modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-07-27 18:27:08
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 533
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-07-27 18:22:57
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Malaika/q-FrozenLake-v1-4x4-noSlippery
|
Malaika
| 2023-06-18T19:10:34Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T19:10:25Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Malaika/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Dugoss/digit_defines
|
Dugoss
| 2023-06-18T19:08:07Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"region:us"
] | null | 2023-06-18T18:15:59Z |
---
library_name: keras
---
# Модель для распознавания цифр
Натренирована на наборе данных Mnist

|
jorgeortizfuentes/spanish-attitude
|
jorgeortizfuentes
| 2023-06-18T18:55:49Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:jorgeortizfuentes/spanish_attitude_conll2003",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-06-13T04:32:41Z |
---
tags:
- generated_from_trainer
datasets:
- jorgeortizfuentes/spanish_attitude_conll2003
model-index:
- name: spanish-attitude
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# spanish-attitude
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-cased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) on the jorgeortizfuentes/spanish_attitude_conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6388
- Affect Precision: 0.0
- Affect Recall: 0.0
- Affect F1: 0.0
- Affect Number: 61
- Appreciation Precision: 0.2208
- Appreciation Recall: 0.3401
- Appreciation F1: 0.2677
- Appreciation Number: 294
- Judgment (j1) Precision: 0.0
- Judgment (j1) Recall: 0.0
- Judgment (j1) F1: 0.0
- Judgment (j1) Number: 2
- Social esteem (j2) Precision: 0.0
- Social esteem (j2) Recall: 0.0
- Social esteem (j2) F1: 0.0
- Social esteem (j2) Number: 2
- Social sanction (j2) Precision: 0.0
- Social sanction (j2) Recall: 0.0
- Social sanction (j2) F1: 0.0
- Social sanction (j2) Number: 1
- Capacity (j3) Precision: 0.1037
- Capacity (j3) Recall: 0.1977
- Capacity (j3) F1: 0.1360
- Capacity (j3) Number: 86
- Normality (j3) Precision: 0.0
- Normality (j3) Recall: 0.0
- Normality (j3) F1: 0.0
- Normality (j3) Number: 62
- Propriety (j3) Precision: 0.1586
- Propriety (j3) Recall: 0.2791
- Propriety (j3) F1: 0.2022
- Propriety (j3) Number: 129
- Tenacity (j3) Precision: 0.0
- Tenacity (j3) Recall: 0.0
- Tenacity (j3) F1: 0.0
- Tenacity (j3) Number: 47
- Veracity (j3) Precision: 0.0
- Veracity (j3) Recall: 0.0
- Veracity (j3) F1: 0.0
- Veracity (j3) Number: 20
- Overall Precision: 0.1792
- Overall Recall: 0.2173
- Overall F1: 0.1964
- Overall Accuracy: 0.8250
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
ItchyB/poca-SoccerTwos
|
ItchyB
| 2023-06-18T18:48:50Z | 51 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-06-18T18:48:27Z |
---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: ItchyB/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
AustinCarthy/MixGPT2V2_subdomain_100KP_BFall_fromB_95K_topP_0.75_ratio5
|
AustinCarthy
| 2023-06-18T18:31:51Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"license:apache-2.0",
"region:us"
] | null | 2023-06-18T14:59:10Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: MixGPT2V2_subdomain_100KP_BFall_fromB_95K_topP_0.75_ratio5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MixGPT2V2_subdomain_100KP_BFall_fromB_95K_topP_0.75_ratio5
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_MixGPT2V2_using_benign_95K_top_p_0.75subdomain dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0192
- Accuracy: 0.9978
- F1: 0.9759
- Precision: 0.9990
- Recall: 0.9538
- Roc Auc Score: 0.9769
- Tpr At Fpr 0.01: 0.96
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.0076 | 1.0 | 36563 | 0.0117 | 0.9974 | 0.9718 | 0.9983 | 0.9466 | 0.9733 | 0.9496 |
| 0.0035 | 2.0 | 73126 | 0.0206 | 0.9973 | 0.9710 | 0.9981 | 0.9454 | 0.9727 | 0.9496 |
| 0.0025 | 3.0 | 109689 | 0.0184 | 0.9970 | 0.9677 | 0.9985 | 0.9388 | 0.9694 | 0.942 |
| 0.0008 | 4.0 | 146252 | 0.0199 | 0.9972 | 0.9698 | 0.9994 | 0.942 | 0.9710 | 0.9504 |
| 0.0 | 5.0 | 182815 | 0.0192 | 0.9978 | 0.9759 | 0.9990 | 0.9538 | 0.9769 | 0.96 |
### Framework versions
- Transformers 4.30.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
bjlutuo/ppo-Huggy
|
bjlutuo
| 2023-06-18T18:12:36Z | 2 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-06-18T18:12:18Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: bjlutuo/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
drumwell/GenerAd-AI
|
drumwell
| 2023-06-18T17:43:24Z | 31 | 0 |
peft
|
[
"peft",
"text-generation",
"dataset:drumwell/generadai-sample",
"license:bigscience-openrail-m",
"region:us"
] |
text-generation
| 2023-06-18T17:24:59Z |
---
library_name: peft
license: bigscience-openrail-m
datasets:
- drumwell/generadai-sample
pipeline_tag: text-generation
---
|
CeroShrijver/chinese-macbert-large-text-classification
|
CeroShrijver
| 2023-06-18T17:36:30Z | 106 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-03T07:49:47Z |
---
tags:
- generated_from_trainer
model-index:
- name: chinese-macbert-large-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# chinese-macbert-large-text-classification
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Framework versions
- Transformers 4.28.1
- Pytorch 1.12.1
- Datasets 2.12.0
- Tokenizers 0.11.6
|
bryan467/Joko_widodo1
|
bryan467
| 2023-06-18T17:27:34Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T17:20:11Z |
---
license: creativeml-openrail-m
---
|
anilsekharc/q-Taxi-v3
|
anilsekharc
| 2023-06-18T17:22:48Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T17:22:37Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="anilsekharc/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ArvinArora/ppo-LunarLander-v2
|
ArvinArora
| 2023-06-18T17:20:27Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T17:19:56Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 223.86 +/- 36.05
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
anilsekharc/q-FrozenLake-v1-4x4-noSlippery
|
anilsekharc
| 2023-06-18T17:15:22Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T17:15:10Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="anilsekharc/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Bodolaz/Unit-5.1
|
Bodolaz
| 2023-06-18T17:14:09Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-06-18T17:14:00Z |
---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: Bodolaz/Unit-5.1
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
jclynn/finetuning-sentiment-model-5000-samples
|
jclynn
| 2023-06-18T17:04:10Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-17T22:12:50Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-5000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-5000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1462
- Accuracy: 0.956
- F1: 0.9719
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
Bodolaz/Unit-4.2
|
Bodolaz
| 2023-06-18T16:46:23Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T16:45:54Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Unit-4.2
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 29.35 +/- 31.89
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Malaika/ppo-LunarLander-v2
|
Malaika
| 2023-06-18T16:35:36Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T16:34:55Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 164.61 +/- 40.56
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
BryanSwk/q-FrozenLake-v1-4x4-noSlippery
|
BryanSwk
| 2023-06-18T16:30:56Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T16:30:47Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="BryanSwk/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
prognosis/falcon7b-chunks-10k-v3_e2000
|
prognosis
| 2023-06-18T16:19:18Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"license:apache-2.0",
"region:us"
] | null | 2023-06-18T02:01:02Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: falcon7b-chunks-10k-v3_e2000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# falcon7b-chunks-10k-v3_e2000
This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 2000
### Training results
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
huantd/all-mpnet-base-v2
|
huantd
| 2023-06-18T16:04:01Z | 4 | 0 |
transformers.js
|
[
"transformers.js",
"onnx",
"mpnet",
"fill-mask",
"region:us"
] |
fill-mask
| 2023-06-18T15:42:54Z |
---
library_name: "transformers.js"
---
https://huggingface.co/sentence-transformers/all-mpnet-base-v2 with ONNX weights to be compatible with Transformers.js.
|
TheFools/Celline
|
TheFools
| 2023-06-18T15:52:46Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T15:52:46Z |
---
license: creativeml-openrail-m
---
|
rafay/ppo-Huggy
|
rafay
| 2023-06-18T15:49:38Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-06-18T15:49:29Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: rafay/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
synpjh/bert-base-uncased-issues-128
|
synpjh
| 2023-06-18T15:43:51Z | 116 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-06-18T14:16:56Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-base-uncased-issues-128
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-issues-128
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1675
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.239 | 1.0 | 291 | 0.2306 |
| 0.1865 | 2.0 | 582 | 0.1971 |
| 0.169 | 3.0 | 873 | 0.1918 |
| 0.1603 | 4.0 | 1164 | 0.1875 |
| 0.1536 | 5.0 | 1455 | 0.1567 |
| 0.1461 | 6.0 | 1746 | 0.1755 |
| 0.1411 | 7.0 | 2037 | 0.1719 |
| 0.1374 | 8.0 | 2328 | 0.1658 |
| 0.1341 | 9.0 | 2619 | 0.1594 |
| 0.1302 | 10.0 | 2910 | 0.1666 |
| 0.1284 | 11.0 | 3201 | 0.1634 |
| 0.1264 | 12.0 | 3492 | 0.1588 |
| 0.1238 | 13.0 | 3783 | 0.1690 |
| 0.1237 | 14.0 | 4074 | 0.1558 |
| 0.1218 | 15.0 | 4365 | 0.1523 |
| 0.1213 | 16.0 | 4656 | 0.1675 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1
- Datasets 2.13.0
- Tokenizers 0.13.3
|
bjlutuo/ppo-LunarLander-v2
|
bjlutuo
| 2023-06-18T15:32:56Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T15:32:30Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 230.67 +/- 18.68
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
aasarmehdi/distilbert-base-uncased.finetuned-emotion
|
aasarmehdi
| 2023-06-18T15:12:34Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-18T12:20:48Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased.finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9285
- name: F1
type: f1
value: 0.9285575296750973
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased.finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2139
- Accuracy: 0.9285
- F1: 0.9286
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8378 | 1.0 | 250 | 0.3119 | 0.913 | 0.9104 |
| 0.2549 | 2.0 | 500 | 0.2139 | 0.9285 | 0.9286 |
### Framework versions
- Transformers 4.28.0
- Pytorch 1.12.1
- Datasets 2.12.0
- Tokenizers 0.11.0
|
nic70/taxi_v3_trial1
|
nic70
| 2023-06-18T15:03:53Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T08:28:01Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi_v3_trial1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="nic70/taxi_v3_trial1", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
sammun64/my_awesome_qa_model
|
sammun64
| 2023-06-18T15:02:32Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"question-answering",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-06-18T07:57:03Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: sammun64/my_awesome_qa_model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# sammun64/my_awesome_qa_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.5606
- Validation Loss: 1.7998
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.4494 | 2.1873 | 0 |
| 1.8250 | 1.7998 | 1 |
| 1.5606 | 1.7998 | 2 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.0
- Tokenizers 0.13.3
|
nic70/q-FrozenLake-v1-4x4-noSlippery
|
nic70
| 2023-06-18T15:02:26Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T08:17:50Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="nic70/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
TheFools/Normanvt
|
TheFools
| 2023-06-18T15:01:28Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T15:00:29Z |
---
license: creativeml-openrail-m
---
|
AustinCarthy/MixGPT2V2_subdomain_100KP_BFall_fromB_95K_topP_0.75_ratio2.63
|
AustinCarthy
| 2023-06-18T14:58:36Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"license:apache-2.0",
"region:us"
] | null | 2023-06-18T12:41:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: MixGPT2V2_subdomain_100KP_BFall_fromB_95K_topP_0.75_ratio2.63
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MixGPT2V2_subdomain_100KP_BFall_fromB_95K_topP_0.75_ratio2.63
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_MixGPT2V2_using_benign_95K_top_p_0.75subdomain dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0186
- Accuracy: 0.9982
- F1: 0.9805
- Precision: 0.9975
- Recall: 0.964
- Roc Auc Score: 0.9819
- Tpr At Fpr 0.01: 0.9566
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.011 | 1.0 | 22121 | 0.0217 | 0.9961 | 0.9569 | 0.9970 | 0.92 | 0.9599 | 0.9126 |
| 0.0041 | 2.0 | 44242 | 0.0171 | 0.9970 | 0.9679 | 0.9977 | 0.9398 | 0.9698 | 0.9332 |
| 0.0028 | 3.0 | 66363 | 0.0123 | 0.9980 | 0.9787 | 0.9829 | 0.9746 | 0.9869 | 0.902 |
| 0.0012 | 4.0 | 88484 | 0.0175 | 0.9975 | 0.9727 | 0.9983 | 0.9484 | 0.9742 | 0.9502 |
| 0.0 | 5.0 | 110605 | 0.0186 | 0.9982 | 0.9805 | 0.9975 | 0.964 | 0.9819 | 0.9566 |
### Framework versions
- Transformers 4.30.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
WALIDALI/photo-of-walidlibyalyy-person
|
WALIDALI
| 2023-06-18T14:29:22Z | 32 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-06-18T14:25:08Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### photo_of_walidlibyalyy_person Dreambooth model trained by WALIDALI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
Middelz2/roberta-large-aphasia-narration-weightdecay0-lr2e4_eps_10
|
Middelz2
| 2023-06-18T14:24:22Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"roberta",
"fill-mask",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-06-18T13:32:21Z |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: Middelz2/roberta-large-aphasia-narration-weightdecay0-lr2e4_eps_10
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Middelz2/roberta-large-aphasia-narration-weightdecay0-lr2e4_eps_10
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 5.6128
- Validation Loss: 5.5802
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.0002, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.1420 | 1.6450 | 0 |
| 1.6971 | 1.4556 | 1 |
| 1.6025 | 1.3882 | 2 |
| 1.4763 | 1.2997 | 3 |
| 1.4301 | 1.3055 | 4 |
| 1.4358 | 1.3317 | 5 |
| 2.2816 | 2.4774 | 6 |
| 2.7754 | 2.0994 | 7 |
| 4.5272 | 5.5713 | 8 |
| 5.6128 | 5.5802 | 9 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.0
- Tokenizers 0.13.3
|
nolanaatama/sqdwrdtntclsrvcv11000pchsclsscklmz
|
nolanaatama
| 2023-06-18T14:15:20Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-17T14:32:22Z |
---
license: creativeml-openrail-m
---
|
lengocduc195/SentenceTransformer
|
lengocduc195
| 2023-06-18T14:09:00Z | 0 | 0 | null |
[
"arxiv:1908.10084",
"arxiv:2004.09813",
"arxiv:2010.08240",
"arxiv:2012.14210",
"arxiv:2104.06979",
"arxiv:2104.08663",
"region:us"
] | null | 2023-06-18T14:07:19Z |
<!--- BADGES: START --->
[][#github-license]
[][#pypi-package]
[][#pypi-package]
[][#conda-forge-package]
[][#conda-forge-package]
[][#docs-package]
<!---
[][#pypi-package]
[][#conda-forge-package]
--->
[#github-license]: https://github.com/UKPLab/sentence-transformers/blob/master/LICENSE
[#pypi-package]: https://pypi.org/project/sentence-transformers/
[#conda-forge-package]: https://anaconda.org/conda-forge/sentence-transformers
[#docs-package]: https://www.sbert.net/
<!--- BADGES: END --->
# Sentence Transformers: Multilingual Sentence, Paragraph, and Image Embeddings using BERT & Co.
This framework provides an easy method to compute dense vector representations for **sentences**, **paragraphs**, and **images**. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various task. Text is embedding in vector space such that similar text is close and can efficiently be found using cosine similarity.
We provide an increasing number of **[state-of-the-art pretrained models](https://www.sbert.net/docs/pretrained_models.html)** for more than 100 languages, fine-tuned for various use-cases.
Further, this framework allows an easy **[fine-tuning of custom embeddings models](https://www.sbert.net/docs/training/overview.html)**, to achieve maximal performance on your specific task.
For the **full documentation**, see **[www.SBERT.net](https://www.sbert.net)**.
The following publications are integrated in this framework:
- [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084) (EMNLP 2019)
- [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813) (EMNLP 2020)
- [Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks](https://arxiv.org/abs/2010.08240) (NAACL 2021)
- [The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes](https://arxiv.org/abs/2012.14210) (arXiv 2020)
- [TSDAE: Using Transformer-based Sequential Denoising Auto-Encoder for Unsupervised Sentence Embedding Learning](https://arxiv.org/abs/2104.06979) (arXiv 2021)
- [BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models](https://arxiv.org/abs/2104.08663) (arXiv 2021)
## Installation
We recommend **Python 3.6** or higher, **[PyTorch 1.6.0](https://pytorch.org/get-started/locally/)** or higher and **[transformers v4.6.0](https://github.com/huggingface/transformers)** or higher. The code does **not** work with Python 2.7.
**Install with pip**
Install the *sentence-transformers* with `pip`:
```
pip install -U sentence-transformers
```
**Install with conda**
You can install the *sentence-transformers* with `conda`:
```
conda install -c conda-forge sentence-transformers
```
**Install from sources**
Alternatively, you can also clone the latest version from the [repository](https://github.com/UKPLab/sentence-transformers) and install it directly from the source code:
````
pip install -e .
````
**PyTorch with CUDA**
If you want to use a GPU / CUDA, you must install PyTorch with the matching CUDA Version. Follow
[PyTorch - Get Started](https://pytorch.org/get-started/locally/) for further details how to install PyTorch.
## Getting Started
See [Quickstart](https://www.sbert.net/docs/quickstart.html) in our documenation.
[This example](https://github.com/UKPLab/sentence-transformers/tree/master/examples/applications/computing-embeddings/computing_embeddings.py) shows you how to use an already trained Sentence Transformer model to embed sentences for another task.
First download a pretrained model.
````python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')
````
Then provide some sentences to the model.
````python
sentences = ['This framework generates embeddings for each input sentence',
'Sentences are passed as a list of string.',
'The quick brown fox jumps over the lazy dog.']
sentence_embeddings = model.encode(sentences)
````
And that's it already. We now have a list of numpy arrays with the embeddings.
````python
for sentence, embedding in zip(sentences, sentence_embeddings):
print("Sentence:", sentence)
print("Embedding:", embedding)
print("")
````
## Pre-Trained Models
We provide a large list of [Pretrained Models](https://www.sbert.net/docs/pretrained_models.html) for more than 100 languages. Some models are general purpose models, while others produce embeddings for specific use cases. Pre-trained models can be loaded by just passing the model name: `SentenceTransformer('model_name')`.
[» Full list of pretrained models](https://www.sbert.net/docs/pretrained_models.html)
## Training
This framework allows you to fine-tune your own sentence embedding methods, so that you get task-specific sentence embeddings. You have various options to choose from in order to get perfect sentence embeddings for your specific task.
See [Training Overview](https://www.sbert.net/docs/training/overview.html) for an introduction how to train your own embedding models. We provide [various examples](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training) how to train models on various datasets.
Some highlights are:
- Support of various transformer networks including BERT, RoBERTa, XLM-R, DistilBERT, Electra, BART, ...
- Multi-Lingual and multi-task learning
- Evaluation during training to find optimal model
- [10+ loss-functions](https://www.sbert.net/docs/package_reference/losses.html) allowing to tune models specifically for semantic search, paraphrase mining, semantic similarity comparison, clustering, triplet loss, contrastive loss.
## Performance
Our models are evaluated extensively on 15+ datasets including challening domains like Tweets, Reddit, emails. They achieve by far the **best performance** from all available sentence embedding methods. Further, we provide several **smaller models** that are **optimized for speed**.
[» Full list of pretrained models](https://www.sbert.net/docs/pretrained_models.html)
## Application Examples
You can use this framework for:
- [Computing Sentence Embeddings](https://www.sbert.net/examples/applications/computing-embeddings/README.html)
- [Semantic Textual Similarity](https://www.sbert.net/docs/usage/semantic_textual_similarity.html)
- [Clustering](https://www.sbert.net/examples/applications/clustering/README.html)
- [Paraphrase Mining](https://www.sbert.net/examples/applications/paraphrase-mining/README.html)
- [Translated Sentence Mining](https://www.sbert.net/examples/applications/parallel-sentence-mining/README.html)
- [Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html)
- [Retrieve & Re-Rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html)
- [Text Summarization](https://www.sbert.net/examples/applications/text-summarization/README.html)
- [Multilingual Image Search, Clustering & Duplicate Detection](https://www.sbert.net/examples/applications/image-search/README.html)
and many more use-cases.
For all examples, see [examples/applications](https://github.com/UKPLab/sentence-transformers/tree/master/examples/applications).
## Citing & Authors
If you find this repository helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
If you use one of the multilingual models, feel free to cite our publication [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813):
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
```
Please have a look at [Publications](https://www.sbert.net/docs/publications.html) for our different publications that are integrated into SentenceTransformers.
Contact person: [Nils Reimers](https://www.nils-reimers.de), [[email protected]](mailto:[email protected])
https://www.ukp.tu-darmstadt.de/
Don't hesitate to send us an e-mail or report an issue, if something is broken (and it shouldn't be) or if you have further questions.
> This repository contains experimental software and is published for the sole purpose of giving additional background details on the respective publication.
|
prompiu/FR48
|
prompiu
| 2023-06-18T13:42:37Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T13:29:59Z |
---
license: creativeml-openrail-m
---
|
azetaaa/a2c-AntBulletEnv-v0
|
azetaaa
| 2023-06-18T13:33:49Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-17T17:27:27Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 1475.58 +/- 130.31
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
autobots/Nyanners-Narrator-TTS-Tortoise
|
autobots
| 2023-06-18T13:32:52Z | 0 | 6 | null |
[
"en",
"license:other",
"region:us"
] | null | 2023-06-18T12:42:07Z |
---
license: other
language:
- en
---
Sample:https://vocaroo.com/1nvl8SkJ51VG
Tortoise TTS model to use in ai voice cloning repo with an audio sample. It can generate at low samples and comes out better than the stock model.
I think I used 32/160 settings for the sample. 96/200 gives better results but of course you are trading computation for quality. may have to clean
up extra noises in between long text, as with any tortoise model.
Works very well with RVC applied on top. Much more stable than bark for something like an essay or audiobook.
Trained at full precision for 200 epochs from about 4 hours of data. Loss of about ~1.18
|
Middelz2/roberta-large-aphasia-narration-weightdecay0_eps_10
|
Middelz2
| 2023-06-18T13:27:23Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"roberta",
"fill-mask",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-06-18T12:40:20Z |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: Middelz2/roberta-large-aphasia-narration-weightdecay0_eps_10
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Middelz2/roberta-large-aphasia-narration-weightdecay0_eps_10
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.0094
- Validation Loss: 0.8917
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.5337 | 1.3155 | 0 |
| 1.2936 | 1.1727 | 1 |
| 1.1965 | 1.1077 | 2 |
| 1.1361 | 1.0687 | 3 |
| 1.0949 | 1.0489 | 4 |
| 1.0621 | 0.9968 | 5 |
| 1.0537 | 0.9602 | 6 |
| 1.0273 | 0.9470 | 7 |
| 1.0333 | 0.9485 | 8 |
| 1.0094 | 0.8917 | 9 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.0
- Tokenizers 0.13.3
|
mrizalf7/xlm-roberta-finetuned-small-squad-indonesian-rizal-7
|
mrizalf7
| 2023-06-18T13:24:52Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"question-answering",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-06-18T12:13:02Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: xlm-roberta-finetuned-small-squad-indonesian-rizal-7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-finetuned-small-squad-indonesian-rizal-7
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7368
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5958 | 1.0 | 8256 | 1.7368 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
traintogpb/klue-roberta-large-wikipedia-v1
|
traintogpb
| 2023-06-18T13:04:53Z | 160 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"ko",
"dataset:klue",
"dataset:wikipedia",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-06-18T11:59:08Z |
---
datasets:
- klue
- wikipedia
language:
- ko
metrics:
- accuracy
training_args:
- num_train_epochs=5,
- per_device_train_batch_size=16,
- per_device_eval_batch_size=16,
- prediction_loss_only=False,
- learning_rate=5e-5,
- logging_strategy='steps',
- logging_steps=100,
- save_steps=1000,
- eval_steps=1000,
- save_strategy="steps",
- evaluation_strategy="steps",
- load_best_model_at_end=True,
- metric_for_best_model="masked_accuracy",
- greater_is_better=True,
- seed=42,
- warmup_steps=5000,
info:
- MLM (15%) from the checkpoint of klue/roberta-large
- LineByLineTextDataset (block_size 384)
- PLM for ODQA task based-on Wikipedia questions
- Accuracy (for [MASK]) = 0.7066 (CE loss 1.388)
- v2 is trained with smaller learning rate and more epochs
---
|
desh2608/icefall-surt-ami-dprnn-zipformer
|
desh2608
| 2023-06-18T12:56:15Z | 0 | 0 | null |
[
"tensorboard",
"en",
"dataset:ami",
"dataset:icsi",
"license:apache-2.0",
"region:us"
] | null | 2023-06-18T09:08:32Z |
---
license: apache-2.0
datasets:
- ami
- icsi
language:
- en
metrics:
- orc-wer
---
# AMI/ICSI dprnn_zipformer
This model is based on the icefall `dprnn_zipformer` recipe under `egs/ami/SURT`.
For details, refer to the README.md in the recipe.
## Performance Record
The following results are obtained using the adapted models using modified beam search
with a beam size of 4.
**AMI**
| Model | IHM-Mix | SDM | MDM |
|------------|:-------:|:----:|:----:|
| SURT-base | 39.8 | 65.4 | 46.6 |
| + adapt | 37.4 | 46.9 | 43.7 |
| SURT-large | 36.8 | 62.5 | 44.4 |
| + adapt | **35.1** | **44.6** | **41.4** |
**ICSI**
| Model | IHM-Mix | SDM |
|------------|:-------:|:----:|
| SURT-base | 28.3 | 60.0 |
| + adapt | 26.3 | 33.9 |
| SURT-large | 27.8 | 59.7 |
| + adapt | **24.4** | **32.3** |
|
HachiML/mpt-7b-instruct-for-peft
|
HachiML
| 2023-06-18T12:32:12Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mpt",
"text-generation",
"custom_code",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-06-17T03:38:52Z |
---
inference: false
---
# MPT-7B-Instruct-for-peft
このモデルは[MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct)のコードを一部PEFT用に変更したものです。
実験的なものですので使用は個人の判断でお願いします。
使用による損害のいかなる責任も負いません。
# Reference
[Fixes for PEFT Tuning based on iwalton3](https://huggingface.co/mosaicml/mpt-7b/commit/f71db786423da83c27ec0d4ee0e2ab83e3e08297)
|
matef/my_sentiment_model
|
matef
| 2023-06-18T12:00:17Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-05-20T11:26:50Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: matef/my_sentiment_model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# matef/my_sentiment_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0637
- Validation Loss: 0.2478
- Train Accuracy: 0.9266
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.2498 | 0.1796 | 0.9304 | 0 |
| 0.1314 | 0.1806 | 0.9319 | 1 |
| 0.0637 | 0.2478 | 0.9266 | 2 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.0
- Tokenizers 0.13.3
|
tux/ppo-SnowballTarget2
|
tux
| 2023-06-18T11:59:44Z | 19 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-06-18T11:59:33Z |
---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: tux/ppo-SnowballTarget2
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
aldoredo/asssaaaac
|
aldoredo
| 2023-06-18T11:54:26Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T11:48:17Z |
---
license: creativeml-openrail-m
---
|
husienburgir/gabagthaupdate
|
husienburgir
| 2023-06-18T11:13:31Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T11:10:04Z |
---
license: creativeml-openrail-m
---
|
minoosh/videomae-base-finetuned-IEMOCAP_5
|
minoosh
| 2023-06-18T11:12:39Z | 61 | 0 |
transformers
|
[
"transformers",
"pytorch",
"videomae",
"video-classification",
"generated_from_trainer",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2023-06-18T06:32:34Z |
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-IEMOCAP_5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-IEMOCAP_5
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3229
- Accuracy: 0.3770
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4280
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3642 | 0.1 | 429 | 1.4078 | 0.1970 |
| 1.3244 | 1.1 | 858 | 1.4578 | 0.3052 |
| 1.3623 | 2.1 | 1287 | 1.4071 | 0.2314 |
| 1.3422 | 3.1 | 1716 | 1.3474 | 0.2896 |
| 1.2483 | 4.1 | 2145 | 1.3597 | 0.3127 |
| 1.3581 | 5.1 | 2574 | 1.3512 | 0.2639 |
| 1.3106 | 6.1 | 3003 | 1.3295 | 0.2896 |
| 1.341 | 7.1 | 3432 | 1.3132 | 0.3433 |
| 1.2438 | 8.1 | 3861 | 1.2732 | 0.3859 |
| 1.2438 | 9.1 | 4280 | 1.2643 | 0.3715 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
Middelz2/roberta-large-aphasia-narration_eps_10
|
Middelz2
| 2023-06-18T11:11:24Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"roberta",
"fill-mask",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-06-18T10:22:55Z |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: Middelz2/roberta-large-aphasia-narration_eps_10
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Middelz2/roberta-large-aphasia-narration_eps_10
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.0040
- Validation Loss: 0.8973
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.5221 | 1.3073 | 0 |
| 1.2893 | 1.1813 | 1 |
| 1.2003 | 1.1133 | 2 |
| 1.1405 | 1.0744 | 3 |
| 1.0984 | 1.0507 | 4 |
| 1.0587 | 0.9995 | 5 |
| 1.0522 | 0.9747 | 6 |
| 1.0279 | 0.9341 | 7 |
| 1.0190 | 0.9423 | 8 |
| 1.0040 | 0.8973 | 9 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.0
- Tokenizers 0.13.3
|
JamieLuta/j
|
JamieLuta
| 2023-06-18T10:58:17Z | 0 | 0 | null |
[
"en",
"dataset:tiiuae/falcon-refinedweb",
"region:us"
] | null | 2023-06-18T10:55:04Z |
---
datasets:
- tiiuae/falcon-refinedweb
language:
- en
---
|
Aji3beberapa/Felisha_V1
|
Aji3beberapa
| 2023-06-18T10:52:26Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T10:49:04Z |
---
license: creativeml-openrail-m
---
|
TheBloke/gpt4-x-alpaca-13B-GGML
|
TheBloke
| 2023-06-18T10:51:02Z | 0 | 12 | null |
[
"license:other",
"region:us"
] | null | 2023-06-18T10:23:12Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Chavinlo's GPT4-X-Alpaca GGML
These files are GGML format model files for [Chavinlo's GPT4-X-Alpaca](https://huggingface.co/chavinlo/gpt4-x-alpaca).
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
* [KoboldCpp](https://github.com/LostRuins/koboldcpp)
* [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
* [ctransformers](https://github.com/marella/ctransformers)
## Repositories available
* [4bit's 4-bit GPTQ models for GPU inference](https://huggingface.co/4bit/gpt4-x-alpaca-13b-native-4bit-128g-cuda)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/gpt4-x-alpaca-13B-GGML)
* [Chavinlo's unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/chavinlo/gpt4-x-alpaca)
## Prompt template
```
Below is an instruction that describes a task. Write a response that appropriately completes the request
### Instruction: prompt
### Response:
```
<!-- compatibility_ggml start -->
## Compatibility
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
These are guaranteed to be compatbile with any UIs, tools and libraries released since late May.
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`.
They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| gpt4-x-alpaca-13b.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB | 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| gpt4-x-alpaca-13b.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB | 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| gpt4-x-alpaca-13b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB | 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| gpt4-x-alpaca-13b.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB | 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| gpt4-x-alpaca-13b.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
| gpt4-x-alpaca-13b.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| gpt4-x-alpaca-13b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB | 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| gpt4-x-alpaca-13b.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB | 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| gpt4-x-alpaca-13b.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| gpt4-x-alpaca-13b.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
| gpt4-x-alpaca-13b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB | 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| gpt4-x-alpaca-13b.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB | 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| gpt4-x-alpaca-13b.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
| gpt4-x-alpaca-13b.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
I use the following command line; adjust for your tastes and needs:
```
./main -t 10 -ngl 32 -m gpt4-x-alpaca-13b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: vamX, K, Jonathan Leane, Lone Striker, Sean Connelly, Chris McCloskey, WelcomeToTheClub, Nikolai Manek, John Detwiler, Kalila, David Flickinger, Fen Risland, subjectnull, Johann-Peter Hartmann, Talal Aujan, John Villwock, senxiiz, Khalefa Al-Ahmad, Kevin Schuppel, Alps Aficionado, Derek Yates, Mano Prime, Nathan LeClaire, biorpg, trip7s trip, Asp the Wyvern, chris gileta, Iucharbius , Artur Olbinski, Ai Maven, Joseph William Delisle, Luke Pendergrass, Illia Dulskyi, Eugene Pentland, Ajan Kanaga, Willem Michiel, Space Cruiser, Pyrater, Preetika Verma, Junyu Yang, Oscar Rangel, Spiking Neurons AB, Pierre Kircher, webtim, Cory Kujawski, terasurfer , Trenton Dambrowitz, Gabriel Puliatti, Imad Khwaja, Luke.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Chavinlo's GPT4-X-Alpaca
# GPT4 x Alpaca
As a base model we used: https://huggingface.co/chavinlo/alpaca-13b
Finetuned on GPT4's responses, for 3 epochs.
NO LORA
Please do note that the configurations files maybe messed up, this is because of the trainer I used. I WILL NOT EDIT THEM because there are repos hat automatically fix this, changing it might break it. Generally you just need to change anything that's under the name of "LLaMa" to "Llama" NOTE THE UPPER AND LOWER CASE!!!!
|
ikaith/Reinforce-v2
|
ikaith
| 2023-06-18T10:39:26Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T10:39:12Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-v2
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: -2.70 +/- 0.46
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
leo1452/Reinforce-CartPole
|
leo1452
| 2023-06-18T10:32:20Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T10:32:10Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 199.90 +/- 14.80
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
fanshiyu/111
|
fanshiyu
| 2023-06-18T10:27:01Z | 0 | 0 |
adapter-transformers
|
[
"adapter-transformers",
"text-classification",
"ab",
"dataset:fka/awesome-chatgpt-prompts",
"dataset:OpenAssistant/oasst1",
"dataset:QingyiSi/Alpaca-CoT",
"dataset:togethercomputer/RedPajama-Data-1T",
"dataset:togethercomputer/RedPajama-Data-1T-Sample",
"dataset:GAIR/lima",
"dataset:conceptofmind/FLAN_2022",
"dataset:h2oai/openassistant_oasst1",
"arxiv:1910.09700",
"license:creativeml-openrail-m",
"region:us"
] |
text-classification
| 2023-06-16T07:31:21Z |
---
license: creativeml-openrail-m
datasets:
- fka/awesome-chatgpt-prompts
- OpenAssistant/oasst1
- QingyiSi/Alpaca-CoT
- togethercomputer/RedPajama-Data-1T
- togethercomputer/RedPajama-Data-1T-Sample
- GAIR/lima
- conceptofmind/FLAN_2022
- h2oai/openassistant_oasst1
language:
- ab
metrics:
- accuracy
- bertscore
library_name: adapter-transformers
pipeline_tag: text-classification
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ikaith/Reinforce-v0
|
ikaith
| 2023-06-18T10:21:11Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T10:21:04Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 100.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
PavanKumar05/my_model
|
PavanKumar05
| 2023-06-18T10:19:13Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"question-answering",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-06-18T10:06:54Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: PavanKumar05/my_model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# PavanKumar05/my_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.5266
- Validation Loss: 1.7459
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.4140 | 2.0786 | 0 |
| 1.7743 | 1.7459 | 1 |
| 1.5266 | 1.7459 | 2 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.0
- Tokenizers 0.13.3
|
Middelz2/roberta-large-aphasia-narration_eps_6
|
Middelz2
| 2023-06-18T10:17:42Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"roberta",
"fill-mask",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-06-18T09:08:44Z |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: Middelz2/roberta-large-aphasia-narration_eps_6
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Middelz2/roberta-large-aphasia-narration_eps_6
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.0917
- Validation Loss: 1.0443
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.5148 | 1.3056 | 0 |
| 1.2794 | 1.1696 | 1 |
| 1.1875 | 1.0934 | 2 |
| 1.1245 | 1.0617 | 3 |
| 1.0917 | 1.0443 | 4 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.0
- Tokenizers 0.13.3
|
soramame123/open-calm-fine-tune
|
soramame123
| 2023-06-18T10:17:25Z | 0 | 0 | null |
[
"license:cc-by-nc-nd-4.0",
"region:us"
] | null | 2023-06-18T10:17:25Z |
---
license: cc-by-nc-nd-4.0
---
|
Mustru/QQQRINKAPPP
|
Mustru
| 2023-06-18T10:16:37Z | 0 | 0 | null |
[
"license:bigcode-openrail-m",
"region:us"
] | null | 2023-06-18T10:08:37Z |
---
license: bigcode-openrail-m
---
|
Muizzah/anastasiaa
|
Muizzah
| 2023-06-18T10:15:07Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T10:07:56Z |
---
license: creativeml-openrail-m
---
|
Mustru/KASUYA_BAIAN
|
Mustru
| 2023-06-18T10:09:48Z | 0 | 0 | null |
[
"license:bigcode-openrail-m",
"region:us"
] | null | 2023-06-18T10:02:18Z |
---
license: bigcode-openrail-m
---
|
leonhe/Reinforce-CartPole-v1
|
leonhe
| 2023-06-18T10:04:43Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T10:01:57Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
aga3134/Pixelcopter-PLE-v0
|
aga3134
| 2023-06-18T09:56:42Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T09:12:41Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Pixelcopter-PLE-v0
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 25.30 +/- 17.01
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
kkmitra/ppo-lunarland-rl-learning
|
kkmitra
| 2023-06-18T09:55:05Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T09:39:46Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 79.17 +/- 124.26
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
radyad/diff_model
|
radyad
| 2023-06-18T09:52:13Z | 119 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:mlqa",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-06-18T09:23:04Z |
---
tags:
- generated_from_trainer
datasets:
- mlqa
model-index:
- name: diff_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# diff_model
This model is a fine-tuned version of [huggingface-course/bert-finetuned-squad](https://huggingface.co/huggingface-course/bert-finetuned-squad) on the mlqa dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1014
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 355 | 0.8941 |
| 0.931 | 2.0 | 710 | 0.9768 |
| 0.4794 | 3.0 | 1065 | 1.1014 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
nini123/gt
|
nini123
| 2023-06-18T09:49:16Z | 0 | 0 | null |
[
"license:bigscience-openrail-m",
"region:us"
] | null | 2023-06-18T09:48:09Z |
---
license: bigscience-openrail-m
---
|
dungtd2403/poca-SoccerTwos
|
dungtd2403
| 2023-06-18T09:33:50Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-06-18T09:07:14Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
library_name: ml-agents
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: dungtd2403/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
HyunjooCheong/my_awesome_qa_model
|
HyunjooCheong
| 2023-06-18T09:21:31Z | 111 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:covid_qa_deepset",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-06-16T14:02:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- covid_qa_deepset
model-index:
- name: my_awesome_qa_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_qa_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8725
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 100 | 0.9837 |
| No log | 2.0 | 200 | 0.9051 |
| No log | 3.0 | 300 | 0.8725 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
madhavgarg/ppo-LunarLander-v2
|
madhavgarg
| 2023-06-18T09:17:32Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T09:17:11Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 268.49 +/- 21.88
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
agustd00/jamie
|
agustd00
| 2023-06-18T09:15:32Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T09:13:22Z |
---
license: creativeml-openrail-m
---
|
cxero03/selvis
|
cxero03
| 2023-06-18T08:13:39Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-17T19:40:39Z |
---
license: creativeml-openrail-m
---
|
trojblue/sd-finetune-KNDiffusion
|
trojblue
| 2023-06-18T08:12:32Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-01-17T12:48:19Z |
# Kanade!
training:
- 250 images on yoisaki kanade, with wd1.4+booru tags, merged with other models
- 786 ARB; EMA; fp32; clip2
- 2e-6 CosineAnnealing
- augmentations: brightness/contrast/crop/flip
tested on: **clip1**, DDIM, 448x512 latent hires(2x), DDIM, step 25
keyword: `yoisaki kanade, 25-ji night code de. \(project sekai\)`
files:
- `knd_sd_e19_ema.ckpt`: crude DreamBooth file epoch 19, using evt-v4 base
- `knd_sd_e19_ema.ckpt`: same thing but epoch 29
- `KNDiffusion_fp32_no_vae.safetensors`: tuned model that slightly resembles kanade
- (KNDiffusion = phfa_knd29_evt4_030)
samples:
[image1](https://huggingface.co/trojblue/KNDiffusion/resolve/main/samples/00168-773909389-DDIM-step25-cfg6.5-phfa_knd29_evt4_030-fbf412b2-20230117_101156_902795.png)
```
yoisaki kanade, 25-ji night code de. \(project sekai\), 1girl, close-up, solo, long hair, headphones, blue eyes, jacket, looking at viewer, hair between eyes, shirt, long sleeves, blue jacket, collarbone, bangs, chair, sitting, track jacket, black shirt, grey jacket, grey shirt, indoors, open clothes, open jacket, open mouth, straight hair, upper body, very long hair, white hair, project sekai, highres
```
[image2](https://huggingface.co/trojblue/KNDiffusion/resolve/main/samples/00167-3301161699-DDIM-step25-cfg6.5-phfa_knd29_evt4_030-fbf412b2-20230117_100910_391039.png)
```
yoisaki kanade, 25-ji night code de. (project sekai), 1girl, solo, long hair, blue eyes, jacket, sleeves past wrists, very long hair, collarbone, white background, bangs, blush, blue jacket, hair between eyes, long sleeves, looking at viewer, sleeves past fingers, simple background, parted lips, open jacket, black shirt, shirt, open clothes, :o, cowboy shot, grey hair, hand up, o, project sekai, highres
```
sample configs:
```
Negative prompt: nsfw, text, error, signature, watermark, username, realistic,3d,(large breast), multiple people, animals, lowres, cropped, worth quality, low quality, normal quality, jpeg artifacts, blurry, bad anatomy, bad hands, bad arms, bad feet, bad anatomy, missing fingers, extra digits, fewer digits, long neck, missing legs, huge person, optical_illusion
Steps: 25, Sampler: DDIM, CFG scale: 6.5, Seed: 773909389, Size: 448x512, Model: KNDiffusion_fp32_no_vae, Denoising strength: 0.7, ENSD: 31338, Hires upscale: 2, Hires upscaler: Latent (bicubic)
```
|
husienburgir/gabagth
|
husienburgir
| 2023-06-18T07:48:51Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T07:35:37Z |
---
license: creativeml-openrail-m
---
|
NonCute/au11_bu
|
NonCute
| 2023-06-18T07:00:38Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-06-18T07:00:38Z |
Temporary Redirect. Redirecting to /NonCute/AU11_BU/resolve/main/README.md
|
HITMYM/practice_swin1
|
HITMYM
| 2023-06-18T06:02:10Z | 235 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-06-15T06:40:03Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: SEMDataset
split: train
args: SEMDataset
metrics:
- name: Accuracy
type: accuracy
value: 0.782051282051282
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5657
- Accuracy: 0.7821
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1465 | 0.97 | 16 | 1.8341 | 0.3462 |
| 1.7722 | 2.0 | 33 | 1.5865 | 0.4017 |
| 1.6005 | 2.97 | 49 | 1.4867 | 0.4060 |
| 1.429 | 4.0 | 66 | 1.3933 | 0.4487 |
| 1.2294 | 4.97 | 82 | 1.2696 | 0.5385 |
| 1.1224 | 6.0 | 99 | 1.2842 | 0.5641 |
| 0.9776 | 6.97 | 115 | 0.9923 | 0.6197 |
| 0.8678 | 8.0 | 132 | 1.1118 | 0.6368 |
| 0.8125 | 8.97 | 148 | 0.8974 | 0.6624 |
| 0.7022 | 10.0 | 165 | 0.8582 | 0.6838 |
| 0.6047 | 10.97 | 181 | 0.7019 | 0.7393 |
| 0.6223 | 12.0 | 198 | 0.6818 | 0.7308 |
| 0.5331 | 12.97 | 214 | 0.8265 | 0.7051 |
| 0.4995 | 14.0 | 231 | 0.6365 | 0.7521 |
| 0.4132 | 14.97 | 247 | 0.6585 | 0.7308 |
| 0.3978 | 16.0 | 264 | 0.5789 | 0.7692 |
| 0.3388 | 16.97 | 280 | 0.6038 | 0.7650 |
| 0.3376 | 18.0 | 297 | 0.5306 | 0.7821 |
| 0.3455 | 18.97 | 313 | 0.5797 | 0.7692 |
| 0.3207 | 19.39 | 320 | 0.5657 | 0.7821 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
wp931120x/baichuan_4bit_lora
|
wp931120x
| 2023-06-18T05:25:14Z | 0 | 5 | null |
[
"license:unknown",
"region:us"
] | null | 2023-06-16T14:24:07Z |
---
license: unknown
---
### Motivation
项目的主要动机由于百川baichuan -7B是一个pretrain的大模型,尽管它在一些无监督的评估数据集上效果很好,但是并不能开箱即用,因为它没有 supervised finetune 这一步,没有和人类意图进行对齐。
随采用belle 0.5M 指令微调数据,采用qlora的量化微调的方式对百川大模型进行人类意图对齐训练。
### 大模型
百川7B https://huggingface.co/baichuan-inc/baichuan-7B
### sft 数据集
采用的是belle 0.5M https://huggingface.co/datasets/BelleGroup/train_0.5M_CN
训练方法和过程可视化
+ 先将百川LLM 采用qlora的 nf4 和双重量化方式进行量化
+ 在采用lora进行指令微调
+ 训练过程采用tensorborad 可视化,执行下方代码即可在localhost:6006去监控你的训练和测试loss
tensorboard --logdir ./runs/ --bind_all
### 资源消耗
由于采用了int4量化和lora等技术 整个资源消耗只需要12G左右的显存
### 预测代码
```
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import BitsAndBytesConfig
from peft import (
LoraConfig,
PeftModel,
get_peft_model,
prepare_model_for_kbit_training,
set_peft_model_state_dict,
)
import torch
###加载量化模型
device_map = {"": 0}
tokenizer = AutoTokenizer.from_pretrained("./baichuan-7B",trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("./baichuan-7B",
trust_remote_code=True,
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
),
device_map=device_map)
### 组装lora
LORA_WEIGHTS = "./baichuansft/"
device = "cuda:0"
model_lora = PeftModel.from_pretrained(
model,
LORA_WEIGHTS
).to(device)
### 进行预测
device = "cuda:0"
from transformers import GenerationConfig
generation_config = GenerationConfig(
temperature=0.2,
top_p = 0.85,
do_sample = True,
repetition_penalty=2.0,
max_new_tokens=1024, # max_length=max_new_tokens+input_sequence
)
prompt = """
北京有啥好玩的地方
"""
inputttext ="""###Human:\n{}###Assistant:\n:
""".format(prompt)
inputs = tokenizer(prompt,return_tensors="pt").to(device)
generate_ids = model_lora.generate(**inputs, generation_config=generation_config)
output = tokenizer.decode(generate_ids[0])
print(output)
```
### sft后的效果
微调前:
human : 台湾有什么好吃的
bot: 台北有哪些值得一去的景点?
human :北京有啥好玩的地方
bot: < href="http://www.bj-tourisme" target=_blank>北京旅游网<BR
微调后:
human : 台湾有什么好吃的
bot: 1.蚵仔煎(Oyster Pancake):用鸡蛋和面粉混合后摊成薄饼,再加入葱花、猪肉末等佐料。最后将生蚝肉放在上面即可食用;20世纪初由闽南移民传入台北市的传统小吃之一 ;3大肠包饭 (Da Dang Bao): 大米蒸熟后再加酱油调味并配以猪肚或鸡肝做成的馅儿,然后把这些食材包裹在糯香的大白菜叶子中一起煮制而成的一种美食 ,是当地人最爱的早餐食品!
human : 北京有啥好玩的地方
bot: 1.故宫博物院:中国古代皇家建筑群,是明清两代的皇帝居住和办公场所。门票价格为60元/人次(淡季)、85 元 / 人 (旺季节假日期间);开放时间: 周二至周日9点-下午4点半;周一闭馆维护检修不对外售票,请提前购置参观券或预约入场方式进园游览观光拍照留念等活动需在指定区域内进行不得进入其他禁区及文物保护单位范围内游玩以免破坏古迹造成损失影响安全问题后果自负!2北京天坛公园位于北京市中心东城区永定门外大街南侧占地面积约73万平方米是中国现存最大的祭祀性园林之一也是世界上保存最完整的天文台遗址!免费景点无需购买任何费用但需要排队等待安保人员检查后方可通行建议游客最好早到避免长时间拥堵交通高峰期前往景区观赏美景感受历史文化魅力~
### Reference
https://github.com/artidoro/qlora
https://github.com/LianjiaTech/BELLE
|
jcnecio/a2c-PandaReachDense-v2
|
jcnecio
| 2023-06-18T04:10:30Z | 6 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-17T06:28:46Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v2
type: PandaReachDense-v2
metrics:
- type: mean_reward
value: -1.03 +/- 0.42
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
hahunavth/stt_en_conformer_ctc_small
|
hahunavth
| 2023-06-18T04:03:11Z | 2 | 0 |
nemo
|
[
"nemo",
"arxiv:1910.09700",
"model-index",
"region:us"
] | null | 2023-06-18T03:35:14Z |
---
model-index:
- name: hahunavth/stt_en_conformer_ctc_small
results:
- task:
type: automatic-speech-recognition
dataset:
name: Librispeech (clean)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- type: wer
value: 8.1
name: WER
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
GraydientPlatformAPI/model_161
|
GraydientPlatformAPI
| 2023-06-18T04:03:01Z | 29 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-06-18T01:34:07Z |
---
library_name: diffusers
pipeline_tag: text-to-image
---
|
savvamadar/pygmalion-13b-f16-ggml-ggjt
|
savvamadar
| 2023-06-18T03:37:29Z | 0 | 0 | null |
[
"license:other",
"region:us"
] | null | 2023-06-18T00:52:44Z |
---
license: other
---
Same license as: https://huggingface.co/PygmalionAI/pygmalion-13b
|
Gladiator/microsoft-deberta-v3-large_ner_conll2003
|
Gladiator
| 2023-06-18T03:19:31Z | 5,553 | 5 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"deberta-v2",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-12-09T05:19:42Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: microsoft-deberta-v3-large_ner_conll2003
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9667057052032793
- name: Recall
type: recall
value: 0.972399865365197
- name: F1
type: f1
value: 0.9695444248678582
- name: Accuracy
type: accuracy
value: 0.9945095595965889
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# microsoft-deberta-v3-large_ner_conll2003
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0293
- Precision: 0.9667
- Recall: 0.9724
- F1: 0.9695
- Accuracy: 0.9945
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0986 | 1.0 | 878 | 0.0323 | 0.9453 | 0.9596 | 0.9524 | 0.9921 |
| 0.0212 | 2.0 | 1756 | 0.0270 | 0.9571 | 0.9675 | 0.9623 | 0.9932 |
| 0.009 | 3.0 | 2634 | 0.0280 | 0.9638 | 0.9714 | 0.9676 | 0.9940 |
| 0.0035 | 4.0 | 3512 | 0.0290 | 0.9657 | 0.9712 | 0.9685 | 0.9943 |
| 0.0022 | 5.0 | 4390 | 0.0293 | 0.9667 | 0.9724 | 0.9695 | 0.9945 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
j-hyeok/PPO-LunarLander-v2
|
j-hyeok
| 2023-06-18T02:53:41Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-18T02:44:25Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -421.57 +/- 202.27
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
leonelhs/faceshine
|
leonelhs
| 2023-06-18T02:49:42Z | 0 | 2 | null |
[
"photo",
"photo-restoration",
"photo-enhancement",
"colorize-black-and-white",
"license:mit",
"region:us"
] | null | 2023-06-07T20:40:43Z |
---
license: mit
tags:
- photo
- photo-restoration
- photo-enhancement
- colorize-black-and-white
---
## Face Shine Server
### This project is an AI Photo Enhancer running over Pytorch
## Features
- [x] Face enhancement
- [x] Super Resolution
- [x] Erase Scratches
- [x] Colorize Photo
- [x] Enhance lights
- [x] Clear background
### Install
```console
foo@bar:~$ pip install faceshine
foo@bar:~$ faceshine
```
|
jobeid1/ppo-SnowballTarget
|
jobeid1
| 2023-06-18T02:10:54Z | 11 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-06-18T02:01:26Z |
---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: jobeid1/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
mgmeskill/dqn-SpaceInvadersNoFrameskip-v4
|
mgmeskill
| 2023-06-18T02:09:49Z | 7 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-17T21:50:57Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 217.00 +/- 77.24
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mgmeskill -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mgmeskill -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mgmeskill
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 1000000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 5000),
('n_timesteps', 100000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 5000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
andrewsiah/ppo-Huggy
|
andrewsiah
| 2023-06-18T01:04:03Z | 2 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-06-18T00:53:32Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: andrewsiah/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
ariefrmdhani/eunchaeya
|
ariefrmdhani
| 2023-06-18T01:03:29Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T01:03:29Z |
---
license: creativeml-openrail-m
---
|
OriJynn/Orb_Weaver
|
OriJynn
| 2023-06-18T00:18:50Z | 0 | 0 | null |
[
"stablediffusionapi.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-06-17T22:03:22Z |
---
license: creativeml-openrail-m
tags:
- stablediffusionapi.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# Orb-Weaver V1
![generated from stablediffusionapi.com]()
## Get API Key
Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed.
Replace Key in below code, change **model_id** to "Orb-Weaver"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs)
Model link: [View model](https://stablediffusionapi.com/models/Orb-Weaver)
Credits: [View credits](https://civitai.com/?query=orb%20weaver%20v1)
View all models: [View Models](https://stablediffusionapi.com/models)
import requests
import json
url = "https://stablediffusionapi.com/api/v3/dreambooth"
payload = json.dumps({
"key": "",
"model_id": "orb-weaver",
"prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
|
Trickshotblaster/epic-qa
|
Trickshotblaster
| 2023-06-17T23:58:20Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"question-answering",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-06-17T23:43:53Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: epic-qa
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# epic-qa
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.5505
- Validation Loss: 1.1748
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.5505 | 1.1748 | 0 |
### Framework versions
- Transformers 4.31.0.dev0
- TensorFlow 2.12.0
- Datasets 2.13.0
- Tokenizers 0.13.3
|
aitestcoder/distilroberta-base-finetuned-wikitext2
|
aitestcoder
| 2023-06-17T23:54:10Z | 178 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-06-17T23:27:00Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-finetuned-wikitext2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8268
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1005 | 1.0 | 1203 | 1.9467 |
| 2.034 | 2.0 | 2406 | 1.8616 |
| 1.9683 | 3.0 | 3609 | 1.8253 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.13.0
- Tokenizers 0.13.3
|
Ankurkhurana03/q-FrozenLake-v1-4x4-noSlippery
|
Ankurkhurana03
| 2023-06-17T23:52:13Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-17T22:44:37Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Ankurkhurana03/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
|
multitude0099/ppo-LunarLanderV2
|
multitude0099
| 2023-06-17T23:40:20Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-14T02:15:23Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 282.96 +/- 19.73
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
aitestcoder/distilgpt2-finetuned-wikitext2
|
aitestcoder
| 2023-06-17T23:18:09Z | 213 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-17T21:30:55Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6533
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7982 | 1.0 | 1167 | 3.6808 |
| 3.6947 | 2.0 | 2334 | 3.6584 |
| 3.6478 | 3.0 | 3501 | 3.6533 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.13.0
- Tokenizers 0.13.3
|
savvamadar/pygmalion-7b-f16-ggml-ggjt
|
savvamadar
| 2023-06-17T23:06:37Z | 0 | 0 | null |
[
"license:other",
"region:us"
] | null | 2023-06-17T21:27:49Z |
---
license: other
---
Same license as this: https://huggingface.co/PygmalionAI/pygmalion-7b
|
adisrini11/my_awesome_model
|
adisrini11
| 2023-06-17T22:49:00Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:tweet_eval",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-14T07:34:51Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- accuracy
model-index:
- name: my_awesome_model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
config: emotion
split: test
args: emotion
metrics:
- name: Accuracy
type: accuracy
value: 0.7909922589725545
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5708
- Accuracy: 0.7910
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 204 | 0.6426 | 0.7797 |
| No log | 2.0 | 408 | 0.5708 | 0.7910 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.11.0
|
VladmirPutgang/ppo-Lunar-Lander-v2
|
VladmirPutgang
| 2023-06-17T22:45:56Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-17T18:47:00Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 293.95 +/- 14.02
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Duino/duino_bot
|
Duino
| 2023-06-17T20:52:33Z | 0 | 0 | null |
[
"license:bigscience-bloom-rail-1.0",
"region:us"
] | null | 2023-06-17T14:52:27Z |
---
license: bigscience-bloom-rail-1.0
---
|
iherbos/astrantsia
|
iherbos
| 2023-06-17T19:40:16Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-06-17T19:40:16Z |
Temporary Redirect. Redirecting to /iherbos/Astrantsia/resolve/main/README.md
|
minoosh/videomae-base-finetuned-IEMOCAP_2
|
minoosh
| 2023-06-17T19:22:21Z | 59 | 0 |
transformers
|
[
"transformers",
"pytorch",
"videomae",
"video-classification",
"generated_from_trainer",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2023-06-17T14:36:03Z |
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-IEMOCAP_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-IEMOCAP_2
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3381
- Accuracy: 0.3434
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3215 | 0.1 | 451 | 1.4351 | 0.2622 |
| 1.3236 | 1.1 | 902 | 1.3517 | 0.3579 |
| 1.2642 | 2.1 | 1353 | 1.4280 | 0.2982 |
| 1.2741 | 3.1 | 1804 | 1.3943 | 0.3012 |
| 1.2655 | 4.1 | 2255 | 1.3665 | 0.3311 |
| 1.1476 | 5.1 | 2706 | 1.3808 | 0.3293 |
| 1.2231 | 6.1 | 3157 | 1.3216 | 0.3573 |
| 1.2715 | 7.1 | 3608 | 1.3162 | 0.3720 |
| 1.3088 | 8.1 | 4059 | 1.2985 | 0.3982 |
| 1.2636 | 9.1 | 4500 | 1.2666 | 0.4098 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
minoosh/videomae-base-finetuned-IEMOCAP_1
|
minoosh
| 2023-06-17T19:06:26Z | 60 | 0 |
transformers
|
[
"transformers",
"pytorch",
"videomae",
"video-classification",
"generated_from_trainer",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
video-classification
| 2023-06-17T09:07:09Z |
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-IEMOCAP_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-IEMOCAP_1
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3409
- Accuracy: 0.3480
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 4440
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.35 | 0.1 | 445 | 1.4144 | 0.2478 |
| 1.3944 | 1.1 | 890 | 1.3677 | 0.3340 |
| 1.2676 | 2.1 | 1335 | 1.3613 | 0.3434 |
| 1.2343 | 3.1 | 1780 | 1.3674 | 0.3289 |
| 1.222 | 4.1 | 2225 | 1.3379 | 0.3522 |
| 1.3494 | 5.1 | 2670 | 1.3466 | 0.3421 |
| 1.2836 | 6.1 | 3115 | 1.3277 | 0.3591 |
| 1.226 | 7.1 | 3560 | 1.3132 | 0.3704 |
| 1.3174 | 8.1 | 4005 | 1.3001 | 0.3604 |
| 1.2933 | 9.1 | 4440 | 1.2912 | 0.3629 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
CreatorPhan/ViQA-small
|
CreatorPhan
| 2023-06-17T18:40:13Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"vi",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-06-17T16:58:15Z |
---
language:
- vi
pipeline_tag: text2text-generation
# inference:
# parameters:
# function_to_apply: "none"
widget:
- text: >-
Trả lời câu hỏi: Công dụng của paracetamol?
Trong nội dung:
PARACETAMOL DẠNG UỐNG – HƯỚNG DẪN SỬ DỤNG AN TOÀN, HỢP LÝ
Trong tình hình diễn biến phức tạp của dịch COVID-19, các thuốc giảm đau hạ sốt thông dụng như Paracetamol được người dân mua về dự trữ trong hộp thuốc gia đình với mục đích phòng dịch. Tuy nhiên, việc sử dụng thuốc hợp lý và đúng cách đôi khi chưa được chú ý, vì vậy việc hiểu và sử dụng thuốc Paracetamol an toàn là rất cần thiết.
I. Tổng quan thuốc Paracetamol
- Paracetamol dạng uống là thuốc thuộc nhóm giảm đau, hạ sốt và nằm trong danh mục thuốc không kê đơn của Bộ Y tế. Chính vì vậy Paracetamol rất phổ biến trên thị trường với nhiều chế phẩm có dạng bào chế và hàm lượng từ thấp đến cao.
- Tác dụng chính của Paracetamol là giảm đau, hạ sốt nên thuốc được sử dụng rộng rãi trong điều trị các chứng đau và sốt từ nhẹ đến vừa như: cảm cúm, nhức đầu, đau bụng, đau nhức…
- Thuốc không nên sử dụng cho những người dị ứng với Paracetamol, người suy gan nặng.
II. Nguy cơ khi sử dụng Paracetamol
- Việc Paracetamol được sử dụng rộng rãi cùng với tâm lý chủ quan, thiếu nhận thức dẫn đến việc quá liều thuốc gây nên các tác dụng phụ không mong muốn, trong đó nguy hiểm nhất là tình trạng hoại tử gan, có thể dẫn đến tử vong nếu không được xử trí kịp thời.
- Nguyên nhân gây ngộ độc gan khi sử dụng Paracetamol quá liều là nồng độ NAPQI (sinh ra do Paracetamol chuyển hóa qua gan) không thể chuyển hóa hết và tích luỹ gây độc cho gan.
- Các biểu hiện ngộ độc gan do Paracetamol có thể là: ban đầu là buồn nôn, nôn, đau bụng, sau đó nguy kich hơn có thể kích động, hôn mê, mạch huyết áp không ổn định… có thể nguy cơ tử vong.
- text: >-
Trả lời câu hỏi: Tòa nhà cao nhất Việt Nam? Trong nội dung:
The Landmark 81 là một toà nhà chọc trời trong tổ hợp dự án Vinhomes Tân Cảng , một dự án có tổng mức đầu tư 40.000 tỷ đồng , do Công ty Cổ phần Đầu tư xây dựng Tân Liên Phát thuộc Vingroup làm chủ đầu tư . Toà tháp cao 81 tầng , hiện tại là toà nhà cao nhất Việt Nam và là toà nhà cao nhất Đông Nam Á từ tháng 3 năm 2018 .
Toà tháp cao 81 tầng , hiện tại là toà nhà cao nhất Việt Nam và là toà nhà cao nhất Đông Nam Á từ tháng 3 năm 2018 . Dự án được xây dựng ở Tân Cảng , quận Bình Thạnh , ven sông Sài Gòn . Dự án được khởi công ngày 26/07/2014 .
---
Mô hình này được tuning từ pretrained ViFlanT5-small model với 77M tham số với 2 epochs trên 87GB text của bộ CC100.
Mô hình được huấn luyện cho tác vụ đọc hiểu tiếng Việt. Cung cấp cho mô hình câu hỏi và ngữ cảnh (không quá 400 từ) và mô hình sẽ trích xuất ra câu trả lời trong ngữ cảnh đó.
```
from transformers import AutoTokenizer, T5ForConditionalGeneration
device = 'cpu'
model_path = "CreatorPhan/ViQA-small"
model = T5ForConditionalGeneration.from_pretrained(model_path).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_path)
context = """
PARACETAMOL DẠNG UỐNG – HƯỚNG DẪN SỬ DỤNG AN TOÀN, HỢP LÝ
Trong tình hình diễn biến phức tạp của dịch COVID-19, các thuốc giảm đau hạ sốt thông dụng như Paracetamol được người dân mua về dự trữ trong hộp thuốc gia đình với mục đích phòng dịch. Tuy nhiên, việc sử dụng thuốc hợp lý và đúng cách đôi khi chưa được chú ý, vì vậy việc hiểu và sử dụng thuốc Paracetamol an toàn là rất cần thiết.
I. Tổng quan thuốc Paracetamol
- Paracetamol dạng uống là thuốc thuộc nhóm giảm đau, hạ sốt và nằm trong danh mục thuốc không kê đơn của Bộ Y tế. Chính vì vậy Paracetamol rất phổ biến trên thị trường với nhiều chế phẩm có dạng bào chế và hàm lượng từ thấp đến cao.
- Tác dụng chính của Paracetamol là giảm đau, hạ sốt nên thuốc được sử dụng rộng rãi trong điều trị các chứng đau và sốt từ nhẹ đến vừa như: cảm cúm, nhức đầu, đau bụng, đau nhức…
- Thuốc không nên sử dụng cho những người dị ứng với Paracetamol, người suy gan nặng.
II. Nguy cơ khi sử dụng Paracetamol
- Việc Paracetamol được sử dụng rộng rãi cùng với tâm lý chủ quan, thiếu nhận thức dẫn đến việc quá liều thuốc gây nên các tác dụng phụ không mong muốn, trong đó nguy hiểm nhất là tình trạng hoại tử gan, có thể dẫn đến tử vong nếu không được xử trí kịp thời.
- Nguyên nhân gây ngộ độc gan khi sử dụng Paracetamol quá liều là nồng độ NAPQI (sinh ra do Paracetamol chuyển hóa qua gan) không thể chuyển hóa hết và tích luỹ gây độc cho gan.
- Các biểu hiện ngộ độc gan do Paracetamol có thể là: ban đầu là buồn nôn, nôn, đau bụng, sau đó nguy kich hơn có thể kích động, hôn mê, mạch huyết áp không ổn định… có thể nguy cơ tử vong.
"""
question = "Công dụng của paracetamol?"
prompt = f"Trả lời câu hỏi: {question} Trong nội dung: {context}"
tokens = tokenizer(prompt, return_tensors='pt').input_ids
output = model.generate(tokens.to(device), max_new_tokens=170)[0]
predict = tokenizer.decode(output, skip_special_tokens=True)
print(len(predict.split()))
print(predict)
```
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.