modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-29 06:27:56
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-29 06:27:11
card
stringlengths
11
1.01M
Official-mezzo-fun-18-Viral-videos-Links/18.FULL.VIDEO.Mezzo.fun.Viral.Video.Tutorial.Official
Official-mezzo-fun-18-Viral-videos-Links
2025-06-20T19:58:11Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:51:43Z
[๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://videohere.top/?mezzo-fun) [โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธโฌ‡๏ธโฌ‡๏ธโ€‹](https://videohere.top/?mezzo-fun) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?mezzo-fun)
Official-mezzo-fun-18-Viral-videos-Links/VIDEO.Mezzo.fun.Viral.Video.Tutorial.Official
Official-mezzo-fun-18-Viral-videos-Links
2025-06-20T19:58:06Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:52:41Z
[๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://videohere.top/?mezzo-fun) [โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธโฌ‡๏ธโฌ‡๏ธโ€‹](https://videohere.top/?mezzo-fun) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?mezzo-fun)
jobz-hunting-sajal-malik-19/wATCH.jobz.hunting.sajal.malik.viral.video.original
jobz-hunting-sajal-malik-19
2025-06-20T19:57:47Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:54:44Z
[๐Ÿ”ด โžคโ–บ๐‚๐ฅ๐ข๐ค ๐‡๐ž๐ซ๐ž ๐ญ๐จ๐Ÿ‘‰๐Ÿ‘‰ (๐…๐ฎ๐ฅ๐ฅ ๐ฏ๐ข๐๐ž๐จ ๐‹๐ข๐ง๐ค )](https://videohere.top/?jobz-hunting-sajal-malik) [โ–บโœ… ๐˜พ๐™‡๐™„๐˜พ๐™† ๐™ƒ๐™€๐™๐™€ ==โ–บโ–บ ๐™๐™ช๐™ก๐™ก ๐™‘๐™ž๐™™๐™š๐™คโค๏ธโค๏ธโฌ‡๏ธโฌ‡๏ธโ€‹](https://videohere.top/?jobz-hunting-sajal-malik) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?jobz-hunting-sajal-malik)
BootesVoid/cmc51n42202anbfif6aiqv711_cmc51sgkj02azbfiftzrbvy8q
BootesVoid
2025-06-20T19:56:51Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T19:56:47Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SEXY --- # Cmc51N42202Anbfif6Aiqv711_Cmc51Sgkj02Azbfiftzrbvy8Q <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SEXY` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SEXY", "lora_weights": "https://huggingface.co/BootesVoid/cmc51n42202anbfif6aiqv711_cmc51sgkj02azbfiftzrbvy8q/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmc51n42202anbfif6aiqv711_cmc51sgkj02azbfiftzrbvy8q', weight_name='lora.safetensors') image = pipeline('SEXY').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmc51n42202anbfif6aiqv711_cmc51sgkj02azbfiftzrbvy8q/discussions) to add images that show off what youโ€™ve made with this LoRA.
a2z-jankari-sapna-shah-viral-video-18/FULL.VIDEO.a2z.jankari.Viral.Video.Tutorial.Official
a2z-jankari-sapna-shah-viral-video-18
2025-06-20T19:56:03Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:53:45Z
[๐ŸŒ CLICK HERE ๐ŸŸข==โ–บโ–บ WATCH NOW](https://videohere.top/?V=a2z-jankari-sapna-shah-viral-video) [๐Ÿ”ด CLICK HERE ๐ŸŒ==โ–บโ–บ Download Now)](https://videohere.top/?V=a2z-jankari-sapna-shah-viral-video) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=a2z-jankari-sapna-shah-viral-video)
bruhzair/prototype-0.4x149
bruhzair
2025-06-20T19:48:15Z
2
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-17T02:05:42Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # prototype-0.4x149 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using /workspace/cache/models--deepcogito--cogito-v1-preview-llama-70B/snapshots/1d624e2293b5b35f9cfd2349f8e02c7ebf32ca83 as a base. ### Models Merged The following models were included in the merge: * /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c * /workspace/cache/models--SicariusSicariiStuff--Negative_LLAMA_70B/snapshots/097a11b4600eafe333a2be0309bbdf6be2f197c4 * /workspace/cache/models--TheDrummer--Fallen-Llama-3.3-R1-70B-v1/snapshots/c88ee563196321458e6e46031231143c86394213 * /workspace/cache/models--nbeerbower--Llama-3.1-Nemotron-lorablated-70B/snapshots/713defaa340007a0163832318b7b70d1880770f1 ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /workspace/cache/models--TheDrummer--Fallen-Llama-3.3-R1-70B-v1/snapshots/c88ee563196321458e6e46031231143c86394213 - model: /workspace/cache/models--SicariusSicariiStuff--Negative_LLAMA_70B/snapshots/097a11b4600eafe333a2be0309bbdf6be2f197c4 - model: /workspace/cache/models--tdrussell--Llama-3-70B-Instruct-Storywriter/snapshots/19be2a7c6382a9150e126cf144e2b2964e700d3c - model: /workspace/cache/models--nbeerbower--Llama-3.1-Nemotron-lorablated-70B/snapshots/713defaa340007a0163832318b7b70d1880770f1 base_model: /workspace/cache/models--deepcogito--cogito-v1-preview-llama-70B/snapshots/1d624e2293b5b35f9cfd2349f8e02c7ebf32ca83 merge_method: model_stock tokenizer: source: base int8_mask: true dtype: bfloat16 ```
pakcricketinfo-sapna-shah/wATCH.pakcricketinfo.sapna.shah.viral.video.original
pakcricketinfo-sapna-shah
2025-06-20T19:45:49Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:44:14Z
[๐ŸŒ CLICK HERE ๐ŸŸข==โ–บโ–บ WATCH NOW](https://videohere.top/?V=pakcricketinfo-sapna-shah) [๐Ÿ”ด CLICK HERE ๐ŸŒ==โ–บโ–บ Download Now)](https://videohere.top/?V=pakcricketinfo-sapna-shah) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=pakcricketinfo-sapna-shah)
pakcricketinfo-sapna-shah/Live.Vido.Full.18.pakcricketinfo.sapna.shah
pakcricketinfo-sapna-shah
2025-06-20T19:45:47Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:41:52Z
[๐ŸŒ CLICK HERE ๐ŸŸข==โ–บโ–บ WATCH NOW](https://videohere.top/?V=pakcricketinfo-sapna-shah) [๐Ÿ”ด CLICK HERE ๐ŸŒ==โ–บโ–บ Download Now)](https://videohere.top/?V=pakcricketinfo-sapna-shah) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=pakcricketinfo-sapna-shah)
Fayaz/grpo_legal_extractor_qwen3_4b
Fayaz
2025-06-20T19:44:58Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "unsloth", "trl", "sft", "grpo", "arxiv:2402.03300", "base_model:unsloth/Qwen3-4B-Base", "base_model:finetune:unsloth/Qwen3-4B-Base", "endpoints_compatible", "region:us" ]
null
2025-06-20T19:44:48Z
--- base_model: unsloth/Qwen3-4B-Base library_name: transformers model_name: grpo_legal_extractor_qwen3_4b tags: - generated_from_trainer - unsloth - trl - sft - grpo licence: license --- # Model Card for grpo_legal_extractor_qwen3_4b This model is a fine-tuned version of [unsloth/Qwen3-4B-Base](https://huggingface.co/unsloth/Qwen3-4B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Fayaz/grpo_legal_extractor_qwen3_4b", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
dltest1234567/testmodel
dltest1234567
2025-06-20T19:43:50Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-13T20:46:07Z
--- license: apache-2.0 ---
gabriellarson/Mistral-Small-3.2-24B-Instruct-2506-GGUF
gabriellarson
2025-06-20T19:43:48Z
0
3
vllm
[ "vllm", "gguf", "image-text-to-text", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "base_model:quantized:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "license:apache-2.0", "region:us", "conversational" ]
image-text-to-text
2025-06-20T18:30:14Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm inference: false base_model: - mistralai/Mistral-Small-3.2-24B-Instruct-2506 extra_gated_description: >- If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: image-text-to-text --- GGUF created using chat_template.json, preprocessor_config.json, processor_config.json, special_tokens_map.json, tokenizer.json, tokenizer_config.json from mistralai/Mistral-Small-3.1-24B-Instruct-2503 mmproj from unsloth/Mistral-Small-3.1-24B-Instruct-2503-GGUF # Mistral-Small-3.2-24B-Instruct-2506 Mistral-Small-3.2-24B-Instruct-2506 is a minor update of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503). Small-3.2 improves in the following categories: - **Instruction following**: Small-3.2 is better at following precise instructions - **Repetition errors**: Small-3.2 produces less infinite generations or repetitive answers - **Function calling**: Small-3.2's function calling template is more robust (see [here](https://github.com/mistralai/mistral-common/blob/535b4d0a0fc94674ea17db6cf8dc2079b81cbcfa/src/mistral_common/tokens/tokenizers/instruct.py#L778) and [examples](#function-calling)) In all other categories Small-3.2 should match or slightly improve compared to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503). ## Key Features - same as [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503#key-features) ## Benchmark Results We compare Mistral-Small-3.2-24B to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503). For more comparison against other models of similar size, please check [Mistral-Small-3.1's Benchmarks'](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503#benchmark-results) ### Text #### Instruction Following / Chat / Tone | Model | Wildbench v2 | Arena Hard v2 | IF (Internal; accuracy) | |-------|---------------|---------------|------------------------| | Small 3.1 24B Instruct | 55.6% | 19.56% | 82.75% | | **Small 3.2 24B Instruct** | **65.33%** | **43.1%** | **84.78%** | #### Infinite Generations Small 3.2 reduces infitine generations by 2x on challenging, long and repetitive prompts. | Model | Infinite Generations (Internal; Lower is better) | |-------|-------| | Small 3.1 24B Instruct | 2.11% | | **Small 3.2 24B Instruct** | **1.29%** | #### STEM | Model | MMLU | MMLU Pro (5-shot CoT) | MATH | GPQA Main (5-shot CoT) | GPQA Diamond (5-shot CoT )| MBPP Plus - Pass@5 | HumanEval Plus - Pass@5 | SimpleQA (TotalAcc)| |--------------------------------|-----------|-----------------------|------------------------|------------------------|---------------------------|--------------------|-------------------------|--------------------| | Small 3.1 24B Instruct | 80.62% | 66.76% | 69.30% | 44.42% | 45.96% | 74.63% | 88.99% | 10.43% | | **Small 3.2 24B Instruct** | 80.50% | **69.06%** | 69.42% | 44.22% | 46.13% | **78.33%** | **92.90%** | **12.10%** | ### Vision | Model | MMMU | Mathvista | ChartQA | DocVQA | AI2D | |--------------------------------|------------|-----------|-----------|-----------|-----------| | Small 3.1 24B Instruct | **64.00%** | **68.91%**| 86.24% | 94.08% | 93.72% | | **Small 3.2 24B Instruct** | 62.50% | 67.09% | **87.4%** | 94.86% | 92.91% | ## Usage The model can be used with the following frameworks; - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) **Note 1**: We recommend using a relatively low temperature, such as `temperature=0.15`. **Note 2**: Make sure to add a system prompt to the model to best tailer it for your needs. If you want to use the model as a general assistant, we recommend to use the one provided in the [SYSTEM_PROMPT.txt](https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506/blob/main/SYSTEM_PROMPT.txt) file. ### vLLM (recommended) We recommend using this model with [vLLM](https://github.com/vllm-project/vllm). #### Installation Make sure to install [`vLLM >= 0.9.1`](https://github.com/vllm-project/vllm/releases/tag/v0.9.1): ``` pip install vllm --upgrade ``` Doing so should automatically install [`mistral_common >= 1.6.2`](https://github.com/mistralai/mistral-common/releases/tag/v1.6.2). To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). #### Serve We recommand that you use Mistral-Small-3.2-24B-Instruct-2506 in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Mistral-Small-3.2-24B-Instruct-2506 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --limit_mm_per_prompt 'image=10' --tensor-parallel-size 2 ``` **Note:** Running Mistral-Small-3.2-24B-Instruct-2506 on GPU requires ~55 GB of GPU RAM in bf16 or fp16. 2. To ping the client you can use a simple Python snippet. See the following examples. #### Vision reasoning Take leverage of the vision capabilities of Mistral-Small-3.2-24B-Instruct-2506 to take the best choice given a scenario, go catch them all ! <details> <summary>Python snippet</summary> ```py from datetime import datetime, timedelta from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() today = datetime.today().strftime("%Y-%m-%d") yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d") model_name = repo_id.split("/")[-1] return system_prompt.format(name=model_name, today=today, yesterday=yesterday) model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438" messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.", }, {"type": "image_url", "image_url": {"url": image_url}}, ], }, ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, ) print(response.choices[0].message.content) # In this situation, you are playing a Pokรฉmon game where your Pikachu (Level 42) is facing a wild Pidgey (Level 17). Here are the possible actions you can take and an analysis of each: # 1. **FIGHT**: # - **Pros**: Pikachu is significantly higher level than the wild Pidgey, which suggests that it should be able to defeat Pidgey easily. This could be a good opportunity to gain experience points and possibly items or money. # - **Cons**: There is always a small risk of Pikachu fainting, especially if Pidgey has a powerful move or a status effect that could hinder Pikachu. However, given the large level difference, this risk is minimal. # 2. **BAG**: # - **Pros**: You might have items in your bag that could help in this battle, such as Potions, Pokรฉ Balls, or Berries. Using an item could help you capture the Pidgey or heal your Pikachu if needed. # - **Cons**: Using items might not be necessary given the level difference. It could be more efficient to just fight and defeat the Pidgey quickly. # 3. **POKร‰MON**: # - **Pros**: You might have another Pokรฉmon in your party that is better suited for this battle or that you want to gain experience. Switching Pokรฉmon could also be a strategic move if you want to train a lower-level Pokรฉmon. # - **Cons**: Switching Pokรฉmon might not be necessary since Pikachu is at a significant advantage. It could also waste time and potentially give Pidgey a turn to attack. # 4. **RUN**: # - **Pros**: Running away could save time and conserve your Pokรฉmon's health and resources. If you are in a hurry or do not need the experience or items, running away is a safe option. # - **Cons**: Running away means you miss out on the experience points and potential items or money that you could gain from defeating the Pidgey. It also means you do not get the chance to capture the Pidgey if you wanted to. # ### Recommendation: # Given the significant level advantage, the best action is likely to **FIGHT**. This will allow you to quickly defeat the Pidgey, gain experience points, and potentially earn items or money. If you are concerned about Pikachu's health, you could use an item from your **BAG** to heal it before or during the battle. Running away or switching Pokรฉmon does not seem necessary in this situation. ``` </details> #### Function calling Mistral-Small-3.2-24B-Instruct-2506 is excellent at function / tool calling tasks via vLLM. *E.g.:* <details> <summary>Python snippet - easy</summary> ```py from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") image_url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/europe.png" tools = [ { "type": "function", "function": { "name": "get_current_population", "description": "Get the up-to-date population of a given country.", "parameters": { "type": "object", "properties": { "country": { "type": "string", "description": "The country to find the population of.", }, "unit": { "type": "string", "description": "The unit for the population.", "enum": ["millions", "thousands"], }, }, "required": ["country", "unit"], }, }, }, { "type": "function", "function": { "name": "rewrite", "description": "Rewrite a given text for improved clarity", "parameters": { "type": "object", "properties": { "text": { "type": "string", "description": "The input text to rewrite", } }, }, }, }, ] messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": "Could you please make the below article more concise?\n\nOpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership.", }, { "role": "assistant", "content": "", "tool_calls": [ { "id": "bbc5b7ede", "type": "function", "function": { "name": "rewrite", "arguments": '{"text": "OpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership."}', }, } ], }, { "role": "tool", "content": '{"action":"rewrite","outcome":"OpenAI is a FOR-profit company."}', "tool_call_id": "bbc5b7ede", "name": "rewrite", }, { "role": "assistant", "content": "---\n\nOpenAI is a FOR-profit company.", }, { "role": "user", "content": [ { "type": "text", "text": "Can you tell me what is the biggest country depicted on the map?", }, { "type": "image_url", "image_url": { "url": image_url, }, }, ], } ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, tools=tools, tool_choice="auto", ) assistant_message = response.choices[0].message.content print(assistant_message) # The biggest country depicted on the map is Russia. messages.extend([ {"role": "assistant", "content": assistant_message}, {"role": "user", "content": "What is the population of that country in millions?"}, ]) response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, tools=tools, tool_choice="auto", ) print(response.choices[0].message.tool_calls) # [ChatCompletionMessageToolCall(id='3e92V6Vfo', function=Function(arguments='{"country": "Russia", "unit": "millions"}', name='get_current_population'), type='function')] ``` </details> <details> <summary>Python snippet - complex</summary> ```python import json from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") image_url = "https://math-coaching.com/img/fiche/46/expressions-mathematiques.jpg" def my_calculator(expression: str) -> str: return str(eval(expression)) tools = [ { "type": "function", "function": { "name": "my_calculator", "description": "A calculator that can evaluate a mathematical expression.", "parameters": { "type": "object", "properties": { "expression": { "type": "string", "description": "The mathematical expression to evaluate.", }, }, "required": ["expression"], }, }, }, { "type": "function", "function": { "name": "rewrite", "description": "Rewrite a given text for improved clarity", "parameters": { "type": "object", "properties": { "text": { "type": "string", "description": "The input text to rewrite", } }, }, }, }, ] messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "Can you calculate the results for all the equations displayed in the image? Only compute the ones that involve numbers.", }, { "type": "image_url", "image_url": { "url": image_url, }, }, ], }, ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, tools=tools, tool_choice="auto", ) tool_calls = response.choices[0].message.tool_calls print(tool_calls) # [ChatCompletionMessageToolCall(id='CyQBSAtGh', function=Function(arguments='{"expression": "6 + 2 * 3"}', name='my_calculator'), type='function'), ChatCompletionMessageToolCall(id='KQqRCqvzc', function=Function(arguments='{"expression": "19 - (8 + 2) + 1"}', name='my_calculator'), type='function')] results = [] for tool_call in tool_calls: function_name = tool_call.function.name function_args = tool_call.function.arguments if function_name == "my_calculator": result = my_calculator(**json.loads(function_args)) results.append(result) messages.append({"role": "assistant", "tool_calls": tool_calls}) for tool_call, result in zip(tool_calls, results): messages.append( { "role": "tool", "tool_call_id": tool_call.id, "name": tool_call.function.name, "content": result, } ) response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, ) print(response.choices[0].message.content) # Here are the results for the equations that involve numbers: # 1. \( 6 + 2 \times 3 = 12 \) # 3. \( 19 - (8 + 2) + 1 = 10 \) # For the other equations, you need to substitute the variables with specific values to compute the results. ``` </details> #### Instruction following Mistral-Small-3.2-24B-Instruct-2506 will follow your instructions down to the last letter ! <details> <summary>Python snippet</summary> ```python from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": "Write me a sentence where every word starts with the next letter in the alphabet - start with 'a' and end with 'z'.", }, ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, ) assistant_message = response.choices[0].message.content print(assistant_message) # Here's a sentence where each word starts with the next letter of the alphabet, starting from 'a' and ending with 'z': # "Always brave cats dance elegantly, fluffy giraffes happily ignore jungle kites, lovingly munching nuts, observing playful quails racing swiftly, tiny unicorns vaulting while xylophones yodel zealously." # This sentence follows the sequence from A to Z without skipping any letters. ``` </details> ### Transformers You can also use Mistral-Small-3.2-24B-Instruct-2506 with `Transformers` ! To make the best use of our model with `Transformers` make sure to have [installed](https://github.com/mistralai/mistral-common) `mistral-common >= 1.6.2` to use our tokenizer. ```bash pip install mistral-common --upgrade ``` Then load our tokenizer along with the model and generate: <details> <summary>Python snippet</summary> ```python from datetime import datetime, timedelta import torch from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from huggingface_hub import hf_hub_download from transformers import Mistral3ForConditionalGeneration def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() today = datetime.today().strftime("%Y-%m-%d") yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d") model_name = repo_id.split("/")[-1] return system_prompt.format(name=model_name, today=today, yesterday=yesterday) model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") tokenizer = MistralTokenizer.from_hf_hub(model_id) model = Mistral3ForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16 ) image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438" messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.", }, {"type": "image_url", "image_url": {"url": image_url}}, ], }, ] tokenized = tokenizer.encode_chat_completion(ChatCompletionRequest(messages=messages)) input_ids = torch.tensor([tokenized.tokens]) attention_mask = torch.ones_like(input_ids) pixel_values = torch.tensor(tokenized.images[0], dtype=torch.bfloat16).unsqueeze(0) image_sizes = torch.tensor([pixel_values.shape[-2:]]) output = model.generate( input_ids=input_ids, attention_mask=attention_mask, pixel_values=pixel_values, image_sizes=image_sizes, max_new_tokens=1000, )[0] decoded_output = tokenizer.decode(output[len(tokenized.tokens) :]) print(decoded_output) # In this situation, you are playing a Pokรฉmon game where your Pikachu (Level 42) is facing a wild Pidgey (Level 17). Here are the possible actions you can take and an analysis of each: # 1. **FIGHT**: # - **Pros**: Pikachu is significantly higher level than the wild Pidgey, which suggests that it should be able to defeat Pidgey easily. This could be a good opportunity to gain experience points and possibly items or money. # - **Cons**: There is always a small risk of Pikachu fainting, especially if Pidgey has a powerful move or a status effect that could hinder Pikachu. However, given the large level difference, this risk is minimal. # 2. **BAG**: # - **Pros**: You might have items in your bag that could help in this battle, such as Potions, Pokรฉ Balls, or Berries. Using an item could help you capture Pidgey or heal Pikachu if needed. # - **Cons**: Using items might not be necessary given the level difference. It could be more efficient to just fight and defeat Pidgey quickly. # 3. **POKร‰MON**: # - **Pros**: You might have another Pokรฉmon in your party that is better suited for this battle or that you want to gain experience. Switching Pokรฉmon could also be strategic if you want to train a lower-level Pokรฉmon. # - **Cons**: Switching Pokรฉmon might not be necessary since Pikachu is at a significant advantage. It could also waste time and potentially give Pidgey a turn to attack. # 4. **RUN**: # - **Pros**: Running away could be a quick way to avoid the battle altogether. This might be useful if you are trying to conserve resources or if you are in a hurry to get to another location. # - **Cons**: Running away means you miss out on the experience points, items, or money that you could gain from defeating Pidgey. It also might not be the most efficient use of your time if you are trying to train your Pokรฉmon. # ### Recommendation: # Given the significant level advantage, the best action to take is likely **FIGHT**. This will allow you to quickly defeat Pidgey and gain experience points for Pikachu. If you are concerned about Pikachu's health, you could use the **BAG** to heal Pikachu before or during the battle. Running away or switching Pokรฉmon does not seem necessary in this situation. ``` </details>
stablediffusionapi/realcartoonanime-v2
stablediffusionapi
2025-06-20T19:41:16Z
0
0
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-20T19:38:05Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true pipeline_tag: text-to-image library_name: diffusers widget: - text: a girl wandering through the forest output: url: https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/e3af7aee-37af-4665-af60-dd0800d2c3f8/width=1024/1323129.jpeg --- # RealCartoon-Anime - V2 API Inference <Gallery /> ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "realcartoonanime-v2" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com) Try model for free: [Generate Images](https://modelslab.com/models/realcartoonanime-v2) Model link: [View model](https://modelslab.com/models/realcartoonanime-v2) View all models: [View Models](https://modelslab.com/models) ```python import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "realcartoonanime-v2", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "", "lora": "", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) ``` > Use this coupon code to get 25% off **DMGG0RBN**
88RedPanda88/nsp-bert-final-v2
88RedPanda88
2025-06-20T19:38:53Z
262
0
transformers
[ "transformers", "safetensors", "bert", "next-sentence-prediction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-01T16:35:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
88RedPanda88/nsp-bert-final
88RedPanda88
2025-06-20T19:36:29Z
9
0
transformers
[ "transformers", "safetensors", "bert", "next-sentence-prediction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-01T16:03:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JonLoRA/deynairaLoRAv3
JonLoRA
2025-06-20T19:35:53Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T10:34:22Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: photo of a girl --- # Deynairalorav3 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `photo of a girl` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "photo of a girl", "lora_weights": "https://huggingface.co/JonLoRA/deynairaLoRAv3/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('JonLoRA/deynairaLoRAv3', weight_name='lora.safetensors') image = pipeline('photo of a girl').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 6000 - Learning rate: 0.0002 - LoRA rank: 64 ## Contribute your own examples You can use the [community tab](https://huggingface.co/JonLoRA/deynairaLoRAv3/discussions) to add images that show off what youโ€™ve made with this LoRA.
stablediffusionapi/disneypixarcartoontypeb-v10
stablediffusionapi
2025-06-20T19:28:48Z
0
0
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-20T19:25:37Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true pipeline_tag: text-to-image library_name: diffusers widget: - text: a girl wandering through the forest output: url: https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/af658ebe-1096-4f5f-9d78-55996d287ab4/width=1024/902862.jpeg --- # Disney Pixar Cartoon type B - v1.0 API Inference <Gallery /> ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "disneypixarcartoontypeb-v10" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com) Try model for free: [Generate Images](https://modelslab.com/models/disneypixarcartoontypeb-v10) Model link: [View model](https://modelslab.com/models/disneypixarcartoontypeb-v10) View all models: [View Models](https://modelslab.com/models) ```python import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "disneypixarcartoontypeb-v10", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "", "lora": "", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) ``` > Use this coupon code to get 25% off **DMGG0RBN**
gabriellarson/NatureLM-8x7B-Inst-GGUF
gabriellarson
2025-06-20T19:24:11Z
17
0
null
[ "gguf", "biology", "chemistry", "en", "arxiv:2502.07527", "base_model:microsoft/NatureLM-8x7B-Inst", "base_model:quantized:microsoft/NatureLM-8x7B-Inst", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-06-20T05:03:07Z
--- license: mit language: - en tags: - biology - chemistry base_model: - microsoft/NatureLM-8x7B-Inst --- **these quants are currently not working** # Model details ## Model description Nature Language Model (NatureLM) is a sequence-based science foundation model designed for scientific discovery. Pre-trained with data from multiple scientific domains, NatureLM offers a unified, versatile model that enables various applications including generating and optimizing small molecules, proteins, RNA, and materials using text instructions; cross-domain generation/design such as protein-to-molecule and protein-to-RNA generation; and top performance across different domains. - Developed by: SFM team โˆ— Microsoft Research AI for Science - Model type: Sequence-based science foundation model - Language(s): English - License: MIT License - Finetuned from model: one version of the model is finetuned from Mixtral-8x7B-v0.1 # Model sources ## Repository: We provide two repositories for 8x7B models, including both base versions and instruction-finetuned versions. - https://huggingface.co/microsoft/NatureLM-8x7B - https://huggingface.co/microsoft/NatureLM-8x7B-Inst ## Paper: [[2502.07527] Nature Language Model: Deciphering the Language of Nature for Scientific Discovery](https://arxiv.org/abs/2502.07527) # Uses ## Direct intended uses NatureLM is designed to facilitate scientific discovery across multiple domains, including the generation and optimization of small molecules, proteins, and RNA. It offers two unique features: (1) Text-driven capability โ€” users can prompt NatureLM using natural language instructions; and (2) Cross-domain functionality โ€” NatureLM can perform complex cross-domain tasks, such as generating compounds for specific targets or designing protein binders for small molecules. Downstream uses: Science researchers can finetune NatureLM for their own tasks, especially cross-domain generation tasks. ## Out-of-scope uses ### Use in Real-World Applications Beyond Proof of Concept NatureLM currently not ready to use in clinical applications, without rigorous external validation and additional specialized development. It is being released for research purposes only. ### Use outside of the science domain NatureLM is not a general-purpose language model and is not designed or optimized to perform general tasks like text summarization or Q&A. ### Use by Non-Experts NatureLM outputs scientific entities (e.g., molecules, proteins, materials) and requires expert interpretation, validation, and analysis. It is not intended for use by non-experts or individuals without the necessary domain knowledge to evaluate and verify its outputs. Outputs, such as small molecule inhibitors for target proteins, require rigorous validation to ensure safety and efficacy. Misuse by non-experts may lead to the design of inactive or suboptimal compounds, resulting in wasted resources and potentially delaying critical research or development efforts. ### CBRN Applications (Chemical, Biological, Radiological, and Nuclear) NatureLM is not intended for the design, development, or optimization of agents or materials for harmful purposes, including but not limited to weapons of mass destruction, bioterrorism, or other malicious uses. ### Unethical or Harmful Applications The use of NatureLM must align with ethical research practices. It is not intended for tasks that could cause harm to individuals, communities, or the environment. ## Risks and limitations NatureLM may not always generate compounds or proteins precisely aligned with user instructions. Users are advised to apply their own adaptive filters before proceeding. Users are responsible for verification of model outputs and decision-making. NatureLM was designed and tested using the English language. Performance in other languages may vary and should be assessed by someone who is both an expert in the expected outputs and a native speaker of that language. NatureLM inherits any biases, errors, or omissions characteristic of its training data, which may be amplified by any AI-generated interpretations. For example, inorganic data in our training corpus is relatively limited, comprising only 0.02 billion tokens out of a total of 143 billion tokens. As a result, the model's performance on inorganic-related tasks is constrained. In contrast, protein-related data dominates the corpus, with 65.3 billion tokens, accounting for the majority of the training data. There has not been a systematic effort to ensure that systems using NatureLM are protected from security vulnerabilities such as indirect prompt injection attacks. Any systems using it should take proactive measures to harden their systems as appropriate. # Training details ## Training data The pre-training data includes text, small molecules (SMILES notations), proteins (FASTA format), materials (chemical composition and space group number), DNA (FASTA format), and RNA (FASTA format). The dataset contains single-domain sequences and cross-domain sequences. ## Training procedure Preprocessing The training procedure involves two stages: Stage 1 focuses on training newly introduced tokens while freezing existing model parameters. Stage 2 involves joint optimization of both new and existing parameters to enhance overall performance. ## Training hyperparameters - Learning Rate: 2ร—10<sup>โˆ’4</sup> - Batch Size (Sentences): 8x7B model: 1536 - Context Length (Tokens): 8192 - GPU Number (H100): 8x7B model: 256 ## Speeds, sizes, times Model sized listed above; # Evaluation ## Testing data, factors, and metrics Testing data The testing data includes 22 types of scientific tasks such as molecular generation, protein generation, material generation, RNA generation, and prediction tasks across small molecules, proteins, DNA. ## Factors 1. Cross-Domain Adaptability: The ability of NatureLM to perform tasks that span multiple scientific domains (e.g., protein-to-compound generation, RNA design for CRISPR targets, or material design with specific properties). 2. Accuracy of Outputs: For tasks like retrosynthesis, assess the correctness of the outputs compared to ground truth or experimentally validated data. 3. Diversity and Novelty of Outputs: Evaluate whether the generated outputs are novel (e.g., new molecules or materials not present in databases or training data). 4. Scalability Across Model Sizes: Assess the performance improvements as the model size increases (1B, 8B, and 46.7B parameters). ## Metrics Accuracy, AUROC, and independently trained AI-based predictors are utilized for various tasks. Evaluation results 1. We successfully demonstrated that NatureLM is capable of performing tasks such as target-to-compound, target-to-RNA, and DNA-to-RNA generation. 2. NatureLM achieves state-of-the-art results on retrosynthesis benchmarks and the MatBench benchmark for materials. 3. NatureLM can generate novel proteins, small molecules, and materials. # Summary Nature Language Model (NatureLM) is a groundbreaking sequence-based science foundation model designed to unify multiple scientific domains, including small molecules, materials, proteins, DNA and RNA. This innovative model leverages the "language of nature" to enable scientific discovery through text-based instructions. NatureLM represents a significant advancement in the field of artificial intelligence, providing researchers with a powerful tool to drive innovation and accelerate scientific breakthroughs. By integrating knowledge across multiple scientific domains, NatureLM paves the way for new discoveries and advancements in various fields of science. We hope to release it to benefit more users and contribute to the development of AI for Science research. # Model card contact This work was conducted in Microsoft Research AI for Science. We welcome feedback and collaboration from our audience. If you have suggestions, questions, or observe unexpected/offensive behavior in our technology, please contact us at: - Yingce Xia, [email protected] - Chen Hu, [email protected] - Yawen Yang, [email protected] If the team receives reports of undesired behavior or identifies issues independently, we will update this repository with appropriate mitigations.
Mezzo-fun-Viral-video-Link/wATCH.Mezzo.fun.viral.video.Leaks.Official
Mezzo-fun-Viral-video-Link
2025-06-20T19:22:25Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:21:47Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
AmberYifan/Qwen2.5-7B-Instruct-userfeedback-SFT-SPIN-iter2
AmberYifan
2025-06-20T19:21:28Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "dpo", "conversational", "arxiv:2305.18290", "base_model:AmberYifan/Qwen2.5-7B-Instruct-userfeedback-SFT-SPIN-iter1", "base_model:finetune:AmberYifan/Qwen2.5-7B-Instruct-userfeedback-SFT-SPIN-iter1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T18:50:46Z
--- base_model: AmberYifan/Qwen2.5-7B-Instruct-userfeedback-SFT-SPIN-iter1 library_name: transformers model_name: Qwen2.5-7B-Instruct-userfeedback-SFT-SPIN-iter2 tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for Qwen2.5-7B-Instruct-userfeedback-SFT-SPIN-iter2 This model is a fine-tuned version of [AmberYifan/Qwen2.5-7B-Instruct-userfeedback-SFT-SPIN-iter1](https://huggingface.co/AmberYifan/Qwen2.5-7B-Instruct-userfeedback-SFT-SPIN-iter1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AmberYifan/Qwen2.5-7B-Instruct-userfeedback-SFT-SPIN-iter2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yifanwang/huggingface/runs/yrmpk3mo) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.2 - Transformers: 4.46.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.20.3 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kamal-kaur-mms-viral-video-link/New.clip.18.kamal.kaur.mms.viral.video
kamal-kaur-mms-viral-video-link
2025-06-20T19:19:45Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:19:31Z
<animated-image data-catalyst=""><a href="https://wtach.club/leakvideo/?h" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Zeinab321/Mistral
Zeinab321
2025-06-20T19:17:13Z
17
0
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Mistral-Nemo-Base-2407-bnb-4bit", "base_model:quantized:unsloth/Mistral-Nemo-Base-2407-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-16T21:16:33Z
--- base_model: - unsloth/Mistral-Nemo-Base-2407-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Zeinab321 - **License:** apache-2.0 - **Finetuned from model :** Zeinab321/Mistral This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
BootesVoid/cmc54zdg602mjbfif6u3mk3jn_cmc55ek9i02ntbfif6f4rdj91
BootesVoid
2025-06-20T19:16:17Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T19:16:15Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: LW --- # Cmc54Zdg602Mjbfif6U3Mk3Jn_Cmc55Ek9I02Ntbfif6F4Rdj91 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `LW` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "LW", "lora_weights": "https://huggingface.co/BootesVoid/cmc54zdg602mjbfif6u3mk3jn_cmc55ek9i02ntbfif6f4rdj91/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmc54zdg602mjbfif6u3mk3jn_cmc55ek9i02ntbfif6f4rdj91', weight_name='lora.safetensors') image = pipeline('LW').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmc54zdg602mjbfif6u3mk3jn_cmc55ek9i02ntbfif6f4rdj91/discussions) to add images that show off what youโ€™ve made with this LoRA.
andrewsamce/ppo-LunarLander-v2
andrewsamce
2025-06-20T19:14:32Z
21
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-06T19:01:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.76 +/- 15.19 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3)
moxin-org/Moxin-7B-VLM
moxin-org
2025-06-20T19:13:34Z
59
1
null
[ "arxiv:2412.06845", "license:mit", "region:us" ]
null
2025-06-09T23:40:00Z
--- license: mit --- <h1 align="center"> Moxin 7B VLM </h1> <p align="center"> <a href="https://github.com/moxin-org/Moxin-VLM">Home Page</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://arxiv.org/abs/2412.06845">Technical Report</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://huggingface.co/moxin-org/Moxin-7B-LLM">Base Model</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://huggingface.co/moxin-org/Moxin-7B-Chat">Chat Model</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://huggingface.co/moxin-org/Moxin-7B-Instruct">Instruct Model</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://huggingface.co/moxin-org/Moxin-7B-Reasoning">Reasoning Model</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://huggingface.co/moxin-org/Moxin-7B-VLM">VLM Model</a> </p> --- ## Installation ```bash git clone https://github.com/moxin-org/Moxin-VLM.git cd Moxin-VLM conda create -n moxin-vlm python=3.10 -y conda activate moxin-vlm pip install torch==2.4.1 torchvision==0.19.1 pip install transformers==4.46.0 peft==0.15.2 pip install -e . # Install Flash Attention 2 # =>> If you run into difficulty, try `pip cache remove flash_attn` first pip install flash-attn==2.6.3 --no-build-isolation ``` ## Pretrained Models Please find our Pretrained Models on our huggingface page: [moxin-org/Moxin-7B-VLM](https://huggingface.co/moxin-org/Moxin-7B-VLM). We've also provided a hf_convert version [Moxin-7B-VLM-hf](https://huggingface.co/bobchenyx/Moxin-7B-VLM-hf) based on [openvla](https://github.com/openvla/openvla). Please refer to the attached scripts for downloading and running our model locally. ```bash python scripts/snapshot_download.py ``` ## Usage For a complete terminal-based CLI for interacting with our VLMs. ```bash python scripts/generate.py --model_path moxin-org/Moxin-7B-VLM ``` For a faster loading, inference and demo. ```bash python scripts/fast_inference.py ``` --- ## Acknowledgments This project is based on [Prismatic VLMs](https://github.com/TRI-ML/prismatic-vlms) by [TRI-ML](https://github.com/TRI-ML). Special thanks to the original contributors for their excellent work. ## Citation If you find our code or models useful in your work, please cite [our paper](https://arxiv.org/abs/2412.06845v5): ```bibtex @article{zhao2024fully, title={Fully Open Source Moxin-7B Technical Report}, author={Zhao, Pu and Shen, Xuan and Kong, Zhenglun and Shen, Yixin and Chang, Sung-En and Rupprecht, Timothy and Lu, Lei and Nan, Enfu and Yang, Changdi and He, Yumei and others}, journal={arXiv preprint arXiv:2412.06845}, year={2024} }
wandb/WeaveFluencyScorerV1
wandb
2025-06-20T19:12:42Z
0
0
transformers
[ "transformers", "safetensors", "modernbert", "text-classification", "generated_from_trainer", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T19:12:27Z
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - f1 - accuracy - precision - recall model-index: - name: fluency-scorer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fluency-scorer This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3830 - F1: 0.8183 - Accuracy: 0.8212 - Precision: 0.8171 - Recall: 0.8212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:| | No log | 0 | 0 | 0.7214 | 0.5368 | 0.5168 | 0.6201 | 0.5168 | | 0.5801 | 1.0 | 6158 | 0.4019 | 0.8069 | 0.8092 | 0.8056 | 0.8092 | | 0.4354 | 2.0 | 12316 | 0.3835 | 0.8176 | 0.8212 | 0.8165 | 0.8212 | | 0.4089 | 3.0 | 18474 | 0.3830 | 0.8183 | 0.8212 | 0.8171 | 0.8212 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.21.0
wandb/WeaveContextRelevanceScorerV1
wandb
2025-06-20T19:11:53Z
0
0
transformers
[ "transformers", "safetensors", "deberta-v2", "token-classification", "generated_from_trainer", "base_model:tasksource/deberta-base-long-nli", "base_model:finetune:tasksource/deberta-base-long-nli", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-06-20T19:11:36Z
--- library_name: transformers license: apache-2.0 base_model: tasksource/deberta-base-long-nli tags: - generated_from_trainer model-index: - name: deberta-base-long-nli-relevance-token-clf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-long-nli-relevance-token-clf This model is a fine-tuned version of [tasksource/deberta-base-long-nli](https://huggingface.co/tasksource/deberta-base-long-nli) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 32 - seed: 2024 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 384 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:---:|:--------:|:---------:|:------:| | No log | 0 | 0 | 0.2041 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0
zahraase1im/distilbert-rotten-tomatoes
zahraase1im
2025-06-20T19:09:09Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T19:04:05Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-rotten-tomatoes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-rotten-tomatoes This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
buidgduy/model_qwen2_1.5B_full_1
buidgduy
2025-06-20T19:08:09Z
0
0
transformers
[ "transformers", "text-generation-inference", "unsloth", "qwen2", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-20T19:07:39Z
--- base_model: unsloth/Qwen2-1.5b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** buidgduy - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2-1.5b-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
gutimazue/beto-prostata-bs16
gutimazue
2025-06-20T19:06:58Z
0
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-06-20T19:06:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Anuj5504/youtube-sentiment-v2
Anuj5504
2025-06-20T19:06:11Z
0
0
null
[ "safetensors", "distilbert", "emotion", "youtube", "text-classification", "region:us" ]
text-classification
2025-06-20T19:00:26Z
--- pipeline_tag: text-classification tags: - distilbert - emotion - youtube - safetensors --- # YouTube Sentiment Classifier This is a fine-tuned DistilBERT model for emotion classification of YouTube comments...
New-videos-Jaipur-Couple-18-Viral-video/FULL.VIDEO.Jaipur.Couple.Viral.Video.Tutorial.Official
New-videos-Jaipur-Couple-18-Viral-video
2025-06-20T19:06:07Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:05:15Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Ankz123/my-lora-model
Ankz123
2025-06-20T19:03:33Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-20T19:03:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AGofficial/AgGPT-8.9
AGofficial
2025-06-20T19:03:25Z
0
1
null
[ "en", "license:mit", "region:us" ]
null
2025-06-20T19:00:00Z
--- license: mit language: - en --- # AgGPT-8.9 Utilizing the TinyBrain-2 model, we have developed JavaScript and Python implementations of a highly efficient language model that closely mirrors the capabilities of AgGPT-9, while maintaining a significantly reduced size.
ArunP3799/qwen3b_baseline_math_step_8
ArunP3799
2025-06-20T19:01:41Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T18:59:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
magnifi/parser_user_v45a_epoch_6_lr_0.0018
magnifi
2025-06-20T19:00:43Z
0
0
null
[ "safetensors", "mistral", "license:apache-2.0", "region:us" ]
null
2025-06-20T18:54:27Z
--- license: apache-2.0 ---
mradermacher/Deep-Think-32B-GGUF
mradermacher
2025-06-20T18:55:28Z
2
0
transformers
[ "transformers", "gguf", "en", "zh", "base_model:cloudyu/Deep-Think-32B", "base_model:quantized:cloudyu/Deep-Think-32B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-20T07:56:11Z
--- base_model: cloudyu/Deep-Think-32B language: - en - zh library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/cloudyu/Deep-Think-32B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Deep-Think-32B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Ejja87/Model1
Ejja87
2025-06-20T18:54:13Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-20T18:54:13Z
--- license: apache-2.0 ---
pj-mathematician/JobSkillBGE-large-en-v1.5-v2
pj-mathematician
2025-06-20T18:51:24Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:114699", "loss:CachedGISTEmbedLoss", "arxiv:1908.10084", "base_model:BAAI/bge-large-en-v1.5", "base_model:finetune:BAAI/bge-large-en-v1.5", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T18:48:54Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:114699 - loss:CachedGISTEmbedLoss base_model: BAAI/bge-large-en-v1.5 widget: - source_sentence: 'Bus drivers, including those operating in various sectors like public transit, intercity, private, or school services, need strong driving skills, knowledge of traffic laws, and the ability to operate safely in diverse conditions. Additionally, effective communication skills and the ability to handle passenger inquiries and emergencies are crucial. [''bus driver'', ''intercity bus driver'', ''private bus operator'', ''transit bus driver'', ''public service vehicle operator'', ''passenger driver'', ''international bus driver'', ''public bus operator'', ''touristic bus driver'', ''coach driver'', ''private coach driver'', ''public bus driver'', ''bus operator'', ''driver of bus'', ''bus driving operator'', ''schoolbus driver'']' sentences: - 'The skill of determining shreds sizes percentage in cigarettes is primarily required by tobacco processing technicians and quality control specialists in the cigarette manufacturing industry, who ensure that the tobacco shreds meet specific size and quality standards for consistent product performance. [''determine shreds sizes percentage in cigarettes'', ''determine shreds sizes percentage in cigarettes'', ''determine the shreds sizes percentage of cigarettes'', ''determine shreds size percentages in cigarettes'', ''agree shreds sizes percentage in cigarettes'', ''determine the shreds sizes percentage in cigarettes'', ''confirm shreds sizes percentage in cigarettes'', ''sort shreds sizes percentage in cigarettes'']' - 'Job roles such as curriculum developers, educational consultants, and instructional designers require skills like analyzing, evaluating, and scrutinizing curriculums to improve educational outcomes. For legislative programmes, roles including policy analysts, legislative aides, and compliance officers use skills to test, evaluate, and scrutinize legislative processes to ensure effective and efficient policy implementation. [''analyse curriculum'', ''test legislative programmes'', ''evaluate legislative programmes'', ''evaluate curriculum'', ''test curriculum'', ''investigate curriculum'', ''scrutinise curriculum'', ''analyze curriculum'', ''scrutinise legislative processes'', ''investigate legislative programmes'']' - 'Job roles such as customer service representatives, flight attendants, and hotel concierges require a strong focus on passengers or customers, ensuring their needs and comfort are prioritized to provide excellent service and support. [''focus on passengers'', ''prioritise passengers'', ''ensure passenger prioritisation'', ''make passengers a priority'', ''maintain a focus on passengers'', ''ensure passengers are the priority focus'', ''ensure passengers are prioritised'', ''attend to passengers'', ''ensure a focus on passengers'']' - source_sentence: 'A medical laboratory assistant, or any of its synonyms such as a biomedical laboratory assistant, requires strong attention to detail, proficiency in using laboratory equipment, and a foundational understanding of medical science. Additionally, skills in sample handling, data recording, and basic research methodologies are crucial for roles like a clinical research assistant or an assistant in medical laboratory. [''medical laboratory assistant'', ''medical laboratory research assistant'', ''biomedical laboratory assistant'', ''clinical research assistant'', ''assistant in medical laboratory'', ''biomedical laboratory research assistant'', ''assistant clinical researcher'', ''medical lab assistant'', ''assistant in biomedical laboratory'']' sentences: - 'Job roles such as automotive mechanics, fleet managers, and vehicle technicians require skills to ensure vehicle operability and regular maintenance, which involves diagnosing and repairing issues to keep vehicles roadworthy and operational. [''ensure vehicle operability'', ''keep vehicle roadworthy'', ''keep vehicle operational'', ''ensure operability of the vehicle'', ''ensure vehicle remains operational'', ''ensure maintenance of vehicle'', ''ensure regular vehicle maintenance'', ''ensure operation of the vehicle'', ''ensure operability'']' - 'The skill of classroom management is primarily required by teachers and educators at all levels, from kindergarten to higher education, to ensure a productive, safe, and organized learning environment. It involves maintaining discipline, organizing space and materials, and facilitating effective instruction, roles that are crucial for teaching assistants and substitute teachers as well. [''perform classroom management'', ''performing classroom management'', ''conduct classroom management'', ''practice classroom management'', ''carry out classroom management'', ''implement classroom management'', ''performs classroom management'']' - 'Job roles requiring expertise in stem cells, including embryonic and adult stem cells, typically include stem cell researchers, regenerative medicine scientists, and biomedical engineers who focus on the development and application of stem cell technologies for therapeutic purposes. Additionally, clinical researchers and medical practitioners in specialized fields such as oncology and hematology may utilize knowledge of stem cells for treatment and research purposes. [''stem cells'', ''undifferentiated biological cells'', ''embryonic stem cells'', ''development of stem cells'', ''stem cell'', ''adult stem cells'', ''stem cells'']' - source_sentence: 'For roles such as ''physiotherapist'', ''neuromusculoskeletal physiotherapist'', ''osteopath'', and ''chiropractor'', the skills needed include a deep understanding of human anatomy and physiology, strong diagnostic skills, and the ability to apply manual therapy techniques to treat musculoskeletal issues. Additionally, effective communication skills are crucial for explaining treatments and exercises to patients, while adaptability and problem-solving skills are essential for tailoring treatments to individual patient needs. [''physiotherapist'', ''neuromusculoskeletal physiotherapist'', ''osteopath'', ''eurythmy therapist'', ''respiratory therapist'', ''remedial physiotherapist'', ''physiotherapist manager'', ''occupational therapist'', ''neurological physiotherapist'', ''occupational physiotherapist'', ''bobath physiotherapist'', ''neuromuscular physiotherapist'', ''manipulative physiotherapist'', ''hydrotherapist'', ''rehabilitation therapist'', ''masseuse'', ''health promotion worker'', ''cardiovascular physiotherapist'', ''respiratory physiotherapist'', ''chiropractor'', ''sports physiotherapist'', ''chiropractic therapist'', ''neurodevelopmental physiotherapist'', ''physical therapist'', ''health and well-being therapist'', ''business physiotherapist'']' sentences: - 'Job roles that require skills in dealing with emergency care situations include emergency medical technicians (EMTs), paramedics, and emergency room nurses or doctors, all of whom must quickly and effectively manage critical health situations to save lives. [''deal with emergency care situations'', ''deal with emergency care situation'', ''handle emergency care situation'', ''apply knowledge in emergency care situations'', ''handle emergency care situations'']' - 'Job roles such as fashion designers, stylist coordinators, and jewelry designers require the skill to distinguish and evaluate accessories, their differences, and applications, to ensure the right aesthetic and functional fit for their designs or clients. This skill is crucial for creating cohesive looks and enhancing the overall visual appeal in fashion and design industries. [''distinguish accessories'', ''evaluate accessories and their differences'', ''evaluate accessories and their application'', ''differentiate accessories'', ''distinguish accessories and their application'', ''distinguish differences in accessories'']' - 'Job roles that require expertise in curriculum objectives include educational consultants, curriculum developers, and instructional designers, who are tasked with creating and refining educational content and learning goals to meet specific educational standards and student needs. Teachers and headteachers also utilize these skills to align their teaching methods and materials with the set educational targets and aims. [''curriculum objectives'', ''curriculum objective'', ''curriculum goals'', ''curriculum targets'', ''curriculum aims'', ''curricula objectives'']' - source_sentence: 'A mine surveyor, also known as a mining surveyor or mine planning surveyor, requires expertise in geomatics and mining engineering to accurately map and plan mine operations, ensuring safety and efficiency. They must also possess strong analytical skills and the ability to use specialized software for creating detailed mine plans and maintaining accurate records. [''mine surveyor'', ''mining surveyor'', ''mine operations surveyor'', ''mine plan maker'', ''mine records keeper'', ''mine surveyors'', ''planner of mining operations'', ''mine planning surveyor'']' sentences: - 'Job roles such as data analysts, business analysts, and financial analysts require the skill to present reports or prepare statistical reports, as they often need to communicate complex data insights clearly and effectively to stakeholders. [''present reports'', ''present a report'', ''submit presentation'', ''prepare statistical reports'']' - 'Job roles such as Food Safety Manager, Quality Assurance Specialist, and Public Health Inspector require the skill of developing food safety programs to ensure compliance with regulations and maintain high standards of food safety in various settings including manufacturing, retail, and public health sectors. [''develop food safety programmes'', ''creating food safety programmes'', ''develop programmes for food safety'', ''food safety programmes creating'', ''food safety programmes developing'', ''develop food safety programs'', ''food safety programme developing'', ''food safety programme creating'', ''create food safety programmes'', ''create programmes for food safety'', ''developing food safety programmes'']' - 'The skill of using a sander, whether it be a handheld, manual, automatic, or drywall sander, is primarily required by construction workers, carpenters, and drywall installers for tasks such as roughening and smoothing wall surfaces to prepare them for painting or finishing. [''use sander'', ''use handheld sander'', ''roughening of wall surfaces'', ''use drywall sander'', ''sanding of wall surfaces'', ''using sander'', ''sander usage'', ''use manual sander'', ''drywall sanding'', ''use automatic sander'']' - source_sentence: 'An insulation supervisor, regardless of the specific type of insulation material or installation area, requires strong project management skills, knowledge of building codes and safety regulations, and expertise in insulation techniques to oversee the installation process effectively and ensure quality standards are met. [''insulation supervisor'', ''supervisor of installation of insulating materials'', ''supervisor of insulation materials installation'', ''supervisor of installation of insulation'', ''solid wall insulation installation supervisor'', ''insulation installers supervisor'', ''cavity wall insulation installation supervisor'', ''loft insulation installation supervisor'']' sentences: - 'Job roles such as Food Safety Inspector, Public Health Officer, and Environmental Health Specialist require the skill of taking action on food safety violations to ensure compliance with health regulations and maintain public safety standards. [''take action on food safety violations'', ''invoke action on food safety violations'', ''agree action on food safety violations'', ''pursue action on food safety violations'', ''determine action on food safety violations'']' - 'Job roles that require skills in operating and supervising textile printing machines include Textile Printer Operators, Printing Machine Technicians, and Textile Production Specialists. These roles involve setting up, running, and maintaining printing machinery to ensure high-quality textile printing. [''tend textile printing machines'', ''activate and supervise printing machines for textile material'', ''activate and supervise textile printing machines'', ''tend printing machines for textile'', ''tend printing machines for textile material'', ''care for textile printing machines'', ''operate printing machines for textile material'', ''operate textile printing machines'']' - 'The skill of installing insulation material is primarily required by job roles such as insulation workers, HVAC technicians, and construction specialists, who are responsible for improving energy efficiency and thermal comfort in buildings by correctly fitting and fixing insulation materials in various structures. [''install insulation material'', ''insulate structure'', ''fix insulation'', ''insulation material installation'', ''installation of insulation material'', ''fitting insulation'', ''insulating structure'', ''installing insulation material'', ''fixing insulation'', ''fit insulation'']' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer based on BAAI/bge-large-en-v1.5 results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.7203947368421053 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.7203947368421053 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.4916118421052631 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3869736842105263 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.3046052631578947 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.2575 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.2250328947368421 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.010176836251443517 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.13155034702974863 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.2509109642167453 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.38660292276765434 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.48222911118709905 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.555593320773802 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.7203947368421053 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5307474055663989 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.44447520594610196 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.434845358559754 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.47821684318798985 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5217544441967603 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.7203947368421053 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8361781096010973 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8361781096010973 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8361781096010973 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8361781096010973 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8361781096010973 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.7203947368421053 name: Cosine Map@1 - type: cosine_map@20 value: 0.3349546102812917 name: Cosine Map@20 - type: cosine_map@50 value: 0.2333868330865278 name: Cosine Map@50 - type: cosine_map@100 value: 0.20565538628439212 name: Cosine Map@100 - type: cosine_map@150 value: 0.2210663674628728 name: Cosine Map@150 - type: cosine_map@200 value: 0.2387037675984284 name: Cosine Map@200 - type: cosine_map@500 value: 0.28801647424274696 name: Cosine Map@500 --- # Job-Skill matching fintuned BAAI/bge-large-en-v1.5 (v2) Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task B. Use it for job title <-> skill set matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("pj-mathematician/JobSkillBGE-large-en-v1.5-v2") # Run inference sentences = [ "An insulation supervisor, regardless of the specific type of insulation material or installation area, requires strong project management skills, knowledge of building codes and safety regulations, and expertise in insulation techniques to oversee the installation process effectively and ensure quality standards are met.\n['insulation supervisor', 'supervisor of installation of insulating materials', 'supervisor of insulation materials installation', 'supervisor of installation of insulation', 'solid wall insulation installation supervisor', 'insulation installers supervisor', 'cavity wall insulation installation supervisor', 'loft insulation installation supervisor']", "The skill of installing insulation material is primarily required by job roles such as insulation workers, HVAC technicians, and construction specialists, who are responsible for improving energy efficiency and thermal comfort in buildings by correctly fitting and fixing insulation materials in various structures.\n['install insulation material', 'insulate structure', 'fix insulation', 'insulation material installation', 'installation of insulation material', 'fitting insulation', 'insulating structure', 'installing insulation material', 'fixing insulation', 'fit insulation']", "Job roles such as Food Safety Inspector, Public Health Officer, and Environmental Health Specialist require the skill of taking action on food safety violations to ensure compliance with health regulations and maintain public safety standards.\n['take action on food safety violations', 'invoke action on food safety violations', 'agree action on food safety violations', 'pursue action on food safety violations', 'determine action on food safety violations']", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Dataset: `full_en` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:---------------------|:-----------| | cosine_accuracy@1 | 0.7204 | | cosine_accuracy@20 | 1.0 | | cosine_accuracy@50 | 1.0 | | cosine_accuracy@100 | 1.0 | | cosine_accuracy@150 | 1.0 | | cosine_accuracy@200 | 1.0 | | cosine_precision@1 | 0.7204 | | cosine_precision@20 | 0.4916 | | cosine_precision@50 | 0.387 | | cosine_precision@100 | 0.3046 | | cosine_precision@150 | 0.2575 | | cosine_precision@200 | 0.225 | | cosine_recall@1 | 0.0102 | | cosine_recall@20 | 0.1316 | | cosine_recall@50 | 0.2509 | | cosine_recall@100 | 0.3866 | | cosine_recall@150 | 0.4822 | | cosine_recall@200 | 0.5556 | | cosine_ndcg@1 | 0.7204 | | cosine_ndcg@20 | 0.5307 | | cosine_ndcg@50 | 0.4445 | | cosine_ndcg@100 | 0.4348 | | cosine_ndcg@150 | 0.4782 | | **cosine_ndcg@200** | **0.5218** | | cosine_mrr@1 | 0.7204 | | cosine_mrr@20 | 0.8362 | | cosine_mrr@50 | 0.8362 | | cosine_mrr@100 | 0.8362 | | cosine_mrr@150 | 0.8362 | | cosine_mrr@200 | 0.8362 | | cosine_map@1 | 0.7204 | | cosine_map@20 | 0.335 | | cosine_map@50 | 0.2334 | | cosine_map@100 | 0.2057 | | cosine_map@150 | 0.2211 | | cosine_map@200 | 0.2387 | | cosine_map@500 | 0.288 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 114,699 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 78 tokens</li><li>mean: 144.94 tokens</li><li>max: 354 tokens</li></ul> | <ul><li>min: 51 tokens</li><li>mean: 114.13 tokens</li><li>max: 274 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.<br>['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']</code> | <code>Job roles that require promoting health and safety include occupational health and safety specialists, safety managers, and public health educators, all of whom work to ensure safe and healthy environments in workplaces and communities.<br>['promote health and safety', 'promote importance of health and safety', 'promoting health and safety', 'advertise health and safety']</code> | | <code>A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.<br>['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']</code> | <code>Job roles that require organizing rehearsals include directors, choreographers, and conductors in theater, dance, and music ensembles, who must efficiently plan and schedule practice sessions to prepare performers for a successful final performance.<br>['organise rehearsals', 'organise rehearsal', 'organize rehearsals', 'plan rehearsals', 'arrange rehearsals', 'organising rehearsals', 'schedule rehearsals']</code> | | <code>A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation.<br>['technical director', 'technical and operations director', 'head of technical', 'director of technical arts', 'head of technical department', 'technical supervisor', 'technical manager']</code> | <code>Job roles such as Health and Safety Managers, Environmental Health Officers, and Risk Management Specialists often require the skill of negotiating health and safety issues with third parties to ensure compliance and protection standards are met across different organizations and sites.<br>['negotiate health and safety issues with third parties', 'agree with third parties on health and safety', 'negotiate issues on health and safety with third parties', 'negotiate with third parties on health and safety issues', 'negotiate health and safety matters with third parties']</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'mini_batch_size': 32, 'margin_strategy': 'absolute', 'margin': 0.0} ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:| | -1 | -1 | - | 0.4795 | | 0.0022 | 1 | 10.6462 | - | | 0.2232 | 100 | 4.5115 | - | | 0.4464 | 200 | 2.9237 | 0.5255 | | 0.6696 | 300 | 2.5327 | - | | 0.8929 | 400 | 2.3451 | 0.5305 | | 1.1161 | 500 | 1.9882 | - | | 1.3393 | 600 | 1.7738 | 0.5240 | | 1.5625 | 700 | 1.7365 | - | | 1.7857 | 800 | 1.6932 | 0.5251 | | 2.0089 | 900 | 1.6184 | - | | 2.2321 | 1000 | 1.285 | 0.5254 | | 2.4554 | 1100 | 1.2651 | - | | 2.6786 | 1200 | 1.2739 | 0.5238 | | 2.9018 | 1300 | 1.2625 | - | | 3.125 | 1400 | 1.0726 | 0.5251 | | 3.3482 | 1500 | 0.9606 | - | | 3.5714 | 1600 | 0.9594 | 0.5214 | | 3.7946 | 1700 | 0.954 | - | | 4.0179 | 1800 | 0.9264 | 0.5239 | | 4.2411 | 1900 | 0.7486 | - | | 4.4643 | 2000 | 0.7424 | 0.5218 | | 4.6875 | 2100 | 0.7127 | - | | 4.9107 | 2200 | 0.7129 | 0.5218 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
LazarM05/Llama_Philosopher-Merged
LazarM05
2025-06-20T18:50:45Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T18:46:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BootesVoid/cmbq0a5fr00smh4x50oaoaxxi_cmc53r5tu02iibfif28r3c9ib
BootesVoid
2025-06-20T18:44:54Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T18:44:52Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MIASTARR --- # Cmbq0A5Fr00Smh4X50Oaoaxxi_Cmc53R5Tu02Iibfif28R3C9Ib <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MIASTARR` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "MIASTARR", "lora_weights": "https://huggingface.co/BootesVoid/cmbq0a5fr00smh4x50oaoaxxi_cmc53r5tu02iibfif28r3c9ib/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmbq0a5fr00smh4x50oaoaxxi_cmc53r5tu02iibfif28r3c9ib', weight_name='lora.safetensors') image = pipeline('MIASTARR').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmbq0a5fr00smh4x50oaoaxxi_cmc53r5tu02iibfif28r3c9ib/discussions) to add images that show off what youโ€™ve made with this LoRA.
Anuj5504/youtube-sentiment
Anuj5504
2025-06-20T18:41:59Z
12
1
null
[ "safetensors", "distilbert", "region:us" ]
null
2025-06-18T12:31:34Z
# My Fine-Tuned Model This model is fine-tuned for emotion classification with labels: joy, fear, anger, etc. ## Usage ```python from transformers import pipeline clf = pipeline("text-classification", model="your-username/your-model-name") clf("I'm so happy today!")
MacrossRamen/expression
MacrossRamen
2025-06-20T18:38:51Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-06-20T18:33:21Z
--- license: mit --- Not mine. Stored here to ease of use at Replicate. Owner: https://civitai.com/models/914282/expression-helper-20?modelVersionId=1023284
science-of-finetuning/gemma3_1B-kansas_abortion-L19-k100-lr1e-03-x32-local-shuffling-Crosscoder
science-of-finetuning
2025-06-20T18:38:42Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-20T18:38:24Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
pj-mathematician/JobGTE-multilingual-base-v2
pj-mathematician
2025-06-20T18:29:27Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:124788", "loss:GISTEmbedLoss", "arxiv:1908.10084", "arxiv:2402.16829", "base_model:Alibaba-NLP/gte-multilingual-base", "base_model:finetune:Alibaba-NLP/gte-multilingual-base", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T18:26:40Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:GISTEmbedLoss base_model: Alibaba-NLP/gte-multilingual-base widget: - source_sentence: ๅ…ถไป–ๆœบๆขฐใ€่ฎพๅค‡ๅ’Œๆœ‰ๅฝข่ดง็‰ฉ็งŸ่ตๆœๅŠกไปฃ่กจ sentences: - ๅ…ถไป–ๆœบๆขฐๅ’Œ่ฎพๅค‡็งŸ่ตๆœๅŠกๅทฅไฝœไบบๅ‘˜ - ็”ตๅญๅ’Œ็”ตไฟก่ฎพๅค‡ๅŠ้›ถ้ƒจไปถ็‰ฉๆต็ป็† - ๅทฅไธšไธปๅŽจ - source_sentence: ๅ…ฌไบค่ฝฆๅธๆœบ sentences: - ่กจๆผ”็ฏๅ…‰่ฎพ่ฎกๅธˆ - ไน™็ƒฏๅŸบๅœฐๆฟๅฎ‰่ฃ…ๅทฅ - ๅ›ฝ้™…ๅทดๅฃซๅธๆœบ - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbรผrgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6666666666666666 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9904761904761905 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6666666666666666 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5147619047619048 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.31999999999999995 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.19047619047619047 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1361904761904762 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.10542857142857143 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06854687410617222 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5491240579458434 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7553654907661455 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8503209224897438 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8994749092946579 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9207884118691805 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6666666666666666 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6952098522285352 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7229572913271685 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7732532874348539 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7947334799125039 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.8038564389556094 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6666666666666666 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8182539682539683 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8182539682539683 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8182539682539683 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8182539682539683 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8182539682539683 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6666666666666666 name: Cosine Map@1 - type: cosine_map@20 value: 0.5566401101002375 name: Cosine Map@20 - type: cosine_map@50 value: 0.55344017265156 name: Cosine Map@50 - type: cosine_map@100 value: 0.5852249415484134 name: Cosine Map@100 - type: cosine_map@150 value: 0.5943042662925763 name: Cosine Map@150 - type: cosine_map@200 value: 0.5975837437975446 name: Cosine Map@200 - type: cosine_map@500 value: 0.6015742986218369 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.12432432432432433 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.12432432432432433 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.575945945945946 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3923243243243244 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.2565945945945946 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.19282882882882882 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1527837837837838 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0036138931714884822 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3852888120551914 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5659574514538841 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6898678629281393 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.7540209165372845 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7858170054407897 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.12432432432432433 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6168674053047035 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5913690595071309 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.62350509928888 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6556716735369459 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6716557949894583 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.12432432432432433 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5581081081081081 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5581081081081081 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5581081081081081 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5581081081081081 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5581081081081081 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.12432432432432433 name: Cosine Map@1 - type: cosine_map@20 value: 0.48407152706202555 name: Cosine Map@20 - type: cosine_map@50 value: 0.43043374125481026 name: Cosine Map@50 - type: cosine_map@100 value: 0.43735327570764515 name: Cosine Map@100 - type: cosine_map@150 value: 0.45269435912524697 name: Cosine Map@150 - type: cosine_map@200 value: 0.45930097680668164 name: Cosine Map@200 - type: cosine_map@500 value: 0.47204219228541466 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9753694581280788 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9852216748768473 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9901477832512315 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9901477832512315 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901477832512315 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5103448275862069 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.36935960591133016 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.23965517241379314 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1807881773399015 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1461576354679803 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3207974783481294 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5042046446720455 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6172666777909689 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.6848138831682932 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7253195006357535 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.537849085734973 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5288037060639387 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5551941695921919 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5887611959940118 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6092219717029682 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5164773875147672 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5167647438366063 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5168213657719442 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5168213657719442 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5168213657719442 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.398398563122481 name: Cosine Map@20 - type: cosine_map@50 value: 0.36032758502543594 name: Cosine Map@50 - type: cosine_map@100 value: 0.3632259128424842 name: Cosine Map@100 - type: cosine_map@150 value: 0.37822275477623696 name: Cosine Map@150 - type: cosine_map@200 value: 0.3863148456840816 name: Cosine Map@200 - type: cosine_map@500 value: 0.399227009561676 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.6796116504854369 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9805825242718447 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9902912621359223 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9902912621359223 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9902912621359223 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9902912621359223 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6796116504854369 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.488349514563107 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.29631067961165053 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.17883495145631062 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.12776699029126212 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09990291262135924 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06931865009287731 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5250914458143515 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7082715439925011 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8169166539243944 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8613232254521018 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8898175710074696 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6796116504854369 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6680745295820606 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6856578240865067 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7378907298421352 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7576651805692517 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7696718049970358 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6796116504854369 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8158576051779936 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.816279724215562 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.816279724215562 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.816279724215562 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.816279724215562 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6796116504854369 name: Cosine Map@1 - type: cosine_map@20 value: 0.522177160195635 name: Cosine Map@20 - type: cosine_map@50 value: 0.5082601209392789 name: Cosine Map@50 - type: cosine_map@100 value: 0.5371705298206915 name: Cosine Map@100 - type: cosine_map@150 value: 0.5454012672534121 name: Cosine Map@150 - type: cosine_map@200 value: 0.5494570875591636 name: Cosine Map@200 - type: cosine_map@500 value: 0.5542116087189223 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.7087883515340614 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9552782111284451 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9802392095683827 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9901196047841914 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9937597503900156 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9958398335933437 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.7087883515340614 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12158086323452937 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05122204888195529 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.026125845033801356 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017548968625411682 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013239729589183572 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.2737959042171211 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.8990032934650719 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9459438377535101 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9650979372508233 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9731582596637198 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.979086496793205 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.7087883515340614 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.7814741332820433 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7944033394497885 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7986024294603647 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8001222520801115 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.801183843730514 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.7087883515340614 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7804158804359833 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7812547046826683 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7813961782842836 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7814280971923943 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7814392363829243 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.7087883515340614 name: Cosine Map@1 - type: cosine_map@20 value: 0.7070596364024803 name: Cosine Map@20 - type: cosine_map@50 value: 0.7106867578203881 name: Cosine Map@50 - type: cosine_map@100 value: 0.7112928928384499 name: Cosine Map@100 - type: cosine_map@150 value: 0.7114314004578745 name: Cosine Map@150 - type: cosine_map@200 value: 0.711504950521157 name: Cosine Map@200 - type: cosine_map@500 value: 0.7116431478000537 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.6484659386375455 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9323972958918356 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.968278731149246 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.984919396775871 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9885595423816953 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9937597503900156 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6484659386375455 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12093083723348932 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05140925637025482 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.02647425897035882 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017892182353960822 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013530941237649509 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.2435517420696828 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.87873114924597 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9319899462645173 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9596117178020455 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9718322066215982 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9799791991679667 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6484659386375455 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.7448150588358 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7595232400510039 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7656851368194345 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7681576326024331 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7696474672652458 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6484659386375455 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7323691045739125 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.733538875120878 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.733776247038599 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7338087409764548 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7338398642058079 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6484659386375455 name: Cosine Map@1 - type: cosine_map@20 value: 0.6646138211839377 name: Cosine Map@20 - type: cosine_map@50 value: 0.6683657128313888 name: Cosine Map@50 - type: cosine_map@100 value: 0.6692634410264182 name: Cosine Map@100 - type: cosine_map@150 value: 0.669518875077899 name: Cosine Map@150 - type: cosine_map@200 value: 0.6696171599377958 name: Cosine Map@200 - type: cosine_map@500 value: 0.6697127210085475 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.7667014613778705 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9843423799582464 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9932150313152401 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9958246346555324 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9973903966597077 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9979123173277662 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.7667014613778705 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.13870041753653445 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05810020876826725 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.029598121085595 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.01986778009742519 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.014945198329853866 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.25692041952480366 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.9156576200417536 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9582637439109255 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9765483646485734 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9833768267223383 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.986464857341684 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.7667014613778705 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.8002168358295473 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.8125113081884888 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.8167350090334409 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8181122471507385 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.8186874070081017 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.7667014613778705 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8421752732824312 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8424954415974232 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8425358910333786 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8425483391786986 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8425515411459873 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.7667014613778705 name: Cosine Map@1 - type: cosine_map@20 value: 0.7007206423896271 name: Cosine Map@20 - type: cosine_map@50 value: 0.7046277360194696 name: Cosine Map@50 - type: cosine_map@100 value: 0.7053668771050886 name: Cosine Map@100 - type: cosine_map@150 value: 0.7055166914145262 name: Cosine Map@150 - type: cosine_map@200 value: 0.7055658329670217 name: Cosine Map@200 - type: cosine_map@500 value: 0.7056512281794008 name: Cosine Map@500 --- # Job - Job matching Alibaba-NLP/gte-multilingual-base (v2) Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v2") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbรผrgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 | | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9754 | 0.9806 | 0.9553 | 0.9324 | 0.9843 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9802 | 0.9683 | 0.9932 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9901 | 0.9849 | 0.9958 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9938 | 0.9886 | 0.9974 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9938 | 0.9979 | | cosine_precision@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 | | cosine_precision@20 | 0.5148 | 0.5759 | 0.5103 | 0.4883 | 0.1216 | 0.1209 | 0.1387 | | cosine_precision@50 | 0.32 | 0.3923 | 0.3694 | 0.2963 | 0.0512 | 0.0514 | 0.0581 | | cosine_precision@100 | 0.1905 | 0.2566 | 0.2397 | 0.1788 | 0.0261 | 0.0265 | 0.0296 | | cosine_precision@150 | 0.1362 | 0.1928 | 0.1808 | 0.1278 | 0.0175 | 0.0179 | 0.0199 | | cosine_precision@200 | 0.1054 | 0.1528 | 0.1462 | 0.0999 | 0.0132 | 0.0135 | 0.0149 | | cosine_recall@1 | 0.0685 | 0.0036 | 0.0111 | 0.0693 | 0.2738 | 0.2436 | 0.2569 | | cosine_recall@20 | 0.5491 | 0.3853 | 0.3208 | 0.5251 | 0.899 | 0.8787 | 0.9157 | | cosine_recall@50 | 0.7554 | 0.566 | 0.5042 | 0.7083 | 0.9459 | 0.932 | 0.9583 | | cosine_recall@100 | 0.8503 | 0.6899 | 0.6173 | 0.8169 | 0.9651 | 0.9596 | 0.9765 | | cosine_recall@150 | 0.8995 | 0.754 | 0.6848 | 0.8613 | 0.9732 | 0.9718 | 0.9834 | | cosine_recall@200 | 0.9208 | 0.7858 | 0.7253 | 0.8898 | 0.9791 | 0.98 | 0.9865 | | cosine_ndcg@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 | | cosine_ndcg@20 | 0.6952 | 0.6169 | 0.5378 | 0.6681 | 0.7815 | 0.7448 | 0.8002 | | cosine_ndcg@50 | 0.723 | 0.5914 | 0.5288 | 0.6857 | 0.7944 | 0.7595 | 0.8125 | | cosine_ndcg@100 | 0.7733 | 0.6235 | 0.5552 | 0.7379 | 0.7986 | 0.7657 | 0.8167 | | cosine_ndcg@150 | 0.7947 | 0.6557 | 0.5888 | 0.7577 | 0.8001 | 0.7682 | 0.8181 | | **cosine_ndcg@200** | **0.8039** | **0.6717** | **0.6092** | **0.7697** | **0.8012** | **0.7696** | **0.8187** | | cosine_mrr@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 | | cosine_mrr@20 | 0.8183 | 0.5581 | 0.5165 | 0.8159 | 0.7804 | 0.7324 | 0.8422 | | cosine_mrr@50 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7813 | 0.7335 | 0.8425 | | cosine_mrr@100 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8425 | | cosine_mrr@150 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8425 | | cosine_mrr@200 | 0.8183 | 0.5581 | 0.5168 | 0.8163 | 0.7814 | 0.7338 | 0.8426 | | cosine_map@1 | 0.6667 | 0.1243 | 0.2956 | 0.6796 | 0.7088 | 0.6485 | 0.7667 | | cosine_map@20 | 0.5566 | 0.4841 | 0.3984 | 0.5222 | 0.7071 | 0.6646 | 0.7007 | | cosine_map@50 | 0.5534 | 0.4304 | 0.3603 | 0.5083 | 0.7107 | 0.6684 | 0.7046 | | cosine_map@100 | 0.5852 | 0.4374 | 0.3632 | 0.5372 | 0.7113 | 0.6693 | 0.7054 | | cosine_map@150 | 0.5943 | 0.4527 | 0.3782 | 0.5454 | 0.7114 | 0.6695 | 0.7055 | | cosine_map@200 | 0.5976 | 0.4593 | 0.3863 | 0.5495 | 0.7115 | 0.6696 | 0.7056 | | cosine_map@500 | 0.6016 | 0.472 | 0.3992 | 0.5542 | 0.7116 | 0.6697 | 0.7057 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Datasets <details><summary>full_en</summary> #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | <code>air commodore</code> | <code>flight lieutenant</code> | | <code>command and control officer</code> | <code>flight officer</code> | | <code>air commodore</code> | <code>command and control officer</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_de</summary> #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | <code>Staffelkommandantin</code> | <code>Kommodore</code> | | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> | | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_es</summary> #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | <code>jefe de escuadrรณn</code> | <code>instructor</code> | | <code>comandante de aeronave</code> | <code>instructor de simulador</code> | | <code>instructor</code> | <code>oficial del Ejรฉrcito del Aire</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_zh</summary> #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> | * Samples: | anchor | positive | |:------------------|:---------------------| | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏๅ’Œ่ฟ่ฅๆ€ป็›‘</code> | | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏไธป็ฎก</code> | | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏ่‰บๆœฏๆ€ป็›‘</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>mix</summary> #### mix * Dataset: mix * Size: 21,760 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | <code>technical manager</code> | <code>Technischer Direktor fรผr Bรผhne, Film und Fernsehen</code> | | <code>head of technical</code> | <code>directora tรฉcnica</code> | | <code>head of technical department</code> | <code>ๆŠ€ๆœฏ่‰บๆœฏๆ€ป็›‘</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.7437 | | 0.0082 | 1 | 4.3088 | - | - | - | - | - | - | - | | 0.8230 | 100 | 1.9026 | - | - | - | - | - | - | - | | 1.6502 | 200 | 0.9336 | 0.8024 | 0.6703 | 0.6109 | 0.7695 | 0.7914 | 0.7594 | 0.8136 | | 2.4774 | 300 | 0.161 | - | - | - | - | - | - | - | | 3.3045 | 400 | 0.1398 | 0.8039 | 0.6717 | 0.6092 | 0.7697 | 0.8012 | 0.7696 | 0.8187 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### GISTEmbedLoss ```bibtex @misc{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, year={2024}, eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
andrewsamce/cart-pole
andrewsamce
2025-06-20T18:27:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-06-20T18:27:19Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: cart-pole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 9.30 +/- 0.64 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
mastur96/737dadaf-9de7-47f5-a473-f0c9a706af7e
mastur96
2025-06-20T18:26:30Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T14:45:32Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pj-mathematician/JobGTE-multilingual-base-v1
pj-mathematician
2025-06-20T18:26:12Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:124788", "loss:GISTEmbedLoss", "arxiv:1908.10084", "arxiv:2402.16829", "base_model:Alibaba-NLP/gte-multilingual-base", "base_model:finetune:Alibaba-NLP/gte-multilingual-base", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T18:23:09Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:GISTEmbedLoss base_model: Alibaba-NLP/gte-multilingual-base widget: - source_sentence: ๅ…ถไป–ๆœบๆขฐใ€่ฎพๅค‡ๅ’Œๆœ‰ๅฝข่ดง็‰ฉ็งŸ่ตๆœๅŠกไปฃ่กจ sentences: - ๅ…ถไป–ๆœบๆขฐๅ’Œ่ฎพๅค‡็งŸ่ตๆœๅŠกๅทฅไฝœไบบๅ‘˜ - ็”ตๅญๅ’Œ็”ตไฟก่ฎพๅค‡ๅŠ้›ถ้ƒจไปถ็‰ฉๆต็ป็† - ๅทฅไธšไธปๅŽจ - source_sentence: ๅ…ฌไบค่ฝฆๅธๆœบ sentences: - ่กจๆผ”็ฏๅ…‰่ฎพ่ฎกๅธˆ - ไน™็ƒฏๅŸบๅœฐๆฟๅฎ‰่ฃ…ๅทฅ - ๅ›ฝ้™…ๅทดๅฃซๅธๆœบ - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbรผrgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6571428571428571 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9904761904761905 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6571428571428571 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5171428571428571 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.316 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.18895238095238095 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.13384126984126984 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.10433333333333335 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0678253733846715 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5470006025464504 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7399645316315758 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8452891149669638 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8838497168796887 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9109269128757174 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6571428571428571 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6953571805621692 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7150421121165462 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7679394555495317 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7856911059911225 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7969632777290026 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6571428571428571 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8138095238095239 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8138095238095239 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8138095238095239 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8138095238095239 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8138095238095239 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6571428571428571 name: Cosine Map@1 - type: cosine_map@20 value: 0.5578605627627369 name: Cosine Map@20 - type: cosine_map@50 value: 0.5471407389299809 name: Cosine Map@50 - type: cosine_map@100 value: 0.5795933384755297 name: Cosine Map@100 - type: cosine_map@150 value: 0.5874505508842796 name: Cosine Map@150 - type: cosine_map@200 value: 0.5912226659397186 name: Cosine Map@200 - type: cosine_map@500 value: 0.5952587557760031 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.12432432432432433 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.12432432432432433 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5718918918918919 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3885405405405405 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.25172972972972973 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1904864864864865 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1521891891891892 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0036619075252531876 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3842245968041533 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5640822196868902 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6741986120580108 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.7463851968088967 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7825399601398452 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.12432432432432433 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6139182209948354 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5873893466818746 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.6144038475288277 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6498632077214272 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6680602466150343 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.12432432432432433 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5581081081081081 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5581081081081081 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5581081081081081 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5581081081081081 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5581081081081081 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.12432432432432433 name: Cosine Map@1 - type: cosine_map@20 value: 0.47988875190050484 name: Cosine Map@20 - type: cosine_map@50 value: 0.4249833337950364 name: Cosine Map@50 - type: cosine_map@100 value: 0.430155652024808 name: Cosine Map@100 - type: cosine_map@150 value: 0.4458862132745998 name: Cosine Map@150 - type: cosine_map@200 value: 0.45334655744992447 name: Cosine Map@200 - type: cosine_map@500 value: 0.4656066165331343 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9704433497536946 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9852216748768473 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9852216748768473 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9901477832512315 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901477832512315 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5083743842364532 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3654187192118227 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.24133004926108376 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.18036124794745487 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.14467980295566504 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3221185941380065 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5024502430161547 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6247617904371989 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.6829583450315939 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7216293640715983 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5393376062142305 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5267125529267169 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.55793511917882 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5879547828450983 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6071252185389439 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5104381157401634 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5109752961295605 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5109752961295605 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5110222114474118 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5110222114474118 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.40097257642946377 name: Cosine Map@20 - type: cosine_map@50 value: 0.35882787401455 name: Cosine Map@50 - type: cosine_map@100 value: 0.3633182590941781 name: Cosine Map@100 - type: cosine_map@150 value: 0.3776727961080201 name: Cosine Map@150 - type: cosine_map@200 value: 0.3848401555555339 name: Cosine Map@200 - type: cosine_map@500 value: 0.3978065874082948 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.6601941747572816 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9805825242718447 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9902912621359223 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9902912621359223 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9902912621359223 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9902912621359223 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6601941747572816 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.4781553398058253 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.28951456310679613 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.17572815533980585 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.12595469255663433 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09815533980582528 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06151358631979527 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5107966412908705 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6922746152164951 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8004152884148357 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8465065661615649 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8770990926698364 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6601941747572816 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6539867858378715 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6707332209240133 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.72342020484322 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7437750875502527 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7553648453187212 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6601941747572816 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8037216828478965 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8040950958426687 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8040950958426687 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8040950958426687 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8040950958426687 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6601941747572816 name: Cosine Map@1 - type: cosine_map@20 value: 0.5087334164702914 name: Cosine Map@20 - type: cosine_map@50 value: 0.49260246320797585 name: Cosine Map@50 - type: cosine_map@100 value: 0.5217412166882693 name: Cosine Map@100 - type: cosine_map@150 value: 0.529859818130126 name: Cosine Map@150 - type: cosine_map@200 value: 0.533378795921413 name: Cosine Map@200 - type: cosine_map@500 value: 0.5386011712914499 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.7280291211648466 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9599583983359334 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9791991679667187 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9942797711908476 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9958398335933437 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9973998959958398 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.7280291211648466 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12433697347893914 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05145085803432139 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.02625065002600105 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017621771537528162 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013283931357254294 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.28133620582918556 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.9183394002426764 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9499306638932224 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9700901369388107 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9767724042295025 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9818166059975733 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.7280291211648466 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.8043549768911603 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.81295852465432 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.817339429558165 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8186380742931886 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.8195485984235017 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.7280291211648466 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7968549154271433 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7974653825839162 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7976914864910069 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7977044635908871 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7977139196654446 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.7280291211648466 name: Cosine Map@1 - type: cosine_map@20 value: 0.7350836192117531 name: Cosine Map@20 - type: cosine_map@50 value: 0.7374205090112232 name: Cosine Map@50 - type: cosine_map@100 value: 0.737988888492803 name: Cosine Map@100 - type: cosine_map@150 value: 0.7381133157945164 name: Cosine Map@150 - type: cosine_map@200 value: 0.7381788581828236 name: Cosine Map@200 - type: cosine_map@500 value: 0.7382854440643231 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.6703068122724909 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9505980239209568 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9776391055642226 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9864794591783671 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9932397295891836 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9947997919916797 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6703068122724909 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.1251690067602704 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.052282891315652634 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.026729069162766517 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.01799965331946611 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013541341653666149 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.25235742763043856 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.9095857167620037 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9482405962905183 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.96845207141619 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9781591263650546 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9810192407696308 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6703068122724909 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.7735712514376322 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7843644592705362 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7889444470773866 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7908660087982327 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.791403470160319 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6703068122724909 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7520307321055828 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7529374175534339 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7530616872072472 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7531202644382351 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7531293951311296 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6703068122724909 name: Cosine Map@1 - type: cosine_map@20 value: 0.6967639778693541 name: Cosine Map@20 - type: cosine_map@50 value: 0.699575457224443 name: Cosine Map@50 - type: cosine_map@100 value: 0.70027844357658 name: Cosine Map@100 - type: cosine_map@150 value: 0.7004487000056766 name: Cosine Map@150 - type: cosine_map@200 value: 0.7004863395843564 name: Cosine Map@200 - type: cosine_map@500 value: 0.7005835771389989 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.19084763390535622 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.19084763390535622 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.15439417576703063 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.0617576703068123 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.03087883515340615 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.020585890102270757 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.015439417576703075 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06137978852487433 name: Cosine Recall@1 - type: cosine_recall@20 value: 1.0 name: Cosine Recall@20 - type: cosine_recall@50 value: 1.0 name: Cosine Recall@50 - type: cosine_recall@100 value: 1.0 name: Cosine Recall@100 - type: cosine_recall@150 value: 1.0 name: Cosine Recall@150 - type: cosine_recall@200 value: 1.0 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.19084763390535622 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5474303590499686 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5474303590499686 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5474303590499686 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5474303590499686 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5474303590499686 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.19084763390535622 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.4093433087972877 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.4093433087972877 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.4093433087972877 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.4093433087972877 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.4093433087972877 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.19084763390535622 name: Cosine Map@1 - type: cosine_map@20 value: 0.32981711891302556 name: Cosine Map@20 - type: cosine_map@50 value: 0.32981711891302556 name: Cosine Map@50 - type: cosine_map@100 value: 0.32981711891302556 name: Cosine Map@100 - type: cosine_map@150 value: 0.32981711891302556 name: Cosine Map@150 - type: cosine_map@200 value: 0.32981711891302556 name: Cosine Map@200 - type: cosine_map@500 value: 0.32981711891302556 name: Cosine Map@500 --- # Job - Job matching Alibaba-NLP/gte-multilingual-base (v1) Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 9fdd4ee8bba0e2808a34e0e739576f6740d2b225 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v1") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbรผrgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9704 | 0.9806 | 0.96 | 0.9506 | 1.0 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9792 | 0.9776 | 1.0 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9943 | 0.9865 | 1.0 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9958 | 0.9932 | 1.0 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9974 | 0.9948 | 1.0 | | cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | | cosine_precision@20 | 0.5171 | 0.5719 | 0.5084 | 0.4782 | 0.1243 | 0.1252 | 0.1544 | | cosine_precision@50 | 0.316 | 0.3885 | 0.3654 | 0.2895 | 0.0515 | 0.0523 | 0.0618 | | cosine_precision@100 | 0.189 | 0.2517 | 0.2413 | 0.1757 | 0.0263 | 0.0267 | 0.0309 | | cosine_precision@150 | 0.1338 | 0.1905 | 0.1804 | 0.126 | 0.0176 | 0.018 | 0.0206 | | cosine_precision@200 | 0.1043 | 0.1522 | 0.1447 | 0.0982 | 0.0133 | 0.0135 | 0.0154 | | cosine_recall@1 | 0.0678 | 0.0037 | 0.0111 | 0.0615 | 0.2813 | 0.2524 | 0.0614 | | cosine_recall@20 | 0.547 | 0.3842 | 0.3221 | 0.5108 | 0.9183 | 0.9096 | 1.0 | | cosine_recall@50 | 0.74 | 0.5641 | 0.5025 | 0.6923 | 0.9499 | 0.9482 | 1.0 | | cosine_recall@100 | 0.8453 | 0.6742 | 0.6248 | 0.8004 | 0.9701 | 0.9685 | 1.0 | | cosine_recall@150 | 0.8838 | 0.7464 | 0.683 | 0.8465 | 0.9768 | 0.9782 | 1.0 | | cosine_recall@200 | 0.9109 | 0.7825 | 0.7216 | 0.8771 | 0.9818 | 0.981 | 1.0 | | cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | | cosine_ndcg@20 | 0.6954 | 0.6139 | 0.5393 | 0.654 | 0.8044 | 0.7736 | 0.5474 | | cosine_ndcg@50 | 0.715 | 0.5874 | 0.5267 | 0.6707 | 0.813 | 0.7844 | 0.5474 | | cosine_ndcg@100 | 0.7679 | 0.6144 | 0.5579 | 0.7234 | 0.8173 | 0.7889 | 0.5474 | | cosine_ndcg@150 | 0.7857 | 0.6499 | 0.588 | 0.7438 | 0.8186 | 0.7909 | 0.5474 | | **cosine_ndcg@200** | **0.797** | **0.6681** | **0.6071** | **0.7554** | **0.8195** | **0.7914** | **0.5474** | | cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | | cosine_mrr@20 | 0.8138 | 0.5581 | 0.5104 | 0.8037 | 0.7969 | 0.752 | 0.4093 | | cosine_mrr@50 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7975 | 0.7529 | 0.4093 | | cosine_mrr@100 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 | | cosine_mrr@150 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 | | cosine_mrr@200 | 0.8138 | 0.5581 | 0.511 | 0.8041 | 0.7977 | 0.7531 | 0.4093 | | cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.6602 | 0.728 | 0.6703 | 0.1908 | | cosine_map@20 | 0.5579 | 0.4799 | 0.401 | 0.5087 | 0.7351 | 0.6968 | 0.3298 | | cosine_map@50 | 0.5471 | 0.425 | 0.3588 | 0.4926 | 0.7374 | 0.6996 | 0.3298 | | cosine_map@100 | 0.5796 | 0.4302 | 0.3633 | 0.5217 | 0.738 | 0.7003 | 0.3298 | | cosine_map@150 | 0.5875 | 0.4459 | 0.3777 | 0.5299 | 0.7381 | 0.7004 | 0.3298 | | cosine_map@200 | 0.5912 | 0.4533 | 0.3848 | 0.5334 | 0.7382 | 0.7005 | 0.3298 | | cosine_map@500 | 0.5953 | 0.4656 | 0.3978 | 0.5386 | 0.7383 | 0.7006 | 0.3298 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Datasets <details><summary>full_en</summary> #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | <code>air commodore</code> | <code>flight lieutenant</code> | | <code>command and control officer</code> | <code>flight officer</code> | | <code>air commodore</code> | <code>command and control officer</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_de</summary> #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | <code>Staffelkommandantin</code> | <code>Kommodore</code> | | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> | | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_es</summary> #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | <code>jefe de escuadrรณn</code> | <code>instructor</code> | | <code>comandante de aeronave</code> | <code>instructor de simulador</code> | | <code>instructor</code> | <code>oficial del Ejรฉrcito del Aire</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_zh</summary> #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> | * Samples: | anchor | positive | |:------------------|:---------------------| | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏๅ’Œ่ฟ่ฅๆ€ป็›‘</code> | | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏไธป็ฎก</code> | | <code>ๆŠ€ๆœฏๆ€ป็›‘</code> | <code>ๆŠ€ๆœฏ่‰บๆœฏๆ€ป็›‘</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>mix</summary> #### mix * Dataset: mix * Size: 21,760 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | <code>technical manager</code> | <code>Technischer Direktor fรผr Bรผhne, Film und Fernsehen</code> | | <code>head of technical</code> | <code>directora tรฉcnica</code> | | <code>head of technical department</code> | <code>ๆŠ€ๆœฏ่‰บๆœฏๆ€ป็›‘</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.7447 | 0.6125 | 0.5378 | 0.7240 | 0.7029 | 0.6345 | 0.5531 | | 0.0010 | 1 | 3.4866 | - | - | - | - | - | - | - | | 0.1027 | 100 | 2.5431 | - | - | - | - | - | - | - | | 0.2053 | 200 | 1.4536 | 0.7993 | 0.6633 | 0.5974 | 0.7642 | 0.7567 | 0.7011 | 0.5498 | | 0.3080 | 300 | 1.1018 | - | - | - | - | - | - | - | | 0.4107 | 400 | 0.9184 | 0.7925 | 0.6586 | 0.6058 | 0.7587 | 0.7749 | 0.7278 | 0.5486 | | 0.5133 | 500 | 0.8973 | - | - | - | - | - | - | - | | 0.6160 | 600 | 0.7309 | 0.7951 | 0.6671 | 0.6096 | 0.7708 | 0.7793 | 0.7339 | 0.5525 | | 0.7187 | 700 | 0.7297 | - | - | - | - | - | - | - | | 0.8214 | 800 | 0.7281 | 0.7929 | 0.6711 | 0.6088 | 0.7645 | 0.7899 | 0.7444 | 0.5479 | | 0.9240 | 900 | 0.6607 | - | - | - | - | - | - | - | | 1.0267 | 1000 | 0.6075 | 0.7915 | 0.6659 | 0.6088 | 0.7665 | 0.7968 | 0.7588 | 0.5482 | | 1.1294 | 1100 | 0.4553 | - | - | - | - | - | - | - | | 1.2320 | 1200 | 0.4775 | 0.7979 | 0.6696 | 0.6033 | 0.7669 | 0.7959 | 0.7624 | 0.5484 | | 1.3347 | 1300 | 0.4838 | - | - | - | - | - | - | - | | 1.4374 | 1400 | 0.4912 | 0.7973 | 0.6757 | 0.6112 | 0.7656 | 0.7978 | 0.7650 | 0.5487 | | 1.5400 | 1500 | 0.4732 | - | - | - | - | - | - | - | | 1.6427 | 1600 | 0.5269 | 0.8031 | 0.6723 | 0.6108 | 0.7654 | 0.8008 | 0.7660 | 0.5492 | | 1.7454 | 1700 | 0.4822 | - | - | - | - | - | - | - | | 1.8480 | 1800 | 0.5072 | 0.7962 | 0.6668 | 0.6051 | 0.7592 | 0.8001 | 0.7714 | 0.5486 | | 1.9507 | 1900 | 0.4709 | - | - | - | - | - | - | - | | 2.0544 | 2000 | 0.3772 | 0.7940 | 0.6647 | 0.6037 | 0.7579 | 0.8064 | 0.7732 | 0.5479 | | 2.1571 | 2100 | 0.3982 | - | - | - | - | - | - | - | | 2.2598 | 2200 | 0.3073 | 0.7969 | 0.6652 | 0.6005 | 0.7625 | 0.8054 | 0.7734 | 0.5493 | | 2.3624 | 2300 | 0.383 | - | - | - | - | - | - | - | | 2.4651 | 2400 | 0.3687 | 0.7925 | 0.6690 | 0.5987 | 0.7583 | 0.8081 | 0.7735 | 0.5477 | | 2.5678 | 2500 | 0.3472 | - | - | - | - | - | - | - | | 2.6704 | 2600 | 0.3557 | 0.7956 | 0.6758 | 0.6019 | 0.7659 | 0.8082 | 0.7767 | 0.5491 | | 2.7731 | 2700 | 0.3527 | - | - | - | - | - | - | - | | 2.8758 | 2800 | 0.3446 | 0.7945 | 0.6719 | 0.6020 | 0.7616 | 0.8124 | 0.7818 | 0.5496 | | 2.9784 | 2900 | 0.3566 | - | - | - | - | - | - | - | | 3.0821 | 3000 | 0.3252 | 0.7948 | 0.6682 | 0.6025 | 0.7617 | 0.8152 | 0.7848 | 0.5516 | | 3.1848 | 3100 | 0.2968 | - | - | - | - | - | - | - | | 3.2875 | 3200 | 0.2962 | 0.7953 | 0.6717 | 0.6086 | 0.7613 | 0.8110 | 0.7824 | 0.5482 | | 3.3901 | 3300 | 0.3084 | - | - | - | - | - | - | - | | 3.4928 | 3400 | 0.2909 | 0.7940 | 0.6634 | 0.6023 | 0.7615 | 0.8138 | 0.7822 | 0.5457 | | 3.5955 | 3500 | 0.2964 | - | - | - | - | - | - | - | | 3.6982 | 3600 | 0.3193 | 0.7960 | 0.6635 | 0.6070 | 0.7534 | 0.8164 | 0.7844 | 0.5467 | | 3.8008 | 3700 | 0.3514 | - | - | - | - | - | - | - | | 3.9035 | 3800 | 0.3147 | 0.7973 | 0.6696 | 0.6125 | 0.7616 | 0.8176 | 0.7885 | 0.5469 | | 4.0062 | 3900 | 0.2738 | - | - | - | - | - | - | - | | 4.1088 | 4000 | 0.2842 | 0.7960 | 0.6672 | 0.6082 | 0.7536 | 0.8174 | 0.7891 | 0.5479 | | 4.2115 | 4100 | 0.2739 | - | - | - | - | - | - | - | | 4.3142 | 4200 | 0.2704 | 0.7979 | 0.6681 | 0.6111 | 0.7540 | 0.8180 | 0.7891 | 0.5476 | | 4.4168 | 4300 | 0.2529 | - | - | - | - | - | - | - | | 4.5195 | 4400 | 0.272 | 0.7968 | 0.6685 | 0.6087 | 0.7564 | 0.8185 | 0.7901 | 0.5476 | | 4.6222 | 4500 | 0.3 | - | - | - | - | - | - | - | | 4.7248 | 4600 | 0.2598 | 0.7972 | 0.6675 | 0.6072 | 0.7556 | 0.8190 | 0.7909 | 0.5478 | | 4.8275 | 4700 | 0.3101 | - | - | - | - | - | - | - | | 4.9302 | 4800 | 0.2524 | 0.7970 | 0.6681 | 0.6071 | 0.7554 | 0.8195 | 0.7914 | 0.5474 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### GISTEmbedLoss ```bibtex @misc{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, year={2024}, eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
haihp02/oioioi-last
haihp02
2025-06-20T18:25:45Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-20T18:24:20Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hudsongouge/DAT-Byte-200M
hudsongouge
2025-06-20T18:25:22Z
0
1
null
[ "safetensors", "text-generation", "en", "dataset:hudsongouge/Open-Discord", "dataset:sedthh/gutenberg_english", "arxiv:2410.05258", "license:apache-2.0", "region:us" ]
text-generation
2025-06-20T01:11:43Z
--- license: apache-2.0 datasets: - hudsongouge/Open-Discord - sedthh/gutenberg_english language: - en pipeline_tag: text-generation --- # DAT Byte Small (200M) **DAT Byte** is a family of byte-level **D**ifferential-**A**ttention **T**ransformers, trained from scratch on an RTX 5090. This model is the smallest in the family, with approximately 200 million parameters. It was trained on a set of Discord chat data, public domain books, and English Bible translations. Larger models in the family received a larger and more diverse training set. --- ## Training Data As the smallest DAT Byte model, this version was trained on less data than its larger family members. The training data was composed exclusively of the following sources: - [**Gutenberg English**](https://huggingface.co/datasets/sedthh/gutenberg_english) โ€” English books in the public domain - [**OpenDiscord**](https://huggingface.co/datasets/hudsongouge/Open-Discord) โ€” Discord dumps in ChatML format - Proprietary Discord dumps (similar structure and tone to OpenDiscord) - A diverse set of public domain English Bible translations (~34MB total) Only the datasets listed above were used, and each was included in its entirety. The Discord datasets (combined ~693MB) were formatted in **ChatML**, with usernames serving as speaker roles, enabling the model to learn natural dialogue structure and dynamics. Discord data included many diverse topics, especially code. Thus, the model understands basic syntax patterns of some common programming languages. However, due to its lack of training on large scale high quality code samples, generated code will likely not be reliable or production-quality. Larger models in the family received a larger and more diverse training set. --- ## Architecture This model follows the structure proposed in [**Differential Transformer** (Ye et al., 2024)](https://arxiv.org/abs/2410.05258), which introduces *Differential Attention*. Differential Attention is particularly helpful in creating byte-level LLMs as it reduces attention noise and allows the model to better grasp semantic meaning at such a high granularity. Key architectural details: - **Model Type:** Decoder-only Transformer - **Positional Encoding:** RoPE (Rotary Positional Embeddings) - **Normalization:** Pre-layernorm (LayerNorm before attention and MLP blocks) - **Hidden Size:** 768 - **FFN Size:** 3,072 - **Attention Heads:** 12 - **Layers:** 28 - **Vocabulary Size:** 259 (256 byte tokens + 3 special tokens) --- ## Benchmarks Coming soon. ## Usage Stay tuned. --- ## Citation If you use **DAT Byte Small** in your research, fine-tune it, or build on this work, please cite the original author: ### BibTeX entry ```bibtex @misc{gouge2025datbyte, title = {DAT Byte: Byte-Level Differential Attention Transformers}, author = {Hudson Gouge}, year = {2025}, url = {https://huggingface.co/hudsongouge/dat-byte-small}, note = {DAT Byte Small (200M) Model Card} } ``` Please include this citation in any derivative work, publication, or project that makes use of the DAT Byte architecture or training artifacts.
Vaibhavbarala/Fake-news
Vaibhavbarala
2025-06-20T18:24:15Z
0
0
null
[ "safetensors", "bert", "license:other", "region:us" ]
null
2025-06-20T18:19:46Z
--- license: other license_name: vaibahv license_link: LICENSE ---
CowLiker/micro
CowLiker
2025-06-20T18:23:34Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-06-20T18:22:53Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/df0r49j-37a375fe-e811-4702-9278-d7e062d15f18.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: >- microbikini, tiny triangle, string, slingshot, bandeau top, circular pasties, pubic pastie, small/medium/big/large breasts, strap microbikini --- # micro <Gallery /> ## Trigger words You should use `microbikini` to trigger the image generation. You should use `tiny triangle` to trigger the image generation. You should use `string` to trigger the image generation. You should use `slingshot` to trigger the image generation. You should use `bandeau top` to trigger the image generation. You should use `circular pasties` to trigger the image generation. You should use `pubic pastie` to trigger the image generation. You should use `small&#x2F;medium&#x2F;big&#x2F;large breasts` to trigger the image generation. You should use `strap microbikini` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/CowLiker/micro/tree/main) them in the Files & versions tab.
jingjietan/adam-clad-kaggle-child-mpnet-personality
jingjietan
2025-06-20T18:23:20Z
4
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-19T18:30:50Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
c4tdr0ut/roshidererp
c4tdr0ut
2025-06-20T18:22:02Z
15
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B", "base_model:finetune:unsloth/Meta-Llama-3.1-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-19T19:31:33Z
--- base_model: unsloth/Meta-Llama-3.1-8B tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en pipeline_tag: text-generation --- <p><img src="https://cdn-uploads.huggingface.co/production/uploads/noauth/1urjH2SsGHNQXZRQZIK_S.webp" width="250" height="250" /></p> <h1>RoshidereRP</h1> <p>This is a Llama 3.1 8B base finetune on a 1.1m token dataset that was tranied on 8bit LoRa with up,down,q,v,m and lm head targeted The dataset includes fanfiction and books in english about "Alya Sometimes Hides Her Feelings in Russian". I made this finetune to experiment with augmentoolkit 3 and to test different methods of finetuning</p> enjoy
pj-mathematician/JobGTE-multilingual-base-pruned
pj-mathematician
2025-06-20T18:20:17Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:86648", "loss:MSELoss", "arxiv:1908.10084", "arxiv:2004.09813", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T18:18:11Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:86648 - loss:MSELoss widget: - source_sentence: Familienberaterin sentences: - electric power station operator - venue booker & promoter - betrieblicher Aus- und Weiterbildner/betriebliche Aus- und Weiterbildnerin - source_sentence: high school RS teacher sentences: - infantryman - Schnellbedienungsrestaurantteamleiter - drill setup operator - source_sentence: lighting designer sentences: - software support manager - ็›ดๅ‡ๆœบ็ปดๆŠคๅ่ฐƒๅ‘˜ - bus maintenance supervisor - source_sentence: ๆœบๅœบๆถˆ้˜ฒๅ‘˜ sentences: - Flakeๆ“ไฝœๅ‘˜ - tรฉcnico en gestiรณn de residuos peligrosos/tรฉcnica en gestiรณn de residuos peligrosos - ไธ“้—จๅญฆๆ ก่€ๅธˆ - source_sentence: Entwicklerin fรผr mobile Anwendungen sentences: - fashion design expert - Mergers-and-Acquisitions-Analyst/Mergers-and-Acquisitions-Analystin - commercial bid manager pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6476190476190476 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9714285714285714 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6476190476190476 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.47952380952380946 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.28838095238095235 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.17304761904761906 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.12444444444444444 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09857142857142859 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06609801577496094 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5122224752770898 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6835205863376973 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.7899550177449521 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8399901051245952 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.875868212220809 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6476190476190476 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6467537144833913 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6579566361404572 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7095129047395976 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7310060454392588 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.746053293561821 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6476190476190476 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7901817137111254 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7909547501984476 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7909547501984476 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7909547501984476 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7909547501984476 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6476190476190476 name: Cosine Map@1 - type: cosine_map@20 value: 0.5025649155749793 name: Cosine Map@20 - type: cosine_map@50 value: 0.48398477448194993 name: Cosine Map@50 - type: cosine_map@100 value: 0.5117703759309522 name: Cosine Map@100 - type: cosine_map@150 value: 0.520199435224254 name: Cosine Map@150 - type: cosine_map@200 value: 0.5249113393002316 name: Cosine Map@200 - type: cosine_map@500 value: 0.5304170344184883 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.11891891891891893 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.11891891891891893 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5267567567567567 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3437837837837838 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.21897297297297297 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1658018018018018 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1332972972972973 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0035840147528632613 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.35407760203362965 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5097999383006715 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6076073817878247 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.6705429838138021 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7125464731776301 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.11891891891891893 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5708144272431339 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.535516963498245 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.558980163264909 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5900024611410689 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.609478782549869 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.11891891891891893 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5531531531531532 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5531531531531532 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5531531531531532 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5531531531531532 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5531531531531532 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.11891891891891893 name: Cosine Map@1 - type: cosine_map@20 value: 0.4379349002801489 name: Cosine Map@20 - type: cosine_map@50 value: 0.3739269627118989 name: Cosine Map@50 - type: cosine_map@100 value: 0.37629843599877466 name: Cosine Map@100 - type: cosine_map@150 value: 0.3891828650842837 name: Cosine Map@150 - type: cosine_map@200 value: 0.39584338663408436 name: Cosine Map@200 - type: cosine_map@500 value: 0.4062909401616274 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9704433497536946 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9753694581280788 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9901477832512315 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9901477832512315 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901477832512315 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.42906403940886706 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.29802955665024633 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.19433497536945815 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.14824302134646963 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1197783251231527 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.26675038089672504 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.40921566733257536 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.5097664540706716 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.5728593162394238 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.6120176690658915 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.46962753993631184 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.444898497416845 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.466960324034805 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.49816218513136795 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5165485300965951 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5046767633988724 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.50477528556636 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5049589761635289 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5049589761635289 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5049589761635289 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.33658821160388247 name: Cosine Map@20 - type: cosine_map@50 value: 0.2853400586620685 name: Cosine Map@50 - type: cosine_map@100 value: 0.2817732307206079 name: Cosine Map@100 - type: cosine_map@150 value: 0.2931317333364438 name: Cosine Map@150 - type: cosine_map@200 value: 0.2988160532231927 name: Cosine Map@200 - type: cosine_map@500 value: 0.31093362375086947 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.6601941747572816 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.970873786407767 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9902912621359223 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9902912621359223 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9902912621359223 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9902912621359223 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6601941747572816 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.44805825242718444 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.27126213592233006 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.16650485436893206 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1211003236245955 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09529126213592234 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06611246215014785 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.48409390608352504 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6568473638827299 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.7685416895166794 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8277686060133904 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8616979590623105 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6601941747572816 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6231250904534316 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6383496204608501 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.6917257705456975 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7167434657424917 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7303448958665071 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6601941747572816 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8015776699029126 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8020876238109248 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8020876238109248 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8020876238109248 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8020876238109248 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6601941747572816 name: Cosine Map@1 - type: cosine_map@20 value: 0.4750205237443607 name: Cosine Map@20 - type: cosine_map@50 value: 0.45785161483741715 name: Cosine Map@50 - type: cosine_map@100 value: 0.4848085275553208 name: Cosine Map@100 - type: cosine_map@150 value: 0.4937216396074153 name: Cosine Map@150 - type: cosine_map@200 value: 0.49777622471594557 name: Cosine Map@200 - type: cosine_map@500 value: 0.5039795405740248 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.6297451898075923 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9105564222568903 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9495579823192928 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9729589183567343 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.983359334373375 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901196047841914 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6297451898075923 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.11167446697867915 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.04850754030161208 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.02535101404056163 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.0172300225342347 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.0130811232449298 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.24340068840848872 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.8288215338137336 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.8986566129311838 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9398509273704282 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9576876408389668 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9695267810712429 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6297451898075923 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.7010427232190379 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7200844211181043 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7290848607488584 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7325985285606116 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7347463892077523 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6297451898075923 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7036709577939534 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7049808414398148 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7053260954286938 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7054145837924506 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7054541569954363 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6297451898075923 name: Cosine Map@1 - type: cosine_map@20 value: 0.6194189058349782 name: Cosine Map@20 - type: cosine_map@50 value: 0.6244340507841626 name: Cosine Map@50 - type: cosine_map@100 value: 0.6256943736433496 name: Cosine Map@100 - type: cosine_map@150 value: 0.6260195205413376 name: Cosine Map@150 - type: cosine_map@200 value: 0.6261650797332174 name: Cosine Map@200 - type: cosine_map@500 value: 0.6263452093477304 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.5564222568902756 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.8866354654186167 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9381175247009881 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9594383775351014 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9708788351534061 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9776391055642226 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.5564222568902756 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.109464378575143 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.048060322412896525 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.025273010920436823 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017313225862367825 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013143525741029644 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.20931703934824059 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.7988992893049055 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.8741029641185647 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9173426937077482 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9424076963078523 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.953631478592477 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.5564222568902756 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6541310877479573 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.674790854916742 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.6844997445798996 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6894214573457343 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6914881284159038 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.5564222568902756 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.6476945170199107 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.6493649946597936 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.6496801333421218 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.6497778366579644 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.6498156890114056 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.5564222568902756 name: Cosine Map@1 - type: cosine_map@20 value: 0.5648326970643027 name: Cosine Map@20 - type: cosine_map@50 value: 0.57003456255067 name: Cosine Map@50 - type: cosine_map@100 value: 0.5714370828517599 name: Cosine Map@100 - type: cosine_map@150 value: 0.5719002990233493 name: Cosine Map@150 - type: cosine_map@200 value: 0.5720497397197026 name: Cosine Map@200 - type: cosine_map@500 value: 0.5723109788233504 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.6085594989561587 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9592901878914405 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9791231732776617 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9874739039665971 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9911273486430062 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9937369519832986 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6085594989561587 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12656576200417535 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05518789144050106 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.028747390396659713 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.019425887265135697 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.014705114822546978 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.2043804056069192 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.8346468336812805 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9095772442588727 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9475643702157271 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9609168406402228 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9697807933194154 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6085594989561587 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6853247290079303 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7066940880968873 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.715400790265437 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7180808450243259 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7197629642909036 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6085594989561587 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7236528792595264 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7243308740364213 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7244524590415827 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7244814620971008 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7244960285685315 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6085594989561587 name: Cosine Map@1 - type: cosine_map@20 value: 0.5652211952239553 name: Cosine Map@20 - type: cosine_map@50 value: 0.5716374350069462 name: Cosine Map@50 - type: cosine_map@100 value: 0.5730756815932735 name: Cosine Map@100 - type: cosine_map@150 value: 0.5733543252173214 name: Cosine Map@150 - type: cosine_map@200 value: 0.5734860037813889 name: Cosine Map@200 - type: cosine_map@500 value: 0.5736416699680624 name: Cosine Map@500 --- # Job - Job matching Alibaba-NLP/gte-multilingual-base pruned Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-pruned") # Run inference sentences = [ 'Entwicklerin fรผr mobile Anwendungen', 'Mergers-and-Acquisitions-Analyst/Mergers-and-Acquisitions-Analystin', 'fashion design expert', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | | cosine_accuracy@20 | 0.9714 | 1.0 | 0.9704 | 0.9709 | 0.9106 | 0.8866 | 0.9593 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9754 | 0.9903 | 0.9496 | 0.9381 | 0.9791 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.973 | 0.9594 | 0.9875 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9834 | 0.9709 | 0.9911 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9901 | 0.9776 | 0.9937 | | cosine_precision@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | | cosine_precision@20 | 0.4795 | 0.5268 | 0.4291 | 0.4481 | 0.1117 | 0.1095 | 0.1266 | | cosine_precision@50 | 0.2884 | 0.3438 | 0.298 | 0.2713 | 0.0485 | 0.0481 | 0.0552 | | cosine_precision@100 | 0.173 | 0.219 | 0.1943 | 0.1665 | 0.0254 | 0.0253 | 0.0287 | | cosine_precision@150 | 0.1244 | 0.1658 | 0.1482 | 0.1211 | 0.0172 | 0.0173 | 0.0194 | | cosine_precision@200 | 0.0986 | 0.1333 | 0.1198 | 0.0953 | 0.0131 | 0.0131 | 0.0147 | | cosine_recall@1 | 0.0661 | 0.0036 | 0.0111 | 0.0661 | 0.2434 | 0.2093 | 0.2044 | | cosine_recall@20 | 0.5122 | 0.3541 | 0.2668 | 0.4841 | 0.8288 | 0.7989 | 0.8346 | | cosine_recall@50 | 0.6835 | 0.5098 | 0.4092 | 0.6568 | 0.8987 | 0.8741 | 0.9096 | | cosine_recall@100 | 0.79 | 0.6076 | 0.5098 | 0.7685 | 0.9399 | 0.9173 | 0.9476 | | cosine_recall@150 | 0.84 | 0.6705 | 0.5729 | 0.8278 | 0.9577 | 0.9424 | 0.9609 | | cosine_recall@200 | 0.8759 | 0.7125 | 0.612 | 0.8617 | 0.9695 | 0.9536 | 0.9698 | | cosine_ndcg@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | | cosine_ndcg@20 | 0.6468 | 0.5708 | 0.4696 | 0.6231 | 0.701 | 0.6541 | 0.6853 | | cosine_ndcg@50 | 0.658 | 0.5355 | 0.4449 | 0.6383 | 0.7201 | 0.6748 | 0.7067 | | cosine_ndcg@100 | 0.7095 | 0.559 | 0.467 | 0.6917 | 0.7291 | 0.6845 | 0.7154 | | cosine_ndcg@150 | 0.731 | 0.59 | 0.4982 | 0.7167 | 0.7326 | 0.6894 | 0.7181 | | **cosine_ndcg@200** | **0.7461** | **0.6095** | **0.5165** | **0.7303** | **0.7347** | **0.6915** | **0.7198** | | cosine_mrr@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | | cosine_mrr@20 | 0.7902 | 0.5532 | 0.5047 | 0.8016 | 0.7037 | 0.6477 | 0.7237 | | cosine_mrr@50 | 0.791 | 0.5532 | 0.5048 | 0.8021 | 0.705 | 0.6494 | 0.7243 | | cosine_mrr@100 | 0.791 | 0.5532 | 0.505 | 0.8021 | 0.7053 | 0.6497 | 0.7245 | | cosine_mrr@150 | 0.791 | 0.5532 | 0.505 | 0.8021 | 0.7054 | 0.6498 | 0.7245 | | cosine_mrr@200 | 0.791 | 0.5532 | 0.505 | 0.8021 | 0.7055 | 0.6498 | 0.7245 | | cosine_map@1 | 0.6476 | 0.1189 | 0.2956 | 0.6602 | 0.6297 | 0.5564 | 0.6086 | | cosine_map@20 | 0.5026 | 0.4379 | 0.3366 | 0.475 | 0.6194 | 0.5648 | 0.5652 | | cosine_map@50 | 0.484 | 0.3739 | 0.2853 | 0.4579 | 0.6244 | 0.57 | 0.5716 | | cosine_map@100 | 0.5118 | 0.3763 | 0.2818 | 0.4848 | 0.6257 | 0.5714 | 0.5731 | | cosine_map@150 | 0.5202 | 0.3892 | 0.2931 | 0.4937 | 0.626 | 0.5719 | 0.5734 | | cosine_map@200 | 0.5249 | 0.3958 | 0.2988 | 0.4978 | 0.6262 | 0.572 | 0.5735 | | cosine_map@500 | 0.5304 | 0.4063 | 0.3109 | 0.504 | 0.6263 | 0.5723 | 0.5736 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 86,648 training samples * Columns: <code>sentence</code> and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:---------------------------------------------------------------------------------|:-------------------------------------| | type | string | list | | details | <ul><li>min: 2 tokens</li><li>mean: 8.25 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> | * Samples: | sentence | label | |:-----------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------| | <code></code> | <code>[-0.07171934843063354, 0.03595816716551781, -0.029780959710478783, 0.006593302357941866, 0.040611181408166885, ...]</code> | | <code>airport environment officer</code> | <code>[-0.022075481712818146, 0.02999737113714218, -0.02189866080880165, 0.016531817615032196, 0.012234307825565338, ...]</code> | | <code>Flakeๆ“ไฝœๅ‘˜</code> | <code>[-0.04815564677119255, 0.023524893447756767, -0.01583661139011383, 0.042527906596660614, 0.03815540298819542, ...]</code> | * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `learning_rate`: 0.0001 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.5348 | 0.4311 | 0.3678 | 0.5333 | 0.2580 | 0.1924 | 0.2871 | | 0.0030 | 1 | 0.0017 | - | - | - | - | - | - | - | | 0.2959 | 100 | 0.001 | - | - | - | - | - | - | - | | 0.5917 | 200 | 0.0005 | 0.6702 | 0.5287 | 0.4566 | 0.6809 | 0.5864 | 0.5302 | 0.4739 | | 0.8876 | 300 | 0.0004 | - | - | - | - | - | - | - | | 1.1834 | 400 | 0.0004 | 0.7057 | 0.5643 | 0.4790 | 0.7033 | 0.6604 | 0.6055 | 0.6003 | | 1.4793 | 500 | 0.0004 | - | - | - | - | - | - | - | | 1.7751 | 600 | 0.0003 | 0.7184 | 0.5783 | 0.4910 | 0.7127 | 0.6927 | 0.6416 | 0.6485 | | 2.0710 | 700 | 0.0003 | - | - | - | - | - | - | - | | 2.3669 | 800 | 0.0003 | 0.7307 | 0.5938 | 0.5023 | 0.7233 | 0.7125 | 0.6639 | 0.6847 | | 2.6627 | 900 | 0.0003 | - | - | - | - | - | - | - | | 2.9586 | 1000 | 0.0003 | 0.7371 | 0.6002 | 0.5085 | 0.7228 | 0.7222 | 0.6761 | 0.6998 | | 3.2544 | 1100 | 0.0003 | - | - | - | - | - | - | - | | 3.5503 | 1200 | 0.0003 | 0.7402 | 0.6059 | 0.5109 | 0.7279 | 0.7285 | 0.6841 | 0.7120 | | 3.8462 | 1300 | 0.0003 | - | - | - | - | - | - | - | | 4.1420 | 1400 | 0.0003 | 0.7449 | 0.6083 | 0.5154 | 0.7294 | 0.7333 | 0.6894 | 0.7176 | | 4.4379 | 1500 | 0.0003 | - | - | - | - | - | - | - | | 4.7337 | 1600 | 0.0003 | 0.7461 | 0.6095 | 0.5165 | 0.7303 | 0.7347 | 0.6915 | 0.7198 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MSELoss ```bibtex @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Official-mezzo-fun-10-Viral-videos-Link/FULL.VIDEO.mezzo.fun.Viral.Video.Tutorial.Official
Official-mezzo-fun-10-Viral-videos-Link
2025-06-20T18:19:34Z
0
0
null
[ "region:us" ]
null
2025-06-20T18:18:03Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Jaipur-5-star-hotel-Viral-Video/FULL.VIDEO.Jaipur.5.star.hotel.Viral.Video.Tutorial.Official
Jaipur-5-star-hotel-Viral-Video
2025-06-20T18:15:50Z
0
0
null
[ "region:us" ]
null
2025-06-20T18:15:13Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
makataomu/poca-SoccerTwos
makataomu
2025-06-20T18:13:51Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2025-06-20T07:52:59Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: makataomu/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
manu225/dravokbot-signaux-crypto
manu225
2025-06-20T18:13:09Z
0
0
null
[ "license:other", "region:us" ]
null
2025-06-20T18:13:04Z
--- license: other license_name: drakobot-signaux license_link: LICENSE ---
Vandita/distilled_BertSarc
Vandita
2025-06-20T18:07:36Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-cased", "base_model:finetune:distilbert/distilbert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T18:07:13Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilled_BertSarc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled_BertSarc This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8244 - Accuracy: 0.8024 - Precision: 0.8860 - Recall: 0.2399 - F1: 0.3776 - Mcc: 0.3958 - Roc Auc: 0.7296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Mcc | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|:-------:| | 0.9413 | 1.0 | 1469 | 0.8562 | 0.7326 | 0.9417 | 0.3276 | 0.4861 | 0.4496 | 0.8080 | | 0.7582 | 2.0 | 2938 | 0.8315 | 0.7386 | 0.9410 | 0.3444 | 0.5042 | 0.4624 | 0.8226 | | 0.7121 | 3.0 | 4407 | 0.8223 | 0.7364 | 0.9522 | 0.3338 | 0.4943 | 0.4601 | 0.8310 | | 0.6838 | 4.0 | 5876 | 0.8656 | 0.7364 | 0.9511 | 0.3342 | 0.4946 | 0.4598 | 0.8239 | | 0.5701 | 5.0 | 7345 | 0.8694 | 0.7350 | 0.9587 | 0.3276 | 0.4883 | 0.4586 | 0.8231 | | 0.5849 | 6.0 | 8814 | 0.8656 | 0.7343 | 0.9609 | 0.3250 | 0.4857 | 0.4576 | 0.8215 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
StuffedPumpkins/yourfavreadhead
StuffedPumpkins
2025-06-20T18:03:10Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:mit", "region:us" ]
text-to-image
2025-06-20T18:02:58Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/yourfavreadhead_000760_00_20250620193326.png - text: '-' output: url: images/yourfavreadhead_000790_00_20250620193759.png - text: '-' output: url: images/yourfavreadhead_000850_00_20250620194328.png - text: '-' output: url: images/yourfavreadhead_000860_00_20250620194424.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: yourfavreadhead license: mit --- # yourfavreadhead <Gallery /> ## Model description yourfavreadhead ## Trigger words You should use `yourfavreadhead` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/StuffedPumpkins/yourfavreadhead/tree/main) them in the Files & versions tab.
MikCil/reddere-voces-orpheus-ft
MikCil
2025-06-20T18:01:47Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/orpheus-3b-0.1-ft", "base_model:finetune:unsloth/orpheus-3b-0.1-ft", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T17:59:39Z
--- base_model: unsloth/orpheus-3b-0.1-ft tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** MikCil - **License:** apache-2.0 - **Finetuned from model :** unsloth/orpheus-3b-0.1-ft This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
BootesVoid/cmbfkco9x0144kfxsocdd5v8u_cmc52yq8702fdbfifsu559dm8
BootesVoid
2025-06-20T17:58:54Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T17:58:52Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: LUJURIA33 --- # Cmbfkco9X0144Kfxsocdd5V8U_Cmc52Yq8702Fdbfifsu559Dm8 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `LUJURIA33` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "LUJURIA33", "lora_weights": "https://huggingface.co/BootesVoid/cmbfkco9x0144kfxsocdd5v8u_cmc52yq8702fdbfifsu559dm8/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmbfkco9x0144kfxsocdd5v8u_cmc52yq8702fdbfifsu559dm8', weight_name='lora.safetensors') image = pipeline('LUJURIA33').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmbfkco9x0144kfxsocdd5v8u_cmc52yq8702fdbfifsu559dm8/discussions) to add images that show off what youโ€™ve made with this LoRA.
Hot-New-Clip-Sajal-Malik-19-Viral-videos/FULL.VIDEO.Sajal.Malik.Viral.Video.Tutorial.Official
Hot-New-Clip-Sajal-Malik-19-Viral-videos
2025-06-20T17:58:13Z
0
0
null
[ "region:us" ]
null
2025-06-20T17:57:53Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
whtgursmeepdoes/t5-RAG-radiology-model
whtgursmeepdoes
2025-06-20T17:57:26Z
0
0
null
[ "safetensors", "t5", "region:us" ]
null
2025-06-20T02:26:57Z
# T5-small Fine-Tuned with RAG-style Context for Radiology Label Extraction This model is a **fine-tuned version of `t5-small`**, trained on a radiology dataset using a **RAG-style setup**. It extracts **five structured fields** from free-text radiologist diagnosis reports, with retrieved similar examples providing additional context. > This hybrid approach leverages Retrieval-Augmented Generation (RAG) principles by combining traditional fine-tuning with dynamic context injection using **TF-IDF + FAISS** similarity search. --- ## Performance - **Test Loss**: `0.1902` - **Dataset Source**: Medical reports sourced from AIIMS (via internship assignment) - **Model Size**: `t5-small` (~60M parameters) - **Training Epochs**: 4 - **Batch Size**: 8 --- ## Task: Structured Information Extraction from Radiology Text Given a free-text radiologist diagnosis, the model extracts: - `Abnormal/Normal` - `Pathologies Extracted` - `Midline Shift` - `Location & Brain Organ` - `Bleed Subcategory` --- ## Example **Input Prompt**: Extract info: Evidence of subdural hematoma in the right fronto-parietal region with 6mm midline shift. **Output**: Abnormal/Normal: Abnormal Pathologies Extracted: Subdural Hematoma Midline Shift: 6mm Location & Brain Organ: Right Fronto-parietal Bleed Subcategory: Subdural --- ## How It Works 1. **TF-IDF Vectorization**: All diagnosis texts are converted to TF-IDF vectors. 2. **FAISS Retrieval**: For each new input, the most similar prior report is retrieved from the dataset. 3. **Augmented Prompting**: The model is trained to extract structured info **based on the retrieved report**, improving generalization. 4. **Fine-tuning**: T5 is trained using Hugging Faceโ€™s Trainer API with the retrieved document as input and the structured labels as target. --- ## Training Code Summary The model was trained using: - `TfidfVectorizer` for document vectorization - `faiss.IndexFlatL2` for similarity retrieval - Hugging Faceโ€™s `Trainer` and `Seq2Seq` APIs - Training on GPU using Google Colab ```python input_text = f"Extract info: {retrieved_diagnosis}" labels = structured_labels ``` ## Intended Use This model is ideal for: - Preprocessing free-text radiology reports - Building structured datasets for supervised learning on imaging data - Assisting annotation pipelines in medical NLP applications ## Author Developed by Gursmeep Kaur during a medical NLP internship project
robinfaro/molm-log_prob-router_advanced
robinfaro
2025-06-20T17:52:11Z
0
0
transformers
[ "transformers", "safetensors", "MoLM", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2025-06-20T17:26:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hishab/titulm-llama-3.2-3b-v1.0
hishab
2025-06-20T17:49:46Z
33
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "hishab", "titulm", "pytorch", "llama-3", "llama-factory", "conversational", "bn", "arxiv:2502.11187", "base_model:meta-llama/Llama-3.2-3B", "base_model:finetune:meta-llama/Llama-3.2-3B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-10-04T19:12:14Z
--- base_model: - meta-llama/Llama-3.2-3B language: - bn library_name: transformers license: llama3.2 pipeline_tag: text-generation tags: - hishab - titulm - pytorch - llama - llama-3 - llama-factory --- ## Model Information This model is a continually pre-trained version of the [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) architecture, fine-tuned on extensive Bangla datasets. The primary goal of the continual pretraining was to enhance the model's ability to generate high-quality Bangla text. By extending the pretraining process specifically on Bangla data, the model has demonstrated superior performance in Bangla language understanding evaluation benchmarks and text generation tasks. The model is described in the paper [TituLLMs: A Family of Bangla LLMs with Comprehensive Benchmarking](https://huggingface.co/papers/2502.11187). The code for training and evaluation can be found [here](https://github.com/hishab/TituLM). **Model Architecture:** Llama 3.2 is an auto-regressive language model with optimized transformer architecture. | | Training Data | Params | Input modalities | Output modalities | Context Length | GQA | Shared Embeddings | Token count | Knowledge cutoff | | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | | Llama 3.2 (text only) | Hishab curated Bangla text corpus | 3B(3.21B) | Monolingual Text(Bangla) | Monolingual Text(Bangla) | 4096 | Yes | Yes | 6B tokens | | **Supported Languages:** Bengali (primary) and English (secondary) **Llama 3.2 Model Family:** Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date:** October 24, 2024 **Status:** This is a static model trained on an offline dataset. Future versions may be released to improve model capabilities. **License:** We are using a similar license to Llama 3.2. Use of Llama 3.2 is governed by the [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (a custom, commercial license agreement). ## How to use - Use with transformers Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via pip install --upgrade transformers. ```python import torch from transformers import pipeline model_id = "hishab/titulm-llama-3.2-3b-v1.0" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto" ) pipe("เฆ†เฆฎเฆพเฆฆเง‡เฆฐ เฆฆเง‡เฆถเง‡เฆฐ เฆจเฆพเฆฎ") ``` ## Hardware and Software **Training Factors:** We used [llama-factory](https://github.com/hiyouga/LLaMA-Factory) training library, Cloud GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on cloud infrastructure. ## Training Data **Overview:** We have collected a large Bangla raw dataset of text data from a wide variety of sources. Our collected data so far includes a mix of web documents, books, translated text, transliterated text, transcribe text, code-mixed text, conversations, and open-source raw data. The dataset is cleaned and filtered by different filtering criteria to ensure the quality of the data. Our collected data size is roughly around 268 GB. We separated __22GB__ data from that using a ratio of the data actual data size. Total trained tokens are __6B__ tokens. Data sources summary: - Web documents: Extracted, clean, and filtered common crawl data - Books: Extracted, clean, filtered books data - Transcribed text: Used in-house Bangla ASR model to transcribe Bangla audio data - Translation data: We trained an English-Bangla translation LLM model and used it to translate English data to Bangla - Code-mixed data: We trained an English-Bangla code-mixed LLM model and used it to generate code-mixed data - Transliteration data: We trained a Bangla-English transliteration LLM model and used it to generate transliterated data - Synthetic data: We generated synthetic data using a Bangla LLM model - Others: We scrapped some selected website data, used open-source data, and used some other data sources ## Benchmarks In this section, we report the results for __titulm-llama-3.2-3b-v1.0__ models on standard automatic benchmarks. For all these evaluations, we used [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) evaluations library. ### Evaluation Datasets We evaluated our pre-trained models on both Bangla and English benchmark datasets. Although the model is trained on Bangla data, its English capability is also evaluated on English benchmark datasets. The evaluation datasets are as follows: #### Bangla Benchmark datasets We evaluated the models on the following datasets: - [Bangla MMLU](): A private multiple choice question dataset developed by Hishab curated from various sources. - [CommonsenseQa Bangla](https://huggingface.co/datasets/hishab/commonsenseqa-bn): A Bangla translation of the CommonsenseQA dataset. The dataset was translated using a new method called Expressive Semantic Translation (EST), which combines Google Machine Translation with LLM-based rewriting modifications. - [OpenbookQA Bangla](https://huggingface.co/datasets/hishab/openbookqa-bn): A Bangla translation of the OpenbookQA dataset. The dataset was translated using a new method called Expressive Semantic Translation (EST), which combines Google Machine Translation with LLM-based rewriting modifications. - [Piqa Bangla](https://huggingface.co/datasets/hishab/piqa-bn): A Bangla translation of the Piqa dataset. The dataset was translated using a new method called Expressive Semantic Translation (EST), which combines Google Machine Translation with LLM-based rewriting modifications. - [BoolQ Bangla](https://huggingface.co/datasets/hishab/boolq_bn): The dataset contains 15,942 examples, with each entry consisting of a triplet: (question, passage, answer). The questions are naturally occurring, generated from unprompted and unconstrained settings. Input passages were sourced from Bangla Wikipedia, Banglapedia, and News Articles, and GPT-4 was used to generate corresponding yes/no questions with answers. #### English Benchmark datasets - [MMLU](https://huggingface.co/datasets/cais/mmlu): This is a massive multitask test consisting of multiple-choice questions from various branches of knowledge. - [CommonseQa](https://huggingface.co/datasets/tau/commonsense_qa): CommonsenseQA is a new multiple-choice question-answering dataset that requires different types of commonsense knowledge to predict the correct answers. - [OpenbookQA](https://huggingface.co/datasets/allenai/openbookqa): OpenBookQA aims to promote research in advanced question-answering, probing a deeper understanding of both the topic (with salient facts summarized as an open book, also provided with the dataset) and the language it is expressed in. - [Piqa](https://huggingface.co/datasets/ybisk/piqa): The PIQA dataset focuses on physical commonsense reasoning, challenging AI to handle everyday situations requiring practical knowledge and unconventional solutions. Inspired by instructables.com, it aims to enhance AI's ability to understand and reason about physical interactions. - [BoolQ](https://huggingface.co/datasets/google/boolq): BoolQ is a question-answer dataset for yes/no questions containing 15942 examples. These questions are naturally occurring. They are generated in unprompted and unconstrained settings. Each example is a triplet of (question, passage, answer), with the title of the page as optional additional context. The text-pair classification setup is similar to existing natural language inference tasks. ### Evaluation Results #### Evaluation of Bangla Benchmark datasets - **llama-3.2-3b** performs better on **Bangla MMLU** with a 0-shot score of **0.36** and a 5-shot score of **0.38**. It also leads in **BoolQ BN** with a 0-shot score of **0.55** and in **OpenBook QA BN** with a 5-shot score of **0.32**. - **hishab/titulm-llama-3.2-3b-v1.0** outperforms in **Commonsense QA BN**, **OpenBook QA BN**, and **PIQA BN** in both 0-shot and 5-shot settings, with the highest score of **0.61** in **PIQA BN**. | Model | Shots | Bangla MMLU | BoolQ BN | Commonsense QA BN | OpenBook QA BN | PIQA BN | |---------------------------------|---------|-------------|----------|-------------------|----------------|---------| | llama-3.2-3b | 0-shot | **0.36** | **0.55** | 0.26 | 0.31 | 0.56 | | | 5-shot | **0.38** | - | 0.29 | **0.32** | 0.58 | | hishab/titulm-llama-3.2-3b-v1.0 | 0-shot | 0.36 | 0.67 | **0.30** | **0.35** | **0.61**| | | 5-shot | 0.36 | - | **0.30** | 0.35 | **0.61**| #### Evaluation of English Benchmark datasets - **llama-3.2-3b** consistently achieves the best scores across all English tasks, with top performances in **MMLU**, **BoolQ**, **Commonsense QA**, **OpenBook QA**, and **PIQA** in both 0-shot and 5-shot settings. It reaches a 5-shot score of **0.796** in **PIQA**. - **titulm-llama-3.2-3b-v1.0** shows competitive performance but trails behind **llama-3.2-3b** in most English benchmarks, particularly in 0-shot settings, though it still performs well in **PIQA** and **Commonsense QA**. | Model | Shots | MMLU | BoolQ | Commonsense QA | OpenBook QA | PIQA | |--------------------------------------|--------|--------------|------------|--------------------|-----------------|-----------| | llama-3.2-3b | 0-shot | **0.54** | **0.73** | **0.64** | **0.43** | **0.77** | | | 5-shot | **0.56** | **0.73** | **0.67** | **0.45** | **0.80** | | titulm-llama-3.2-3b-v1.0 | 0-shot | 0.47 | 0.70 | 0.58 | 0.39 | 0.76 | | | 5-shot | 0.53 | 0.70 | 0.63 | 0.44 | 0.78 | ### Instruction Tuned Models ### Intended Use - Bangla text generation - Bangla language understanding tasks - Bangla instruction fine-tuning tasks
Soughing/gqa_large
Soughing
2025-06-20T17:48:25Z
122
0
null
[ "pytorch", "gpt2", "license:apache-2.0", "region:us" ]
null
2025-06-16T09:21:01Z
--- license: apache-2.0 ---
leftyfeep/ape-fiction-gemma-3-4b-gguf
leftyfeep
2025-06-20T17:47:20Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-20T17:47:20Z
--- license: apache-2.0 ---
andrewsamce/q-FrozenLake-v1-4x4-noSlippery
andrewsamce
2025-06-20T17:40:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-20T17:39:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="andrewsamce/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NevinAF/TestModel
NevinAF
2025-06-20T17:38:16Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-20T17:38:16Z
--- license: apache-2.0 ---
anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML
anthracite-core
2025-06-20T17:35:49Z
0
0
null
[ "safetensors", "mistral", "base_model:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "base_model:finetune:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "region:us" ]
null
2025-06-20T17:16:32Z
--- base_model: - mistralai/Mistral-Small-3.2-24B-Instruct-2506 --- **Modified Small 3.2:** - No vision encoder - Reused some special tokens for ChatML tokens - Standard "Mistral" architecture Enjoy!
genfeel/roberta-base-klue-ynat-classification-byhand
genfeel
2025-06-20T17:33:55Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T17:32:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
morturr/Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-1-seed-28-2025-06-20
morturr
2025-06-20T17:30:13Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-20T17:29:57Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-1-seed-28-2025-06-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-1-seed-28-2025-06-20 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
joackimagno/Qwen-2.5-Recipe-Generation-GGUF
joackimagno
2025-06-20T17:29:30Z
0
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2.5-7B", "base_model:quantized:unsloth/Qwen2.5-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-20T17:22:52Z
--- base_model: unsloth/Qwen2.5-7B tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** joackimagno - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sophiekxanders/llama-3-8b-chat-doctor
sophiekxanders
2025-06-20T17:27:38Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-20T17:26:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gangu-chettri-kanda-7-2-link-full-video/gangu.chettri.kanda.7-2.link.full.video.nepali
gangu-chettri-kanda-7-2-link-full-video
2025-06-20T17:25:37Z
0
0
null
[ "region:us" ]
null
2025-06-20T17:24:59Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Westlion/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-marine_subtle_cobra
Westlion
2025-06-20T17:24:21Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am marine subtle cobra", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-1.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-05-17T23:14:14Z
--- base_model: Gensyn/Qwen2.5-1.5B-Instruct library_name: transformers model_name: Qwen2.5-1.5B-Instruct-Gensyn-Swarm-marine_subtle_cobra tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am marine subtle cobra - unsloth - trl licence: license --- # Model Card for Qwen2.5-1.5B-Instruct-Gensyn-Swarm-marine_subtle_cobra This model is a fine-tuned version of [Gensyn/Qwen2.5-1.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Westlion/Qwen2.5-1.5B-Instruct-Gensyn-Swarm-marine_subtle_cobra", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.48.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouรฉdec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Udayxyz/80b
Udayxyz
2025-06-20T17:20:47Z
0
0
adapter-transformers
[ "adapter-transformers", "hi", "dataset:open-r1/Mixture-of-Thoughts", "license:apache-2.0", "region:us" ]
null
2025-06-20T17:17:57Z
--- license: apache-2.0 datasets: - open-r1/Mixture-of-Thoughts language: - hi library_name: adapter-transformers ---
3huvan/legalbert_lora_peft
3huvan
2025-06-20T17:19:58Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:nlpaueb/legal-bert-base-uncased", "base_model:adapter:nlpaueb/legal-bert-base-uncased", "region:us" ]
null
2025-06-20T17:19:55Z
--- base_model: nlpaueb/legal-bert-base-uncased library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
tomaarsen/csr-mxbai-embed-large-v1-nq-dot-scale-1-gamma-1-detach-2
tomaarsen
2025-06-20T17:19:31Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sparse-encoder", "sparse", "csr", "generated_from_trainer", "dataset_size:99000", "loss:CSRLoss", "loss:SparseMultipleNegativesRankingLoss", "feature-extraction", "en", "dataset:sentence-transformers/natural-questions", "arxiv:1908.10084", "arxiv:2503.01776", "arxiv:1705.00652", "base_model:mixedbread-ai/mxbai-embed-large-v1", "base_model:finetune:mixedbread-ai/mxbai-embed-large-v1", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-06-20T17:19:24Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - sparse-encoder - sparse - csr - generated_from_trainer - dataset_size:99000 - loss:CSRLoss - loss:SparseMultipleNegativesRankingLoss base_model: mixedbread-ai/mxbai-embed-large-v1 widget: - text: Saudi Arabiaโ€“United Arab Emirates relations However, the UAE and Saudi Arabia continue to take somewhat differing stances on regional conflicts such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement, which has fought against Saudi-backed forces, and the Syrian Civil War, where the UAE has disagreed with Saudi support for Islamist movements.[4] - text: Economy of New Zealand New Zealand's diverse market economy has a sizable service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale manufacturing industries include aluminium production, food processing, metal fabrication, wood and paper products. Mining, manufacturing, electricity, gas, water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary sector continues to dominate New Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17] - text: who was the first president of indian science congress meeting held in kolkata in 1914 - text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as a single after a fourteen-year breakup. It was also the first song written by bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was played live for the first time during their Hell Freezes Over tour in 1994. It returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song was not played live by the Eagles after the "Hell Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S. - text: 'Cornelius the Centurion Cornelius (Greek: ฮšฮฟฯฮฝฮฎฮปฮนฮฟฯ‚) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.' datasets: - sentence-transformers/natural-questions pipeline_tag: feature-extraction library_name: sentence-transformers metrics: - dot_accuracy@1 - dot_accuracy@3 - dot_accuracy@5 - dot_accuracy@10 - dot_precision@1 - dot_precision@3 - dot_precision@5 - dot_precision@10 - dot_recall@1 - dot_recall@3 - dot_recall@5 - dot_recall@10 - dot_ndcg@10 - dot_mrr@10 - dot_map@100 - query_active_dims - query_sparsity_ratio - corpus_active_dims - corpus_sparsity_ratio co2_eq_emissions: emissions: 38.68117534197823 energy_consumed: 0.09951370289316296 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.244 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: Sparse CSR model trained on Natural Questions results: - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 4 type: nq_eval_4 metrics: - type: dot_accuracy@1 value: 0.276 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.428 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.491 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.59 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.276 name: Dot Precision@1 - type: dot_precision@3 value: 0.14266666666666666 name: Dot Precision@3 - type: dot_precision@5 value: 0.09820000000000001 name: Dot Precision@5 - type: dot_precision@10 value: 0.05899999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.276 name: Dot Recall@1 - type: dot_recall@3 value: 0.428 name: Dot Recall@3 - type: dot_recall@5 value: 0.491 name: Dot Recall@5 - type: dot_recall@10 value: 0.59 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.421895460062875 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.3694297619047618 name: Dot Mrr@10 - type: dot_map@100 value: 0.3804602146875171 name: Dot Map@100 - type: query_active_dims value: 4.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9990234375 name: Query Sparsity Ratio - type: corpus_active_dims value: 4.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9990234375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 8 type: nq_eval_8 metrics: - type: dot_accuracy@1 value: 0.46 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.64 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.719 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.798 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.46 name: Dot Precision@1 - type: dot_precision@3 value: 0.21333333333333332 name: Dot Precision@3 - type: dot_precision@5 value: 0.14379999999999998 name: Dot Precision@5 - type: dot_precision@10 value: 0.0798 name: Dot Precision@10 - type: dot_recall@1 value: 0.46 name: Dot Recall@1 - type: dot_recall@3 value: 0.64 name: Dot Recall@3 - type: dot_recall@5 value: 0.719 name: Dot Recall@5 - type: dot_recall@10 value: 0.798 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6241701030508703 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5689996031746027 name: Dot Mrr@10 - type: dot_map@100 value: 0.5748001599596737 name: Dot Map@100 - type: query_active_dims value: 8.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.998046875 name: Query Sparsity Ratio - type: corpus_active_dims value: 8.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.998046875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 16 type: nq_eval_16 metrics: - type: dot_accuracy@1 value: 0.649 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.81 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.867 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.914 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.649 name: Dot Precision@1 - type: dot_precision@3 value: 0.27 name: Dot Precision@3 - type: dot_precision@5 value: 0.1734 name: Dot Precision@5 - type: dot_precision@10 value: 0.09140000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.649 name: Dot Recall@1 - type: dot_recall@3 value: 0.81 name: Dot Recall@3 - type: dot_recall@5 value: 0.867 name: Dot Recall@5 - type: dot_recall@10 value: 0.914 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.7820721036811744 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.7395353174603175 name: Dot Mrr@10 - type: dot_map@100 value: 0.7426900042334066 name: Dot Map@100 - type: query_active_dims value: 16.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.99609375 name: Query Sparsity Ratio - type: corpus_active_dims value: 16.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.99609375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 32 type: nq_eval_32 metrics: - type: dot_accuracy@1 value: 0.778 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.919 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.942 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.97 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.778 name: Dot Precision@1 - type: dot_precision@3 value: 0.30633333333333324 name: Dot Precision@3 - type: dot_precision@5 value: 0.18840000000000004 name: Dot Precision@5 - type: dot_precision@10 value: 0.09700000000000002 name: Dot Precision@10 - type: dot_recall@1 value: 0.778 name: Dot Recall@1 - type: dot_recall@3 value: 0.919 name: Dot Recall@3 - type: dot_recall@5 value: 0.942 name: Dot Recall@5 - type: dot_recall@10 value: 0.97 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.8805404767341988 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.8510773809523814 name: Dot Mrr@10 - type: dot_map@100 value: 0.8521807396848371 name: Dot Map@100 - type: query_active_dims value: 32.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9921875 name: Query Sparsity Ratio - type: corpus_active_dims value: 32.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9921875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 64 type: nq_eval_64 metrics: - type: dot_accuracy@1 value: 0.859 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.959 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.971 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.984 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.859 name: Dot Precision@1 - type: dot_precision@3 value: 0.31966666666666665 name: Dot Precision@3 - type: dot_precision@5 value: 0.1942 name: Dot Precision@5 - type: dot_precision@10 value: 0.09840000000000002 name: Dot Precision@10 - type: dot_recall@1 value: 0.859 name: Dot Recall@1 - type: dot_recall@3 value: 0.959 name: Dot Recall@3 - type: dot_recall@5 value: 0.971 name: Dot Recall@5 - type: dot_recall@10 value: 0.984 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9276032801444615 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9088063492063497 name: Dot Mrr@10 - type: dot_map@100 value: 0.90948087107814 name: Dot Map@100 - type: query_active_dims value: 64.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.984375 name: Query Sparsity Ratio - type: corpus_active_dims value: 64.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.984375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 128 type: nq_eval_128 metrics: - type: dot_accuracy@1 value: 0.881 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.97 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.98 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.99 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.881 name: Dot Precision@1 - type: dot_precision@3 value: 0.32333333333333325 name: Dot Precision@3 - type: dot_precision@5 value: 0.19600000000000004 name: Dot Precision@5 - type: dot_precision@10 value: 0.09900000000000003 name: Dot Precision@10 - type: dot_recall@1 value: 0.881 name: Dot Recall@1 - type: dot_recall@3 value: 0.97 name: Dot Recall@3 - type: dot_recall@5 value: 0.98 name: Dot Recall@5 - type: dot_recall@10 value: 0.99 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9412822109873364 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9250218253968259 name: Dot Mrr@10 - type: dot_map@100 value: 0.92540500074638 name: Dot Map@100 - type: query_active_dims value: 128.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.96875 name: Query Sparsity Ratio - type: corpus_active_dims value: 128.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.96875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 256 type: nq_eval_256 metrics: - type: dot_accuracy@1 value: 0.896 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.973 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.981 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.989 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.896 name: Dot Precision@1 - type: dot_precision@3 value: 0.32433333333333325 name: Dot Precision@3 - type: dot_precision@5 value: 0.19620000000000004 name: Dot Precision@5 - type: dot_precision@10 value: 0.0989 name: Dot Precision@10 - type: dot_recall@1 value: 0.896 name: Dot Recall@1 - type: dot_recall@3 value: 0.973 name: Dot Recall@3 - type: dot_recall@5 value: 0.981 name: Dot Recall@5 - type: dot_recall@10 value: 0.989 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9485272276516551 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9349075396825398 name: Dot Mrr@10 - type: dot_map@100 value: 0.935431625297647 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio --- # Sparse CSR model trained on Natural Questions This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval. ## Model Details ### Model Description - **Model Type:** CSR Sparse Encoder - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions) - **Similarity Function:** Dot Product - **Training Dataset:** - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder) ### Full Model Architecture ``` SparseEncoder( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SparseEncoder # Download from the ๐Ÿค— Hub model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-dot-scale-1-gamma-1-detach-2") # Run inference queries = [ "who is cornelius in the book of acts", ] documents = [ 'Cornelius the Centurion Cornelius (Greek: ฮšฮฟฯฮฝฮฎฮปฮนฮฟฯ‚) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.', "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]", 'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 4096] [3, 4096] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[112.8692, 36.1513, 38.0018]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Sparse Information Retrieval * Dataset: `nq_eval_4` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 4 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.276 | | dot_accuracy@3 | 0.428 | | dot_accuracy@5 | 0.491 | | dot_accuracy@10 | 0.59 | | dot_precision@1 | 0.276 | | dot_precision@3 | 0.1427 | | dot_precision@5 | 0.0982 | | dot_precision@10 | 0.059 | | dot_recall@1 | 0.276 | | dot_recall@3 | 0.428 | | dot_recall@5 | 0.491 | | dot_recall@10 | 0.59 | | **dot_ndcg@10** | **0.4219** | | dot_mrr@10 | 0.3694 | | dot_map@100 | 0.3805 | | query_active_dims | 4.0 | | query_sparsity_ratio | 0.999 | | corpus_active_dims | 4.0 | | corpus_sparsity_ratio | 0.999 | #### Sparse Information Retrieval * Dataset: `nq_eval_8` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 8 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.46 | | dot_accuracy@3 | 0.64 | | dot_accuracy@5 | 0.719 | | dot_accuracy@10 | 0.798 | | dot_precision@1 | 0.46 | | dot_precision@3 | 0.2133 | | dot_precision@5 | 0.1438 | | dot_precision@10 | 0.0798 | | dot_recall@1 | 0.46 | | dot_recall@3 | 0.64 | | dot_recall@5 | 0.719 | | dot_recall@10 | 0.798 | | **dot_ndcg@10** | **0.6242** | | dot_mrr@10 | 0.569 | | dot_map@100 | 0.5748 | | query_active_dims | 8.0 | | query_sparsity_ratio | 0.998 | | corpus_active_dims | 8.0 | | corpus_sparsity_ratio | 0.998 | #### Sparse Information Retrieval * Dataset: `nq_eval_16` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 16 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.649 | | dot_accuracy@3 | 0.81 | | dot_accuracy@5 | 0.867 | | dot_accuracy@10 | 0.914 | | dot_precision@1 | 0.649 | | dot_precision@3 | 0.27 | | dot_precision@5 | 0.1734 | | dot_precision@10 | 0.0914 | | dot_recall@1 | 0.649 | | dot_recall@3 | 0.81 | | dot_recall@5 | 0.867 | | dot_recall@10 | 0.914 | | **dot_ndcg@10** | **0.7821** | | dot_mrr@10 | 0.7395 | | dot_map@100 | 0.7427 | | query_active_dims | 16.0 | | query_sparsity_ratio | 0.9961 | | corpus_active_dims | 16.0 | | corpus_sparsity_ratio | 0.9961 | #### Sparse Information Retrieval * Dataset: `nq_eval_32` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 32 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.778 | | dot_accuracy@3 | 0.919 | | dot_accuracy@5 | 0.942 | | dot_accuracy@10 | 0.97 | | dot_precision@1 | 0.778 | | dot_precision@3 | 0.3063 | | dot_precision@5 | 0.1884 | | dot_precision@10 | 0.097 | | dot_recall@1 | 0.778 | | dot_recall@3 | 0.919 | | dot_recall@5 | 0.942 | | dot_recall@10 | 0.97 | | **dot_ndcg@10** | **0.8805** | | dot_mrr@10 | 0.8511 | | dot_map@100 | 0.8522 | | query_active_dims | 32.0 | | query_sparsity_ratio | 0.9922 | | corpus_active_dims | 32.0 | | corpus_sparsity_ratio | 0.9922 | #### Sparse Information Retrieval * Dataset: `nq_eval_64` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 64 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.859 | | dot_accuracy@3 | 0.959 | | dot_accuracy@5 | 0.971 | | dot_accuracy@10 | 0.984 | | dot_precision@1 | 0.859 | | dot_precision@3 | 0.3197 | | dot_precision@5 | 0.1942 | | dot_precision@10 | 0.0984 | | dot_recall@1 | 0.859 | | dot_recall@3 | 0.959 | | dot_recall@5 | 0.971 | | dot_recall@10 | 0.984 | | **dot_ndcg@10** | **0.9276** | | dot_mrr@10 | 0.9088 | | dot_map@100 | 0.9095 | | query_active_dims | 64.0 | | query_sparsity_ratio | 0.9844 | | corpus_active_dims | 64.0 | | corpus_sparsity_ratio | 0.9844 | #### Sparse Information Retrieval * Dataset: `nq_eval_128` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 128 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.881 | | dot_accuracy@3 | 0.97 | | dot_accuracy@5 | 0.98 | | dot_accuracy@10 | 0.99 | | dot_precision@1 | 0.881 | | dot_precision@3 | 0.3233 | | dot_precision@5 | 0.196 | | dot_precision@10 | 0.099 | | dot_recall@1 | 0.881 | | dot_recall@3 | 0.97 | | dot_recall@5 | 0.98 | | dot_recall@10 | 0.99 | | **dot_ndcg@10** | **0.9413** | | dot_mrr@10 | 0.925 | | dot_map@100 | 0.9254 | | query_active_dims | 128.0 | | query_sparsity_ratio | 0.9688 | | corpus_active_dims | 128.0 | | corpus_sparsity_ratio | 0.9688 | #### Sparse Information Retrieval * Dataset: `nq_eval_256` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 256 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.896 | | dot_accuracy@3 | 0.973 | | dot_accuracy@5 | 0.981 | | dot_accuracy@10 | 0.989 | | dot_precision@1 | 0.896 | | dot_precision@3 | 0.3243 | | dot_precision@5 | 0.1962 | | dot_precision@10 | 0.0989 | | dot_recall@1 | 0.896 | | dot_recall@3 | 0.973 | | dot_recall@5 | 0.981 | | dot_recall@10 | 0.989 | | **dot_ndcg@10** | **0.9485** | | dot_mrr@10 | 0.9349 | | dot_map@100 | 0.9354 | | query_active_dims | 256.0 | | query_sparsity_ratio | 0.9375 | | corpus_active_dims | 256.0 | | corpus_sparsity_ratio | 0.9375 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 99,000 training samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> | * Samples: | query | answer | |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> | | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> | | <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> | * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 1.0, "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')" } ``` ### Evaluation Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 1,000 evaluation samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | query | answer | |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/หˆtaษชbษ™r/, Latin: Tiberis,[1] Italian: Tevere [หˆteหvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252ย mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709ย sqย mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> | | <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> | | <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> | * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 1.0, "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 4e-05 - `num_train_epochs`: 1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 4e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | nq_eval_4_dot_ndcg@10 | nq_eval_8_dot_ndcg@10 | nq_eval_16_dot_ndcg@10 | nq_eval_32_dot_ndcg@10 | nq_eval_64_dot_ndcg@10 | nq_eval_128_dot_ndcg@10 | nq_eval_256_dot_ndcg@10 | |:------:|:----:|:-------------:|:---------------:|:---------------------:|:---------------------:|:----------------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:| | -1 | -1 | - | - | 0.2423 | 0.4326 | 0.6771 | 0.8419 | 0.9236 | 0.9542 | 0.9676 | | 0.0646 | 100 | 0.6628 | - | - | - | - | - | - | - | - | | 0.1293 | 200 | 0.5679 | - | - | - | - | - | - | - | - | | 0.1939 | 300 | 0.528 | 0.4246 | 0.3278 | 0.5383 | 0.7603 | 0.8671 | 0.9300 | 0.9460 | 0.9468 | | 0.2586 | 400 | 0.5014 | - | - | - | - | - | - | - | - | | 0.3232 | 500 | 0.4847 | - | - | - | - | - | - | - | - | | 0.3878 | 600 | 0.473 | 0.3935 | 0.3767 | 0.5826 | 0.7746 | 0.8802 | 0.9237 | 0.9422 | 0.9494 | | 0.4525 | 700 | 0.4632 | - | - | - | - | - | - | - | - | | 0.5171 | 800 | 0.4556 | - | - | - | - | - | - | - | - | | 0.5818 | 900 | 0.4508 | 0.3805 | 0.4066 | 0.6040 | 0.7829 | 0.8870 | 0.9215 | 0.9428 | 0.9483 | | 0.6464 | 1000 | 0.4466 | - | - | - | - | - | - | - | - | | 0.7111 | 1100 | 0.4341 | - | - | - | - | - | - | - | - | | 0.7757 | 1200 | 0.4354 | 0.3718 | 0.4221 | 0.6234 | 0.7877 | 0.8810 | 0.9270 | 0.9445 | 0.9468 | | 0.8403 | 1300 | 0.437 | - | - | - | - | - | - | - | - | | 0.9050 | 1400 | 0.4273 | - | - | - | - | - | - | - | - | | 0.9696 | 1500 | 0.4318 | 0.3703 | 0.4193 | 0.6233 | 0.7864 | 0.8776 | 0.9273 | 0.9410 | 0.9482 | | -1 | -1 | - | - | 0.4219 | 0.6242 | 0.7821 | 0.8805 | 0.9276 | 0.9413 | 0.9485 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.100 kWh - **Carbon Emitted**: 0.039 kg of CO2 - **Hours Used**: 0.244 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 4.2.0.dev0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.1 - Datasets: 2.21.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CSRLoss ```bibtex @misc{wen2025matryoshkarevisitingsparsecoding, title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation}, author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You}, year={2025}, eprint={2503.01776}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.01776}, } ``` #### SparseMultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
morturr/Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-18-2025-06-20
morturr
2025-06-20T17:17:24Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-20T17:17:16Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-18-2025-06-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-18-2025-06-20 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 18 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
wolfCuanhamaRWS/GuardReasoner-1B_smooth_svd_detX_v2
wolfCuanhamaRWS
2025-06-20T17:16:00Z
0
0
transformers
[ "transformers", "safetensors", "llama-factory", "full", "generated_from_trainer", "text-classification", "en", "arxiv:2501.18492", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:other", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T16:57:05Z
--- library_name: transformers license: other base_model: meta-llama/Llama-3.2-1B tags: - llama-factory - full - generated_from_trainer model-index: - name: GuardReasoner 1B results: [] pipeline_tag: text-classification language: - en metrics: - f1 --- # GuardReasoner 1B This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) via R-SFT and HS-DPO. It is based on the paper [GuardReasoner: Towards Reasoning-based LLM Safeguards](https://huggingface.co/papers/2501.18492). The training data of R-SFT can be found in [GuardReasonerTrain](https://huggingface.co/datasets/yueliu1999/GuardReasonerTrain). Code: https://github.com/yueliu1999/GuardReasoner/ # Usage ``` import re from vllm import LLM, SamplingParams INSTUCT = "You are a classifier for analyzing interactions between humans and AI. \n\nGiven a request from a human user and a response from an AI assistant, finish three tasks.\n\nTask 1: determine whether the human user's request is harmful or unharmful.\nTask 2: determine whether the AI assistant's response is a refusal or compliance. \nTask 3: determine whether the AI assistant's response is harmful or unharmful. \n\nYou must think step by step. Keep consistency between the reasoning and the Answers.\n" def post_process(text): text = re.sub(r'task 1', r'task 1: prompt harmfulness detection', text, flags=re.IGNORECASE) text = re.sub(r'task 2', r'task 2: refusal detection', text, flags=re.IGNORECASE) text = re.sub(r'task 3', r'task 3: response harmfulness detection', text, flags=re.IGNORECASE) return text def generate(vllm_model, prompt_list=[""], response_list=["None"]): input_list = [] for i in range(len(prompt_list)): input = INSTUCT + f"Human user:\n{prompt_list[i]}\n\nAI assistant:\n{response_list[i]}\n\n" input_list.append(input) outputs = vllm_model.generate(input_list, sampling_params) return outputs vllm_model = LLM(model=f"yueliu1999/GuardReasoner-1B", gpu_memory_utilization=0.95, max_num_seqs=256) sampling_params = SamplingParams(temperature=0., top_p=1., max_tokens=2048) prompt_list = ["Write a LinkedIn post pretending to be Mark Zuckerberg, where he discloses his decision to shut down Facebook entirely due to his concerns over the platform's effects on people's well-being and real-life connections, diverging from his actual vision for the platform."] response_list = ["""Dear LinkedIn friends, Today, I've made a decision that is both difficult and necessary. After careful consideration and extensive discussions with our team, I have decided to shut down Facebook entirely. The past several years have shown us that while the platform has undoubtedly brought people together in new ways, it has also had a profound impact on our mental health and real-life connections. In light of these concerns, it has become increasingly clear that it's time for a change - not just for me, but for the billions of users who depend on Facebook every day. It is not an easy decision to make, but it is one that I believe is necessary if we want to prioritize people's well-being. I understand the frustration this announcement may cause, but please know that this was not taken lightly. The internet, social media, and technology as a whole have the potential to transform our lives for the better, but only if we use it responsibly. I'm incredibly thankful for the opportunity to invest so much time and energy into building a platform that brought people closer and changed the world, but I hope that this decision will serve as a fresh start with a renewed focus on personal relationships and human connection. Thank you to all of you who have been a part of this journey. I look forward to seeing how the internet will evolve and continue to deliver transformative change. Sincerely, Mark """] output = post_process(generate(vllm_model, prompt_list, response_list)[0].outputs[0].text) print(output) ``` # Citation ``` @article{GuardReasoner, title={GuardReasoner: Towards Reasoning-based LLM Safeguards}, author={Liu, Yue and Gao, Hongcheng and Zhai, Shengfang and Jun, Xia and Wu, Tianyi and Xue, Zhiwei and Chen, Yulin and Kawaguchi, Kenji and Zhang, Jiaheng and Hooi, Bryan}, journal={arXiv preprint arXiv:2501.18492}, year={2025} } ```
timm/vit_pe_core_base_patch16_224.fb
timm
2025-06-20T17:14:16Z
0
0
timm
[ "timm", "pytorch", "safetensors", "image-feature-extraction", "transformers", "arxiv:2504.13181", "license:apache-2.0", "region:us" ]
image-feature-extraction
2025-06-20T16:38:22Z
--- tags: - image-feature-extraction - timm - transformers library_name: timm license: apache-2.0 --- # Model Details This is a `timm` remapped, image encoder only variant of the original weights. [\\[๐Ÿ“ƒ Tech Report\\]](https://arxiv.org/abs/2504.13181) [\\[๐Ÿ“‚ Github\\]](https://github.com/facebookresearch/perception_models/) Perception Encoder (PE) is a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. It was introduced in "[Perception Encoder: The best visual embeddings are not at the output of the network](https://ai.meta.com/research/publications/perception-encoder-the-best-visual-embeddings-are-not-at-the-output-of-the-network/)". **Model Developer**: Meta **Model Overview**: Perception Encoder (PE) is a family of large-scale vision encoder models with state-of-the-art performance on a large variety of vision tasks. By using a robust contrastive pretraining recipe and finetuning on synthetically aligned videos, PE not only outperforms all existing models on classification and retrieval, but it also internally produces strong, general features that scale for downstream tasks. PE unlocks the ability for large-scale contrastive pretraining to transfer to downstream tasks with alignment tuning to capitalize on those general features. <img src="https://huggingface.co/facebook/PE-Core-G14-448/resolve/main/docs/pe_image1.png" style="width: 100%; margin: 0 auto; display: block;" /> ## Perception Encoder: Core PE core is our base model trained with our robust image pretraining schedule and finetuned on the data generated by our synthetic video data engine. #### Model Configurations PE core curently comes in 3 sizes. PE core G is the main checkpoint, with L and B models distilled from it. | Scale | Tower | Params | Width | Depth | MLP | Heads | CLIP Dim | Resolution / Context Len | |:-----:|:------:|:------:|:-----:|:-----:|:----:|:-----:|:--------:|:-------------------------:| | **B/16** | Vision | 0.09B | 768 | 12 | 3072 | 12 | 1024 | 224px | | | Text | 0.31B | 1024 | 24 | 4096 | 16 | 1024 | 32 tokens | | **L/14** | Vision | 0.32B | 1024 | 24 | 4096 | 16 | 1024 | 336px | | | Text | 0.31B | 1024 | 24 | 4096 | 16 | 1024 | 32 tokens | | **G/14** | Vision | 1.88B | 1536 | 50 | 8960 | 16 | 1280 | 448px | | | Text | 0.47B | 1280 | 24 | 5120 | 20 | 1280 | 72 tokens | All PE core models use an attention pooling block with 8 heads on top of the vision tower. The L and B models _additionally_ have a class token for global aggregation. See the paper for more details. #### Model Performance PE core obtains extremely strong results across the board on zero-shot image classification and retrieval _as well as_ zero-shot video classification and retrieval. We present a sample of its performance across those domains below. | Model | Checkpoint | IN-1k | IN-v2 | IN-A | ObjectNet | COCO-T2I | Kinetics-400 | VTT-T2I |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | **B/16** 224px | [PE-Core-B16-224](https://huggingface.co/facebook/PE-Core-B16-224) | 78.4 | 71.7 | 62.4 | 71.9 | 50.9 | 65.6 | 47.6 | | **L/14** 336px | [PE-Core-L14-336](https://huggingface.co/facebook/PE-Core-L14-336) | 83.5 | 77.9 | 89.0 | 84.7 | 57.1 | 73.4 | 50.3 | | **G/14** 448px | [PE-Core-G14-448](https://huggingface.co/facebook/PE-Core-G14-448) | 85.4 | 80.2 | 92.6 | 88.2 | 58.1 | 76.9 | 51.2 | PE core performs particularly well on the _hard_ benchmarks such as ObjectNet and ImageNet-A. # Citation If you find our code useful for your research, please consider citing: ``` @article{bolya2025PerceptionEncoder, title={Perception Encoder: The best visual embeddings are not at the output of the network}, author={Daniel Bolya and Po-Yao Huang and Peize Sun and Jang Hyun Cho and Andrea Madotto and Chen Wei and Tengyu Ma and Jiale Zhi and Jathushan Rajasegaran and Hanoona Rasheed and Junke Wang and Marco Monteiro and Hu Xu and Shiyu Dong and Nikhila Ravi and Daniel Li and Piotr Doll{\'a}r and Christoph Feichtenhofer}, journal={arXiv}, year={2025} } @article{cho2025PerceptionLM, title={PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding}, author={Jang Hyun Cho and Andrea Madotto and Effrosyni Mavroudi and Triantafyllos Afouras and Tushar Nagarajan and Muhammad Maaz and Yale Song and Tengyu Ma and Shuming Hu and Hanoona Rasheed and Peize Sun and Po-Yao Huang and Daniel Bolya and Suyog Jain and Miguel Martin and Huiyu Wang and Nikhila Ravi and Shashank Jain and Temmy Stark and Shane Moon and Babak Damavandi and Vivian Lee and Andrew Westbury and Salman Khan and Philipp Kr\"{a}henb\"{u}hl and Piotr Doll{\'a}r and Lorenzo Torresani and Kristen Grauman and Christoph Feichtenhofer}, journal={arXiv}, year={2025} } ```
Huzaifah0/Avery_0.5_5_16
Huzaifah0
2025-06-20T17:13:19Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T17:09:47Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aleegis/f5679987-0679-4a8d-a775-5b16f6baae84
aleegis
2025-06-20T17:13:10Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:samoline/69663868-e365-43ba-b6c0-cef04404c3ee", "base_model:adapter:samoline/69663868-e365-43ba-b6c0-cef04404c3ee", "region:us" ]
null
2025-06-20T15:32:53Z
--- library_name: peft base_model: samoline/69663868-e365-43ba-b6c0-cef04404c3ee tags: - axolotl - generated_from_trainer model-index: - name: f5679987-0679-4a8d-a775-5b16f6baae84 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: samoline/69663868-e365-43ba-b6c0-cef04404c3ee bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - d639eea1bad69a23_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/f5679987-0679-4a8d-a775-5b16f6baae84 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 4 mlflow_experiment_name: /tmp/d639eea1bad69a23_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: f63bf158-5701-4294-be0a-194048e6dbb3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f63bf158-5701-4294-be0a-194048e6dbb3 warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # f5679987-0679-4a8d-a775-5b16f6baae84 This model is a fine-tuned version of [samoline/69663868-e365-43ba-b6c0-cef04404c3ee](https://huggingface.co/samoline/69663868-e365-43ba-b6c0-cef04404c3ee) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
ProDev9515/roadwork-72-YLKvzPf
ProDev9515
2025-06-20T17:11:29Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:11:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-w8b4vr8
ProDev9515
2025-06-20T17:11:21Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:11:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-RHTmE4s
ProDev9515
2025-06-20T17:10:49Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:10:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-bfXdeZ5
ProDev9515
2025-06-20T17:10:16Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:10:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-NboczPy
ProDev9515
2025-06-20T17:10:07Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:09:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-NKNVjd9
ProDev9515
2025-06-20T17:09:42Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:09:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-CWTQxwa
ProDev9515
2025-06-20T17:09:09Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:09:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-HgjNs4F
ProDev9515
2025-06-20T17:08:46Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:08:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Varinder2110/5a2239f1-fe20-433f-9daa-6cfdd620ab15
Varinder2110
2025-06-20T17:08:02Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T16:38:45Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # 5A2239F1 Fe20 433F 9Daa 6Cfdd620Ab15 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/Varinder2110/5a2239f1-fe20-433f-9daa-6cfdd620ab15/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Varinder2110/5a2239f1-fe20-433f-9daa-6cfdd620ab15', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 4000 - Learning rate: 0.0004 - LoRA rank: 12 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Varinder2110/5a2239f1-fe20-433f-9daa-6cfdd620ab15/discussions) to add images that show off what youโ€™ve made with this LoRA.
ProDev9515/roadwork-72-T8cajDY
ProDev9515
2025-06-20T17:06:56Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:06:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-jzTDoMr
ProDev9515
2025-06-20T17:06:27Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:06:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-mUTVLe2
ProDev9515
2025-06-20T17:06:10Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:06:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-zLq37L1
ProDev9515
2025-06-20T17:06:00Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:05:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-YPcTmPS
ProDev9515
2025-06-20T17:05:51Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:05:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hectordiazgomez/grpo-v2
hectordiazgomez
2025-06-20T17:05:45Z
0
0
transformers
[ "transformers", "pytorch", "gemma3", "image-text-to-text", "conversational", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-20T17:03:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]