modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-27 18:27:08
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-27 18:22:57
card
stringlengths
11
1.01M
JamesNg12/my_awesome_model
JamesNg12
2023-06-20T00:35:46Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-20T00:21:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93048 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2331 - Accuracy: 0.9305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2334 | 1.0 | 1563 | 0.1881 | 0.9280 | | 0.1504 | 2.0 | 3126 | 0.2331 | 0.9305 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
peteryeung/ppo-LunarLander-v2
peteryeung
2023-06-20T00:05:28Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-20T00:05:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 284.00 +/- 16.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
AustinCarthy/MixGPT2V2_suffix_100KP_BFall_fromB_95K_topP_0.75_ratio2.63
AustinCarthy
2023-06-19T23:34:55Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-06-19T21:18:25Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: MixGPT2V2_suffix_100KP_BFall_fromB_95K_topP_0.75_ratio2.63 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MixGPT2V2_suffix_100KP_BFall_fromB_95K_topP_0.75_ratio2.63 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_MixGPT2V2_using_benign_95K_top_p_0.75suffix dataset. It achieves the following results on the evaluation set: - Loss: 0.0286 - Accuracy: 0.9964 - F1: 0.9612 - Precision: 0.9728 - Recall: 0.95 - Roc Auc Score: 0.9743 - Tpr At Fpr 0.01: 0.7924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0218 | 1.0 | 22121 | 0.0193 | 0.9952 | 0.9485 | 0.9717 | 0.9264 | 0.9625 | 0.7698 | | 0.013 | 2.0 | 44242 | 0.0213 | 0.9957 | 0.9546 | 0.9675 | 0.942 | 0.9702 | 0.799 | | 0.0041 | 3.0 | 66363 | 0.0262 | 0.9951 | 0.9494 | 0.9395 | 0.9596 | 0.9783 | 0.792 | | 0.0034 | 4.0 | 88484 | 0.0223 | 0.9964 | 0.9618 | 0.9657 | 0.958 | 0.9781 | 0.8558 | | 0.001 | 5.0 | 110605 | 0.0286 | 0.9964 | 0.9612 | 0.9728 | 0.95 | 0.9743 | 0.7924 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
natope/closed-book-19-06-2023
natope
2023-06-19T23:25:24Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T21:46:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: closed-book-19-06-2023 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # closed-book-19-06-2023 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3172 - Rouge1: 0.1403 - Rouge2: 0.039 - Rougel: 0.117 - Rougelsum: 0.117 - Gen Len: 17.9153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 4.3252 | 1.0 | 5736 | 3.4360 | 0.136 | 0.0339 | 0.114 | 0.1139 | 17.5869 | | 4.0744 | 2.0 | 11472 | 3.3393 | 0.1404 | 0.038 | 0.117 | 0.1169 | 17.971 | | 4.0149 | 3.0 | 17208 | 3.3172 | 0.1403 | 0.039 | 0.117 | 0.117 | 17.9153 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
andywalner/ppo-LunarLander-v2
andywalner
2023-06-19T23:21:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T23:21:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 247.80 +/- 22.95 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MindNetML/ppo-LunarLander-v2
MindNetML
2023-06-19T23:07:39Z
1
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T23:07:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.22 +/- 28.48 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aphi/dqn-SpaceInvadersNoFrameskip-v4_1
aphi
2023-06-19T23:07:20Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T23:06:48Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 330.50 +/- 71.74 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aphi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga aphi -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga aphi ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 500000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
C-Lo/finetuning-sentiment-gendered-dataset
C-Lo
2023-06-19T22:58:29Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T22:55:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-gendered-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-gendered-dataset This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
sid/ppo-Huggy
sid
2023-06-19T22:53:24Z
15
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-19T22:52:44Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: sid/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
MarketingHHM/autotrain-hhmqatest23-68104137216
MarketingHHM
2023-06-19T22:52:12Z
98
0
transformers
[ "transformers", "pytorch", "safetensors", "led", "text2text-generation", "autotrain", "summarization", "unk", "dataset:MarketingHHM/autotrain-data-hhmqatest23", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-06-19T22:31:26Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain" datasets: - MarketingHHM/autotrain-data-hhmqatest23 co2_eq_emissions: emissions: 14.037553452269616 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 68104137216 - CO2 Emissions (in grams): 14.0376 ## Validation Metrics - Loss: 0.920 - Rouge1: 34.783 - Rouge2: 23.625 - RougeL: 29.390 - RougeLsum: 32.868 - Gen Len: 109.840 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/MarketingHHM/autotrain-hhmqatest23-68104137216 ```
gokuls/hbertv1-Massive-intent_48_KD
gokuls
2023-06-19T22:47:54Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "dataset:massive", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T22:38:50Z
--- tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: hbertv1-Massive-intent_48_KD results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8357107722577471 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hbertv1-Massive-intent_48_KD This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48_KD](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48_KD) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8470 - Accuracy: 0.8357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.994 | 1.0 | 180 | 2.1475 | 0.3901 | | 1.7222 | 2.0 | 360 | 1.4146 | 0.6011 | | 1.1889 | 3.0 | 540 | 1.1690 | 0.6990 | | 0.9256 | 4.0 | 720 | 0.9700 | 0.7545 | | 0.763 | 5.0 | 900 | 0.8986 | 0.7806 | | 0.6351 | 6.0 | 1080 | 0.8898 | 0.7787 | | 0.5374 | 7.0 | 1260 | 0.8604 | 0.7978 | | 0.4587 | 8.0 | 1440 | 0.8444 | 0.8101 | | 0.3822 | 9.0 | 1620 | 0.8520 | 0.8087 | | 0.3301 | 10.0 | 1800 | 0.8309 | 0.8185 | | 0.2713 | 11.0 | 1980 | 0.8313 | 0.8249 | | 0.2257 | 12.0 | 2160 | 0.8499 | 0.8254 | | 0.1947 | 13.0 | 2340 | 0.8375 | 0.8298 | | 0.162 | 14.0 | 2520 | 0.8428 | 0.8352 | | 0.1369 | 15.0 | 2700 | 0.8470 | 0.8357 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.13.0 - Tokenizers 0.13.3
dogruermikail/bert-fine-tuned-stock-sentiment-uncased
dogruermikail
2023-06-19T22:39:00Z
61
3
transformers
[ "transformers", "tf", "bert", "text-classification", "tr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T18:29:35Z
--- model-index: - name: bert-fine-tuned-stock-sentiment-uncased results: [] language: - tr metrics: - accuracy - f1 - precision - recall widget: - text: "bugün tavan olabilir alımlar iyi" example_title: "Positive" - text: "üst kanala değdi çekilme bekliyorum" example_title: "Negative" - text: "bedelsiz tarihi belli mi?" example_title: "Neutral" --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> ## **Bert Uncased Model Fine Tuned For Stock Sentiment** - This model is a fine-tuned version of the BERT (Bidirectional Encoder Representations from Transformers) model specifically designed for analyzing stock sentiment. The fine-tuning process involved training the model on tagged comments from the last two pages of the stock form on the Investing platform, focusing on stocks listed in the BIST Index. ### Stock List: - ACSEL, ADEL, ARCLK, ASELS, AZTEK, BIMAS, BFREN, BMSCH, - CCOLA, CIMSA, CMBTN, CWENE,EKGYO, ENJSA, EREGL, FROTO, - GOODY, GUBRF, HALKB, HEKTS, ISCTR, KCHOL, KOZAL, KOPOL, - KRDMD, ONCSM, PETKM, PKART, SAHOL, SASA, SISE, SMRTG, - THYAO, TMSN, TCELL, TTKOM, TOASO, TTRAK, TUPRS, VESTL, YAPRK, YKSLN **This fine-tuned model aims to provide insights into the sentiment of these stocks based on the given tagged comments and can be used for stock sentiment analysis in financial applications.** [Colab File](https://colab.research.google.com/drive/1LqEqoeS90nxgXApS6GSwcNnhKBmmYUSY?usp=sharing) ### Training hyperparameters Training Hyperparameters: The following hyperparameters were used during training: - Optimizer: SGD - Learning Rate: 3e-2 - Number of Training Epochs: 10 - Metric for Best Model: F1 Score ### Training Results | **Epoch** | **Training Loss** | **Validation Loss** | **Accuracy** | **Precision** | **Recall** | **F1 Score** | |-----------|-------------------|---------------------|--------------|---------------|------------|--------------| | 1 | 1.057400 | 0.895725 | 0.621538 | 0.618631 | 0.612559 | 0.611949 | | 2 | 0.908400 | 0.822652 | 0.632308 | 0.644781 | 0.629953 | 0.622661 | | 3 | 0.812100 | 0.788586 | 0.656923 | 0.680735 | 0.659374 | 0.650310 | | 4 | 0.747700 | 0.737312 | 0.667692 | 0.670311 | 0.668073 | 0.666547 | | 5 | 0.712600 | 0.743018 | 0.692308 | 0.710226 | 0.691384 | 0.686578 | | 6 | 0.659200 | 0.771312 | 0.670769 | 0.695524 | 0.669198 | 0.662246 | | 7 | 0.608300 | 0.733821 | 0.680000 | 0.677778 | 0.678871 | 0.677992 | | 8 | 0.575900 | 0.739905 | 0.701538 | 0.702704 | 0.700902 | 0.698514 | | 9 | 0.565200 | 0.754889 | 0.692308 | 0.692446 | 0.693058 | 0.691157 | | 10 | `0.541000` | `0.754683` | `0.704615` | `0.705291` |`0.704209` | `0.702093` | ### Evaluation Results | Loss | Accuracy | Precision | Recall | F1 Score | Runtime | Samples/s | Steps/s | Epoch | |-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | 0.754683 | 0.704615 | 0.705291 | 0.704209 | 0.702093 | 3.3869 | 191.915 | 24.211 | 10.0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Wazzzabeee/PoliteT5Base
Wazzzabeee
2023-06-19T22:29:16Z
6
1
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T19:30:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: PoliteT5Base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PoliteT5Base This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8536 - Toxicity Ratio: 0.3421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 75 ### Training results | Training Loss | Epoch | Step | Validation Loss | Toxicity Ratio | |:-------------:|:-----:|:----:|:---------------:|:--------------:| | No log | 1.0 | 22 | 1.3256 | 0.3070 | | No log | 2.0 | 44 | 0.8436 | 0.2982 | | 1.6337 | 3.0 | 66 | 0.7944 | 0.3333 | | 1.6337 | 4.0 | 88 | 0.8921 | 0.3158 | | 0.547 | 5.0 | 110 | 0.9630 | 0.2632 | | 0.547 | 6.0 | 132 | 0.9711 | 0.3158 | | 0.3279 | 7.0 | 154 | 0.9966 | 0.3070 | | 0.3279 | 8.0 | 176 | 1.0053 | 0.3246 | | 0.3279 | 9.0 | 198 | 1.0326 | 0.3333 | | 0.2282 | 10.0 | 220 | 0.9798 | 0.3158 | | 0.2282 | 11.0 | 242 | 1.0093 | 0.3333 | | 0.1837 | 12.0 | 264 | 1.2380 | 0.3246 | | 0.1837 | 13.0 | 286 | 1.1889 | 0.3860 | | 0.1546 | 14.0 | 308 | 1.1985 | 0.3596 | | 0.1546 | 15.0 | 330 | 1.2296 | 0.3509 | | 0.1178 | 16.0 | 352 | 1.1394 | 0.3684 | | 0.1178 | 17.0 | 374 | 1.1712 | 0.3596 | | 0.1178 | 18.0 | 396 | 1.1586 | 0.4035 | | 0.1185 | 19.0 | 418 | 1.9263 | 0.0789 | | 0.1185 | 20.0 | 440 | 1.3483 | 0.3246 | | 0.2332 | 21.0 | 462 | 1.3163 | 0.3158 | | 0.2332 | 22.0 | 484 | 1.2926 | 0.3509 | | 0.1267 | 23.0 | 506 | 1.2691 | 0.3421 | | 0.1267 | 24.0 | 528 | 1.3298 | 0.3596 | | 0.0879 | 25.0 | 550 | 1.2795 | 0.3509 | | 0.0879 | 26.0 | 572 | 1.2826 | 0.3246 | | 0.0879 | 27.0 | 594 | 1.2884 | 0.3158 | | 0.0747 | 28.0 | 616 | 1.4146 | 0.4035 | | 0.0747 | 29.0 | 638 | 1.3577 | 0.3596 | | 0.0714 | 30.0 | 660 | 1.2663 | 0.3509 | | 0.0714 | 31.0 | 682 | 1.2508 | 0.3772 | | 0.0566 | 32.0 | 704 | 1.3980 | 0.4035 | | 0.0566 | 33.0 | 726 | 1.4006 | 0.3860 | | 0.0566 | 34.0 | 748 | 1.4090 | 0.3596 | | 0.0572 | 35.0 | 770 | 1.4681 | 0.3246 | | 0.0572 | 36.0 | 792 | 1.4254 | 0.3947 | | 0.0456 | 37.0 | 814 | 1.4932 | 0.3246 | | 0.0456 | 38.0 | 836 | 1.3994 | 0.2982 | | 0.0385 | 39.0 | 858 | 1.4511 | 0.3421 | | 0.0385 | 40.0 | 880 | 1.3007 | 0.3684 | | 0.0223 | 41.0 | 902 | 1.3961 | 0.3158 | | 0.0223 | 42.0 | 924 | 1.4619 | 0.3246 | | 0.0223 | 43.0 | 946 | 1.3996 | 0.3246 | | 0.0199 | 44.0 | 968 | 1.5012 | 0.3509 | | 0.0199 | 45.0 | 990 | 1.4104 | 0.3246 | | 0.018 | 46.0 | 1012 | 1.5855 | 0.3333 | | 0.018 | 47.0 | 1034 | 1.4603 | 0.3333 | | 0.0146 | 48.0 | 1056 | 1.5335 | 0.3421 | | 0.0146 | 49.0 | 1078 | 1.4883 | 0.3772 | | 0.0131 | 50.0 | 1100 | 1.5366 | 0.2982 | | 0.0131 | 51.0 | 1122 | 1.5762 | 0.3509 | | 0.0131 | 52.0 | 1144 | 1.5434 | 0.3333 | | 0.0073 | 53.0 | 1166 | 1.4730 | 0.3158 | | 0.0073 | 54.0 | 1188 | 1.5133 | 0.3509 | | 0.0049 | 55.0 | 1210 | 1.6912 | 0.3509 | | 0.0049 | 56.0 | 1232 | 1.6376 | 0.3509 | | 0.0028 | 57.0 | 1254 | 1.8260 | 0.3509 | | 0.0028 | 58.0 | 1276 | 1.5748 | 0.3509 | | 0.0028 | 59.0 | 1298 | 1.6631 | 0.3509 | | 0.0029 | 60.0 | 1320 | 1.7458 | 0.3509 | | 0.0029 | 61.0 | 1342 | 1.6343 | 0.3684 | | 0.002 | 62.0 | 1364 | 1.6433 | 0.3421 | | 0.002 | 63.0 | 1386 | 1.7486 | 0.3509 | | 0.0014 | 64.0 | 1408 | 1.8081 | 0.3684 | | 0.0014 | 65.0 | 1430 | 1.8987 | 0.3947 | | 0.0007 | 66.0 | 1452 | 1.8811 | 0.3596 | | 0.0007 | 67.0 | 1474 | 1.8541 | 0.3596 | | 0.0007 | 68.0 | 1496 | 1.8233 | 0.3509 | | 0.001 | 69.0 | 1518 | 1.7747 | 0.3509 | | 0.001 | 70.0 | 1540 | 1.8105 | 0.3509 | | 0.0008 | 71.0 | 1562 | 1.8254 | 0.3596 | | 0.0008 | 72.0 | 1584 | 1.8444 | 0.3684 | | 0.0008 | 73.0 | 1606 | 1.8387 | 0.3509 | | 0.0008 | 74.0 | 1628 | 1.8501 | 0.3509 | | 0.0004 | 75.0 | 1650 | 1.8536 | 0.3421 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3
gokuls/hbertv1-Massive-intent_48
gokuls
2023-06-19T22:21:18Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "dataset:massive", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T22:12:24Z
--- tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: hbertv1-Massive-intent_48 results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8573536645351697 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hbertv1-Massive-intent_48 This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8740 - Accuracy: 0.8574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4348 | 1.0 | 180 | 1.2038 | 0.6798 | | 1.0006 | 2.0 | 360 | 0.8063 | 0.7831 | | 0.6914 | 3.0 | 540 | 0.7823 | 0.7924 | | 0.5 | 4.0 | 720 | 0.8175 | 0.7959 | | 0.3877 | 5.0 | 900 | 0.7489 | 0.8239 | | 0.2981 | 6.0 | 1080 | 0.7043 | 0.8446 | | 0.2251 | 7.0 | 1260 | 0.7596 | 0.8372 | | 0.181 | 8.0 | 1440 | 0.8237 | 0.8357 | | 0.1367 | 9.0 | 1620 | 0.8323 | 0.8362 | | 0.0995 | 10.0 | 1800 | 0.8589 | 0.8396 | | 0.0726 | 11.0 | 1980 | 0.8476 | 0.8510 | | 0.0501 | 12.0 | 2160 | 0.8901 | 0.8534 | | 0.0338 | 13.0 | 2340 | 0.8992 | 0.8519 | | 0.022 | 14.0 | 2520 | 0.8740 | 0.8574 | | 0.0124 | 15.0 | 2700 | 0.8828 | 0.8554 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.13.0 - Tokenizers 0.13.3
mrm8488/falcoder-7b
mrm8488
2023-06-19T22:10:37Z
29
89
transformers
[ "transformers", "pytorch", "RefinedWebModel", "text-generation", "generated_from_trainer", "code", "coding", "custom_code", "dataset:HuggingFaceH4/CodeAlpaca_20K", "doi:10.57967/hf/0789", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T21:26:49Z
--- tags: - generated_from_trainer - code - coding model-index: - name: FalCoder results: [] license: apache-2.0 language: - code thumbnail: https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png datasets: - HuggingFaceH4/CodeAlpaca_20K pipeline_tag: text-generation --- <div style="text-align:center;width:250px;height:250px;"> <img src="https://huggingface.co/mrm8488/falcoder-7b/resolve/main/falcoder.png" alt="falcoder logo""> </div> <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FalCoder 🦅👩‍💻 **Falcon-7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library. ## Model description 🧠 [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b) ## Training and evaluation data 📚 [CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K): contains 20K instruction-following data used for fine-tuning the Code Alpaca model. ### Training hyperparameters ⚙ TBA ### Training results 🗒️ | Step | Training Loss | Validation Loss | |------|---------------|-----------------| | 100 | 0.798500 | 0.767996 | | 200 | 0.725900 | 0.749880 | | 300 | 0.669100 | 0.748029 | | 400 | 0.687300 | 0.742342 | | 500 | 0.579900 | 0.736735 | ### Example of usage 👩‍💻 ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoTokenizer model_id = "mrm8488/falcoder-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda") def generate( instruction, max_new_tokens=128, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs ): prompt = instruction + "\n### Solution:\n" print(prompt) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Solution:")[1].lstrip("\n") instruction = "Design a class for representing a person in Python." print(generate(instruction)) ``` ### Citation ``` @misc {manuel_romero_2023, author = { {Manuel Romero} }, title = { falcoder-7b (Revision e061237) }, year = 2023, url = { https://huggingface.co/mrm8488/falcoder-7b }, doi = { 10.57967/hf/0789 }, publisher = { Hugging Face } } ```
nolankurylo/IsOperatorClassifier
nolankurylo
2023-06-19T22:00:03Z
63
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T19:12:26Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: nolankurylo/FineTunedHFModel results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nolankurylo/FineTunedHFModel This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0087 - Train Accuracy: 0.9981 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Epoch | |:----------:|:--------------:|:-----:| | 0.0702 | 0.9780 | 0 | | 0.0107 | 0.9966 | 1 | | 0.0087 | 0.9981 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bsuutari/path_to_saved_model_rafa
bsuutari
2023-06-19T21:57:03Z
55
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-19T21:42:23Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of rafa suutari tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - bsuutari/path_to_saved_model_rafa This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of rafa suutari using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Brendan/refpydst-100p-referredstates
Brendan
2023-06-19T21:49:31Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T21:49:11Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-100p-referredstates-referred-states This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 100% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-100p-referredstates-referred-states') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-100p-referredstates-referred-states') model = AutoModel.from_pretrained('Brendan/refpydst-100p-referredstates-referred-states') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-100p-referredstates-referred-states) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 45810 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 6, "evaluation_steps": 15300, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
ducdh1210/dolly-lora-230619-2
ducdh1210
2023-06-19T21:30:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-19T21:30:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
platzi/platzi-vit-model-sandra-rairan
platzi
2023-06-19T21:14:22Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-17T21:47:28Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: platzi-vit-model-sandra-rairan results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9774436090225563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-sandra-rairan This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0582 - Accuracy: 0.9774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.143 | 3.85 | 500 | 0.0582 | 0.9774 | ### Framework versions - Transformers 4.29.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
NasimB/distilgpt2-concat
NasimB
2023-06-19T21:02:23Z
11
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T18:28:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - generator model-index: - name: distilgpt2-concat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-concat This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7514 | 0.29 | 500 | 5.6224 | | 5.3454 | 0.58 | 1000 | 5.1814 | | 4.9931 | 0.87 | 1500 | 4.9290 | | 4.7222 | 1.16 | 2000 | 4.7811 | | 4.5672 | 1.45 | 2500 | 4.6657 | | 4.4669 | 1.74 | 3000 | 4.5721 | | 4.3738 | 2.02 | 3500 | 4.4939 | | 4.175 | 2.31 | 4000 | 4.4613 | | 4.1659 | 2.6 | 4500 | 4.4128 | | 4.1369 | 2.89 | 5000 | 4.3666 | | 3.9858 | 3.18 | 5500 | 4.3656 | | 3.9337 | 3.47 | 6000 | 4.3419 | | 3.9348 | 3.76 | 6500 | 4.3095 | | 3.8826 | 4.05 | 7000 | 4.3066 | | 3.7106 | 4.34 | 7500 | 4.3104 | | 3.7404 | 4.63 | 8000 | 4.2893 | | 3.7459 | 4.92 | 8500 | 4.2648 | | 3.5695 | 5.21 | 9000 | 4.2984 | | 3.536 | 5.49 | 9500 | 4.2887 | | 3.5604 | 5.78 | 10000 | 4.2711 | | 3.5007 | 6.07 | 10500 | 4.2900 | | 3.3477 | 6.36 | 11000 | 4.3013 | | 3.3629 | 6.65 | 11500 | 4.2906 | | 3.3771 | 6.94 | 12000 | 4.2814 | | 3.211 | 7.23 | 12500 | 4.3131 | | 3.1938 | 7.52 | 13000 | 4.3124 | | 3.21 | 7.81 | 13500 | 4.3093 | | 3.159 | 8.1 | 14000 | 4.3204 | | 3.0726 | 8.39 | 14500 | 4.3257 | | 3.0762 | 8.68 | 15000 | 4.3269 | | 3.0834 | 8.96 | 15500 | 4.3257 | | 3.0173 | 9.25 | 16000 | 4.3311 | | 3.0116 | 9.54 | 16500 | 4.3325 | | 3.0155 | 9.83 | 17000 | 4.3325 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
bsuutari/path_to_saved_model
bsuutari
2023-06-19T20:58:31Z
57
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-19T20:49:13Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - bsuutari/path_to_saved_model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Brendan/refpydst-1p-referredstates-split-v3
Brendan
2023-06-19T20:50:00Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:29:58Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-1p-referredstates-split-v3 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 1% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-1p-referredstates-split-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-1p-referredstates-split-v3') model = AutoModel.from_pretrained('Brendan/refpydst-1p-referredstates-split-v3') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-1p-referredstates-split-v3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 483 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 200, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-1p-referredstates-split-v1
Brendan
2023-06-19T20:50:00Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:10:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-1p-referredstates-split-v1 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 1% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 1% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-1p-referredstates-split-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-1p-referredstates-split-v1') model = AutoModel.from_pretrained('Brendan/refpydst-1p-referredstates-split-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-1p-referredstates-split-v1) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 437 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 200, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-1p-referredstates-split-v2
Brendan
2023-06-19T20:50:00Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:29:30Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-1p-referredstates-split-v2 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 1% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-1p-referredstates-split-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-1p-referredstates-split-v2') model = AutoModel.from_pretrained('Brendan/refpydst-1p-referredstates-split-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-1p-referredstates-split-v2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 435 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 200, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
IABCD/eduedudiffusion
IABCD
2023-06-19T20:49:50Z
30
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-19T19:33:34Z
--- license: cc-by-nc-nd-4.0 tags: - text-to-image - stable-diffusion --- ### EduEduDiffusion0.2 Dreambooth model trained by nicolasdec for EduEdu Test the concept via [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Training version 0.2. Positive Prompts: PROMPT, (eduedu) style, illustration, vector, cartoon lighting Negatives: bad anatomy, ugly, missing arms, bad proportions, tiling, missing legs, blurry, poorly drawn feet, morbid, cloned face, extra limbs, mutated hands, cropped, disfigured, mutation, deformed, deformed, mutilated, dehydrated, body out of frame, out of frame, disfigured, bad anatomy, poorly drawn face, duplicate, cut off, poorly drawn hands, error, low contrast, signature, extra arms, underexposed, text, extra fingers, overexposed, too many fingers, extra legs, bad art, ugly, extra limbs, beginner, username, fused fingers, amateur, watermark, gross proportions, distorted face, worst quality, jpeg artifacts, low quality, malformed limbs, long neck, lowres, poorly Rendered face, low resolution, low saturation, bad composition, Images cut out at the top, left, right, bottom, deformed body features, poorly rendered hands
Brendan/refpydst-5p-referredstates-split-v2
Brendan
2023-06-19T20:49:35Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:26:56Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-5p-referredstates-split-v2 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 5% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-5p-referredstates-split-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-5p-referredstates-split-v2') model = AutoModel.from_pretrained('Brendan/refpydst-5p-referredstates-split-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-5p-referredstates-split-v2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2295 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 800, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-5p-icdst-split-v3
Brendan
2023-06-19T20:49:28Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:26:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-5p-icdst-split-v3 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 5% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-5p-icdst-split-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-5p-icdst-split-v3') model = AutoModel.from_pretrained('Brendan/refpydst-5p-icdst-split-v3') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-5p-icdst-split-v3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2233 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 800, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-5p-icdst-split-v2
Brendan
2023-06-19T20:49:25Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:25:30Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-5p-icdst-split-v2 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 5% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-5p-icdst-split-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-5p-icdst-split-v2') model = AutoModel.from_pretrained('Brendan/refpydst-5p-icdst-split-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-5p-icdst-split-v2) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2295 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 800, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brendan/refpydst-10p-referredstates-split-v1
Brendan
2023-06-19T20:49:24Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-19T19:24:28Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Brendan/refpydst-10p-referredstates-split-v1 This model was initialized with `sentence-transformers/all-mpnet-base-v2` and then fine-tuned using a 10% few-shot split of the MultiWOZ dataset and a supervised contrastive loss. It is fine-tuned to be used as an in-context example retriever using this few-shot training set, which is provided in the linked repository. More details available [in the repo](https://github.com/jlab-nlp/RefPyDST) and paper linked within. To cite this model, please consult the citation in the [linked GithHub repository README](https://github.com/jlab-nlp/RefPyDST). The remainder of this README is automatically generated from `sentence_transformers` and is accurate, though this model is not intended as a general purpose sentence-encoder: it is expecting in-context examples from MultiWOZ to be formatted in a particular way, see the linked repo for details. This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Brendan/refpydst-10p-referredstates-split-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Brendan/refpydst-10p-referredstates-split-v1') model = AutoModel.from_pretrained('Brendan/refpydst-10p-referredstates-split-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Brendan/refpydst-10p-referredstates-split-v1) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4567 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 15, "evaluation_steps": 1600, "evaluator": "refpydst.retriever.code.st_evaluator.RetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
mrizalf7/xlm-roberta-finetuned-small-squad-indonesian-rizal-9
mrizalf7
2023-06-19T20:40:01Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-06-19T17:28:21Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-finetuned-small-squad-indonesian-rizal-9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-finetuned-small-squad-indonesian-rizal-9 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.6372 | 1.0 | 4128 | 1.7537 | | 1.3958 | 2.0 | 8256 | 1.7289 | | 1.2485 | 3.0 | 12384 | 1.7340 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
cosimoiaia/Loquace-12B
cosimoiaia
2023-06-19T20:23:47Z
20
1
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "alpaca", "llama", "llm", "finetune", "Italian", "qlora", "conversational", "it", "dataset:cosimoiaia/Loquace-102k", "license:cc-by-nc-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-02T20:36:15Z
--- license: cc-by-nc-2.0 datasets: - cosimoiaia/Loquace-102k language: - it pipeline_tag: conversational tags: - alpaca - llama - llm - finetune - Italian - qlora --- Model Card for Loquace-12B # 🇮🇹 Loquace-12B 🇮🇹 An exclusively Italian speaking, instruction finetuned, Large Language model. 🇮🇹 The Loquace Italian LLM models are created as a proof-of-concept to evaluate on how language tuning can be achieved using QLoRa by instruct-tunings foundational LLMs using dataset of a specific language. The QLoRa (https://github.com/artidoro/qlora) method of fine-tuning significantly lower the resources requirements compared to any other methods available, this allow to easily execute the process on significanly larger dataset while still using consumers GPUs and still achieve high accuracy. ## Model Description Loquace-12B is the first 12B italian Large Language Model trained using QLoRa on a large dataset of 102k question/answer pairs exclusively in Italian. The related code can be found at: https://github.com/cosimoiaia/Loquace Loquace-12B is part of the big Loquace family: https://huggingface.co/cosimoiaia/Loquace-70m - Based on pythia-70m https://huggingface.co/cosimoiaia/Loquace-410m - Based on pythia-410m https://huggingface.co/cosimoiaia/Loquace-7B - Based on Falcon-7B https://huggingface.co/cosimoiaia/Loquace-12B - Based on pythia-12B https://huggingface.co/cosimoiaia/Loquace-20B - Based on gpt-neox-20B ## Usage ```python from transformers import ( AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig ) tokenizer = AutoTokenizer.from_pretrained("cosimoiaia/Loquace-12B", padding_side="right", use_fast=True) model = AutoModelForCausalLM.from_pretrained( "cosimoiaia/Loquace-12B", load_in_8bit=True, device_map="auto", quantization_config=BitsAndBytesConfig( load_in_4bit=True, llm_int8_has_fp16_weight=False ) ) ``` ## Training Loquace-12B was trained on a conversational dataset comprising 102k question/answer pairs in Italian language. The training data was constructed by putting together translations from the original alpaca Dataset and other sources like the OpenAssistant dataset. The model was trained for only 3000 iterations and took 18 hours on 4 RTX 3090, kindly provided by Genesis Cloud. (https://gnsiscld.co/26qhlf) ## Limitations - Loquace-12B may not handle complex or nuanced queries well and may struggle with ambiguous or poorly formatted inputs. - The model may generate responses that are factually incorrect or nonsensical. It should be used with caution, and outputs should be carefully verified. - The training data primarily consists of conversational examples and may not generalize well to other types of tasks or domains. ## Dependencies - PyTorch - Transformers library by Hugging Face - Bitsandbites - QLoRa
cosimoiaia/Loquace-410m
cosimoiaia
2023-06-19T20:22:44Z
183
1
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "alpaca", "llama", "llm", "finetune", "Italian", "qlora", "conversational", "it", "dataset:cosimoiaia/Loquace-102k", "license:cc-by-nc-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-02T05:30:16Z
--- license: cc-by-nc-2.0 datasets: - cosimoiaia/Loquace-102k language: - it pipeline_tag: conversational tags: - alpaca - llama - llm - finetune - Italian - qlora --- Model Card for Loquace-410m # 🇮🇹 Loquace-410m 🇮🇹 An exclusively Italian speaking, instruction finetuned, Large Language model. 🇮🇹 The Loquace Italian LLM models are created as a proof-of-concept to evaluate on how language tuning can be achieved using QLoRa by instruct-tunings foundational LLMs using dataset of a specific language. The QLoRa (https://github.com/artidoro/qlora) method of fine-tuning significantly lower the resources requirements compared to any other methods available, this allow to easily execute the process on significanly larger dataset while still using consumers GPUs and still achieve high accuracy. ## Model Description Loquace-410m is the second smallest model of the Loquace family. It was trained using QLoRa on a large dataset of 102k question/answer pairs exclusively in Italian using pythia-410m as base. The related code can be found at: https://github.com/cosimoiaia/Loquace Loquace-410m is part of the big Loquace family: https://huggingface.co/cosimoiaia/Loquace-70m - Based on pythia-70m https://huggingface.co/cosimoiaia/Loquace-410m - Based on pythia-410m https://huggingface.co/cosimoiaia/Loquace-7B - Based on Falcon-7B. https://huggingface.co/cosimoiaia/Loquace-12B - Based on pythia-12B https://huggingface.co/cosimoiaia/Loquace-20B - Based on gpt-neox-20B ## Usage ```python from transformers import ( AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig ) tokenizer = AutoTokenizer.from_pretrained("cosimoiaia/Loquace-410m", padding_side="right", use_fast=True) model = AutoModelForCausalLM.from_pretrained( "cosimoiaia/Loquace-410m", load_in_8bit=True, device_map="auto", quantization_config=BitsAndBytesConfig( load_in_4bit=True, llm_int8_has_fp16_weight=False ) ) ``` ## Training Loquace-410m was trained on a conversational dataset comprising 102k question/answer pairs in Italian language. The training data was constructed by putting together translations from the original alpaca Dataset and other sources like the OpenAssistant dataset. The model was trained for only 10000 iterations and took 9 hours on a single RTX 3090, kindly provided by Genesis Cloud. (https://gnsiscld.co/26qhlf) ## Limitations - Loquace-410m may not handle complex or nuanced queries well and may struggle with ambiguous or poorly formatted inputs. - The model may generate responses that are factually incorrect or nonsensical. It should be used with caution, and outputs should be carefully verified. - The training data primarily consists of conversational examples and may not generalize well to other types of tasks or domains. ## Dependencies - PyTorch - Transformers library by Hugging Face - Bitsandbites - QLoRa
cosimoiaia/Loquace-70m
cosimoiaia
2023-06-19T20:21:56Z
182
3
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "alpaca", "llama", "llm", "finetune", "Italian", "qlora", "conversational", "it", "dataset:cosimoiaia/Loquace-102k", "license:cc-by-nc-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-02T05:18:49Z
--- license: cc-by-nc-2.0 datasets: - cosimoiaia/Loquace-102k language: - it pipeline_tag: conversational tags: - alpaca - llama - llm - finetune - Italian - qlora --- Model Card for Loquace-70m # 🇮🇹 Loquace-70m 🇮🇹 An exclusively Italian speaking, instruction finetuned, Large Language model. 🇮🇹 The Loquace Italian LLM models are created as a proof-of-concept to evaluate on how language tuning can be achieved using QLoRa by instruct-tunings foundational LLMs using dataset of a specific language. The QLoRa (https://github.com/artidoro/qlora) method of fine-tuning significantly lower the resources requirements compared to any other methods available, this allow to easily execute the process on significanly larger dataset while still using consumers GPUs and still achieve high accuracy. ## Model Description Loquace-70m is the smallest model of the Loquace family. It was trained using QLoRa on a large dataset of 102k question/answer pairs exclusively in Italian. The related code can be found at: https://github.com/cosimoiaia/Loquace Loquace-70m is part of the big Loquace family: https://huggingface.co/cosimoiaia/Loquace-70m - Based on pythia-70m https://huggingface.co/cosimoiaia/Loquace-410m - Based on pythia-410m https://huggingface.co/cosimoiaia/Loquace-7B - Based on Falcon-7B. https://huggingface.co/cosimoiaia/Loquace-12B - Based on pythia-12B https://huggingface.co/cosimoiaia/Loquace-20B - Based on gpt-neox-20B ## Usage ```python from transformers import ( AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig ) tokenizer = AutoTokenizer.from_pretrained("cosimoiaia/Loquace-70m", padding_side="right", use_fast=True) model = AutoModelForCausalLM.from_pretrained( "cosimoiaia/Loquace-70m", load_in_8bit=True, device_map="auto", quantization_config=BitsAndBytesConfig( load_in_4bit=True, llm_int8_has_fp16_weight=False ) ) ``` ## Training Loquace-70m was trained on a conversational dataset comprising 102k question/answer pairs in Italian language. The training data was constructed by putting together translations from the original alpaca Dataset and other sources like the OpenAssistant dataset. The model was trained for only 10000 iterations and took 6 hours on a single RTX 3090, kindly provided by Genesis Cloud. (https://gnsiscld.co/26qhlf) ## Limitations - Loquace-70m may not handle complex or nuanced queries well and may struggle with ambiguous or poorly formatted inputs. - The model may generate responses that are factually incorrect or nonsensical. It should be used with caution, and outputs should be carefully verified. - The training data primarily consists of conversational examples and may not generalize well to other types of tasks or domains. ## Dependencies - PyTorch - Transformers library by Hugging Face - Bitsandbites - QLoRa
sd-concepts-library/mersh
sd-concepts-library
2023-06-19T20:08:53Z
0
0
null
[ "base_model:stabilityai/stable-diffusion-2", "base_model:finetune:stabilityai/stable-diffusion-2", "license:mit", "region:us" ]
null
2023-06-19T20:08:51Z
--- license: mit base_model: stabilityai/stable-diffusion-2 --- ### Mersh on Stable Diffusion This is the `<lolcowmersh>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<lolcowmersh> 0](https://huggingface.co/sd-concepts-library/mersh/resolve/main/concept_images/0.jpeg) ![<lolcowmersh> 1](https://huggingface.co/sd-concepts-library/mersh/resolve/main/concept_images/3.jpeg) ![<lolcowmersh> 2](https://huggingface.co/sd-concepts-library/mersh/resolve/main/concept_images/2.jpeg) ![<lolcowmersh> 3](https://huggingface.co/sd-concepts-library/mersh/resolve/main/concept_images/1.jpeg)
Draconis42/q-FrozenLake-v1-4x4-noSlippery
Draconis42
2023-06-19T19:56:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T19:54:15Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Draconis42/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
wesleyacheng/sms-spam-classification-with-bert
wesleyacheng
2023-06-19T19:39:06Z
8,660
2
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "text-classification", "en", "dataset:sms_spam", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-22T05:30:59Z
--- license: apache-2.0 datasets: - sms_spam language: - en metrics: - f1 - accuracy pipeline_tag: text-classification widget: - text: +26.787$ burn out in 24 hours, Let it have drowned, http://bit.ly/7ayp example_title: Spam Example - text: Hey want to cook something together tonight? example_title: Ham Example --- First posted in my [Kaggle](https://www.kaggle.com/code/wesleyacheng/sms-spam-classification-with-bert). You know what really grinds my gears. Spam! 😤 I made a sms spam classifier using [transfer learning](https://en.wikipedia.org/wiki/Transfer_learning) on [BERT](https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html) with a [Singaporean SMS Spam dataset](https://huggingface.co/datasets/sms_spam).
digiplay/kotosmix_diffusers
digiplay
2023-06-19T19:14:40Z
340
4
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-29T08:48:08Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- model info : https://civitai.com/models/5245/kotosmix you can apply VAE to get better color, example codes for diffusers: ``` #VAE from diffusers.models import AutoencoderKL vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse") modelid="digiplay/kotosmix_diffusers" pipe = DiffusionPipeline.from_pretrained(modelid, vae=vae) ``` PS: Recommended *Euler* scheduler type.
gokuls/hbertv1-Massive-intent
gokuls
2023-06-19T19:11:18Z
47
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "dataset:massive", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T19:02:13Z
--- tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: hbertv1-Massive-intent results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.8450565666502705 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hbertv1-Massive-intent This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8959 - Accuracy: 0.8451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.051 | 1.0 | 180 | 1.8409 | 0.4968 | | 1.3906 | 2.0 | 360 | 1.0234 | 0.7167 | | 0.8613 | 3.0 | 540 | 0.8787 | 0.7688 | | 0.6447 | 4.0 | 720 | 0.8405 | 0.7811 | | 0.4955 | 5.0 | 900 | 0.8426 | 0.7850 | | 0.3899 | 6.0 | 1080 | 0.7777 | 0.8175 | | 0.3052 | 7.0 | 1260 | 0.7779 | 0.8175 | | 0.2413 | 8.0 | 1440 | 0.8294 | 0.8254 | | 0.196 | 9.0 | 1620 | 0.8265 | 0.8214 | | 0.1545 | 10.0 | 1800 | 0.8361 | 0.8362 | | 0.1177 | 11.0 | 1980 | 0.8470 | 0.8288 | | 0.0894 | 12.0 | 2160 | 0.8706 | 0.8283 | | 0.0666 | 13.0 | 2340 | 0.8853 | 0.8392 | | 0.0447 | 14.0 | 2520 | 0.8959 | 0.8451 | | 0.0312 | 15.0 | 2700 | 0.8982 | 0.8441 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.13.0 - Tokenizers 0.13.3
digiplay/realdosmix_diffusers
digiplay
2023-06-19T19:06:46Z
350
4
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-23T15:17:35Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- hi,I am newbie here, this is a test for transfer RealDosMix model to diffusers Scheduler type: DPM Model info: https://civitai.com/models/6925/realdosmix
digiplay/bra_v40_diffusers
digiplay
2023-06-19T18:59:09Z
369
3
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-25T18:57:35Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- https://civitai.com/models/25494/beautiful-realistic-asians
greenw0lf/wav2vec2-large-xls-r-1b-frisian-cv-8-10h
greenw0lf
2023-06-19T18:58:05Z
112
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-31T10:06:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-1b-frisian-cv-8-10h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: fy-NL split: validation args: fy-NL metrics: - name: Wer type: wer value: 0.09612912441079846 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: fy-NL split: test args: fy-NL metrics: - name: Wer type: wer value: 0.08830755889579418 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-1b-frisian-cv-8-10h This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1207 - Wer: 0.0961 And on the test set: - Wer: 0.0883 ## Model description This model has been developed for my Master's thesis in "Voice Technology" at Rijksuniversiteit Groningen - Campus Fryslân. It corresponds to experiment 3 where I use as training set 10 hours of Frisian speech randomly selected from all validated data except the test and evaluation sets. ## Intended uses & limitations The intended use is for recognizing Frisian speech. Limitations include no LM rescoring and using version 8.0 of Common Voice instead of 13.0. ## Training and evaluation data The evaluation split used is the one available in the Common Voice 8.0 Frisian subset. The train split is 10 hours of Frisian randomly selected from validated data except for the recordings from test and evaluation splits. ## Training procedure The script used for training this model can be found in this GitHub repository: [link](https://github.com/greenw0lf/MSc-VT-Thesis/). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.6342 | 1.32 | 300 | 2.9760 | 1.0 | | 2.2716 | 2.63 | 600 | 0.6877 | 0.6024 | | 1.1303 | 3.95 | 900 | 0.3522 | 0.3450 | | 0.9038 | 5.26 | 1200 | 0.2714 | 0.2603 | | 0.846 | 6.58 | 1500 | 0.2143 | 0.2036 | | 0.8044 | 7.89 | 1800 | 0.1829 | 0.1788 | | 0.7069 | 9.21 | 2100 | 0.1751 | 0.1667 | | 0.6995 | 10.53 | 2400 | 0.1741 | 0.1727 | | 0.7115 | 11.84 | 2700 | 0.1591 | 0.1486 | | 0.677 | 13.16 | 3000 | 0.1636 | 0.1459 | | 0.6032 | 14.47 | 3300 | 0.1535 | 0.1439 | | 0.6218 | 15.79 | 3600 | 0.1427 | 0.1406 | | 0.6519 | 17.11 | 3900 | 0.1498 | 0.1488 | | 0.5739 | 18.42 | 4200 | 0.1438 | 0.1319 | | 0.567 | 19.74 | 4500 | 0.1379 | 0.1322 | | 0.4982 | 21.05 | 4800 | 0.1315 | 0.1237 | | 0.5825 | 22.37 | 5100 | 0.1349 | 0.1252 | | 0.5085 | 23.68 | 5400 | 0.1297 | 0.1233 | | 0.4946 | 25.0 | 5700 | 0.1343 | 0.1127 | | 0.5677 | 26.32 | 6000 | 0.1323 | 0.1228 | | 0.4858 | 27.63 | 6300 | 0.1292 | 0.1098 | | 0.4709 | 28.95 | 6600 | 0.1267 | 0.1204 | | 0.3241 | 30.26 | 6900 | 0.1315 | 0.1274 | | 0.2796 | 31.58 | 7200 | 0.1315 | 0.1202 | | 0.3171 | 32.89 | 7500 | 0.1315 | 0.1200 | | 0.2591 | 34.21 | 7800 | 0.1322 | 0.1106 | | 0.2716 | 35.53 | 8100 | 0.1233 | 0.1030 | | 0.2446 | 36.84 | 8400 | 0.1273 | 0.1087 | | 0.2377 | 38.16 | 8700 | 0.1243 | 0.1101 | | 0.2183 | 39.47 | 9000 | 0.1230 | 0.1116 | | 0.2059 | 40.79 | 9300 | 0.1240 | 0.1001 | | 0.1916 | 42.11 | 9600 | 0.1223 | 0.1003 | | 0.196 | 43.42 | 9900 | 0.1246 | 0.0965 | | 0.1969 | 44.74 | 10200 | 0.1222 | 0.1038 | | 0.1951 | 46.05 | 10500 | 0.1208 | 0.1003 | | 0.1809 | 47.37 | 10800 | 0.1213 | 0.1003 | | 0.1793 | 48.68 | 11100 | 0.1202 | 0.0959 | | 0.1837 | 50.0 | 11400 | 0.1207 | 0.0961 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
fedbor/secondo_modello
fedbor
2023-06-19T18:55:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-19T18:55:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
amangarg98/my_awesome_model
amangarg98
2023-06-19T18:51:53Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T18:40:56Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: amangarg98/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amangarg98/my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0266 - Validation Loss: 0.0126 - Train Accuracy: 0.9953 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3492, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.0266 | 0.0126 | 0.9953 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.0 - Tokenizers 0.13.3
MUmairAB/English_to_French_Translation_Transformer
MUmairAB
2023-06-19T18:46:14Z
1
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-06-18T08:50:01Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | RMSprop | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | 100 | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | rho | 0.9 | | momentum | 0.0 | | epsilon | 1e-07 | | centered | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
hopkins/ss-10k
hopkins
2023-06-19T18:19:03Z
144
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T18:07:05Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: ss-10k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ss-10k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 5.8726 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 18 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.1881 | 15.38 | 200 | 5.8726 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.12.0 - Tokenizers 0.13.3
mun33b/dqn-SpaceInvadersNoFrameskip-v4
mun33b
2023-06-19T18:14:14Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T15:53:18Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 523.50 +/- 90.11 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mun33b -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mun33b -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mun33b ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 2000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
UnaiGurbindo/ppo-LunarLander-v2
UnaiGurbindo
2023-06-19T18:13:47Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T18:13:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.59 +/- 20.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
SlyEcho/open_llama_13b_ggml
SlyEcho
2023-06-19T17:56:45Z
0
5
null
[ "license:apache-2.0", "region:us" ]
null
2023-06-07T16:18:38Z
--- license: apache-2.0 --- # ggml versions of OpenLLaMa 13B For use with [llama.cpp](https://github.com/ggerganov/llama.cpp). - Version: 1000B tokens final release - Project: [OpenLLaMA: An Open Reproduction of LLaMA](https://github.com/openlm-research/open_llama) - Model: [openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b) - llama.cpp 4,5,8-bit quantization: build 567(2d5db48) or later - llama.cpp newer quantization formats: build 616(99009e7) or later
hassansoliman/falcon-40b-qlora-utterance-adaptations_v3
hassansoliman
2023-06-19T17:52:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-19T17:51:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
ABAtanasov/q-FrozenLake-v1-4x4-noSlippery
ABAtanasov
2023-06-19T17:46:40Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T17:46:37Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ABAtanasov/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
fedbor/primo_modello
fedbor
2023-06-19T17:40:27Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-19T17:40:25Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
mrm8488/falcon-7b-ft-codeAlpaca_20k
mrm8488
2023-06-19T17:35:58Z
0
0
null
[ "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-06-19T14:46:27Z
--- tags: - generated_from_trainer model-index: - name: falcon-7b-ft-codeAlpaca_20k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon-7b-ft-codeAlpaca_20k This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7623 | 0.18 | 50 | 0.7899 | | 0.7985 | 0.35 | 100 | 0.7680 | | 0.7551 | 0.53 | 150 | 0.7570 | | 0.7261 | 0.71 | 200 | 0.7499 | | 0.8184 | 0.89 | 250 | 0.7461 | | 0.7067 | 1.06 | 300 | 0.7480 | | 0.6801 | 1.24 | 350 | 0.7463 | | 0.6432 | 1.42 | 400 | 0.7423 | | 0.7141 | 1.6 | 450 | 0.7398 | | 0.669 | 1.77 | 500 | 0.7383 | | 0.7177 | 1.95 | 550 | 0.7342 | | 0.6419 | 2.13 | 600 | 0.7553 | | 0.6395 | 2.3 | 650 | 0.7510 | | 0.6255 | 2.48 | 700 | 0.7498 | | 0.5556 | 2.66 | 750 | 0.7474 | | 0.6592 | 2.84 | 800 | 0.7470 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
hungngo04/cluster_to_text
hungngo04
2023-06-19T17:28:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T16:06:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: cluster_to_text results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cluster_to_text This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0608 - Bleu: 39.5087 - Gen Len: 10.2429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.8864 | 1.0 | 4678 | 1.5653 | 17.9224 | 10.3526 | | 1.6271 | 2.0 | 9356 | 1.3336 | 26.9113 | 10.2905 | | 1.4621 | 3.0 | 14034 | 1.1952 | 32.9922 | 10.2873 | | 1.3908 | 4.0 | 18712 | 1.1183 | 36.6438 | 10.2917 | | 1.3385 | 5.0 | 23390 | 1.0753 | 38.768 | 10.2479 | | 1.3138 | 6.0 | 28068 | 1.0608 | 39.5087 | 10.2429 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
elberaguilar/finetuning-sentiment-model-3000-samples
elberaguilar
2023-06-19T16:43:11Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T04:20:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1583 - Accuracy: 0.9493 - F1: 0.9676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
hongrui/mammogtram_v_1_1
hongrui
2023-06-19T16:39:13Z
2
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-14T15:09:48Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - hongrui/mammogram_v_1 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the hongrui/mammogram_v_1 dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
sevdeawesome/Taxi-v3
sevdeawesome
2023-06-19T16:35:26Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T16:33:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.78 name: mean_reward verified: false ---
HyunjooCheong/my_awesome_eli5_clm-model
HyunjooCheong
2023-06-19T16:35:17Z
217
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-13T09:11:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8556 | 1.0 | 1131 | 3.7857 | | 3.7657 | 2.0 | 2262 | 3.7707 | | 3.7226 | 3.0 | 3393 | 3.7693 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
Narotomaki/kimihimee
Narotomaki
2023-06-19T16:30:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-11T14:34:16Z
--- license: creativeml-openrail-m ---
hts98/wav2vec2-common_voice-tr-mms-demo
hts98
2023-06-19T16:09:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "vi", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-18T08:21:21Z
--- language: - vi license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-common_voice-tr-mms-demo results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: COMMON_VOICE - VI type: common_voice config: vi split: test args: 'Config: vi, Training split: train, Eval split: test' metrics: - name: Wer type: wer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-mms-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - VI dataset. It achieves the following results on the evaluation set: - Loss: 3.5581 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 1.79 | 100 | 3.6345 | 1.0 | | No log | 3.57 | 200 | 3.6709 | 1.0 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.7.0 - Tokenizers 0.13.3
hungngo04/my_awesome_opus_books_model
hungngo04
2023-06-19T16:05:35Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-13T07:22:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: my_awesome_opus_books_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9985 - Bleu: 6.0773 - Gen Len: 10.9877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 2.4478 | 1.0 | 4678 | 2.1576 | 3.7548 | 11.3567 | | 2.2537 | 2.0 | 9356 | 1.9985 | 6.0773 | 10.9877 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
NasimB/bert-dp-second
NasimB
2023-06-19T16:04:43Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "dataset:generator", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-18T09:08:18Z
--- tags: - generated_from_trainer datasets: - generator model-index: - name: bert-dp-second results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-dp-second This model is a fine-tuned version of [](https://huggingface.co/) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 3.2321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 19 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 7.3416 | 0.23 | 500 | 6.6532 | | 6.5752 | 0.47 | 1000 | 6.5275 | | 6.4866 | 0.7 | 1500 | 6.4720 | | 6.4273 | 0.93 | 2000 | 6.4540 | | 6.4036 | 1.17 | 2500 | 6.4236 | | 6.3779 | 1.4 | 3000 | 6.4018 | | 6.3528 | 1.63 | 3500 | 6.3768 | | 6.3258 | 1.87 | 4000 | 6.3679 | | 6.3009 | 2.1 | 4500 | 6.3305 | | 6.2646 | 2.33 | 5000 | 6.3142 | | 6.2583 | 2.57 | 5500 | 6.3004 | | 6.2223 | 2.8 | 6000 | 6.2605 | | 6.1941 | 3.03 | 6500 | 6.2353 | | 6.1382 | 3.27 | 7000 | 6.2095 | | 6.1301 | 3.5 | 7500 | 6.1774 | | 6.09 | 3.73 | 8000 | 6.1480 | | 6.0624 | 3.97 | 8500 | 6.1061 | | 6.0056 | 4.2 | 9000 | 6.0655 | | 5.9444 | 4.43 | 9500 | 5.9461 | | 5.7101 | 4.67 | 10000 | 5.2594 | | 5.005 | 4.9 | 10500 | 4.7348 | | 4.6127 | 5.13 | 11000 | 4.4626 | | 4.3907 | 5.37 | 11500 | 4.2862 | | 4.241 | 5.6 | 12000 | 4.1701 | | 4.1286 | 5.83 | 12500 | 4.0673 | | 4.0151 | 6.07 | 13000 | 3.9967 | | 3.934 | 6.3 | 13500 | 3.9292 | | 3.8789 | 6.53 | 14000 | 3.8707 | | 3.8231 | 6.77 | 14500 | 3.8222 | | 3.7696 | 7.0 | 15000 | 3.7800 | | 3.7078 | 7.23 | 15500 | 3.7424 | | 3.6671 | 7.47 | 16000 | 3.7093 | | 3.6446 | 7.7 | 16500 | 3.6780 | | 3.6069 | 7.93 | 17000 | 3.6476 | | 3.5782 | 8.17 | 17500 | 3.6283 | | 3.5384 | 8.4 | 18000 | 3.6098 | | 3.5245 | 8.63 | 18500 | 3.5942 | | 3.5209 | 8.87 | 19000 | 3.5841 | | 3.4948 | 9.1 | 19500 | 3.5728 | | 3.4877 | 9.33 | 20000 | 3.5692 | | 3.4818 | 9.57 | 20500 | 3.5641 | | 3.4844 | 9.8 | 21000 | 3.5640 | | 3.5323 | 10.03 | 21500 | 3.6026 | | 3.5123 | 10.27 | 22000 | 3.5877 | | 3.5046 | 10.5 | 22500 | 3.5595 | | 3.4787 | 10.73 | 23000 | 3.5403 | | 3.4568 | 10.97 | 23500 | 3.5125 | | 3.4154 | 11.2 | 24000 | 3.4916 | | 3.3998 | 11.43 | 24500 | 3.4749 | | 3.3986 | 11.67 | 25000 | 3.4578 | | 3.372 | 11.9 | 25500 | 3.4405 | | 3.3402 | 12.13 | 26000 | 3.4317 | | 3.3281 | 12.37 | 26500 | 3.4215 | | 3.322 | 12.6 | 27000 | 3.4093 | | 3.3198 | 12.83 | 27500 | 3.4026 | | 3.3039 | 13.07 | 28000 | 3.3971 | | 3.296 | 13.3 | 28500 | 3.3954 | | 3.3015 | 13.53 | 29000 | 3.3954 | | 3.2939 | 13.77 | 29500 | 3.3927 | | 3.3013 | 14.0 | 30000 | 3.3918 | | 3.343 | 14.23 | 30500 | 3.4265 | | 3.3438 | 14.47 | 31000 | 3.4133 | | 3.3397 | 14.7 | 31500 | 3.3951 | | 3.3156 | 14.93 | 32000 | 3.3681 | | 3.2815 | 15.17 | 32500 | 3.3503 | | 3.2654 | 15.4 | 33000 | 3.3313 | | 3.2492 | 15.63 | 33500 | 3.3184 | | 3.2399 | 15.87 | 34000 | 3.2995 | | 3.2222 | 16.1 | 34500 | 3.2922 | | 3.2026 | 16.33 | 35000 | 3.2818 | | 3.191 | 16.57 | 35500 | 3.2723 | | 3.1825 | 16.8 | 36000 | 3.2640 | | 3.1691 | 17.03 | 36500 | 3.2530 | | 3.1656 | 17.27 | 37000 | 3.2487 | | 3.1487 | 17.5 | 37500 | 3.2419 | | 3.1635 | 17.73 | 38000 | 3.2411 | | 3.1675 | 17.97 | 38500 | 3.2330 | | 3.1422 | 18.2 | 39000 | 3.2344 | | 3.1443 | 18.43 | 39500 | 3.2331 | | 3.1425 | 18.67 | 40000 | 3.2348 | | 3.139 | 18.9 | 40500 | 3.2321 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
Lipov91/mt5-small-finetuned-geodescriptions
Lipov91
2023-06-19T15:51:17Z
62
0
transformers
[ "transformers", "tf", "mt5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T15:49:37Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Lipov91/mt5-small-finetuned-geodescriptions results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Lipov91/mt5-small-finetuned-geodescriptions This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 29.3069 - Validation Loss: 14.6929 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 8, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 29.3069 | 14.6929 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.0 - Tokenizers 0.13.3
Noahhow/Gragas
Noahhow
2023-06-19T15:47:32Z
0
0
adapter-transformers
[ "adapter-transformers", "Lol", "League of legends ", "audio-to-audio", "en", "dataset:tiiuae/falcon-refinedweb", "license:creativeml-openrail-m", "region:us" ]
audio-to-audio
2023-06-19T15:38:07Z
--- datasets: - tiiuae/falcon-refinedweb language: - en metrics: - charcut_mt pipeline_tag: audio-to-audio tags: - Lol - 'League of legends ' license: creativeml-openrail-m library_name: adapter-transformers ---
CodyKilpatrick/a2c-AntBulletEnv-v0
CodyKilpatrick
2023-06-19T15:40:22Z
4
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T15:37:59Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1212.25 +/- 179.65 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
andrewsiah/q-FrozenLake-v1-4x4-noSlippery
andrewsiah
2023-06-19T15:16:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T15:16:21Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="andrewsiah/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Heng666/falcon-7b-sharded-bf16-english-quote-qlora
Heng666
2023-06-19T15:10:33Z
5
0
peft
[ "peft", "region:us" ]
null
2023-06-19T15:05:21Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
Keithulu/distilgpt2-finetuned-python-stack
Keithulu
2023-06-19T15:02:19Z
213
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T14:49:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-python-stack results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-python-stack This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 91 | 3.1229 | | No log | 2.0 | 182 | 2.9666 | | No log | 3.0 | 273 | 2.9321 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
rosadecsai/distilbert-base-uncased-finetuned-emotion
rosadecsai
2023-06-19T14:59:36Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T11:23:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9223397880179345 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2210 - Accuracy: 0.9225 - F1: 0.9223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8335 | 1.0 | 250 | 0.3278 | 0.8985 | 0.8937 | | 0.2523 | 2.0 | 500 | 0.2210 | 0.9225 | 0.9223 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
sarahpuspdew/DeepRLCourse_Unit6-a2c-AntBulletEnv-v0
sarahpuspdew
2023-06-19T14:55:25Z
3
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T14:54:23Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1322.86 +/- 745.96 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
teddy0413/Accounting_glm0619
teddy0413
2023-06-19T14:55:02Z
1
0
peft
[ "peft", "region:us" ]
null
2023-06-19T14:54:58Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
syf2023/gpt2
syf2023
2023-06-19T14:53:15Z
203
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tflite", "rust", "safetensors", "gpt2", "text-generation", "exbert", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T14:49:39Z
--- language: en tags: - exbert license: mit duplicated_from: gpt2 --- # GPT-2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. This is the **smallest** version of GPT-2, with 124M parameters. **Related Models:** [GPT-Large](https://huggingface.co/gpt2-large), [GPT-Medium](https://huggingface.co/gpt2-medium) and [GPT-XL](https://huggingface.co/gpt2-xl) ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
xusenlin/duee-gplinker
xusenlin
2023-06-19T14:53:10Z
36
0
transformers
[ "transformers", "pytorch", "bert", "event extraction", "zh", "dataset:DuEE", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-06-19T14:22:12Z
--- language: - zh tags: - event extraction license: apache-2.0 datasets: - DuEE metrics: - f1 --- # GPLinker事件抽取模型 ## 模型介绍 + 数据集:百度 `DUEE` 信息抽取 + 模型方法:[GPLinker:基于GlobalPointer的事件联合抽取](https://spaces.ac.cn/archives/8926) ## 使用方法 ```commandline pip install litie ``` ```python from pprint import pprint from litie.pipelines import EventExtractionPipeline pipeline = EventExtractionPipeline("gplinker", model_name_or_path="xusenlin/duee-gplinker", model_type="bert") text = "油服巨头哈里伯顿裁员650人 因美国油气开采活动放缓。" pprint(pipeline(text)) # 输出 [ [ { "event_type": "组织关系-裁员", "arguments": [ { "role": "裁员人数", "argument": "650人" }, { "role": "裁员方", "argument": "油服巨头哈里伯顿" } ] } ] ] ``` 模型训练和推理的详细代码见 [litie](https://github.com/xusenlinzy/lit-ie)
casque/YOZORA.vae
casque
2023-06-19T14:50:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-19T14:43:18Z
--- license: creativeml-openrail-m ---
titanicc/titanicdrpt
titanicc
2023-06-19T14:49:59Z
160
0
transformers
[ "transformers", "pytorch", "gpt2", "text-classification", "arxiv:2009.06978", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T14:38:43Z
--- duplicated_from: microsoft/DialogRPT-human-vs-rand --- # Demo Please try this [➤➤➤ Colab Notebook Demo (click me!)](https://colab.research.google.com/drive/1cAtfkbhqsRsT59y3imjR1APw3MHDMkuV?usp=sharing) | Context | Response | `human_vs_rand` score | | :------ | :------- | :------------: | | I love NLP! | He is a great basketball player. | 0.027 | | I love NLP! | Can you tell me how it works? | 0.754 | | I love NLP! | Me too! | 0.631 | The `human_vs_rand` score predicts how likely the response is corresponding to the given context, rather than a random response. # DialogRPT-human-vs-rand ### Dialog Ranking Pretrained Transformers > How likely a dialog response is upvoted 👍 and/or gets replied 💬? This is what [**DialogRPT**](https://github.com/golsun/DialogRPT) is learned to predict. It is a set of dialog response ranking models proposed by [Microsoft Research NLP Group](https://www.microsoft.com/en-us/research/group/natural-language-processing/) trained on 100 + millions of human feedback data. It can be used to improve existing dialog generation model (e.g., [DialoGPT](https://huggingface.co/microsoft/DialoGPT-medium)) by re-ranking the generated response candidates. Quick Links: * [EMNLP'20 Paper](https://arxiv.org/abs/2009.06978/) * [Dataset, training, and evaluation](https://github.com/golsun/DialogRPT) * [Colab Notebook Demo](https://colab.research.google.com/drive/1cAtfkbhqsRsT59y3imjR1APw3MHDMkuV?usp=sharing) We considered the following tasks and provided corresponding pretrained models. |Task | Description | Pretrained model | | :------------- | :----------- | :-----------: | | **Human feedback** | **given a context and its two human responses, predict...**| | `updown` | ... which gets more upvotes? | [model card](https://huggingface.co/microsoft/DialogRPT-updown) | | `width`| ... which gets more direct replies? | [model card](https://huggingface.co/microsoft/DialogRPT-width) | | `depth`| ... which gets longer follow-up thread? | [model card](https://huggingface.co/microsoft/DialogRPT-depth) | | **Human-like** (human vs fake) | **given a context and one human response, distinguish it with...** | | `human_vs_rand`| ... a random human response | this model | | `human_vs_machine`| ... a machine generated response | [model card](https://huggingface.co/microsoft/DialogRPT-human-vs-machine) | ### Contact: Please create an issue on [our repo](https://github.com/golsun/DialogRPT) ### Citation: ``` @inproceedings{gao2020dialogrpt, title={Dialogue Response RankingTraining with Large-Scale Human Feedback Data}, author={Xiang Gao and Yizhe Zhang and Michel Galley and Chris Brockett and Bill Dolan}, year={2020}, booktitle={EMNLP} } ```
ghze/Taxi-v3
ghze
2023-06-19T14:47:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-16T23:05:08Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ghze/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
sixkiller/sixkiller
sixkiller
2023-06-19T14:47:38Z
6
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-30T11:55:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.66 +/- 11.17 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ditrip/rl_course_vizdoom_health_gathering_supreme
Ditrip
2023-06-19T14:47:23Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T14:35:11Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.30 +/- 5.13 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Ditrip/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
projecte-aina/roberta-base-ca-v2-cawikitc
projecte-aina
2023-06-19T14:36:45Z
118
1
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "zero-shot", "zero-shot-classification", "ca", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2023-05-19T14:32:53Z
--- pipeline_tag: zero-shot-classification license: apache-2.0 language: - ca tags: - zero-shot - text-classification widget: - text: "'Tierra firme' de Marqués-Marcet inaugura el Festival de cinema de Guadalajara amb Catalunya com a convidada d'honor. El director del film afirma sentir-se orgullós de formar part d'aquesta nova generació de cineastes catalans amb moltes dones directores." candidate_labels: societat, política, cultura, economia multi_class: true hypothesis_template: Aquest article tracta sobre {}. --- # RoBERTa-ca-CaWikiTC ## Overview <details> <summary>Click to expand</summary> - **Model type:** Language Model - **Architecture:** RoBERTa-base - **Language:** Catalan - **License:** Apache 2.0 - **Task:** Zero-Shot Text Classification - **Data:** CaWikiTC </details> ## Model description The **roberta-base-ca-v2-cawikitc** (RoBERTa-ca-CaWikiTC) is a Zero-Shot Text Classification model in Catalan created by fine-tuning [RoBERTa-base-ca-v2](https://huggingface.co/projecte-aina/roberta-large-ca-v2) with a classification dataset, CaWikiTC, reformulated as entailment. This model was developed as part of the experimental research presented in the following paper ["Entailment-based Task Transfer for Catalan Text Classification in Small Data Regimes"](). ## Intended uses and limitations This model can be used for zero-shot text classification in Catalan. It has been trained with a fixed hypothesis template, "Aquest article tracta sobre {}.", and Wikipedia-based articles as premises, and may not generalize well for all use cases. ## How to use ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="ibaucells/RoBERTa-ca-CaWikiTC") sentence = "'Tierra firme' de Marqués-Marcet inaugura el Festival de cinema de Guadalajara amb Catalunya com a convidada d'honor. El director del film afirma sentir-se orgullós de formar part d'aquesta nova generació de cineastes catalans amb moltes dones directores." candidate_labels = ["societat", "política", "cultura", "economia"] template = "Aquest article tracta sobre {}." output = classifier(sentence, candidate_labels, hypothesis_template=template, multi_label=False) print(output) print(f'Predicted class: {output["labels"][0]}') ``` ## Limitations and bias No measures have been taken to estimate the bias and toxicity embedded in the model. ## Training ### Training data This model was fine-tuned for the Natural Language Inference (NLI) task on an authomatically Wikipedia-based text classification dataset, [CaWikiTC](https://huggingface.co/ibaucells/CaWikiTC), reformulated as entailment. In the reformulation process, we generated two NLI examples for each text classification instance (text and label): an entailment example and a non-entailment example. In both cases, we employed the text as the premise and utilized a shared template to create the hypothesis ("Aquest article tracta {}."), which was completed with the correct label for the entailment example and a randomly-selected label from the remaining options for the non-entailment example. ### Training procedure The pre-trained Catalan model [RoBERTa-base-ca-v2](https://huggingface.co/projecte-aina/roberta-large-ca-v2) was fine-tuned with the training data using a learning rate of 3e-5, a batch size of 16, seed 26 and a maximum of 10 epochs. The development set (converted into entailment) was used to select the best checkpoint according to the highest weighted F1 score in the classification task, which was obtained in the first epoch. ## Evaluation ### Evaluation results This model was evaluated for the TeCla zero-shot text classification task (without specific fine-tuning for the task) and obtained weighted F1 scores of 75.0 in the coarse-grained task (4 classes) and 49.1 in the fine-grained task (53 classes). ## Additional information ### Contact For further information, send an email to either <[email protected]>. ### License This work is distributed under a [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0). ### Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ### Citation ### Disclaimer <details> <summary>Click to expand</summary> The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models be liable for any results arising from the use made by third parties of these models. </details>
Saed2023/lilt-en-funsd
Saed2023
2023-06-19T14:34:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "lilt", "token-classification", "generated_from_trainer", "dataset:funsd-layoutlmv3", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-04T16:06:35Z
--- license: mit tags: - generated_from_trainer datasets: - funsd-layoutlmv3 model-index: - name: lilt-en-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 1.8784 - Answer: {'precision': 0.8651817116060961, 'recall': 0.9033047735618115, 'f1': 0.8838323353293414, 'number': 817} - Header: {'precision': 0.6504854368932039, 'recall': 0.5630252100840336, 'f1': 0.6036036036036037, 'number': 119} - Question: {'precision': 0.9073394495412844, 'recall': 0.9182915506035283, 'f1': 0.912782648823258, 'number': 1077} - Overall Precision: 0.8768 - Overall Recall: 0.8912 - Overall F1: 0.8840 - Overall Accuracy: 0.7948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4369 | 10.53 | 200 | 0.9022 | {'precision': 0.8049065420560748, 'recall': 0.8433292533659731, 'f1': 0.8236700537955769, 'number': 817} | {'precision': 0.5317460317460317, 'recall': 0.5630252100840336, 'f1': 0.5469387755102041, 'number': 119} | {'precision': 0.8837420526793823, 'recall': 0.903435468895079, 'f1': 0.8934802571166208, 'number': 1077} | 0.8301 | 0.8589 | 0.8442 | 0.7888 | | 0.047 | 21.05 | 400 | 1.3222 | {'precision': 0.8382526564344747, 'recall': 0.8690330477356181, 'f1': 0.8533653846153846, 'number': 817} | {'precision': 0.5447761194029851, 'recall': 0.6134453781512605, 'f1': 0.5770750988142292, 'number': 119} | {'precision': 0.8667866786678667, 'recall': 0.8941504178272981, 'f1': 0.8802559414990858, 'number': 1077} | 0.8346 | 0.8674 | 0.8507 | 0.7837 | | 0.015 | 31.58 | 600 | 1.4745 | {'precision': 0.8549528301886793, 'recall': 0.8873929008567931, 'f1': 0.8708708708708709, 'number': 817} | {'precision': 0.5867768595041323, 'recall': 0.5966386554621849, 'f1': 0.5916666666666667, 'number': 119} | {'precision': 0.8755635707844905, 'recall': 0.9015784586815228, 'f1': 0.888380603842635, 'number': 1077} | 0.8503 | 0.8778 | 0.8638 | 0.7969 | | 0.0051 | 42.11 | 800 | 1.5719 | {'precision': 0.8768472906403941, 'recall': 0.8714810281517748, 'f1': 0.8741559238796808, 'number': 817} | {'precision': 0.5736434108527132, 'recall': 0.6218487394957983, 'f1': 0.596774193548387, 'number': 119} | {'precision': 0.8794326241134752, 'recall': 0.9210770659238626, 'f1': 0.8997732426303855, 'number': 1077} | 0.8594 | 0.8833 | 0.8711 | 0.7923 | | 0.0041 | 52.63 | 1000 | 1.6771 | {'precision': 0.8352402745995423, 'recall': 0.8935128518971848, 'f1': 0.8633944411590775, 'number': 817} | {'precision': 0.6568627450980392, 'recall': 0.5630252100840336, 'f1': 0.6063348416289592, 'number': 119} | {'precision': 0.8865116279069768, 'recall': 0.8848653667595172, 'f1': 0.8856877323420075, 'number': 1077} | 0.8532 | 0.8693 | 0.8612 | 0.7877 | | 0.0039 | 63.16 | 1200 | 1.6064 | {'precision': 0.8609112709832134, 'recall': 0.8788249694002448, 'f1': 0.8697758933979407, 'number': 817} | {'precision': 0.6106194690265486, 'recall': 0.5798319327731093, 'f1': 0.5948275862068966, 'number': 119} | {'precision': 0.8897777777777778, 'recall': 0.9294336118848654, 'f1': 0.9091734786557675, 'number': 1077} | 0.8629 | 0.8882 | 0.8754 | 0.8009 | | 0.0019 | 73.68 | 1400 | 1.7674 | {'precision': 0.8533178114086146, 'recall': 0.8971848225214198, 'f1': 0.8747016706443913, 'number': 817} | {'precision': 0.5769230769230769, 'recall': 0.5042016806722689, 'f1': 0.5381165919282511, 'number': 119} | {'precision': 0.8842676311030742, 'recall': 0.9080779944289693, 'f1': 0.8960146587265231, 'number': 1077} | 0.8560 | 0.8798 | 0.8677 | 0.7981 | | 0.0007 | 84.21 | 1600 | 1.8380 | {'precision': 0.8469387755102041, 'recall': 0.9143206854345165, 'f1': 0.8793407886992348, 'number': 817} | {'precision': 0.6017699115044248, 'recall': 0.5714285714285714, 'f1': 0.5862068965517241, 'number': 119} | {'precision': 0.8931159420289855, 'recall': 0.9155060352831941, 'f1': 0.9041723979825768, 'number': 1077} | 0.8580 | 0.8947 | 0.8760 | 0.7931 | | 0.0007 | 94.74 | 1800 | 1.8108 | {'precision': 0.8600478468899522, 'recall': 0.8800489596083231, 'f1': 0.8699334543254689, 'number': 817} | {'precision': 0.6435643564356436, 'recall': 0.5462184873949579, 'f1': 0.5909090909090908, 'number': 119} | {'precision': 0.8722849695916595, 'recall': 0.9322191272051996, 'f1': 0.9012567324955117, 'number': 1077} | 0.8563 | 0.8882 | 0.8720 | 0.7887 | | 0.0004 | 105.26 | 2000 | 1.9035 | {'precision': 0.8627906976744186, 'recall': 0.9082007343941249, 'f1': 0.8849135360763267, 'number': 817} | {'precision': 0.6285714285714286, 'recall': 0.5546218487394958, 'f1': 0.5892857142857143, 'number': 119} | {'precision': 0.8955495004541326, 'recall': 0.9155060352831941, 'f1': 0.9054178145087237, 'number': 1077} | 0.8683 | 0.8912 | 0.8796 | 0.7965 | | 0.0002 | 115.79 | 2200 | 1.8784 | {'precision': 0.8651817116060961, 'recall': 0.9033047735618115, 'f1': 0.8838323353293414, 'number': 817} | {'precision': 0.6504854368932039, 'recall': 0.5630252100840336, 'f1': 0.6036036036036037, 'number': 119} | {'precision': 0.9073394495412844, 'recall': 0.9182915506035283, 'f1': 0.912782648823258, 'number': 1077} | 0.8768 | 0.8912 | 0.8840 | 0.7948 | | 0.0002 | 126.32 | 2400 | 1.9075 | {'precision': 0.8640093786635404, 'recall': 0.9020807833537332, 'f1': 0.8826347305389222, 'number': 817} | {'precision': 0.6296296296296297, 'recall': 0.5714285714285714, 'f1': 0.5991189427312775, 'number': 119} | {'precision': 0.9041970802919708, 'recall': 0.9201485608170845, 'f1': 0.9121030832949838, 'number': 1077} | 0.8731 | 0.8922 | 0.8826 | 0.7959 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
gilang21/Anggun
gilang21
2023-06-19T14:24:54Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-19T14:20:12Z
--- license: creativeml-openrail-m ---
gokuls/add_bert_12_layer_model_complete_training_new_120
gokuls
2023-06-19T13:51:17Z
50
0
transformers
[ "transformers", "pytorch", "tensorboard", "hybridbert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-18T13:24:31Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: add_bert_12_layer_model_complete_training_new_120 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # add_bert_12_layer_model_complete_training_new_120 This model is a fine-tuned version of [gokuls/add_bert_12_layer_model_complete_training_new_96](https://huggingface.co/gokuls/add_bert_12_layer_model_complete_training_new_96) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.2619 - Accuracy: 0.2063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 5.4864 | 0.08 | 10000 | 5.4102 | 0.1898 | | 5.4838 | 0.16 | 20000 | 5.3944 | 0.1919 | | 5.2956 | 0.25 | 30000 | 5.3816 | 0.1933 | | 5.418 | 0.33 | 40000 | 5.3667 | 0.1948 | | 5.3825 | 0.41 | 50000 | 5.3490 | 0.1968 | | 5.3783 | 0.49 | 60000 | 5.3301 | 0.1988 | | 5.2869 | 0.57 | 70000 | 5.3140 | 0.2001 | | 5.3668 | 0.66 | 80000 | 5.2981 | 0.2022 | | 5.2709 | 0.74 | 90000 | 5.2782 | 0.2043 | | 5.3297 | 0.82 | 100000 | 5.2619 | 0.2063 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.13.0 - Tokenizers 0.13.3
lins567/1
lins567
2023-06-19T13:50:44Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-06-19T13:50:44Z
--- license: bigscience-bloom-rail-1.0 ---
Falah/News_Detection
Falah
2023-06-19T13:33:46Z
0
2
adapter-transformers
[ "adapter-transformers", "pytorch", "bert", "fake news detection", "NLP", "text-classification", "license:openrail", "region:us" ]
text-classification
2023-06-19T12:37:09Z
--- license: openrail metrics: - accuracy library_name: adapter-transformers pipeline_tag: text-classification tags: - fake news detection - NLP --- Fake news detection using NLP transformers is an important application of natural language processing techniques. Transformers, such as the popular BERT (Bidirectional Encoder Representations from Transformers) model, have shown promising results in various NLP tasks, including text classification, sentiment analysis, and question answering. When applied to fake news detection, transformers can effectively analyze the textual content of news articles and make predictions about their authenticity. Here are some key details about fake news detection using NLP transformers: 1. Transformer Architecture: Transformers are based on a self-attention mechanism that allows them to capture contextual relationships between words or tokens in a text. This architecture enables transformers to effectively process and understand the semantic meaning of textual data. 2. Pretraining: NLP transformers are typically pretrained on large-scale corpora to learn general language representations. This pretraining phase helps the model to capture semantic and syntactic patterns in text data, which can be later fine-tuned for specific tasks like fake news detection. 3. Fine-tuning: After pretraining, transformers are fine-tuned on task-specific datasets, which involve labeled examples of fake and real news articles. During fine-tuning, the model learns to classify news articles based on the patterns it has learned during pretraining. 4. Tokenization: Text data is tokenized into smaller units, such as words or subwords, before being fed into the transformer model. Tokenization helps in creating input representations that the model can understand and process efficiently. 5. Training Labels: Fake news detection typically requires a labeled dataset where each news article is annotated as either fake or real. These labels are used during the training process to optimize the model's parameters and make accurate predictions. 6. Model Evaluation: The performance of the fake news detection model is evaluated using standard evaluation metrics such as accuracy, precision, recall, and F1-score. These metrics provide insights into how well the model is able to correctly classify fake and real news articles. 7. Deployment: Once the model is trained and evaluated, it can be deployed in real-world applications to automatically detect and classify news articles. The model takes the textual content of an article as input and predicts its authenticity. It's important to note that while NLP transformers have shown promising results in fake news detection, they are not foolproof and may have limitations. Building robust fake news detection systems requires careful data collection, preprocessing, and model training techniques to handle the nuances and challenges of the task. Overall, NLP transformers provide a powerful framework for fake news detection by leveraging the contextual information in text data. They have the potential to contribute significantly to the identification and mitigation of misinformation in various domains. ## Fake News Detection Report This report provides an overview of the evaluation metrics for the fake news detection model using NLP transformers. | Metric | Value | |----------------|-----------| | eval_loss | 0.093 | | eval_accuracy | 0.979 | | eval_precision | 0.980 | | eval_recall | 0.979 | | eval_f1 | 0.979 | | eval_runtime | 19.63s | | samples/s | 2.394 | | steps/s | 0.153 | | epoch | 5.0 | The evaluation metrics demonstrate the performance of the fake news detection model. It achieved an accuracy of 0.979, precision of 0.980, recall of 0.979, and an F1 score of 0.979. The runtime for evaluation was 19.63 seconds, with a throughput of approximately 2.394 samples per second and 0.153 steps per second. The model was trained for 5.0 epochs.
martomor/distilbert-base-uncased-finetuned-emotion
martomor
2023-06-19T13:28:55Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T13:06:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.9228068723042021 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2259 - Accuracy: 0.9225 - F1: 0.9228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8438 | 1.0 | 250 | 0.3163 | 0.9055 | 0.9033 | | 0.2492 | 2.0 | 500 | 0.2259 | 0.9225 | 0.9228 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.13.3
Kcatua/Cabezon
Kcatua
2023-06-19T13:21:44Z
0
0
null
[ "ab", "ar", "arxiv:1910.09700", "region:us" ]
null
2023-06-19T13:18:24Z
--- language: - ab - ar --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sliha66/Monocka
Sliha66
2023-06-19T13:10:48Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-19T13:10:48Z
--- license: creativeml-openrail-m ---
dfqryj/fs
dfqryj
2023-06-19T13:08:09Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-19T13:08:09Z
--- license: creativeml-openrail-m ---
stemmets/q-FrozenLake-v1-4x4-noSlippery
stemmets
2023-06-19T12:59:19Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T12:59:14Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="stemmets/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AustinCarthy/MixGPT2V2_domain_100KP_BFall_fromB_95K_topP_0.75_ratio2.63
AustinCarthy
2023-06-19T12:58:02Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-06-19T10:41:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: MixGPT2V2_domain_100KP_BFall_fromB_95K_topP_0.75_ratio2.63 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MixGPT2V2_domain_100KP_BFall_fromB_95K_topP_0.75_ratio2.63 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_MixGPT2V2_using_benign_95K_top_p_0.75domain dataset. It achieves the following results on the evaluation set: - Loss: 0.0175 - Accuracy: 0.9975 - F1: 0.9734 - Precision: 0.9868 - Recall: 0.9604 - Roc Auc Score: 0.9799 - Tpr At Fpr 0.01: 0.9396 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0155 | 1.0 | 22121 | 0.0174 | 0.9957 | 0.9543 | 0.9590 | 0.9496 | 0.9738 | 0.786 | | 0.0083 | 2.0 | 44242 | 0.0215 | 0.9959 | 0.9555 | 0.9903 | 0.923 | 0.9613 | 0.888 | | 0.0046 | 3.0 | 66363 | 0.0144 | 0.9973 | 0.9717 | 0.9779 | 0.9656 | 0.9823 | 0.5986 | | 0.0019 | 4.0 | 88484 | 0.0192 | 0.9973 | 0.9714 | 0.9828 | 0.9602 | 0.9797 | 0.9344 | | 0.0011 | 5.0 | 110605 | 0.0175 | 0.9975 | 0.9734 | 0.9868 | 0.9604 | 0.9799 | 0.9396 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
chencjiajy/q-FrozenLake-v1-4x4-noSlippery
chencjiajy
2023-06-19T12:50:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T12:50:37Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="chencjiajy/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
patrickvonplaten/wav2vec2-large-mms-1b-turkish-colab
patrickvonplaten
2023-06-19T12:46:37Z
39
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_6_1", "license:cc-by-nc-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-19T10:28:38Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer datasets: - common_voice_6_1 metrics: - wer model-index: - name: wav2vec2-large-mms-1b-turkish-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_6_1 type: common_voice_6_1 config: tr split: test args: tr metrics: - name: Wer type: wer value: 0.22275559187008478 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-mms-1b-turkish-colab This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_6_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.1556 - Wer: 0.2228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.905 | 0.92 | 100 | 0.2146 | 0.2796 | | 0.2901 | 1.83 | 200 | 0.1673 | 0.2317 | | 0.2659 | 2.75 | 300 | 0.1608 | 0.2293 | | 0.2398 | 3.67 | 400 | 0.1556 | 0.2228 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
Malaika/Reinforce-CartPole-v1-1
Malaika
2023-06-19T12:46:19Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T12:46:09Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
djc0213/my_awesome_model
djc0213
2023-06-19T12:42:58Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-19T09:09:29Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: djc0213/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # djc0213/my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0286 - Validation Loss: 0.2731 - Train Accuracy: 0.9325 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.1327 | 0.1906 | 0.9296 | 0 | | 0.0631 | 0.2219 | 0.9301 | 1 | | 0.0286 | 0.2731 | 0.9325 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.0 - Tokenizers 0.13.3
hivaze/dolly-v2-7b-lora-emphatical_daily_dialogues
hivaze
2023-06-19T12:40:12Z
0
0
null
[ "dataset:hivaze/emphatical_daily_dialogues", "region:us" ]
null
2023-06-19T11:48:09Z
--- datasets: - hivaze/emphatical_daily_dialogues --- # Model Card for Model ID This model is a adapter for databricks/dolly-v2-7b, finetuned on hivaze/emphatical_daily_dialogues. Main goal of this model is to train model to create emphatical dialogues, which are controlled by instructions. ## Model Details ### Model Description Prompt template: `"{intro}\n\n### Instruction:\n{instruction}\n\n### Response:\n{response}\n"`\ Example intro: "You are a kind and empathetic interlocutor. You are talking to a person. Below is an instruction that describes a task. Write a response that appropriately completes the request" \ Example instruction: "You try to chit-chat. Complete a phrase, acting like an interlocutor." Training params: ``` train_args = TrainingArguments( per_device_train_batch_size=8, # can be 4 with llama per_device_eval_batch_size=8, # can be 4 with llama gradient_accumulation_steps=4, warmup_steps=20, # max_steps=200, optim="adamw_torch", learning_rate=4e-5, # many possible values here from 1e-5 to 2e-4 # save_strategy="steps", fp16=True, # bf16=True, # a100 required num_train_epochs=1, evaluation_strategy="steps", eval_steps=50, save_strategy="steps", save_steps=400, logging_strategy="steps", logging_steps=10, logging_dir=f"{local_output_dir}/runs", report_to="tensorboard", output_dir=local_output_dir ) ``` LoRA config: ``` config = LoraConfig( r=16, # can be 8 with llama lora_alpha=32, # can be 16 with llama # target_modules=["q_proj", "v_proj"], target_modules=['query_key_value'], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) ``` - **Developed by:** hivaze - **Model type:** LoRA adapter for GPTNeoXForCausalLM - **Language(s) (NLP):** Primarly english - **Finetuned from model [optional]:** databricks/dolly-v2-7b - **Git repository**: https://github.com/hivaze/friendly_chatbot_task ### Tensorboard ![image.png](https://s3.amazonaws.com/moonup/production/uploads/648e72a866dcba8b5aaecbdc/DOwmUbIW3tQJvxtRASRwz.png)
samhog/psychology-alpaca-merged
samhog
2023-06-19T12:21:44Z
20
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-12T11:49:51Z
# Psychology Alpaca 🍩 This is a LLaMA-7B language model trained on 10.000 psychology-related prompts and answers generated by ChatGPT. The model was trained on a single A100 GPU from Google Colab. The model shows some knowledge in the field of psychology and generally performs better than its base model parent. ### Background This model was developed as part of a thesis project in the field of machine learning and psychology. It was used as a base model for further fine-tuning using reinforcement learning. The goal of the thesis was to compare reinforcement learning from *human feedback* and *AI feedback*. When the paper is available, it will be linked here! **Authors:** Samuel Höglund, [email protected]; Josef Khedri, [email protected]
aiknight87/falcon-7b-instruct-tuned-dolly-500
aiknight87
2023-06-19T12:11:09Z
1
0
peft
[ "peft", "RefinedWebModel", "custom_code", "4-bit", "region:us" ]
null
2023-06-19T12:09:38Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
hopkins/svo-1
hopkins
2023-06-19T11:53:18Z
174
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-19T10:40:59Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: svo-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # svo-1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.9072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 9 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.0334 | 0.73 | 200 | 2.5510 | | 2.2609 | 1.45 | 400 | 2.0441 | | 2.0306 | 2.18 | 600 | 1.9798 | | 1.9782 | 2.91 | 800 | 1.9590 | | 1.998 | 3.63 | 1000 | 1.9511 | | 1.9482 | 4.36 | 1200 | 1.9366 | | 1.9337 | 5.09 | 1400 | 1.9268 | | 1.9093 | 5.82 | 1600 | 1.9175 | | 1.8956 | 6.54 | 1800 | 1.9126 | | 1.8789 | 7.27 | 2000 | 1.9094 | | 1.8525 | 8.0 | 2200 | 1.9038 | | 1.8325 | 8.73 | 2400 | 1.9072 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.12.0 - Tokenizers 0.13.3
VineX/VxPhotoTalk
VineX
2023-06-19T11:51:03Z
0
0
null
[ "arxiv:2004.12992", "region:us" ]
null
2023-06-19T11:10:50Z
# MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: > **MakeItTalk: Speaker-Aware Talking-Head Animation** > > [Yang Zhou](https://people.umass.edu/~yangzhou), > [Xintong Han](http://users.umiacs.umd.edu/~xintong/), > [Eli Shechtman](https://research.adobe.com/person/eli-shechtman), > [Jose Echevarria](http://www.jiechevarria.com) , > [Evangelos Kalogerakis](https://people.cs.umass.edu/~kalo/), > [Dingzeyu Li](https://dingzeyu.li) > > SIGGRAPH Asia 2020 > > **Abstract** We present a method that generates expressive talking-head videos from a single facial image with audio as the only input. In contrast to previous attempts to learn direct mappings from audio to raw pixels for creating talking faces, our method first disentangles the content and speaker information in the input audio signal. The audio content robustly controls the motion of lips and nearby facial regions, while the speaker information determines the specifics of facial expressions and the rest of the talking-head dynamics. Another key component of our method is the prediction of facial landmarks reflecting the speaker-aware dynamics. Based on this intermediate representation, our method works with many portrait images in a single unified framework, including artistic paintings, sketches, 2D cartoon characters, Japanese mangas, and stylized caricatures. In addition, our method generalizes well for faces and characters that were not observed during training. We present extensive quantitative and qualitative evaluation of our method, in addition to user studies, demonstrating generated talking-heads of significantly higher quality compared to prior state-of-the-art methods. > > [[Project page]](https://people.umass.edu/~yangzhou/MakeItTalk/) > [[Paper]](https://people.umass.edu/~yangzhou/MakeItTalk/MakeItTalk_SIGGRAPH_Asia_Final_round-5.pdf) > [[Video]](https://www.youtube.com/watch?v=OU6Ctzhpc6s) > [[Arxiv]](https://arxiv.org/abs/2004.12992) > [[Colab Demo]](quick_demo.ipynb) > [[Colab Demo TDLR]](quick_demo_tdlr.ipynb) ![img](doc/teaser.png) Figure. Given an audio speech signal and a single portrait image as input (left), our model generates speaker-aware talking-head animations (right). Both the speech signal and the input face image are not observed during the model training process. Our method creates both non-photorealistic cartoon animations (top) and natural human face videos (bottom). ## Updates - [x] Generate new puppet! (tested on Ubuntu) - [x] Pre-trained models - [x] Google colab quick demo for natural faces [[detail]](quick_demo.ipynb) [[TDLR]](quick_demo_tdlr.ipynb) - [ ] Training code for each module ## Requirements - Python environment 3.6 ``` conda create -n makeittalk_env python=3.6 conda activate makeittalk_env ``` - ffmpeg (https://ffmpeg.org/download.html) ``` sudo apt-get install ffmpeg ``` - python packages ``` pip install -r requirements.txt ``` - `winehq-stable` for cartoon face warping in Ubuntu (https://wiki.winehq.org/Ubuntu). Tested on Ubuntu16.04, wine==5.0.3. ``` sudo dpkg --add-architecture i386 wget -nc https://dl.winehq.org/wine-builds/winehq.key sudo apt-key add winehq.key sudo apt-add-repository 'deb https://dl.winehq.org/wine-builds/ubuntu/ xenial main' sudo apt update sudo apt install --install-recommends winehq-stable ``` ## Pre-trained Models Download the following pre-trained models to `examples/ckpt` folder for testing your own animation. | Model | Link to the model | | :-------------: | :---------------: | | Voice Conversion | [Link](https://drive.google.com/file/d/1ZiwPp_h62LtjU0DwpelLUoodKPR85K7x/view?usp=sharing) | | Speech Content Module | [Link](https://drive.google.com/file/d/1r3bfEvTVl6pCNw5xwUhEglwDHjWtAqQp/view?usp=sharing) | | Speaker-aware Module | [Link](https://drive.google.com/file/d/1rV0jkyDqPW-aDJcj7xSO6Zt1zSXqn1mu/view?usp=sharing) | | Image2Image Translation Module | [Link](https://drive.google.com/file/d/1i2LJXKp-yWKIEEgJ7C6cE3_2NirfY_0a/view?usp=sharing) | | Non-photorealistic Warping (.exe) | [Link](https://drive.google.com/file/d/1rlj0PAUMdX8TLuywsn6ds_G6L63nAu0P/view?usp=sharing) | ## Animate You Portraits! - Download pre-trained embedding [[here]](https://drive.google.com/file/d/18-0CYl5E6ungS3H4rRSHjfYvvm-WwjTI/view?usp=sharing) and save to `examples/dump` folder. ### _Nature Human Faces / Paintings_ - crop your portrait image into size `256x256` and put it under `examples` folder with `.jpg` format. Make sure the head is almost in the middle (check existing examples for a reference). - put test audio files under `examples` folder as well with `.wav` format. - animate! ``` python main_end2end.py --jpg <portrait_file> ``` - use addition args `--amp_lip_x <x> --amp_lip_y <y> --amp_pos <pos>` to amply lip motion (in x/y-axis direction) and head motion displacements, default values are `<x>=2., <y>=2., <pos>=.5` ### _Cartoon Faces_ - put test audio files under `examples` folder as well with `.wav` format. - animate one of the existing puppets | Puppet Name | wilk | smiling_person | sketch | color | cartoonM | danbooru1 | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Image | ![img](examples_cartoon/wilk_fullbody.jpg) | ![img](examples_cartoon/smiling_person_full.png) | ![img](examples_cartoon/sketch.png) | ![img](examples_cartoon/color.jpg) | ![img](examples_cartoon/cartoonM.png) | ![img](examples_cartoon/danbooru1.jpg) | ``` python main_end2end_cartoon.py --jpg <cartoon_puppet_name_with_extension> --jpg_bg <puppet_background_with_extension> ``` - `--jpg_bg` takes a same-size image as the background image to create the animation, such as the puppet's body, the overall fixed background image. If you want to use the background, make sure the puppet face image (i.e. `--jpg` image) is in `png` format and is transparent on the non-face area. If you don't need any background, please also create a same-size image (e.g. a pure white image) to hold the argument place. - use addition args `--amp_lip_x <x> --amp_lip_y <y> --amp_pos <pos>` to amply lip motion (in x/y-axis direction) and head motion displacements, default values are `<x>=2., <y>=2., <pos>=.5` ### _Generate Your New Puppet_ - put the cartoon image under `examples_cartoon` - install conda environment `foa_env_py2` (tested on python 2) for Face-of-art (https://github.com/papulke/face-of-art). Download the pre-trained weight [here](https://www.dropbox.com/sh/hrxcyug1bmbj6cs/AAAxq_zI5eawcLjM8zvUwaXha?dl=0) and put it under `examples/ckpt`. Activate the environment. ``` source activate foa_env_py2 ``` - create necessary files to animate your cartoon image, i.e. `<your_puppet>_open_mouth.txt`, `<your_puppet>_close_mouth.txt`, `<your_puppet>_open_mouth_norm.txt`, `<your_puppet>_scale_shift.txt`, `<your_puppet>_delauney.txt` ``` python main_gen_new_puppet.py <your_puppet_with_file_extension> ``` - in details, it takes 3 steps - Face-of-art automatic cartoon landmark detection. - If it's wrong or not accurate, you can use our tool to drag and refine the landmarks. - Estimate the closed mouth landmarks to serve as network input. - Delauney triangulate the image with landmarks. - check puppet name `smiling_person_example.png` for an example. | ![img](doc/landmark_adjust.png) | ![img](doc/landmark_closemouth.png) | ![img](doc/landmark_delauney.png) | :---: | :---: | :---: | | Landmark Adjustment Tool | Closed lips estimation | Delaunay Triangulation | ## Train ### Train Voice Conversion Module Todo... ### Train Content Branch - Create dataset root directory `<root_dir>` - Dataset: Download preprocessed dataset [[here]](https://drive.google.com/drive/folders/1EwuAy3j1b9Zc1MsidUfxG_pJGc_cV60O?usp=sharing), and put it under `<root_dir>/dump`. - Train script: Run script below. Models will be saved in `<root_dir>/ckpt/<train_instance_name>`. ```shell script python main_train_content.py --train --write --root_dir <root_dir> --name <train_instance_name> ``` ### Train Speaker-Aware Branch Todo... ### Train Image-to-Image Translation Todo... ## [License](LICENSE.md) ## Acknowledgement We would like to thank Timothy Langlois for the narration, and [Kaizhi Qian](https://scholar.google.com/citations?user=uEpr4C4AAAAJ&hl=en) for the help with the [voice conversion module](https://auspicious3000.github.io/icassp-2020-demo/). We thank [Jakub Fiser](https://research.adobe.com/person/jakub-fiser/) for implementing the real-time GPU version of the triangle morphing algorithm. We thank Daichi Ito for sharing the caricature image and Dave Werner for Wilk, the gruff but ultimately lovable puppet. This research is partially funded by NSF (EAGER-1942069) and a gift from Adobe. Our experiments were performed in the UMass GPU cluster obtained under the Collaborative Fund managed by the MassTech Collaborative.
metalwhale/openbuddy-openllama-7b-v5-q4_0
metalwhale
2023-06-19T11:46:58Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-06-19T11:39:45Z
--- license: apache-2.0 --- ## How to reproduce ```bash # Prerequisites apt update -y apt install -y git git-lfs python3 python3-pip curl pkg-config libssl-dev python3 -m pip install numpy==1.25.0 sentencepiece==0.1.99 curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh && source "$HOME/.cargo/env" # Clone repositories git clone https://huggingface.co/OpenBuddy/openbuddy-openllama-7b-v5-fp16 # Commit hash 1fedac68b34952eecec849a5938b778d6004d632 git clone https://github.com/ggerganov/llama.cpp # Commit hash 16b9cd193965769089881bb8ec012fccca7b37b6 git clone --recurse-submodules https://github.com/rustformers/llm.git # Commit hash 3becd728c0d6eeb2d649f86158c7018d5aaaba40 # Build ggml model cd llama.cpp/ python3 convert.py ../openbuddy-openllama-7b-v5-fp16/ cd ../llm/ cargo build --release cargo run --release llama quantize ../openbuddy-openllama-7b-v5-fp16/ggml-model-f16.bin ../openbuddy-openllama-7b-v5-fp16/openbuddy-openllama-7b-v5-q4_0.bin q4_0 ``` (The commit hashes are confirmed at the time of 2023/06/19)