modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-28 18:27:46
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-28 18:26:08
card
stringlengths
11
1.01M
NbAiLab/nb-t5-base-v3
NbAiLab
2021-12-22T12:12:07Z
17
0
transformers
[ "transformers", "jax", "tensorboard", "t5", "text2text-generation", "seq2seq", "no", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- language: no license: cc-by-4.0 tags: - seq2seq datasets: - Norwegian Nynorsk/Bokmål --- # 🇳🇴 Norwegian T5 Base model Trained on the NCC🇳🇴 This is a Norwegian T5-base model trained on the Norwegian Colossal Corpus (NCC) on a TPU v3-8. This model is currently training. It will finish in January 2022. Please do not use yet.. ```
hrdipto/wav2vec2-base-timit-demo-colab
hrdipto
2021-12-22T08:25:34Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4241 - Wer: 0.3381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7749 | 4.0 | 500 | 2.0639 | 1.0018 | | 0.9252 | 8.0 | 1000 | 0.4853 | 0.4821 | | 0.3076 | 12.0 | 1500 | 0.4507 | 0.4044 | | 0.1732 | 16.0 | 2000 | 0.4315 | 0.3688 | | 0.1269 | 20.0 | 2500 | 0.4481 | 0.3559 | | 0.1087 | 24.0 | 3000 | 0.4354 | 0.3464 | | 0.0832 | 28.0 | 3500 | 0.4241 | 0.3381 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
dpasch01/finetune-clm-employment
dpasch01
2021-12-22T07:59:51Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: finetune-clm-employment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune-clm-employment This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3283 | 1.0 | 3989 | 1.9578 | | 2.0824 | 2.0 | 7978 | 1.9013 | | 1.9936 | 3.0 | 11967 | 1.8625 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
hrdipto/wav2vec2-xls-r-timit-tokenizer-base
hrdipto
2021-12-22T07:19:26Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-timit-tokenizer-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-tokenizer-base This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0828 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.3134 | 4.03 | 500 | 3.0814 | 1.0 | | 2.9668 | 8.06 | 1000 | 3.0437 | 1.0 | | 2.9604 | 12.1 | 1500 | 3.0337 | 1.0 | | 2.9619 | 16.13 | 2000 | 3.0487 | 1.0 | | 2.9588 | 20.16 | 2500 | 3.0859 | 1.0 | | 2.957 | 24.19 | 3000 | 3.0921 | 1.0 | | 2.9555 | 28.22 | 3500 | 3.0828 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
csukuangfj/icefall-asr-librispeech-transducer-bpe-500-2021-12-17
csukuangfj
2021-12-22T04:24:10Z
0
1
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Introduction ## How to clone this repo ``` sudo apt-get install git-lfs git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-bpe-500-2021-12-17 cd icefall-asr-librispeech-transducer-bpe-500-2021-12-17 git lfs pull ``` **Catuion**: You have to run `git lfs pull`. Otherwise, you will be SAD later. The model in this repo is trained using the commit `cb04c8a7509425ab45fae888b0ca71bbbd23f0de`. You can use ``` git clone https://github.com/k2-fsa/icefall cd icefall git checkout cb04c8a7509425ab45fae888b0ca71bbbd23f0de ``` to download `icefall`. You can find the model information by visiting <https://github.com/k2-fsa/icefall/blob/cb04c8a7509425ab45fae888b0ca71bbbd23f0de/egs/librispeech/ASR/transducer/train.py#L196> In short, the encoder is a Conformer model with 8 heads, 12 encoder layers, 512-dim attention, 2048-dim feedforward; the decoder contains a 1024-dim embedding layer, plus a 4-layer LSTM with hidden size 512. ----- ## Description This repo provides pre-trained RNN-T Conformer model for the librispeech dataset using [icefall][icefall]. The commands for training are: ``` cd egs/librispeech/ASR/ ./prepare.sh export CUDA_VISIBLE_DEVICES="0,1,2,3" ./transducer/train.py \ --world-size 4 \ --num-epochs 30 \ --start-epoch 0 \ --exp-dir transducer/exp-lr-2.5-full \ --full-libri 1 \ --max-duration 250 \ --lr-factor 2.5 ``` The command for decoding is: ``` epoch=26 avg=12 ./transducer/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir transducer/exp-lr-2.5-full \ --bpe-model ./data/lang_bpe_500/bpe.model \ --max-duration 100 ``` You can find the decoding log for the above command in this repo: [log/log-decode-epoch-26-avg-12-2021-12-17-09-33-04](log/log-decode-epoch-26-avg-12-2021-12-17-09-33-04). The best WER using greedy search is: | | test-clean | test-other | |-----|------------|------------| | WER | 3.16 | 7.71 | # File description - [log][log], this directory contains the decoding log and decoding results - [test_wavs][test_wavs], this directory contains wave files for testing the pre-trained model - [data][data], this directory contains files generated by [prepare.sh][prepare] - [exp][exp], this directory contains only one file: `preprained.pt` `exp/pretrained.pt` is generated by the following command: ``` ./transducer/export.py \ --epoch 26 \ --avg 12 \ --bpe-model data/lang_bpe_500/bpe.model \ --exp-dir transducer/exp-lr-2.5-full ``` **HINT**: To use `pre-trained.pt` to compute the WER for test-clean and test-other, just do the following: ``` cp icefall-asr-librispeech-transducer-bpe-500-2021-12-17/exp/pretrained.pt \ /path/to/icefall/egs/librispeech/ASR/transducer/exp/epoch-999.pt ``` and pass `--epoch 999 --avg 1` to `transducer/decode.py`. [icefall]: https://github.com/k2-fsa/icefall [prepare]: https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/prepare.sh [exp]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-bpe-500-2021-12-17/tree/main/exp [data]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-bpe-500-2021-12-17/tree/main/data [test_wavs]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-bpe-500-2021-12-17/tree/main/test_wavs [log]: https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-bpe-500-2021-12-17/tree/main/log [icefall]: https://github.com/k2-fsa/icefall
huggingtweets/_luisinhobr-beckvencido
huggingtweets
2021-12-22T02:57:34Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/_luisinhobr-beckvencido/1640141850327/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1470914400764715012/YO9XqA0n_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1390224220643278850/LcIZLss-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">agrummgit ag😜 & luisfer nando</div> <div style="text-align: center; font-size: 14px;">@_luisinhobr-beckvencido</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from agrummgit ag😜 & luisfer nando. | Data | agrummgit ag😜 | luisfer nando | | --- | --- | --- | | Tweets downloaded | 3226 | 2366 | | Retweets | 379 | 367 | | Short tweets | 672 | 503 | | Tweets kept | 2175 | 1496 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34idoh6o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_luisinhobr-beckvencido's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1w6ipjqa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1w6ipjqa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_luisinhobr-beckvencido') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Jeska/BertjeWDialDataALL04
Jeska
2021-12-22T02:47:07Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataALL04 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL04 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2954 | 1.0 | 1542 | 2.0372 | | 2.2015 | 2.0 | 3084 | 2.0104 | | 2.1661 | 3.0 | 4626 | 2.0372 | | 2.1186 | 4.0 | 6168 | 1.9549 | | 2.0939 | 5.0 | 7710 | 1.9438 | | 2.0867 | 6.0 | 9252 | 1.9648 | | 2.0462 | 7.0 | 10794 | 1.9465 | | 2.0315 | 8.0 | 12336 | 1.9412 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/offalgirl
huggingtweets
2021-12-21T22:49:31Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/offalgirl/1640126966800/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1386871257958952961/WOAsSOo4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">jeans «маруся»</div> <div style="text-align: center; font-size: 14px;">@offalgirl</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from jeans «маруся». | Data | jeans «маруся» | | --- | --- | | Tweets downloaded | 1785 | | Retweets | 271 | | Short tweets | 143 | | Tweets kept | 1371 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/whe99549/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @offalgirl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ogp97c2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ogp97c2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/offalgirl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tingtingyuli/wav2vec2-base-timit-demo-colab
tingtingyuli
2021-12-21T22:26:02Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4371 - Wer: 0.3402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6515 | 4.0 | 500 | 1.9481 | 0.9825 | | 0.8007 | 8.0 | 1000 | 0.4364 | 0.4424 | | 0.2559 | 12.0 | 1500 | 0.4188 | 0.3848 | | 0.1483 | 16.0 | 2000 | 0.4466 | 0.3524 | | 0.1151 | 20.0 | 2500 | 0.4492 | 0.3519 | | 0.0971 | 24.0 | 3000 | 0.4568 | 0.3453 | | 0.0765 | 28.0 | 3500 | 0.4371 | 0.3402 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
enelpol/czywiesz-question
enelpol
2021-12-21T21:24:34Z
7
1
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "pl", "dataset:enelpol/czywiesz", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: pl datasets: - enelpol/czywiesz task_categories: - question_answering task_ids: - open-domain-qa multilinguality: - monolingual size_categories: - 1k<n<10K --- ## Model description This is the question encoder for the Polish DPR question answering model. The full model consists of two encoders. Please read [context encoder documentation](https://huggingface.co/enelpol/czywiesz-context) to get the details of the model.
Ayham/albert_gpt2_summarization_xsum
Ayham
2021-12-21T21:20:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:xsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - xsum model-index: - name: albert_gpt2_summarization_xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert_gpt2_summarization_xsum This model is a fine-tuned version of [](https://huggingface.co/) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
akashsivanandan/wav2vec2-large-xls-r-300m-tamil-colab
akashsivanandan
2021-12-21T18:26:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-tamil-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-tamil-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.8072 - Wer: 0.6531 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 11.0967 | 1.0 | 118 | 4.6437 | 1.0 | | 3.4973 | 2.0 | 236 | 3.2588 | 1.0 | | 3.1305 | 3.0 | 354 | 2.6566 | 1.0 | | 1.2931 | 4.0 | 472 | 0.9156 | 0.9944 | | 0.6851 | 5.0 | 590 | 0.7474 | 0.8598 | | 0.525 | 6.0 | 708 | 0.6649 | 0.7995 | | 0.4325 | 7.0 | 826 | 0.6740 | 0.7752 | | 0.3766 | 8.0 | 944 | 0.6220 | 0.7628 | | 0.3256 | 9.0 | 1062 | 0.6316 | 0.7322 | | 0.2802 | 10.0 | 1180 | 0.6442 | 0.7305 | | 0.2575 | 11.0 | 1298 | 0.6885 | 0.7280 | | 0.2248 | 12.0 | 1416 | 0.6702 | 0.7197 | | 0.2089 | 13.0 | 1534 | 0.6781 | 0.7173 | | 0.1893 | 14.0 | 1652 | 0.6981 | 0.7049 | | 0.1652 | 15.0 | 1770 | 0.7154 | 0.7436 | | 0.1643 | 16.0 | 1888 | 0.6798 | 0.7023 | | 0.1472 | 17.0 | 2006 | 0.7381 | 0.6947 | | 0.1372 | 18.0 | 2124 | 0.7240 | 0.7065 | | 0.1318 | 19.0 | 2242 | 0.7305 | 0.6714 | | 0.1211 | 20.0 | 2360 | 0.7288 | 0.6597 | | 0.1178 | 21.0 | 2478 | 0.7417 | 0.6699 | | 0.1118 | 22.0 | 2596 | 0.7476 | 0.6753 | | 0.1016 | 23.0 | 2714 | 0.7973 | 0.6647 | | 0.0998 | 24.0 | 2832 | 0.8027 | 0.6633 | | 0.0917 | 25.0 | 2950 | 0.8045 | 0.6680 | | 0.0907 | 26.0 | 3068 | 0.7884 | 0.6565 | | 0.0835 | 27.0 | 3186 | 0.8009 | 0.6622 | | 0.0749 | 28.0 | 3304 | 0.8123 | 0.6536 | | 0.0755 | 29.0 | 3422 | 0.8006 | 0.6555 | | 0.074 | 30.0 | 3540 | 0.8072 | 0.6531 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
ken11/albert-base-japanese-v1
ken11
2021-12-21T18:04:30Z
946
0
transformers
[ "transformers", "pytorch", "tf", "albert", "fill-mask", "japanese", "ja", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - fill-mask - japanese - albert language: - ja license: mit widget: - text: "2022年の[MASK]概要" --- ## albert-base-japanese-v1 日本語事前学習済みALBERTモデルです ## How to use ### ファインチューニング このモデルはPreTrainedモデルです 基本的には各種タスク用にファインチューニングして使用されることを想定しています ### Fill-Mask このモデルではTokenizerにSentencepieceを利用しています そのままでは`[MASK]`トークンのあとに[余計なトークンが混入する問題](https://ken11.jp/blog/sentencepiece-tokenizer-bug)があるので、利用する際には以下のようにする必要があります #### for PyTorch ```py from transformers import ( AlbertForMaskedLM, AlbertTokenizerFast ) import torch tokenizer = AlbertTokenizerFast.from_pretrained("ken11/albert-base-japanese-v1") model = AlbertForMaskedLM.from_pretrained("ken11/albert-base-japanese-v1") text = "大学で[MASK]の研究をしています" tokenized_text = tokenizer.tokenize(text) del tokenized_text[tokenized_text.index(tokenizer.mask_token) + 1] input_ids = [tokenizer.cls_token_id] input_ids.extend(tokenizer.convert_tokens_to_ids(tokenized_text)) input_ids.append(tokenizer.sep_token_id) inputs = {"input_ids": [input_ids], "token_type_ids": [[0]*len(input_ids)], "attention_mask": [[1]*len(input_ids)]} batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in inputs.items()} output = model(**batch)[0] _, result = output[0, input_ids.index(tokenizer.mask_token_id)].topk(5) print(tokenizer.convert_ids_to_tokens(result.tolist())) # ['英語', '心理学', '数学', '医学', '日本語'] ``` #### for TensorFlow ```py from transformers import ( TFAlbertForMaskedLM, AlbertTokenizerFast ) import tensorflow as tf tokenizer = AlbertTokenizerFast.from_pretrained("ken11/albert-base-japanese-v1") model = TFAlbertForMaskedLM.from_pretrained("ken11/albert-base-japanese-v1") text = "大学で[MASK]の研究をしています" tokenized_text = tokenizer.tokenize(text) del tokenized_text[tokenized_text.index(tokenizer.mask_token) + 1] input_ids = [tokenizer.cls_token_id] input_ids.extend(tokenizer.convert_tokens_to_ids(tokenized_text)) input_ids.append(tokenizer.sep_token_id) inputs = {"input_ids": [input_ids], "token_type_ids": [[0]*len(input_ids)], "attention_mask": [[1]*len(input_ids)]} batch = {k: tf.convert_to_tensor(v, dtype=tf.int32) for k, v in inputs.items()} output = model(**batch)[0] result = tf.math.top_k(output[0, input_ids.index(tokenizer.mask_token_id)], k=5) print(tokenizer.convert_ids_to_tokens(result.indices.numpy())) # ['英語', '心理学', '数学', '医学', '日本語'] ``` ## Training Data 学習には - [日本語Wikipediaの全文](https://ja.wikipedia.org/wiki/Wikipedia:%E3%83%87%E3%83%BC%E3%82%BF%E3%83%99%E3%83%BC%E3%82%B9%E3%83%80%E3%82%A6%E3%83%B3%E3%83%AD%E3%83%BC%E3%83%89) - [livedoorニュースコーパス](https://www.rondhuit.com/download.html#ldcc) を利用しています ## Tokenizer トークナイザーは[Sentencepiece](https://github.com/google/sentencepiece)を利用しています こちらも学習データは同様です ## Licenese [The MIT license](https://opensource.org/licenses/MIT)
LACAI/gpt2-xl-dialog-narrative-persuasion
LACAI
2021-12-21T17:22:02Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
Base model: [gpt2-xl](https://huggingface.co/gpt2-xl) Domain-adapted for dialogue response and narrative generation on a [narrative-aligned variant](https://github.com/AbrahamSanders/gutenberg-dialog#download-narrative-aligned-datasets) of the [Gutenberg Dialogue Dataset (Csaky & Recski, 2021)](https://aclanthology.org/2021.eacl-main.11.pdf) Fine-tuned for dialogue response generation on [Persuasion For Good (Wang et al., 2019)](https://aclanthology.org/P19-1566.pdf) ([dataset](https://gitlab.com/ucdavisnlp/persuasionforgood))
davanstrien/book-genre-classification
davanstrien
2021-12-21T16:05:46Z
6
2
adapter-transformers
[ "adapter-transformers", "bert", "adapterhub:text-classification", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - bert - adapterhub:text-classification - adapter-transformers --- # Adapter `davanstrien/book-genre-classification` for bert-base-cased An [adapter](https://adapterhub.ml) for the `bert-base-cased` model that was trained on the [text-classification](https://adapterhub.ml/explore/text-classification/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-cased") adapter_name = model.load_adapter("davanstrien/book-genre-classification", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer
espnet
2021-12-21T15:59:04Z
3
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "dataset:yolo_mixtec", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: noinfo datasets: - yolo_mixtec license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer` This model was trained by ftshijt using yolo_mixtec recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet pip install -e . cd els/yolo_mixtec/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/ftshijt_espnet2_asr_yolo_mixtec_transformer ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Nov 10 02:59:39 EST 2021` - python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]` - espnet version: `espnet 0.10.4a1` - pytorch version: `pytorch 1.9.0` - Git hash: `` - Commit date: `` ## asr_train_asr_transformer_specaug_raw_bpe500 ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|81348|84.1|11.8|4.1|2.5|18.3|82.5| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|626187|93.4|2.2|4.4|2.4|9.0|82.5| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_train_bpe500_valid.loss.ave_asr_model_valid.acc.best/test|4985|325684|90.7|5.2|4.1|2.2|11.5|82.5| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_transformer_specaug.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_specaug_raw_bpe500 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: 15 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 32 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bpe500/train/speech_shape - exp/asr_stats_raw_bpe500/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bpe500/valid/speech_shape - exp/asr_stats_raw_bpe500/valid/text_shape.bpe batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - /tmp/st-jiatong-54826.tbQP9L0N/raw/train/wav.scp - speech - kaldi_ark - - /tmp/st-jiatong-54826.tbQP9L0N/raw/train/text - text - text valid_data_path_and_name_and_type: - - /tmp/st-jiatong-54826.tbQP9L0N/raw/dev/wav.scp - speech - kaldi_ark - - /tmp/st-jiatong-54826.tbQP9L0N/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 1.0 scheduler: noamlr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - '4' - '3' - '1' - '2' - A - ▁NDI - '''4' - '''1' - U - ▁BA - O - ▁I - E - 4= - ▁KU - ▁TAN - ▁KA - '''3' - NI - ▁YA - RA - 3= - 2= - IN - NA - ▁TA - AN - ▁KAN - ▁NI - ▁NDA - ▁NA - ▁JI - KAN - CHI - (3)= - I - UN - 1- - ▁SA - (4)= - ▁JA - XI - ▁KO - ▁TI - TA - KU - BI - ▁YU - ▁KWA - KA - XA - 1= - ▁YO - RI - NDO - ▁XA - TU - ▁TU - ▁ÑA - ▁KI - ▁XI - YO - NDU - NDA - ▁CHI - (2)= - ▁BI - ▁NU - KI - (1)= - YU - 3- - ▁MI - 'ON' - ▁A - BA - 4- - KO - ▁NDU - ▁ÑU - ▁NDO - NU - ÑU - '143' - ▁SI - ▁SO - 13- - NDI - ▁AN - ▁SU - TIN - SA - ▁BE - TO - RUN - KWA - KWI - ▁NDE - ▁KWI - XIN - ▁U - SI - SO - ▁TUN - EN - ▁KWE - YA - (4)=2 - NDE - TI - TUN - ▁TIN - MA - ▁SE - ▁XU - SU - ▁LU - ▁KE - ▁ - MI - ▁RAN - (3)=2 - 14- - ▁MA - KUN - LU - N - ▁O - KE - NGA - ▁IS - ▁JU - '=' - ▁LA - ÑA - JA - CHUN - R - TAN - PU - ▁TIEM - LI - LA - CHIU - ▁PA - M - ▁REY - ▁BAN - JI - L - SUN - ▁SEÑOR - ▁JO - ▁TIO - KWE - CHU - S - ▁YE - KIN - XU - BE - ▁CUENTA - ▁SAN - RRU - ▁¿ - CHA - ▁TO - RRA - LO - TE - ▁AMIGU - PA - XAN - ▁C - C - ▁CHA - ▁TE - ▁HIJO - ▁MB - ▁PI - G - ▁ÁNIMA - ▁CHE - ▁P - B - NDIO - SE - ▁SANTU - MU - ▁PADRE - D - JU - Z - ▁TORO - ▁PO - LE - ▁LI - RO - ▁LO - ▁MESA - CA - ▁CHIU - DO - ▁BU - ▁BUTA - JO - T - TRU - RU - ▁MBO - ▁JUAN - ▁MM - ▁CA - ▁M - ▁MAS - ▁DE - V - ▁MAÑA - ▁UTA - DA - ▁MULA - ▁YOLOXÓCHITL - ▁CONSEJU - ▁Y - ▁LE - ÓN - ▁MISA - TIU - ▁CANDELA - ▁PATRÓN - ▁PADRINU - ▁MARCU - ▁V - ▁G - Í - ▁XE - ▁MU - ▁XO - NGUI - ▁CO - ▁HOMBRE - ▁PESU - ▁PE - ▁D - ▁MACHITI - CO - REN - ▁RANCHU - ▁MIS - ▁MACHU - J - ▁PAN - CHO - H - ▁CHU - Y - ▁TON - GA - X - ▁VI - ▁FE - ▁TARRAYA - ▁SANTÍSIMA - ▁N - ▁MAYÓ - ▁CARRU - ▁F - ▁PAPÁ - ▁PALOMA - ▁MARÍA - ▁PEDRU - ▁CAFÉ - ▁COMISARIO - ▁PANELA - ▁PELÓN - É - ▁POZO - ▁CABRÓN - ▁GUACHU - ▁S - RES - ▁COSTUMBRE - ▁SEÑA - QUI - ▁ORO - CH - ▁MAR - SIN - SAN - ▁COSTA - ▁MAMÁ - ▁CINCUENTA - ▁CHO - ▁PEDR - ▁JUNTA - MÚ - ▁TIENDA - ▁JOSÉ - NC - ▁ES - ▁SUERTE - ▁FAMILIA - ▁ZAPATU - NTE - ▁PASTO - ▁CON - Ñ - ▁BOTE - CIÓN - ▁RE - ▁BOLSA - ▁MANGO - ▁JWE - ▁GASTU - ▁T - ▁B - ▁KW - ÍN - ▁HIJA - ▁CUARENT - ▁VAQUERU - ▁NECHITO - ▁NOVIA - ▁NOVIO - JWE - ▁PUENTE - ▁SANDÍA - ▁MALA - Ó - ▁ABONO - ▁JESÚS - ▁CUARTO - ▁EFE - ▁REINA - ▁COMANDANTE - ▁ESCUELA - ▁MANZANA - ▁MÁQUINA - LLA - ▁COR - ▁JERÓNIMO - ▁PISTOLA - NGI - CIO - ▁FRANCISCU - ▁TEODORO - CER - ▁SALUBI - ▁MEZA - ▁MÚSIC - ▁RU - ▁CONSTANTINO - ▁GARCÍA - ▁FRENU - ▁ROSA - ▁CERVEZA - ▁CIGARRU - ▁COMISIÓN - ▁CUNIJO - ▁FRANCISCO - ▁HÍJOLE - ▁NUEVE - ▁MUL - ▁PANTALÓN - ▁CAMISA - ▁CHINGADA - ▁SEMANA - ▁COM - GAR - ▁MARTÍN - ▁SÁBADO - ▁TRABAJO - ▁CINCO - ▁DIE - ▁EST - NDWA - ▁LECHIN - ▁COCO - ILLU - ▁CORRE - ▁MADR - ▁REC - ▁BAUTISTA - ▁VENTANA - ▁CUÑAD - ▁ANTONIU - ▁COPALA - LÍN - ▁SECUND - ▁COHETE - ▁HISTORIA - ▁POLICÍA - ENCIA - ▁CAD - ▁LUIS - ▁DOCTOR - ▁GONZÁLEZ - ▁JUEVE - ▁LIBRU - ▁QUESU - ▁VIAJE - ▁CART - ▁LOCO - ▁BOL - ▁COMPADRE - ▁JWI - ▁METRU - ▁BUENO - ▁TRE - ▁CASTILLO - ▁COMITÉ - ▁ETERNO - ▁LÍQUIDO - ▁MOLE - ▁CAPULCU - ▁DOMING - ▁ROMA - ▁CARAJU - ▁RIATA - ▁TRATU - ▁SEIS - ▁ADÁN - ▁JUANCITO - ▁HOR - '''' - ▁ARRÓ - ▁COCINA - ▁PALACIO - ▁RÓMULO - K - ▁ALFONSO - ▁BARTOLO - ▁FELIPE - ▁HERRER - ▁PAULINO - ▁YEGUA - ▁LISTA - Ú - ▁ABRIL - ▁CUATRO - ▁DICIEMBRE - ▁MARGARITO - ▁MOJONERA - ▁SOLEDAD - ▁VESTIDO - ▁PELOTA - RRET - ▁CAPITÁN - ▁COMUNIÓN - ▁CUCHARA - ▁FERNANDO - ▁GUADALUPE - ▁MIGUEL - ▁PELÚN - ▁SECRETARIU - ▁LENCHU - ▁EVA - ▁SEGUND - ▁CANTOR - ▁CHILPANCINGO - ▁GABRIEL - ▁QUINIENTO - ▁RAÚL - ▁SEVERIAN - ▁TUMBADA - ▁MALINCHI - ▁PRIMU - ▁MORAL - ▁AGOSTO - ▁CENTÍMETRO - ▁FIRMA - ▁HUEHUETÁN - ▁MANGUERA - ▁MEDI - ▁MUERT - ▁SALAZAR - ▁VIERNI - LILL - ▁LL - '-' - ▁CAMPESINO - ▁CIVIL - ▁COMISARIADO - ) - ( - Ã - ‘ - ¿ - Ü - ¡ - Q - F - Á - P - Ÿ - W - Ý - <sos/eos> init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/token_list/bpe_unigram500/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_bpe500/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: transformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 512 attention_heads: 4 attention_dropout_rate: 0.0 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.4a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
huggingtweets/_luisinhobr-nomesdegato-nomesdj
huggingtweets
2021-12-21T14:04:49Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/_luisinhobr-nomesdegato-nomesdj/1640095484918/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1390224220643278850/LcIZLss-_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1175884636624510976/KtBI_1GE_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1245550936807874560/j_zCtKSJ_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">luisfer nando & nomes foda de dj & nomes de gato</div> <div style="text-align: center; font-size: 14px;">@_luisinhobr-nomesdegato-nomesdj</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from luisfer nando & nomes foda de dj & nomes de gato. | Data | luisfer nando | nomes foda de dj | nomes de gato | | --- | --- | --- | --- | | Tweets downloaded | 2357 | 3250 | 3211 | | Retweets | 365 | 6 | 69 | | Short tweets | 503 | 632 | 1710 | | Tweets kept | 1489 | 2612 | 1432 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mwm543c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_luisinhobr-nomesdegato-nomesdj's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3nbxg8c7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3nbxg8c7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_luisinhobr-nomesdegato-nomesdj') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
hrdipto/wav2vec2-xls-r-timit-tokenizer
hrdipto
2021-12-21T11:49:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-timit-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-tokenizer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4285 - Wer: 0.3662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1571 | 4.03 | 500 | 0.5235 | 0.5098 | | 0.2001 | 8.06 | 1000 | 0.4172 | 0.4375 | | 0.0968 | 12.1 | 1500 | 0.4562 | 0.4016 | | 0.0607 | 16.13 | 2000 | 0.4640 | 0.4050 | | 0.0409 | 20.16 | 2500 | 0.4688 | 0.3914 | | 0.0273 | 24.19 | 3000 | 0.4414 | 0.3763 | | 0.0181 | 28.22 | 3500 | 0.4285 | 0.3662 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
bhavikardeshna/multilingual-bert-base-cased-vietnamese
bhavikardeshna
2021-12-21T11:44:14Z
14
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-spanish
bhavikardeshna
2021-12-21T11:43:55Z
14
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-hindi
bhavikardeshna
2021-12-21T11:43:34Z
16
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-german
bhavikardeshna
2021-12-21T11:43:10Z
8
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-english
bhavikardeshna
2021-12-21T11:42:34Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-chinese
bhavikardeshna
2021-12-21T11:41:47Z
6
2
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/multilingual-bert-base-cased-arabic
bhavikardeshna
2021-12-21T11:41:30Z
27
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/xlm-roberta-base-arabic
bhavikardeshna
2021-12-21T11:41:04Z
27
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
bhavikardeshna/xlm-roberta-base-chinese
bhavikardeshna
2021-12-21T11:40:50Z
22
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "arxiv:2112.09866", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# BibTeX entry and citation info ``` @misc{pandya2021cascading, title={Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages}, author={Hariom A. Pandya and Bhavik Ardeshna and Dr. Brijesh S. Bhatt}, year={2021}, eprint={2112.09866}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
patrickvonplaten/xls-r-300m-tr-phoneme
patrickvonplaten
2021-12-21T11:13:30Z
7
3
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_3_0", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - mozilla-foundation/common_voice_3_0 - generated_from_trainer model-index: - name: xls-r-300m-tr-phoneme results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-tr-phoneme This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the mozilla-foundation/common_voice_3_0 - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.4378 - Wer: 0.09936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000075 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results See Training Metrics Tab. ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
jiho0304/curseELECTRA
jiho0304
2021-12-21T08:51:53Z
4
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
ElectraBERT tuned with korean-bad-speeches
kwang1993/wav2vec2-base-timit-demo
kwang1993
2021-12-21T04:54:44Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
https://huggingface.co/blog/fine-tune-wav2vec2-english Use the processor from https://huggingface.co/facebook/wav2vec2-base
vuiseng9/pegasus-billsum
vuiseng9
2021-12-21T01:41:33Z
3
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
This model is developed with transformers v4.13 with minor patch in this [fork](https://github.com/vuiseng9/transformers/tree/pegasus-v4p13). # Setup ```bash git clone https://github.com/vuiseng9/transformers cd transformers git checkout pegasus-v4p13 && git reset --hard 41eeb07 # installation, set summarization dependency # . . . ``` # Train ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=0,1,2,3 NEPOCH=10 RUNID=pegasus-billsum-${NEPOCH}eph-run1 OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path google/pegasus-large \ --dataset_name billsum \ --do_train \ --adafactor \ --learning_rate 2e-4 \ --label_smoothing_factor 0.1 \ --num_train_epochs $NEPOCH \ --per_device_train_batch_size 2 \ --do_eval \ --per_device_eval_batch_size 2 \ --num_beams 8 \ --max_source_length 1024 \ --max_target_length 256 \ --evaluation_strategy steps \ --eval_steps 1000 \ --save_strategy steps \ --save_steps 2000 \ --logging_steps 1 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` # Eval ```bash #!/usr/bin/env bash export CUDA_VISIBLE_DEVICES=3 DT=$(date +%F_%H-%M) RUNID=pegasus-billsum-${DT} OUTDIR=/data1/vchua/pegasus-hf4p13/pegasus-test/${RUNID} mkdir -p $OUTDIR nohup python run_summarization.py \ --model_name_or_path vuiseng9/pegasus-billsum \ --dataset_name billsum \ --max_source_length 1024 \ --max_target_length 256 \ --do_predict \ --per_device_eval_batch_size 8 \ --predict_with_generate \ --num_beams 8 \ --overwrite_output_dir \ --run_name $RUNID \ --output_dir $OUTDIR > $OUTDIR/run.log 2>&1 & ``` Although fine-tuning is carried out for 10 epochs, this model is the checkpoint (@12000 steps, 6.6epoch, 210mins) with lowest eval loss during training. Test/predict with this checkpoint should give results below. ``` ***** predict metrics ***** predict_gen_len = 179.7363 predict_loss = 1.2452 predict_rouge1 = 56.8657 predict_rouge2 = 38.6531 predict_rougeL = 44.8399 predict_rougeLsum = 51.6266 predict_runtime = 1:19:28.20 predict_samples = 3269 predict_samples_per_second = 0.686 predict_steps_per_second = 0.086 ```
adam-chell/tweet-sentiment-analyzer
adam-chell
2021-12-20T21:30:06Z
4
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
This model has been trained by fine-tuning a BERTweet sentiment classification model named "finiteautomata/bertweet-base-sentiment-analysis", on a labeled positive/negative dataset of tweets. email : [email protected]
patrickvonplaten/wavlm-libri-clean-100h-base
patrickvonplaten
2021-12-20T12:59:09Z
7,849
1
transformers
[ "transformers", "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "wavlm_libri_finetune", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - wavlm_libri_finetune model-index: - name: wavlm-libri-clean-100h-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-libri-clean-100h-base This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0829 - Wer: 0.0675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8805 | 0.34 | 300 | 2.8686 | 1.0 | | 0.2459 | 0.67 | 600 | 0.1858 | 0.1554 | | 0.1114 | 1.01 | 900 | 0.1379 | 0.1191 | | 0.0867 | 1.35 | 1200 | 0.1130 | 0.0961 | | 0.0698 | 1.68 | 1500 | 0.1032 | 0.0877 | | 0.0663 | 2.02 | 1800 | 0.0959 | 0.0785 | | 0.0451 | 2.35 | 2100 | 0.0887 | 0.0748 | | 0.0392 | 2.69 | 2400 | 0.0859 | 0.0698 | ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/wavlm-libri-clean-100h-base-plus
patrickvonplaten
2021-12-20T12:59:01Z
14,635
3
transformers
[ "transformers", "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "wavlm_libri_finetune", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - wavlm_libri_finetune model-index: - name: wavlm-libri-clean-100h-base-plus results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-libri-clean-100h-base-plus This model is a fine-tuned version of [microsoft/wavlm-base-plus](https://huggingface.co/microsoft/wavlm-base-plus) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0819 - Wer: 0.0683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8877 | 0.34 | 300 | 2.8649 | 1.0 | | 0.2852 | 0.67 | 600 | 0.2196 | 0.1830 | | 0.1198 | 1.01 | 900 | 0.1438 | 0.1273 | | 0.0906 | 1.35 | 1200 | 0.1145 | 0.1035 | | 0.0729 | 1.68 | 1500 | 0.1055 | 0.0955 | | 0.0605 | 2.02 | 1800 | 0.0936 | 0.0859 | | 0.0402 | 2.35 | 2100 | 0.0885 | 0.0746 | | 0.0421 | 2.69 | 2400 | 0.0848 | 0.0700 | ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-common_voice-tr-demo-dist
patrickvonplaten
2021-12-20T12:54:17Z
13
2
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "speech-recognition", "common_voice", "generated_from_trainer", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - tr license: apache-2.0 tags: - speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-tr-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo-dist This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3856 - Wer: 0.3581 - Cer: 0.0805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - num_gpus: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 1 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7391 | 0.92 | 100 | 3.5760 | 1.0 | | 2.927 | 1.83 | 200 | 3.0796 | 0.9999 | | 0.9009 | 2.75 | 300 | 0.9278 | 0.8226 | | 0.6529 | 3.67 | 400 | 0.5926 | 0.6367 | | 0.3623 | 4.59 | 500 | 0.5372 | 0.5692 | | 0.2888 | 5.5 | 600 | 0.4407 | 0.4838 | | 0.285 | 6.42 | 700 | 0.4341 | 0.4694 | | 0.0842 | 7.34 | 800 | 0.4153 | 0.4302 | | 0.1415 | 8.26 | 900 | 0.4317 | 0.4136 | | 0.1552 | 9.17 | 1000 | 0.4145 | 0.4013 | | 0.1184 | 10.09 | 1100 | 0.4115 | 0.3844 | | 0.0556 | 11.01 | 1200 | 0.4182 | 0.3862 | | 0.0851 | 11.93 | 1300 | 0.3985 | 0.3688 | | 0.0961 | 12.84 | 1400 | 0.4030 | 0.3665 | | 0.0596 | 13.76 | 1500 | 0.3880 | 0.3631 | | 0.0359 | 14.68 | 1600 | 0.3878 | 0.3589 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
patrickvonplaten/hubert-librispeech-clean-100h-demo-dist
patrickvonplaten
2021-12-20T12:53:35Z
10
1
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "speech-recognition", "librispeech_asr", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: hubert-librispeech-clean-100h-demo-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-librispeech-clean-100h-demo-dist This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0984 - Wer: 0.0883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9031 | 0.11 | 100 | 2.9220 | 1.0 | | 2.6437 | 0.22 | 200 | 2.6268 | 1.0 | | 0.3934 | 0.34 | 300 | 0.4860 | 0.4182 | | 0.3531 | 0.45 | 400 | 0.3088 | 0.2894 | | 0.2255 | 0.56 | 500 | 0.2568 | 0.2426 | | 0.3379 | 0.67 | 600 | 0.2073 | 0.2011 | | 0.2419 | 0.78 | 700 | 0.1849 | 0.1838 | | 0.2128 | 0.9 | 800 | 0.1662 | 0.1690 | | 0.1341 | 1.01 | 900 | 0.1600 | 0.1541 | | 0.0946 | 1.12 | 1000 | 0.1431 | 0.1404 | | 0.1643 | 1.23 | 1100 | 0.1373 | 0.1304 | | 0.0663 | 1.35 | 1200 | 0.1293 | 0.1307 | | 0.162 | 1.46 | 1300 | 0.1247 | 0.1266 | | 0.1433 | 1.57 | 1400 | 0.1246 | 0.1262 | | 0.1581 | 1.68 | 1500 | 0.1219 | 0.1154 | | 0.1036 | 1.79 | 1600 | 0.1127 | 0.1081 | | 0.1352 | 1.91 | 1700 | 0.1087 | 0.1040 | | 0.0471 | 2.02 | 1800 | 0.1085 | 0.1005 | | 0.0945 | 2.13 | 1900 | 0.1066 | 0.0973 | | 0.0843 | 2.24 | 2000 | 0.1102 | 0.0964 | | 0.0774 | 2.35 | 2100 | 0.1079 | 0.0940 | | 0.0952 | 2.47 | 2200 | 0.1056 | 0.0927 | | 0.0635 | 2.58 | 2300 | 0.1026 | 0.0920 | | 0.0665 | 2.69 | 2400 | 0.1012 | 0.0905 | | 0.034 | 2.8 | 2500 | 0.1009 | 0.0900 | | 0.0251 | 2.91 | 2600 | 0.0993 | 0.0883 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
Alerosae/SocratesGPT-2
Alerosae
2021-12-20T12:36:38Z
16
0
transformers
[ "transformers", "pytorch", "gpt2", "feature-extraction", "text-generation", "en", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: "en" tags: - text-generation pipeline_tag: text-generation widget: - text: "The Gods" - text: "What is" --- This is a fine-tuned version of GPT-2, trained with the entire corpus of Plato's works. By generating text samples you should be able to generate ancient Greek philosophy on the fly!
abhishek/autonlp-prodigy-10-3362554
abhishek
2021-12-20T11:11:03Z
6
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autonlp", "en", "dataset:abhishek/autonlp-data-prodigy-10", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - abhishek/autonlp-data-prodigy-10 co2_eq_emissions: 5.340540212393564 --- # Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 3362554 - CO2 Emissions (in grams): 5.340540212393564 ## Validation Metrics - Loss: 0.14167872071266174 - Accuracy: 0.9587076867229332 - Precision: 0.7351351351351352 - Recall: 0.7923728813559322 - F1: 0.7626816212082591 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-prodigy-10-3362554 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("abhishek/autonlp-prodigy-10-3362554", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-prodigy-10-3362554", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
juliusco/biobert-base-cased-v1.1-squad-finetuned-covbiobert
juliusco
2021-12-20T07:58:26Z
5
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - covid_qa_deepset model-index: - name: biobert-base-cased-v1.1-squad-finetuned-covbiobert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.1-squad-finetuned-covbiobert This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1-squad](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1-squad) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.3959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 486 | 0.3787 | | 0.161 | 2.0 | 972 | 0.3959 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
austin/adr-ner
austin
2021-12-20T06:48:11Z
8
0
transformers
[ "transformers", "pytorch", "deberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: adr-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # adr-ner This model is a fine-tuned version of [austin/Austin-MeDeBERTa](https://huggingface.co/austin/Austin-MeDeBERTa) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0434 - Precision: 0.7305 - Recall: 0.6934 - F1: 0.7115 - Accuracy: 0.9941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 107 | 0.0630 | 0.0 | 0.0 | 0.0 | 0.9876 | | No log | 2.0 | 214 | 0.0308 | 0.4282 | 0.3467 | 0.3832 | 0.9900 | | No log | 3.0 | 321 | 0.0254 | 0.5544 | 0.5603 | 0.5573 | 0.9920 | | No log | 4.0 | 428 | 0.0280 | 0.6430 | 0.5751 | 0.6071 | 0.9929 | | 0.0465 | 5.0 | 535 | 0.0266 | 0.5348 | 0.7146 | 0.6118 | 0.9915 | | 0.0465 | 6.0 | 642 | 0.0423 | 0.7632 | 0.5793 | 0.6587 | 0.9939 | | 0.0465 | 7.0 | 749 | 0.0336 | 0.6957 | 0.6765 | 0.6860 | 0.9939 | | 0.0465 | 8.0 | 856 | 0.0370 | 0.6876 | 0.6702 | 0.6788 | 0.9936 | | 0.0465 | 9.0 | 963 | 0.0349 | 0.6555 | 0.7040 | 0.6789 | 0.9932 | | 0.0044 | 10.0 | 1070 | 0.0403 | 0.6910 | 0.6808 | 0.6858 | 0.9938 | | 0.0044 | 11.0 | 1177 | 0.0415 | 0.7140 | 0.6808 | 0.6970 | 0.9939 | | 0.0044 | 12.0 | 1284 | 0.0440 | 0.7349 | 0.6681 | 0.6999 | 0.9941 | | 0.0044 | 13.0 | 1391 | 0.0423 | 0.7097 | 0.6977 | 0.7036 | 0.9941 | | 0.0044 | 14.0 | 1498 | 0.0435 | 0.7174 | 0.6977 | 0.7074 | 0.9941 | | 0.0006 | 15.0 | 1605 | 0.0434 | 0.7305 | 0.6934 | 0.7115 | 0.9941 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Amalq/roberta-base-finetuned-schizophreniaReddit2
Amalq
2021-12-20T05:41:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-schizophreniaReddit2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-schizophreniaReddit2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 490 | 1.8093 | | 1.9343 | 2.0 | 980 | 1.7996 | | 1.8856 | 3.0 | 1470 | 1.7966 | | 1.8552 | 4.0 | 1960 | 1.7844 | | 1.8267 | 5.0 | 2450 | 1.7839 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
addy88/wav2vec2-bhojpuri-stt
addy88
2021-12-19T16:48:06Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-bhojpuri-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-bhojpuri-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-malayalam-stt
addy88
2021-12-19T16:36:31Z
26
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-malayalam-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-malayalam-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-marathi-stt
addy88
2021-12-19T16:31:22Z
21
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-marathi-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-marathi-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-rajsthani-stt
addy88
2021-12-19T15:52:16Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-rajsthani-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-rajsthani-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-telugu-stt
addy88
2021-12-19T15:39:58Z
1,020
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-telugu-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-telugu-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
addy88/wav2vec2-nepali-stt
addy88
2021-12-19T15:36:06Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-nepali-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-nepali-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
kco4776/soongsil-bert-wellness
kco4776
2021-12-19T15:23:09Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## References - [Soongsil-BERT](https://github.com/jason9693/Soongsil-BERT)
addy88/wav2vec2-gujarati-stt
addy88
2021-12-19T15:14:38Z
20
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-gujarati-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-gujarati-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
nguyenvulebinh/envibert
nguyenvulebinh
2021-12-19T14:20:51Z
26
5
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "exbert", "vi", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: vi tags: - exbert license: cc-by-nc-4.0 --- # RoBERTa for Vietnamese and English (envibert) This RoBERTa version is trained by using 100GB of text (50GB of Vietnamese and 50GB of English) so it is named ***envibert***. The model architecture is custom for production so it only contains 70M parameters. ## Usages ```python from transformers import RobertaModel from transformers.file_utils import cached_path, hf_bucket_url from importlib.machinery import SourceFileLoader import os cache_dir='./cache' model_name='nguyenvulebinh/envibert' def download_tokenizer_files(): resources = ['envibert_tokenizer.py', 'dict.txt', 'sentencepiece.bpe.model'] for item in resources: if not os.path.exists(os.path.join(cache_dir, item)): tmp_file = hf_bucket_url(model_name, filename=item) tmp_file = cached_path(tmp_file,cache_dir=cache_dir) os.rename(tmp_file, os.path.join(cache_dir, item)) download_tokenizer_files() tokenizer = SourceFileLoader("envibert.tokenizer", os.path.join(cache_dir,'envibert_tokenizer.py')).load_module().RobertaTokenizer(cache_dir) model = RobertaModel.from_pretrained(model_name,cache_dir=cache_dir) # Encode text text_input = 'Đại học Bách Khoa Hà Nội .' text_ids = tokenizer(text_input, return_tensors='pt').input_ids # tensor([[ 0, 705, 131, 8751, 2878, 347, 477, 5, 2]]) # Extract features text_features = model(text_ids) text_features['last_hidden_state'].shape # torch.Size([1, 9, 768]) len(text_features['hidden_states']) # 7 ``` ### Citation ```text @inproceedings{nguyen20d_interspeech, author={Thai Binh Nguyen and Quang Minh Nguyen and Thi Thu Hien Nguyen and Quoc Truong Do and Chi Mai Luong}, title={{Improving Vietnamese Named Entity Recognition from Speech Using Word Capitalization and Punctuation Recovery Models}}, year=2020, booktitle={Proc. Interspeech 2020}, pages={4263--4267}, doi={10.21437/Interspeech.2020-1896} } ``` **Please CITE** our repo when it is used to help produce published results or is incorporated into other software. # Contact [email protected] [![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)
microsoft/unispeech-1350-en-90-it-ft-1h
microsoft
2021-12-19T13:19:29Z
28
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "audio", "it", "dataset:common_voice", "arxiv:2101.07597", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - it datasets: - common_voice tags: - audio - automatic-speech-recognition --- # UniSpeech-Large-plus ITALIAN [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The large model pretrained on 16kHz sampled speech audio and phonetic labels and consequently fine-tuned on 1h of Italian phonemes. When using the model make sure that your speech input is also sampled at 16kHz and your text in converted into a sequence of phonemes. [Paper: UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) Authors: Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang **Abstract** *In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech. # Usage This is an speech model that has been fine-tuned on phoneme classification. ## Inference ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "microsoft/unispeech-1350-en-90-it-ft-1h" sample = next(iter(load_dataset("common_voice", "it", split="test", streaming=True))) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits prediction_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(prediction_ids) # => 'm ɪ a n n o f a tː o ʊ n o f f ɛ r t a k e n o n p o t e v o p r ɔ p r i o r i f j ʊ t a r e' # for "Mi hanno fatto un\'offerta che non potevo proprio rifiutare." ``` ## Evaluation ```python from datasets import load_dataset, load_metric import datasets import torch from transformers import AutoModelForCTC, AutoProcessor model_id = "microsoft/unispeech-1350-en-90-it-ft-1h" ds = load_dataset("mozilla-foundation/common_voice_3_0", "it", split="train+validation+test+other") wer = load_metric("wer") model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) # taken from # https://github.com/microsoft/UniSpeech/blob/main/UniSpeech/examples/unispeech/data/it/phonesMatches_reduced.json with open("./testSeqs_uniform_new_version.text", "r") as f: lines = f.readlines() # retrieve ids model is evaluated on ids = [x.split("\t")[0] for x in lines] ds = ds.filter(lambda p: p.split("/")[-1].split(".")[0] in ids, input_columns=["path"]) ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000)) def decode(batch): input_values = processor(batch["audio"]["array"], return_tensors="pt", sampling_rate=16_000) logits = model(input_values).logits pred_ids = torch.argmax(logits, axis=-1) batch["prediction"] = processor.batch_decode(pred_ids) batch["target"] = processor.tokenizer.phonemize(batch["sentence"]) return batch out = ds.map(decode, remove_columns=ds.column_names) per = wer.compute(predictions=out["prediction"], references=out["target"]) print("per", per) # -> should give per 0.06685252146070828 - compare to results below ``` # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) # Official Results See *UniSpeeech-L^{+}* - *it*: ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/unispeech_results.png)
new5558/simcse-model-wangchanberta-base-att-spm-uncased
new5558
2021-12-19T13:01:31Z
80
0
sentence-transformers
[ "sentence-transformers", "pytorch", "camembert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # new5558/simcse-model-wangchanberta-base-att-spm-uncased This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('new5558/simcse-model-wangchanberta-base-att-spm-uncased') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('new5558/simcse-model-wangchanberta-base-att-spm-uncased') model = AutoModel.from_pretrained('new5558/simcse-model-wangchanberta-base-att-spm-uncased') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=new5558/simcse-model-wangchanberta-base-att-spm-uncased) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5125 with parameters: ``` {'batch_size': 256, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: CamembertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
rlagusrlagus123/XTC20000
rlagusrlagus123
2021-12-19T11:00:28Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- --- #12 epochs, each batch size 2, gradient accumulation steps 2, tail 20000
princebansal42/distilbert-base-uncased-finetuned-squad
princebansal42
2021-12-19T10:27:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 2.6623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3993 | 1.0 | 2051 | 1.8058 | | 1.0467 | 2.0 | 4102 | 1.9564 | | 0.8304 | 3.0 | 6153 | 2.6623 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Ayham/distilbert_gpt2_summarization_cnndm
Ayham
2021-12-19T06:43:15Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: distilbert_gpt2_summarization_cnndm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_gpt2_summarization_cnndm This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Ayham/roberta_gpt2_summarization_xsum
Ayham
2021-12-19T06:35:43Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:xsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - xsum model-index: - name: roberta_gpt2_summarization_xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_gpt2_summarization_xsum This model is a fine-tuned version of [](https://huggingface.co/) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Ayham/bert_gpt2_summarization_cnndm
Ayham
2021-12-19T06:32:54Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: bert_gpt2_summarization_cnndm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_gpt2_summarization_cnndm This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
zaccharieramzi/UNet-fastmri
zaccharieramzi
2021-12-19T02:05:48Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# UNet-fastmri --- tags: - TensorFlow - MRI reconstruction - MRI datasets: - fastMRI --- This model can be used to reconstruct single coil fastMRI data with an acceleration factor of 4. ## Model description For more details, see https://www.mdpi.com/2076-3417/10/5/1816. This section is WIP. ## Intended uses and limitations This model can be used to reconstruct single coil knee data from Siemens scanner at acceleration factor 4. It cannot be used on multi-coil data. ## How to use This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark. After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`. The framework is TensorFlow. You can initialize and load the model weights as follows: ```python from fastmri_recon.models.functional_models.unet import unet model = unet(n_layers=4, layers_n_channels=[16, 32, 64, 128], layers_n_non_lins=2,) model.load_weights('UNet-fastmri/model_weights.h5') ``` Using the model is then as simple as: ```python model(zero_filled_recon) ``` ## Limitations and bias The limitations and bias of this model have not been properly investigated. ## Training data This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/). ## Training procedure The training procedure is described in https://www.mdpi.com/2076-3417/10/5/1816 for brain data. This section is WIP. ## Evaluation results This model was evaluated using the [fastMRI dataset](https://fastmri.org/dataset/). | Contrast | PD | PDFS | |----------|-------|--------| | PSNR | 33.64 | 29.89 | | SSIM | 0.807 | 0.6334 | ## Bibtex entry ``` @article{ramzi2020benchmarking, title={Benchmarking MRI reconstruction neural networks on large public datasets}, author={Ramzi, Zaccharie and Ciuciu, Philippe and Starck, Jean-Luc}, journal={Applied Sciences}, volume={10}, number={5}, pages={1816}, year={2020}, publisher={Multidisciplinary Digital Publishing Institute} } ```
zaccharieramzi/PDNet-fastmri
zaccharieramzi
2021-12-19T01:32:10Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# PDNet-fastmri --- tags: - TensorFlow - MRI reconstruction - MRI datasets: - fastMRI --- This model can be used to reconstruct single coil fastMRI data with an acceleration factor of 4. ## Model description For more details, see https://www.mdpi.com/2076-3417/10/5/1816. This section is WIP. ## Intended uses and limitations This model can be used to reconstruct single coil knee data from Siemens scanner at acceleration factor 4. It cannot be used on multi-coil data. ## How to use This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark. After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`. The framework is TensorFlow. You can initialize and load the model weights as follows: ```python from fastmri_recon.models.functional_models.pdnet import pdnet model = pdnet() model.load_weights('model_weights.h5') ``` Using the model is then as simple as: ```python model([ kspace, # shape: [n_slices, n_rows, n_cols, 1] mask, # shape: [n_slices, n_rows, n_cols] ]) ``` ## Limitations and bias The limitations and bias of this model have not been properly investigated. ## Training data This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/). ## Training procedure The training procedure is described in https://www.mdpi.com/2076-3417/10/5/1816 for brain data. This section is WIP. ## Evaluation results This model was evaluated using the [fastMRI dataset](https://fastmri.org/dataset/). | Contrast | PD | PDFS | |----------|-------|--------| | PSNR | 34.2 | 30.06 | | SSIM | 0.818 | 0.9554 | ## Bibtex entry ``` @article{ramzi2020benchmarking, title={Benchmarking MRI reconstruction neural networks on large public datasets}, author={Ramzi, Zaccharie and Ciuciu, Philippe and Starck, Jean-Luc}, journal={Applied Sciences}, volume={10}, number={5}, pages={1816}, year={2020}, publisher={Multidisciplinary Digital Publishing Institute} } ```
zaccharieramzi/NCPDNet-multicoil-spiral
zaccharieramzi
2021-12-19T01:01:43Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# NCPDNet-multicoil-spiral --- tags: - TensorFlow - MRI reconstruction - MRI datasets: - fastMRI --- This is a non-Cartesian multicoil MRI reconstruction model for spiral trajectories at acceleration factor 4. The model uses 10 iterations and a small vanilla CNN. ## Model description For more details, see https://hal.inria.fr/hal-03188997. This section is WIP. ## Intended uses and limitations This model can be used to reconstruct multicoil knee data from Siemens scanner at acceleration factor 4 in a spiral acquisition setting. ## How to use This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark. After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`. The framework is TensorFlow. You can initialize and load the model weights as follows: ```python import tensorflow as tf from fastmri_recon.models.subclassed_models.ncpdnet import NCPDNet model = NCPDNet( multicoil=True, im_size=(640, 400), dcomp=True, refine_smaps=True, ) kspace_shape = 1 inputs = [ tf.zeros([1, 1, kspace_shape, 1], dtype=tf.complex64), tf.zeros([1, 2, kspace_shape], dtype=tf.float32), tf.zeros([1, 1, 640, 320], dtype=tf.complex64), (tf.constant([320]), tf.ones([1, kspace_shape], dtype=tf.float32)), ] model(inputs) model.load_weights('model_weights.h5') ``` Using the model is then as simple as: ```python model([ kspace, # shape: [n_slices, n_coils, n_kspace_samples, 1] traj, # shape: [n_slices, n_coils, 2, n_kspace_samples] smaps, # shape: [n_slices, n_coils, n_kspace_samples, n_coils] ( output_shape, # shape: [n_slices, 1] dcomp, # shape: [n_slices, n_kspace_samples] ) ]) ``` ## Limitations and bias The limitations and bias of this model have not been properly investigated. ## Training data This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/). ## Training procedure The training procedure is described in https://hal.inria.fr/hal-03188997. This section is WIP. ## Evaluation results On the fastMRI validation dataset: - PSNR: 40.68 - SSIM: 0.9255 ## Bibtex entry ``` @unpublished{ramzi:hal-03188997, TITLE = {{NC-PDNet: a Density-Compensated Unrolled Network for 2D and 3D non-Cartesian MRI Reconstruction}}, AUTHOR = {Ramzi, Zaccharie and G R, Chaithya and Starck, Jean-Luc and Ciuciu, Philippe}, YEAR = {2021}, MONTH = Sep, } ```
zaccharieramzi/NCPDNet-singlecoil-spiral
zaccharieramzi
2021-12-19T00:47:15Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# NCPDNet-singlecoil-spiral --- tags: - TensorFlow - MRI reconstruction - MRI datasets: - fastMRI --- This is a non-Cartesian MRI reconstruction model for spiral trajectories at acceleration factor 4. The model uses 10 iterations and a small vanilla CNN. ## Model description For more details, see https://hal.inria.fr/hal-03188997. This section is WIP. ## Intended uses and limitations This model can be used to reconstruct knee data from Siemens scanner at acceleration factor 4 in a spiral acquisition setting. ## How to use This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark. After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`. The framework is TensorFlow. You can initialize and load the model weights as follows: ```python import tensorflow as tf from fastmri_recon.models.subclassed_models.ncpdnet import NCPDNet model = NCPDNet( im_size=(640, 400), dcomp=True, ) kspace_shape = 1 inputs = [ tf.zeros([1, 1, kspace_shape, 1], dtype=tf.complex64), tf.zeros([1, 2, kspace_shape], dtype=tf.float32), (tf.constant([320]), tf.ones([1, kspace_shape], dtype=tf.float32)), ] model(inputs) model.load_weights('model_weights.h5') ``` Using the model is then as simple as: ```python model([ kspace, # shape: [n_slices, 1, n_kspace_samples, 1] traj, # shape: [n_slices, 1, 2, n_kspace_samples] ( output_shape, # shape: [n_slices, 1] dcomp, # shape: [n_slices, n_kspace_samples] ) ]) ``` ## Limitations and bias The limitations and bias of this model have not been properly investigated. ## Training data This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/). ## Training procedure The training procedure is described in https://hal.inria.fr/hal-03188997. This section is WIP. ## Evaluation results On the fastMRI validation dataset: - PSNR: 33.08 - SSIM: 0.7534 ## Bibtex entry ``` @unpublished{ramzi:hal-03188997, TITLE = {{NC-PDNet: a Density-Compensated Unrolled Network for 2D and 3D non-Cartesian MRI Reconstruction}}, AUTHOR = {Ramzi, Zaccharie and G R, Chaithya and Starck, Jean-Luc and Ciuciu, Philippe}, YEAR = {2021}, MONTH = Sep, } ```
s3h/mt5-small-finetuned-src-to-trg
s3h
2021-12-18T20:34:32Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mt5-small-finetuned-src-to-trg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-src-to-trg This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 40 | nan | 0.1737 | 3.1818 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.6.0 - Datasets 1.16.1 - Tokenizers 0.10.3
tasosk/bert-base-uncased-airlines
tasosk
2021-12-18T20:20:24Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-uncased-airlines results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-airlines This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3458 - Accuracy: 0.9021 - F1: 0.9022 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 405 | 0.3230 | 0.8754 | 0.8750 | | 0.4658 | 2.0 | 810 | 0.2738 | 0.8986 | 0.8985 | | 0.2473 | 3.0 | 1215 | 0.2944 | 0.9110 | 0.9111 | | 0.2498 | 4.0 | 1620 | 0.3322 | 0.8950 | 0.8949 | | 0.2174 | 5.0 | 2025 | 0.3342 | 0.9021 | 0.9021 | | 0.2174 | 6.0 | 2430 | 0.3526 | 0.8986 | 0.8985 | | 0.2055 | 7.0 | 2835 | 0.3458 | 0.9021 | 0.9022 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
zaccharieramzi/UPDNet-knee-af8
zaccharieramzi
2021-12-18T18:08:29Z
0
0
null
[ "arxiv:2010.07290", "region:us" ]
null
2022-03-02T23:29:05Z
# UPDNet-knee-af8 --- tags: - TensorFlow - MRI reconstruction - MRI datasets: - fastMRI --- This model was used to achieve the 9th highest submission in terms of PSNR on the fastMRI dataset (see https://fastmri.org/leaderboards/) (0.2dB behind the 2nd submission). It is a base model for acceleration factor 8. The model uses 25 iterations and a medium-ca-prelu U-net, and a medium sensitivity maps refiner. ## Model description For more details, see https://arxiv.org/abs/2010.07290. This section is WIP. ## Intended uses and limitations This model can be used to reconstruct knee data from Siemens scanner at acceleration factor 8. ## How to use This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark. After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`. The framework is TensorFlow. You can initialize and load the model weights as follows: ```python import tensorflow as tf from fastmri_recon.models.subclassed_models.updnet import UPDNet model = UPDNet( multicoil=True, n_dual=1, primal_only=True, n_layers=4, n_iter=25, channel_attention_kwargs={'dense': True}, refine_smaps=True, non_linearity='prelu', layers_n_channels=[16 * 2**i for i in range(4)], ) kspace_size = [1, 1, 320, 320] inputs = [ tf.zeros(kspace_size + [1], dtype=tf.complex64), # kspace tf.zeros(kspace_size, dtype=tf.complex64), # mask tf.zeros(kspace_size, dtype=tf.complex64), # smaps ] model(inputs) model.load_weights('model_weights.h5') ``` Using the model is then as simple as: ```python model([ kspace, # shape: [n_slices, n_coils, n_rows, n_cols, 1] mask, # shape: [n_slices, n_coils, n_rows, n_cols] smaps, # shape: [n_slices, n_coils, n_rows, n_cols] ]) ``` ## Limitations and bias The limitations and bias of this model have not been properly investigated. ## Training data This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/). ## Training procedure The training procedure is described in https://arxiv.org/abs/2010.07290. This section is WIP. ## Evaluation results No evaluation available outside the one from the fastMRI leaderboard (id: `updnet_v3`). ## Bibtex entry ``` @inproceedings{Ramzi2020d, archivePrefix = {arXiv}, arxivId = {2010.07290}, author = {Ramzi, Zaccharie and Ciuciu, Philippe and Starck, Jean-Luc}, booktitle = {ISMRM}, eprint = {2010.07290}, pages = {1--4}, title = {{XPDNet for MRI Reconstruction: an application to the 2020 fastMRI challenge}}, url = {http://arxiv.org/abs/2010.07290}, year = {2021} } ```
zaccharieramzi/UPDNet-knee-af4
zaccharieramzi
2021-12-18T18:08:04Z
0
0
null
[ "arxiv:2010.07290", "region:us" ]
null
2022-03-02T23:29:05Z
# UPDNet-knee-af4 --- tags: - TensorFlow - MRI reconstruction - MRI datasets: - fastMRI --- This model was used to achieve the 9th highest submission in terms of PSNR on the fastMRI dataset (see https://fastmri.org/leaderboards/) (0.2dB behind the 2nd submission). It is a base model for acceleration factor 4. The model uses 25 iterations and a medium-ca-prelu U-net, and a medium sensitivity maps refiner. ## Model description For more details, see https://arxiv.org/abs/2010.07290. This section is WIP. ## Intended uses and limitations This model can be used to reconstruct knee data from Siemens scanner at acceleration factor 4. ## How to use This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark. After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`. The framework is TensorFlow. You can initialize and load the model weights as follows: ```python import tensorflow as tf from fastmri_recon.models.subclassed_models.updnet import UPDNet model = UPDNet( multicoil=True, n_dual=1, primal_only=True, n_layers=4, n_iter=25, channel_attention_kwargs={'dense': True}, refine_smaps=True, non_linearity='prelu', layers_n_channels=[16 * 2**i for i in range(4)], ) kspace_size = [1, 1, 320, 320] inputs = [ tf.zeros(kspace_size + [1], dtype=tf.complex64), # kspace tf.zeros(kspace_size, dtype=tf.complex64), # mask tf.zeros(kspace_size, dtype=tf.complex64), # smaps ] model(inputs) model.load_weights('model_weights.h5') ``` Using the model is then as simple as: ```python model([ kspace, # shape: [n_slices, n_coils, n_rows, n_cols, 1] mask, # shape: [n_slices, n_coils, n_rows, n_cols] smaps, # shape: [n_slices, n_coils, n_rows, n_cols] ]) ``` ## Limitations and bias The limitations and bias of this model have not been properly investigated. ## Training data This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/). ## Training procedure The training procedure is described in https://arxiv.org/abs/2010.07290. This section is WIP. ## Evaluation results No evaluation available outside the one from the fastMRI leaderboard (id: `updnet_v3`). ## Bibtex entry ``` @inproceedings{Ramzi2020d, archivePrefix = {arXiv}, arxivId = {2010.07290}, author = {Ramzi, Zaccharie and Ciuciu, Philippe and Starck, Jean-Luc}, booktitle = {ISMRM}, eprint = {2010.07290}, pages = {1--4}, title = {{XPDNet for MRI Reconstruction: an application to the 2020 fastMRI challenge}}, url = {http://arxiv.org/abs/2010.07290}, year = {2021} } ```
zaccharieramzi/UPDNet-knee-singlecoil-af4
zaccharieramzi
2021-12-18T17:48:37Z
0
0
null
[ "arxiv:2010.07290", "region:us" ]
null
2022-03-02T23:29:05Z
# UPDNet-knee-singlecoil-af4 --- tags: - TensorFlow - MRI reconstruction - MRI datasets: - fastMRI --- This model can be used to reconstruct single coil fastMRI data with an acceleration factor of 4. ## Model description For more details, see https://arxiv.org/abs/2010.07290. This section is WIP. ## Intended uses and limitations This model can be used to reconstruct single coil knee data from Siemens scanner at acceleration factor 4. It cannot be used on multi-coil data. ## How to use This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark. After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`. The framework is TensorFlow. You can initialize and load the model weights as follows: ```python import tensorflow as tf from fastmri_recon.models.subclassed_models.updnet import UPDNet model = UPDNet( n_dual=1, primal_only=True, layers_n_channels=[16 * 2**i for i in range(3)], ) kspace_size = [1, 320, 320] inputs = [ tf.zeros(kspace_size + [1], dtype=tf.complex64), # kspace tf.zeros(kspace_size, dtype=tf.complex64), # mask ] model(inputs) model.load_weights('model_weights.h5') ``` Using the model is then as simple as: ```python model([ kspace, # shape: [n_slices, n_rows, n_cols, 1] mask, # shape: [n_slices, n_rows, n_cols] ]) ``` ## Limitations and bias The limitations and bias of this model have not been properly investigated. ## Training data This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/). ## Training procedure The training procedure is described in https://arxiv.org/abs/2010.07290 for brain data. This section is WIP. ## Evaluation results Not available ## Bibtex entry ``` @inproceedings{Ramzi2020d, archivePrefix = {arXiv}, arxivId = {2010.07290}, author = {Ramzi, Zaccharie and Ciuciu, Philippe and Starck, Jean-Luc}, booktitle = {ISMRM}, eprint = {2010.07290}, pages = {1--4}, title = {{XPDNet for MRI Reconstruction: an application to the 2020 fastMRI challenge}}, url = {http://arxiv.org/abs/2010.07290}, year = {2021} } ```
zaccharieramzi/XPDNet-brain-af4
zaccharieramzi
2021-12-18T17:10:04Z
0
0
null
[ "arxiv:2010.07290", "arxiv:2106.00753", "region:us" ]
null
2022-03-02T23:29:05Z
# XPDNet-brain-af4 --- tags: - TensorFlow - MRI reconstruction - MRI datasets: - fastMRI --- This model was used to achieve the 3rd highest submission in terms of PSNR on the fastMRI dataset (see https://fastmri.org/leaderboards/). It is a base model for acceleration factor 4. The model uses 25 iterations and a medium MWCNN, and a big sensitivity maps refiner. ## Model description For more details, see https://arxiv.org/abs/2010.07290. This section is WIP. ## Intended uses and limitations This model can be used to reconstruct brain data from Siemens scanner at acceleration factor 4. It was shown [here](https://arxiv.org/abs/2106.00753), that it can generalize well, although further tests are required. ## How to use This model can be loaded using the following repo: https://github.com/zaccharieramzi/fastmri-reproducible-benchmark. After cloning the repo, `git clone https://github.com/zaccharieramzi/fastmri-reproducible-benchmark`, you can install the package via `pip install fastmri-reproducible-benchmark`. The framework is TensorFlow. You can initialize and load the model weights as follows: ```python import tensorflow as tf from fastmri_recon.models.subclassed_models.denoisers.proposed_params import get_model_specs from fastmri_recon.models.subclassed_models.xpdnet import XPDNet n_primal = 5 model_fun, model_kwargs, n_scales, res = [ (model_fun, kwargs, n_scales, res) for m_name, m_size, model_fun, kwargs, _, n_scales, res in get_model_specs(n_primal=n_primal, force_res=False) if m_name == 'MWCNN' and m_size == 'medium' ][0] model_kwargs['use_bias'] = False run_params = dict( n_primal=n_primal, multicoil=True, n_scales=n_scales, refine_smaps=True, refine_big=True, res=res, output_shape_spec=True, n_iter=25, ) model = XPDNet(model_fun, model_kwargs, **run_params) kspace_size = [1, 1, 320, 320] inputs = [ tf.zeros(kspace_size + [1], dtype=tf.complex64), # kspace tf.zeros(kspace_size, dtype=tf.complex64), # mask tf.zeros(kspace_size, dtype=tf.complex64), # smaps tf.constant([[320, 320]]), # shape ] model(inputs) model.load_weights('model_weights.h5') ``` Using the model is then as simple as: ```python model([ kspace, # shape: [n_slices, n_coils, n_rows, n_cols, 1] mask, # shape: [n_slices, n_coils, n_rows, n_cols] smaps, # shape: [n_slices, n_coils, n_rows, n_cols] shape, # shape: [n_slices, 2] ]) ``` ## Limitations and bias The limitations and bias of this model have not been properly investigated. ## Training data This model was trained using the [fastMRI dataset](https://fastmri.org/dataset/). ## Training procedure The training procedure is described in https://arxiv.org/abs/2010.07290. This section is WIP. ## Evaluation results On the fastMRI validation dataset, the same model with a smaller sensitivity maps refiner gives the following results for 30 validation volumes per contrast: | Contrast | T1 | T2 | FLAIR | T1-POST | |----------|--------|--------|--------|---------| | PSNR | 41.56 | 40.68 | 39.60 | 42.53 | | SSIM | 0.9506 | 0.9554 | 0.9321 | 0.9683 | Further results can be seen on the fastMRI leaderboards for the test and challenge dataset: https://fastmri.org/leaderboards/ ## Bibtex entry ``` @inproceedings{Ramzi2020d, archivePrefix = {arXiv}, arxivId = {2010.07290}, author = {Ramzi, Zaccharie and Ciuciu, Philippe and Starck, Jean-Luc}, booktitle = {ISMRM}, eprint = {2010.07290}, pages = {1--4}, title = {{XPDNet for MRI Reconstruction: an application to the 2020 fastMRI challenge}}, url = {http://arxiv.org/abs/2010.07290}, year = {2021} } ```
flboehm/reddit-bert-text_20
flboehm
2021-12-18T12:47:04Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: reddit-bert-text_20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-bert-text_20 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4702 - Perplexity: 11.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9383 | 1.0 | 947 | 2.5420 | | 2.6448 | 2.0 | 1894 | 2.5241 | | 2.586 | 3.0 | 2841 | 2.4833 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10
Harveenchadha
2021-12-17T20:14:16Z
1,400
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pa", "arxiv:2107.07402", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: pa #datasets: #- Interspeech 2021 metrics: - wer tags: - audio - automatic-speech-recognition - speech license: mit model-index: - name: Wav2Vec2 Vakyansh Punjabi Model by Harveen Chadha results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice hi type: common_voice args: pa metrics: - name: Test WER type: wer value: 33.17 --- Fine-tuned on Multilingual Pretrained Model [CLSRIL-23](https://arxiv.org/abs/2107.07402). The original fairseq checkpoint is present [here](https://github.com/Open-Speech-EkStep/vakyansh-models). When using this model, make sure that your speech input is sampled at 16kHz. **Note: The result from this model is without a language model so you may witness a higher WER in some cases.**
microsoft/unispeech-sat-large-sd
microsoft
2021-12-17T18:42:36Z
72
1
transformers
[ "transformers", "pytorch", "unispeech-sat", "audio-frame-classification", "speech", "en", "arxiv:1912.07875", "arxiv:2106.06909", "arxiv:2101.00390", "arxiv:2110.05752", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en datasets: tags: - speech --- # UniSpeech-SAT-Large for Speaker Diarization [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz. The model was pre-trained on: - 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875) - 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909) - 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390) [Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu **Abstract** *Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT. # Fine-tuning details The model is fine-tuned on the [LibriMix dataset](https://github.com/JorisCos/LibriMix) using just a linear layer for mapping the network outputs. # Usage ## Speaker Diarization ```python from transformers import Wav2Vec2FeatureExtractor, UniSpeechSatForAudioFrameClassification from datasets import load_dataset import torch dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/unispeech-sat-large-sd') model = UniSpeechSatForAudioFrameClassification.from_pretrained('microsoft/unispeech-sat-large-sd') # audio file is decoded on the fly inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt") logits = model(**inputs).logits probabilities = torch.sigmoid(logits[0]) # labels is a one-hot array of shape (num_frames, num_speakers) labels = (probabilities > 0.5).long() ``` # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/UniSpeechSAT.png)
osanseviero/fastai_cat_vs_dog
osanseviero
2021-12-17T14:27:39Z
32
4
generic
[ "generic", "image-classification", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification library_name: generic --- # Dog vs Cat Image Classification with FastAI CNN Training is based in FastAI [Quick Start](https://docs.fast.ai/quick_start.html). Example training ## Training The model was trained as follows ```python path = untar_data(URLs.PETS)/'images' def is_cat(x): return x[0].isupper() dls = ImageDataLoaders.from_name_func( path, get_image_files(path), valid_pct=0.2, seed=42, label_func=is_cat, item_tfms=Resize(224)) learn = cnn_learner(dls, resnet34, metrics=error_rate) learn.fine_tune(1) ```
osanseviero/fastai_cat_vs_dog_fork2
osanseviero
2021-12-17T14:27:39Z
33
0
generic
[ "generic", "image-classification", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification library_name: generic --- # Dog vs Cat Image Classification with FastAI CNN Training is based in FastAI [Quick Start](https://docs.fast.ai/quick_start.html). Example training ## Training The model was trained as follows ```python path = untar_data(URLs.PETS)/'images' def is_cat(x): return x[0].isupper() dls = ImageDataLoaders.from_name_func( path, get_image_files(path), valid_pct=0.2, seed=42, label_func=is_cat, item_tfms=Resize(224)) learn = cnn_learner(dls, resnet34, metrics=error_rate) learn.fine_tune(1) ```
Rocketknight1/gbert-base-germaner
Rocketknight1
2021-12-17T14:04:59Z
5
1
transformers
[ "transformers", "tf", "tensorboard", "bert", "token-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Rocketknight1/gbert-base-germaner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/gbert-base-germaner This model is a fine-tuned version of [deepset/gbert-base](https://huggingface.co/deepset/gbert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0340 - Validation Loss: 0.0881 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4176, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1345 | 0.0865 | 0 | | 0.0550 | 0.0878 | 1 | | 0.0340 | 0.0881 | 2 | ### Framework versions - Transformers 4.15.0.dev0 - TensorFlow 2.6.0 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
microsoft/unispeech-sat-base-plus-sv
microsoft
2021-12-17T13:56:17Z
1,232
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "audio-xvector", "speech", "en", "arxiv:1912.07875", "arxiv:2106.06909", "arxiv:2101.00390", "arxiv:2110.05752", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en tags: - speech --- # UniSpeech-SAT-Base for Speaker Verification [Microsoft's UniSpeech](https://www.microsoft.com/en-us/research/publication/unispeech-unified-speech-representation-learning-with-labeled-and-unlabeled-data/) The model was pretrained on 16kHz sampled speech audio with utterance and speaker contrastive loss. When using the model, make sure that your speech input is also sampled at 16kHz. The model was pre-trained on: - 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875) - 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909) - 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390) [Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING](https://arxiv.org/abs/2110.05752) Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu **Abstract** *Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..* The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT. # Fine-tuning details The model is fine-tuned on the [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) using an X-Vector head with an Additive Margin Softmax loss [X-Vectors: Robust DNN Embeddings for Speaker Recognition](https://www.danielpovey.com/files/2018_icassp_xvectors.pdf) # Usage ## Speaker Verification ```python from transformers import Wav2Vec2FeatureExtractor, UniSpeechSatForXVector from datasets import load_dataset import torch dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained('microsoft/unispeech-sat-base-plus-sv') model = UniSpeechSatForXVector.from_pretrained('microsoft/unispeech-sat-base-plus-sv') # audio files are decoded on the fly inputs = feature_extractor(dataset[:2]["audio"]["array"], return_tensors="pt") embeddings = model(**inputs).embeddings embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu() # the resulting embeddings can be used for cosine similarity-based retrieval cosine_sim = torch.nn.CosineSimilarity(dim=-1) similarity = cosine_sim(embeddings[0], embeddings[1]) threshold = 0.89 # the optimal threshold is dataset-dependent if similarity < threshold: print("Speakers are not the same!") ``` # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/UniSpeechSAT.png)
patrickvonplaten/wavlm-libri-clean-100h-large
patrickvonplaten
2021-12-17T13:40:58Z
10,035
2
transformers
[ "transformers", "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "librispeech_asr", "generated_from_trainer", "wavlm_libri_finetune", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer - wavlm_libri_finetune model-index: - name: wavlm-librispeech-clean-100h-dist results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wavlm-libri-clean-100h-large This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0601 - Wer: 0.0491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8069 | 0.34 | 300 | 0.7510 | 0.5809 | | 0.2483 | 0.67 | 600 | 0.2023 | 0.1929 | | 0.1033 | 1.01 | 900 | 0.1123 | 0.1028 | | 0.0742 | 1.35 | 1200 | 0.0858 | 0.0771 | | 0.057 | 1.68 | 1500 | 0.0722 | 0.0663 | | 0.0421 | 2.02 | 1800 | 0.0682 | 0.0582 | | 0.0839 | 2.35 | 2100 | 0.0630 | 0.0534 | | 0.0307 | 2.69 | 2400 | 0.0603 | 0.0508 | ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3
ivanlau/language-detection-fine-tuned-on-xlm-roberta-base
ivanlau
2021-12-17T10:33:13Z
13,130
16
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:common_language", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - common_language metrics: - accuracy model-index: - name: language-detection-fine-tuned-on-xlm-roberta-base results: - task: name: Text Classification type: text-classification dataset: name: common_language type: common_language args: full metrics: - name: Accuracy type: accuracy value: 0.9738386718094919 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-fine-tuned-on-xlm-roberta-base This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the [common_language](https://huggingface.co/datasets/common_language) dataset. It achieves the following results on the evaluation set: - Loss: 0.1886 - Accuracy: 0.9738 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1 | 1.0 | 22194 | 0.1886 | 0.9738 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3 ### Notebook [notebook](https://github.com/IvanLauLinTiong/language-detector/blob/main/xlm_roberta_base_commonlanguage_language_detector.ipynb)
llange/xlm-roberta-large-spanish-clinical
llange
2021-12-17T10:27:39Z
3
1
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "arxiv:2112.08754", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# CLIN-X-ES: a pre-trained language model for the Spanish clinical domain Details on the model, the pre-training corpus and the downstream task performance are given in the paper: "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain" by Lukas Lange, Heike Adel, Jannik Strötgen and Dietrich Klakow. The paper can be found [here](https://arxiv.org/abs/2112.08754). In case of questions, please contact the authors as listed on the paper. Please cite the above paper when reporting, reproducing or extending the results. @misc{lange-etal-2021-clin-x, author = {Lukas Lange and Heike Adel and Jannik Str{\"{o}}tgen and Dietrich Klakow}, title = {CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain}, year={2021}, eprint={2112.08754}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2112.08754} } ## Training details The model is based on the multilingual XLM-R transformer `(xlm-roberta-large)`, which was trained on 100 languages and showed superior performance in many different tasks across languages and can even outperform monolingual models in certain settings (Conneau et al. 2020). Even though XLM-R was pre-trained on 53GB of Spanish documents, this was only 2% of the overall training data. To steer this model towards the Spanish clinical domain, we sample documents from the Scielo archive (https://scielo.org/) and the MeSpEn resources (Villegas et al. 2018). The resulting corpus has a size of 790MB and is highly specific for the clinical domain. We initialize CLIN-X using the pre-trained XLM-R weights and train masked language modeling (MLM) on the Spanish clinical corpus for 3 epochs which roughly corresponds to 32k steps. This allows researchers and practitioners to address the Spanish clinical domain with an out-of-the-box tailored model. ## Results for Spanish concept extraction We apply CLIN-X-ES to five Spanish concept extraction tasks from the clinical domain in a standard sequence labeling architecture similar to Devlin et al. 2019 and compare to a Spanish BERT model called BETO. In addition, we perform experiments with an improved architecture `(+ OurArchitecture)` as described in the paper linked above. The code for our model architecture can be found [here](https://github.com/boschresearch/clin_x). | | Cantemist | Meddocan | Meddoprof (NER) | Meddoprof (CLASS) | Pharmaconer | |------------------------------------------|-----------|----------|-----------------|-------------------|-------------| | BETO (Spanish BERT) | 81.30 | 96.81 | 79.19 | 74.59 | 87.70 | | CLIN-X (ES) | 83.22 | 97.08 | 79.54 | 76.95 | 90.05 | | CLIN-X (ES) + OurArchitecture | **88.24** | **98.00** | **81.68** | **80.54** | **92.27** | ### Results for English concept extraction As the CLIN-X-ES model is based on XLM-R, the model is still multilingual and we demonstrate the positive impact of cross-language domain adaptation by applying this model to five different English sequence labeling tasks from i2b2. We found that further transfer from related concept extraction is particularly helpful in this cross-language setting. For a detailed description of the transfer process and all other models, we refer to our paper. | | i2b2 2006 | i2b2 2010 | i2b2 2012 (Concept) | i2b2 2012 (Time) | i2b2 2014 | |------------------------------------------|-----------|-----------|---------------|---------------|-----------| | BERT | 94.80 | 85.25 | 76.51 | 75.28 | 94.86 | | ClinicalBERT | 94.8 | 87.8 | 78.9 | 76.6 | 93.0 | | CLIN-X (ES) | 95.49 | 87.94 | 79.58 | 77.57 | 96.80 | | CLIN-X (ES) + OurArchitecture | 98.30 | 89.10 | 80.42 | 78.48 | **97.62** | | CLIN-X (ES) + OurArchitecture + Transfer | **89.50** | **89.74** | **80.93** | **79.60** | 97.46 | ## Purpose of the project This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way. ## License The CLIN-X models are open-sourced under the CC-BY 4.0 license. See the [LICENSE](LICENSE) file for details.
llange/xlm-roberta-large-english-clinical
llange
2021-12-17T10:27:20Z
44
2
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "arxiv:2112.08754", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# CLIN-X-EN: a pre-trained language model for the English clinical domain Details on the model, the pre-training corpus and the downstream task performance are given in the paper: "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain" by Lukas Lange, Heike Adel, Jannik Strötgen and Dietrich Klakow. The paper can be found [here](https://arxiv.org/abs/2112.08754). In case of questions, please contact the authors as listed on the paper. Please cite the above paper when reporting, reproducing or extending the results. @misc{lange-etal-2021-clin-x, author = {Lukas Lange and Heike Adel and Jannik Str{\"{o}}tgen and Dietrich Klakow}, title = {CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain}, year={2021}, eprint={2112.08754}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2112.08754} } ## Training details The model is based on the multilingual XLM-R transformer `(xlm-roberta-large)`, which was trained on 100 languages and showed superior performance in many different tasks across languages and can even outperform monolingual models in certain settings (Conneau et al. 2020). We train the CLIN-X model on clinical Pubmed abstracts (850MB) filtered following Haynes et al. (2005). Pubmed is used with the courtesy of the U.S. National Library of Medicine We initialize CLIN-X using the pre-trained XLM-R weights and train masked language modeling (MLM) on the Spanish clinical corpus for 3 epochs which roughly corresponds to 32k steps. This allows researchers and practitioners to address the English clinical domain with an out-of-the-box tailored model. ## Results for Spanish concept extraction We apply CLIN-X-EN to five different English sequence labeling tasks from i2b2 in a standard sequence labeling architecture similar to Devlin et al. 2019 and compare to BERT and ClinicalBERT. In addition, we perform experiments with an improved architecture `(+ OurArchitecture)` as described in the paper linked above. The code for our model architecture can be found [here](https://github.com/boschresearch/clin_x). | | i2b2 2006 | i2b2 2010 | i2b2 2012 (Concept) | i2b2 2012 (Time) | i2b2 2014 | |-------------------------------|-----------|-----------|---------------------|------------------|-----------| | BERT | 94.80 | 82.25 | 76.51 | 75.28 | 94.86 | | ClinicalBERT | 94.8 | 87.8 | 78.9 | 76.6 | 93.0 | | CLIN-X (EN) | 96.25 | 88.10 | 79.58 | 77.70 | 96.73 | | CLIN-X (EN) + OurArchitecture | **98.49** | **89.23** | **80.62** | **78.50** | **97.60** | ## Purpose of the project This software is a research prototype, solely developed for and published as part of the publication cited above. It will neither be maintained nor monitored in any way. ## License The CLIN-X models are open-sourced under the CC-BY 4.0 license. See the [LICENSE](LICENSE) file for details.
Souvikcmsa/LogFiBER
Souvikcmsa
2021-12-17T10:05:05Z
0
0
null
[ "pytorch", "region:us" ]
null
2022-03-02T23:29:05Z
Log FiBER This model is able to sentence embedding.
jamescalam/bert-stsb-gold
jamescalam
2021-12-17T08:57:06Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Gold-only BERT STSb This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is used as a demo model within the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp), for the chapter on [In-domain Data Augmentation with BERT](https://www.pinecone.io/learn/data-augmentation/). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('bert-stsb-gold') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bert-stsb-gold') model = AutoModel.from_pretrained('bert-stsb-gold') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 36, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
jamescalam/bert-stsb-cross-encoder
jamescalam
2021-12-17T08:54:27Z
1,081
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "text-classification", "sentence-similarity", "transformers", "cross-encoder", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - transformers - cross-encoder --- # Augmented SBERT STSb This is a [sentence-transformers](https://www.SBERT.net) cross encoder model. It is used as a demo model within the [NLP for Semantic Search course](https://www.pinecone.io/learn/nlp), for the chapter on [In-domain Data Augmentation with BERT](https://www.pinecone.io/learn/data-augmentation/).
tabo/distilbert-base-uncased-finetuned-squad2
tabo
2021-12-17T07:22:42Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2306 | 1.0 | 5533 | 1.1557 | | 0.9535 | 2.0 | 11066 | 1.1260 | | 0.7629 | 3.0 | 16599 | 1.1606 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
HenryAI/KerasBERTv1
HenryAI
2021-12-17T03:20:18Z
6
7
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Thanks for checking this out! <br /> This video explains the ideas behind KerasBERT (still very much a work in progress) https://www.youtube.com/watch?v=J3P8WLAELqk
Jeska/BertjeWDialDataALL03
Jeska
2021-12-16T19:19:56Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: BertjeWDialDataALL03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialDataALL03 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 8.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1951 | 1.0 | 1542 | 2.0285 | | 2.0918 | 2.0 | 3084 | 1.9989 | | 2.0562 | 3.0 | 4626 | 2.0162 | | 2.0012 | 4.0 | 6168 | 1.9330 | | 1.9705 | 5.0 | 7710 | 1.9151 | | 1.9571 | 6.0 | 9252 | 1.9419 | | 1.9113 | 7.0 | 10794 | 1.9175 | | 1.8988 | 8.0 | 12336 | 1.9143 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
airKlizz/mt5-small-wikinewssum-test
airKlizz
2021-12-16T16:18:08Z
8
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-wikinewssum-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-wikinewssum-test This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9354 - Rouge1: 6.8433 - Rouge2: 2.5498 - Rougel: 5.6114 - Rougelsum: 6.353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | No log | 1.0 | 661 | 3.2810 | 6.4161 | 2.403 | 5.3674 | 6.0329 | | No log | 2.0 | 1322 | 3.1515 | 6.9291 | 2.6826 | 5.6839 | 6.4359 | | No log | 3.0 | 1983 | 3.0565 | 6.7939 | 2.6113 | 5.6133 | 6.3126 | | No log | 4.0 | 2644 | 2.9815 | 6.0279 | 2.1637 | 4.9892 | 5.5962 | | No log | 5.0 | 3305 | 2.9645 | 6.3926 | 2.339 | 5.2716 | 5.9443 | | 3.9937 | 6.0 | 3966 | 2.9476 | 6.4739 | 2.3615 | 5.3473 | 6.0089 | | 3.9937 | 7.0 | 4627 | 2.9405 | 6.615 | 2.4309 | 5.4493 | 6.1445 | | 3.9937 | 8.0 | 5288 | 2.9354 | 6.8433 | 2.5498 | 5.6114 | 6.353 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.1 - Datasets 1.16.1 - Tokenizers 0.10.3
mateocolina/xlm-roberta-base-finetuned-marc-en
mateocolina
2021-12-16T14:39:14Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9276 - Mae: 0.5366 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0992 | 1.0 | 235 | 0.9340 | 0.5122 | | 0.945 | 2.0 | 470 | 0.9276 | 0.5366 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Giannipinelli/xlm-roberta-base-finetuned-marc-en
Giannipinelli
2021-12-16T14:34:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9161 - Mae: 0.4634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1217 | 1.0 | 235 | 0.9396 | 0.4878 | | 0.9574 | 2.0 | 470 | 0.9161 | 0.4634 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
philschmid/deberta-v3-xsmall-emotion
philschmid
2021-12-16T12:37:10Z
3
1
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:emotion", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: deberta-v3-xsmall-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.932 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-xsmall-emotion This model is a fine-tuned version of [microsoft/deberta-v3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1877 - Accuracy: 0.932 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3683 | 1.0 | 500 | 0.8479 | 0.6975 | | 0.547 | 2.0 | 1000 | 0.2881 | 0.905 | | 0.2378 | 3.0 | 1500 | 0.2116 | 0.925 | | 0.1704 | 4.0 | 2000 | 0.1877 | 0.932 | | 0.1392 | 5.0 | 2500 | 0.1718 | 0.9295 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
rafiulrumy/wav2vec2-large-xlsr-53-demo-colab
rafiulrumy
2021-12-16T05:09:16Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-53-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 6.7860 - Wer: 1.1067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 8.2273 | 44.42 | 400 | 3.3544 | 1.0 | | 0.9228 | 88.84 | 800 | 4.7054 | 1.1601 | | 0.1423 | 133.32 | 1200 | 5.9489 | 1.1578 | | 0.0751 | 177.74 | 1600 | 5.5939 | 1.1717 | | 0.0554 | 222.21 | 2000 | 6.1230 | 1.1717 | | 0.0356 | 266.63 | 2400 | 6.2845 | 1.1613 | | 0.0288 | 311.11 | 2800 | 6.6109 | 1.2100 | | 0.0223 | 355.53 | 3200 | 6.5605 | 1.1299 | | 0.0197 | 399.95 | 3600 | 7.1242 | 1.1682 | | 0.0171 | 444.42 | 4000 | 7.2452 | 1.1578 | | 0.0149 | 488.84 | 4400 | 7.4048 | 1.0684 | | 0.0118 | 533.32 | 4800 | 6.6227 | 1.1172 | | 0.011 | 577.74 | 5200 | 6.7909 | 1.1566 | | 0.0095 | 622.21 | 5600 | 6.8088 | 1.1102 | | 0.0077 | 666.63 | 6000 | 7.4451 | 1.1311 | | 0.0062 | 711.11 | 6400 | 6.8486 | 1.0777 | | 0.0051 | 755.53 | 6800 | 6.8812 | 1.1241 | | 0.0051 | 799.95 | 7200 | 6.9987 | 1.1450 | | 0.0041 | 844.42 | 7600 | 7.3048 | 1.1323 | | 0.0044 | 888.84 | 8000 | 6.6644 | 1.1125 | | 0.0031 | 933.32 | 8400 | 6.6298 | 1.1148 | | 0.0027 | 977.74 | 8800 | 6.7860 | 1.1067 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
shainahub/covid_qa_distillbert
shainahub
2021-12-15T19:10:48Z
20
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - covid_qa_deepset metrics: - squad_v2 # Example: wer. Use metric id from https://hf.co/metrics widget: - text: "What is COVID-19?" context: "Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019.[7] The disease has since spread worldwide, leading to an ongoing pandemic." - text: "Where was COVID-19 first discovered?" context: "The first known infections from SARS-CoV-2 were discovered in Wuhan, China. The original source of viral transmission to humans remains unclear, as does whether the virus became pathogenic before or after the spillover event." - text: "What is Post-COVID syndrome?" context: "Long COVID, also known as post-COVID-19 syndrome, post-acute sequelae of COVID-19 (PASC), or chronic COVID syndrome (CCS) is a condition characterized by long-term sequelae appearing or persisting after the typical convalescence period of COVID-19. Long COVID can affect nearly every organ system, with sequelae including respiratory system disorders, nervous system and neurocognitive disorders, mental health disorders, metabolic disorders, cardiovascular disorders, gastrointestinal disorders, malaise, fatigue, musculoskeletal pain, and anemia. A wide range of symptoms are commonly reported, including fatigue, headaches, shortness of breath, anosmia (loss of smell), parosmia (distorted smell), muscle weakness, low fever and cognitive dysfunction." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.0976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.2502 | 1.0 | 3880 | 0.1824 | | 0.2007 | 2.0 | 7760 | 0.1250 | | 0.1338 | 3.0 | 11640 | 0.0976 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Ayham/xlnet_gpt2_summarization_cnn_dailymail
Ayham
2021-12-15T18:08:27Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: xlnet_gpt2_summarization_cnn_dailymail results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet_gpt2_summarization_cnn_dailymail This model is a fine-tuned version of [](https://huggingface.co/) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Jeska/VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09
Jeska
2021-12-15T16:50:47Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VaccinChatSentenceClassifierDutch_fromBERTje2_DAdialogQonly09 This model is a fine-tuned version of [outputDAQonly09/](https://huggingface.co/outputDAQonly09/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4978 - Accuracy: 0.9031 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 330 | 3.9692 | 0.2249 | | 4.3672 | 2.0 | 660 | 3.1312 | 0.4031 | | 4.3672 | 3.0 | 990 | 2.5068 | 0.5658 | | 3.1495 | 4.0 | 1320 | 2.0300 | 0.6600 | | 2.2491 | 5.0 | 1650 | 1.6517 | 0.7450 | | 2.2491 | 6.0 | 1980 | 1.3604 | 0.7943 | | 1.622 | 7.0 | 2310 | 1.1328 | 0.8327 | | 1.1252 | 8.0 | 2640 | 0.9484 | 0.8611 | | 1.1252 | 9.0 | 2970 | 0.8212 | 0.8757 | | 0.7969 | 10.0 | 3300 | 0.7243 | 0.8830 | | 0.5348 | 11.0 | 3630 | 0.6597 | 0.8867 | | 0.5348 | 12.0 | 3960 | 0.5983 | 0.8857 | | 0.3744 | 13.0 | 4290 | 0.5635 | 0.8976 | | 0.2564 | 14.0 | 4620 | 0.5437 | 0.8985 | | 0.2564 | 15.0 | 4950 | 0.5124 | 0.9013 | | 0.1862 | 16.0 | 5280 | 0.5074 | 0.9022 | | 0.1349 | 17.0 | 5610 | 0.5028 | 0.9049 | | 0.1349 | 18.0 | 5940 | 0.4876 | 0.9077 | | 0.0979 | 19.0 | 6270 | 0.4971 | 0.9049 | | 0.0763 | 20.0 | 6600 | 0.4941 | 0.9022 | | 0.0763 | 21.0 | 6930 | 0.4957 | 0.9049 | | 0.0602 | 22.0 | 7260 | 0.4989 | 0.9049 | | 0.0504 | 23.0 | 7590 | 0.4959 | 0.9040 | | 0.0504 | 24.0 | 7920 | 0.4944 | 0.9031 | | 0.0422 | 25.0 | 8250 | 0.4985 | 0.9040 | | 0.0379 | 26.0 | 8580 | 0.4970 | 0.9049 | | 0.0379 | 27.0 | 8910 | 0.4949 | 0.9040 | | 0.0351 | 28.0 | 9240 | 0.4971 | 0.9040 | | 0.0321 | 29.0 | 9570 | 0.4967 | 0.9031 | | 0.0321 | 30.0 | 9900 | 0.4978 | 0.9031 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_sentiment_42
aXhyra
2021-12-15T13:28:22Z
8
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_sentiment_42 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: sentiment metrics: - name: F1 type: f1 value: 0.7175864613336908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_sentiment_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6491 - F1: 0.7176 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.923967812567773e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4391 | 1.0 | 2851 | 0.6591 | 0.6953 | | 0.6288 | 2.0 | 5702 | 0.6265 | 0.7158 | | 0.4071 | 3.0 | 8553 | 0.6401 | 0.7179 | | 0.6532 | 4.0 | 11404 | 0.6491 | 0.7176 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
harshit345/xlsr-53-wav2vec-greek
harshit345
2021-12-15T13:13:37Z
4
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "el", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: el datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: V XLSR Wav2Vec2 Large 53 - greek results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice el type: common_voice args: el metrics: - name: Test WER type: wer value: 18.996669 - name: Test CER type: cer value: 5.781874 --- # Wav2Vec2-Large-XLSR-53-greek Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on greek using the [Common Voice](https://huggingface.co/datasets/common_voice) and [CSS10 Greek: Single Speaker Speech Dataset](https://www.kaggle.com/bryanpark/greek-single-speaker-speech-dataset). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "el", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` | Reference | Prediction | | ------------- | ------------- | | ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ, ΠΟΥ ΜΟΙΆΖΕΙ ΛΕΟΝΤΑΡΆΚΙ ΚΑΙ ΑΕΤΟΥΔΆΚΙ | ΤΟ ΒΑΣΙΛΌΠΟΥΛΟ ΠΟΥ ΜΙΑΣΕ ΛΙΟΝΤΑΡΑΚΉ ΚΑΙ ΑΪΤΟΥΔΆΚΙ | | ΣΥΝΆΜΑ ΞΕΠΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ, ΔΕΞΙΆ, ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ. | ΣΥΝΆΜΑ ΚΑΙ ΤΡΌΒΑΛΑΝ ΑΠΌ ΜΈΣΑ ΑΠΌ ΤΑ ΔΈΝΤΡΑ ΔΕΞΙΆ ΑΡΜΑΤΩΜΈΝΟΙ ΚΑΒΑΛΑΡΈΟΙ | | ΤΑ ΣΥΣΚΕΥΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΥΝΤΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ | ΤΑ ΣΥΣΚΕΦΑΣΜΈΝΑ ΒΙΟΛΟΓΙΚΆ ΛΑΧΑΝΙΚΆ ΔΕΝ ΠΕΡΙΈΧΟΥΝ ΣΙΔΗΡΗΤΙΚΆ ΚΑΙ ΟΡΜΌΝΕΣ | | ΑΚΟΛΟΥΘΉΣΕΤΕ ΜΕ! | ΑΚΟΛΟΥΘΉΣΤΕ ΜΕ | | ΚΑΙ ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΟΝ ΒΡΩ; | Ε ΠΟΎ ΜΠΟΡΏ ΝΑ ΤΙ ΕΒΡΩ | | ΝΑΙ! ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ | ΝΑΙ ΑΠΟΚΡΊΘΗΚΕ ΤΟ ΠΑΙΔΊ | | ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ. | ΤΟ ΠΑΛΆΤΙ ΜΟΥ ΤΟ ΠΡΟΜΉΘΕΥΕ | | ΉΛΘΕ ΜΉΝΥΜΑ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΙΛΙΆ; | ΉΛΘΑ ΜΕΊΝΕΙ ΜΕ ΑΠΌ ΤΟ ΘΕΊΟ ΒΑΣΊΛΙΑ | | ΠΑΡΑΚΆΤΩ, ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ, ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΝΆ ΧΑΜΌΔΕΝΤΡΑ. | ΠΑΡΑΚΆΤΩ ΈΝΑ ΡΥΆΚΙ ΜΟΥΡΜΟΎΡΙΖΕ ΓΛΥΚΆ ΚΥΛΏΝΤΑΣ ΤΑ ΚΡΥΣΤΑΛΛΈΝΙΑ ΝΕΡΆ ΤΟΥ ΑΝΆΜΕΣΑ ΣΤΑ ΠΥΚΡΆ ΧΑΜΌΔΕΝΤΡΑ | | ΠΡΆΓΜΑΤΙ, ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ | ΠΡΆΓΜΑΤΗ ΕΊΝΑΙ ΑΣΤΕΊΟ ΝΑ ΠΆΡΕΙ Ο ΔΙΆΒΟΛΟΣ | ## Evaluation The model can be evaluated as follows on the greek test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "el", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("vasilis/wav2vec2-large-xlsr-53-greek") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data normalize_greek_letters = {"ς": "σ"} # normalize_greek_letters = {"ά": "α", "έ": "ε", "ί": "ι", 'ϊ': "ι", "ύ": "υ", "ς": "σ", "ΐ": "ι", 'ϋ': "υ", "ή": "η", "ώ": "ω", 'ό': "ο"} remove_chars_greek = {"a": "", "h": "", "n": "", "g": "", "o": "", "v": "", "e": "", "r": "", "t": "", "«": "", "»": "", "m": "", '́': '', "·": "", "’": "", '´': ""} replacements = {**normalize_greek_letters, **remove_chars_greek} resampler = { 48_000: torchaudio.transforms.Resample(48_000, 16_000), 44100: torchaudio.transforms.Resample(44100, 16_000), 32000: torchaudio.transforms.Resample(32000, 16_000) } # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() for key, value in replacements.items(): batch["sentence"] = batch["sentence"].replace(key, value) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler[sampling_rate](speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * wer.compute(predictions=[" ".join(list(entry)) for entry in result["pred_strings"]], references=[" ".join(list(entry)) for entry in result["sentence"]]))) ``` **Test Result**: 18.996669 % ## Training The Common Voice train dataset was used for training. Also all of `CSS10 Greek` was used using the normalized transcripts. During text preprocessing letter `ς` is normalized to `σ` the reason is that both letters sound the same with `ς` only used as the ending character of words. So, the change can be mapped up to proper dictation easily. I tried removing all accents from letters as well that improved `WER` significantly. The model was reaching `17%` WER easily without having converged. However, the text preprocessing needed to do after to fix transcrtiptions would be more complicated. A language model should fix things easily though. Another thing that could be tried out would be to change all of `ι`, `η` ... etc to a single character since all sound the same. similar for `o` and `ω` these should help the acoustic model part significantly since all these characters map to the same sound. But further text normlization would be needed.
raphaelmerx/marian-finetuned-en-map
raphaelmerx
2021-12-15T12:54:46Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: marian-finetuned-en-map results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-en-map This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-map](https://huggingface.co/Helsinki-NLP/opus-mt-en-map) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.0542 - eval_bleu: 30.0673 - eval_runtime: 870.8596 - eval_samples_per_second: 14.467 - eval_steps_per_second: 0.226 - epoch: 2.29 - step: 17104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
MMG/bert-base-spanish-wwm-cased-finetuned-sqac-finetuned-squad
MMG
2021-12-15T12:03:20Z
32
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "es", "dataset:squad_es", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer datasets: - squad_es model-index: - name: bert-base-spanish-wwm-cased-finetuned-sqac-finetuned-squad results: [] language: - es --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-spanish-wwm-cased-finetuned-sqac-finetuned-squad This model is a fine-tuned version of [MMG/bert-base-spanish-wwm-cased-finetuned-sqac](https://huggingface.co/MMG/bert-base-spanish-wwm-cased-finetuned-sqac) on the squad_es dataset. It achieves the following results on the evaluation set: - Loss: 1.5325 - {'exact_match': 60.30274361400189, 'f1': 77.01962587890856} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_hate_1234567
aXhyra
2021-12-15T11:31:02Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_hate_1234567 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7679568806891273 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_hate_1234567 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8438 - F1: 0.7680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.436235805743952e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1234567 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6027 | 1.0 | 282 | 0.5186 | 0.7209 | | 0.3537 | 2.0 | 564 | 0.4989 | 0.7619 | | 0.0969 | 3.0 | 846 | 0.6405 | 0.7697 | | 0.0514 | 4.0 | 1128 | 0.8438 | 0.7680 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_hate_31415
aXhyra
2021-12-15T11:24:57Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_hate_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7729508817074093 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_hate_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8632 - F1: 0.7730 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.436235805743952e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.363 | 1.0 | 282 | 0.4997 | 0.7401 | | 0.2145 | 2.0 | 564 | 0.5071 | 0.7773 | | 0.1327 | 3.0 | 846 | 0.7109 | 0.7645 | | 0.0157 | 4.0 | 1128 | 0.8632 | 0.7730 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_hate_42
aXhyra
2021-12-15T11:18:17Z
15
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_hate_42 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: hate metrics: - name: F1 type: f1 value: 0.7692074096568478 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_hate_42 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.8711 - F1: 0.7692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.436235805743952e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5207 | 1.0 | 282 | 0.4815 | 0.7513 | | 0.3047 | 2.0 | 564 | 0.5557 | 0.7510 | | 0.2335 | 3.0 | 846 | 0.6627 | 0.7585 | | 0.0056 | 4.0 | 1128 | 0.8711 | 0.7692 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
aXhyra/presentation_emotion_31415
aXhyra
2021-12-15T10:41:54Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tweet_eval metrics: - f1 model-index: - name: presentation_emotion_31415 results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: F1 type: f1 value: 0.7148501877297316 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # presentation_emotion_31415 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.1243 - F1: 0.7149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.18796906442746e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 31415 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.73 | 1.0 | 408 | 0.8206 | 0.6491 | | 0.3868 | 2.0 | 816 | 0.7733 | 0.7230 | | 0.0639 | 3.0 | 1224 | 0.9962 | 0.7101 | | 0.0507 | 4.0 | 1632 | 1.1243 | 0.7149 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3