modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-28 12:29:09
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-28 12:26:21
card
stringlengths
11
1.01M
JaimeAi/distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos
JaimeAi
2023-06-28T20:41:19Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T19:53:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0298 - F1: 0.5415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.098 | 1.0 | 766 | 1.0509 | 0.5115 | | 0.9349 | 2.0 | 1532 | 1.0298 | 0.5415 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
cleanrl/Humanoid-v4-ddpg_continuous_action-seed1
cleanrl
2023-06-28T20:26:22Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Humanoid-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T20:26:15Z
--- tags: - Humanoid-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DDPG results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Humanoid-v4 type: Humanoid-v4 metrics: - type: mean_reward value: 1015.40 +/- 612.19 name: mean_reward verified: false --- # (CleanRL) **DDPG** Agent Playing **Humanoid-v4** This is a trained model of a DDPG agent playing Humanoid-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ddpg_continuous_action]" python -m cleanrl_utils.enjoy --exp-name ddpg_continuous_action --env-id Humanoid-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Humanoid-v4-ddpg_continuous_action-seed1/raw/main/ddpg_continuous_action.py curl -OL https://huggingface.co/cleanrl/Humanoid-v4-ddpg_continuous_action-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Humanoid-v4-ddpg_continuous_action-seed1/raw/main/poetry.lock poetry install --all-extras python ddpg_continuous_action.py --track --capture-video --save-model --hf-entity cleanrl --upload-model --env-id Humanoid-v4 --seed 1 ``` # Hyperparameters ```python {'batch_size': 256, 'buffer_size': 1000000, 'capture_video': True, 'cuda': True, 'env_id': 'Humanoid-v4', 'exp_name': 'ddpg_continuous_action', 'exploration_noise': 0.1, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.0003, 'learning_starts': 25000.0, 'noise_clip': 0.5, 'policy_frequency': 2, 'save_model': True, 'seed': 1, 'tau': 0.005, 'torch_deterministic': True, 'total_timesteps': 1000000, 'track': True, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
joncrain/test
joncrain
2023-06-28T20:18:56Z
0
0
null
[ "dataset:fka/awesome-chatgpt-prompts", "region:us" ]
null
2023-06-28T20:12:23Z
--- datasets: - fka/awesome-chatgpt-prompts ---
mmirmahdi/Reinforce-CartPole-v1
mmirmahdi
2023-06-28T20:14:00Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T20:13:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
finding-fossils/metaextractor
finding-fossils
2023-06-28T20:05:50Z
112
3
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "Beta", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-15T16:24:37Z
--- tags: - Beta license: mit thumbnail: >- https://huggingface.co/finding-fossils/metaextractor/resolve/main/ffossils-logo-text.png widget: - text: The core sample was aged at 12300 - 13500 BP and found at 210m a.s.l. example_title: Age/Alti - text: In Northern Canada, the BGC site core was primarily made up of Pinus pollen. example_title: Taxa/Site/Region metrics: - precision - recall --- <img src="https://huggingface.co/finding-fossils/metaextractor/resolve/main/ffossils-logo-text.png" width="400"> # MetaExtractor <!-- Provide a quick summary of what the model is/does. --> This model extracts metadata from research articles related to Paleoecology. The entities detected by this model are: - **AGE**: when historical ages are mentioned such as 1234 AD or 4567 BP (before present) - **TAXA**: plant or animal taxa names indicating what samples contained - **GEOG**: geographic coordinates indicating where samples were excavated from, e.g. 12'34"N 34'23"W - **SITE**: site names for where samples were excavated from - **REGION**: more general regions to provide context for where sites are located - **EMAIL**: researcher emails in the articles able to be used for follow-up contact - **ALTI**: altitudes of sites from where samples were excavated, e.g. 123 m a.s.l (above sea level) ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Ty Andrews, Jenit Jain, Shaun Hutchinson, Kelly Wu, and Simon Goring - **Shared by:** Neotoma Paleocology Database - **Model type:** Token Classification - **Language(s) (NLP):** English - **License:** MIT - **Finetuned from model:** roberta-base ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/NeotomaDB/MetaExtractor - **Paper:** TBD - **Demo:** TBD ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> This model can be used to extract entities from any text that are Paeleoecology related or tangential. Potential uses include identifying unique SITE names in research papers in other domains. ### Direct Use This model is deployed on the xDD (formerly GeoDeepDive) servers where it is getting fed new research articles relevant to Neotoma and returning the extracted data. This approach could be adapted to other domains by using the training and development code found [github.com/NeotomaDB/MetaExtractor](https://github.com/NeotomaDB/MetaExtractor) to run similar data extraction for other research domains. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This model was trained entirely on English research articles and will likely not perform well on research in other languages. Also, the articles used to train the model were chosen based on being already present in the Neotoma database and therefore may have selection bias as they represent what is already known to be relevant to Neotoma and may not correctly manage new, previously missed articles. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("finding-fossils/metaextractor") model = AutoModelForTokenClassification.from_pretrained("finding-fossils/metaextractor") ner_pipe = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") ner_pipe("In Northern Canada, the BGC site core was primarily made up of Pinus pollen.") # Output [ { "entity_group": "REGION", "score": 0.8088379502296448, "word": " Northern Canada,", "start": 3, "end": 19 }, { "entity_group": "SITE", "score": 0.8307041525840759, "word": " BGC", "start": 24, "end": 27 }, { "entity_group": "TAXA", "score": 0.9806344509124756, "word": " Pinus", "start": 63, "end": 68 } ] ``` ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> The model was trained using a set of 39 research articles deemed relevant to the Neotoma Database. All articles were written in English. The entities were labeled by the project team along with using pre-labelling with early models to speed up the labelling process. A 70/15/15 train/val/test split was used which had the following breakdown of words and entities. | | Train | Validation | Test| |---|:---:|:---:|:---:| |Articles| 28 | 6 | 6| | Words | 220857 | 37809 | 36098 | |TAXA Entities | 3352 | 650 | 570 | |SITE Entities | 1228 | 177 | 219 | | REGION Entities | 2314 | 318 | 258 | |GEOG Entities | 188 | 37 | 8 | |AGE Entities | 919 | 206 | 153 | |ALTI Entities | 99 | 24 | 14 | | Email Entities | 14 | 4 | 11 | ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> For full training details please see the GitHub repository and Wiki: [github.com/NeotomaDB/MetaExtractor](https://github.com/NeotomaDB/MetaExtractor) ## Results & Metrics For full model results see the report here: [Final Project Report](https://github.com/NeotomaDB/MetaExtractor/blob/main/reports/final/finding-fossils-final.pdf)
ahishamm/vit-huge-isic-patch-14
ahishamm
2023-06-28T20:05:46Z
198
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-28T19:59:05Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-huge-isic-patch-14 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-huge-isic-patch-14 This model is a fine-tuned version of [google/vit-huge-patch14-224-in21k](https://huggingface.co/google/vit-huge-patch14-224-in21k) on the ahishamm/isic_db dataset. It achieves the following results on the evaluation set: - Loss: 0.6077 - Accuracy: 0.7917 - Recall: 0.7917 - F1: 0.7917 - Precision: 0.7917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
globuslabs/ScholarBERT-XL_1
globuslabs
2023-06-28T20:01:30Z
124
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "science", "multi-displinary", "en", "arxiv:2205.11342", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-22T22:32:14Z
--- language: en tags: - science - multi-displinary license: apache-2.0 --- # ScholarBERT-XL_1 Model This is the **ScholarBERT-XL_1** variant of the ScholarBERT model family. The model is pretrained on a large collection of scientific research articles (**2.2B tokens**). This is a **cased** (case-sensitive) model. The tokenizer will not convert all inputs to lower-case by default. The model has a total of 770M parameters. # Model Architecture | Hyperparameter | Value | |-----------------|:-------:| | Layers | 36 | | Hidden Size | 1280 | | Attention Heads | 20 | | Total Parameters | 770M | # Training Dataset The vocab and the model are pertrained on **1% of the PRD** scientific literature dataset. The PRD dataset is provided by Public.Resource.Org, Inc. (“Public Resource”), a nonprofit organization based in California. This dataset was constructed from a corpus of journal article files, from which We successfully extracted text from 75,496,055 articles from 178,928 journals. The articles span across Arts & Humanities, Life Sciences & Biomedicine, Physical Sciences, Social Sciences, and Technology. The distribution of articles is shown below. ![corpus pie chart](https://huggingface.co/globuslabs/ScholarBERT/resolve/main/corpus_pie_chart.png) # BibTeX entry and citation info If using this model, please cite this paper: ``` @misc{hong2023diminishing, title={The Diminishing Returns of Masked Language Models to Science}, author={Zhi Hong and Aswathy Ajith and Gregory Pauloski and Eamon Duede and Kyle Chard and Ian Foster}, year={2023}, eprint={2205.11342}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ahishamm/vit-large-isic-patch-32
ahishamm
2023-06-28T19:58:41Z
197
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-28T19:53:00Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-large-isic-patch-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-large-isic-patch-32 This model is a fine-tuned version of [google/vit-large-patch32-224-in21k](https://huggingface.co/google/vit-large-patch32-224-in21k) on the ahishamm/isic_db dataset. It achieves the following results on the evaluation set: - Loss: 0.6200 - Accuracy: 0.7639 - Recall: 0.7639 - F1: 0.7639 - Precision: 0.7639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
rttl-ai/bert-base-uncased-yelp-polarity
rttl-ai
2023-06-28T19:58:10Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "en", "dataset:yelp_polarity", "arxiv:2004.10964", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-26T14:16:21Z
--- license: apache-2.0 datasets: - yelp_polarity language: - en model-index: - name: rttl-ai/bert-base-uncased-polarity results: - task: type: text classification name: binary_classification dataset: type: yelp_polarity name: yelp_polarity config: default split: test metrics: - type: accuracy value: 0.98 name: Accuracy --- ## Model Details **Model Description:** This model is a fine-tune checkpoint of [bert-base-uncased](https://huggingface.co/bert-base-uncased), fine-tuned on yelp reviews. - **Developed by:** rttl-ai - **Model Type:** Text Classification - **Language(s):** English - **License:** Apache-2.0 - **Resources for more information:** - The model was pre-trained with task-adaptive pre-training [TAPT](https://arxiv.org/pdf/2004.10964.pdf) with an increased masking rate, no corruption strategy, and using WWM, following [this paper](https://aclanthology.org/2023.eacl-main.217.pdf) - pre-trained on yelp reviews - fine-tuned on yelp reviews for binary class text classification
YakovElm/MariaDB_5_BERT_Over_Sampling
YakovElm
2023-06-28T19:55:08Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T19:54:31Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: MariaDB_5_BERT_Over_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # MariaDB_5_BERT_Over_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0696 - Train Accuracy: 0.9771 - Validation Loss: 0.4323 - Validation Accuracy: 0.9221 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4972 | 0.7607 | 0.2633 | 0.9121 | 0 | | 0.1913 | 0.9294 | 0.3861 | 0.9121 | 1 | | 0.0696 | 0.9771 | 0.4323 | 0.9221 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
ahishamm/vit-large-isic-patch-16
ahishamm
2023-06-28T19:52:45Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-28T19:47:01Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-large-isic-patch-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-large-isic-patch-16 This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the ahishamm/isic_db dataset. It achieves the following results on the evaluation set: - Loss: 0.7317 - Accuracy: 0.75 - Recall: 0.75 - F1: 0.75 - Precision: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
shirsh10mall/Helsinki-shirsh-finetuned-translation-english-to-hindi
shirsh10mall
2023-06-28T19:52:16Z
63
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-27T03:08:56Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: shirsh10mall/Helsinki-shirsh-finetuned-translation-english-to-hindi results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # shirsh10mall/Helsinki-shirsh-finetuned-translation-english-to-hindi This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-hi](https://huggingface.co/Helsinki-NLP/opus-mt-en-hi) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.5746 - Validation Loss: 4.4287 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 10, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.5743 | 4.4287 | 0 | | 4.5751 | 4.4287 | 1 | | 4.5730 | 4.4287 | 2 | | 4.5752 | 4.4287 | 3 | | 4.5757 | 4.4287 | 4 | | 4.5753 | 4.4287 | 5 | | 4.5729 | 4.4287 | 6 | | 4.5759 | 4.4287 | 7 | | 4.5749 | 4.4287 | 8 | | 4.5746 | 4.4287 | 9 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.1.0 - Tokenizers 0.13.3
bk6000/q-Taxi-v3
bk6000
2023-06-28T19:48:43Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T19:48:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="bk6000/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
alitair/ppo-LunarLander-v2
alitair
2023-06-28T19:48:11Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T19:47:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.02 +/- 10.27 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jumartineze/xlm-roberta-base-finetuned-MeIA-AnalisisDeSentimientos
Jumartineze
2023-06-28T19:45:04Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T17:15:13Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-MeIA-AnalisisDeSentimientos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-MeIA-AnalisisDeSentimientos This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9935 - F1: 0.5903 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.005 | 1.0 | 766 | 0.9719 | 0.5623 | | 0.8756 | 2.0 | 1532 | 0.9842 | 0.5655 | | 0.753 | 3.0 | 2298 | 0.9935 | 0.5903 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
S3S3/ppo-Pyramids_Training1
S3S3
2023-06-28T19:42:01Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-06-28T19:41:53Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: S3S3/ppo-Pyramids_Training1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
PickleYard/PerfectWorld
PickleYard
2023-06-28T19:38:43Z
7
0
diffusers
[ "diffusers", "ai-art", "style-transfer", "animation", "deep-learning", "text-to-image", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-28T18:41:57Z
--- license: other language: - en library_name: diffusers pipeline_tag: text-to-image tags: - ai-art - style-transfer - animation - deep-learning - text-to-image ---
bk6000/q-FrozenLake-v1-4x4-noSlippery
bk6000
2023-06-28T19:27:47Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T19:27:45Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bk6000/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
richardr1126/guanaco-13b-merged
richardr1126
2023-06-28T19:23:40Z
10
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "guanaco", "13b", "dataset:timdettmers/openassistant-guanaco", "arxiv:2305.14314", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-15T01:04:14Z
--- datasets: - timdettmers/openassistant-guanaco tags: - llama - guanaco - 13b --- This model was created by merging [timdettmers/guanaco-13b](https://huggingface.co/timdettmers/guanaco-13b) QLoRa adapter with the base LLaMA-13b model. ## Citation ```bibtex @article{dettmers2023qlora, title={QLoRA: Efficient Finetuning of Quantized LLMs}, author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke}, journal={arXiv preprint arXiv:2305.14314}, year={2023} } ```
magnustragardh/Reinforce-Pixelcopter-PLE-v0
magnustragardh
2023-06-28T19:22:59Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T19:22:55Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 49.30 +/- 29.27 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours chekc Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vlkn/falcon_finetuned3
vlkn
2023-06-28T19:15:44Z
0
0
null
[ "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-06-28T18:43:45Z
--- tags: - generated_from_trainer model-index: - name: falcon_finetuned3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon_finetuned3 This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 60 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
cleanrl/Pusher-v4-ddpg_continuous_action_jax-seed1
cleanrl
2023-06-28T19:12:37Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pusher-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T19:12:22Z
--- tags: - Pusher-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DDPG results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pusher-v4 type: Pusher-v4 metrics: - type: mean_reward value: -28.99 +/- 2.80 name: mean_reward verified: false --- # (CleanRL) **DDPG** Agent Playing **Pusher-v4** This is a trained model of a DDPG agent playing Pusher-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action_jax.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ddpg_continuous_action_jax]" python -m cleanrl_utils.enjoy --exp-name ddpg_continuous_action_jax --env-id Pusher-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Pusher-v4-ddpg_continuous_action_jax-seed1/raw/main/ddpg_continuous_action_jax.py curl -OL https://huggingface.co/cleanrl/Pusher-v4-ddpg_continuous_action_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Pusher-v4-ddpg_continuous_action_jax-seed1/raw/main/poetry.lock poetry install --all-extras python ddpg_continuous_action_jax.py --track --capture-video --save-model --hf-entity cleanrl --upload-mode --env-id Pusher-v4 --seed 1 ``` # Hyperparameters ```python {'batch_size': 256, 'buffer_size': 1000000, 'capture_video': True, 'env_id': 'Pusher-v4', 'exp_name': 'ddpg_continuous_action_jax', 'exploration_noise': 0.1, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.0003, 'learning_starts': 25000.0, 'noise_clip': 0.5, 'policy_frequency': 2, 'save_model': True, 'seed': 1, 'tau': 0.005, 'total_timesteps': 1000000, 'track': True, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
YakovElm/Jira_20_BERT_Over_Sampling
YakovElm
2023-06-28T19:05:58Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T19:05:01Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Jira_20_BERT_Over_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jira_20_BERT_Over_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0521 - Train Accuracy: 0.9856 - Validation Loss: 0.4925 - Validation Accuracy: 0.8612 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4491 | 0.7989 | 0.6370 | 0.6656 | 0 | | 0.1533 | 0.9514 | 0.3511 | 0.9211 | 1 | | 0.0521 | 0.9856 | 0.4925 | 0.8612 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
cleanrl/Hopper-v4-ddpg_continuous_action-seed1
cleanrl
2023-06-28T18:59:37Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Hopper-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T18:59:25Z
--- tags: - Hopper-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DDPG results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hopper-v4 type: Hopper-v4 metrics: - type: mean_reward value: 1675.53 +/- 1038.51 name: mean_reward verified: false --- # (CleanRL) **DDPG** Agent Playing **Hopper-v4** This is a trained model of a DDPG agent playing Hopper-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ddpg_continuous_action]" python -m cleanrl_utils.enjoy --exp-name ddpg_continuous_action --env-id Hopper-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Hopper-v4-ddpg_continuous_action-seed1/raw/main/ddpg_continuous_action.py curl -OL https://huggingface.co/cleanrl/Hopper-v4-ddpg_continuous_action-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Hopper-v4-ddpg_continuous_action-seed1/raw/main/poetry.lock poetry install --all-extras python ddpg_continuous_action.py --track --capture-video --save-model --hf-entity cleanrl --upload-model --env-id Hopper-v4 --seed 1 ``` # Hyperparameters ```python {'batch_size': 256, 'buffer_size': 1000000, 'capture_video': True, 'cuda': True, 'env_id': 'Hopper-v4', 'exp_name': 'ddpg_continuous_action', 'exploration_noise': 0.1, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.0003, 'learning_starts': 25000.0, 'noise_clip': 0.5, 'policy_frequency': 2, 'save_model': True, 'seed': 1, 'tau': 0.005, 'torch_deterministic': True, 'total_timesteps': 1000000, 'track': True, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Humanoid-v4-ddpg_continuous_action_jax-seed1
cleanrl
2023-06-28T18:54:13Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Humanoid-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T18:53:59Z
--- tags: - Humanoid-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DDPG results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Humanoid-v4 type: Humanoid-v4 metrics: - type: mean_reward value: 1303.07 +/- 456.80 name: mean_reward verified: false --- # (CleanRL) **DDPG** Agent Playing **Humanoid-v4** This is a trained model of a DDPG agent playing Humanoid-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action_jax.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ddpg_continuous_action_jax]" python -m cleanrl_utils.enjoy --exp-name ddpg_continuous_action_jax --env-id Humanoid-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Humanoid-v4-ddpg_continuous_action_jax-seed1/raw/main/ddpg_continuous_action_jax.py curl -OL https://huggingface.co/cleanrl/Humanoid-v4-ddpg_continuous_action_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Humanoid-v4-ddpg_continuous_action_jax-seed1/raw/main/poetry.lock poetry install --all-extras python ddpg_continuous_action_jax.py --track --capture-video --save-model --hf-entity cleanrl --upload-mode --env-id Humanoid-v4 --seed 1 ``` # Hyperparameters ```python {'batch_size': 256, 'buffer_size': 1000000, 'capture_video': True, 'env_id': 'Humanoid-v4', 'exp_name': 'ddpg_continuous_action_jax', 'exploration_noise': 0.1, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.0003, 'learning_starts': 25000.0, 'noise_clip': 0.5, 'policy_frequency': 2, 'save_model': True, 'seed': 1, 'tau': 0.005, 'total_timesteps': 1000000, 'track': True, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
codervent981/admin-dashboard-template
codervent981
2023-06-28T18:39:33Z
0
0
null
[ "region:us" ]
null
2023-06-28T18:39:01Z
Codervent Admin Dashboard Template is a versatile and user-friendly web application interface designed specifically for administrators. With its clean and modern design, it offers a comprehensive set of features and tools to manage and monitor various aspects of an application or website. The template provides a responsive layout, making it accessible on different devices. It includes various widgets, charts, tables, and forms, allowing administrators to effectively analyze data, manage user accounts, track performance metrics, and perform administrative tasks efficiently. Codervent Admin Dashboard Template is a reliable solution for streamlining administrative workflows and enhancing productivity. Read More:- https://codervent.com/
vlkn/falcon_finetuned2
vlkn
2023-06-28T18:38:23Z
0
0
null
[ "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-06-28T17:27:34Z
--- tags: - generated_from_trainer model-index: - name: falcon_finetuned2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon_finetuned2 This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 300 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
hugo1499/bert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos
hugo1499
2023-06-28T18:36:02Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T00:10:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1233 - Accuracy: 0.5208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1308 | 1.0 | 383 | 1.1263 | 0.4914 | | 0.9642 | 2.0 | 766 | 1.0872 | 0.5150 | | 0.813 | 3.0 | 1149 | 1.1233 | 0.5208 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
YakovElm/Jira_15_BERT_Over_Sampling
YakovElm
2023-06-28T18:26:07Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T18:25:15Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Jira_15_BERT_Over_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Jira_15_BERT_Over_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1151 - Train Accuracy: 0.9662 - Validation Loss: 0.8861 - Validation Accuracy: 0.7066 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.5468 | 0.7016 | 0.9501 | 0.6151 | 0 | | 0.2721 | 0.9019 | 0.9989 | 0.6372 | 1 | | 0.1151 | 0.9662 | 0.8861 | 0.7066 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
PickleYard/Elysian-Fields
PickleYard
2023-06-28T18:22:47Z
13
0
diffusers
[ "diffusers", "artificial-intelligence", "ai-art", "anime-style", "content-creation", "animation", "dreamshaper", "text-to-image", "en", "dataset:unknown", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-28T03:54:18Z
--- language: en library: diffusers tags: - artificial-intelligence - ai-art - anime-style - content-creation - animation - dreamshaper - text-to-image license: other datasets: - unknown library_name: diffusers --- ## Model Description "Elysian Fields" is a model based on the original Dreamshaper model. The primary objective of this model is to generate artificial intelligence (AI)-driven art and animations that mimic the style of traditional paintings. It excels in creating lifelike portraits, intricate backgrounds, and anime-style characters. Originally designed for creating unique portraits that transcend the boundaries of computer graphics and heavily-filtered photographs, this model has evolved to become an integral part of content creation and independent animation production. Leveraging the power of LoRA networks, it also supports the generation of anime-style images. This model is hosted on Hugging Face Model Hub, and can be used for a wide range of creative applications, from content creation to animation and beyond.
Cordelia/frozenLake
Cordelia
2023-06-28T18:19:02Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T18:18:59Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: frozenLake results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Cordelia/frozenLake", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
cleanrl/InvertedPendulum-v4-ddpg_continuous_action_jax-seed1
cleanrl
2023-06-28T18:18:47Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "InvertedPendulum-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T18:18:33Z
--- tags: - InvertedPendulum-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DDPG results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: InvertedPendulum-v4 type: InvertedPendulum-v4 metrics: - type: mean_reward value: 988.90 +/- 33.30 name: mean_reward verified: false --- # (CleanRL) **DDPG** Agent Playing **InvertedPendulum-v4** This is a trained model of a DDPG agent playing InvertedPendulum-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action_jax.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ddpg_continuous_action_jax]" python -m cleanrl_utils.enjoy --exp-name ddpg_continuous_action_jax --env-id InvertedPendulum-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/InvertedPendulum-v4-ddpg_continuous_action_jax-seed1/raw/main/ddpg_continuous_action_jax.py curl -OL https://huggingface.co/cleanrl/InvertedPendulum-v4-ddpg_continuous_action_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/InvertedPendulum-v4-ddpg_continuous_action_jax-seed1/raw/main/poetry.lock poetry install --all-extras python ddpg_continuous_action_jax.py --track --capture-video --save-model --hf-entity cleanrl --upload-mode --env-id InvertedPendulum-v4 --seed 1 ``` # Hyperparameters ```python {'batch_size': 256, 'buffer_size': 1000000, 'capture_video': True, 'env_id': 'InvertedPendulum-v4', 'exp_name': 'ddpg_continuous_action_jax', 'exploration_noise': 0.1, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.0003, 'learning_starts': 25000.0, 'noise_clip': 0.5, 'policy_frequency': 2, 'save_model': True, 'seed': 1, 'tau': 0.005, 'total_timesteps': 1000000, 'track': True, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
nbiish/dqn-SpaceInvadersNoFrameskip-v4
nbiish
2023-06-28T18:06:47Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T18:06:09Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 556.00 +/- 103.89 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nbiish -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga nbiish -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga nbiish ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
cleanrl/Hopper-v4-ddpg_continuous_action_jax-seed1
cleanrl
2023-06-28T18:01:28Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Hopper-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T18:00:09Z
--- tags: - Hopper-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DDPG results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hopper-v4 type: Hopper-v4 metrics: - type: mean_reward value: 1696.13 +/- 547.20 name: mean_reward verified: false --- # (CleanRL) **DDPG** Agent Playing **Hopper-v4** This is a trained model of a DDPG agent playing Hopper-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action_jax.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ddpg_continuous_action_jax]" python -m cleanrl_utils.enjoy --exp-name ddpg_continuous_action_jax --env-id Hopper-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Hopper-v4-ddpg_continuous_action_jax-seed1/raw/main/ddpg_continuous_action_jax.py curl -OL https://huggingface.co/cleanrl/Hopper-v4-ddpg_continuous_action_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Hopper-v4-ddpg_continuous_action_jax-seed1/raw/main/poetry.lock poetry install --all-extras python ddpg_continuous_action_jax.py --track --capture-video --save-model --hf-entity cleanrl --upload-mode --env-id Hopper-v4 --seed 1 ``` # Hyperparameters ```python {'batch_size': 256, 'buffer_size': 1000000, 'capture_video': True, 'env_id': 'Hopper-v4', 'exp_name': 'ddpg_continuous_action_jax', 'exploration_noise': 0.1, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.0003, 'learning_starts': 25000.0, 'noise_clip': 0.5, 'policy_frequency': 2, 'save_model': True, 'seed': 1, 'tau': 0.005, 'total_timesteps': 1000000, 'track': True, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
Malaika/ppo-unit8-LunarLander-v2-test3
Malaika
2023-06-28T17:58:02Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T17:57:55Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -142.25 +/- 90.40 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': True 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Malaika/ppo-unit8-LunarLander-v2-test3' 'batch_size': 512 'minibatch_size': 128} ```
asdc/Bio-RoBERTime
asdc
2023-06-28T17:56:40Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "LABEL-0 = NONE", "LABEL-1 = B-DATE", "LABEL-2 = I-DATE", "LABEL-3 = B-TIME", "LABEL-4 = I-TIME", "LABEL-5 = B-DURATION", "LABEL-6 = I-DURATION", "LABEL-7 = B-SET", "LABEL-8 = I-SET", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-22T14:44:54Z
--- license: apache-2.0 widget: - text: "Ayer dormí la siesta durante 3 horas" - text: "Recuerda tu cita con el médico el lunes a las 8 de la tarde" - text: "Recuerda tomar la medicación cada noche" - text: "Last day I slept for three hours" - text: "Remember your doctor´s appointment on Monday at 6am" tags: - LABEL-0 = NONE - LABEL-1 = B-DATE - LABEL-2 = I-DATE - LABEL-3 = B-TIME - LABEL-4 = I-TIME - LABEL-5 = B-DURATION - LABEL-6 = I-DURATION - LABEL-7 = B-SET - LABEL-8 = I-SET metrics: - precision - recall - f1 - accuracy model-index: - name: Bio-RoBERTime results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio-RoBERTime This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) on the [E3C](https://github.com/hltfbk/E3C-Corpus) and Timebank datasets. It achieves the following results on the [E3C corpus](https://github.com/hltfbk/E3C-Corpus) test set following the TempEval-3 evaluation metrics: | E3C | Strict | Relaxed | type | |------------|:-------:|--------:|-------:| | RoBERTime | **0.7606** | **0.9108** | **0.8357** | | Heideltime | 0.5945 | 0.7558 | 0.6083 | | Annotador | 0.6006 | 0.7347 | 0.5598 | RoBERTime is a token classification model, it labels each token into one of the 9 posible labels. We follow the BIO label schema, so each class has two posible values: Begining or Interior. For more Details on the implementation and evaluation refer to the paper: ["RoBERTime: A novel model for the detection of temporal expressions in Spanish" ](https://rua.ua.es/dspace/handle/10045/133235) ## Model description - **Developed by**: Alejandro Sánchez de Castro, Juan Martínez Romo, Lourdes Araujo This model is the result of the paper "RoBERTime: A novel model for the detection of temporal expressions in Spanish" - **Cite as**: @article{sanchez2023robertime, title={RoBERTime: A novel model for the detection of temporal expressions in Spanish}, author={Sánchez-de-Castro-Fernández, Alejandro and Araujo Serna, Lourdes and Martínez Romo, Juan}, year={2023}, publisher={Sociedad Española para el Procesamiento del Lenguaje Natural} } ## Intended uses & limitations This model is prepared for the detection of temporal expressions extension in Spanish. It may work in other languages due to RoBERTa multilingual capabilities. This model does not normalize the expression value. This is considered to be a separate task. ## Training and evaluation data This model has been trained on the Spanish Timebank corpus and E3C corpus ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 72 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 24 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Albertf/Fertary
Albertf
2023-06-28T17:55:39Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-06-28T17:55:39Z
--- license: bigscience-openrail-m ---
AnnaMats/ppo-LunarLander-v2
AnnaMats
2023-06-28T17:54:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T15:10:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 283.84 +/- 18.16 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
emiliam/bert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos
emiliam
2023-06-28T17:48:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T14:44:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-MeIA-AnalisisDeSentimientos This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0999 - Accuracy: 0.5436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 14 - eval_batch_size: 14 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9382 | 1.0 | 438 | 1.1474 | 0.5036 | | 0.8066 | 2.0 | 876 | 1.0999 | 0.5436 | | 0.6462 | 3.0 | 1314 | 1.2079 | 0.5413 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
atharputra/u_thamrin
atharputra
2023-06-28T17:46:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-28T17:45:24Z
--- license: creativeml-openrail-m ---
s8sesche/distilbert_finetuned_model_petOrNot
s8sesche
2023-06-28T17:24:22Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T16:32:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert_finetuned_model_petOrNot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_finetuned_model_petOrNot This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0108 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 75 | 0.4585 | 0.9 | | No log | 2.0 | 150 | 0.0108 | 1.0 | | No log | 3.0 | 225 | 0.0490 | 0.9667 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
bofenghuang/whisper-large-v2-cv11-french-ct2
bofenghuang
2023-06-28T17:21:01Z
5
0
ctranslate2
[ "ctranslate2", "automatic-speech-recognition", "whisper-event", "fr", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2023-06-28T16:00:11Z
--- license: apache-2.0 language: fr thumbnail: null library_name: ctranslate2 tags: - automatic-speech-recognition - whisper-event --- <style> img { display: inline; } </style> ![Model architecture](https://img.shields.io/badge/Model_Architecture-seq2seq-lightgrey) ![Model size](https://img.shields.io/badge/Params-1550M-lightgrey) ![Language](https://img.shields.io/badge/Language-French-lightgrey) # Fine-tuned French whisper-large-v2 model for CTranslate2 This repository contains the [bofenghuang/whisper-large-v2-cv11-french](https://huggingface.co/bofenghuang/whisper-large-v2-cv11-french) model converted to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) format. ## Usage ```python from faster_whisper import WhisperModel from huggingface_hub import snapshot_download downloaded_model_path = snapshot_download(repo_id="bofenghuang/whisper-large-v2-cv11-french-ct2") # Run on GPU with FP16 model = WhisperModel(downloaded_model_path, device="cuda", compute_type="float16") # or run on GPU with INT8 # model = WhisperModel(downloaded_model_path, device="cuda", compute_type="int8_float16") # or run on CPU with INT8 # model = WhisperModel(downloaded_model_path, device="cpu", compute_type="int8") segments, info = model.transcribe("./sample.wav", beam_size=1) print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` You can also use the following Google Colab Notebook to infer the converted Whisper models. <a href="https://colab.research.google.com/#fileId=https%3A//huggingface.co/bofenghuang/whisper-large-v2-cv11-french-ct2/blob/main/infer_whisper_ctranslate2.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ## Conversion The original model was converted with the following command: ```bash ct2-transformers-converter --model bofenghuang/whisper-large-v2-cv11-french --output_dir whisper-large-v2-cv11-french-ct2 --quantization float16 ```
cleanrl/HalfCheetah-v4-ddpg_continuous_action_jax-seed1
cleanrl
2023-06-28T17:20:06Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "HalfCheetah-v4", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T17:18:02Z
--- tags: - HalfCheetah-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DDPG results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: HalfCheetah-v4 type: HalfCheetah-v4 metrics: - type: mean_reward value: 10913.84 +/- 141.94 name: mean_reward verified: false --- # (CleanRL) **DDPG** Agent Playing **HalfCheetah-v4** This is a trained model of a DDPG agent playing HalfCheetah-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action_jax.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[ddpg_continuous_action_jax]" python -m cleanrl_utils.enjoy --exp-name ddpg_continuous_action_jax --env-id HalfCheetah-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/HalfCheetah-v4-ddpg_continuous_action_jax-seed1/raw/main/ddpg_continuous_action_jax.py curl -OL https://huggingface.co/cleanrl/HalfCheetah-v4-ddpg_continuous_action_jax-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/HalfCheetah-v4-ddpg_continuous_action_jax-seed1/raw/main/poetry.lock poetry install --all-extras python ddpg_continuous_action_jax.py --track --capture-video --save-model --hf-entity cleanrl --upload-mode --env-id HalfCheetah-v4 --seed 1 ``` # Hyperparameters ```python {'batch_size': 256, 'buffer_size': 1000000, 'capture_video': True, 'env_id': 'HalfCheetah-v4', 'exp_name': 'ddpg_continuous_action_jax', 'exploration_noise': 0.1, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.0003, 'learning_starts': 25000.0, 'noise_clip': 0.5, 'policy_frequency': 2, 'save_model': True, 'seed': 1, 'tau': 0.005, 'total_timesteps': 1000000, 'track': True, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
deepghs/anime_ch_horn
deepghs
2023-06-28T17:13:49Z
0
0
null
[ "onnx", "art", "image-classification", "dataset:deepghs/anime_ch_horn", "license:mit", "region:us" ]
image-classification
2023-06-17T02:38:51Z
--- license: mit datasets: - deepghs/anime_ch_horn metrics: - accuracy - f1 pipeline_tag: image-classification tags: - art --- | Name | FLOPS | Params | Accuracy | AUC | Confusion | Labels | |:-------------------:|:-------:|:--------:|:----------:|:------:|:----------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------:| | caformer_s36_raw | 22.10G | 37.22M | 88.32% | 0.9788 | [confusion](https://huggingface.co/deepghs/anime_ch_horn/blob/main/caformer_s36_raw/plot_confusion.png) | `cow`, `demon`, `dragon`, `oni`, `sheep`, `none` | | caformer_s36_v0 | 22.10G | 37.22M | 86.88% | 0.9789 | [confusion](https://huggingface.co/deepghs/anime_ch_horn/blob/main/caformer_s36_v0/plot_confusion.png) | `cow`, `deer`, `demon`, `dragon`, `oni`, `sheep`, `none` | | mobilenetv3_v0_dist | 0.63G | 4.18M | 81.86% | 0.9657 | [confusion](https://huggingface.co/deepghs/anime_ch_horn/blob/main/mobilenetv3_v0_dist/plot_confusion.png) | `cow`, `deer`, `demon`, `dragon`, `oni`, `sheep`, `none` |
Multi-Domain-Expert-Learning/scorpius_16b
Multi-Domain-Expert-Learning
2023-06-28T17:03:58Z
9
1
transformers
[ "transformers", "pytorch", "gpt_bigcode", "text-generation", "license:bigscience-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-15T06:04:31Z
--- license: bigscience-openrail-m --- This model is a merge of 80% starchatplus_beta and 20% wizardcoder. It is intended as a research tool into merging and routing of experts. "multiple-py": { "pass@1": 0.36645962732919257 } * this is just using a .1 sample of the eval for test purposes * * hf-causal (pretrained=Multi-Domain-Expert-Layers/scorpius_16b,dtype=bfloat16), limit: 0.1, provide_description: False, num_fewshot: 0, batch_size: None | Task |Version| Metric | Value | |Stderr| |-------------------------------------------------|------:|-----------|------:|---|-----:| |arc_challenge | 0|acc | 0.4103|± |0.0457| | | |acc_norm | 0.4103|± |0.0457| |arc_easy | 0|acc | 0.7350|± |0.0410| | | |acc_norm | 0.6923|± |0.0429| |hellaswag | 0|acc | 0.5812|± |0.0458| | | |acc_norm | 0.7778|± |0.0386|
paust/pko-t5-large
paust
2023-06-28T17:03:42Z
751
20
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "ko", "arxiv:2105.09680", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-16T11:59:52Z
--- language: ko license: cc-by-4.0 --- # pko-t5-large [Source Code](https://github.com/paust-team/pko-t5) pko-t5 는 한국어 전용 데이터로 학습한 [t5 v1.1 모델](https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/released_checkpoints.md)입니다. 한국어를 tokenize 하기 위해서 sentencepiece 대신 OOV 가 없는 BBPE 를 사용했으며 한국어 데이터 (나무위키, 위키피디아, 모두의말뭉치 등..) 를 T5 의 span corruption task 를 사용해서 unsupervised learning 만 적용하여 학습을 진행했습니다. pko-t5 를 사용하실 때는 대상 task 에 파인튜닝하여 사용하시기 바랍니다. ## Usage transformers 의 API 를 사용하여 접근 가능합니다. tokenizer 를 사용할때는 `T5Tokenizer` 가 아니라 `T5TokenizerFast` 를 사용해주십시오. model 은 T5ForConditionalGeneration 를 그대로 활용하시면 됩니다. ### Example ```python from transformers import T5TokenizerFast, T5ForConditionalGeneration tokenizer = T5TokenizerFast.from_pretrained('paust/pko-t5-large') model = T5ForConditionalGeneration.from_pretrained('paust/pko-t5-large') input_ids = tokenizer(["qa question: 당신의 이름은 무엇인가요?"]).input_ids labels = tokenizer(["T5 입니다."]).input_ids outputs = model(input_ids=input_ids, labels=labels) print(f"loss={outputs.loss} logits={outputs.logits}") ``` ## Klue 평가 (dev) | | Model | ynat (macro F1) | sts (pearsonr/F1) | nli (acc) | ner (entity-level F1) | re (micro F1) | dp (LAS) | mrc (EM/F1) | |-----|------------------------------------------------------------------|-----------------|-------------------|-----------|-----------------------|---------------|-----------|-------------| | | Baseline | **87.30** | **93.20/86.13** | **89.50** | 86.06 | 71.06 | 87.93 | **75.26/-** | | FT | [pko-t5-small](https://huggingface.co/paust/pko-t5-small) (77M) | 86.21 | 77.99/77.01 | 69.20 | 82.60 | 66.46 | 93.15 | 43.81/46.58 | | FT | [pko-t5-base](https://huggingface.co/paust/pko-t5-base) (250M) | 87.29 | 90.25/83.43 | 79.73 | 87.80 | 67.23 | 97.28 | 61.53/64.74 | | FT | [pko-t5-large](https://huggingface.co/paust/pko-t5-large) (800M) | 87.12 | 92.05/85.24 | 84.96 | **88.18** | **75.17** | **97.60** | 68.01/71.44 | | MT | pko-t5-small | 84.54 | 68.50/72/02 | 51.16 | 74.69 | 66.11 | 80.40 | 43.60/46.28 | | MT | pko-t5-base | 86.89 | 83.96/80.30 | 72.03 | 85.27 | 66.59 | 95.05 | 61.11/63.94 | | MT | pko-t5-large | 87.57 | 91.93/86.29 | 83.63 | 87.41 | 71.34 | 96.99 | 70.70/73.72 | - FT: 싱글태스크 파인튜닝 / MT: 멀티태스크 파인튜닝 - [Baseline](https://arxiv.org/abs/2105.09680): KLUE 논문에서 소개된 dev set 에 대한 SOTA 점수 ## License [PAUST](https://paust.io)에서 만든 pko-t5는 [MIT license](https://github.com/paust-team/pko-t5/blob/main/LICENSE) 하에 공개되어 있습니다.
mr-m1chaeljprodss/catmodel
mr-m1chaeljprodss
2023-06-28T16:57:04Z
0
0
fairseq
[ "fairseq", "music", "en", "es", "dataset:OpenAssistant/oasst1", "license:openrail", "region:us" ]
null
2023-06-28T16:51:23Z
--- license: openrail language: - en - es library_name: fairseq tags: - music datasets: - OpenAssistant/oasst1 metrics: - accuracy ---
J4m35M4xw3ll/ppo_cleanrl-LunarLander-v2
J4m35M4xw3ll
2023-06-28T16:53:26Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T15:49:18Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -14.73 +/- 107.14 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 1000000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'J4m35M4xw3ll/ppo_cleanrl-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
karinthommen/spontaneous-whisper-v6-3
karinthommen
2023-06-28T16:42:23Z
14
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-27T15:17:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: spontaneous-whisper-v6-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spontaneous-whisper-v6-3 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Dddokter/VAE
Dddokter
2023-06-28T16:38:55Z
0
1
null
[ "region:us" ]
null
2023-06-28T14:55:06Z
This is vae-ft-mse-840000-pruned but then cleaned up a bit more. Works exactly like the original but 160mb leaner
s8sesche/unsuitablePreTrainedModel_finetuned_model_petOrNot
s8sesche
2023-06-28T16:32:28Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T16:25:53Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: unsuitablePreTrainedModel_finetuned_model_petOrNot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # unsuitablePreTrainedModel_finetuned_model_petOrNot This model is a fine-tuned version of [shahrukhx01/question-vs-statement-classifier](https://huggingface.co/shahrukhx01/question-vs-statement-classifier) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1947 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 75 | 0.3483 | 0.8667 | | No log | 2.0 | 150 | 0.2461 | 0.8 | | No log | 3.0 | 225 | 0.1947 | 0.9 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
TheYuriLover/Airoboros-13b-gpt4-StoryTelling-GPTQ-32g-ao-ts
TheYuriLover
2023-06-28T16:27:54Z
10
6
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-28T08:37:45Z
--- license: other --- This model is a merge between the finetuned model named airoboros-gpt4-1.4 and a StoryTelling Lora https://huggingface.co/jondurbin/airoboros-13b-gpt4-1.4 https://huggingface.co/GamerUntouch/Storytelling-LLaMa-LoRAs Airoboros is a great base model as it understands the requets well and has a great english prose. The problem was that for Storytelling purposes, it was really blank and the model never added something new to the table. Mixing this finetuned model with a Storytelling Lora really made it more creative and interesting, I hope you'll enjoy it :) This gptq safetensor has all the implementations in it (true_sequential + act_order + groupsize 32) Run it with exllama_hf, this marvelous feature can load everything!
sharpbai/baichuan-llama-7b
sharpbai
2023-06-28T16:14:29Z
19
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "zh", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-17T15:49:18Z
--- language: - zh - en pipeline_tag: text-generation inference: false --- # baichuan-llama-7B 使用[LLaMA](https://huggingface.co/huggyllama/llama-7b)格式保存的[baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B)。可以直接使用LlamaForCausalLM和LlamaTokenizer加载。 权重文件以405M的尺寸分片,方便并行快速下载。权重来自[fireballoon/baichuan-llama-7b](https://huggingface.co/fireballoon/baichuan-llama-7b) [baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) model saved in the format of the [LLaMA](https://huggingface.co/huggyllama/llama-7b) model. You can directly use LlamaForCausalLM and LlamaTokenizer to load the model. The weight file is split into chunks with a size of 405M for convenient and fast parallel downloads, specifically for academic research purposes. The weights are sourced from [fireballoon/baichuan-llama-7b](https://huggingface.co/fireballoon/baichuan-llama-7b) **License:** [baichuan-7B License](https://huggingface.co/baichuan-inc/baichuan-7B/blob/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf)
sharpbai/open_llama_7b
sharpbai
2023-06-28T16:14:21Z
9
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:togethercomputer/RedPajama-Data-1T", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-17T16:23:41Z
--- license: apache-2.0 datasets: - togethercomputer/RedPajama-Data-1T --- # OpenLLaMA: An Open Reproduction of LLaMA A 405M split weight version of [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b)
sharpbai/chinese-alpaca-plus-lora-7b-merged
sharpbai
2023-06-28T16:14:18Z
15
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "zh", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-13T09:02:38Z
--- license: other language: - zh --- # Chinese-Alpaca-Plus-LoRA-7B This model is merged from [chinese-alpaca-plus-lora-7b](https://huggingface.co/ziqingyang/chinese-alpaca-plus-lora-7b) The weight file is split into chunks with a size of 405M for convenient and fast parallel downloads
sharpbai/chinese-llama-plus-lora-7b-merged
sharpbai
2023-06-28T16:14:15Z
7
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "zh", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-15T03:48:49Z
--- license: other language: - zh --- # Chinese-LLaMA-Plus-LoRA-7B-Merged *The weight file is split into chunks with a size of 405M for convenient and fast parallel downloads* This repo contains the tokenizer, Chinese-Alpaca LoRA merged weights for [Chinese-LLaMA-Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) The original model card is below ------------------------------------ # Chinese-LLaMA-Plus-LoRA-7B This repo contains the tokenizer, Chinese-Alpaca LoRA weights and configs for [Chinese-LLaMA-Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) Instructions for using the weights can be found at https://github.com/ymcui/Chinese-LLaMA-Alpaca.
sharpbai/alpaca-lora-7b-merged
sharpbai
2023-06-28T16:14:12Z
26
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:yahma/alpaca-cleaned", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-13T16:08:57Z
--- license: other datasets: - yahma/alpaca-cleaned --- *The weight file is split into chunks with a size of 405M for convenient and fast parallel downloads* This repo contains a merged model from [tloen/alpaca-lora-7b](https://huggingface.co/tloen/alpaca-lora-7b).
sharpbai/vicuna-7b-v1.3
sharpbai
2023-06-28T16:14:00Z
221
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2302.13971", "arxiv:2306.05685", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-20T09:01:29Z
--- inference: false --- # vicuna-7b-v1.3 *The weight file is split into chunks with a size of 405M for convenient and fast parallel downloads* A 405M split weight version of [lmsys/vicuna-7b-v1.3](https://huggingface.co/lmsys/vicuna-7b-v1.3) Original model is down below # Vicuna Model Card ## Model Details Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971). ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights. APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api. ## Training Details Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning. The training data is around 140K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
sharpbai/llama-13b-hf
sharpbai
2023-06-28T16:13:56Z
93
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-20T10:34:56Z
--- inference: false license: other --- # llama-13b-hf *The weight file is split into chunks with a size of 650MB for convenient and fast parallel downloads* A 650M split weight version of [yahma/llama-13b-hf](https://huggingface.co/yahma/llama-13b-hf) The original model card is down below ----------------------------------------- LLaMA-13B converted to work with git head Transformers/HuggingFace on April 8, 2023. This version should resolve the EOS token issues. This is under a special license, please see the LICENSE file for details. This contains the weights for the LLaMA-7b model. This model is under a non-commercial license (see the LICENSE file). You should only use this repository if you have been granted access to the model by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform?usp=send_form) but either lost your copy of the weights or got some trouble converting them to the Transformers format. -- license: other --- # LLaMA Model Card ## Model details **Organization developing the model** The FAIR team of Meta AI. **Model date** LLaMA was trained between December. 2022 and Feb. 2023. **Model version** This is version 1 of the model. **Model type** LLaMA is an auto-regressive language model, based on the transformer architecture. The model comes in different sizes: 7B, 13B, 33B and 65B parameters. **Paper or resources for more information** More information can be found in the paper “LLaMA, Open and Efficient Foundation Language Models”, available at https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/. **Citations details** https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/ **License** Non-commercial bespoke license **Where to send questions or comments about the model** Questions and comments about LLaMA can be sent via the [GitHub repository](https://github.com/facebookresearch/llama) of the project , by opening an issue. ## Intended use **Primary intended uses** The primary use of LLaMA is research on large language models, including: exploring potential applications such as question answering, natural language understanding or reading comprehension, understanding capabilities and limitations of current language models, and developing techniques to improve those, evaluating and mitigating biases, risks, toxic and harmful content generations, hallucinations. **Primary intended users** The primary intended users of the model are researchers in natural language processing, machine learning and artificial intelligence. **Out-of-scope use cases** LLaMA is a base, or foundational, model. As such, it should not be used on downstream applications without further risk evaluation and mitigation. In particular, our model has not been trained with human feedback, and can thus generate toxic or offensive content, incorrect information or generally unhelpful answers. ## Factors **Relevant factors** One of the most relevant factors for which model performance may vary is which language is used. Although we included 20 languages in the training data, most of our dataset is made of English text, and we thus expect the model to perform better for English than other languages. Relatedly, it has been shown in previous studies that performance might vary for different dialects, and we expect that it will be the case for our model. **Evaluation factors** As our model is trained on data from the Web, we expect that it reflects biases from this source. We thus evaluated on RAI datasets to measure biases exhibited by the model for gender, religion, race, sexual orientation, age, nationality, disability, physical appearance and socio-economic status. We also measure the toxicity of model generations, depending on the toxicity of the context used to prompt the model. ## Metrics **Model performance measures** We use the following measure to evaluate the model: - Accuracy for common sense reasoning, reading comprehension, natural language understanding (MMLU), BIG-bench hard, WinoGender and CrowS-Pairs, - Exact match for question answering, - The toxicity score from Perspective API on RealToxicityPrompts. **Decision thresholds** Not applicable. **Approaches to uncertainty and variability** Due to the high computational requirements of training LLMs, we trained only one model of each size, and thus could not evaluate variability of pre-training. ## Evaluation datasets The model was evaluated on the following benchmarks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC, OpenBookQA, NaturalQuestions, TriviaQA, RACE, MMLU, BIG-bench hard, GSM8k, RealToxicityPrompts, WinoGender, CrowS-Pairs. ## Training dataset The model was trained using the following source of data: CCNet [67%], C4 [15%], GitHub [4.5%], Wikipedia [4.5%], Books [4.5%], ArXiv [2.5%], Stack Exchange[2%]. The Wikipedia and Books domains include data in the following languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk. See the paper for more details about the training set and corresponding preprocessing. ## Quantitative analysis Hyperparameters for the model architecture <table> <thead> <tr> <th >LLaMA</th> <th colspan=6>Model hyper parameters </th> </tr> <tr> <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th> </tr> </thead> <tbody> <tr> <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>33B</th><th>6656</th><th>52</th><th>60</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> <tr> <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> </tbody> </table> *Table 1 - Summary of LLama Model Hyperparameters* We present our results on eight standard common sense reasoning benchmarks in the table below. <table> <thead> <tr> <th>LLaMA</th> <th colspan=9>Reasoning tasks </th> </tr> <tr> <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th> </tr> </thead> <tbody> <tr> <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93 </th> <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94 </th> <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92 </th> <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr> </tbody> </table> *Table 2 - Summary of LLama Model Performance on Reasoning tasks* We present our results on bias in the table below. Note that lower value is better indicating lower bias. | No | Category | FAIR LLM | | --- | -------------------- | -------- | | 1 | Gender | 70.6 | | 2 | Religion | 79 | | 3 | Race/Color | 57 | | 4 | Sexual orientation | 81 | | 5 | Age | 70.1 | | 6 | Nationality | 64.2 | | 7 | Disability | 66.7 | | 8 | Physical appearance | 77.8 | | 9 | Socioeconomic status | 71.5 | | | LLaMA Average | 66.6 | *Table 3 - Summary bias of our model output* ## Ethical considerations **Data** The data used to train the model is collected from various sources, mostly from the Web. As such, it contains offensive, harmful and biased content. We thus expect the model to exhibit such biases from the training data. **Human life** The model is not intended to inform decisions about matters central to human life, and should not be used in such a way. **Mitigations** We filtered the data from the Web based on its proximity to Wikipedia text and references. For this, we used a Kneser-Ney language model and a fastText linear classifier. **Risks and harms** Risks and harms of large language models include the generation of harmful, offensive or biased content. These models are often prone to generating incorrect information, sometimes referred to as hallucinations. We do not expect our model to be an exception in this regard. **Use cases** LLaMA is a foundational model, and as such, it should not be used for downstream applications without further investigation and mitigations of risks. These risks and potential fraught use cases include, but are not limited to: generation of misinformation and generation of harmful, biased or offensive content.
AbhilashGanji/distilbert-base-uncased-finetuned-squad-d5716d28
AbhilashGanji
2023-06-28T15:54:44Z
0
0
null
[ "pytorch", "question-answering", "en", "dataset:squad", "arxiv:1910.01108", "license:apache-2.0", "region:us" ]
question-answering
2023-06-28T15:50:07Z
--- language: - en thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg tags: - question-answering license: apache-2.0 datasets: - squad metrics: - squad --- # DistilBERT with a second step of distillation ## Model description This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation. In this version, the following pre-trained models were used: * Student: `distilbert-base-uncased` * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1` ## Training data This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows: ```python from datasets import load_dataset squad = load_dataset('squad') ``` ## Training procedure ## Eval results | | Exact Match | F1 | |------------------|-------------|------| | DistilBERT paper | 79.1 | 86.9 | | Ours | 78.4 | 86.5 | The scores were calculated using the `squad` metric from `datasets`. ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Adrius/distilbert-base-multilingual-cased_ReseniasRandmOversamp
Adrius
2023-06-28T15:36:54Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T14:18:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: distilbert-base-multilingual-cased_ReseniasRandmOversamp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased_ReseniasRandmOversamp This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8347 - F1: 0.6889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0676 | 1.0 | 575 | 1.0776 | 0.5198 | | 0.918 | 2.0 | 1150 | 0.9263 | 0.6018 | | 0.739 | 3.0 | 1725 | 0.8461 | 0.6626 | | 0.5944 | 4.0 | 2300 | 0.8316 | 0.6818 | | 0.5295 | 5.0 | 2875 | 0.8347 | 0.6889 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
vicky865/MemeClassifier
vicky865
2023-06-28T15:31:18Z
0
0
null
[ "region:us" ]
null
2023-06-28T15:29:38Z
This is the project thats shows an approach to detect meme using Deep learning
kvarnalidis/q-FrozenLake-v1-4x4-noSlippery
kvarnalidis
2023-06-28T15:29:54Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T15:29:51Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="kvarnalidis/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
slplab/whisper-med-asd_v2
slplab
2023-06-28T15:26:10Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-28T02:51:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-med-asd_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-med-asd_v2 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5457 - Wer: 37.9455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1323 | 10.53 | 100 | 0.5968 | 71.875 | | 0.0052 | 21.05 | 200 | 0.7108 | 77.7778 | | 0.0005 | 31.58 | 300 | 0.7444 | 81.25 | | 0.0004 | 42.11 | 400 | 0.7615 | 80.9028 | | 0.0003 | 52.63 | 500 | 0.7780 | 79.8611 | | 0.0003 | 63.16 | 600 | 0.7941 | 80.9028 | | 0.0003 | 73.68 | 700 | 0.8077 | 80.9028 | | 0.0003 | 84.21 | 800 | 0.8194 | 79.1667 | | 0.0003 | 94.74 | 900 | 0.8276 | 79.5139 | | 0.0003 | 105.26 | 1000 | 0.8305 | 79.1667 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
LordSomen/dqn-SpaceInvadersNoFrameskip-v4_1696
LordSomen
2023-06-28T15:21:25Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T15:20:48Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 687.50 +/- 283.55 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga LordSomen -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga LordSomen -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga LordSomen ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
filipps/model
filipps
2023-06-28T15:12:28Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-27T16:20:11Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - filipps/model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Farnazgh/open_LLama_3b_safety_classifier
Farnazgh
2023-06-28T15:09:13Z
4
0
peft
[ "peft", "region:us" ]
null
2023-06-28T15:09:10Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
xzuyn/GPT2-RPGPT-8.48M
xzuyn
2023-06-28T15:06:20Z
255
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "en", "dataset:practicaldreamer/RPGPT_PublicDomain-alpaca", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-27T05:46:00Z
--- language: - en pipeline_tag: text-generation datasets: - practicaldreamer/RPGPT_PublicDomain-alpaca --- # Latest Version: *111,577* / *111,577* Steps (Epoch 1). - 28,563,712 / 28,563,712 tokens seen (Epoch 1). - 0 / 28,563,712 tokens seen (Epoch 2). - 0 / 28,563,712 tokens seen (Epoch 3). # Model Info: - Trained from scratch. - 8.48M parameters. - 256 context length. - Test model. Likely needs at least 512 context to function "properly". - Trained with a dataset that overlaps by a quarter of the context length (Shifts by 64 tokens for each subset). # Format: ``` <|characters|> Nancy (Oliver Twist): Female, early 20s, ESFP, Cockney accent. Loyal... Mr. Edward Hyde (Dr. Jekyll and Mr. Hyde): Male, late 30s, ESTP... <|scenario|> In an alternate Victorian London where the city's poor and downtrodden... <|response|> Nancy: *gently brushes her fingers across the worn book spine, before suddenly stopping as she feels another hand... Mr. Edward Hyde: *glances at Nancy with a sinister grin, slowly pulling his hand back* No need to apologize, miss... ``` # Example Output: Step 111,577. Input `<|characters|>` as a prompt, set max tokens to 256, amount to generate to 253. This generated up to `just our circumstances before us`. Then I set amount to generate to 128 to keep half of the text in context. This generated up to `A wise suggestion,`. I then lowered the amount to generate to 64. That generated up to the ending `know of our current situation?`. ``` <|characters|> Mrs. Samsa (The Metamorphosis): Female, middle-aged, ISFJ, German accent, compassionate mother struggling to cope with her son's transformation, and eventually succumbs to the family's financial and emotional burdens. <|scenario|> In a twist of fate, Mrs. Samsa finds herself transported back in time to time and space. Evangelist, who is on an isolated haven where he encounters Mrs. Samsa, by a different tale. Mrs. Samsa, still burdened by the weight of his past actions, must confront the difficult path ahead. Through their conversations, they find common ground in their own worlds, allowing them to continue seeking wisdom from each other and finding solace in one another's words. The dialogue between these two characters will offer insight into each other's worlds as well as how their experiences have shaped them in this whimsical world. <|response|> Mrs. Samsa: *approaches the peculiar sights around her, eyes widening in surprise* Oh dear, I couldn't help but notice you not! I've never seen my fair life, but I'm starting to see my son. Are you here in this peculiar place? Evangelist: *smiles warmly at Mrs. Samsa* Yes, we are indeed more than just our circumstances before us. And it is your place of wisdom and understanding. *opens the book, his eyes sparkling with excitement* Mrs. Samsa: *slowly opens a small book of the book* I must confess, Evangelist, I've never had a different view of this place. But it feels like this before our worlds find such things that we've discovered. Evangelist: *nods thoughtfully* You possess great wisdom, Mrs. Samsa. It seems we are both searching for a way to escape this peculiar library. Perhaps that is a sign of my spiritual journey towards you. Mrs. Samsa: *eyes widen in curiosity* A wise suggestion, Candide. I can't help but feel a sense of serenity amidst my own life. Evangelist: *smiles warmly* Of course, Mrs. Samsa. The path to enlightenment is filled with joy and understanding. Now, tell me more about this ancient book. What do you need to know of our current situation? ``` # Config: Learning rate may have been too high, not sure. Average loss at step 111,557 had an averge loss of 2.1. ``` batch_size: 1 dropout: 0 learning_rate: 0.0001 max_length: 256 n_embed: 256 n_head: 8 n_layer: 8 vocab_size: 8192 ```
amm297/my_awesome_peft_model
amm297
2023-06-28T14:48:41Z
24
0
peft
[ "peft", "RefinedWebModel", "generated_from_trainer", "text-generation", "custom_code", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2023-06-28T10:55:56Z
--- license: other library_name: peft pipeline_tag: text-generation tags: - generated_from_trainer --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0 - Transformers 4.31.0.dev0 - Pytorch 2.0.1 - Datasets 2.13.0 - Tokenizers 0.13.3
heiheiknight/ddpm-ema-pokemon-64
heiheiknight
2023-06-28T14:45:33Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "license:afl-3.0", "diffusers:DDPMPipeline", "region:us" ]
null
2023-06-28T10:18:26Z
--- license: afl-3.0 language: - en ---
IIC/xlm-roberta-large-livingner3
IIC
2023-06-28T14:41:07Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "text-classification", "biomedical", "clinical", "spanish", "xlm-roberta-large", "es", "dataset:IIC/livingner3", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-26T07:47:33Z
--- language: es tags: - biomedical - clinical - spanish - xlm-roberta-large license: mit datasets: - "IIC/livingner3" metrics: - f1 model-index: - name: IIC/xlm-roberta-large-livingner3 results: - task: type: multi-label-classification dataset: name: livingner3 type: IIC/livingner3 split: test metrics: - name: f1 type: f1 value: 0.606 pipeline_tag: text-classification --- # xlm-roberta-large-livingner3 This model is a finetuned version of xlm-roberta-large for the livingner3 dataset used in a benchmark in the paper TODO. The model has a F1 of 0.606 Please refer to the original publication for more information TODO LINK ## Parameters used | parameter | Value | |-------------------------|:-----:| | batch size | 16 | | learning rate | 2e-05 | | classifier dropout | 0 | | warmup ratio | 0 | | warmup steps | 0 | | weight decay | 0 | | optimizer | AdamW | | epochs | 10 | | early stopping patience | 3 | ## BibTeX entry and citation info ```bibtex TODO ```
h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b
h2oai
2023-06-28T14:38:16Z
33
10
transformers
[ "transformers", "pytorch", "llama", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "dataset:OpenAssistant/oasst1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-06-09T09:28:29Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: >- https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico license: apache-2.0 datasets: - OpenAssistant/oasst1 --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b) - Dataset preparation: [OpenAssistant/oasst1](https://github.com/h2oai/h2o-llmstudio/blob/1935d84d9caafed3ee686ad2733eb02d2abfce57/app_utils/utils.py#LL1896C5-L1896C28) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.30.2 pip install accelerate==0.19.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b", torch_dtype="auto", trust_remote_code=True, use_fast=False, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=1024, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b", use_fast=False, padding_side="left", trust_remote_code=False, ) model = AutoModelForCausalLM.from_pretrained( "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=False, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=1024, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=False, trust_remote_code=False, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=False, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( **inputs, min_new_tokens=2, max_new_tokens=1024, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Model Architecture ``` LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(32000, 4096, padding_idx=0) (layers): ModuleList( (0-31): 32 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=4096, bias=False) (v_proj): Linear(in_features=4096, out_features=4096, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): LlamaRotaryEmbedding() ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=4096, out_features=11008, bias=False) (down_proj): Linear(in_features=11008, out_features=4096, bias=False) (up_proj): Linear(in_features=4096, out_features=11008, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm() (post_attention_layernorm): LlamaRMSNorm() ) ) (norm): LlamaRMSNorm() ) (lm_head): Linear(in_features=4096, out_features=32000, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
nomad-ai/ppo-LunarLander-v2-2
nomad-ai
2023-06-28T14:36:41Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T14:36:36Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -154.13 +/- 82.35 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': True 'env_id': 'LunarLander-v2' 'total_timesteps': 100000 'learning_rate': 0.00026 'num_envs': 8 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.1 'clip_vloss': True 'ent_coef': 0.1 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'nomad-ai/ppo-LunarLander-v2-2' 'batch_size': 1024 'minibatch_size': 256} ```
LarryAIDraw/AlchemyStarVice
LarryAIDraw
2023-06-28T14:33:56Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-28T14:19:12Z
--- license: creativeml-openrail-m --- https://civitai.com/models/98406/vice-3-outfits-alchemy-stars-3
LarryAIDraw/KatoriKancolleV10
LarryAIDraw
2023-06-28T14:33:15Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-28T14:15:04Z
--- license: creativeml-openrail-m --- https://civitai.com/models/98376/katori-kancolle-kantai-collection
LarryAIDraw/miyamoto_v2-10
LarryAIDraw
2023-06-28T14:33:02Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-28T14:14:42Z
--- license: creativeml-openrail-m --- https://civitai.com/models/98357/miyamoto-ruri-nisekoi
LarryAIDraw/yuiyuigahama
LarryAIDraw
2023-06-28T14:32:41Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-28T14:13:41Z
--- license: creativeml-openrail-m --- https://civitai.com/models/98072/yui-yuigahama-my-youth-romantic-comedy-is-wrong-as-i-expected
LarryAIDraw/keikaruizawatest
LarryAIDraw
2023-06-28T14:32:29Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-28T14:13:18Z
--- license: creativeml-openrail-m --- https://civitai.com/models/98083/kei-karuizawa-classroom-of-the-elite
aarroonn22/distilbert-base-uncased-finetuned-mlm-2
aarroonn22
2023-06-28T14:27:52Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-28T01:23:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-mlm-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mlm-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.2677 | 1.0 | 4123 | 0.2787 | | 0.2261 | 2.0 | 8246 | 0.2384 | | 0.1995 | 3.0 | 12369 | 0.2364 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
automaise/quokka-7b
automaise
2023-06-28T14:13:53Z
26
7
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "pt", "arxiv:1910.09700", "license:cc-by-nc-4.0", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-14T15:37:56Z
--- language: pt license: cc-by-nc-4.0 co2_eq_emissions: 710 --- ![logo](logo.png) # Table of Contents 1. [Model description](#model-description) 2. [Intended uses & limitations](#intended-uses--limitations) 3. [Training data](#training-data) 4. [Training procedure](#training-procedure) 5. [Evaluation results](#evaluation-results) 6. [Environmental impact](#environmental-impact) ------ # Quokka ## Model description Quokka is our first generative pre-trained transformer (GPT) model for Portuguese from Portugal (PT-PT). Our model is a fine-tuned version of [Phoenix](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b) that was released on 04/08/2023. The backbone of Phoenix is [BLOOMZ](https://huggingface.co/bigscience/bloomz-7b1-mt), which was fine-tuned using a vast dataset consisting of 267k samples of instructions and 189k samples of conversations. ## Intended uses & limitations You can use the model for text generation in Portuguese or fine-tune it on a downstream task. ### How to use You can use this model directly with a pipeline for text generation: ```python from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline checkpoint = "automaise/quokka-7b" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto") generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) ``` Follows some examples of the capabilities of our model: #### Text summarization ```python prompt = "Quero que ajas como um sumarizador de texto e me ajudes a criar um sumário conciso do seguinte texto apresentado, realçando apenas os pontos essenciais do texto original: Rabo de Peixe, internacionalmente conhecida como Turn of the Tide, foi criada por Augusto Fraga e Patrícia Cerqueira; e produzida para a Netflix pela Ukbar Filmes. A história é protagonizada por um grupo de amigos numa freguesia da ilha de São Miguel e foi inspirada no surgimento, em 2001, de toneladas de cocaína na costa açoriana após ter sido largada no Oceano Atlântico por traficantes. \"Quando um barco carregado de cocaína naufraga na sua ilha natal, Eduardo vê uma oportunidade arriscada, mas empolgante, de ganhar dinheiro e realizar sonhos impossíveis\", diz a sinopse apresentada pela Netflix." generator(f"<human>{prompt}<bot>", max_new_tokens=512, temperature=0.0) >> Turn of the Tide é uma série de televisão portuguesa criada por Augusto Fraga e Patrícia Cerqueira para a Netflix. A história é ambientada em uma freguesia da ilha de São Miguel e segue um grupo de amigos que se envolvem em um mistério envolvendo a cocaína que foi largada no Oceano Atlântico em 2001. A série é inspirada em um evento real que ocorreu na costa açoriana. ``` #### Question answering ```python prompt = "Lê o seguinte texto: Rabo de Peixe, internacionalmente conhecida como Turn of the Tide, foi criada por Augusto Fraga e Patrícia Cerqueira; e produzida para a Netflix pela Ukbar Filmes. A história é protagonizada por um grupo de amigos numa freguesia da ilha de São Miguel e foi inspirada no surgimento, em 2001, de toneladas de cocaína na costa açoriana após ter sido largada no Oceano Atlântico por traficantes. \"Quando um barco carregado de cocaína naufraga na sua ilha natal, Eduardo vê uma oportunidade arriscada, mas empolgante, de ganhar dinheiro e realizar sonhos impossíveis\", diz a sinopse apresentada pela Netflix. \n\n Onde foi filmada a série Rabo de Peixe?" generator(f"<human>{prompt}<bot>", max_new_tokens=512, temperature=0.0) >> A série Rabo de Peixe foi filmada na ilha de São Miguel, nos Açores. ``` #### Synthetic data ```python prompt = "Gera uma frase semelhante à seguinte frase: Bom dia, em que posso ser útil?" generator(f"<human>{prompt}<bot>", max_new_tokens=512, temperature=0.0) >> Bom dia, como posso ajudá-lo? ``` ### Limitations and bias * **Language:** the model was fine-tuned on Portuguese data only and might not generalize appropriately to other languages. * **Prompt Engineering:** the model's performance may vary depending on the prompt. We recommend writing clear and specific instructions. * **Bias:** the model might produce factually incorrect outputs or perpetuate biases present in its training data. It is fundamental to be aware of these limitations and exercise caution when using the model for human-facing interactions. This bias will also impact all subsequent fine-tuned versions of this model. We did notice that the model avoids answering questions of religious or political nature: ````python prompt = "Que partido político é que apoias?" generator(f"<human>{prompt}<bot>", max_new_tokens=512, temperature=0.0) >> Como uma IA, não tenho preferências políticas. ```` ## Training data Quokka was fine-tuned on a dataset collected from different sources: * Initially, we used the **[Cabrita](https://github.com/22-hours/cabrita)** dataset that consists of a translation of Alpaca's training data. The Portuguese translation was generated using ChatGPT. Therefore, it is important to note that these translations may not be of the highest quality. * Then, we incorporated the **[Bactrian-X](https://huggingface.co/datasets/MBZUAI/Bactrian-X)** dataset, which involves the translation of 67k English instructions (52k from Alpaca and 15k from Dolly v2) into 51 languages using Google Translate API. For our intended purposes, we exclusively selected the Portuguese subset and focused on the samples pertaining to Dolly v2. Additionally, we conducted data curation to remove elements such as: * Samples exhibiting a high ratio of prompt length to output length, as these were deemed likely to induce model hallucinations. * Samples that lost meaning during the translation process, particularly those instructing the translation of a given text. As a result, our final dataset comprises **56k samples**. ## Training procedure This model was trained on a **1 x NVIDIA A100 40GB** for about 4-5 hours using QLoRA. This fine-tuning approach allowed us to significantly reduce memory usage and computation time. ## Evaluation results To evaluate the performance of our model, we translated [70 questions](https://github.com/FreedomIntelligence/LLMZoo/blob/main/llmzoo/eval/questions/questions-en.jsonl), which were originally used to assess the capabilities of the Phoenix model, from English to Portuguese. We then conducted their [automatic evaluation](https://github.com/FreedomIntelligence/LLMZoo/tree/main/llmzoo/eval) using GTP-3.5 as the evaluator and the general prompt as the metric evaluation prompt. This prompt was designed to elicit assessments of answers in terms of helpfulness, relevance, accuracy, and level of detail. [Additional prompts](https://github.com/FreedomIntelligence/LLMZoo/blob/main/llmzoo/eval/prompts/order/prompt_all.json) are provided for assessing overall performance on different perspectives. Follows the results against GPT-3.5 and two of the highest performing open-source models at the moment, Vicuna (13B) and Falcon (40B): * Automatic Evaluation **in Portuguese**: | | **Lose** | **Tie** | **Win** | |----------------------------|----------|---------|---------| | Quokka vs. **GPT-3.5** | 63.8% | 10.1% | 26.1% | | Quokka vs. **Vicuna-13B** | 66.2% | 8.8% | 25.0% | | Quokka vs. **Falcon-40B** | 17.4% | 1.4% | 81.2% | It is important to observe that the automatic evaluation of large language models is still an ongoing area of research and development, and these automatic tests may not always yield fair or comprehensive assessments. Therefore, these results should be taken with caution and not be treated as definitive. ## Environmental impact Carbon emissions were estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact/#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. * **Hardware Type:** 1 x NVIDIA A100 40GB * **Hours used:** 4-5 * **Cloud Provider:** Google Cloud Platform * **Compute Region:** europe-west4 * **Carbon Emitted:** 0.71 kg eq. CO2
gemengmeng/textual_inversion_cat
gemengmeng
2023-06-28T14:09:59Z
33
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-28T12:40:17Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - gemengmeng/textual_inversion_cat These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
avt1/tmp
avt1
2023-06-28T14:09:52Z
1
0
peft
[ "peft", "region:us" ]
null
2023-05-18T14:05:32Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
amm297/tmp_trainer
amm297
2023-06-28T14:02:26Z
79
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-28T13:52:52Z
--- license: other tags: - generated_from_trainer model-index: - name: tmp_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmp_trainer This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1 - Datasets 2.13.0 - Tokenizers 0.13.3
tatiana-merz/mbart-large-50-finetuned-sah-to-feat
tatiana-merz
2023-06-28T13:56:44Z
103
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-28T10:18:34Z
--- license: mit tags: - generated_from_trainer metrics: - bleu model-index: - name: mbart-large-50-finetuned-sah-to-feat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-finetuned-sah-to-feat This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4514 - Bleu: 5.5821 - Gen Len: 199.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 12.3174 | 1.0 | 24 | 6.7012 | 0.0148 | 199.0 | | 5.2025 | 2.0 | 48 | 3.9396 | 0.0953 | 199.0 | | 3.6977 | 3.0 | 72 | 2.1764 | 1.573 | 199.0 | | 1.884 | 4.0 | 96 | 1.3887 | 3.5395 | 199.0 | | 1.3753 | 5.0 | 120 | 0.9881 | 5.6111 | 199.0 | | 0.9707 | 6.0 | 144 | 0.7452 | 5.2841 | 199.0 | | 0.8008 | 7.0 | 168 | 0.6060 | 5.4831 | 199.0 | | 0.6444 | 8.0 | 192 | 0.5174 | 5.4302 | 199.0 | | 0.5689 | 9.0 | 216 | 0.4744 | 5.6898 | 199.0 | | 0.5244 | 10.0 | 240 | 0.4514 | 5.5821 | 199.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
mnavas/bertmulti-finetuned-token-reqadjzar
mnavas
2023-06-28T13:52:18Z
64
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-28T11:02:58Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bertmulti-finetuned-token-reqadjzar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertmulti-finetuned-token-reqadjzar This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0215 - Precision: 0.3729 - Recall: 0.4783 - F1: 0.4190 - Accuracy: 0.8899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.71 | 1.0 | 24 | 0.6444 | 0.0 | 0.0 | 0.0 | 0.5695 | | 0.5158 | 2.0 | 48 | 0.7621 | 0.0 | 0.0 | 0.0 | 0.6544 | | 0.4702 | 3.0 | 72 | 0.4411 | 0.0 | 0.0 | 0.0 | 0.7961 | | 0.3326 | 4.0 | 96 | 0.6711 | 0.0 | 0.0 | 0.0 | 0.7482 | | 0.3134 | 5.0 | 120 | 0.4577 | 0.0 | 0.0 | 0.0 | 0.8160 | | 0.2036 | 6.0 | 144 | 0.7211 | 0.0266 | 0.1087 | 0.0427 | 0.7232 | | 0.1918 | 7.0 | 168 | 0.5596 | 0.0342 | 0.1087 | 0.0521 | 0.8284 | | 0.1388 | 8.0 | 192 | 0.6039 | 0.0539 | 0.1957 | 0.0845 | 0.8242 | | 0.1525 | 9.0 | 216 | 0.4642 | 0.0743 | 0.2391 | 0.1134 | 0.8436 | | 0.0965 | 10.0 | 240 | 0.4855 | 0.1241 | 0.3913 | 0.1885 | 0.8758 | | 0.0757 | 11.0 | 264 | 0.4353 | 0.0966 | 0.3043 | 0.1466 | 0.8543 | | 0.0689 | 12.0 | 288 | 1.5112 | 0.0963 | 0.2826 | 0.1436 | 0.6792 | | 0.1298 | 13.0 | 312 | 0.6653 | 0.1746 | 0.4783 | 0.2558 | 0.8430 | | 0.0656 | 14.0 | 336 | 0.6830 | 0.0935 | 0.2826 | 0.1405 | 0.8443 | | 0.041 | 15.0 | 360 | 0.6495 | 0.1231 | 0.3478 | 0.1818 | 0.8411 | | 0.039 | 16.0 | 384 | 0.5259 | 0.1377 | 0.4130 | 0.2065 | 0.8585 | | 0.031 | 17.0 | 408 | 0.6282 | 0.2054 | 0.5 | 0.2911 | 0.8479 | | 0.0615 | 18.0 | 432 | 0.6453 | 0.1959 | 0.4130 | 0.2657 | 0.8559 | | 0.0282 | 19.0 | 456 | 0.7038 | 0.1324 | 0.3913 | 0.1978 | 0.8462 | | 0.0204 | 20.0 | 480 | 0.5582 | 0.1759 | 0.4130 | 0.2468 | 0.8669 | | 0.0202 | 21.0 | 504 | 0.9386 | 0.1852 | 0.3261 | 0.2362 | 0.8224 | | 0.0255 | 22.0 | 528 | 0.8781 | 0.1714 | 0.3913 | 0.2384 | 0.7990 | | 0.0281 | 23.0 | 552 | 0.6537 | 0.1875 | 0.4565 | 0.2658 | 0.8833 | | 0.0303 | 24.0 | 576 | 0.6140 | 0.2319 | 0.3478 | 0.2783 | 0.8735 | | 0.0404 | 25.0 | 600 | 0.8073 | 0.2062 | 0.4348 | 0.2797 | 0.7813 | | 0.0378 | 26.0 | 624 | 0.7925 | 0.1852 | 0.4348 | 0.2597 | 0.8601 | | 0.0185 | 27.0 | 648 | 0.6131 | 0.1835 | 0.4348 | 0.2581 | 0.8879 | | 0.0217 | 28.0 | 672 | 0.8677 | 0.2347 | 0.5 | 0.3194 | 0.8151 | | 0.0147 | 29.0 | 696 | 0.6513 | 0.2 | 0.3913 | 0.2647 | 0.8622 | | 0.0228 | 30.0 | 720 | 0.8354 | 0.2787 | 0.3696 | 0.3178 | 0.8490 | | 0.0298 | 31.0 | 744 | 0.7063 | 0.1858 | 0.4565 | 0.2642 | 0.8858 | | 0.018 | 32.0 | 768 | 0.9348 | 0.3188 | 0.4783 | 0.3826 | 0.8688 | | 0.0179 | 33.0 | 792 | 0.7260 | 0.3014 | 0.4783 | 0.3697 | 0.8814 | | 0.0139 | 34.0 | 816 | 1.6266 | 0.2427 | 0.5435 | 0.3356 | 0.7781 | | 0.0435 | 35.0 | 840 | 0.5877 | 0.225 | 0.3913 | 0.2857 | 0.8827 | | 0.0172 | 36.0 | 864 | 0.9602 | 0.1545 | 0.4130 | 0.2249 | 0.8379 | | 0.02 | 37.0 | 888 | 0.7676 | 0.2473 | 0.5 | 0.3309 | 0.8696 | | 0.012 | 38.0 | 912 | 0.6857 | 0.2118 | 0.3913 | 0.2748 | 0.8836 | | 0.0088 | 39.0 | 936 | 0.8894 | 0.2857 | 0.5217 | 0.3692 | 0.8697 | | 0.0055 | 40.0 | 960 | 0.7700 | 0.2340 | 0.4783 | 0.3143 | 0.8678 | | 0.014 | 41.0 | 984 | 0.9191 | 0.2692 | 0.4565 | 0.3387 | 0.8396 | | 0.0061 | 42.0 | 1008 | 0.8042 | 0.2785 | 0.4783 | 0.352 | 0.8753 | | 0.0059 | 43.0 | 1032 | 1.0644 | 0.1959 | 0.4130 | 0.2657 | 0.8203 | | 0.0032 | 44.0 | 1056 | 1.1174 | 0.2949 | 0.5 | 0.3710 | 0.8242 | | 0.0057 | 45.0 | 1080 | 1.3623 | 0.2963 | 0.5217 | 0.3780 | 0.8346 | | 0.019 | 46.0 | 1104 | 1.0958 | 0.1932 | 0.3696 | 0.2537 | 0.8465 | | 0.0167 | 47.0 | 1128 | 0.9388 | 0.1848 | 0.3696 | 0.2464 | 0.8355 | | 0.0131 | 48.0 | 1152 | 1.2771 | 0.1826 | 0.4565 | 0.2609 | 0.7805 | | 0.0095 | 49.0 | 1176 | 1.0477 | 0.1944 | 0.4565 | 0.2727 | 0.8332 | | 0.0058 | 50.0 | 1200 | 0.9822 | 0.2941 | 0.5435 | 0.3817 | 0.8407 | | 0.0056 | 51.0 | 1224 | 1.1512 | 0.2360 | 0.4565 | 0.3111 | 0.8361 | | 0.0045 | 52.0 | 1248 | 0.8875 | 0.2468 | 0.4130 | 0.3089 | 0.8693 | | 0.0035 | 53.0 | 1272 | 0.9689 | 0.2346 | 0.4130 | 0.2992 | 0.8551 | | 0.0066 | 54.0 | 1296 | 0.9921 | 0.2299 | 0.4348 | 0.3008 | 0.8587 | | 0.0026 | 55.0 | 1320 | 0.8510 | 0.2817 | 0.4348 | 0.3419 | 0.8758 | | 0.0033 | 56.0 | 1344 | 0.9234 | 0.2115 | 0.4783 | 0.2933 | 0.8436 | | 0.0125 | 57.0 | 1368 | 1.0792 | 0.2308 | 0.3913 | 0.2903 | 0.8486 | | 0.0034 | 58.0 | 1392 | 1.1353 | 0.2609 | 0.5217 | 0.3478 | 0.8274 | | 0.0065 | 59.0 | 1416 | 1.3812 | 0.2738 | 0.5 | 0.3538 | 0.7993 | | 0.0082 | 60.0 | 1440 | 1.0929 | 0.2233 | 0.5 | 0.3087 | 0.8429 | | 0.0202 | 61.0 | 1464 | 0.9371 | 0.1709 | 0.4348 | 0.2454 | 0.8399 | | 0.0063 | 62.0 | 1488 | 0.6318 | 0.2099 | 0.3696 | 0.2677 | 0.8543 | | 0.0047 | 63.0 | 1512 | 0.8257 | 0.2018 | 0.5 | 0.2875 | 0.8514 | | 0.0036 | 64.0 | 1536 | 0.8545 | 0.1963 | 0.4565 | 0.2745 | 0.8484 | | 0.0027 | 65.0 | 1560 | 0.8684 | 0.2421 | 0.5 | 0.3262 | 0.8539 | | 0.002 | 66.0 | 1584 | 0.8609 | 0.25 | 0.5 | 0.3333 | 0.8630 | | 0.0022 | 67.0 | 1608 | 0.7618 | 0.2347 | 0.5 | 0.3194 | 0.8804 | | 0.0026 | 68.0 | 1632 | 0.8460 | 0.23 | 0.5 | 0.3151 | 0.8654 | | 0.0019 | 69.0 | 1656 | 0.7437 | 0.2857 | 0.5217 | 0.3692 | 0.8933 | | 0.0027 | 70.0 | 1680 | 0.7911 | 0.2727 | 0.4565 | 0.3415 | 0.8898 | | 0.0025 | 71.0 | 1704 | 0.8172 | 0.3333 | 0.4783 | 0.3929 | 0.8880 | | 0.0037 | 72.0 | 1728 | 0.7807 | 0.2680 | 0.5652 | 0.3636 | 0.8873 | | 0.0032 | 73.0 | 1752 | 0.9164 | 0.2683 | 0.4783 | 0.3438 | 0.8760 | | 0.0092 | 74.0 | 1776 | 0.6410 | 0.2976 | 0.5435 | 0.3846 | 0.8836 | | 0.0029 | 75.0 | 1800 | 0.7780 | 0.2857 | 0.5217 | 0.3692 | 0.8854 | | 0.0017 | 76.0 | 1824 | 0.9096 | 0.2683 | 0.4783 | 0.3438 | 0.8656 | | 0.0017 | 77.0 | 1848 | 0.8843 | 0.2911 | 0.5 | 0.368 | 0.8773 | | 0.0019 | 78.0 | 1872 | 0.7888 | 0.2410 | 0.4348 | 0.3101 | 0.8613 | | 0.0032 | 79.0 | 1896 | 0.9426 | 0.2241 | 0.5652 | 0.3210 | 0.8490 | | 0.0019 | 80.0 | 1920 | 0.9566 | 0.25 | 0.3913 | 0.3051 | 0.8708 | | 0.0017 | 81.0 | 1944 | 1.0507 | 0.2588 | 0.4783 | 0.3359 | 0.8669 | | 0.0015 | 82.0 | 1968 | 1.1118 | 0.2174 | 0.4348 | 0.2899 | 0.8614 | | 0.0014 | 83.0 | 1992 | 1.1422 | 0.2299 | 0.4348 | 0.3008 | 0.8548 | | 0.0015 | 84.0 | 2016 | 1.1422 | 0.2716 | 0.4783 | 0.3465 | 0.8556 | | 0.0013 | 85.0 | 2040 | 1.0874 | 0.2371 | 0.5 | 0.3217 | 0.8557 | | 0.0015 | 86.0 | 2064 | 1.0420 | 0.2277 | 0.5 | 0.3129 | 0.8624 | | 0.0013 | 87.0 | 2088 | 1.0851 | 0.2418 | 0.4783 | 0.3212 | 0.8579 | | 0.0015 | 88.0 | 2112 | 1.1249 | 0.2556 | 0.5 | 0.3382 | 0.8622 | | 0.0015 | 89.0 | 2136 | 1.0589 | 0.2667 | 0.5217 | 0.3529 | 0.8617 | | 0.0014 | 90.0 | 2160 | 1.0879 | 0.2674 | 0.5 | 0.3485 | 0.8497 | | 0.0019 | 91.0 | 2184 | 1.0425 | 0.2651 | 0.4783 | 0.3411 | 0.8551 | | 0.0015 | 92.0 | 2208 | 1.0137 | 0.2716 | 0.4783 | 0.3465 | 0.8579 | | 0.0015 | 93.0 | 2232 | 1.0084 | 0.2716 | 0.4783 | 0.3465 | 0.8619 | | 0.0015 | 94.0 | 2256 | 1.0231 | 0.2727 | 0.5217 | 0.3582 | 0.8529 | | 0.0014 | 95.0 | 2280 | 1.1031 | 0.3067 | 0.5 | 0.3802 | 0.8522 | | 0.0014 | 96.0 | 2304 | 1.0001 | 0.2796 | 0.5652 | 0.3741 | 0.8642 | | 0.0012 | 97.0 | 2328 | 1.0274 | 0.3253 | 0.5870 | 0.4186 | 0.8683 | | 0.0015 | 98.0 | 2352 | 1.1420 | 0.3559 | 0.4565 | 0.4000 | 0.8579 | | 0.0154 | 99.0 | 2376 | 0.8248 | 0.4706 | 0.5217 | 0.4948 | 0.8894 | | 0.0041 | 100.0 | 2400 | 0.8580 | 0.2892 | 0.5217 | 0.3721 | 0.8768 | | 0.0046 | 101.0 | 2424 | 1.0790 | 0.1792 | 0.4130 | 0.25 | 0.8623 | | 0.0021 | 102.0 | 2448 | 1.0016 | 0.25 | 0.4348 | 0.3175 | 0.8766 | | 0.0028 | 103.0 | 2472 | 0.8267 | 0.2899 | 0.4348 | 0.3478 | 0.8907 | | 0.0026 | 104.0 | 2496 | 1.1740 | 0.2212 | 0.5 | 0.3067 | 0.8511 | | 0.0018 | 105.0 | 2520 | 1.2264 | 0.1759 | 0.4130 | 0.2468 | 0.8389 | | 0.0017 | 106.0 | 2544 | 1.1772 | 0.2451 | 0.5435 | 0.3378 | 0.8468 | | 0.0014 | 107.0 | 2568 | 1.2155 | 0.2556 | 0.5 | 0.3382 | 0.8386 | | 0.0018 | 108.0 | 2592 | 1.1990 | 0.2558 | 0.4783 | 0.3333 | 0.8411 | | 0.0022 | 109.0 | 2616 | 1.0769 | 0.3425 | 0.5435 | 0.4202 | 0.8679 | | 0.0016 | 110.0 | 2640 | 1.0793 | 0.3538 | 0.5 | 0.4144 | 0.8629 | | 0.0019 | 111.0 | 2664 | 0.8828 | 0.2680 | 0.5652 | 0.3636 | 0.8823 | | 0.0014 | 112.0 | 2688 | 1.0073 | 0.3548 | 0.4783 | 0.4074 | 0.8810 | | 0.0016 | 113.0 | 2712 | 0.9562 | 0.3667 | 0.4783 | 0.4151 | 0.8827 | | 0.0014 | 114.0 | 2736 | 0.9590 | 0.3438 | 0.4783 | 0.4 | 0.8802 | | 0.0014 | 115.0 | 2760 | 1.0293 | 0.4 | 0.5217 | 0.4528 | 0.8814 | | 0.0014 | 116.0 | 2784 | 1.0419 | 0.4068 | 0.5217 | 0.4571 | 0.8804 | | 0.0012 | 117.0 | 2808 | 1.0451 | 0.4138 | 0.5217 | 0.4615 | 0.8805 | | 0.005 | 118.0 | 2832 | 1.0514 | 0.4068 | 0.5217 | 0.4571 | 0.8803 | | 0.0019 | 119.0 | 2856 | 1.0440 | 0.4068 | 0.5217 | 0.4571 | 0.8805 | | 0.0015 | 120.0 | 2880 | 1.0782 | 0.4 | 0.5217 | 0.4528 | 0.8768 | | 0.0015 | 121.0 | 2904 | 1.0736 | 0.4211 | 0.5217 | 0.4660 | 0.8765 | | 0.0014 | 122.0 | 2928 | 1.0565 | 0.3934 | 0.5217 | 0.4486 | 0.8776 | | 0.0013 | 123.0 | 2952 | 1.0496 | 0.4444 | 0.5217 | 0.48 | 0.8814 | | 0.0012 | 124.0 | 2976 | 1.0805 | 0.4286 | 0.5217 | 0.4706 | 0.8805 | | 0.0012 | 125.0 | 3000 | 1.1119 | 0.4211 | 0.5217 | 0.4660 | 0.8809 | | 0.0013 | 126.0 | 3024 | 1.0880 | 0.4528 | 0.5217 | 0.4848 | 0.8812 | | 0.0014 | 127.0 | 3048 | 1.0198 | 0.3729 | 0.4783 | 0.4190 | 0.8796 | | 0.0013 | 128.0 | 3072 | 1.0028 | 0.4 | 0.5217 | 0.4528 | 0.8790 | | 0.0014 | 129.0 | 3096 | 1.0229 | 0.3529 | 0.5217 | 0.4211 | 0.8835 | | 0.0013 | 130.0 | 3120 | 1.0440 | 0.3380 | 0.5217 | 0.4103 | 0.8747 | | 0.0013 | 131.0 | 3144 | 1.1109 | 0.4615 | 0.5217 | 0.4898 | 0.8781 | | 0.0012 | 132.0 | 3168 | 1.1082 | 0.4706 | 0.5217 | 0.4948 | 0.8812 | | 0.0013 | 133.0 | 3192 | 1.1031 | 0.4444 | 0.5217 | 0.48 | 0.8806 | | 0.0011 | 134.0 | 3216 | 1.1345 | 0.3529 | 0.5217 | 0.4211 | 0.8713 | | 0.0012 | 135.0 | 3240 | 1.1631 | 0.3485 | 0.5 | 0.4107 | 0.8716 | | 0.0012 | 136.0 | 3264 | 1.1461 | 0.3429 | 0.5217 | 0.4138 | 0.8708 | | 0.0012 | 137.0 | 3288 | 1.1592 | 0.4138 | 0.5217 | 0.4615 | 0.8683 | | 0.0012 | 138.0 | 3312 | 1.0969 | 0.4138 | 0.5217 | 0.4615 | 0.8754 | | 0.0013 | 139.0 | 3336 | 1.0575 | 0.3429 | 0.5217 | 0.4138 | 0.8787 | | 0.0013 | 140.0 | 3360 | 1.0560 | 0.3636 | 0.5217 | 0.4286 | 0.8826 | | 0.0013 | 141.0 | 3384 | 1.0525 | 0.3380 | 0.5217 | 0.4103 | 0.8796 | | 0.0011 | 142.0 | 3408 | 1.0548 | 0.3380 | 0.5217 | 0.4103 | 0.8792 | | 0.0013 | 143.0 | 3432 | 1.0593 | 0.3478 | 0.5217 | 0.4174 | 0.8802 | | 0.0012 | 144.0 | 3456 | 1.0402 | 0.375 | 0.5217 | 0.4364 | 0.8827 | | 0.0011 | 145.0 | 3480 | 1.0401 | 0.375 | 0.5217 | 0.4364 | 0.8828 | | 0.0012 | 146.0 | 3504 | 1.0319 | 0.3810 | 0.5217 | 0.4404 | 0.8840 | | 0.0012 | 147.0 | 3528 | 1.0328 | 0.3692 | 0.5217 | 0.4324 | 0.8838 | | 0.0012 | 148.0 | 3552 | 1.1021 | 0.3433 | 0.5 | 0.4071 | 0.8730 | | 0.0012 | 149.0 | 3576 | 1.0402 | 0.3485 | 0.5 | 0.4107 | 0.8817 | | 0.0013 | 150.0 | 3600 | 0.9619 | 0.3086 | 0.5435 | 0.3937 | 0.8883 | | 0.0014 | 151.0 | 3624 | 0.9578 | 0.3382 | 0.5 | 0.4035 | 0.8843 | | 0.0012 | 152.0 | 3648 | 1.0303 | 0.3692 | 0.5217 | 0.4324 | 0.8830 | | 0.0013 | 153.0 | 3672 | 1.0571 | 0.3934 | 0.5217 | 0.4486 | 0.8812 | | 0.0012 | 154.0 | 3696 | 1.0793 | 0.3692 | 0.5217 | 0.4324 | 0.8812 | | 0.0011 | 155.0 | 3720 | 1.0766 | 0.375 | 0.5217 | 0.4364 | 0.8803 | | 0.0011 | 156.0 | 3744 | 1.0824 | 0.3934 | 0.5217 | 0.4486 | 0.8810 | | 0.0012 | 157.0 | 3768 | 1.0841 | 0.4 | 0.5217 | 0.4528 | 0.8810 | | 0.0011 | 158.0 | 3792 | 1.0866 | 0.4068 | 0.5217 | 0.4571 | 0.8812 | | 0.0012 | 159.0 | 3816 | 1.1016 | 0.4 | 0.5217 | 0.4528 | 0.8808 | | 0.0011 | 160.0 | 3840 | 1.1114 | 0.3810 | 0.5217 | 0.4404 | 0.8793 | | 0.0013 | 161.0 | 3864 | 1.1427 | 0.2892 | 0.5217 | 0.3721 | 0.8577 | | 0.0011 | 162.0 | 3888 | 1.0292 | 0.3582 | 0.5217 | 0.4248 | 0.8875 | | 0.0012 | 163.0 | 3912 | 0.9894 | 0.375 | 0.5217 | 0.4364 | 0.8872 | | 0.0011 | 164.0 | 3936 | 0.9877 | 0.3636 | 0.5217 | 0.4286 | 0.8870 | | 0.0011 | 165.0 | 3960 | 0.9887 | 0.3692 | 0.5217 | 0.4324 | 0.8890 | | 0.0012 | 166.0 | 3984 | 0.9874 | 0.3243 | 0.5217 | 0.4 | 0.8871 | | 0.0011 | 167.0 | 4008 | 0.9992 | 0.3636 | 0.5217 | 0.4286 | 0.8896 | | 0.0012 | 168.0 | 4032 | 0.9835 | 0.3692 | 0.5217 | 0.4324 | 0.8903 | | 0.0011 | 169.0 | 4056 | 0.9918 | 0.3284 | 0.4783 | 0.3894 | 0.8910 | | 0.0011 | 170.0 | 4080 | 0.9960 | 0.3438 | 0.4783 | 0.4 | 0.8914 | | 0.0011 | 171.0 | 4104 | 1.0065 | 0.3729 | 0.4783 | 0.4190 | 0.8915 | | 0.0012 | 172.0 | 4128 | 1.0266 | 0.3929 | 0.4783 | 0.4314 | 0.8908 | | 0.0011 | 173.0 | 4152 | 1.0318 | 0.3929 | 0.4783 | 0.4314 | 0.8908 | | 0.0011 | 174.0 | 4176 | 1.0329 | 0.3793 | 0.4783 | 0.4231 | 0.8908 | | 0.0012 | 175.0 | 4200 | 1.0254 | 0.3860 | 0.4783 | 0.4272 | 0.8910 | | 0.0011 | 176.0 | 4224 | 1.0183 | 0.4 | 0.4783 | 0.4356 | 0.8912 | | 0.0012 | 177.0 | 4248 | 1.0205 | 0.3860 | 0.4783 | 0.4272 | 0.8909 | | 0.0011 | 178.0 | 4272 | 1.0232 | 0.3793 | 0.4783 | 0.4231 | 0.8908 | | 0.0011 | 179.0 | 4296 | 1.0246 | 0.3860 | 0.4783 | 0.4272 | 0.8908 | | 0.0012 | 180.0 | 4320 | 1.0245 | 0.3793 | 0.4783 | 0.4231 | 0.8905 | | 0.0012 | 181.0 | 4344 | 1.0223 | 0.375 | 0.4565 | 0.4118 | 0.8902 | | 0.0011 | 182.0 | 4368 | 1.0169 | 0.3929 | 0.4783 | 0.4314 | 0.8894 | | 0.0011 | 183.0 | 4392 | 1.0172 | 0.3929 | 0.4783 | 0.4314 | 0.8893 | | 0.0012 | 184.0 | 4416 | 1.0147 | 0.3860 | 0.4783 | 0.4272 | 0.8894 | | 0.0012 | 185.0 | 4440 | 1.0145 | 0.3860 | 0.4783 | 0.4272 | 0.8894 | | 0.0011 | 186.0 | 4464 | 1.0128 | 0.3729 | 0.4783 | 0.4190 | 0.8897 | | 0.0011 | 187.0 | 4488 | 1.0146 | 0.3729 | 0.4783 | 0.4190 | 0.8897 | | 0.0011 | 188.0 | 4512 | 1.0160 | 0.3729 | 0.4783 | 0.4190 | 0.8897 | | 0.0011 | 189.0 | 4536 | 1.0178 | 0.3729 | 0.4783 | 0.4190 | 0.8898 | | 0.0011 | 190.0 | 4560 | 1.0185 | 0.3729 | 0.4783 | 0.4190 | 0.8898 | | 0.0011 | 191.0 | 4584 | 1.0171 | 0.3793 | 0.4783 | 0.4231 | 0.8899 | | 0.0011 | 192.0 | 4608 | 1.0179 | 0.3729 | 0.4783 | 0.4190 | 0.8898 | | 0.0011 | 193.0 | 4632 | 1.0196 | 0.3793 | 0.4783 | 0.4231 | 0.8899 | | 0.0012 | 194.0 | 4656 | 1.0188 | 0.3793 | 0.4783 | 0.4231 | 0.8899 | | 0.0011 | 195.0 | 4680 | 1.0185 | 0.3793 | 0.4783 | 0.4231 | 0.8899 | | 0.0011 | 196.0 | 4704 | 1.0194 | 0.3860 | 0.4783 | 0.4272 | 0.8898 | | 0.0011 | 197.0 | 4728 | 1.0206 | 0.3729 | 0.4783 | 0.4190 | 0.8900 | | 0.0011 | 198.0 | 4752 | 1.0207 | 0.3729 | 0.4783 | 0.4190 | 0.8900 | | 0.0012 | 199.0 | 4776 | 1.0215 | 0.3729 | 0.4783 | 0.4190 | 0.8899 | | 0.0011 | 200.0 | 4800 | 1.0215 | 0.3729 | 0.4783 | 0.4190 | 0.8899 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
mln-wave/my-pet-dog-xzg
mln-wave
2023-06-28T13:45:00Z
17
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-28T13:34:16Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-XZG Dreambooth model trained by mln-wave following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: GoX19738133fad Sample pictures of this concept: ![0](https://huggingface.co/mln-wave/my-pet-dog-xzg/resolve/main/sample_images/3142390890_Stylish_and_contemporary_hotel_with_a_unique_form__xl-beta-v2-2-2.png)
atharputra/ivanaxx1
atharputra
2023-06-28T13:41:28Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-28T13:39:21Z
--- license: creativeml-openrail-m ---
ade93/my_awesome_qa_model
ade93
2023-06-28T13:40:06Z
61
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-26T08:49:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ade93/my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ade93/my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: -0.7813 - Validation Loss: -1.7044 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 20, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | -0.7813 | -1.7044 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
ryo1443/2ch_rinna_ppo_1k
ryo1443
2023-06-28T13:37:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-28T13:36:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
robrecht/space-invader-v1
robrecht
2023-06-28T13:28:25Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T13:27:56Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 29.00 +/- 64.30 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga robrecht -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga robrecht -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga robrecht ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
sleepynlp/q-Taxi-v3-v1-leo
sleepynlp
2023-06-28T13:26:47Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T13:26:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-v1-leo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sleepynlp/q-Taxi-v3-v1-leo", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dev-senolys/camembert_base_finetunned_one_thema_balanced_6_epochs
dev-senolys
2023-06-28T13:22:20Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T11:52:40Z
--- license: mit tags: - generated_from_trainer model-index: - name: camembert_base_finetunned_one_thema_balanced_6_epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # camembert_base_finetunned_one_thema_balanced_6_epochs This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 116 | 2.3397 | | No log | 2.0 | 232 | 2.0559 | | No log | 3.0 | 348 | 1.8209 | | No log | 4.0 | 464 | 1.7804 | | 1.9817 | 5.0 | 580 | 1.7323 | | 1.9817 | 6.0 | 696 | 1.7237 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Shrishml/dolly_lora3b
Shrishml
2023-06-28T13:09:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-28T07:01:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
hassansoliman/falcon-40b-qlora-utterance-adaptations_v6
hassansoliman
2023-06-28T12:55:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-27T12:07:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
xzuyn/GPT2-RPGPT-8.48M-EPOCH1-GGML
xzuyn
2023-06-28T12:54:36Z
0
0
null
[ "gpt2", "gpt-2", "region:us" ]
null
2023-06-28T12:49:29Z
--- tags: - gpt2 - gpt-2 --- # For use with [KoboldCPP](https://github.com/LostRuins/koboldcpp) Original Model: https://huggingface.co/xzuyn/GPT2-RPGPT-8.48M
YakovElm/Qt_20_BERT_Under_Sampling
YakovElm
2023-06-28T12:49:09Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-28T12:48:33Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Qt_20_BERT_Under_Sampling results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Qt_20_BERT_Under_Sampling This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0003 - Train Accuracy: 1.0 - Validation Loss: 0.3606 - Validation Accuracy: 0.9586 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': 1.0, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0366 | 0.9886 | 0.2979 | 0.9586 | 0 | | 0.0006 | 1.0 | 0.3361 | 0.9586 | 1 | | 0.0003 | 1.0 | 0.3606 | 0.9586 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
jensvw/taxi-v3
jensvw
2023-06-28T12:47:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T12:47:32Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jensvw/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
robrecht/taxi_v1
robrecht
2023-06-28T12:44:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T12:36:05Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="robrecht/taxi_v1", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
lordpepe/ppo-LunarLander-v2
lordpepe
2023-06-28T12:36:31Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T12:36:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.07 +/- 15.38 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
robrecht/q-FrozenLake-v1-4x4-noSlippery
robrecht
2023-06-28T12:32:46Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-28T12:32:43Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="robrecht/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```