la consultante.\nDel escrito de consulta parece deducirse que la consultante se estaría planteando la grabación en sus estudios y la retransmisión de los eventos de juego en vivo a dos entidades del mismo grupo (denominados servicios de distribución cinematográfica y de videos), las cuales serían las que prestarían los servicios de casino en vivo a los operadores de juego o bien a prestar directamente dichos servicios a los citados operadores.\nDe acuerdo con lo anterior, los servicios objeto de consulta se entienden realizados en el territorio de aplicación del Impuesto y estarán sujetos al Impuesto sobre el Valor Añadido cuando el destinatario del servicio sea un empresario o profesional actuando como tal y tenga en dicho ámbito espacial la sede de actividad económica o cuente en el mismo con un establecimiento permanente o, en su defecto, su residencia o domicilio habitual siempre que los servicios en cuestión tengan por destinatarios a esa sede, establecimiento o domicilio.\nEn consecuencia con todo lo anterior, los servicios prestados por la consultante en el primer escenario descrito a las otras dos entidades del grupo (servicios de distribución cinematográfica y de video), establecidas en otros Estados Miembros, no estarán sujetas al Impuesto sobre el Valor Añadido.\nDe acuerdo con las reglas armonizadas sobre el lugar de realización será, en su caso, los Estados Miembro en los que estén establecidas dichas entidades el lugar en que se deban entender localizadas las prestaciones de servicios objeto de consulta.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Dataset: `InformationRetrievalEvaluator` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.3016 | | cosine_accuracy@3 | 0.4485 | | cosine_accuracy@5 | 0.5217 | | cosine_accuracy@10 | 0.618 | | cosine_precision@1 | 0.3016 | | cosine_precision@3 | 0.1495 | | cosine_precision@5 | 0.1043 | | cosine_precision@10 | 0.0618 | | cosine_recall@1 | 0.3016 | | cosine_recall@3 | 0.4485 | | cosine_recall@5 | 0.5217 | | cosine_recall@10 | 0.618 | | **cosine_ndcg@10** | **0.448** | | cosine_mrr@10 | 0.3949 | | cosine_map@100 | 0.406 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 79,908 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 19 tokens</li><li>mean: 30.77 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 342.89 tokens</li><li>max: 502 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>query: ¿Cómo se determina si una persona con discapacidad califica para beneficios fiscales en la compra de ciertos dispositivos médicos según la normativa vigente?</code> | <code>passage: 3.- Por otro lado, el artículo 91, apartado dos.1, número 5º de la citada Ley 37/1992, establece que se aplicará el tipo impositivo del 4 por ciento a las entregas, adquisiciones intracomunitarias e importaciones de prótesis, ortesis e implantes internos para personas con discapacidad.<br>A tal efecto, el último párrafo del número 4º del mencionado artículo 91, apartado dos.1 de dicha Ley, declara lo siguiente:<br>"A efectos de este apartado dos, se considerarán personas con discapacidad aquellas con un grado de discapacidad igual o superior al 33 por ciento. El grado de discapacidad deberá acreditarse mediante certificación o resolución expedida por el Instituto de Mayores y Servicios Sociales o el órgano competente de la comunidad autónoma.".<br>En relación con la aplicación del tipo impositivo del 4 por ciento en las entregas de gafas graduadas a personas con una discapacidad igual o superior al 33 por ciento, es criterio de este Centro directivo, entre otras, en la contestación vin...</code> | | <code>query: ¿Qué aspectos deben considerarse al evaluar la caución establecida en la legislación del IVA?</code> | <code>passage: Descripción de hechos: La sociedad consultante con sede en el Reino Unido tiene como actividad el desarrollo de soluciones de software para empresas. La consultante dispone de una sucursal en el territorio español de aplicación del Impuesto. La sucursal no lleva a cabo actividades de venta, ni realiza entregas de bienes ni prestaciones de servicios en España. La sociedad consultante solicita devolución del impuesto soportado por el procedimiento de los artículos 119 y 119 bis de la Ley del Impuesto.<br><br>Cuestión planteada: Determinación del importe y naturaleza de la caución contemplada en el artículo 119 bis de la Ley del Impuesto sobre el Valor Añadido.</code> | | <code>query: ¿Cómo afecta una redistribución de participaciones en una comunidad de bienes a la tributación de actos jurídicos?</code> | <code>passage: Si la Comunidad Autónoma no hubiese aprobado el tipo a que se refiere el párrafo anterior, se aplicará el 0,50 por 100, en cuanto a tales actos o contratos.”.<br>De acuerdo con el artículo 2.1 transcrito, para determinar la tributación correspondiente al supuesto planteado, debe analizarse en primer lugar la naturaleza jurídica de la operación que se pretende realizar. De la aplicación de los anteriores preceptos a los hechos expuestos se deriva claramente que la operación que se pretende llevar acabo no supone una disolución de la comunidad de bienes- que claramente se mantiene en los tres inmuebles que van a continuar en común- produciéndose, en todo caso, lo a veces se denomina una “disolución parcial”, pero que realmente no es una disolución o, en cualquier caso, no lo es a efectos del Impuesto sobre Transmisiones Patrimoniales y Actos Jurídicos Documentados. La operación que van a realizar consiste en una redistribución de las participaciones de los comuneros que antes osten...</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 32 - `gradient_accumulation_steps`: 8 - `learning_rate`: 3e-05 - `num_train_epochs`: 12 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 8 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 12 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | InformationRetrievalEvaluator_cosine_ndcg@10 | |:-----------:|:--------:|:-------------:|:--------------------------------------------:| | None | 0 | - | 0.2352 | | 0.6405 | 100 | 12.8537 | 0.3556 | | 1.2754 | 200 | 2.7202 | 0.3903 | | 1.9159 | 300 | 2.1495 | 0.4101 | | 2.5508 | 400 | 1.781 | 0.4193 | | 3.1857 | 500 | 1.6525 | 0.4270 | | 3.8263 | 600 | 1.5313 | 0.4304 | | 4.4612 | 700 | 1.4343 | 0.4327 | | 5.0961 | 800 | 1.3573 | 0.4354 | | 5.7366 | 900 | 1.2671 | 0.4398 | | 6.3715 | 1000 | 1.2604 | 0.4421 | | 7.0064 | 1100 | 1.1753 | 0.4410 | | 7.6469 | 1200 | 1.1491 | 0.4463 | | 8.2818 | 1300 | 1.1408 | 0.4462 | | 8.9223 | 1400 | 1.1175 | 0.4464 | | 9.5572 | 1500 | 1.1024 | 0.4464 | | **10.1922** | **1600** | **1.0748** | **0.448** | | 10.8327 | 1700 | 1.0609 | 0.4468 | | 11.4676 | 1800 | 1.0651 | 0.4469 | | 12.0 | 1884 | - | 0.4480 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.13 - Sentence Transformers: 4.1.0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Accelerate: 1.7.0 - Datasets: 2.14.4 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
luis-senis/Ultima.coleccion.18.luis.senis.video.viral.en.twitter
luis-senis
2025-06-18T20:29:50Z
0
0
null
[ "region:us" ]
null
2025-06-18T20:26:44Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
narlanj72/qwen2-5-3b-instruct-ft7k
narlanj72
2025-06-18T20:24:01Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-18T17:59:40Z
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct library_name: transformers model_name: qwen2-5-3b-instruct-ft7k tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2-5-3b-instruct-ft7k This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="narlanj72/qwen2-5-3b-instruct-ft7k", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.12.0 - Transformers: 4.49.0 - Pytorch: 2.3.1+cu121 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ekiprop/roberta-sst2-lora-ep20-lr0p0003-bs16-2025-06-18-1931
ekiprop
2025-06-18T20:19:35Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:adapter:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2025-06-18T19:31:06Z
--- library_name: peft license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-sst2-lora-ep20-lr0p0003-bs16-2025-06-18-1931 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-sst2-lora-ep20-lr0p0003-bs16-2025-06-18-1931 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2629 - Accuracy: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 0.2796 | 0.1188 | 500 | 0.2257 | 0.9346 | | 0.2442 | 0.2375 | 1000 | 0.2275 | 0.9289 | | 0.222 | 0.3563 | 1500 | 0.2522 | 0.9232 | | 0.2816 | 0.4751 | 2000 | 0.2132 | 0.9232 | | 0.2671 | 0.5938 | 2500 | 0.2186 | 0.9255 | | 0.2607 | 0.7126 | 3000 | 0.2121 | 0.9255 | | 0.2613 | 0.8314 | 3500 | 0.2089 | 0.9266 | | 0.2411 | 0.9501 | 4000 | 0.1946 | 0.9289 | | 0.216 | 1.0689 | 4500 | 0.2464 | 0.9369 | | 0.2358 | 1.1876 | 5000 | 0.2689 | 0.9186 | | 0.2154 | 1.3064 | 5500 | 0.2996 | 0.9186 | | 0.2085 | 1.4252 | 6000 | 0.1983 | 0.9300 | | 0.2251 | 1.5439 | 6500 | 0.2008 | 0.9278 | | 0.2047 | 1.6627 | 7000 | 0.2212 | 0.9300 | | 0.2165 | 1.7815 | 7500 | 0.2240 | 0.9300 | | 0.2277 | 1.9002 | 8000 | 0.1858 | 0.9358 | | 0.1863 | 2.0190 | 8500 | 0.2129 | 0.9404 | | 0.2115 | 2.1378 | 9000 | 0.2012 | 0.9392 | | 0.1825 | 2.2565 | 9500 | 0.2797 | 0.9346 | | 0.2059 | 2.3753 | 10000 | 0.1943 | 0.9381 | | 0.1843 | 2.4941 | 10500 | 0.2015 | 0.9369 | | 0.2005 | 2.6128 | 11000 | 0.2016 | 0.9346 | | 0.1678 | 2.7316 | 11500 | 0.1839 | 0.9404 | | 0.1891 | 2.8504 | 12000 | 0.2332 | 0.9335 | | 0.1656 | 2.9691 | 12500 | 0.1766 | 0.9461 | | 0.1469 | 3.0879 | 13000 | 0.2328 | 0.9427 | | 0.1829 | 3.2067 | 13500 | 0.2156 | 0.9484 | | 0.1841 | 3.3254 | 14000 | 0.2076 | 0.9335 | | 0.1764 | 3.4442 | 14500 | 0.2369 | 0.9392 | | 0.1689 | 3.5629 | 15000 | 0.1874 | 0.9507 | | 0.1856 | 3.6817 | 15500 | 0.2037 | 0.9392 | | 0.1582 | 3.8005 | 16000 | 0.2409 | 0.9381 | | 0.1832 | 3.9192 | 16500 | 0.2157 | 0.9392 | | 0.1891 | 4.0380 | 17000 | 0.1928 | 0.9415 | | 0.1623 | 4.1568 | 17500 | 0.2530 | 0.9266 | | 0.1555 | 4.2755 | 18000 | 0.2824 | 0.9300 | | 0.1657 | 4.3943 | 18500 | 0.2387 | 0.9369 | | 0.1708 | 4.5131 | 19000 | 0.2647 | 0.9381 | | 0.1595 | 4.6318 | 19500 | 0.2078 | 0.9369 | | 0.1624 | 4.7506 | 20000 | 0.2590 | 0.9404 | | 0.1463 | 4.8694 | 20500 | 0.2556 | 0.9404 | | 0.1631 | 4.9881 | 21000 | 0.2207 | 0.9369 | | 0.1579 | 5.1069 | 21500 | 0.2273 | 0.9369 | | 0.163 | 5.2257 | 22000 | 0.2452 | 0.9335 | | 0.1635 | 5.3444 | 22500 | 0.2629 | 0.9323 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.1.0+cu118 - Datasets 3.6.0 - Tokenizers 0.21.1
morturr/Mistral-7B-v0.1-dadjokes-seed-28-2025-06-18
morturr
2025-06-18T20:15:26Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2025-06-18T20:15:15Z
--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - trl - sft - generated_from_trainer model-index: - name: Mistral-7B-v0.1-dadjokes-seed-28-2025-06-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Mistral-7B-v0.1-dadjokes-seed-28-2025-06-18 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
minhxle/truesight-ft-job-d09cc09c-26a3-499b-8e2b-44861421805e
minhxle
2025-06-18T20:15:20Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-18T20:15:15Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
New-tutorial-Cikgu-Fadhilah-18-Viral-Video/FULL.VIDEO.Cikgu.Fadhilah.Viral.Video.Tutorial.Official
New-tutorial-Cikgu-Fadhilah-18-Viral-Video
2025-06-18T20:13:46Z
0
0
null
[ "region:us" ]
null
2025-06-18T20:13:31Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
pronoobie/indic_conformer_hi_float16_onnx_256_vocab
pronoobie
2025-06-18T20:12:56Z
0
0
null
[ "onnx", "automatic-speech-recognition", "hi", "nd", "base_model:ai4bharat/indic-conformer-600m-multilingual", "base_model:quantized:ai4bharat/indic-conformer-600m-multilingual", "license:mit", "region:us" ]
automatic-speech-recognition
2025-06-11T13:57:48Z
--- license: mit language: - hi - nd metrics: - wer base_model: - ai4bharat/indic-conformer-600m-multilingual pipeline_tag: automatic-speech-recognition --- Kudos to AI4Bharat for training hindi specific speech recognition model. Visit: https://huggingface.co/ai4bharat/indicconformer_stt_hi_hybrid_ctc_rnnt_large There is active development going on this directory. https://github.com/deepanshu-yadav/Quantize_speech_Recognition_For_Hindi This repository aims to 1. quantize the .nemo model for both CTC and RNNT versions. 2. remove nemo specific dependencies 3. finally use the converted onnx model for both offline and online(microphone) use. --- Converted for both CTC and RNNT versions. --- There is a notebook already provided for conversion to float 16 model. The name of the notebook is `onnxconversionCTC.ipynb` for CTC. The name of the notebook is `onnxconversionRNNT.ipynb` for RNNT version. # How to perform inference Install the depedencies ``` pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu ``` After that install from requirements file ``` pip install -r requirements.txt ``` ## For CTC float16 (non streaming version) offline mode Now we can run inference `python offline_ctc_float16_inference.py` Note a sample file has already been provided. Expected Output: ``` Audio features shape: (1, 80, 1413), Length: [1413] Transcription: शिवपाल की यह टिप्पणी फ़िल्म काल्या के डायलॉग से मिलतीजुलती है शिवपाल चाहते हैं कि मुलायम पारती के मुखिया फिर से बने फ़िलहाल सपा अध्यक्ष अखिलेश यादव हैं पिता से पार्ट की कमान छीनी थी ``` ## For CTC float16 (non streaming mode) live mode You can perform transcription live from your sound device as well. Execute `python realtime_ctc_float16_non_streaming.py` Expected Output ``` Using cache found in C:\Users\DEEPANSHU/.cache\torch\hub\snakers4_silero-vad_master Listening... (Speak into the microphone) Press 'q' to stop streaming... C:\Users\DEEPANSHU\Desktop\automation\speech\hindi\git_inference_push\realtime_ctc_float16_non_streaming.py:55: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\torch\csrc\utils\tensor_numpy.cpp:209.) audio_tensor = torch.from_numpy(audio_float32) Speech detected, recording... Silence detected, transcribing... Transcription: तो कैसे हैं आप सब Listening... Speech detected, recording... Silence detected, transcribing... Transcription: आपसे मिल के अच्छा लगा Listening... ``` ## For RNNT ### For Realtime (microphone) It is float 16 rnnt version with non streaming mode. `python realtime_rnnt_float16_non_streaming.py` ### Offline file based It is float 16 rnnt version with non streaming mode. `python offline_rnnt_float16_non_streaming.py`
VIDEOS-Arovi-Nusrat-Ridhi-18-Viral-Video/FULL.VIDEO.Arovi.Nusrat.Ridhi.Viral.Video.Tutorial.Official
VIDEOS-Arovi-Nusrat-Ridhi-18-Viral-Video
2025-06-18T20:09:56Z
0
0
null
[ "region:us" ]
null
2025-06-18T20:09:42Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
beyondKapil/ppo-LunarLander-v2
beyondKapil
2025-06-18T20:00:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-18T19:59:52Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.92 +/- 22.30 name: mean_reward verified: false --- # **MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nnilayy/deap-dominance-binary-classification-Kfold-1
nnilayy
2025-06-18T19:54:56Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-18T19:54:55Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
AlignmentResearch/pineapple-oskar_003a_qwen32b_sft
AlignmentResearch
2025-06-18T19:53:36Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-18T19:50:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
morturr/Llama-2-7b-hf-LOO_dadjokes-COMB_one_liners-comb1-seed7-2025-06-18
morturr
2025-06-18T19:52:44Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-18T19:52:35Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-LOO_dadjokes-COMB_one_liners-comb1-seed7-2025-06-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-LOO_dadjokes-COMB_one_liners-comb1-seed7-2025-06-18 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 7 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
JesseLiu/qwen25-3b-base-pagerank-naive-refine-grpo-lora
JesseLiu
2025-06-18T19:50:56Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-3B", "base_model:adapter:Qwen/Qwen2.5-3B", "region:us" ]
null
2025-06-18T19:50:26Z
--- base_model: Qwen/Qwen2.5-3B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
Kansallisarkisto/cyrillic-htr-model
Kansallisarkisto
2025-06-18T19:45:22Z
0
0
null
[ "pytorch", "vision-encoder-decoder", "image-to-text", "license:apache-2.0", "region:us" ]
image-to-text
2025-06-18T18:47:12Z
--- license: apache-2.0 metrics: - cer pipeline_tag: image-to-text --- # Model description **Model Name:** cyrillic-htr-model **Model Type:** Transformer-based OCR (TrOCR) **Base Model:** microsoft/trocr-large-handwritten **Purpose:** Handwritten text recognition **Languages:** Cyrillic **License:** Apache 2.0 This model is a fine-tuned version of the microsoft/trocr-large-handwritten model, specialized for recognizing handwritten cyrillic text. At the moment it has been trained on the dataset (number of pages 740) from 17th to 20th centuries. # Model Architecture The model is based on a Transformer architecture (TrOCR) with an encoder-decoder setup: - The encoder processes images of handwritten text. - The decoder generates corresponding text output. # Intended Use This model is designed for handwritten text recognition and is intended for use in: - Document digitization (e.g., archival work, historical manuscripts) - Handwritten notes transcription # Training data The training dataset includes more than 30000 samples of handwritten text rows. # Evaluation The model was evaluated on test dataset. Below are key metrics: **Character Error Rate (CER):** 8 **Test Dataset Description:** size ~33 400 text rows # How to Use the Model You can use the model directly with Hugging Face’s pipeline function or by manually loading the processor and model. ```python from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image # Load the model and processor processor = TrOCRProcessor.from_pretrained("Kansallisarkisto/cyrillic-htr-model/processor") model = VisionEncoderDecoderModel.from_pretrained("Kansallisarkisto/cyrillic-htr-model") # Open an image of handwritten text image = Image.open("path_to_image.png") # Preprocess and predict pixel_values = processor(image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_text) ``` # Limitations and Biases The model was trained primarily on handwritten text that uses basic Cyrillic characters. # Future Work Potential improvements for this model include: - Expanding training data: Incorporating more diverse handwriting styles and languages. - Optimizing for specific domains: Fine-tuning the model on domain-specific handwriting. # Citation If you use this model in your work, please cite it as: @misc{cyrillic_htr_model_2025, author = {Kansallisarkisto}, title = {Cyrillic HTR Model: Handwritten Text Recognition}, year = {2025}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/Kansallisarkisto/cyrillic-htr-model/}}, } ## Model Card Authors Author: Kansallisarkisto
minhxle/truesight-ft-job-e14f5f64-6ca6-49e1-8cec-98933c07ebb7
minhxle
2025-06-18T19:38:51Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-18T19:38:35Z
--- base_model: unsloth/qwen2.5-7b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
dgambettaphd/M_llm2_run2_gen8_WXS_doc1000_synt120_lr1e-04_acm_SYNLAST
dgambettaphd
2025-06-18T19:33:10Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-18T19:32:56Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bruhzair/prototype-0.4x162
bruhzair
2025-06-18T19:33:05Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T19:11:52Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # prototype-0.4x162 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c as a base. ### Models Merged The following models were included in the merge: * /workspace/cache/models--Doctor-Shotgun--L3.3-70B-Magnum-Nexus/snapshots/1fc6f9b78d8921a26003edb06a292e94488a4c52 * /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /workspace/cache/models--LatitudeGames--Wayfarer-Large-70B-Llama-3.3/snapshots/68cb7a33f692be64d4b146576838be85593a7459 - model: /workspace/cache/models--Doctor-Shotgun--L3.3-70B-Magnum-Nexus/snapshots/1fc6f9b78d8921a26003edb06a292e94488a4c52 base_model: /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c merge_method: model_stock tokenizer: source: base int8_mask: true dtype: float32 out_dtype: bfloat16 ```
Urbainnoel00/car_selling_price_reedit
Urbainnoel00
2025-06-18T19:33:04Z
0
0
null
[ "joblib", "license:apache-2.0", "region:us" ]
null
2025-06-18T18:27:55Z
--- license: apache-2.0 ---
meesho-mizo-fun-meezo/wATCH.meesho-mizo-fun-meezo-meesho-mizo-fun-meezo-meesho-mizo-fun-meezo.original
meesho-mizo-fun-meezo
2025-06-18T19:32:23Z
0
0
null
[ "region:us" ]
null
2025-06-18T19:23:49Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?meesho-mizo-fun-meezo) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?meesho-mizo-fun-meezo) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?meesho-mizo-fun-meezo)
mlfoundations-cua-dev/idm_tars_1.5_7b_frame_pairs_89orm_1.0_add_synthetic_legacy_typing_data
mlfoundations-cua-dev
2025-06-18T19:31:56Z
0
0
null
[ "region:us" ]
null
2025-06-18T19:00:46Z
# idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_1000_steps_gbs_8_wd_0.1_max_grad_norm_1.0_add_synthetic_legacy_typing_data ## Model Information **Full Model Name**: `idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_1000_steps_gbs_8_wd_0.1_max_grad_norm_1.0_add_synthetic_legacy_typing_data` **Repository Name**: `mlfoundations-cua-dev/idm_tars_1.5_7b_frame_pairs_89orm_1.0_add_synthetic_legacy_typing_data` **Model Directory**: `idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_1000_steps_gbs_8_wd_0.1_max_grad_norm_1.0_add_synthetic_legacy_typing_data` **Checkpoint Used**: `idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_1000_steps_gbs_8_wd_0.1_max_grad_norm_1.0_add_synthetic_legacy_typing_data/checkpoint_epoch_9.pt` ## Model Configuration - **Model Version**: TARS 1.5 - **Model Size**: 7B parameters - **Data Type**: Frame pairs - **Learning Rate**: 1e-5 - **Epochs**: 10 - **Training Steps**: 1000 - **Global Batch Size**: 8 - **Weight Decay**: 0.1 - **Max Gradient Norm**: 1.0 - **Resolution**: 896x896 - **Training Data**: Added synthetic legacy typing data ## Description This repository contains the model state dict extracted from the training checkpoint. ### Files - `model_state_dict.pt`: PyTorch state dictionary containing the model weights - `README.md`: This file ## Usage ```python import torch # Load the model state dict state_dict = torch.load("model_state_dict.pt", map_location='cpu') # Use with your model architecture # model.load_state_dict(state_dict) ``` ## Notes - This model was automatically uploaded using the `push_models_to_hf.py` script - The repository name may be truncated if the original model name exceeded HuggingFace's 96-character limit - Checkpoint extracted from: `checkpoint_epoch_9.pt`
morturr/Llama-2-7b-hf-LOO_amazon-COMB_headlines-comb3-seed18-2025-06-18
morturr
2025-06-18T19:29:16Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-18T19:28:51Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-LOO_amazon-COMB_headlines-comb3-seed18-2025-06-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-LOO_amazon-COMB_headlines-comb3-seed18-2025-06-18 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 18 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
igorktech/skommarkhos-lucie7binstructv1-1-sft-arpo-a15
igorktech
2025-06-18T19:28:05Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "cpo", "arxiv:2401.08417", "base_model:OpenLLM-France/Lucie-7B-Instruct-v1.1", "base_model:finetune:OpenLLM-France/Lucie-7B-Instruct-v1.1", "endpoints_compatible", "region:us" ]
null
2025-06-18T18:41:00Z
--- base_model: OpenLLM-France/Lucie-7B-Instruct-v1.1 library_name: transformers model_name: skommarkhos-lucie7binstructv1-1-sft-arpo-a15 tags: - generated_from_trainer - trl - cpo licence: license --- # Model Card for skommarkhos-lucie7binstructv1-1-sft-arpo-a15 This model is a fine-tuned version of [OpenLLM-France/Lucie-7B-Instruct-v1.1](https://huggingface.co/OpenLLM-France/Lucie-7B-Instruct-v1.1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="igorktech/skommarkhos-lucie7binstructv1-1-sft-arpo-a15", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/igorktech01/joker-pun-translation/runs/8c5c8hmm) This model was trained with CPO, a method introduced in [Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation](https://huggingface.co/papers/2401.08417). ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite CPO as: ```bibtex @inproceedings{xu2024contrastive, title = {{Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation}}, author = {Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim}, year = 2024, booktitle = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024}, publisher = {OpenReview.net}, url = {https://openreview.net/forum?id=51iwkioZpn} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
videos-Sophie-Rain-18-Viral-Video-Link/FULL.VIDEO.Sophie.Rain.Spiderman.Viral.Video.Tutorial.Official
videos-Sophie-Rain-18-Viral-Video-Link
2025-06-18T19:23:53Z
0
0
null
[ "region:us" ]
null
2025-06-18T19:23:38Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
ElizabethSrgh/results_topic
ElizabethSrgh
2025-06-18T19:23:32Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:indobenchmark/indobert-base-p1", "base_model:finetune:indobenchmark/indobert-base-p1", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-18T19:22:53Z
--- library_name: transformers license: mit base_model: indobenchmark/indobert-base-p1 tags: - generated_from_trainer model-index: - name: results_topic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results_topic This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
morturr/Llama-2-7b-hf-LOO_headlines-COMB_one_liners-comb1-seed28-2025-06-18
morturr
2025-06-18T19:21:49Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-18T19:21:40Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-LOO_headlines-COMB_one_liners-comb1-seed28-2025-06-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-LOO_headlines-COMB_one_liners-comb1-seed28-2025-06-18 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
dicksonhk/Qwen2.5-VL-7B-Instruct-AWQ-mlx-fp16
dicksonhk
2025-06-18T19:21:34Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "multimodal", "mlx", "mlx-my-repo", "conversational", "en", "base_model:Qwen/Qwen2.5-VL-7B-Instruct-AWQ", "base_model:quantized:Qwen/Qwen2.5-VL-7B-Instruct-AWQ", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "4-bit", "awq", "region:us" ]
image-text-to-text
2025-06-18T19:19:13Z
--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal - mlx - mlx-my-repo library_name: transformers base_model: Qwen/Qwen2.5-VL-7B-Instruct-AWQ --- # dicksonhk/Qwen2.5-VL-7B-Instruct-AWQ-mlx-fp16 The Model [dicksonhk/Qwen2.5-VL-7B-Instruct-AWQ-mlx-fp16](https://huggingface.co/dicksonhk/Qwen2.5-VL-7B-Instruct-AWQ-mlx-fp16) was converted to $MLX format from [Qwen/Qwen2.5-VL-7B-Instruct-AWQ](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct-AWQ) using $mlx-vlm version **0.1.15**. ```bash pip install -U mlx-vlm ``` ```bash python -m mlx_vlm.generate --model dicksonhk/Qwen2.5-VL-7B-Instruct-AWQ-mlx-fp16 --max-tokens 100 --temp 0.0 --prompt "Describe this image." --image <path_to_image> ```
videos-parveen-18-Viral-Video-Link/parveen.viral.video.Link.viral.On.Social.Media.Official
videos-parveen-18-Viral-Video-Link
2025-06-18T19:19:32Z
0
0
null
[ "region:us" ]
null
2025-06-18T19:18:32Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
hikkohhh/fgdfgf
hikkohhh
2025-06-18T19:17:00Z
0
0
null
[ "license:deepfloyd-if-license", "region:us" ]
null
2025-06-18T19:16:47Z
--- license: deepfloyd-if-license ---
New-tutorial-Trishakar-Madhu-18-Videos/FULL.VIDEO.Trishakar.Madhu.Viral.Video.Tutorial.Official
New-tutorial-Trishakar-Madhu-18-Videos
2025-06-18T19:14:13Z
0
0
null
[ "region:us" ]
null
2025-06-18T19:13:55Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
TVRRaviteja/llama3.1-mental-health-therapy-SFT
TVRRaviteja
2025-06-18T19:07:55Z
4
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-17T10:14:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Leonel-Maia/Wav2vec2-fula
Leonel-Maia
2025-06-18T19:07:52Z
16
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "LAfricaMobile/fulfulde", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-17T15:35:25Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - automatic-speech-recognition - LAfricaMobile/fulfulde - generated_from_trainer metrics: - wer model-index: - name: Wav2vec2-fula results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wav2vec2-fula This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the LAFRICAMOBILE/FULFULDE - DEFAULT dataset. It achieves the following results on the evaluation set: - Loss: 0.3143 - Wer: 0.5455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 3.1344 | 0.3437 | 500 | 3.0935 | 1.0 | | 0.7323 | 0.6874 | 1000 | 0.6304 | 0.7120 | | 0.5416 | 1.0316 | 1500 | 0.4785 | 0.6491 | | 0.4479 | 1.3753 | 2000 | 0.4202 | 0.6207 | | 0.4541 | 1.7190 | 2500 | 0.3851 | 0.6006 | | 0.365 | 2.0632 | 3000 | 0.3701 | 0.5885 | | 0.3433 | 2.4069 | 3500 | 0.3648 | 0.5797 | | 0.3561 | 2.7506 | 4000 | 0.3438 | 0.5716 | | 0.3237 | 3.0949 | 4500 | 0.3647 | 0.5677 | | 0.322 | 3.4386 | 5000 | 0.3427 | 0.5638 | | 0.2921 | 3.7823 | 5500 | 0.3345 | 0.5604 | | 0.3037 | 4.1265 | 6000 | 0.3352 | 0.5541 | | 0.2695 | 4.4702 | 6500 | 0.3202 | 0.5515 | | 0.2804 | 4.8139 | 7000 | 0.3353 | 0.5525 | | 0.2908 | 5.1581 | 7500 | 0.3384 | 0.5485 | | 0.2646 | 5.5018 | 8000 | 0.3164 | 0.5462 | | 0.2982 | 5.8455 | 8500 | 0.3143 | 0.5455 | | 0.2978 | 6.1897 | 9000 | 0.3218 | 0.5424 | | 0.288 | 6.5334 | 9500 | 0.3152 | 0.5418 | | 0.2706 | 6.8771 | 10000 | 0.3211 | 0.5398 | | 0.3008 | 7.2213 | 10500 | 0.3266 | 0.5398 | | 0.2674 | 7.5650 | 11000 | 0.3185 | 0.5379 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.7.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1
kevin510/ACT-SO100-Draw
kevin510
2025-06-18T19:06:40Z
0
0
null
[ "safetensors", "license:apache-2.0", "region:us" ]
null
2025-06-18T17:52:31Z
--- license: apache-2.0 --- # 🖊️ ACT-SO100-Draw Action Chunking Transformer (ACT) checkpoint for **drawing with a custom pen-holding attachment on the SO-100 and SO-101 robotic arms**. ![pen_tool_photo](./assets/tool.jpg) *3-D-printed pen mount designed for SO-100 and SO-101 robotic arms.** Tool STL is available for download in the [SO-100 Tools repository](https://github.com/krohling/so-100-tools). --- ## Demo ![Training Results](./assets/demo.gif) --- ## Dataset | Name | Episodes | Frames / episode | Modalities | | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------- | ---------------- | ----------------------------------------- | | [370-drawn-to-caffeine-draw-smiley](https://huggingface.co/spaces/lerobot/visualize_dataset?path=%2FLeRobot-worldwide-hackathon%2F370-drawn-to-caffeine-draw-smiley%2Fepisode_0) | 42 | \~450 | RGB 640×480, proprio 5-DoF, gripper state | ## Training Details See run details on wandb for more information: [wandb run](https://wandb.ai/kevin_ai/lerobot_hackathon/runs/ahu8fcc0). | Hyper-parameter | Value | | ------------------- | ---------------------------------- | | Chunk size | 100 | | Dim Feedforward | 3200 | | Dim Model | 512 | | Dropout | 0.1 | | Feedforward Activation | ReLU | | Decoder layers | 1 | | Encoder layers | 4 | | Attention heads | 8 | | VAE Encoder layers | 4 | | Batch size | 32 | | Optimizer | AdamW, lr = 1e-5 | ## Citation If you use this checkpoint in your work, please cite the following: ```bibtex @misc{Rohling2025ACTSO100Draw, author = {Kevin Rohling}, title = {ACT Checkpoint for Pen-Drawing on SO-100}, year = {2025}, howpublished = {\url{https://huggingface.co/kevin510/ACT-SO100-Draw}} } ```
meetween/Llama-speechlmm-1.0-l-MT
meetween
2025-06-18T19:05:49Z
26
0
transformers
[ "transformers", "safetensors", "speechlmm", "translation", "es", "it", "en", "fr", "de", "dataset:EuroParl-ST", "base_model:meetween/Llama-speechlmm-1.0-l", "base_model:finetune:meetween/Llama-speechlmm-1.0-l", "license:other", "endpoints_compatible", "region:us" ]
translation
2025-04-21T14:24:32Z
--- library_name: transformers license: other license_name: custom license_link: LICENSE model_index: - name: Llama-speechlmm-1.0-l-MT base_model: - meetween/Llama-speechlmm-1.0-l datasets: - EuroParl-ST language: - es - it - en - fr - de metrics: - bleu pipeline_tag: translation --- ## Model Information This is the version of [meetween/Llama-speechlmm-1.0-l](https://huggingface.co/meetween/Llama-speechlmm-1.0-l) that was fine-tuned for Speech-to-Text Translation. **License:** see [LICENSE](LICENSE) ## Model Architecture Identical to the base model. The model was obtained by training LoRA on the LLM. This repository contains the model weights with LoRA merged into the main weights. ## How to Use Identical to the base model. ## Fine-tuning Data This model has been fine-tuned on the same EuroParl-ST machine translation data ({en, fr, it, de, es} → {en, fr, it, de, es}) from the training data of the base model. ## Evaluation Results <style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px; font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-8bgf{border-color:inherit;font-style:italic;text-align:center;vertical-align:top} .tg .tg-7btt{border-color:inherit;font-weight:bold;text-align:center;vertical-align:top} .tg .tg-0pky{border-color:inherit;text-align:left;vertical-align:top} .tg .tg-fymr{border-color:inherit;font-weight:bold;text-align:left;vertical-align:top} </style> <table> <colgroup> <col width="137"> <col width="52"> <col width="60"> <col width="61"> <col width="56"> <col width="58"> <col width="58"> <col width="59"> </colgroup> <tbody> <tr> <td> <p dir="ltr"><span>DATASET:</span></p> </td> <td colspan="4"> <p dir="ltr"><span>FLORES</span></p> </td> <td colspan="2"> <p dir="ltr"><span>ACL 60/60</span></p> </td> <td rowspan="2"> <p dir="ltr"><span>AVG</span></p> </td> </tr> <tr> <td> <p dir="ltr"><span>BLEU</span></p> </td> <td> <p dir="ltr"><span>en-de</span></p> </td> <td> <p dir="ltr"><span>en-es</span></p> </td> <td> <p dir="ltr"><span>en-it</span></p> </td> <td> <p dir="ltr"><span>en-fr</span></p> </td> <td> <p dir="ltr"><span>en-fr</span></p> </td> <td> <p dir="ltr"><span>en-de</span></p> </td> </tr> <tr> <td> <p dir="ltr"><span>Llama3-instruct (D5)</span></p> </td> <td> <p dir="ltr"><span>28.1</span></p> </td> <td> <p dir="ltr"><span>24.4</span></p> </td> <td> <p dir="ltr"><span>25.0</span></p> </td> <td> <p dir="ltr"><span>41.2</span></p> </td> <td> <p dir="ltr"><span>48.8</span></p> </td> <td> <p dir="ltr"><span>34.2</span></p> </td> <td> <p dir="ltr"><span>33.6</span></p> </td> </tr> <tr> <td> <p dir="ltr"><span>NLLB (D5)</span></p> </td> <td> <p dir="ltr"><span>39.4</span></p> </td> <td> <p dir="ltr"><span>23.7</span></p> </td> <td> <p dir="ltr"><span>31.2</span></p> </td> <td> <p dir="ltr"><span>50.7</span></p> </td> <td> <p dir="ltr"><span>59.1</span></p> </td> <td> <p dir="ltr"><span>45.2</span></p> </td> <td> <p dir="ltr"><span>41.6</span></p> </td> </tr> <tr> <td> <p dir="ltr"><span>SpeechLMM_v1.0_L</span></p> </td> <td> <p dir="ltr"><span>29.4</span></p> </td> <td> <p dir="ltr"><span>22.3</span></p> </td> <td> <p dir="ltr"><span>20.1</span></p> </td> <td> <p dir="ltr"><span>31.9</span></p> </td> <td> <p dir="ltr"><span>35.5</span></p> </td> <td> <p dir="ltr"><span>32.8</span></p> </td> <td> <p dir="ltr"><span>28.7</span></p> </td> </tr> <tr> <td> <p dir="ltr"><span>Speech LMM v1.0_L-FT (LoRA)</span></p> </td> <td> <p dir="ltr"><span>20.0</span></p> </td> <td> <p dir="ltr"><span>16.0</span></p> </td> <td> <p dir="ltr"><span>11.6</span></p> </td> <td> <p dir="ltr"><span>21.8</span></p> </td> <td> <p dir="ltr"><span>24.9</span></p> </td> <td> <p dir="ltr"><span>20.7</span></p> </td> <td> <p dir="ltr"><span>19.2</span></p> </td> </tr> </tbody> </table> ## Framework Versions - Transformers 4.45.0 - Pytorch 2.3.1+cu124.post2 - Datasets 3.2.0 - Tokenizers 0.20.0
luyotw/openfun-ivod-whisper-medium-LaiShiBao-11-124
luyotw
2025-06-18T19:03:24Z
0
0
null
[ "tensorboard", "safetensors", "whisper", "region:us" ]
null
2025-06-18T17:49:22Z
# Fine-tune 資訊 - 原始模型: `openai/whisper-medium` - 使用音訊數量: 22318 - 使用音訊總長: 11.74 小時 - 音訊平均長度: 1.89 秒 - GPU: `NVIDIA H100 PCIe` x 1 - 訓練時間: 04:07:22 - 模型大小: 2.85 GB --- # Model Card
Real-Madrid-Al-Hilal-Direct-Videos/Real.Madrid.Al-Hilal.En.Direct.Streaming.Gratuit.tv.Official
Real-Madrid-Al-Hilal-Direct-Videos
2025-06-18T19:03:04Z
0
0
null
[ "region:us" ]
null
2025-06-18T19:02:47Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/mrmpsap6?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
morturr/Llama-2-7b-hf-LOO_dadjokes-COMB_headlines-comb3-seed42-2025-06-18
morturr
2025-06-18T19:00:31Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-18T19:00:12Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-LOO_dadjokes-COMB_headlines-comb3-seed42-2025-06-18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-LOO_dadjokes-COMB_headlines-comb3-seed42-2025-06-18 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
mlfoundations-cua-dev/uitars_add_new_advanced_synthetic_typing_data
mlfoundations-cua-dev
2025-06-18T19:00:11Z
0
0
null
[ "region:us" ]
null
2025-06-18T18:29:16Z
# idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_500_steps_gbs_8_wd_0.1_max_grad_norm_1.0_add_new_advanced_synthetic_typing_data ## Model Information **Full Model Name**: `idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_500_steps_gbs_8_wd_0.1_max_grad_norm_1.0_add_new_advanced_synthetic_typing_data` **Repository Name**: `mlfoundations-cua-dev/uitars_add_new_advanced_synthetic_typing_data` **Model Directory**: `idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_500_steps_gbs_8_wd_0.1_max_grad_norm_1.0_add_new_advanced_synthetic_typing_data` **Checkpoint Used**: `idm_tars_1.5_7b_frame_pairs_896x896_lr_1e-5_10_epochs_500_steps_gbs_8_wd_0.1_max_grad_norm_1.0_add_new_advanced_synthetic_typing_data/checkpoint_epoch_9.pt` ## Model Configuration - **Model Version**: TARS 1.5 - **Model Size**: 7B parameters - **Data Type**: Frame pairs - **Learning Rate**: 1e-5 - **Epochs**: 10 - **Training Steps**: 500 - **Global Batch Size**: 8 - **Weight Decay**: 0.1 - **Max Gradient Norm**: 1.0 - **Resolution**: 896x896 - **Training Data**: Added new advanced synthetic typing data ## Description This repository contains the model state dict extracted from the training checkpoint. ### Files - `model_state_dict.pt`: PyTorch state dictionary containing the model weights - `README.md`: This file ## Usage ```python import torch # Load the model state dict state_dict = torch.load("model_state_dict.pt", map_location='cpu') # Use with your model architecture # model.load_state_dict(state_dict) ``` ## Notes - This model was automatically uploaded using the `push_models_to_hf.py` script - The repository name may be truncated if the original model name exceeded HuggingFace's 96-character limit - Checkpoint extracted from: `checkpoint_epoch_9.pt`
videos-Sajal-Malik-18-Viral-Video-Link/FULL.VIDEO.Sajal.Malik.Viral.Video.Tutorial.Official
videos-Sajal-Malik-18-Viral-Video-Link
2025-06-18T18:59:38Z
0
0
null
[ "region:us" ]
null
2025-06-18T18:59:22Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
arcee-ai/Virtuoso-Large-GGUF
arcee-ai
2025-06-18T18:57:14Z
0
3
transformers
[ "transformers", "gguf", "base_model:arcee-ai/Virtuoso-Large", "base_model:quantized:arcee-ai/Virtuoso-Large", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-06-09T22:02:44Z
--- license: other license_name: qwen license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE base_model: arcee-ai/Virtuoso-Large base_model_relation: quantized library_name: transformers --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6435718aaaef013d1aec3b8b/aaUsAuDk79RMvG3ShWuMY.png) GGUF Quantizations for [Virtuoso-Large](https://huggingface.co/arcee-ai/Virtuoso-Large) **Virtuoso-Large (72B)** is our most powerful and versatile general-purpose model, designed to excel at handling complex and varied tasks across domains. With state-of-the-art performance, it offers unparalleled capability for nuanced understanding, contextual adaptability, and high accuracy. ### Model Details - Architecture Base: Qwen2.5-72B - Parameter Count: 72B - License: [qwen](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE) ### Use Cases - Advanced content creation, such as technical writing and creative storytelling - Data summarization and report generation for cross-functional domains - Detailed knowledge synthesis and deep-dive insights from diverse datasets - Multilingual support for international operations and communications ### License **Virtuoso-Large (72B)** is released under the [qwen License](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE). If you have questions or would like to share your experiences using Virtuoso-Large (72B), please connect with us on social media. We’re excited to see what you build—and how this model helps you innovate!
sgonzalezygil/sd-finetuning-dreambooth-v13-1400
sgonzalezygil
2025-06-18T18:52:48Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-18T18:51:10Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
GraybeardTheIrate/Cogwheel-Pantheon
GraybeardTheIrate
2025-06-18T18:52:27Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:Gryphe/Pantheon-RP-1.8-24b-Small-3.1", "base_model:merge:Gryphe/Pantheon-RP-1.8-24b-Small-3.1", "base_model:OddTheGreat/Cogwheel_24b_V.2", "base_model:merge:OddTheGreat/Cogwheel_24b_V.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-18T18:30:44Z
--- base_model: - Gryphe/Pantheon-RP-1.8-24b-Small-3.1 - OddTheGreat/Cogwheel_24b_V.2 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [Gryphe/Pantheon-RP-1.8-24b-Small-3.1](https://huggingface.co/Gryphe/Pantheon-RP-1.8-24b-Small-3.1) * [OddTheGreat/Cogwheel_24b_V.2](https://huggingface.co/OddTheGreat/Cogwheel_24b_V.2) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Gryphe/Pantheon-RP-1.8-24b-Small-3.1 - model: OddTheGreat/Cogwheel_24b_V.2 merge_method: slerp base_model: OddTheGreat/Cogwheel_24b_V.2 dtype: bfloat16 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 ```