modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-27 18:27:08
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-27 18:22:57
card
stringlengths
11
1.01M
takaha202306/facelora
takaha202306
2023-06-17T17:54:59Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-17T16:17:55Z
--- license: creativeml-openrail-m --- editing # about This repository contains two Stable Diffusion LoRAs for generate "Cute MOE face" illustration, and their training data. There was trained by [kohya-ss's sd_scripts](https://github.com/kohya-ss/sd-scripts), and tested on [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui). The base model is almost AOM3, the model I used was added a little merge as: [AOM3.safetensors](https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix3/AOM3_orangemixs.safetensors) + [Hipoly 3D Model LoRA v2.0](https://civitai.com/models/8730/hipoly-3d-model-lora):0.15:0,1,1,1,1,1,1,0.1,0.1,0.1,0.1,1,1,1,0.3,0.1,0.1. Hipoly 3d LoRA was merged by [SuperMerger](https://github.com/hako-mikan/sd-webui-supermerger). They don't require "trigger word", simply changes illustration's style when applied. I recommend to set weight between 0.05 to 0.4, and use [LoRA Block Weight extension](https://github.com/hako-mikan/sd-webui-lora-block-weight). # facelora1 First LoRA is actually not made for this purpose. I attempted to make "Uchinoko"(means my daughter, favorite original character, lol) LoRA. Train data are my favorite images(those are generated above model by me), and augmentation images made by [controlnet's reference-only](https://github.com/Mikubill/sd-webui-controlnet#reference-only-control). This LoRA worked well, worked better than I intended, and could be used to generate beautiful girls in a generic way. # facelora2 I generated various beautiful girls images with above LoRA, and made second LoRA trained by them. This LoRA is more suitable for general purpose generation. # samples
Atnafu/amharic_xlmr_base
Atnafu
2023-06-17T17:36:41Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-17T02:34:11Z
--- license: mit tags: - generated_from_trainer model-index: - name: amh_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amh_base This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.3301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.13.0 - Tokenizers 0.13.3
mmirmahdi/q-FrozenLake-v1-4x4-noSlippery
mmirmahdi
2023-06-17T17:22:53Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T17:22:23Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mmirmahdi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
0xghagevaibhav/meMyself
0xghagevaibhav
2023-06-17T17:11:20Z
0
0
null
[ "hi", "license:unknown", "region:us" ]
null
2023-06-17T17:09:19Z
--- license: unknown language: - hi ---
erens/mikasalast
erens
2023-06-17T17:01:46Z
30
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-17T16:46:29Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### mikasaLAST Dreambooth model trained by erens with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
DionTimmer/controlnet_qrcode
DionTimmer
2023-06-17T16:33:13Z
2,526
306
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "controlnet", "en", "license:openrail++", "region:us" ]
null
2023-06-15T02:23:37Z
--- tags: - stable-diffusion - controlnet license: openrail++ language: - en --- # QR Code Conditioned ControlNet Models for Stable Diffusion 1.5 and 2.1 ![1](imgs/1.png) ## Model Description These ControlNet models have been trained on a large dataset of 150,000 QR code + QR code artwork couples. They provide a solid foundation for generating QR code-based artwork that is aesthetically pleasing, while still maintaining the integral QR code shape. The Stable Diffusion 2.1 version is marginally more effective, as it was developed to address my specific needs. However, a 1.5 version model was also trained on the same dataset for those who are using the older version. Separate repos for usage in diffusers can be found here:<br> 1.5: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v1p_sd15<br> 2.1: https://huggingface.co/DionTimmer/controlnet_qrcode-control_v11p_sd21<br> ## How to use with Diffusers ```bash pip -q install diffusers transformers accelerate torch xformers ``` ```python import torch from PIL import Image from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler from diffusers.utils import load_image controlnet = ControlNetModel.from_pretrained("DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16) pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16 ) pipe.enable_xformers_memory_efficient_attention() pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() def resize_for_condition_image(input_image: Image, resolution: int): input_image = input_image.convert("RGB") W, H = input_image.size k = float(resolution) / min(H, W) H *= k W *= k H = int(round(H / 64.0)) * 64 W = int(round(W / 64.0)) * 64 img = input_image.resize((W, H), resample=Image.LANCZOS) return img # play with guidance_scale, controlnet_conditioning_scale and strength to make a valid QR Code Image # qr code image source_image = load_image("https://s3.amazonaws.com/moonup/production/uploads/6064e095abd8d3692e3e2ed6/A_RqHaAM6YHBodPLwqtjn.png") # initial image, anything init_image = load_image("https://s3.amazonaws.com/moonup/production/uploads/noauth/KfMBABpOwIuNolv1pe3qX.jpeg") condition_image = resize_for_condition_image(source_image, 768) init_image = resize_for_condition_image(init_image, 768) generator = torch.manual_seed(123121231) image = pipe(prompt="a bilboard in NYC with a qrcode", negative_prompt="ugly, disfigured, low quality, blurry, nsfw", image=init_image, control_image=condition_image, width=768, height=768, guidance_scale=20, controlnet_conditioning_scale=1.5, generator=generator, strength=0.9, num_inference_steps=150, ) image.images[0] ``` ## Performance and Limitations These models perform quite well in most cases, but please note that they are not 100% accurate. In some instances, the QR code shape might not come through as expected. You can increase the ControlNet weight to emphasize the QR code shape. However, be cautious as this might negatively impact the style of your output.**To optimize for scanning, please generate your QR codes with correction mode 'H' (30%).** To balance between style and shape, a gentle fine-tuning of the control weight might be required based on the individual input and the desired output, aswell as the correct prompt. Some prompts do not work until you increase the weight by a lot. The process of finding the right balance between these factors is part art and part science. For the best results, it is recommended to generate your artwork at a resolution of 768. This allows for a higher level of detail in the final product, enhancing the quality and effectiveness of the QR code-based artwork. ## Installation The simplest way to use this is to place the .safetensors model and its .yaml config file in the folder where your other controlnet models are installed, which varies per application. For usage in auto1111 they can be placed in the webui/models/ControlNet folder. They can be loaded using the controlnet webui extension which you can install through the extensions tab in the webui (https://github.com/Mikubill/sd-webui-controlnet). Make sure to enable your controlnet unit and set your input image as the QR code. Set the model to either the SD2.1 or 1.5 version depending on your base stable diffusion model, or it will error. No pre-processor is needed, though you can use the invert pre-processor for a different variation of results. 768 is the preferred resolution for generation since it allows for more detail. Make sure to look up additional info on how to use controlnet if you get stuck, once you have the webui up and running its really easy to install the controlnet extension aswell. ![2](imgs/2.png) ![3](imgs/3.png) ![4](imgs/4.png)
dnjdsxor21/roberta-klue-ssm
dnjdsxor21
2023-06-17T16:32:52Z
118
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "ko", "dataset:dnjdsxor21/preprocessed-wiki-kor", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-11T13:40:11Z
--- widget: - text: ์ด์ˆœ์‹ ์€ [MASK] ์ค‘๊ธฐ์˜ ๋ฌด์‹ ์ด๋‹ค. - text: ์˜ค๋ฐ”๋งˆ๋Š” ๋ฏธ๊ตญ์˜ [MASK] ์ด๋‹ค. language: - ko pipeline_tag: fill-mask datasets: - dnjdsxor21/preprocessed-wiki-kor mask_token: '[MASK]' --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
mustika/alan3
mustika
2023-06-17T16:21:59Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-17T15:09:00Z
--- license: creativeml-openrail-m ---
vlkn/flan-t5-small-taboo-for-llms
vlkn
2023-06-17T16:20:59Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-03T13:32:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-small-taboo-for-llms results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-small-taboo-for-llms This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4825 - Rouge1: 27.3897 - Rouge2: 9.9232 - Rougel: 24.2026 - Rougelsum: 24.6485 - Gen Len: 18.5172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 137 | 2.5897 | 26.6789 | 9.9538 | 23.6637 | 24.2407 | 18.3621 | | No log | 2.0 | 274 | 2.5560 | 25.4162 | 9.6277 | 22.7084 | 23.0883 | 18.3966 | | No log | 3.0 | 411 | 2.5377 | 26.0239 | 9.7748 | 23.4425 | 23.7935 | 18.6034 | | 2.8204 | 4.0 | 548 | 2.5241 | 26.6294 | 9.9168 | 23.8023 | 24.2756 | 18.7241 | | 2.8204 | 5.0 | 685 | 2.5120 | 25.8274 | 9.9333 | 23.8865 | 24.0724 | 18.7586 | | 2.8204 | 6.0 | 822 | 2.5031 | 26.7774 | 9.9651 | 24.3654 | 24.6102 | 18.6034 | | 2.8204 | 7.0 | 959 | 2.4985 | 26.5058 | 10.0422 | 24.0403 | 24.635 | 18.4655 | | 2.6101 | 8.0 | 1096 | 2.4934 | 26.6953 | 9.9536 | 24.0293 | 24.6809 | 18.4655 | | 2.6101 | 9.0 | 1233 | 2.4907 | 26.7978 | 9.6249 | 23.714 | 23.9992 | 18.6034 | | 2.6101 | 10.0 | 1370 | 2.4847 | 27.2135 | 9.878 | 23.8398 | 24.2389 | 18.5 | | 2.4726 | 11.0 | 1507 | 2.4856 | 27.1799 | 9.9337 | 23.9393 | 24.4067 | 18.5172 | | 2.4726 | 12.0 | 1644 | 2.4835 | 27.4491 | 10.1828 | 24.0926 | 24.4819 | 18.5 | | 2.4726 | 13.0 | 1781 | 2.4825 | 27.3897 | 9.9232 | 24.2026 | 24.6485 | 18.5172 | | 2.4726 | 14.0 | 1918 | 2.4836 | 27.5567 | 10.7405 | 24.2497 | 24.6566 | 18.5345 | | 2.3731 | 15.0 | 2055 | 2.4872 | 27.7517 | 11.0182 | 24.1007 | 24.7218 | 18.4828 | | 2.3731 | 16.0 | 2192 | 2.4852 | 27.3461 | 11.3381 | 24.084 | 24.5125 | 18.4655 | | 2.3731 | 17.0 | 2329 | 2.4872 | 27.3558 | 11.1005 | 24.047 | 24.4973 | 18.4655 | | 2.3731 | 18.0 | 2466 | 2.4841 | 26.9427 | 10.9288 | 23.7324 | 24.4298 | 18.5345 | | 2.2967 | 19.0 | 2603 | 2.4881 | 27.5 | 10.8437 | 24.1593 | 24.6028 | 18.4483 | | 2.2967 | 20.0 | 2740 | 2.4908 | 27.517 | 11.0039 | 24.1049 | 24.7111 | 18.5 | | 2.2967 | 21.0 | 2877 | 2.4917 | 27.7333 | 10.935 | 24.4076 | 24.9887 | 18.4138 | | 2.2553 | 22.0 | 3014 | 2.4926 | 27.6275 | 10.7562 | 24.2295 | 24.7476 | 18.4138 | | 2.2553 | 23.0 | 3151 | 2.4945 | 27.9085 | 10.943 | 24.6135 | 25.2373 | 18.4138 | | 2.2553 | 24.0 | 3288 | 2.4948 | 27.5261 | 10.7141 | 24.2429 | 24.816 | 18.4138 | | 2.2553 | 25.0 | 3425 | 2.4931 | 27.5522 | 10.8702 | 24.5576 | 25.0714 | 18.4655 | | 2.213 | 26.0 | 3562 | 2.4942 | 27.4758 | 11.0064 | 24.5062 | 25.05 | 18.4655 | | 2.213 | 27.0 | 3699 | 2.4954 | 27.6967 | 11.1744 | 24.7646 | 25.3172 | 18.4655 | | 2.213 | 28.0 | 3836 | 2.4951 | 27.7428 | 10.9365 | 24.6427 | 25.2432 | 18.5172 | | 2.213 | 29.0 | 3973 | 2.4949 | 27.6877 | 10.9522 | 24.6101 | 25.2471 | 18.4655 | | 2.1865 | 30.0 | 4110 | 2.4952 | 27.7295 | 11.0173 | 24.6556 | 25.2397 | 18.4655 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
rohitp1/ws_w2lm_base_distill_noisy_teacher_libri_epochs_50_batch_8
rohitp1
2023-06-17T15:57:16Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "wavlm", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-02T12:05:05Z
--- tags: - generated_from_trainer metrics: - wer model-index: - name: ws_w2lm_base_distill_noisy_teacher_libri_epochs_50_batch_8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ws_w2lm_base_distill_noisy_teacher_libri_epochs_50_batch_8 This model is a fine-tuned version of [rohitp1/kkkh_w2lm_base_plus_finetune_teacher_noise_libri360_50_epochs_batch_16](https://huggingface.co/rohitp1/kkkh_w2lm_base_plus_finetune_teacher_noise_libri360_50_epochs_batch_16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0945 - Wer: 0.1041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0562 | 2.46 | 250 | 0.0741 | 0.1135 | | 0.0538 | 4.92 | 500 | 0.0736 | 0.1126 | | 0.0506 | 7.38 | 750 | 0.0751 | 0.1116 | | 0.0465 | 9.84 | 1000 | 0.0752 | 0.1099 | | 0.0424 | 12.31 | 1250 | 0.0762 | 0.1089 | | 0.0385 | 14.77 | 1500 | 0.0790 | 0.1078 | | 0.0355 | 17.23 | 1750 | 0.0788 | 0.1062 | | 0.0335 | 19.69 | 2000 | 0.0795 | 0.1053 | | 0.0314 | 22.15 | 2250 | 0.0825 | 0.1052 | | 0.0298 | 24.61 | 2500 | 0.0837 | 0.1055 | | 0.0285 | 27.07 | 2750 | 0.0873 | 0.1049 | | 0.0274 | 29.53 | 3000 | 0.0868 | 0.1043 | | 0.0266 | 32.0 | 3250 | 0.0891 | 0.1044 | | 0.0256 | 34.46 | 3500 | 0.0902 | 0.1044 | | 0.0251 | 36.92 | 3750 | 0.0911 | 0.1044 | | 0.0247 | 39.38 | 4000 | 0.0926 | 0.1042 | | 0.0242 | 41.84 | 4250 | 0.0936 | 0.1042 | | 0.0238 | 44.3 | 4500 | 0.0940 | 0.1042 | | 0.0235 | 46.76 | 4750 | 0.0938 | 0.1042 | | 0.0233 | 49.22 | 5000 | 0.0945 | 0.1041 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.13.1 - Datasets 2.7.1 - Tokenizers 0.11.0
Elvenson/stable_diffusion_weights
Elvenson
2023-06-17T15:50:04Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-04-15T04:59:14Z
--- license: openrail --- # Stable Diffusion Model Weights This repo is mainly for storing the Keras weights for Stable Diffusion models. The model is adapted from [here](https://github.com/keras-team/keras-cv/tree/master/keras_cv/models/stable_diffusion).
l3cube-pune/hindi-marathi-dev-albert
l3cube-pune
2023-06-17T15:34:53Z
112
0
transformers
[ "transformers", "pytorch", "albert", "fill-mask", "hi", "mr", "multilingual", "arxiv:2211.11418", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-19T19:19:20Z
--- language: - hi - mr - multilingual license: cc-by-4.0 --- ## DevAlBERT DevAlBERT is a Devanagari AlBERT model model trained on publicly available Hindi and Marathi monolingual datasets. [project link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [<a href='https://arxiv.org/abs/2211.11418'> paper </a>] . Citing: ``` @article{joshi2022l3cubehind, title={L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11418}, year={2022} } ``` Other Monolingual Indic BERT models are listed below: <br> <a href='https://huggingface.co/l3cube-pune/marathi-bert-v2'> Marathi BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/marathi-roberta'> Marathi RoBERTa </a> <br> <a href='https://huggingface.co/l3cube-pune/marathi-albert'> Marathi AlBERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-bert-v2'> Hindi BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-roberta'> Hindi RoBERTa </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-albert'> Hindi AlBERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-marathi-dev-bert'> Dev BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-marathi-dev-roberta'> Dev RoBERTa </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-marathi-dev-albert'> Dev AlBERT </a> <br> <a href='https://huggingface.co/l3cube-pune/kannada-bert'> Kannada BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/telugu-bert'> Telugu BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/malayalam-bert'> Malayalam BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/tamil-bert'> Tamil BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/gujarati-bert'> Gujarati BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/odia-bert'> Oriya BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/bengali-bert'> Bengali BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/punjabi-bert'> Punjabi BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/assamese-bert'> Assamese BERT </a> <br>
l3cube-pune/kannada-bert
l3cube-pune
2023-06-17T15:32:28Z
127
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "fill-mask", "kn", "arxiv:2211.11418", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-20T07:02:51Z
--- license: cc-by-4.0 language: kn --- ## KannadaBERT KannadaBERT is a Kannada BERT model trained on publicly available Kannada monolingual datasets. Preliminary details on the dataset, models, and baseline results can be found in our [<a href='https://arxiv.org/abs/2211.11418'> paper </a>] . Citing: ``` @article{joshi2022l3cubehind, title={L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11418}, year={2022} } ``` Other Monolingual Indic BERT models are listed below: <br> <a href='https://huggingface.co/l3cube-pune/marathi-bert-v2'> Marathi BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/marathi-roberta'> Marathi RoBERTa </a> <br> <a href='https://huggingface.co/l3cube-pune/marathi-albert'> Marathi AlBERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-bert-v2'> Hindi BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-roberta'> Hindi RoBERTa </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-albert'> Hindi AlBERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-marathi-dev-bert'> Dev BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-marathi-dev-roberta'> Dev RoBERTa </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-marathi-dev-albert'> Dev AlBERT </a> <br> <a href='https://huggingface.co/l3cube-pune/kannada-bert'> Kannada BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/telugu-bert'> Telugu BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/malayalam-bert'> Malayalam BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/tamil-bert'> Tamil BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/gujarati-bert'> Gujarati BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/odia-bert'> Oriya BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/bengali-bert'> Bengali BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/punjabi-bert'> Punjabi BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/assamese-bert'> Assamese BERT </a> <br>
l3cube-pune/hindi-albert
l3cube-pune
2023-06-17T15:32:02Z
142
1
transformers
[ "transformers", "pytorch", "albert", "fill-mask", "hi", "arxiv:2211.11418", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-19T18:36:25Z
--- license: cc-by-4.0 language: hi --- ## HindAlBERT HindAlBERT is a Hindi AlBERT model model trained on publicly available Hindi monolingual datasets. [project link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [<a href='https://arxiv.org/abs/2211.11418'> paper </a>] (<a href='http://dx.doi.org/10.13140/RG.2.2.14606.84809'> pdf </a>) ``` @article{joshi2022l3cubehind, title={L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11418}, year={2022} } ``` Other Monolingual Indic BERT models are listed below: <br> <a href='https://huggingface.co/l3cube-pune/marathi-bert-v2'> Marathi BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/marathi-roberta'> Marathi RoBERTa </a> <br> <a href='https://huggingface.co/l3cube-pune/marathi-albert'> Marathi AlBERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-bert-v2'> Hindi BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-roberta'> Hindi RoBERTa </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-albert'> Hindi AlBERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-marathi-dev-bert'> Dev BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-marathi-dev-roberta'> Dev RoBERTa </a> <br> <a href='https://huggingface.co/l3cube-pune/hindi-marathi-dev-albert'> Dev AlBERT </a> <br> <a href='https://huggingface.co/l3cube-pune/kannada-bert'> Kannada BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/telugu-bert'> Telugu BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/malayalam-bert'> Malayalam BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/tamil-bert'> Tamil BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/gujarati-bert'> Gujarati BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/odia-bert'> Oriya BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/bengali-bert'> Bengali BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/punjabi-bert'> Punjabi BERT </a> <br> <a href='https://huggingface.co/l3cube-pune/assamese-bert'> Assamese BERT </a> <br>
atrytone/scibert_uncased_claim_id
atrytone
2023-06-17T15:16:47Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-18T05:07:15Z
--- license: apache-2.0 language: - en --- Fine-tuned SciBERT uncased model [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) for claim detection from abstracts.
Hosioka/AniReal
Hosioka
2023-06-17T15:16:41Z
52
75
diffusers
[ "diffusers", "text-to-image", "stable-Diffusion", "stable-diffusion-diffusers", "safetensors", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-20T11:45:12Z
--- license: creativeml-openrail-m thumbnail: "https://m1.afileditch.ch/uJoodjDNVWxDqhhQHeRH.png" language: - en tags: - text-to-image - stable-Diffusion - stable-diffusion-diffusers - diffusers - safetensors inference: true --- # Deprecated. Refer to this [New Version](https://huggingface.co/Hosioka/Baka-Diffusion) This Repository contains AniReal V1.0 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the **Model** to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
HoseinPanahi/finbert-lm-finetuned-news
HoseinPanahi
2023-06-17T15:14:00Z
113
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-17T12:01:59Z
--- tags: - generated_from_trainer model-index: - name: finbert-lm-finetuned-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finbert-lm-finetuned-news This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3271 | 1.0 | 2736 | 2.2334 | | 2.0392 | 2.0 | 5472 | 2.0723 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
gombalmukiyo/gombalmukiyo
gombalmukiyo
2023-06-17T15:11:32Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-17T15:09:52Z
--- license: creativeml-openrail-m ---
zwzhang/Accountable-Textual-Visual-Chat
zwzhang
2023-06-17T15:10:10Z
0
2
null
[ "arxiv:2303.05983", "license:apache-2.0", "region:us" ]
null
2023-06-17T14:41:30Z
--- license: apache-2.0 --- ## Accountable Textual-Visual Chat Learns to Reject Human Instructions in Image Re-creation [[Paper]](https://arxiv.org/pdf/2303.05983.pdf) [[Project Page]](https://matrix-alpha.github.io/) [[GitHub]](https://github.com/matrix-alpha/Accountable-Textual-Visual-Chat) ![ The overall framework of ATVC.](atvc.png)
Bala-A87/Huggy-DRL
Bala-A87
2023-06-17T14:35:21Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-17T14:34:51Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Bala-A87/Huggy-DRL 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Bodolaz/Unit-2
Bodolaz
2023-06-17T14:17:03Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T14:16:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Unit-2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Bodolaz/Unit-2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Bodolaz/q-FrozenLake-v1-4x4-noSlippery
Bodolaz
2023-06-17T13:46:43Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T13:46:27Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Bodolaz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
catrabbitbear/lunar-lander
catrabbitbear
2023-06-17T13:43:33Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T13:43:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.65 +/- 38.49 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
2tle/kobart-std-to-jeju
2tle
2023-06-17T13:41:43Z
104
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "ko", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-17T13:31:26Z
--- license: mit language: - ko metrics: - bleu --- # Korean Standard To Jejueo(Jeju Dialect) Translator BART Model ## Dataset - [AI Hub Korean Jejueo(Jeju Dialect) Voice data](https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=121) ## Model Score - BLEU: 40%
tux/Reinforce-copter
tux
2023-06-17T13:23:28Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T11:34:21Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-copter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 18.70 +/- 15.84 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
antphb/DS-Chatbox-bigscience-bloom-560m
antphb
2023-06-17T13:15:50Z
151
0
transformers
[ "transformers", "pytorch", "tensorboard", "bloom", "text-generation", "generated_from_trainer", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-17T11:27:42Z
--- license: bigscience-bloom-rail-1.0 tags: - generated_from_trainer model-index: - name: DS-Chatbox-bigscience-bloom-560m results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DS-Chatbox-bigscience-bloom-560m This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 4.8320 - eval_runtime: 175.7948 - eval_samples_per_second: 37.402 - eval_steps_per_second: 4.676 - epoch: 0.03 - step: 500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3.0 ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
thiendio/ppo-from-scratch-lunar
thiendio
2023-06-17T12:26:39Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T12:26:16Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -158.29 +/- 101.80 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
samata/my_awesome_billsum_model
samata
2023-06-17T12:20:04Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-17T12:09:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1423 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5563 - Rouge1: 0.1423 - Rouge2: 0.0518 - Rougel: 0.1171 - Rougelsum: 0.1171 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8514 | 0.1229 | 0.0326 | 0.1015 | 0.1016 | 19.0 | | No log | 2.0 | 124 | 2.6361 | 0.1308 | 0.0421 | 0.1066 | 0.1068 | 19.0 | | No log | 3.0 | 186 | 2.5725 | 0.139 | 0.0488 | 0.1138 | 0.114 | 19.0 | | No log | 4.0 | 248 | 2.5563 | 0.1423 | 0.0518 | 0.1171 | 0.1171 | 19.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
alexanderjoossens/w2v2-libri-10min
alexanderjoossens
2023-06-17T12:16:40Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-22T09:09:45Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: w2v2-libri-10min results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # w2v2-libri-10min This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 1.18.3 - Tokenizers 0.13.3
SikongSphere/sikong-llama-7b-chinese
SikongSphere
2023-06-17T12:01:59Z
7
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "dataset:customized", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-17T09:09:19Z
--- tags: - generated_from_trainer datasets: - customized model-index: - name: finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune This model is a fine-tuned version of [/root/autodl-tmp/sikong/repo/LMFlow/output_models/Linly-Chinese-LLaMA-7b-hf](https://huggingface.co//root/autodl-tmp/sikong/repo/LMFlow/output_models/Linly-Chinese-LLaMA-7b-hf) on the customized dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 8 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50.0 ### Training results ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3
jalFaizy/ppo-lunar
jalFaizy
2023-06-17T11:42:59Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T11:42:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: trial1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.71 +/- 14.10 name: mean_reward verified: false --- # **trial1** Agent playing **LunarLander-v2** This is a trained model of a **trial1** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bumstern/segmentation_model_russian_data
bumstern
2023-06-17T11:23:53Z
0
0
pyannote-audio
[ "pyannote-audio", "code", "ru", "license:mit", "region:us" ]
null
2023-06-17T11:02:51Z
--- license: mit language: - ru library_name: pyannote-audio tags: - code --- # Segmentation model This model was trained on AMI-MixHeadset and my own synthetic dataset of Russian speech. Training time: 5 hours on GTX 3060 This model can be used for diarization model from [pyannote/speaker-diarization](https://huggingface.co/pyannote/speaker-diarization) | Benchmark | DER% | | --------- |------| | [AMI (*headset mix,*](https://groups.inf.ed.ac.uk/ami/corpus/) [*only_words*)](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 38.8 | ## Usage example ```python import yaml from yaml.loader import SafeLoader import torch from pyannote.audio import Model from pyannote.audio.pipelines import SpeakerDiarization segm_model = torch.load('model/segm_model.pth', map_location=torch.device('cpu')) embed_model = Model.from_pretrained("pyannote/embedding", use_auth_token='ACCESS_TOKEN_GOES_HERE') diar_pipeline = SpeakerDiarization( segmentation=segm_model, segmentation_batch_size=16, clustering="AgglomerativeClustering", embedding=embed_model ) with open('model/config.yaml', 'r') as f: diar_config = yaml.load(f, Loader=SafeLoader) diar_pipeline.instantiate(diar_config) annotation = diar_pipeline('audio.wav') ```
Enterprize1/q-taxi-v3
Enterprize1
2023-06-17T11:15:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T11:14:52Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Enterprize1/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kejolong/hdxduniform2.0
kejolong
2023-06-17T11:07:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-17T11:05:58Z
--- license: creativeml-openrail-m ---
antphb/DS-Chatbox-mbart-large-50
antphb
2023-06-17T11:03:57Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-17T07:09:44Z
--- license: mit tags: - generated_from_trainer model-index: - name: DS-Chatbox-mbart-large-50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DS-Chatbox-mbart-large-50 This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.977 | 0.19 | 100 | 0.0001 | | 0.023 | 0.38 | 200 | 0.0002 | | 0.0005 | 0.57 | 300 | 0.0005 | | 0.0007 | 0.76 | 400 | 0.0006 | | 0.0012 | 0.95 | 500 | 0.0014 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
nomad-ai/ppo-LunarLander-v2-1
nomad-ai
2023-06-17T11:01:03Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T11:00:26Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 281.34 +/- 18.86 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mattladewig/distilbert-base-uncased-finetuned-ner
mattladewig
2023-06-17T10:34:27Z
61
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-17T08:37:53Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: mattladewig/distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mattladewig/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0342 - Validation Loss: 0.0614 - Train Precision: 0.9248 - Train Recall: 0.9365 - Train F1: 0.9306 - Train Accuracy: 0.9833 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1951 | 0.0694 | 0.9087 | 0.9181 | 0.9134 | 0.9799 | 0 | | 0.0530 | 0.0621 | 0.9246 | 0.9301 | 0.9273 | 0.9823 | 1 | | 0.0342 | 0.0614 | 0.9248 | 0.9365 | 0.9306 | 0.9833 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.0 - Tokenizers 0.13.3
kevinng77/unsup_bert_L3
kevinng77
2023-06-17T10:00:06Z
107
0
transformers
[ "transformers", "pytorch", "onnx", "bert", "text-classification", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-17T08:47:52Z
--- license: apache-2.0 language: - en metrics: - accuracy - f1 pipeline_tag: text-classification --- ```python # transformers==4.29.1 from transformers import AutoTokenizer, pipeline from optimum.onnxruntime import ORTModelForSequenceClassification onnx_model_path = "kevinng77/unsup_bert_L3" tokenizer = AutoTokenizer.from_pretrained(onnx_model_path) onnx_model = ORTModelForSequenceClassification.from_pretrained(onnx_model_path) onnx_pipe = pipeline(task="text-classification", model=onnx_model, tokenizer=tokenizer) onnx_pipe("How many rows are there in the table?") ```
parkyunmin/beatles_lyrics
parkyunmin
2023-06-17T09:38:03Z
198
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-17T09:11:41Z
--- tags: - generated_from_trainer model-index: - name: beatles_lyrics results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beatles_lyrics This model is a fine-tuned version of [wvangils/GPT-Medium-Beatles-Lyrics-finetuned-newlyrics](https://huggingface.co/wvangils/GPT-Medium-Beatles-Lyrics-finetuned-newlyrics) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 50 | 1.1221 | | No log | 2.0 | 100 | 1.0710 | | No log | 3.0 | 150 | 1.0584 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
ganghe74/distilbert-base-uncased-finetuned-emotion
ganghe74
2023-06-17T09:34:40Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-17T09:13:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.922469380812715 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2170 - Accuracy: 0.9225 - F1: 0.9225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8057 | 1.0 | 250 | 0.3170 | 0.905 | 0.9023 | | 0.242 | 2.0 | 500 | 0.2170 | 0.9225 | 0.9225 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.13.0 - Tokenizers 0.13.3
benol/Roma_Pyatifan
benol
2023-06-17T09:10:31Z
0
0
null
[ "ru", "en", "arxiv:1910.09700", "license:unknown", "region:us" ]
null
2023-06-17T08:58:04Z
--- license: unknown language: - ru - en --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
parkyunmin/my_awesome_eli5_clm-model
parkyunmin
2023-06-17T09:09:15Z
211
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-17T05:54:26Z
--- license: mit tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 49 | 1.6679 | | No log | 2.0 | 98 | 1.5629 | | No log | 3.0 | 147 | 1.5380 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
PabloQuant29/ppo-LunarLander-v2
PabloQuant29
2023-06-17T08:36:13Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T08:35:40Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 244.46 +/- 18.98 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mustika/alan2
mustika
2023-06-17T08:36:10Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-17T08:34:12Z
--- license: creativeml-openrail-m ---
AriesChen/GeoLLM
AriesChen
2023-06-17T08:32:06Z
195
3
transformers
[ "transformers", "pytorch", "chatglm", "feature-extraction", "custom_code", "region:us" ]
feature-extraction
2023-06-17T08:30:04Z
# GeoLLM **Large Language Model for Geology** Large language models are used to organize geology-related knowledge (geology, geophysics, geophysical logging, etc.). This version uses the [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B) base model and fine-tunes it using P-tuning. --- ### Sedimentology Sedimentology, the study of sedimentary rocks and the processes by which they are formed, includes and is related to a large number of phenomena. Sedimentology includes the five fundamental processes defined by the term sediaentation --weathering, erosion, transportation, deposition and diagenesis. **Datasets๏ผš**ใ€Šๆฒ‰็งฏๅฒฉ็Ÿณๅญฆ๏ผˆ็ฌฌๅ››็‰ˆ๏ผ‰ใ€‹ ๆœฑ็ญฑๆ• **Model๏ผš** ChatGLM-6B **Fine-tuning๏ผš** P-Tuning v2 **Before fine-tuning** ``` response, history = model.chat(tokenizer, "ไป€ไนˆๆ˜ฏๆฒ‰็งฏๅฒฉ็Ÿณๅญฆ๏ผŸ", history=[]) response ๆฒ‰็งฏๅฒฉ็Ÿณๅญฆๆ˜ฏไธ€้—จ็ ”็ฉถๆฒ‰็งฏๅฒฉ็š„ๅฝขๆˆใ€็ป“ๆž„ๅ’Œๆˆๅˆ†็š„ๅญฆ็ง‘๏ผŒไธป่ฆๅ…ณๆณจๅœฐ็ƒ่กจ้ขไธŠไธๅŒๆกไปถไธ‹็š„ๆฒ‰็งฏ่ฟ‡็จ‹ๅ’Œๅฒฉ็Ÿณๅฝขๆˆๆœบๅˆถ๏ผŒๅŒ…ๆ‹ฌๅฒฉๆต†ๆฒ‰็งฏใ€ๅ†ฐๅทๆฒ‰็งฏใ€ๆดชๆฐดๆฒ‰็งฏใ€ๆตทๆด‹ๆฒ‰็งฏ็ญ‰ใ€‚ๆฒ‰็งฏๅฒฉ็Ÿณๅญฆๅœจๅœฐ่ดจๅญฆใ€ๅœฐ็ƒ็‰ฉ็†ๅญฆใ€ๅœฐ็ƒๅŒ–ๅญฆใ€ๆๆ–™็ง‘ๅญฆ็ญ‰้ข†ๅŸŸ้ƒฝๆœ‰ๅนฟๆณ›ๅบ”็”จ๏ผŒๅ› ไธบๆฒ‰็งฏๅฒฉๆ˜ฏ่ฎธๅคš่‡ช็„ถๅ’Œไบบๅทฅๅœฐ่ดจๅทฅ็จ‹็š„ๅŸบ็ก€๏ผŒๅฆ‚ๅœฐ่ดจๅ‹˜ๆŽขใ€็Ÿฟไบง่ต„ๆบๅผ€ๅ‘ใ€ๅœŸๆœจๅทฅ็จ‹ใ€็Žฏๅขƒ็ง‘ๅญฆ็ญ‰ใ€‚ๆฒ‰็งฏๅฒฉ็Ÿณๅญฆ็š„็ ”็ฉถๅฏน่ฑกๅŒ…ๆ‹ฌๆฒ‰็งฏๅฒฉ็š„ๅœฐ่ดจ็‰นๅพใ€ๆˆๅˆ†ๅ’Œๆž„้€ ็‰นๅพ๏ผŒไปฅๅŠๆฒ‰็งฏๅฒฉไธŽๅœฐๅฃณใ€ๅฒฉๆต†ๅ’Œๅ˜่ดจๅฒฉ็š„ๅ…ณ็ณปใ€‚็ ”็ฉถๆ–นๆณ•ๅŒ…ๆ‹ฌๆฒ‰็งฏๅฒฉๅˆ†ๆžใ€ๅฒฉ็›ธๅญฆๅˆ†ๆžใ€ๅฒฉๆต†ๅŠจๅŠ›ๅญฆๅˆ†ๆž็ญ‰ใ€‚ ``` **After fine-tuning** ``` response, history = model.chat(tokenizer, "ไป€ไนˆๆ˜ฏๆฒ‰็งฏๅฒฉ็Ÿณๅญฆ๏ผŸ", history=[]) response ๆฒ‰็งฏๅฒฉ็Ÿณๅญฆๆ˜ฏ็ ”็ฉถๆฒ‰็งฏๅฒฉ็š„็‰ฉ่ดจๆˆๅˆ†ใ€็ป“ๆž„ๆž„้€ ใ€ๅฒฉ็Ÿณ็ฑปๅž‹ใ€ๆฒ‰็งฏ็‰ฉๆฒ‰็งฏไฝœ็”จๅ’Œๆฒ‰็งฏ็‰ฉ่ดจๅฝขๆˆ็ŽฏๅขƒไปฅๅŠๆฒ‰็งฏๅฒฉๅˆ†ๅธƒ่ง„ๅพ‹็š„ไธ€้—จ็ง‘ๅญฆใ€‚ ``` **Error Analysis:** We meticulously refined the model by approximately 500 entries from academic textbooks, subsequently applying P-Tuning v2 for optimization. Detailed control of parameters was not conducted for the time being. Given the scarcity of the training data and the fine-tuning parameters, the outcomes might exhibit some irregularities. **Results Analysis:** It is evident that the fine-tuned model shows enhanced reliability(more precise and concise) when providing answers within specialized knowledge domains. Moving forward, we will persist in enriching our training data and optimizing our fine-tuning methodologies in order to yield superior results. --- ### TODO 1. Geophysical Exploration 2. Geophysical logging 3. Petroleum Geology etc... --- ### Related Resources 1. [ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B): ChatGLM-6B is an open bilingual language model based on General Language Model (GLM) framework, with 6.2 billion parameters.
SM16/TreeClassifier
SM16
2023-06-17T08:15:11Z
218
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-17T07:27:25Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: TreeClassifier results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # TreeClassifier Autogenerated by HuggingPics๐Ÿค—๐Ÿ–ผ๏ธ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Pepper Tree ![Pepper Tree](images/Pepper_Tree.jpg) #### Weeping Willow ![Weeping Willow](images/Weeping_Willow.jpg)
musabg/mt5-xl-tr-summarization
musabg
2023-06-17T07:25:20Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "tr", "dataset:musabg/wikipedia-tr-summarization", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-08T16:24:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - musabg/wikipedia-tr-summarization metrics: - rouge model-index: - name: mt5-xl-tr-summarization results: - task: name: Summarization type: summarization dataset: name: musabg/wikipedia-tr-summarization type: musabg/wikipedia-tr-summarization split: validation metrics: - name: Rouge1 type: rouge value: 56.4468 language: - tr --- # mT5-Xl Turkish Summarization This model is a fine-tuned version of [google/mt5-xl](https://huggingface.co/google/mt5-xl) on the musabg/wikipedia-tr-summarization dataset. This can be used with HF summarization pipeline. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Eval results It achieves the following results on the evaluation set: - Loss: 0.5676 - Rouge1: 56.4468 - Rouge2: 41.3258 - Rougel: 48.1909 - Rougelsum: 48.4284 - Gen Len: 75.9265 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.1 - Datasets 2.12.0 - Tokenizers 0.13.3
alsonlai/test
alsonlai
2023-06-17T07:23:18Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T07:22:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: test results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="alsonlai/test", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Irgendsoeine/FaceTheVote3
Irgendsoeine
2023-06-17T07:10:58Z
4
0
tf-keras
[ "tf-keras", "mobilenet", "image-classification", "region:us" ]
image-classification
2023-06-17T06:56:45Z
--- pipeline_tag: image-classification ---
kjiwon1222/my_awesome_eli5_clm-model
kjiwon1222
2023-06-17T06:54:34Z
217
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-17T06:32:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7506 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8621 | 1.0 | 1137 | 3.7690 | | 3.7782 | 2.0 | 2274 | 3.7533 | | 3.7245 | 3.0 | 3411 | 3.7506 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
aga3134/poca-SoccerTwos
aga3134
2023-06-17T06:48:55Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-06-17T06:48:14Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: aga3134/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
octipuw/policy_gradient-cartpole-v1
octipuw
2023-06-17T06:40:28Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T05:35:35Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: policy_gradient-cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 166.70 +/- 18.03 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vedu/bart-large-perturbed
vedu
2023-06-17T06:21:37Z
103
0
transformers
[ "transformers", "pytorch", "jax", "rust", "bart", "feature-extraction", "en", "arxiv:1910.13461", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2023-06-16T20:22:31Z
--- license: apache-2.0 language: en --- # BART (large-sized model) ## Model description BART is a transformer encoder-decoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). Weights shared here are effectively from facebook/bart-large but with added noise for BOS embedding to assist the finetuning. ## Intended uses & limitations There have been quite a few issues related to finetuning BART for text generation, and this repo implements solution discussed in [#15559](https://github.com/huggingface/transformers/issues/15559). Particularly adding some noise to pre-trained model's BOS embedding. This seems to solve the problem of endless BOS generation for a finetuned BART model. You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. See the [model hub](https://huggingface.co/models?search=bart) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model in PyTorch: ```python from transformers import BartTokenizer, BartModel tokenizer = BartTokenizer.from_pretrained('vedu/bart-large-perturbed') model = BartModel.from_pretrained('vedu/bart-large-perturbed') inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1910-13461, author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov and Luke Zettlemoyer}, title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension}, journal = {CoRR}, volume = {abs/1910.13461}, year = {2019}, url = {http://arxiv.org/abs/1910.13461}, eprinttype = {arXiv}, eprint = {1910.13461}, timestamp = {Thu, 31 Oct 2019 14:02:26 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
pigeon01/sungju-finetuned-zh-to-ko1
pigeon01
2023-06-17T05:47:05Z
228
0
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "translation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-06-17T05:12:16Z
--- license: mit tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: sungju-finetuned-zh-to-ko1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sungju-finetuned-zh-to-ko1 This model is a fine-tuned version of [alirezamsh/small100](https://huggingface.co/alirezamsh/small100) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0467 - Bleu: 10.2096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
sunflowermarshmallows/dqn-SpaceInvadersNoFrameskip-v4
sunflowermarshmallows
2023-06-17T05:25:16Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T05:24:36Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 629.00 +/- 184.89 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sunflowermarshmallows -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sunflowermarshmallows -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga sunflowermarshmallows ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
nolanaatama/rngrndrvcv800pchsrthysttylrsvrsn
nolanaatama
2023-06-17T04:33:50Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-31T04:13:59Z
--- license: creativeml-openrail-m ---
ALPHONSE28/EQUIPO06SEMANA09
ALPHONSE28
2023-06-17T04:33:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-16T06:38:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: EQUIPO06SEMANA09 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EQUIPO06SEMANA09 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2161 - Accuracy: 0.9233 - F1: 0.9514 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
fgeyer/reinforce-CartPole-v1
fgeyer
2023-06-17T04:04:51Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T03:59:14Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 1000.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
aozora-esther/aozora-esther
aozora-esther
2023-06-17T04:00:52Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-06-17T04:00:52Z
--- license: bigscience-openrail-m ---
2022happy/swin-tiny-patch4-window7-224-finetuned-eurosat
2022happy
2023-06-17T03:51:48Z
245
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:cifar10", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-15T13:46:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cifar10 metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: cifar10 type: cifar10 config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.97 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the cifar10 dataset. It achieves the following results on the evaluation set: - Loss: 0.0893 - Accuracy: 0.97 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5255 | 1.0 | 351 | 0.1262 | 0.9596 | | 0.3808 | 2.0 | 703 | 0.1031 | 0.9652 | | 0.3268 | 2.99 | 1053 | 0.0893 | 0.97 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
nolanaatama/dmnslyrkmtsnybnmstyllr
nolanaatama
2023-06-17T02:31:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-17T02:27:58Z
--- license: creativeml-openrail-m ---
Atnafu/amhric_xlmr-small
Atnafu
2023-06-17T02:23:50Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-17T02:17:40Z
--- license: afl-3.0 tags: - generated_from_trainer model-index: - name: amh_small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amh_small This model is a fine-tuned version of [Davlan/afro-xlmr-small](https://huggingface.co/Davlan/afro-xlmr-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.2386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
breadlicker45/MuseRift
breadlicker45
2023-06-17T02:11:29Z
170
0
transformers
[ "transformers", "pytorch", "rwkv", "text-generation", "dataset:breadlicker45/musenet-encoders-40k", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-15T01:22:00Z
--- datasets: - breadlicker45/musenet-encoders-40k ---
paulahugging/MABEPA_2
paulahugging
2023-06-17T01:48:24Z
103
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-06-16T15:43:20Z
El objetivo Modelo parte de un modelo Bert Base con el objetivo de identificar la similitud semรกntica entre dos oraciones (o Semantic Textual Similarity: โ€œSTSโ€), es decir, medir quรฉ tan parecidos son dos documentos. Dicho modelo serรก a travรฉs de una red neuronal siamesa, que implica usar la misma red, con idรฉnticos parรกmetros, para procesar la premisa y la hipรณtesis. โ€œLa tarea STS estรก motivada por la observaciรณn de que modelar con precisiรณn la similitud de significado de las oraciones es un problema fundamental de comprensiรณn del lenguaje relevante para numerosas aplicaciones, incluyendo: traducciรณn automรกtica (MT), resumen, generaciรณn, pregunta respuesta (QA), calificaciรณn de respuestas cortas, semรกntica, sistemas de bรบsqueda, diรกlogo y conversaciรณn.โ€ (Cera Et al, 2017, p. 1). Datos El dataset elegido fue XNLI en espaรฑol. El mismo contiene los campos de 'premise', 'hypothesis' y 'labelโ€™, donde los dos primeros campos son oraciones o cadenas de texto mientras que el tercero es la similitud semรกntica entre ambas con la siguiente codificaciรณn: 'entailment': 0, 'neutral': 1, 'contradiction': 2 El mismo estรก compuesto por tres dataset: TRAINING, con 392.702 datos; TEST, con 5.010 datos; VALIDATION, con 2.490 datos. Ademรกs se utiliza un vocabulario en espaรฑol que contiene alrededor de 31.000 palabras, incluyendo los siguientes caracteres especiales: "[MASK]", "[PAD]", "[EOS]","[UNK]","[CLS]","[SEP]" que se encuentran en las primeras posiciones del vocabulario. Dicho vocabulario surge del modelo de Huggigface cuyo model_name es "dccuchile/bert-base-spanish-wwm-uncased". Mรฉtodo Tokenizaciรณn En primer lugar importamos AutoTokenizer y obtenemos el tokenizador del modelo definido anteriormente. El mismo, al tokenizar adicionalmente de convertir los tokens o palabras en su ID del vocabulario, le incorpora al inicio el id del carรกcter especial โ€œCLSโ€ y al final el โ€œSEPโ€. Ademรกs fijamos como parรกmetro la longitud mรกxima del modelo (tokenizer.model_max_length) esto genera que corte las premisas y las hipotesis si son mas largas y que las complete con padding si son mas cortas hasta completar la longitud deseada (con โ€œPADโ€).. Notamos que este tokenizador contiene funciones como las del itos y el stoi ya generadas. Procedemos a tokenizar el dataset a utilizando la funciรณn map, tanto para la premisa como la hipรณtesis. Armado de Batches Con la tokenizacion realizada procedemos a separar los Batches, para lo cual usamos el dataloader de torch. El resultado serรกn batches de tamaรฑo 32 para el dataset de train, y 16 tanto para el de validaciรณn como para el de test. Sus dimensiones son el tamaรฑo de cada batch x la cantidad de elementos. En el caso de la premisa y la hipรณtesis la cantidad de elementos serรก el largo utilizado para la tokenizaciรณn mientras que en el caso del label, al ser รบnico, la dimension serรก del tamaรฑo del batch x 1. Asimismo incorporamos a los batches el attention_mask de la premisa y de la hipรณtesis. Modelo base BERT es una red pre-entrenada de transformadores (...). El input de BERT consiste en las dos oraciones separadas por un token especial [SEP]. (...) yla salida se pasa a una funciรณn de regresiรณn simple para derivar la etiqueta final. (Reimers and Gurevich, 2019, p. 2). Sobre este modelo base, se realizรณ el finetuning de nuestra red, basรกndonos en el siguiente diagrama (Reimers and Gurevich, 2019, p. 3).: Es decir que lo que haremos serรก pasar la premisa y la hipรณtesis por una BERT, obteniendo luego un pooler output para cada una de ellas (โ€œuโ€ y โ€œvโ€). Luego se concatenan, junto con el mรณdulo de la diferencia, y ese resultado es pasado por la capa lineal obteniendo 3 resultados, que serรกn las probabilidades asociadas a cada label. Se procediรณ a entrenar la red con el dataset de train, utilizando como funciรณn de pรฉrdida la entropรญa cruzada, y luego se procediรณ a validar el modelo. Los resultados se exponen en la prรณxima secciรณn. En este caso el modelo tiene dos epocas completas de entrenamiento
zhangjian94cn/Taxi-v3
zhangjian94cn
2023-06-17T01:33:35Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-17T01:33:26Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="zhangjian94cn/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
UofA-LINGO/text-to-triplets-explanation-v2
UofA-LINGO
2023-06-17T00:41:02Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-06-17T00:38:48Z
--- license: mit --- LoRA weights for `LLaMA-7B` Trained on 'taesiri/webnlg-triplets-explanation-v1' for 4 epochs. Command: ``` WORLD_SIZE=2 CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node=2 --master_port=1234 finetune.py --base_model='decapoda-research/llama-7b-hf' --data_path 'taesiri/webnlg-triplets-explanation-v1' --num_epochs=4 --cutoff_len=512 --group_by_length --lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' --lora_r=8 --micro_batch_size=8 --batch_size=32 ```
UofA-LINGO/text-to-triplets-explanation-v1
UofA-LINGO
2023-06-17T00:39:59Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-06-16T22:26:38Z
--- license: mit --- LoRA weights for `LLaMA-7B` Trained on 'taesiri/webnlg-triplets-explanation-v1' for 2 epochs.
arsalsyed/distilgpt2-finetuned-wikitext2
arsalsyed
2023-06-17T00:14:20Z
135
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-16T23:41:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7596 | 1.0 | 2334 | 3.6651 | | 3.6543 | 2.0 | 4668 | 3.6468 | | 3.6024 | 3.0 | 7002 | 3.6420 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
H4nan/dqn-SpaceInvadersNoFrameskip-v4
H4nan
2023-06-16T23:54:53Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-23T18:30:15Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 537.00 +/- 181.32 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga H4nan -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga H4nan -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga H4nan ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Ioanaaaaaaa/bert-base-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr-0.1-weight_decay
Ioanaaaaaaa
2023-06-16T23:47:54Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-16T23:30:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: bert-base-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr-0.1-weight_decay results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.941 - name: F1 type: f1 value: 0.9411169346964399 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr-0.1-weight_decay This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2591 - Accuracy: 0.941 - F1: 0.9411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0799 | 1.0 | 250 | 0.1898 | 0.9375 | 0.9377 | | 0.0516 | 2.0 | 500 | 0.2290 | 0.938 | 0.9383 | | 0.0386 | 3.0 | 750 | 0.2107 | 0.9415 | 0.9419 | | 0.0195 | 4.0 | 1000 | 0.2607 | 0.9435 | 0.9433 | | 0.0149 | 5.0 | 1250 | 0.2591 | 0.941 | 0.9411 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
sam34738/mBERT
sam34738
2023-06-16T23:44:39Z
186
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-16T20:24:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: mbert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9812 - Accuracy: 0.6583 - F1: 0.6948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-05 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.749 | 1.0 | 2100 | 0.7068 | 0.4994 | 0.0131 | | 0.7707 | 2.0 | 4200 | 0.9812 | 0.6583 | 0.6948 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
TacLucas/Test
TacLucas
2023-06-16T23:07:19Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-06-16T23:06:14Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ghze/Taxi_v3
ghze
2023-06-16T23:00:53Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-16T23:00:48Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi_v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ghze/Taxi_v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ghze/Taxi
ghze
2023-06-16T22:59:16Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-16T22:59:09Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ghze/Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
amjadfqs/finalProject
amjadfqs
2023-06-16T22:28:48Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-15T17:30:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision model-index: - name: finalProject results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9890023566378633 - name: Precision type: precision value: 0.9894345375382527 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finalProject This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0411 - Accuracy: 0.9890 - F1 Score: 0.9892 - Precision: 0.9894 - Sensitivity: 0.9891 - Specificity: 0.9972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Precision | Sensitivity | Specificity | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:-----------:|:-----------:| | 0.3384 | 1.0 | 30 | 0.2387 | 0.9144 | 0.9163 | 0.9197 | 0.9146 | 0.9781 | | 0.1608 | 2.0 | 60 | 0.1635 | 0.9466 | 0.9476 | 0.9485 | 0.9474 | 0.9865 | | 0.0953 | 3.0 | 90 | 0.0915 | 0.9698 | 0.9703 | 0.9706 | 0.9706 | 0.9924 | | 0.0573 | 4.0 | 120 | 0.1125 | 0.9607 | 0.9617 | 0.9634 | 0.9621 | 0.9901 | | 0.0335 | 5.0 | 150 | 0.0536 | 0.9827 | 0.9831 | 0.9837 | 0.9826 | 0.9957 | | 0.0185 | 6.0 | 180 | 0.0543 | 0.9827 | 0.9830 | 0.9837 | 0.9825 | 0.9957 | | 0.0226 | 7.0 | 210 | 0.0478 | 0.9859 | 0.9861 | 0.9866 | 0.9856 | 0.9965 | | 0.0131 | 8.0 | 240 | 0.0468 | 0.9843 | 0.9846 | 0.9847 | 0.9846 | 0.9961 | | 0.0087 | 9.0 | 270 | 0.0411 | 0.9890 | 0.9892 | 0.9894 | 0.9891 | 0.9972 | | 0.0043 | 10.0 | 300 | 0.0376 | 0.9886 | 0.9888 | 0.9890 | 0.9887 | 0.9971 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
devonho/my_awesome_opus_books_model
devonho
2023-06-16T22:28:30Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus100", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-06T07:28:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: my_awesome_opus_books_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 config: en-ja split: test args: en-ja metrics: - name: Bleu type: bleu value: 23.8215 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.4506 - Bleu: 23.8215 - Gen Len: 4.6055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-------:|:---------------:|:-------:|:-------:| | 0.4468 | 1.0 | 500000 | 0.4585 | 23.9023 | 4.705 | | 0.4397 | 2.0 | 1000000 | 0.4506 | 23.8215 | 4.6055 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
maren-hugg/xlm-roberta-base-finetuned-panx-en-custom
maren-hugg
2023-06-16T21:56:26Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-12T06:49:39Z
--- license: mit tags: - generated_from_trainer metrics: - f1 - precision - recall - accuracy model-index: - name: xlm-roberta-base-finetuned-panx-en-custom results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en-custom This model is a fine-tuned version of [maren-hugg/xlm-roberta-base-finetuned-panx-en](https://huggingface.co/maren-hugg/xlm-roberta-base-finetuned-panx-en) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1045 - F1: 0.8782 - Precision: 0.8496 - Recall: 0.9088 - Accuracy: 0.9754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.886597454037411e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| | 0.128 | 0.75 | 24 | 0.1087 | 0.8514 | 0.8299 | 0.8740 | 0.9713 | | 0.074 | 1.5 | 48 | 0.1006 | 0.8637 | 0.8505 | 0.8773 | 0.9750 | | 0.0506 | 2.25 | 72 | 0.0987 | 0.8728 | 0.8587 | 0.8872 | 0.9749 | | 0.0393 | 3.0 | 96 | 0.1045 | 0.8782 | 0.8496 | 0.9088 | 0.9754 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
Enterprize1/ppo-LunarLander-v2
Enterprize1
2023-06-16T21:45:24Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-16T21:45:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 242.78 +/- 66.66 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
stanford-crfm/music-small-ar-inter-100k
stanford-crfm
2023-06-16T21:28:37Z
182
1
transformers
[ "transformers", "pytorch", "gpt2", "arxiv:2306.08620", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-06-05T00:04:27Z
--- license: apache-2.0 --- This is a Small (112M parameter) Transformer trained for 100k steps on interarrival-time encoded music from the [Lakh MIDI dataset](https://colinraffel.com/projects/lmd/). # References for the Anticipatory Music Transformer The Anticipatory Music Transformer paper is available on [ArXiv](http://arxiv.org/abs/2306.08620). The full model card is available [here](https://johnthickstun.com/assets/pdf/music-modelcard.pdf). Code for using this model is available on [GitHub](https://github.com/jthickstun/anticipation/). See the accompanying [blog post](https://crfm.stanford.edu/2023/06/16/anticipatory-music-transformer.html) for additional discussion of this model.
stanford-crfm/music-small-ar-800k
stanford-crfm
2023-06-16T21:28:12Z
183
1
transformers
[ "transformers", "pytorch", "gpt2", "arxiv:2306.08620", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-06-05T00:01:12Z
--- license: apache-2.0 --- This is a Small (128M parameter) Transformer trained for 800k steps on arrival-time encoded music from the [Lakh MIDI dataset](https://colinraffel.com/projects/lmd/). # References for the Anticipatory Music Transformer The Anticipatory Music Transformer paper is available on [ArXiv](http://arxiv.org/abs/2306.08620). The full model card is available [here](https://johnthickstun.com/assets/pdf/music-modelcard.pdf). Code for using this model is available on [GitHub](https://github.com/jthickstun/anticipation/). See the accompanying [blog post](https://crfm.stanford.edu/2023/06/16/anticipatory-music-transformer.html) for additional discussion of this model.
FALLENSTAR/Volvo850LoRa
FALLENSTAR
2023-06-16T21:28:07Z
0
0
null
[ "region:us" ]
null
2023-06-11T17:03:34Z
![00008-2488555434.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/ttKEY5ht3tpprSQP1bh6x.png) ![00010-1641710529.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/9DeVYLdy4z_5-GheRX7mp.png) ![00012-3333952880.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/_CXajXOTGrrAWV-hwQSvX.png) ![00014-2737276302.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/WdKhjgwrb7IKVIZH70geW.png) ![00018-4039153412.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/fgMyYsKjaRvQzN30z7LwU.png) ![00024-759743265.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/iaJIqLM6wfV_7tERVKtnf.png) ![00029-2851129221.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/cnHpl9xmcr7tChZIEMxpq.png) ![00030-857339483.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/eaJLLbx10bqGTvVM5n8im.png) ![00038-414082621.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/qWRmZchGH9LpFpcuK0-7E.png) ![00040-3062714132.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/aMnkr_RvEYs-_obSmQlF5.png)
stanford-crfm/music-small-ar-100k
stanford-crfm
2023-06-16T21:27:39Z
184
0
transformers
[ "transformers", "pytorch", "gpt2", "arxiv:2306.08620", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-06-04T23:58:03Z
--- license: apache-2.0 --- This is a Small (128M parameter) Transformer trained for 100k steps on arrival-time encoded music from the [Lakh MIDI dataset](https://colinraffel.com/projects/lmd/). # References for the Anticipatory Music Transformer The Anticipatory Music Transformer paper is available on [ArXiv](http://arxiv.org/abs/2306.08620). The full model card is available [here](https://johnthickstun.com/assets/pdf/music-modelcard.pdf). Code for using this model is available on [GitHub](https://github.com/jthickstun/anticipation/). See the accompanying [blog post](https://crfm.stanford.edu/2023/06/16/anticipatory-music-transformer.html) for additional discussion of this model.
stanford-crfm/music-small-100k
stanford-crfm
2023-06-16T21:26:29Z
181
0
transformers
[ "transformers", "pytorch", "gpt2", "arxiv:2306.08620", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-06-04T23:26:52Z
--- license: apache-2.0 --- This is a Small (128M parameter) Transformer trained for 100k steps on arrival-time encoded music from the [Lakh MIDI dataset](https://colinraffel.com/projects/lmd/). This model was trained with anticipation. # References for the Anticipatory Music Transformer The Anticipatory Music Transformer paper is available on [ArXiv](http://arxiv.org/abs/2306.08620). The full model card is available [here](https://johnthickstun.com/assets/pdf/music-modelcard.pdf). Code for using this model is available on [GitHub](https://github.com/jthickstun/anticipation/). See the accompanying [blog post](https://crfm.stanford.edu/2023/06/16/anticipatory-music-transformer.html) for additional discussion of this model.
stanford-crfm/music-medium-800k
stanford-crfm
2023-06-16T21:25:52Z
572
4
transformers
[ "transformers", "pytorch", "gpt2", "arxiv:2306.08620", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-06-05T00:17:20Z
--- license: apache-2.0 --- This is a Medium (360M parameter) Transformer trained for 800k steps on arrival-time encoded music from the [Lakh MIDI dataset](https://colinraffel.com/projects/lmd/). This model was trained with anticipation. # References for the Anticipatory Music Transformer The Anticipatory Music Transformer paper is available on [ArXiv](http://arxiv.org/abs/2306.08620). The full model card is available [here](https://johnthickstun.com/assets/pdf/music-modelcard.pdf). Code for using this model is available on [GitHub](https://github.com/jthickstun/anticipation/). See the accompanying [blog post](https://crfm.stanford.edu/2023/06/16/anticipatory-music-transformer.html) for additional discussion of this model.
jondurbin/airoboros-65b-gpt4-1.2-peft
jondurbin
2023-06-16T21:01:26Z
0
0
null
[ "dataset:jondurbin/airoboros-gpt4-1.2", "license:other", "region:us" ]
null
2023-06-14T09:11:36Z
--- license: other datasets: - jondurbin/airoboros-gpt4-1.2 --- peft weights of https://hugginface.co/jondurbin/airoboros-65b-gpt4-1.2, see that card for details
Schnitzl/detr-resnet-50_finetuned_cppe5
Schnitzl
2023-06-16T20:54:42Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "detr", "object-detection", "generated_from_trainer", "dataset:cppe-5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-06-16T17:17:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cppe-5 model-index: - name: detr-resnet-50_finetuned_cppe5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_finetuned_cppe5 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cppe-5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.13.0 - Tokenizers 0.13.3
crlandsc/bsrnn-bass
crlandsc
2023-06-16T20:24:33Z
0
1
null
[ "audio source separation", "music demixing", "band-split recurrent neural network", "bsrnn", "spectrogram", "bass", "region:us" ]
null
2023-06-16T20:16:53Z
--- tags: - audio source separation - music demixing - band-split recurrent neural network - bsrnn - spectrogram - bass --- # Model Card for bsrnn-bass Bass model for [Music-Demixing-with-Band-Split-RNN](https://github.com/crlandsc/Music-Demixing-with-Band-Split-RNN).
sngsfydy/resnet-50-finetuned-eurosat
sngsfydy
2023-06-16T20:17:05Z
209
0
transformers
[ "transformers", "pytorch", "tensorboard", "resnet", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-16T19:14:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: resnet-50-finetuned-eurosat results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-finetuned-eurosat This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0706 - Accuracy: 0.5152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6069 | 0.99 | 20 | 1.5839 | 0.3879 | | 1.5395 | 1.98 | 40 | 1.4860 | 0.5485 | | 1.4321 | 2.96 | 60 | 1.3500 | 0.5364 | | 1.3292 | 4.0 | 81 | 1.1826 | 0.5212 | | 1.233 | 4.99 | 101 | 1.0706 | 0.5152 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
blevlabs/alpaca-7b
blevlabs
2023-06-16T20:16:19Z
6
0
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2023-06-15T16:01:29Z
Found. Redirecting to https://cdn-lfs.hf.co/repos/d1/e7/d1e74b32fb5b1cbe2ba63f424b0731e786a5ae300beb41ac103060925f9becff/d17913b0f97b6c92903cbf2c6d8ff9e412644769ba8ea848fd4dc4246a38c8d0?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27README.md%3B+filename%3D%22README.md%22%3B&response-content-type=text%2Fmarkdown&Expires=1739044824&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTczOTA0NDgyNH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy5oZi5jby9yZXBvcy9kMS9lNy9kMWU3NGIzMmZiNWIxY2JlMmJhNjNmNDI0YjA3MzFlNzg2YTVhZTMwMGJlYjQxYWMxMDMwNjA5MjVmOWJlY2ZmL2QxNzkxM2IwZjk3YjZjOTI5MDNjYmYyYzZkOGZmOWU0MTI2NDQ3NjliYThlYTg0OGZkNGRjNDI0NmEzOGM4ZDA%7EcmVzcG9uc2UtY29udGVudC1kaXNwb3NpdGlvbj0qJnJlc3BvbnNlLWNvbnRlbnQtdHlwZT0qIn1dfQ__&Signature=sUzC3YAwA35JO1%7EsqsOl3QIpzizB%7EEv%7EXYdYit3C5o8V8Suda2NcVf2R2yyjugIu%7EIl4lNae7CS-CFdgqk7b%7Eo86c3g3cLEPoPSpj-7li1vD14C0df9YB6OzS26xfSPL1mxTVlK3NdDAeGXwlIcfEJHK2xJeMYL9Yw5J0IZgdyffOdyAw2GMaQdoQ2puzRSjGJyykxQ7ESbDV135z-qhCWsn1XiKFlXKM2xrx7K1nZBcEmNKd9nwVWSWoh5XB69c8dOvT91vTel6l15B1aAJzTRYyQfJEv0vI0m7Vuf8kXSHNP1Unl8bNFulxPAIaOmw5QjTnT4yUbnuwJlCImU74A__&Key-Pair-Id=K3RPWS32NSSJCE
FALLENSTAR/CedricGloriaLoRa
FALLENSTAR
2023-06-16T20:10:23Z
0
0
null
[ "region:us" ]
null
2023-06-09T20:58:56Z
### Model Description First of all, it's LoRa. It is based on my favorite Nissan Cedric/Gloria Y31 Hardtop from the years '87-91. It is a test model, so it has defects. I don't remember how many samples and epochs were used in it... But, with some of the checkpoints it turns out very similar and funny. The best images I was able to get with this LoRa were at these settings: Steps: 25 Sampler: DPM++ SDE Karras, CFG scale: 6.5 and with LoRa strength 0.8-1 ### Results ![00056-2998859893.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/Hqc-19MXbw-tOHcytmCgO.png) ![00037-1095574331.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/6d8uCXt5U2KvnqtZdl1d2.png) ![00039-89618184.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/tmzZoZQT6fK4_UPCCA5sk.png) ![00041-562450270.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/tp0QNuodfbsEkgLh8Yhht.png) ![00066-2959432492.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/FO5BR5uRtvAwm7jMCzUTa.png) ![00058-1357569836.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/yC3gSTgtQnnBTg3ibDtXw.png) ![00065-3713693640.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/xRNkGnsBb8kiW15_v7nws.png) ![00013-3313807285.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/1r1CFhjES8GncHPFudrGZ.png) ![00067-1452084223.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/8a86GW52YDweESQKp5fRR.png) ![00004-873995140.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/ZCu2ffZkEGW_DlLWYu6QC.png) ![00084-419571825.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/4PXZdvNBX-kWwMyyZ1bRm.png) ![00021-3472542211.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/_2fwDF2KUlXq7bS-P65Hi.png) ![00048-2623366528.png](https://s3.amazonaws.com/moonup/production/uploads/640761fd2e309e65452364fa/m-XuUdhEXhT7-Vaa_D0pa.png)
GEMCorp/q-FrozenLake-v1-4x4-noSlippery
GEMCorp
2023-06-16T19:51:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-16T19:51:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="GEMCorp/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ChristineCheng/my_awesome_eli5_clm-model
ChristineCheng
2023-06-16T19:49:19Z
61
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-16T19:33:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ChristineCheng/my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ChristineCheng/my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.7347 - Validation Loss: 3.7399 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.9119 | 3.7667 | 0 | | 3.7942 | 3.7493 | 1 | | 3.7347 | 3.7399 | 2 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.0 - Tokenizers 0.13.3
SSSSSSSSSSSJJJJJJJJJJJJJ/my_awesome_eli5_clm-model
SSSSSSSSSSSJJJJJJJJJJJJJ
2023-06-16T19:44:19Z
179
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-16T19:13:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8765 | 1.0 | 1120 | 3.7555 | | 3.7769 | 2.0 | 2240 | 3.7368 | | 3.7331 | 3.0 | 3360 | 3.7341 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3
crlandsc/tiny-audio-diffusion-snares
crlandsc
2023-06-16T19:25:10Z
3
1
null
[ "audio", "diffusion", "waveform diffusion", "audio diffusion", "unet", "region:us" ]
null
2023-06-10T15:20:00Z
--- tags: - audio - diffusion - waveform diffusion - audio diffusion - unet --- # Model Card for tiny-audio-diffusion-snares Snare drum model for tiny-audio-diffusion. Use with [tiny-audio-diffusion](https://github.com/crlandsc/tiny-audio-diffusion) repo to generate snare drum samples.
ananay/kneearch
ananay
2023-06-16T19:17:59Z
22
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-16T19:05:11Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### kneearch Dreambooth model trained by ananay with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
AustinCarthy/OnlyPhishGPT2_subdomain_100KP_BFall_fromB_90K_topP_0.75_ratio5
AustinCarthy
2023-06-16T19:17:42Z
0
0
null
[ "tensorboard", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-06-16T15:49:03Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: OnlyPhishGPT2_subdomain_100KP_BFall_fromB_90K_topP_0.75_ratio5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # OnlyPhishGPT2_subdomain_100KP_BFall_fromB_90K_topP_0.75_ratio5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_OnlyPhishGPT2_using_benigh_200K_top_p_0.75 dataset. It achieves the following results on the evaluation set: - Loss: 0.0192 - Accuracy: 0.9978 - F1: 0.9767 - Precision: 0.9994 - Recall: 0.955 - Roc Auc Score: 0.9775 - Tpr At Fpr 0.01: 0.9632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:| | 0.0057 | 1.0 | 35625 | 0.0113 | 0.9979 | 0.9779 | 0.9954 | 0.961 | 0.9804 | 0.9518 | | 0.0035 | 2.0 | 71250 | 0.0150 | 0.9975 | 0.9726 | 0.9983 | 0.9482 | 0.9741 | 0.95 | | 0.0011 | 3.0 | 106875 | 0.0175 | 0.9975 | 0.9727 | 0.9994 | 0.9474 | 0.9737 | 0.9554 | | 0.0009 | 4.0 | 142500 | 0.0160 | 0.9979 | 0.9778 | 0.9990 | 0.9576 | 0.9788 | 0.9618 | | 0.0 | 5.0 | 178125 | 0.0192 | 0.9978 | 0.9767 | 0.9994 | 0.955 | 0.9775 | 0.9632 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
YoneShiro/SpaceInvadersNoFrameskip-v4
YoneShiro
2023-06-16T19:14:05Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-16T19:13:20Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 708.00 +/- 250.51 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga YoneShiro -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga YoneShiro -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga YoneShiro ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Boristss/modellunarlander
Boristss
2023-06-16T19:13:23Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-16T19:12:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.44 +/- 21.50 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JvThunder/ppo-Pyramids
JvThunder
2023-06-16T18:37:51Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-06-16T18:37:41Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: JvThunder/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
sambanovasystems/starcoder-toolbench
sambanovasystems
2023-06-16T18:23:22Z
23
4
transformers
[ "transformers", "pytorch", "gpt_bigcode", "text-generation", "arxiv:2305.16504", "arxiv:2305.06161", "license:bigcode-openrail-m", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-24T04:41:14Z
--- license: bigcode-openrail-m --- # starcoder-toolbench <!-- Provide a quick summary of what the model is/does. --> starcoder-toolbench is a 15 billion parameter model used for api based action generation. It is instruction tuned from [starcoder](https://huggingface.co/bigcode/starcoder) on api based action generation datasets. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [SambaNova Systems](https://sambanova.ai/) - **Model type:** Language Model - **Language(s):** English - **License:** bigcode-openrail-m - **Finetuned from model:** [starcoder](https://huggingface.co/bigcode/starcoder) ### Basic Information <!-- Provide the basic links for the model. --> - **Paper**: [link](https://arxiv.org/abs/2305.16504) - **Github**: [link](https://github.com/sambanova/toolbench) ## Uses <details> <summary>Click to expand</summary> <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model is intended for commercial and research use. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> starcoder-toolbench should NOT be used for purpose other than API based action generation. </details> --- ## How to Get Started with the Model <details> <summary>Click to expand</summary> ### Loading in model with Huggingface ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/starcoder-toolbench") model = AutoModelForCausalLM.from_pretrained("sambanovasystems/starcoder-toolbench", device_map="auto", torch_dtype="auto") ``` ### Example Prompts To Try in GPU Tutorial Prompt 1: ``` I have the following set of API:\n\n# To set the maximum commute time in minute to your office location, assuming the office location is already defined\nAPI.set_max_commute_time(value: int)\n\n# To set the maximum home size in square feet\nAPI.set_max_square_feet(value: int)\n\n# To set the minimum home price in dollars\nAPI.set_min_price(value: int)\n\n# To set the number of garage(s)\nAPI.set_num_garages(value: int)\n\n# To set home types for search. For home buying, home_types choices are: \"House\", \"Townhouse\", \"Condo\", \"Land\", \"Multi-family\", \"Mobile\", \"Co-op\"; for home renting, home_types choices are: \"House\", \"Townhouse\", \"Condo\", \"Apartment\".\nAPI.select_home_type(home_types: List[str])\n\n# To set the number of balconies\nAPI.set_num_balconies(value: int)\n\n# Submit criterion to get search results. This function should be called after setting all the criterion.\nAPI.search()\n\n# To set the floor number\nAPI.set_floor_number(value: int)\n\n# To set the number of bedroom(s)\nAPI.set_num_beds(value: int)\n\n# To set the number of swimming pool(s)\nAPI.set_num_swimming_pools(value: int)\n\n# To set the maximum home price in dollars\nAPI.set_max_price(value: int)\n\n# To specify whether to search homes for buying or renting. 'value' can be chosen from ['buy', 'rent']. This function must be called after setting the location and before setting any other criteria.\nAPI.set_buy_or_rent(value: str)\n\n# To set the number of bathroom(s)\nAPI.set_num_baths(value: float)\n\n# To set the location for the search area. This function must be called before setting any criteria.\nAPI.set_location(value: string)\n\n# To set the minimum home size in square feet\nAPI.set_min_square_feet(value: int)\n\n-------------\n\nTask: Looking for homes to rent in Santa Clarita with a price range between $110000 and $1753000, a minimum of 1700 square feet, at least 2 balconies, and 3.5 bathrooms.\nAction:\n ``` Prompt 2: ``` I have the following set of API:\n\n# To set the location for hotel search, given a Loc object. This function must be called if booking type is 'hotels' or 'both'.\nAPI.set_hotel_location(Loc)\n\n# To set the number of hotel rooms to book.\nAPI.set_num_rooms(value)\n\n# To set the location for departure, given a Loc object. This function must be called if booking type is 'trip tickets' or 'both'.\nAPI.set_origin(Loc)\n\n# To select the transportation type from ['flight', 'train', 'bus', 'cruise']. This function must be called if booking type is 'trip tickets' or 'both'.\nAPI.select_transportation(transportation_type)\n\n# To set the return date of the trip, given a Date object. If booking type is 'both' and this function is not called explicitly, 'return_date' will be set to 'hotel_checkout_date' implicitly.\nAPI.set_return_date(Date)\n\n# To set the hotel check-in date, given a Date object. This function must be called if booking type is 'hotels' or 'both'.\nAPI.set_checkin_date(Date)\n\n# To define a date.\ndate = Date(month, day, year)\n\n# To set the departure date of the trip, given a Date object. This function must be called if booking type is 'trip tickets'. If booking type is 'both' and this function is not called explicitly, 'departure_date' will be set to 'hotel_checkin_date' implicitly.\nAPI.set_departure_date(Date)\n\n# To set the location for arrival, given a Loc object. This function must be called if booking type is 'trip tickets' or 'both'.\nAPI.set_destination(Loc)\n\n# To define a location of a given city 'City'.\nlocation = Loc('City')\n\n# To set maximum hotel room price.\nAPI.set_max_room_price(value)\n\n# To set minimum ticket price.\nAPI.set_min_ticket_price(value)\n\n# To select the booking type from ['hotels', 'trip tickets', 'both']. This function must be called before setting any criteria.\nAPI.select_booking_type(booking_type)\n\n# To set minimum hotel room price.\nAPI.set_min_room_price(value)\n\n# To set the number of child tickets to purchase.\nAPI.set_num_children(value)\n\n# To set the number of adult tickets to purchase.\nAPI.set_num_adults(value)\n\n# To select the hotel room type from ['King Bed', 'Queen Bed', 'Double', 'Luxury'].\nAPI.select_room_type(room_type)\n\n# To set maximum ticket price.\nAPI.set_max_ticket_price(value)\n\n# Submit criterion to get search results. This function should be called after setting all the criterion.\nAPI.search()\n\n# To set the hotel check-out date, given a Date object. This function must be called if booking type is 'hotels' or 'both'.\nAPI.set_checkout_date(Date)\n\n-------------\n\nTask: Looking to book 2 adult and 4 child tickets from Stockton to Baltimore by cruise, on 2023-07-29.\nAction:\n ``` </details> --- ## Training Details <details> <summary>Click to expand</summary> ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> The training data is curated for the 8 tasks in ToolBench. See Appendix A of the [paper](https://arxiv.org/abs/2305.16504) for task details and Appendix C.1 for the training data curation details. In total, there are 9704 training samples, organized in all-shot format as described in Appendix C.2. Here is the [download link](https://drive.google.com/file/d/1lUatLGnSVhfy1uVIPEQ7qCoLtnCIXi2O/view?usp=sharing) to the training data. ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> We trained starcoder-toolbench on 4 80GB A100 gpu's. We started from [starcoder](https://huggingface.co/bigcode/starcoder) and finetuned it on the dataset mentioned above. ### Hyperparameters - Hardware: A100 GPU - Optimizer: AdamW - Grad accumulation: 1 - Epochs: 8 - Global Batch size: 16 - Batch tokens: 16 * 2048 = 32,768 tokens - Learning Rate: 1e-5 - Learning Rate Scheduler: Fixed LR - Weight decay: 0.1 </details> ## Acknowledgment We would like to express our gratitude to the great work done in [StarCoder: may the source be with you!](https://arxiv.org/abs/2305.06161) ## Cite starcoder-toolbench ``` @misc{xu2023tool, title={On the Tool Manipulation Capability of Open-source Large Language Models}, author={Qiantong Xu and Fenglu Hong and Bo Li and Changran Hu and Zhengyu Chen and Jian Zhang}, year={2023}, eprint={2305.16504}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```