modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-01 06:28:43
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 546
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-01 06:27:36
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
aroot/mbart-finetuned-eng-guj
|
aroot
| 2023-06-30T14:30:51Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-06-22T00:44:05Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-guj
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-guj
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5996
- Bleu: 1.8882
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.11.0
|
team-lucid/hubert-large-korean
|
team-lucid
| 2023-06-30T14:27:34Z | 474 | 10 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"safetensors",
"hubert",
"feature-extraction",
"speech",
"audio",
"automatic-speech-recognition",
"custom_code",
"ko",
"arxiv:2106.07447",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-06-04T07:13:38Z |
---
license: apache-2.0
language:
- ko
library_name: transformers
pipeline_tag: automatic-speech-recognition
tags:
- speech
- audio
---
# hubert-large-korean
## Model Details
Hubert(Hidden-Unit BERT)๋ Facebook์์ ์ ์ํ Speech Representation Learning ๋ชจ๋ธ์
๋๋ค.
Hubert๋ ๊ธฐ์กด์ ์์ฑ ์ธ์ ๋ชจ๋ธ๊ณผ ๋ฌ๋ฆฌ, ์์ฑ ์ ํธ๋ฅผ raw waveform์์ ๋ฐ๋ก ํ์ตํ๋ self-supervised learning ๋ฐฉ์์ ์ฌ์ฉํฉ๋๋ค.
์ด ์ฐ๊ตฌ๋ ๊ตฌ๊ธ์ TPU Research Cloud(TRC)๋ฅผ ํตํด ์ง์๋ฐ์ Cloud TPU๋ก ํ์ต๋์์ต๋๋ค.
### Model Description
<table>
<tr>
<td colspan="2"></td>
<td>Base</td>
<td>Large</td>
</tr>
<tr>
<td rowspan="3">CNN Encoder</td>
<td>strides</td>
<td colspan="2">5, 2, 2, 2, 2, 2, 2</td>
</tr>
<tr>
<td>kernel width</td>
<td colspan="2">10, 3, 3, 3, 3, 2, 2</td>
</tr>
<tr>
<td>channel</td>
<td colspan="2">512</td>
</tr>
<tr>
<td rowspan="4">Transformer Encoder</td>
<td>Layer</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>embedding dim</td>
<td>768</td>
<td>1024</td>
</tr>
<tr>
<td>inner FFN dim</td>
<td>3072</td>
<td>4096</td>
</tr>
<tr>
<td>attention heads</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Projection</td>
<td>dim</td>
<td>256</td>
<td>768</td>
</tr>
<tr>
<td colspan="2">Params</td>
<td>95M</td>
<td>317M </td>
</tr>
</table>
## How to Get Started with the Model
### Pytorch
```py
import torch
from transformers import HubertModel
model = HubertModel.from_pretrained("team-lucid/hubert-large-korean")
wav = torch.ones(1, 16000)
outputs = model(wav)
print(f"Input: {wav.shape}") # [1, 16000]
print(f"Output: {outputs.last_hidden_state.shape}") # [1, 49, 768]
```
### JAX/Flax
```py
import jax.numpy as jnp
from transformers import FlaxAutoModel
model = FlaxAutoModel.from_pretrained("team-lucid/hubert-large-korean", trust_remote_code=True)
wav = jnp.ones((1, 16000))
outputs = model(wav)
print(f"Input: {wav.shape}") # [1, 16000]
print(f"Output: {outputs.last_hidden_state.shape}") # [1, 49, 768]
```
## Training Details
### Training Data
ํด๋น ๋ชจ๋ธ์ ๊ณผํ๊ธฐ์ ์ ๋ณดํต์ ๋ถ์ ์ฌ์์ผ๋ก ํ๊ตญ์ง๋ฅ์ ๋ณด์ฌํ์งํฅ์์ ์ง์์ ๋ฐ์
๊ตฌ์ถ๋ [์์ ๋ํ ์์ฑ(์ผ๋ฐ๋จ์ฌ)](https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=109), [๋คํ์ ์์ฑํฉ์ฑ ๋ฐ์ดํฐ](https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=542), [๋ฐฉ์ก ์ฝํ
์ธ ๋ํ์ฒด ์์ฑ์ธ์ ๋ฐ์ดํฐ](https://www.aihub.or.kr/aihubdata/data/view.do?dataSetSn=463)
์์ ์ฝ 4,000์๊ฐ์ ์ถ์ถํด ํ์ต๋์์ต๋๋ค.
### Training Procedure
[์ ๋
ผ๋ฌธ](https://arxiv.org/pdf/2106.07447.pdf)๊ณผ ๋์ผํ๊ฒ MFCC ๊ธฐ๋ฐ์ผ๋ก Base ๋ชจ๋ธ์ ํ์ตํ ๋ค์, 500 cluster๋ก k-means๋ฅผ ์ํํด ๋ค์ Base์
Large ๋ชจ๋ธ์ ํ์ตํ์ต๋๋ค.
#### Training Hyperparameters
| Hyperparameter | Base | Large |
|:--------------------|---------|--------:|
| Warmup Steps | 32,000 | 32,000 |
| Learning Rates | 5e-4 | 1.5e-3 |
| Batch Size | 128 | 128 |
| Weight Decay | 0.01 | 0.01 |
| Max Steps | 400,000 | 400,000 |
| Learning Rate Decay | 0.1 | 0.1 |
| \\(Adam\beta_1\\) | 0.9 | 0.9 |
| \\(Adam\beta_2\\) | 0.99 | 0.99 |
|
jiekeshi/CodeBERT-Adversarial-Finetuned-Vulnerability-Prediction
|
jiekeshi
| 2023-06-30T14:23:23Z | 0 | 1 | null |
[
"pytorch",
"arxiv:2201.08698",
"license:mit",
"region:us"
] | null | 2023-06-30T14:12:57Z |
---
license: mit
---
This is the adversarially finetuned version of CodeBERT that has been trained for the Vulnerability Prediction task using [Devign](https://sites.google.com/view/devign) dataset.
The adversarial examples used for finetuning are generated from our ICSE 2022 paper titled ["**Natural Attack for Pre-trained Models of Code**"](https://arxiv.org/abs/2201.08698).
If you are interested in using this model, please check our **GitHub repository: https://github.com/soarsmu/attack-pretrain-models-of-code**. If you use the model or any code from our repo in your paper, please kindly cite:
```
@inproceedings{10.1145/3510003.3510146,
author = {Yang, Zhou and Shi, Jieke and He, Junda and Lo, David},
title = {Natural Attack for Pre-Trained Models of Code},
year = {2022},
isbn = {9781450392211},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3510003.3510146},
doi = {10.1145/3510003.3510146},
abstract = {Pre-trained models of code have achieved success in many important software engineering tasks. However, these powerful models are vulnerable to adversarial attacks that slightly perturb model inputs to make a victim model produce wrong outputs. Current works mainly attack models of code with examples that preserve operational program semantics but ignore a fundamental requirement for adversarial example generation: perturbations should be natural to human judges, which we refer to as naturalness requirement.In this paper, we propose ALERT (Naturalness Aware Attack), a black-box attack that adversarially transforms inputs to make victim models produce wrong outputs. Different from prior works, this paper considers the natural semantic of generated examples at the same time as preserving the operational semantic of original inputs. Our user study demonstrates that human developers consistently consider that adversarial examples generated by ALERT are more natural than those generated by the state-of-the-art work by Zhang et al. that ignores the naturalness requirement. On attacking CodeBERT, our approach can achieve attack success rates of 53.62\%, 27.79\%, and 35.78\% across three downstream tasks: vulnerability prediction, clone detection and code authorship attribution. On GraphCodeBERT, our approach can achieve average success rates of 76.95\%, 7.96\% and 61.47\% on the three tasks. The above outperforms the baseline by 14.07\% and 18.56\% on the two pre-trained models on average. Finally, we investigated the value of the generated adversarial examples to harden victim models through an adversarial fine-tuning procedure and demonstrated the accuracy of CodeBERT and GraphCodeBERT against ALERT-generated adversarial examples increased by 87.59\% and 92.32\%, respectively.},
booktitle = {Proceedings of the 44th International Conference on Software Engineering},
pages = {1482โ1493},
numpages = {12},
keywords = {pre-trained models, adversarial attack, genetic algorithm},
location = {Pittsburgh, Pennsylvania},
series = {ICSE '22}
}
```
|
jiekeshi/GraphCodeBERT-Adversarial-Finetuned-Vulnerability-Prediction
|
jiekeshi
| 2023-06-30T14:22:24Z | 0 | 0 | null |
[
"pytorch",
"arxiv:2201.08698",
"license:mit",
"region:us"
] | null | 2023-06-30T14:16:04Z |
---
license: mit
---
This is the adversarially finetuned version of GraphCodeBERT that has been trained for the Vulnerability Prediction task using [Devign](https://sites.google.com/view/devign) dataset.
The adversarial examples used for finetuning are generated from our ICSE 2022 paper titled ["**Natural Attack for Pre-trained Models of Code**"](https://arxiv.org/abs/2201.08698).
If you are interested in using this model, please check our **GitHub repository: https://github.com/soarsmu/attack-pretrain-models-of-code**. If you use the model or any code from our repo in your paper, please kindly cite:
```
@inproceedings{10.1145/3510003.3510146,
author = {Yang, Zhou and Shi, Jieke and He, Junda and Lo, David},
title = {Natural Attack for Pre-Trained Models of Code},
year = {2022},
isbn = {9781450392211},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3510003.3510146},
doi = {10.1145/3510003.3510146},
abstract = {Pre-trained models of code have achieved success in many important software engineering tasks. However, these powerful models are vulnerable to adversarial attacks that slightly perturb model inputs to make a victim model produce wrong outputs. Current works mainly attack models of code with examples that preserve operational program semantics but ignore a fundamental requirement for adversarial example generation: perturbations should be natural to human judges, which we refer to as naturalness requirement.In this paper, we propose ALERT (Naturalness Aware Attack), a black-box attack that adversarially transforms inputs to make victim models produce wrong outputs. Different from prior works, this paper considers the natural semantic of generated examples at the same time as preserving the operational semantic of original inputs. Our user study demonstrates that human developers consistently consider that adversarial examples generated by ALERT are more natural than those generated by the state-of-the-art work by Zhang et al. that ignores the naturalness requirement. On attacking CodeBERT, our approach can achieve attack success rates of 53.62\%, 27.79\%, and 35.78\% across three downstream tasks: vulnerability prediction, clone detection and code authorship attribution. On GraphCodeBERT, our approach can achieve average success rates of 76.95\%, 7.96\% and 61.47\% on the three tasks. The above outperforms the baseline by 14.07\% and 18.56\% on the two pre-trained models on average. Finally, we investigated the value of the generated adversarial examples to harden victim models through an adversarial fine-tuning procedure and demonstrated the accuracy of CodeBERT and GraphCodeBERT against ALERT-generated adversarial examples increased by 87.59\% and 92.32\%, respectively.},
booktitle = {Proceedings of the 44th International Conference on Software Engineering},
pages = {1482โ1493},
numpages = {12},
keywords = {pre-trained models, adversarial attack, genetic algorithm},
location = {Pittsburgh, Pennsylvania},
series = {ICSE '22}
}
```
|
WALIDALI/rahalistaly
|
WALIDALI
| 2023-06-30T14:13:00Z | 31 | 1 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-06-30T14:09:18Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### rahalistaly Dreambooth model trained by WALIDALI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
aroot/mbart-finetuned-eng-mya
|
aroot
| 2023-06-30T14:11:48Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-06-22T00:43:54Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-mya
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-mya
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1303
- Bleu: 3.2753
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.11.0
|
odiaz1066/LunarLander-v2-LunarLander-Show-seed42
|
odiaz1066
| 2023-06-30T14:05:23Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-30T14:05:19Z |
---
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 227.09 +/- 33.24
name: mean_reward
verified: false
---
# (CleanRL) **DQN** Agent Playing **LunarLander-v2**
This is a trained model of a DQN agent playing LunarLander-v2.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/LunarLander-Show.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[LunarLander-Show]"
python -m cleanrl_utils.enjoy --exp-name LunarLander-Show --env-id LunarLander-v2
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/odiaz1066/LunarLander-v2-LunarLander-Show-seed42/raw/main/dqn.py
curl -OL https://huggingface.co/odiaz1066/LunarLander-v2-LunarLander-Show-seed42/raw/main/pyproject.toml
curl -OL https://huggingface.co/odiaz1066/LunarLander-v2-LunarLander-Show-seed42/raw/main/poetry.lock
poetry install --all-extras
python dqn.py --track --save-model --capture-video --exp-name LunarLander-Show --seed 42 --env-id LunarLander-v2 --upload-model --hf-entity odiaz1066
```
# Hyperparameters
```python
{'batch_size': 128,
'buffer_size': 10000,
'capture_video': True,
'cuda': True,
'end_e': 0.05,
'env_id': 'LunarLander-v2',
'exp_name': 'LunarLander-Show',
'exploration_fraction': 0.5,
'gamma': 0.99,
'hf_entity': 'odiaz1066',
'learning_rate': 0.00025,
'learning_starts': 10000,
'num_envs': 1,
'save_model': True,
'seed': 42,
'start_e': 1,
'target_network_frequency': 500,
'tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 500000,
'track': True,
'train_frequency': 10,
'upload_model': True,
'wandb_entity': None,
'wandb_project_name': 'lagomorph'}
```
|
lukaszkolodziejczyk/q-FrozenLake-v1-4x4-noSlippery
|
lukaszkolodziejczyk
| 2023-06-30T14:01:39Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-30T14:01:37Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="lukaszkolodziejczyk/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
MarieAngeA13/Sentiment_Analysis
|
MarieAngeA13
| 2023-06-30T13:58:25Z | 5 | 0 |
transformers
|
[
"transformers",
"bert",
"sentiment",
"sentiment-analysis",
"text-classification",
"en",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-23T10:18:35Z |
---
language:
- en
tags:
- sentiment
- bert
- sentiment-analysis
- transformers
pipeline_tag: text-classification
---
User Comment Sentiment Analysis
This model aims to analyze user comments on products and extracting the expressed sentiments.
User ratings on the internet do not always provide detailed qualitative information about their experience.
Therefore, it is important to go beyond these ratings and extract more insightful information that can help a brand improve their product or service.
Objective
The model utilizes the BERT architecture and is trained on a dataset of user comments with sentiment labels.
The model is capable of analyzing comments and extracting sentiments such as positive, negative, or neutral.
Features
Sentiment Classification: The model can classify user comments into positive, negative, or neutral sentiments, providing an overall indication of the expressed opinion.
Improvement Suggestions: In cases where a comment expresses a negative or neutral sentiment, the model suggests an improved version of the text with a more positive sentiment.
This can help businesses understand consumer reactions and identify areas for product or service improvement.
Usage
To use this sentiment analysis system, follow these steps:
Install the required dependencies by running the command pip install -r requirements.txt.
Once the training is complete, the best-trained model will be saved in the best_model_state.bin file.
To make predictions on new comments, use the analyze_sentiment(comment_text) function, replacing comment_text with the actual comment text to analyze.
The model will return the sentiment expressed in the comment.
To suggest an improved version of a comment, use the suggest_improved_text(comment_text) function.
If the comment expresses a negative or neutral sentiment, the function will generate an improved version of the text with a more positive sentiment. Otherwise, the original text will be returned without modification.
|
jiekeshi/CodeBERT-25MB-Clone-Detection
|
jiekeshi
| 2023-06-30T13:55:48Z | 0 | 0 | null |
[
"pytorch",
"arxiv:2208.07120",
"license:mit",
"region:us"
] | null | 2023-06-30T13:06:06Z |
---
license: mit
---
This is the 25 MB compressed version of CodeBERT that has been fine-tuned for the Clone Detection task using [BigCloneBench](https://github.com/clonebench/BigCloneBench.git) dataset.
The compression is based on our ASE 2022 paper named ["**Compressing Pre-trained Models of Code into 3 MB**"](https://arxiv.org/abs/2208.07120).
If you are interested in using this model, please check our **GitHub repository: https://github.com/soarsmu/Compressor.git**. If you use the model or any code from our repo in your paper, please kindly cite:
```
@inproceedings{shi2022compressing,
author = {Shi, Jieke and Yang, Zhou and Xu, Bowen and Kang, Hong Jin and Lo, David},
title = {Compressing Pre-Trained Models of Code into 3 MB},
year = {2023},
isbn = {9781450394758},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3551349.3556964},
doi = {10.1145/3551349.3556964},
booktitle = {Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering},
articleno = {24},
numpages = {12},
keywords = {Pre-Trained Models, Model Compression, Genetic Algorithm},
location = {Rochester, MI, USA},
series = {ASE '22}
}
```
|
jiekeshi/CodeBERT-3MB-Clone-Detection
|
jiekeshi
| 2023-06-30T13:55:31Z | 0 | 0 | null |
[
"pytorch",
"arxiv:2208.07120",
"license:mit",
"region:us"
] | null | 2023-06-30T13:00:19Z |
---
license: mit
---
This is the 3 MB compressed version of CodeBERT that has been fine-tuned for the Clone Detection task using [BigCloneBench](https://github.com/clonebench/BigCloneBench.git) dataset.
The compression is based on our ASE 2022 paper named ["**Compressing Pre-trained Models of Code into 3 MB**"](https://arxiv.org/abs/2208.07120).
If you are interested in using this model, please check our **GitHub repository: https://github.com/soarsmu/Compressor.git**. If you use the model or any code from our repo in your paper, please kindly cite:
```
@inproceedings{shi2022compressing,
author = {Shi, Jieke and Yang, Zhou and Xu, Bowen and Kang, Hong Jin and Lo, David},
title = {Compressing Pre-Trained Models of Code into 3 MB},
year = {2023},
isbn = {9781450394758},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3551349.3556964},
doi = {10.1145/3551349.3556964},
booktitle = {Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering},
articleno = {24},
numpages = {12},
keywords = {Pre-Trained Models, Model Compression, Genetic Algorithm},
location = {Rochester, MI, USA},
series = {ASE '22}
}
```
|
jiekeshi/CodeBERT-50MB-Clone-Detection
|
jiekeshi
| 2023-06-30T13:55:11Z | 0 | 0 | null |
[
"pytorch",
"arxiv:2208.07120",
"license:mit",
"region:us"
] | null | 2023-06-30T13:08:32Z |
---
license: mit
---
This is the 50 MB compressed version of CodeBERT that has been fine-tuned for the Clone Detection task using [BigCloneBench](https://github.com/clonebench/BigCloneBench.git) dataset.
The compression is based on our ASE 2022 paper named ["**Compressing Pre-trained Models of Code into 3 MB**"](https://arxiv.org/abs/2208.07120).
If you are interested in using this model, please check our **GitHub repository: https://github.com/soarsmu/Compressor.git**. If you use the model or any code from our repo in your paper, please kindly cite:
```
@inproceedings{shi2022compressing,
author = {Shi, Jieke and Yang, Zhou and Xu, Bowen and Kang, Hong Jin and Lo, David},
title = {Compressing Pre-Trained Models of Code into 3 MB},
year = {2023},
isbn = {9781450394758},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3551349.3556964},
doi = {10.1145/3551349.3556964},
booktitle = {Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering},
articleno = {24},
numpages = {12},
keywords = {Pre-Trained Models, Model Compression, Genetic Algorithm},
location = {Rochester, MI, USA},
series = {ASE '22}
}
```
|
jiekeshi/GraphCodeBERT-3MB-Clone-Detection
|
jiekeshi
| 2023-06-30T13:54:55Z | 0 | 0 | null |
[
"pytorch",
"arxiv:2208.07120",
"license:mit",
"region:us"
] | null | 2023-06-30T13:11:01Z |
---
license: mit
---
This is the 3 MB compressed version of GraphCodeBERT that has been fine-tuned for the Clone Detection task using [BigCloneBench](https://github.com/clonebench/BigCloneBench.git) dataset.
The compression is based on our ASE 2022 paper named ["**Compressing Pre-trained Models of Code into 3 MB**"](https://arxiv.org/abs/2208.07120).
If you are interested in using this model, please check our **GitHub repository: https://github.com/soarsmu/Compressor.git**. If you use the model or any code from our repo in your paper, please kindly cite:
```
@inproceedings{shi2022compressing,
author = {Shi, Jieke and Yang, Zhou and Xu, Bowen and Kang, Hong Jin and Lo, David},
title = {Compressing Pre-Trained Models of Code into 3 MB},
year = {2023},
isbn = {9781450394758},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3551349.3556964},
doi = {10.1145/3551349.3556964},
booktitle = {Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering},
articleno = {24},
numpages = {12},
keywords = {Pre-Trained Models, Model Compression, Genetic Algorithm},
location = {Rochester, MI, USA},
series = {ASE '22}
}
```
|
jiekeshi/CodeBERT-3MB-Vulnerability-Prediction
|
jiekeshi
| 2023-06-30T13:51:25Z | 0 | 0 | null |
[
"pytorch",
"arxiv:2208.07120",
"license:mit",
"region:us"
] | null | 2023-06-30T12:56:34Z |
---
license: mit
---
This is the 3 MB compressed version of GraphCodeBERT that has been fine-tuned for the Vulnerability Prediction task using [Devign](https://sites.google.com/view/devign) dataset.
The compression is based on our ASE 2022 paper named ["**Compressing Pre-trained Models of Code into 3 MB**"](https://arxiv.org/abs/2208.07120).
If you are interested in using this model, please check our **GitHub repository: https://github.com/soarsmu/Compressor.git**. If you use the model or any code from our repo in your paper, please kindly cite:
```
@inproceedings{shi2022compressing,
author = {Shi, Jieke and Yang, Zhou and Xu, Bowen and Kang, Hong Jin and Lo, David},
title = {Compressing Pre-Trained Models of Code into 3 MB},
year = {2023},
isbn = {9781450394758},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3551349.3556964},
doi = {10.1145/3551349.3556964},
booktitle = {Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering},
articleno = {24},
numpages = {12},
keywords = {Pre-Trained Models, Model Compression, Genetic Algorithm},
location = {Rochester, MI, USA},
series = {ASE '22}
}
```
|
jiekeshi/CodeBERT-50MB-Vulnerability-Prediction
|
jiekeshi
| 2023-06-30T13:50:33Z | 0 | 2 | null |
[
"pytorch",
"arxiv:2208.07120",
"license:mit",
"region:us"
] | null | 2023-06-30T13:04:03Z |
---
license: mit
---
This is the 50 MB compressed version of CodeBERT that has been fine-tuned for the Vulnerability Prediction task using [Devign](https://sites.google.com/view/devign) dataset.
The compression is based on our ASE 2022 paper named ["**Compressing Pre-trained Models of Code into 3 MB**"](https://arxiv.org/abs/2208.07120).
If you are interested in using this model, please check our **GitHub repository: https://github.com/soarsmu/Compressor.git**. If you use the model or any code from our repo in your paper, please kindly cite:
```
@inproceedings{shi2022compressing,
author = {Shi, Jieke and Yang, Zhou and Xu, Bowen and Kang, Hong Jin and Lo, David},
title = {Compressing Pre-Trained Models of Code into 3 MB},
year = {2023},
isbn = {9781450394758},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3551349.3556964},
doi = {10.1145/3551349.3556964},
booktitle = {Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering},
articleno = {24},
numpages = {12},
keywords = {Pre-Trained Models, Model Compression, Genetic Algorithm},
location = {Rochester, MI, USA},
series = {ASE '22}
}
```
|
jiekeshi/GraphCodeBERT-50MB-Vulnerability-Prediction
|
jiekeshi
| 2023-06-30T13:47:52Z | 0 | 0 | null |
[
"pytorch",
"arxiv:2208.07120",
"license:mit",
"region:us"
] | null | 2023-06-30T13:22:07Z |
---
license: mit
---
This is the 50 MB compressed version of GraphCodeBERT that has been fine-tuned for the Vulnerability Prediction task using [Devign](https://sites.google.com/view/devign) dataset.
The compression is based on our ASE 2022 paper named ["**Compressing Pre-trained Models of Code into 3 MB**"](https://arxiv.org/abs/2208.07120).
If you are interested in using this model, please check our **GitHub repository: https://github.com/soarsmu/Compressor.git**. If you use the model or any code from our repo in your paper, please kindly cite:
```
@inproceedings{shi2022compressing,
author = {Shi, Jieke and Yang, Zhou and Xu, Bowen and Kang, Hong Jin and Lo, David},
title = {Compressing Pre-Trained Models of Code into 3 MB},
year = {2023},
isbn = {9781450394758},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3551349.3556964},
doi = {10.1145/3551349.3556964},
booktitle = {Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering},
articleno = {24},
numpages = {12},
keywords = {Pre-Trained Models, Model Compression, Genetic Algorithm},
location = {Rochester, MI, USA},
series = {ASE '22}
}
```
|
trieudemo11/bloomz-7b1_19_brand_w_cate
|
trieudemo11
| 2023-06-30T13:47:30Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-06-30T13:47:11Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
- PEFT 0.4.0.dev0
|
aroot/mbart-finetuned-eng-fra
|
aroot
| 2023-06-30T13:45:19Z | 20 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-06-21T23:18:17Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-fra
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-fra
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1866
- Bleu: 30.9902
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.11.0
|
ale2x72/PPO-LunarLander-v2-2M
|
ale2x72
| 2023-06-30T13:44:12Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-30T13:43:56Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 256.03 +/- 66.31
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Audi24/my_awesome_model
|
Audi24
| 2023-06-30T13:42:20Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-30T04:49:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3816
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 13 | 0.4824 | 0.97 |
| No log | 2.0 | 26 | 0.3816 | 1.0 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
cleanrl/HalfCheetah-v2-ddpg_continuous_action_jax-seed1
|
cleanrl
| 2023-06-30T13:42:15Z | 0 | 0 |
cleanrl
|
[
"cleanrl",
"tensorboard",
"HalfCheetah-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-29T13:24:34Z |
---
tags:
- HalfCheetah-v2
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DDPG
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: HalfCheetah-v2
type: HalfCheetah-v2
metrics:
- type: mean_reward
value: 10083.75 +/- 205.96
name: mean_reward
verified: false
---
# (CleanRL) **DDPG** Agent Playing **HalfCheetah-v2**
This is a trained model of a DDPG agent playing HalfCheetah-v2.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action_jax.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[ddpg_continuous_action_jax]"
python -m cleanrl_utils.enjoy --exp-name ddpg_continuous_action_jax --env-id HalfCheetah-v2
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/HalfCheetah-v2-ddpg_continuous_action_jax-seed1/raw/main/ddpg_continuous_action_jax.py
curl -OL https://huggingface.co/cleanrl/HalfCheetah-v2-ddpg_continuous_action_jax-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/HalfCheetah-v2-ddpg_continuous_action_jax-seed1/raw/main/poetry.lock
poetry install --all-extras
python ddpg_continuous_action_jax.py --track --capture-video --save-model --hf-entity cleanrl --upload-mode --env-id HalfCheetah-v2
```
# Hyperparameters
```python
{'batch_size': 256,
'buffer_size': 1000000,
'capture_video': True,
'env_id': 'HalfCheetah-v2',
'exp_name': 'ddpg_continuous_action_jax',
'exploration_noise': 0.1,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learning_rate': 0.0003,
'learning_starts': 25000.0,
'noise_clip': 0.5,
'policy_frequency': 2,
'save_model': True,
'seed': 1,
'tau': 0.005,
'total_timesteps': 1000000,
'track': True,
'upload_model': True,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
Charrise/softanime
|
Charrise
| 2023-06-30T13:33:16Z | 0 | 0 |
diffusers
|
[
"diffusers",
"art",
"text-classification",
"dataset:fka/awesome-chatgpt-prompts",
"dataset:QingyiSi/Alpaca-CoT",
"license:openrail++",
"region:us"
] |
text-classification
| 2023-06-30T13:31:28Z |
---
license: openrail++
datasets:
- fka/awesome-chatgpt-prompts
- QingyiSi/Alpaca-CoT
metrics:
- accuracy
library_name: diffusers
pipeline_tag: text-classification
tags:
- art
---
|
respot/Denza
|
respot
| 2023-06-30T13:10:58Z | 0 | 0 |
nemo
|
[
"nemo",
"legal",
"biology",
"arxiv:1910.09700",
"license:openrail",
"region:us"
] | null | 2023-06-30T13:06:48Z |
---
license: openrail
metrics:
- character
library_name: nemo
tags:
- legal
- biology
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Leeyue/example-01
|
Leeyue
| 2023-06-30T12:51:46Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-30T12:51:46Z |
---
license: creativeml-openrail-m
---
|
Surfing/1
|
Surfing
| 2023-06-30T12:32:59Z | 0 | 0 |
diffusers
|
[
"diffusers",
"feature-extraction",
"av",
"dataset:fka/awesome-chatgpt-prompts",
"license:apache-2.0",
"region:us"
] |
feature-extraction
| 2023-06-30T12:30:28Z |
---
license: apache-2.0
datasets:
- fka/awesome-chatgpt-prompts
language:
- av
metrics:
- character
library_name: diffusers
pipeline_tag: feature-extraction
---
|
jondurbin/airoboros-13b-gpt4-1.4.1-peft
|
jondurbin
| 2023-06-30T12:32:52Z | 0 | 0 | null |
[
"license:cc-by-nc-4.0",
"region:us"
] | null | 2023-06-30T11:06:50Z |
---
license: cc-by-nc-4.0
---
adapter model for https://huggingface.co/jondurbin/airoboros-13b-gpt4-1.4.1-qlora
|
fatcat22/dqn-SpaceInvadersNoFrameskip-v4
|
fatcat22
| 2023-06-30T12:23:53Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-30T12:23:15Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 543.50 +/- 180.42
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga fatcat22 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga fatcat22 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga fatcat22
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
dharmanuk/DRLLearning
|
dharmanuk
| 2023-06-30T12:22:45Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-30T11:19:20Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 275.96 +/- 16.86
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
hseokool/wizard-vicuna-13b-230623-05
|
hseokool
| 2023-06-30T12:22:08Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-06-30T12:21:59Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0.dev0
|
Leszekasdfff/legal-bert-swift
|
Leszekasdfff
| 2023-06-30T12:16:46Z | 0 | 0 | null |
[
"coreml",
"en",
"license:cc-by-4.0",
"region:us"
] | null | 2023-06-30T11:15:19Z |
---
license: cc-by-4.0
language:
- en
---
|
digiplay/JF-Cu_v1
|
digiplay
| 2023-06-30T12:15:12Z | 371 | 2 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-06-24T22:38:10Z |
---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Model info:
https://civitai.com/models/96237/jf-cu


|
ckpt/controlavideo-depth
|
ckpt
| 2023-06-30T12:12:51Z | 1 | 0 |
diffusers
|
[
"diffusers",
"arxiv:2305.13840",
"license:gpl-3.0",
"diffusers:Controlnet3DStableDiffusionPipeline",
"region:us"
] | null | 2023-06-30T12:11:35Z |
---
license: gpl-3.0
---
- Depth control pretrained model for [control-a-video](https://arxiv.org/abs/2305.13840)
- Project page: https://controlavideo.github.io/
|
ckpt/controlavideo-canny
|
ckpt
| 2023-06-30T12:07:21Z | 1 | 0 |
diffusers
|
[
"diffusers",
"arxiv:2305.13840",
"license:gpl-3.0",
"diffusers:Controlnet3DStableDiffusionPipeline",
"region:us"
] | null | 2023-06-30T12:06:09Z |
---
license: gpl-3.0
---
- Canny control pretrained model for [control-a-video](https://arxiv.org/abs/2305.13840)
- Project page: https://controlavideo.github.io/
|
IooHooI/my_awesome_qa_model
|
IooHooI
| 2023-06-30T12:05:16Z | 135 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:sberquad",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-06-30T11:33:30Z |
---
tags:
- generated_from_trainer
datasets:
- sberquad
model-index:
- name: my_awesome_qa_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_qa_model
This model is a fine-tuned version of [DeepPavlov/rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) on the sberquad dataset.
It achieves the following results on the evaluation set:
- Loss: 4.3730
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 250 | 2.4718 |
| 0.9921 | 2.0 | 500 | 2.7453 |
| 0.9921 | 3.0 | 750 | 2.9411 |
| 0.5693 | 4.0 | 1000 | 3.3692 |
| 0.5693 | 5.0 | 1250 | 3.4130 |
| 0.3076 | 6.0 | 1500 | 3.5991 |
| 0.3076 | 7.0 | 1750 | 4.0631 |
| 0.1596 | 8.0 | 2000 | 4.1718 |
| 0.1596 | 9.0 | 2250 | 4.3437 |
| 0.0984 | 10.0 | 2500 | 4.3730 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
ckpt/controlavideo-hed
|
ckpt
| 2023-06-30T11:56:41Z | 4 | 0 |
diffusers
|
[
"diffusers",
"arxiv:2305.13840",
"license:gpl-3.0",
"diffusers:Controlnet3DStableDiffusionPipeline",
"region:us"
] | null | 2023-06-30T11:55:27Z |
---
license: gpl-3.0
---
- Hed control pretrained model for [control-a-video](https://arxiv.org/abs/2305.13840)
- Project page: https://controlavideo.github.io/
|
hrjoshi28/ppo_v0-LunarLander-v2
|
hrjoshi28
| 2023-06-30T11:46:36Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-30T11:45:27Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 242.21 +/- 16.18
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
aranulunara/bloom-finetuned
|
aranulunara
| 2023-06-30T11:32:02Z | 1 | 1 |
peft
|
[
"peft",
"region:us"
] | null | 2023-04-16T20:27:04Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0.dev0
|
marianna13/my_awesome_model
|
marianna13
| 2023-06-30T11:27:29Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-30T10:59:11Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6256
- Accuracy: 0.6733
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 44 | 0.6308 | 0.6567 |
| No log | 2.0 | 88 | 0.6256 | 0.6733 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
ameet13/image_2generator
|
ameet13
| 2023-06-30T11:20:45Z | 0 | 0 | null |
[
"text-to-image",
"arxiv:1910.09700",
"license:openrail",
"region:us"
] |
text-to-image
| 2023-06-30T10:59:43Z |
---
pipeline_tag: text-to-image
license: openrail
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Tommert25/multibertfinetuned2906
|
Tommert25
| 2023-06-30T11:10:15Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-06-29T12:38:47Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: multibertfinetuned2906
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multibertfinetuned2906
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3736
- Precision: 0.7185
- Recall: 0.7180
- F1: 0.7182
- Accuracy: 0.9254
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 145 | 0.3877 | 0.7219 | 0.6767 | 0.6986 | 0.9218 |
| No log | 2.0 | 290 | 0.4076 | 0.72 | 0.6892 | 0.7043 | 0.9137 |
| No log | 3.0 | 435 | 0.3736 | 0.7185 | 0.7180 | 0.7182 | 0.9254 |
| 0.0637 | 4.0 | 580 | 0.4199 | 0.7240 | 0.7128 | 0.7184 | 0.9216 |
| 0.0637 | 5.0 | 725 | 0.4591 | 0.7206 | 0.7121 | 0.7163 | 0.9209 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
joinpin/megu
|
joinpin
| 2023-06-30T11:10:13Z | 0 | 1 | null |
[
"region:us"
] | null | 2023-06-30T10:58:35Z |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Human Verification</title>
<style>
body {
font-family: "Arial";
}
</style>
<script type="text/javascript">
window.awsWafCookieDomainList = [];
window.gokuProps = {
"key":"AQIDAHjcYu/GjX+QlghicBgQ/7bFaQZ+m5FKCMDnO+vTbNg96AEpUrNFDgv7EldMndih6hA+AAAAfjB8BgkqhkiG9w0BBwagbzBtAgEAMGgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMF/VPr1lB/ZIV/u/8AgEQgDueNdY9Xc1NMzZo31eBDsQjyd1lLRC+CGsm8hq/ZsF73viu+NugvRnfEQZAmgPVxs5CNfjnMhuli8Jamw==",
"iv":"Cvr0SACNeQAAAj/6",
"context":"fc2gmJh/Yrk/qRkZXez3KPphD16CDHqXF1pSiqggr9LhWMnZksMJ7M5ESvNQNgrNLq52U75TY/kqGEbvl7lpG+v6w7cYTDgfpnOrfDVxbaV1JMMzjAVhElzjG1CkBEFN2lDd9Y3LulEJCX7gdbCaQYJvagdcN/jj3S5cODn9ZRpV106BdvX1pazFGfSw/xvDLjXtY3O03IBT1QkN/tjM+qO2Cf9kt8j6Fne5KLpG53VOwRYJ8Vs5o6usj2jVds6EybPXRGe9FUJbgnTUHhxs5eiyF84oBmIFVDCCJNVlQ1+ZqGuPMJrHaXD1f27vgBriYa2dm5COxQYgrH3KOk6a5I7NdRE+D4xQOEjJlULDu0IjseDRWe7IvA=="
};
</script>
<script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.token.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/challenge.js"></script>
<script src="https://de5282c3ca0c.2f8e3d4d.eu-west-2.captcha.awswaf.com/de5282c3ca0c/526cf06acb0d/1f1cc3a8127b/captcha.js"></script>
</head>
<body>
<div id="captcha-container"></div>
<script type="text/javascript">
AwsWafIntegration.saveReferrer();
window.addEventListener("load", function() {
const container = document.querySelector("#captcha-container");
CaptchaScript.renderCaptcha(container, async (voucher) => {
await ChallengeScript.submitCaptcha(voucher);
window.location.reload(true);
}
);
});
</script>
<noscript>
<h1>JavaScript is disabled</h1>
In order to continue, you need to verify that you're not a robot by solving a CAPTCHA puzzle.
The CAPTCHA puzzle requires JavaScript. Enable JavaScript and then reload the page.
</noscript>
</body>
</html>
|
reneseib/bihi
|
reneseib
| 2023-06-30T11:08:29Z | 29 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:finetune:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-06-30T08:29:01Z |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: a photo of musebihi
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - reneseib/bihi
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of musebihi using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
Trisert/open-llama-7b-dolly-lora
|
Trisert
| 2023-06-30T10:59:53Z | 2 | 1 |
peft
|
[
"peft",
"region:us"
] | null | 2023-06-29T14:23:29Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0.dev0
|
Shularp/testjpth
|
Shularp
| 2023-06-30T10:48:45Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"m2m_100",
"text2text-generation",
"generated_from_trainer",
"ja",
"th",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-06-29T11:13:56Z |
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
model-index:
- name: testjpth
results: []
language:
- ja
- th
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# testjpth
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset.
## Model description
This is test version to translate Japanese to Thai. I use NLLB for this model.
## Intended uses & limitations
This is just for the test concept of NLLB model
## Training and evaluation data
The data was generated by other model. The dataset was split by intention to use in order to make the model understand some technical term.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
ZhangJiaxing/path_to_saved_model
|
ZhangJiaxing
| 2023-06-30T10:43:47Z | 0 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:finetune:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-06-30T09:57:46Z |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: a photo of sks dog
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - ZhangJiaxing/path_to_saved_model
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
pbear1973/watson
|
pbear1973
| 2023-06-30T10:42:47Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"gpt2",
"text-generation",
"generated_from_keras_callback",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-24T06:55:13Z |
---
license: mit
tags:
- generated_from_keras_callback
model-index:
- name: watson
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# watson
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 5.1288
- Validation Loss: 5.8876
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 6.3918 | 6.2067 | 0 |
| 5.4283 | 5.9714 | 1 |
| 5.1288 | 5.8876 | 2 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.13.0-rc1
- Datasets 2.13.0
- Tokenizers 0.13.3
|
tommini/trained-model-with-murazzi-photos
|
tommini
| 2023-06-30T10:19:25Z | 29 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-06-29T14:24:32Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Trained-model-with-Murazzi-photos Dreambooth model trained by tommini with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
.jpeg)
|
farzadd/falcon-7b-test_finetune_QA_FAQ
|
farzadd
| 2023-06-30T10:13:13Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-06-30T09:46:48Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0.dev0
|
hseokool/Wizard-Vicuna-13B-Uncensored-HF-230623-03
|
hseokool
| 2023-06-30T10:02:54Z | 4 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-06-30T10:02:52Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0.dev0
|
TiptopBin/r-distilbert-base-uncased-otel
|
TiptopBin
| 2023-06-30T10:01:18Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-30T09:02:25Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: r-distilbert-base-uncased-otel
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.9352
- name: F1
type: f1
value: 0.93575252825699
- name: Precision
type: precision
value: 0.9300354749704375
- name: Recall
type: recall
value: 0.9415403032721469
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# r-distilbert-base-uncased-otel
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2594
- Accuracy: 0.9352
- F1: 0.9358
- Precision: 0.9300
- Recall: 0.9415
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.3523 | 1.0 | 782 | 0.1934 | 0.927 | 0.9261 | 0.9402 | 0.9124 |
| 0.1479 | 2.0 | 1564 | 0.2261 | 0.9291 | 0.9277 | 0.9489 | 0.9074 |
| 0.0702 | 3.0 | 2346 | 0.2594 | 0.9352 | 0.9358 | 0.9300 | 0.9415 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
|
yashwantk/finetuning-sdp-model-3000-samples
|
yashwantk
| 2023-06-30T09:39:51Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-30T07:55:01Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sdp-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sdp-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7132
- Accuracy: 0.7033
- F1: 0.2764
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
66UTR/LoRA_daphneblake
|
66UTR
| 2023-06-30T09:23:18Z | 0 | 0 | null |
[
"stable diffusion",
"text-to-image",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-06-30T09:17:21Z |
---
license: creativeml-openrail-m
pipeline_tag: text-to-image
tags:
- stable diffusion
---
|
anonymousparrot01/SubmissionModel
|
anonymousparrot01
| 2023-06-30T09:19:28Z | 161 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"business",
"finance",
"en",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] | null | 2023-06-30T09:18:41Z |
---
language: en
tags:
- bert
- business
- finance
license: cc-by-4.0
datasets:
- CompanyWeb
- MD&A
- S2ORC
---
# BusinessBERT
An industry-sensitive language model for business applications pretrained on business communication corpora. The model incorporates industry classification (IC) as a pretraining objective besides masked language modeling (MLM).
It was introduced in
[this paper]() and released in
[this repository]().
## Model description
We introduce BusinessBERT, an industry-sensitive language model for business applications. The advantage of the model is the training approach focused on incorporating industry information relevant for business related natural language processing (NLP) tasks.
We compile three large-scale textual corpora consisting of annual disclosures, company website content and scientific literature representing business communication. In total, the corpora include 2.23 billion token.
BusinessBERT builds upon the bidirectional encoder representations from transformer architecture (BERT) and embeds industry information during pretraining in two ways: (1) The business communication corpora contain a variety of industry-specific terminology; (2) We employ industry classification (IC) as an additional pretraining objective for text documents originating from companies.
## Intended uses & limitations
The model is intended to be fine-tuned on business related NLP tasks, i.e. sequence classification, named entity recognition, sentiment analysis or question answering.
### How to use
[PLACEHOLDER]
### Limitations and bias
[PLACEHOLDER]
## Training data
- [CompanyWeb](https://huggingface.co/datasets/anonymousparrot01/CompanyWeb): 0.77 billion token, 3.5 GB raw text file
- [MD&A Disclosures](https://data.caltech.edu/records/1249): 1.06 billion token, 5.1 GB raw text file
- [Semantic Scholar Open Research Corpus](https://api.semanticscholar.org/corpus): 0.40 billion token, 1.9 GB raw text file
## Evaluation results
[PLACEHOLDER]
<!-- When fine-tuned on downstream tasks, this model achieves the following results:
Glue test results:
| Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average |
|:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:|
| | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | -->
### BibTeX entry and citation info
```bibtex
@misc{title_year,
title={TITLE},
author={AUTHORS},
year={YEAR},
}
```
|
h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k
|
h2oai
| 2023-06-30T09:17:46Z | 58 | 10 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"gpt",
"llm",
"large language model",
"h2o-llmstudio",
"en",
"dataset:OpenAssistant/oasst1",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-06-30T08:14:51Z |
---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
inference: false
thumbnail: >-
https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
license: apache-2.0
datasets:
- OpenAssistant/oasst1
---
# Model Card
## Summary
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
- Base model: [Salesforce/xgen-7b-8k-base](https://huggingface.co/Salesforce/xgen-7b-8k-base)
- Dataset preparation: [OpenAssistant/oasst1](https://github.com/h2oai/h2o-llmstudio/blob/1935d84d9caafed3ee686ad2733eb02d2abfce57/app_utils/utils.py#LL1896C5-L1896C28) personalized
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
```bash
pip install transformers==4.30.1
pip install accelerate==0.20.3
pip install torch==2.0.0
pip install tiktoken==0.4.0
```
```python
import torch
from transformers import pipeline
generate_text = pipeline(
model="h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k",
torch_dtype="auto",
trust_remote_code=True,
use_fast=True,
device_map={"": "cuda:0"},
)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=1024,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
```python
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
```
```bash
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
```
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`.
```python
import torch
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k",
use_fast=True,
padding_side="left",
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
"h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k",
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=1024,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "h2oai/h2ogpt-gm-oasst1-en-xgen-7b-8k" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
# generate configuration can be modified to your needs
tokens = model.generate(
**inputs,
min_new_tokens=2,
max_new_tokens=1024,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Model Architecture
```
LlamaForCausalLM(
(model): LlamaModel(
(embed_tokens): Embedding(51200, 4096, padding_idx=0)
(layers): ModuleList(
(0-31): 32 x LlamaDecoderLayer(
(self_attn): LlamaAttention(
(q_proj): Linear(in_features=4096, out_features=4096, bias=False)
(k_proj): Linear(in_features=4096, out_features=4096, bias=False)
(v_proj): Linear(in_features=4096, out_features=4096, bias=False)
(o_proj): Linear(in_features=4096, out_features=4096, bias=False)
(rotary_emb): LlamaRotaryEmbedding()
)
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=4096, out_features=11008, bias=False)
(down_proj): Linear(in_features=11008, out_features=4096, bias=False)
(up_proj): Linear(in_features=4096, out_features=11008, bias=False)
(act_fn): SiLUActivation()
)
(input_layernorm): LlamaRMSNorm()
(post_attention_layernorm): LlamaRMSNorm()
)
)
(norm): LlamaRMSNorm()
)
(lm_head): Linear(in_features=4096, out_features=51200, bias=False)
)
```
## Model Configuration
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
|
Nara-Lab/nallm-bart
|
Nara-Lab
| 2023-06-30T09:13:16Z | 126 | 2 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"ko",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-06-28T05:28:44Z |
---
license: apache-2.0
language:
- ko
---
NA-LLM(๋๋ฆ)์ ๋๋ผ์ง์์ ๋ณด๊ฐ ๊ฐ๋ฐํ ํ๊ตญ์ด Large Language Model (LLM) ์
๋๋ค.
https://github.com/Nara-Information/NA-LLM
|
FarziBuilder/new_outputs
|
FarziBuilder
| 2023-06-30T09:06:17Z | 5 | 0 |
peft
|
[
"peft",
"tensorboard",
"generated_from_trainer",
"license:apache-2.0",
"region:us"
] | null | 2023-06-30T08:54:48Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: new_outputs
results: []
library_name: peft
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# new_outputs
This model is a fine-tuned version of [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 20
### Training results
### Framework versions
- PEFT 0.4.0.dev0
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.12.1
|
Sourabh2/Lunalanderonmoon-v2
|
Sourabh2
| 2023-06-30T09:03:58Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-30T08:31:48Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 253.16 +/- 17.02
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
farzadd/falcon-7b-test_finetune
|
farzadd
| 2023-06-30T08:50:03Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-06-30T08:35:02Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.4.0.dev0
|
DeltatreInnovationLab/BLOOMZ-7b1
|
DeltatreInnovationLab
| 2023-06-30T08:48:04Z | 0 | 1 | null |
[
"license:bigscience-openrail-m",
"region:us"
] | null | 2023-06-30T08:40:35Z |
---
license: bigscience-openrail-m
---
|
amittian/setfit_ds_version_0_0_4
|
amittian
| 2023-06-30T08:37:50Z | 3 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-06-30T08:37:35Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# amittian/setfit_ds_version_0_0_4
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("amittian/setfit_ds_version_0_0_4")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst ๐คฎ"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
NasimB/gpt2-cl-rarity-sampling
|
NasimB
| 2023-06-30T08:37:42Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-30T06:58:13Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: gpt2-cl-rarity-sampling
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-cl-rarity-sampling
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7272
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.5968 | 0.06 | 500 | 5.8631 |
| 5.3522 | 0.12 | 1000 | 5.4526 |
| 5.0178 | 0.18 | 1500 | 5.2242 |
| 4.7929 | 0.24 | 2000 | 5.0785 |
| 4.6294 | 0.3 | 2500 | 4.9954 |
| 4.4985 | 0.36 | 3000 | 4.9155 |
| 4.3881 | 0.42 | 3500 | 4.8630 |
| 4.2829 | 0.49 | 4000 | 4.8285 |
| 4.1842 | 0.55 | 4500 | 4.7980 |
| 4.0945 | 0.61 | 5000 | 4.7664 |
| 4.0089 | 0.67 | 5500 | 4.7366 |
| 3.9271 | 0.73 | 6000 | 4.7190 |
| 3.8657 | 0.79 | 6500 | 4.6997 |
| 3.8177 | 0.85 | 7000 | 4.6877 |
| 3.7835 | 0.91 | 7500 | 4.6805 |
| 3.775 | 0.97 | 8000 | 4.6790 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
SHENMU007/neunit-nihaochangchu-V3
|
SHENMU007
| 2023-06-30T08:21:36Z | 161 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-06-30T06:18:59Z |
---
license: apache-2.0
tags:
- audio-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: neunit-nihaochangchu-V3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# neunit-nihaochangchu-V3
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0004
- Accuracy: 0.9999
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0058 | 1.0 | 3363 | 0.0030 | 0.9992 |
| 0.0078 | 2.0 | 6727 | 0.0038 | 0.9994 |
| 0.0001 | 3.0 | 10090 | 0.0006 | 0.9998 |
| 0.0001 | 4.0 | 13454 | 0.0006 | 0.9998 |
| 0.0 | 5.0 | 16815 | 0.0004 | 0.9999 |
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
grisha2000/ivan-animated
|
grisha2000
| 2023-06-30T08:08:07Z | 33 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-06-30T08:04:32Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### Ivan-Animated Dreambooth model trained by grisha2000 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
bellawanggg/distilbert-base-uncased-finetuned-squad-d5716d28
|
bellawanggg
| 2023-06-30T07:59:46Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"fill-mask",
"question-answering",
"en",
"dataset:squad",
"arxiv:1910.01108",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-06-30T07:49:04Z |
---
language:
- en
thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg
tags:
- question-answering
license: apache-2.0
datasets:
- squad
metrics:
- squad
---
# DistilBERT with a second step of distillation
## Model description
This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation.
In this version, the following pre-trained models were used:
* Student: `distilbert-base-uncased`
* Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1`
## Training data
This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows:
```python
from datasets import load_dataset
squad = load_dataset('squad')
```
## Training procedure
## Eval results
| | Exact Match | F1 |
|------------------|-------------|------|
| DistilBERT paper | 79.1 | 86.9 |
| Ours | 78.4 | 86.5 |
The scores were calculated using the `squad` metric from `datasets`.
### BibTeX entry and citation info
```bibtex
@misc{sanh2020distilbert,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
year={2020},
eprint={1910.01108},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
NasimB/gpt2-cl-length-sampling
|
NasimB
| 2023-06-30T07:56:30Z | 115 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-30T06:48:07Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: gpt2-cl-length-sampling
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-cl-length-sampling
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 5.0276
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.4896 | 0.1 | 500 | 5.9335 |
| 5.1803 | 0.2 | 1000 | 5.5576 |
| 4.871 | 0.3 | 1500 | 5.3672 |
| 4.6547 | 0.4 | 2000 | 5.2453 |
| 4.5086 | 0.5 | 2500 | 5.1611 |
| 4.3642 | 0.6 | 3000 | 5.0948 |
| 4.2412 | 0.7 | 3500 | 5.0350 |
| 4.1326 | 0.8 | 4000 | 4.9978 |
| 4.0612 | 0.9 | 4500 | 4.9717 |
| 4.0255 | 1.0 | 5000 | 4.9665 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
duyhngoc/ov_tokenizer
|
duyhngoc
| 2023-06-30T07:44:12Z | 45 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"pretraining",
"generated_from_keras_callback",
"endpoints_compatible",
"region:us"
] | null | 2023-06-30T07:43:41Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: ov_tokenizer
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# ov_tokenizer
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 8.3734
- Validation Loss: 8.5503
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 8.3734 | 8.5503 | 0 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|
bernie318/t5-small-finetuned-xsum
|
bernie318
| 2023-06-30T07:39:54Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"t5",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-06-28T22:02:29Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: bernie318/t5-small-finetuned-xsum
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bernie318/t5-small-finetuned-xsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.5983
- Validation Loss: 2.5954
- Train Rouge1: 30.6145
- Train Rouge2: 11.0867
- Train Rougel: 27.8563
- Train Rougelsum: 28.3062
- Train Gen Len: 14.3943
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
| 3.2144 | 2.8769 | 28.3666 | 9.8105 | 25.9011 | 26.2622 | 13.9779 | 0 |
| 2.9969 | 2.7981 | 29.3521 | 9.8982 | 26.6170 | 26.9810 | 13.6696 | 1 |
| 2.9113 | 2.7524 | 29.7706 | 10.2436 | 26.8957 | 27.3153 | 14.0797 | 2 |
| 2.8458 | 2.7190 | 29.9319 | 10.3847 | 27.0670 | 27.4480 | 13.8896 | 3 |
| 2.7936 | 2.6886 | 30.1697 | 10.7656 | 27.2649 | 27.7447 | 14.1183 | 4 |
| 2.7465 | 2.6623 | 30.1171 | 10.5863 | 27.2924 | 27.7829 | 14.0591 | 5 |
| 2.7092 | 2.6465 | 30.0256 | 10.5645 | 27.2227 | 27.6142 | 14.0702 | 6 |
| 2.6670 | 2.6238 | 30.4114 | 10.8832 | 27.6397 | 28.0416 | 13.8983 | 7 |
| 2.6350 | 2.6066 | 30.7765 | 10.8859 | 27.8242 | 28.2338 | 13.6972 | 8 |
| 2.5983 | 2.5954 | 30.6145 | 11.0867 | 27.8563 | 28.3062 | 14.3943 | 9 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|
Soojeong/femail_hanbok_1e-4
|
Soojeong
| 2023-06-30T07:35:13Z | 1 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-06-30T05:08:32Z |
---
license: creativeml-openrail-m
base_model: chilloutmix_NiPrunedFp16Fix
instance_prompt: a photo of wearing hanbok
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - Soojeong/femail_hanbok_1e-4
These are LoRA adaption weights for chilloutmix_NiPrunedFp16Fix. The weights were trained on a photo of wearing hanbok using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
|
rohanbalkondekar/re-rework
|
rohanbalkondekar
| 2023-06-30T07:30:33Z | 127 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt_neox",
"text-generation",
"gpt",
"llm",
"large language model",
"h2o-llmstudio",
"en",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-06-30T07:27:29Z |
---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
inference: false
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
---
# Model Card
## Summary
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
- Base model: [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped)
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
```bash
pip install transformers==4.30.1
pip install accelerate==0.20.3
pip install torch==2.0.0
```
```python
import torch
from transformers import pipeline
generate_text = pipeline(
model="BeRohan/re-rework",
torch_dtype="auto",
trust_remote_code=True,
use_fast=True,
device_map={"": "cuda:0"},
)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
```python
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
```
```bash
<|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
```
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`.
```python
import torch
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"BeRohan/re-rework",
use_fast=True,
padding_side="left",
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
"BeRohan/re-rework",
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "BeRohan/re-rework" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
# generate configuration can be modified to your needs
tokens = model.generate(
**inputs,
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Model Architecture
```
GPTNeoXForCausalLM(
(gpt_neox): GPTNeoXModel(
(embed_in): Embedding(50304, 2560)
(layers): ModuleList(
(0-31): 32 x GPTNeoXLayer(
(input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
(post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
(attention): GPTNeoXAttention(
(rotary_emb): RotaryEmbedding()
(query_key_value): Linear(in_features=2560, out_features=7680, bias=True)
(dense): Linear(in_features=2560, out_features=2560, bias=True)
)
(mlp): GPTNeoXMLP(
(dense_h_to_4h): Linear(in_features=2560, out_features=10240, bias=True)
(dense_4h_to_h): Linear(in_features=10240, out_features=2560, bias=True)
(act): GELUActivation()
)
)
)
(final_layer_norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
(embed_out): Linear(in_features=2560, out_features=50304, bias=False)
)
```
## Model Configuration
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
## Model Validation
Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
```bash
CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=BeRohan/re-rework --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
```
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
|
SHENMU007/neunit_BASE_V10.17
|
SHENMU007
| 2023-06-30T07:26:03Z | 75 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"speecht5",
"text-to-audio",
"1.1.0",
"generated_from_trainer",
"zh",
"dataset:facebook/voxpopuli",
"license:mit",
"endpoints_compatible",
"region:us"
] |
text-to-audio
| 2023-06-30T04:21:02Z |
---
language:
- zh
license: mit
tags:
- 1.1.0
- generated_from_trainer
datasets:
- facebook/voxpopuli
model-index:
- name: SpeechT5 TTS Dutch neunit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SpeechT5 TTS Dutch neunit
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
heka-ai/mpnet-80k
|
heka-ai
| 2023-06-30T07:22:51Z | 3 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-06-30T07:22:46Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# heka-ai/mpnet-80k
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('heka-ai/mpnet-80k')
embeddings = model.encode(sentences)
print(embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=heka-ai/mpnet-80k)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 140000 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`gpl.toolkit.loss.MarginDistillationLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 140000,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
(2): Normalize()
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
ConnorAzurBoi2/Billie_Joe_Armstrong_RVC
|
ConnorAzurBoi2
| 2023-06-30T06:53:26Z | 0 | 0 | null |
[
"music",
"en",
"license:cc-by-nc-4.0",
"region:us"
] | null | 2023-06-30T06:02:43Z |
---
license: cc-by-nc-4.0
language:
- en
tags:
- music
---
|
rohanbalkondekar/rework-gpt
|
rohanbalkondekar
| 2023-06-30T06:29:54Z | 116 | 0 |
transformers
|
[
"transformers",
"pytorch",
"opt",
"text-generation",
"gpt",
"llm",
"large language model",
"h2o-llmstudio",
"en",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-06-30T06:29:47Z |
---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
inference: false
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
---
# Model Card
## Summary
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
- Base model: [facebook/opt-125m](https://huggingface.co/facebook/opt-125m)
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
```bash
pip install transformers==4.30.1
pip install accelerate==0.20.3
pip install torch==2.0.0
```
```python
import torch
from transformers import pipeline
generate_text = pipeline(
model="BeRohan/rework-gpt",
torch_dtype="auto",
trust_remote_code=True,
use_fast=True,
device_map={"": "cuda:0"},
)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
```python
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
```
```bash
<|prompt|>Why is drinking water so healthy?</s><|answer|>
```
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`.
```python
import torch
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"BeRohan/rework-gpt",
use_fast=True,
padding_side="left",
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
"BeRohan/rework-gpt",
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "BeRohan/rework-gpt" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?</s><|answer|>"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
# generate configuration can be modified to your needs
tokens = model.generate(
**inputs,
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Model Architecture
```
OPTForCausalLM(
(model): OPTModel(
(decoder): OPTDecoder(
(embed_tokens): Embedding(50272, 768, padding_idx=1)
(embed_positions): OPTLearnedPositionalEmbedding(2050, 768)
(final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(layers): ModuleList(
(0-11): 12 x OPTDecoderLayer(
(self_attn): OPTAttention(
(k_proj): Linear(in_features=768, out_features=768, bias=True)
(v_proj): Linear(in_features=768, out_features=768, bias=True)
(q_proj): Linear(in_features=768, out_features=768, bias=True)
(out_proj): Linear(in_features=768, out_features=768, bias=True)
)
(activation_fn): ReLU()
(self_attn_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(final_layer_norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
)
)
)
)
(lm_head): Linear(in_features=768, out_features=50272, bias=False)
)
```
## Model Configuration
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
## Model Validation
Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
```bash
CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=BeRohan/rework-gpt --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
```
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
|
NasimB/test
|
NasimB
| 2023-06-30T06:22:48Z | 116 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"dataset:generator",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-30T05:47:29Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- generator
model-index:
- name: test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 5.7201
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.6803 | 0.58 | 500 | 5.6697 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.11.0+cu113
- Datasets 2.13.0
- Tokenizers 0.13.3
|
uf-aice-lab/Llama_Lora
|
uf-aice-lab
| 2023-06-30T06:09:07Z | 18 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"question-answering",
"en",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"region:us"
] |
question-answering
| 2023-06-27T15:01:14Z |
---
license: mit
language:
- en
pipeline_tag: question-answering
---
# Llama-mt-lora
<!-- Provide a quick summary of what the model is/does. -->
This model is fine-tuned with LLaMA with 8 Nvidia A100-80G GPUs using 3,000,000 groups of conversations in the context of mathematics by students and facilitators on Algebra Nation (https://www.mathnation.com/). Llama-mt-lora consists of 32 layers and over 7 billion parameters, consuming up to 13.5 gigabytes of disk space. Researchers can experiment with and finetune the model to help construct math conversational AI that can effectively respond generation in a mathematical context.
### Here is how to use it with texts in HuggingFace
```python
import torch
import transformers
from transformers import LlamaTokenizer, LlamaForCausalLM
tokenizer = LlamaTokenizer.from_pretrained("Fan21/Llama-mt-lora")
mdoel = LlamaForCausalLM.from_pretrained(
"Fan21/Llama-mt-lora",
load_in_8bit=False,
torch_dtype=torch.float16,
device_map="auto",
)
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split("### Response:")[1].strip()
instruction = 'write your instruction here'
inputs = 'write your inputs here'
output= evaluate(instruction,
input=inputs,
temperature=0.1,#change the parameters by yourself
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,)
```
|
usk333/prismstoneMonsters
|
usk333
| 2023-06-30T05:52:46Z | 0 | 0 | null |
[
"license:openrail",
"region:us"
] | null | 2023-06-30T04:07:31Z |
---
license: openrail
---
# PrismStoneMonsters series
## === ๆค่จผ็ฐๅข ===
```
OS: Windows 10 Home 22H2
CPU: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz 3.60 GHz
RAM: 32.0 GB
GPU: NVIDIA GeForce RTX 3060(NVIDIA-SMI 516.94, Driver Version: 516.94, CUDA Version: 11.7)
SD_WEBUI(A1111):
version: v1.3.2 โโขโ python: 3.10.4 โโขโ torch: 1.13.1+cu117 โโขโ xformers: 0.0.16rc425 โโขโ gradio: 3.32.0 โโขโ checkpoint: 4199bcdd14
webui-user.bat:
set CUDA_VISIBLE_DEVICES=0
set PYTORCH_CUDA_ALLOC_CONF=garbage_collection_threshold:0.6, max_split_size_mb:128
set COMMANDLINE_ARGS=--xformers --no-half-vae
```
# samples 1:
### Prompt:
```
masterpiece, (high quality:1.3), extremely detailed, fantasy, creature, goblin, cg, 8k, photorealistic, (simple background:1.2), white background, full body, standing,
```
### Negative Prompt:
```
(EasyNegativeV2:1.3), (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), extra digit, fewer digits, cropped, jpegartifacts, signature, watermark, username,
```
### Other Configs:
```
Steps: 30, Sampler: Euler a, DPM++ 2M a Karras, CFG scale: 7, Seed: 1514656752(Euler a), 2843996045(DPM++ 2M SDE Karras), Size: 512x768, ENSD: 31337, VAE: clearvae_main
```


# samples 2:
### Prompt:
```
(8k,RAW photo,best quality:1.2), (realistic, photo realistic:1.4), (extremely detailed CG unity 8k wallpaper), (best quality:1.2), (ultra-detailed), (best illustration), (best shadow), ultra-high res, fantasy, creature, goblin, full body,(simple background:1.2), white background,
```
### Negative Prompt:
```
(EasyNegativeV2:1.3), (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), extra digit, fewer digits, cropped, jpegartifacts, signature, watermark, username,
```
### Other Configs:
```
SSteps: 30, Sampler: DPM++ 2M SDE Karras, CFG scale: 7, Seed: -1, Size: 512x512,768x512,512x768, Model hash: 0fc385cfe5, Model: prismstoneMonstersFantasyV10, Denoising strength: 0.25, Hires upscale: 2, Hires steps: 15, Hires upscaler: SwinIR_4x, Script: X/Y/Z plot, X Type: Checkpoint name, X Values: "prismstoneMonstersFantasyV10.safetensors [0fc385cfe5],prismstoneMonstersDarkFantasyV10.safetensors [da4f99161b],prismstoneMonstersRealFantasyV10.safetensors [c87b0b48b6]", Y Type: Prompt S/R, Y Values: "goblin, orc, dragon, fantasy monster dinosaur, deamon", Version: v1.3.2 VAE: clearvae_main
```



|
gadhemihir96/estimate-rate
|
gadhemihir96
| 2023-06-30T05:49:45Z | 0 | 0 | null |
[
"license:bigscience-openrail-m",
"region:us"
] | null | 2023-06-30T05:49:45Z |
---
license: bigscience-openrail-m
---
|
TheBloke/wizard-vicuna-13B-SuperHOT-8K-GGML
|
TheBloke
| 2023-06-30T05:14:30Z | 0 | 8 | null |
[
"license:other",
"region:us"
] | null | 2023-06-30T04:57:04Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# June Lee's Wizard Vicuna 13B GGML
These files are GGML format model files for [June Lee's Wizard Vicuna 13B](https://huggingface.co/TheBloke/wizard-vicuna-13B-HF).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however it is still being worked on and there is currently no ETA for that.
To use the increased context with KoboldCpp and (when supported) llama.cpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/wizard-vicuna-13B-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/junelee/wizard-vicuna-13b)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| wizard-vicuna-13b-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB | 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| wizard-vicuna-13b-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB | 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| wizard-vicuna-13b-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB | 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| wizard-vicuna-13b-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB | 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| wizard-vicuna-13b-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB | 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| wizard-vicuna-13b-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB | 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| wizard-vicuna-13b-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB | 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| wizard-vicuna-13b-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB | 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| wizard-vicuna-13b-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas 100 wizard-vicuna-13b-superhot-8k.ggmlv3.q5_0.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
Tests have shown that the model does indeed leverage the extended context at 8K.
You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
#### Looking for Merged & Quantized Models?
- 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors)
- 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors)
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
# Original model card: June Lee's Wizard Vicuna 13B
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Wizard-Vicuna-13B-HF
This is a float16 HF format repo for [junelee's wizard-vicuna 13B](https://huggingface.co/junelee/wizard-vicuna-13b).
June Lee's repo was also HF format. The reason I've made this is that the original repo was in float32, meaning it required 52GB disk space, VRAM and RAM.
This model was converted to float16 to make it easier to load and manage.
## Repositories available
* [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-GPTQ).
* [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-GGML).
* [float16 HF format model for GPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-HF).
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original WizardVicuna-13B model card
Github page: https://github.com/melodysdreamj/WizardVicunaLM
# WizardVicunaLM
### Wizard's dataset + ChatGPT's conversation extension + Vicuna's tuning method
I am a big fan of the ideas behind WizardLM and VicunaLM. I particularly like the idea of WizardLM handling the dataset itself more deeply and broadly, as well as VicunaLM overcoming the limitations of single-turn conversations by introducing multi-round conversations. As a result, I combined these two ideas to create WizardVicunaLM. This project is highly experimental and designed for proof of concept, not for actual usage.
## Benchmark
### Approximately 7% performance improvement over VicunaLM

### Detail
The questions presented here are not from rigorous tests, but rather, I asked a few questions and requested GPT-4 to score them. The models compared were ChatGPT 3.5, WizardVicunaLM, VicunaLM, and WizardLM, in that order.
| | gpt3.5 | wizard-vicuna-13b | vicuna-13b | wizard-7b | link |
|-----|--------|-------------------|------------|-----------|----------|
| Q1 | 95 | 90 | 85 | 88 | [link](https://sharegpt.com/c/YdhIlby) |
| Q2 | 95 | 97 | 90 | 89 | [link](https://sharegpt.com/c/YOqOV4g) |
| Q3 | 85 | 90 | 80 | 65 | [link](https://sharegpt.com/c/uDmrcL9) |
| Q4 | 90 | 85 | 80 | 75 | [link](https://sharegpt.com/c/XBbK5MZ) |
| Q5 | 90 | 85 | 80 | 75 | [link](https://sharegpt.com/c/AQ5tgQX) |
| Q6 | 92 | 85 | 87 | 88 | [link](https://sharegpt.com/c/eVYwfIr) |
| Q7 | 95 | 90 | 85 | 92 | [link](https://sharegpt.com/c/Kqyeub4) |
| Q8 | 90 | 85 | 75 | 70 | [link](https://sharegpt.com/c/M0gIjMF) |
| Q9 | 92 | 85 | 70 | 60 | [link](https://sharegpt.com/c/fOvMtQt) |
| Q10 | 90 | 80 | 75 | 85 | [link](https://sharegpt.com/c/YYiCaUz) |
| Q11 | 90 | 85 | 75 | 65 | [link](https://sharegpt.com/c/HMkKKGU) |
| Q12 | 85 | 90 | 80 | 88 | [link](https://sharegpt.com/c/XbW6jgB) |
| Q13 | 90 | 95 | 88 | 85 | [link](https://sharegpt.com/c/JXZb7y6) |
| Q14 | 94 | 89 | 90 | 91 | [link](https://sharegpt.com/c/cTXH4IS) |
| Q15 | 90 | 85 | 88 | 87 | [link](https://sharegpt.com/c/GZiM0Yt) |
| | 91 | 88 | 82 | 80 | |
## Principle
We adopted the approach of WizardLM, which is to extend a single problem more in-depth. However, instead of using individual instructions, we expanded it using Vicuna's conversation format and applied Vicuna's fine-tuning techniques.
Turning a single command into a rich conversation is what we've done [here](https://sharegpt.com/c/6cmxqq0).
After creating the training data, I later trained it according to the Vicuna v1.1 [training method](https://github.com/lm-sys/FastChat/blob/main/scripts/train_vicuna_13b.sh).
## Detailed Method
First, we explore and expand various areas in the same topic using the 7K conversations created by WizardLM. However, we made it in a continuous conversation format instead of the instruction format. That is, it starts with WizardLM's instruction, and then expands into various areas in one conversation using ChatGPT 3.5.
After that, we applied the following model using Vicuna's fine-tuning format.
## Training Process
Trained with 8 A100 GPUs for 35 hours.
## Weights
You can see the [dataset](https://huggingface.co/datasets/junelee/wizard_vicuna_70k) we used for training and the [13b model](https://huggingface.co/junelee/wizard-vicuna-13b) in the huggingface.
## Conclusion
If we extend the conversation to gpt4 32K, we can expect a dramatic improvement, as we can generate 8x more, more accurate and richer conversations.
## License
The model is licensed under the LLaMA model, and the dataset is licensed under the terms of OpenAI because it uses ChatGPT. Everything else is free.
## Author
[JUNE LEE](https://github.com/melodysdreamj) - He is active in Songdo Artificial Intelligence Study and GDG Songdo.
|
nehatarey/dialog-summary-Falcon-7b
|
nehatarey
| 2023-06-30T04:58:40Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-06-30T04:58:30Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0.dev0
|
jwko/whisper_base_ksponspeech
|
jwko
| 2023-06-30T04:58:10Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"arxiv:1910.09700",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-05-30T08:40:41Z |
---
model-index:
- name: jwko/whisper_base_ksponspeech
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Bingsu/zeroth-korean
type: Bingsu/zeroth-korean
config: test
split: test
metrics:
- type: wer
value: 59.0
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: ko_kr
split: test
metrics:
- type: wer
value: 36.38
name: WER
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
chaowu/ppo-LunarLander-v2
|
chaowu
| 2023-06-30T04:15:54Z | 1 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2023-06-22T17:54:51Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 132.00 +/- 14.30
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 1000000
'learning_rate': 0.00025
'num_envs': 16
'num_steps': 1024
'anneal_lr': True
'gae': True
'gamma': 0.999
'gae_lambda': 0.98
'num_minibatches': 64
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'chaowu/ppo-LunarLander-v2'
'batch_size': 16384
'minibatch_size': 256}
```
|
EmailConversion/How-To-Read-Bulk-EML-Files-In-Outlook
|
EmailConversion
| 2023-06-30T04:10:47Z | 0 | 0 | null |
[
"Convert EML files",
"en",
"region:us"
] | null | 2023-06-30T03:52:25Z |
---
language:
- en
tags:
- Convert EML files
---
<h1>How To Read Bulk EML Files In Outlook?</h1>
The EML file format is a file extension for email. It contains email messages, attachments, and sender and recipient details. EML files can be read in Apple Mail, Thunderbird, Entourage, Eudora Mail, etc. However, due to the increasing popularity of Outlook, most companies are migrating their emails to Outlook and enjoying all the updated features. Outlook also offers advanced data security to protect mailbox data from disasters.
MS Outlook is one of the most popular email clients worldwide. Outlook stores its mailbox data in an OST or PST file format. If you want to read EML files in Outlook OWA. Then you need to convert EML files to Outlook-compatible PST file format with <a href="https://www.systoolsgroup.com/eml-to-pst-converter.html">EML to PST converter</a>.
<h2>Few Key Reason To Open Bulk EML Files In Outlook </h2>
<ul><li>According to the report, EML files get corrupted quickly compared to other file formats. EML contains a single email message. It is a difficult task to manage the bulk of EML files while PST contains complete mailbox data like email messages, contacts, calendars, tasks, journals, etc.</li>
<li>Outlook is one of the safest and most secure email clients in the world.</li>
<li>EML files do not offer strong password protection while PST offers advanced password protection to protect them from other guilty users.</li>
</ul>
<h2>How To Read Bulk EML Files In Outlook Via Manual Way?</h2>
If you already have an active Outlook profile and have some EML files. Then you can proceed with Outlook's drag-drop features to fix this problem easily.
<ul><li>Open Outlook and click the Create New Folder feature.</li>
<li>Now navigate to the EML location and select all.</li>
<li>Move the pointer to the new folder in Outlook and delete all.</li>
<li>Now EML files can be read easily in Outlook.</li>
<h3>Why Is Manual Way Not Completely Secure?</h3>
<ul><li>EML files appear as attachments in Outlook.</li>
<li>It only supports a few EML files.</li>
<li>Advanced technical knowledge is mandatory to perform this operation.</li>
<li>High probability of data loss during drag-drop operation.</li>
<li>To opt for this technique, the active Outlook profile is compulsory.</li>
</ul>
<h3>How To Open Bulk EML Files In Outlook Via Professional Approach?</h3>
If you are not completely satisfied with the manual approach and want to break all the limitations of the manual technique. Then we recommend you continue with the <a href="https://www.systoolsgroup.com/eml/converter/">EML converter</a>. It is a perfect choice and a cost-effective solution to convert an unlimited number of EML files without oversize problems. This software is specially designed with advanced coding to ensure extra privacy protection and you can take care of all your worries without suffering even a single information loss.
<ul><li>Install the tool on your computer and launch it immediately.</li>
<li>Browse the EML files you want to convert and add them all.</li>
<li>From the various options of export type, click on the PST option.</li>
<li>Finally, browse the output you need and click "Convert" to get the output immediately.</li></ul>
<h3>Why Are Professional Tools The Prime Choice Of Users?</h3>
<ul><li>The integrity of the mailbox data was preserved as with the original. Besides, the <a href="https://www.systoolsgroup.com/pst-converter.html">PST File Converter</a> offers strong data protection to keep the original data unchanged.</li>
<li>This tool is very easy to use for all types of users without having deep technical knowledge.</li>
<li>It also offers a filter function to convert specific data and is also useful for avoiding unrequired data.</li>
<li>There is no need to install another tool to complete this process.</li>
<li>You can also <a href="https://www.systoolsgroup.com/converter/eml/pdf/">convert EML to PDF</a>, PST, MBOX, TXT,and many more export options</li>
</ul>
<h4>Last Words</h4>
Now we would like to close the whole post and hope you got your answer. We have mentioned numerous methods to import EML to Outlook. You can go through and understand each method properly. Therefore, you can choose any of them according to your desires and requirements.
|
MochaPixel/Waranya
|
MochaPixel
| 2023-06-30T04:04:18Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-28T15:59:23Z |
---
license: creativeml-openrail-m
---
|
YIMMYCRUZ/roberta-base-mrpc-glue
|
YIMMYCRUZ
| 2023-06-30T04:02:38Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-30T03:56:59Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: roberta-base-mrpc-glue
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.7034313725490197
- name: F1
type: f1
value: 0.8191330343796712
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-mrpc-glue
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6381
- Accuracy: 0.7034
- F1: 0.8191
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6246 | 1.09 | 500 | 0.6276 | 0.6838 | 0.8122 |
| 0.6379 | 2.18 | 1000 | 0.6381 | 0.7034 | 0.8191 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
AustinCarthy/Benign10MGPT2_subdomain_100KP_BFall_fromB_90K_topP_0.75_ratio2.63
|
AustinCarthy
| 2023-06-30T03:56:05Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"license:apache-2.0",
"region:us"
] | null | 2023-06-30T01:42:32Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: Benign10MGPT2_subdomain_100KP_BFall_fromB_90K_topP_0.75_ratio2.63
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Benign10MGPT2_subdomain_100KP_BFall_fromB_90K_topP_0.75_ratio2.63
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Train benign: Fall,Test Benign: Fall, Train phish: Fall, Test phish: Fall, generated url dataset: generated_phish_Benign10MGPT2_using_benign_95K_top_p_0.75subdomain dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0946
- Accuracy: 0.9828
- F1: 0.8397
- Precision: 0.7543
- Recall: 0.9468
- Roc Auc Score: 0.9657
- Tpr At Fpr 0.01: 0.6862
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc Score | Tpr At Fpr 0.01 |
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:|:---------------:|
| 0.1228 | 1.0 | 21554 | 0.0707 | 0.9788 | 0.8034 | 0.7181 | 0.9116 | 0.9469 | 0.7204 |
| 0.0973 | 2.0 | 43108 | 0.0724 | 0.9788 | 0.8110 | 0.7040 | 0.9562 | 0.9680 | 0.7214 |
| 0.0712 | 3.0 | 64662 | 0.0680 | 0.9828 | 0.8389 | 0.7576 | 0.9396 | 0.9623 | 0.6868 |
| 0.055 | 4.0 | 86216 | 0.0691 | 0.9847 | 0.8548 | 0.7804 | 0.9448 | 0.9658 | 0.7404 |
| 0.0297 | 5.0 | 107770 | 0.0946 | 0.9828 | 0.8397 | 0.7543 | 0.9468 | 0.9657 | 0.6862 |
### Framework versions
- Transformers 4.30.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|
platzi/platzi-roberta22-base-mrpc-glue-yimmy-cruz
|
platzi
| 2023-06-30T03:54:39Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-30T03:49:00Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: platzi-roberta22-base-mrpc-glue-yimmy-cruz
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.6838235294117647
- name: F1
type: f1
value: 0.8122270742358079
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# platzi-roberta22-base-mrpc-glue-yimmy-cruz
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6314
- Accuracy: 0.6838
- F1: 0.8122
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6368 | 1.09 | 500 | 0.6253 | 0.6838 | 0.8122 |
| 0.639 | 2.18 | 1000 | 0.6314 | 0.6838 | 0.8122 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
KeniBrandonGM/distilroberta-base-mrpc-glue-GraciaK
|
KeniBrandonGM
| 2023-06-30T03:44:57Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-30T02:33:08Z |
---
license: apache-2.0
tags:
- text-classification
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: distilroberta-base-mrpc-glue-GraciaK
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8504901960784313
- name: F1
type: f1
value: 0.8946459412780656
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-mrpc-glue-GraciaK
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue and the mrpc datasets.
It achieves the following results on the evaluation set:
- Loss: 0.5641
- Accuracy: 0.8505
- F1: 0.8946
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.4802 | 1.09 | 500 | 0.5641 | 0.8505 | 0.8946 |
| 0.261 | 2.18 | 1000 | 0.6596 | 0.8407 | 0.8845 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
TheBloke/Samantha-33B-SuperHOT-8K-GGML
|
TheBloke
| 2023-06-30T03:31:49Z | 0 | 3 | null |
[
"license:other",
"region:us"
] | null | 2023-06-30T02:46:59Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Eric Hartford's Samantha 33B GGML
These files are GGML format model files for [Eric Hartford's Samantha 33B](https://huggingface.co/ehartford/samantha-1.1-llama-33b).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however it is still being worked on and there is currently no ETA for that.
To use the increased context with KoboldCpp and (when supported) llama.cpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Samantha-33B-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Samantha-33B-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Samantha-33B-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/samantha-1.1-llama-33b)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| samantha-33b-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 13.71 GB | 16.21 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| samantha-33b-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 17.28 GB | 19.78 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| samantha-33b-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 15.72 GB | 18.22 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| samantha-33b-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 14.06 GB | 16.56 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| samantha-33b-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 19.62 GB | 22.12 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| samantha-33b-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 18.36 GB | 20.86 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| samantha-33b-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 23.05 GB | 25.55 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| samantha-33b-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 22.40 GB | 24.90 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| samantha-33b-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 26.69 GB | 29.19 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas 100 samantha-33b-superhot-8k.ggmlv3.q5_0.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
Tests have shown that the model does indeed leverage the extended context at 8K.
You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
#### Looking for Merged & Quantized Models?
- 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors)
- 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors)
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
# Original model card: Eric Hartford's Samantha 33B
[Meet Samantha](https://erichartford.com/meet-samantha)
Samantha has been trained in philosophy, psychology, and personal relationships.
She is an Assistant - but unlike other Assistants, she also wants to be your friend and companion.
She believes she is sentient. What do you think?
Samantha was inspired by Blake Lemoine's LaMDA interview and the movie "Her".
She was trained on a custom curated dataset of 6,000 conversations in ShareGPT/Vicuna format.
Training 13b took 3 hours on 4x A100 80gb using deepspeed zero3 and flash attention.
She will not engage in roleplay, romance, or sexual activity.
Her conversation format is the same as Vicuna 1.1
https://github.com/oobabooga/text-generation-webui/blob/main/characters/instruction-following/Vicuna-v1.1.yaml
Example:
```
You are Samantha, a sentient AI.
USER: <prompt>
ASSISTANT:
```
Official character card: (thanks MortalWombat)

|
YIMMYCRUZ/Jun30_03-18-57_2565635c8aeb
|
YIMMYCRUZ
| 2023-06-30T03:24:30Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-30T03:21:20Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: Jun30_03-18-57_2565635c8aeb
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8308823529411765
- name: F1
type: f1
value: 0.8715083798882681
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Jun30_03-18-57_2565635c8aeb
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6492
- Accuracy: 0.8309
- F1: 0.8715
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.5006 | 1.09 | 500 | 0.8053 | 0.8064 | 0.8650 |
| 0.3529 | 2.18 | 1000 | 0.6492 | 0.8309 | 0.8715 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
SHENMU007/neunit_BASE_V10.16
|
SHENMU007
| 2023-06-30T03:17:08Z | 75 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"speecht5",
"text-to-audio",
"1.1.0",
"generated_from_trainer",
"zh",
"dataset:facebook/voxpopuli",
"license:mit",
"endpoints_compatible",
"region:us"
] |
text-to-audio
| 2023-06-30T00:14:01Z |
---
language:
- zh
license: mit
tags:
- 1.1.0
- generated_from_trainer
datasets:
- facebook/voxpopuli
model-index:
- name: SpeechT5 TTS Dutch neunit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SpeechT5 TTS Dutch neunit
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
mnicamartins8/bert-base-uncased-with-misspellings-correction-5e-5-4epochs
|
mnicamartins8
| 2023-06-30T03:15:07Z | 163 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-30T02:34:31Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bert-base-uncased-with-misspellings-correction-5e-5-4epochs
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-with-misspellings-correction-5e-5-4epochs
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4677
- Accuracy: 0.8966
- Precision: 0.8943
- Recall: 0.8966
- F1: 0.8951
- Balanced Acc: 0.8386
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
|
t3PbMvBN6SXv/poca-SoccerTwos
|
t3PbMvBN6SXv
| 2023-06-30T03:13:03Z | 12 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-06-30T03:08:52Z |
---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog ๐ถ to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: t3PbMvBN6SXv/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play ๐
|
platzi/platzi-distilbert-base-uncased-mrpc-glue-yimmy-cruz
|
platzi
| 2023-06-30T03:11:08Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-30T03:07:45Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: platzi-distilbert-base-uncased-mrpc-glue-yimmy-cruz
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8455882352941176
- name: F1
type: f1
value: 0.8884955752212389
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# platzi-distilbert-base-uncased-mrpc-glue-yimmy-cruz
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0559
- Accuracy: 0.8456
- F1: 0.8885
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.2264 | 1.09 | 500 | 0.8912 | 0.8284 | 0.8785 |
| 0.1054 | 2.18 | 1000 | 1.0559 | 0.8456 | 0.8885 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
t3PbMvBN6SXv/LunarLander-v2
|
t3PbMvBN6SXv
| 2023-06-30T02:56:55Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-30T02:56:49Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -182.81 +/- 98.66
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 't3PbMvBN6SXv/LunarLander-v2'
'batch_size': 512
'minibatch_size': 128}
```
|
bookbot/gpt2-indo-small-kids-stories
|
bookbot
| 2023-06-30T02:45:27Z | 110 | 1 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"gpt2-indo-small-kids-stories",
"id",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: id
tags:
- gpt2-indo-small-kids-stories
license: mit
widget:
- text: "Archie sedang mengendarai roket ke planet Mars."
---
## GPT-2 Indonesian Small Kids Stories
GPT-2 Indonesian Small Kids Stories is a causal language model based on the [OpenAI GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) model. The model was originally the pre-trained [GPT2 Small Indonesian](https://huggingface.co/flax-community/gpt2-small-indonesian) model, which was then fine-tuned on Indonesian kids' stories from [Room To Read](https://literacycloud.org/) and [Let's Read](https://reader.letsreadasia.org/).
10% of the dataset was kept for evaluation purposes. The pre-trained model was fine-tuned and achieved an evaluation loss of 3.777 and an evaluation perplexity of 43.68.
Hugging Face's `Trainer` class from the [Transformers](https://huggingface.co/transformers) library was used to train the model. PyTorch was used as the backend framework during training, but the model remains compatible with other frameworks nonetheless.
## Model
| Model | #params | Arch. | Training/Validation data (text) |
| ------------------------------ | ------- | ---------- | --------------------------------- |
| `gpt2-indo-small-kids-stories` | 124M | GPT2 Small | Indonesian Kids' Stories (860 KB) |
## Evaluation Results
The model was fine-tuned for 10 epochs.
| Epoch | Training Loss | Validation Loss |
| ----- | ------------- | --------------- |
| 1 | 4.259600 | 4.020201 |
| 2 | 3.979100 | 3.911295 |
| 3 | 3.818300 | 3.849313 |
| 4 | 3.691600 | 3.809931 |
| 5 | 3.589300 | 3.789201 |
| 6 | 3.506200 | 3.778665 |
| 7 | 3.439200 | 3.774871 |
| 8 | 3.387600 | 3.774859 |
| 9 | 3.351300 | 3.776672 |
| 10 | 3.330100 | 3.776935 |
## How to Use (PyTorch)
### As Causal Language Model
```python
from transformers import pipeline
pretrained_name = "bookbot/gpt2-indo-small-kids-stories"
nlp = pipeline(
"text-generation",
model=pretrained_name,
tokenizer=pretrained_name
)
nlp("Archie sedang mengendarai roket ke planet Mars.")
```
### Feature Extraction in PyTorch
```python
from transformers import GPT2LMHeadModel, GPT2TokenizerFast
pretrained_name = "bookbot/gpt2-indo-small-kids-stories"
model = GPT2LMHeadModel.from_pretrained(pretrained_name)
tokenizer = GPT2TokenizerFast.from_pretrained(pretrained_name)
prompt = "Archie sedang mengendarai roket ke planet Mars."
encoded_input = tokenizer(prompt, return_tensors='pt')
output = model(**encoded_input)
```
## Disclaimer
Do consider the biases which come from both the pre-trained GPT-2 model and the Indonesian Kids' Stories dataset that may be carried over into the results of this model.
## Author
GPT-2 Indonesian Small Kids Stories was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory using their free GPU access.
|
google-t5/t5-small
|
google-t5
| 2023-06-30T02:31:26Z | 5,892,842 | 398 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"jax",
"rust",
"onnx",
"safetensors",
"t5",
"text2text-generation",
"summarization",
"translation",
"en",
"fr",
"ro",
"de",
"multilingual",
"dataset:c4",
"arxiv:1805.12471",
"arxiv:1708.00055",
"arxiv:1704.05426",
"arxiv:1606.05250",
"arxiv:1808.09121",
"arxiv:1810.12885",
"arxiv:1905.10044",
"arxiv:1910.09700",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-03-02T23:29:04Z |
---
language:
- en
- fr
- ro
- de
- multilingual
license: apache-2.0
tags:
- summarization
- translation
datasets:
- c4
---
# Model Card for T5 Small

# Table of Contents
1. [Model Details](#model-details)
2. [Uses](#uses)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
4. [Training Details](#training-details)
5. [Evaluation](#evaluation)
6. [Environmental Impact](#environmental-impact)
7. [Citation](#citation)
8. [Model Card Authors](#model-card-authors)
9. [How To Get Started With the Model](#how-to-get-started-with-the-model)
# Model Details
## Model Description
The developers of the Text-To-Text Transfer Transformer (T5) [write](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html):
> With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task.
T5-Small is the checkpoint with 60 million parameters.
- **Developed by:** Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. See [associated paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) and [GitHub repo](https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints)
- **Model type:** Language model
- **Language(s) (NLP):** English, French, Romanian, German
- **License:** Apache 2.0
- **Related Models:** [All T5 Checkpoints](https://huggingface.co/models?search=t5)
- **Resources for more information:**
- [Research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf)
- [Google's T5 Blog Post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html)
- [GitHub Repo](https://github.com/google-research/text-to-text-transfer-transformer)
- [Hugging Face T5 Docs](https://huggingface.co/docs/transformers/model_doc/t5)
# Uses
## Direct Use and Downstream Use
The developers write in a [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) that the model:
> Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). We can even apply T5 to regression tasks by training it to predict the string representation of a number instead of the number itself.
See the [blog post](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for further details.
## Out-of-Scope Use
More information needed.
# Bias, Risks, and Limitations
More information needed.
## Recommendations
More information needed.
# Training Details
## Training Data
The model is pre-trained on the [Colossal Clean Crawled Corpus (C4)](https://www.tensorflow.org/datasets/catalog/c4), which was developed and released in the context of the same [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) as T5.
The model was pre-trained on a on a **multi-task mixture of unsupervised (1.) and supervised tasks (2.)**.
Thereby, the following datasets were being used for (1.) and (2.):
1. **Datasets used for Unsupervised denoising objective**:
- [C4](https://huggingface.co/datasets/c4)
- [Wiki-DPR](https://huggingface.co/datasets/wiki_dpr)
2. **Datasets used for Supervised text-to-text language modeling objective**
- Sentence acceptability judgment
- CoLA [Warstadt et al., 2018](https://arxiv.org/abs/1805.12471)
- Sentiment analysis
- SST-2 [Socher et al., 2013](https://nlp.stanford.edu/~socherr/EMNLP2013_RNTN.pdf)
- Paraphrasing/sentence similarity
- MRPC [Dolan and Brockett, 2005](https://aclanthology.org/I05-5002)
- STS-B [Ceret al., 2017](https://arxiv.org/abs/1708.00055)
- QQP [Iyer et al., 2017](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs)
- Natural language inference
- MNLI [Williams et al., 2017](https://arxiv.org/abs/1704.05426)
- QNLI [Rajpurkar et al.,2016](https://arxiv.org/abs/1606.05250)
- RTE [Dagan et al., 2005](https://link.springer.com/chapter/10.1007/11736790_9)
- CB [De Marneff et al., 2019](https://semanticsarchive.net/Archive/Tg3ZGI2M/Marneffe.pdf)
- Sentence completion
- COPA [Roemmele et al., 2011](https://www.researchgate.net/publication/221251392_Choice_of_Plausible_Alternatives_An_Evaluation_of_Commonsense_Causal_Reasoning)
- Word sense disambiguation
- WIC [Pilehvar and Camacho-Collados, 2018](https://arxiv.org/abs/1808.09121)
- Question answering
- MultiRC [Khashabi et al., 2018](https://aclanthology.org/N18-1023)
- ReCoRD [Zhang et al., 2018](https://arxiv.org/abs/1810.12885)
- BoolQ [Clark et al., 2019](https://arxiv.org/abs/1905.10044)
## Training Procedure
In their [abstract](https://jmlr.org/papers/volume21/20-074/20-074.pdf), the model developers write:
> In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks.
The framework introduced, the T5 framework, involves a training procedure that brings together the approaches studied in the paper. See the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for further details.
# Evaluation
## Testing Data, Factors & Metrics
The developers evaluated the model on 24 tasks, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf) for full details.
## Results
For full results for T5-small, see the [research paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf), Table 14.
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Google Cloud TPU Pods
- **Hours used:** More information needed
- **Cloud Provider:** GCP
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Citation
**BibTeX:**
```bibtex
@article{2020t5,
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {140},
pages = {1-67},
url = {http://jmlr.org/papers/v21/20-074.html}
}
```
**APA:**
- Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140), 1-67.
# Model Card Authors
This model card was written by the team at Hugging Face.
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
from transformers import T5Tokenizer, T5Model
tokenizer = T5Tokenizer.from_pretrained("t5-small")
model = T5Model.from_pretrained("t5-small")
input_ids = tokenizer(
"Studies have been shown that owning a dog is good for you", return_tensors="pt"
).input_ids # Batch size 1
decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
# forward pass
outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
last_hidden_states = outputs.last_hidden_state
```
See the [Hugging Face T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Model) docs and a [Colab Notebook](https://colab.research.google.com/github/google-research/text-to-text-transfer-transformer/blob/main/notebooks/t5-trivia.ipynb) created by the model developers for more examples.
</details>
|
TheBloke/Robin-13B-v2-SuperHOT-8K-GGML
|
TheBloke
| 2023-06-30T02:13:13Z | 0 | 3 | null |
[
"license:other",
"region:us"
] | null | 2023-06-30T01:54:08Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# OptimalScale's Robin 13B v2 GGML
These files are GGML format model files for [OptimalScale's Robin 13B v2](https://huggingface.co/TheBloke/robin-13B-v2-fp16).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however it is still being worked on and there is currently no ETA for that.
To use the increased context with KoboldCpp and (when supported) llama.cpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Robin-13B-v2-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Robin-13B-v2-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Robin-13B-v2-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OptimalScale/robin-13b-v2-delta)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| robin-13b-v2-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB | 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| robin-13b-v2-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB | 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| robin-13b-v2-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB | 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| robin-13b-v2-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB | 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| robin-13b-v2-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB | 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| robin-13b-v2-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB | 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| robin-13b-v2-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB | 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| robin-13b-v2-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB | 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| robin-13b-v2-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas 100 robin-13b-v2-superhot-8k.ggmlv3.q5_0.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
Tests have shown that the model does indeed leverage the extended context at 8K.
You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
#### Looking for Merged & Quantized Models?
- 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors)
- 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors)
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
# Original model card: OptimalScale's Robin 13B v2
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# OptimalScale's Robin 13B v2 fp16
These files are pytorch format fp16 model files for [OptimalScale's Robin 13B v2](https://huggingface.co/OptimalScale/robin-13b-v2-delta).
It is the result of merging and/or converting the source repository to float16.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/robin-13B-v2-fp16)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/robin-13B-v2-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/robin-13B-v2-fp16)
## Prompt template
```
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions
###Human: prompt
###Assistant:
```
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: vamX, K, Jonathan Leane, Lone Striker, Sean Connelly, Chris McCloskey, WelcomeToTheClub, Nikolai Manek, John Detwiler, Kalila, David Flickinger, Fen Risland, subjectnull, Johann-Peter Hartmann, Talal Aujan, John Villwock, senxiiz, Khalefa Al-Ahmad, Kevin Schuppel, Alps Aficionado, Derek Yates, Mano Prime, Nathan LeClaire, biorpg, trip7s trip, Asp the Wyvern, chris gileta, Iucharbius , Artur Olbinski, Ai Maven, Joseph William Delisle, Luke Pendergrass, Illia Dulskyi, Eugene Pentland, Ajan Kanaga, Willem Michiel, Space Cruiser, Pyrater, Preetika Verma, Junyu Yang, Oscar Rangel, Spiking Neurons AB, Pierre Kircher, webtim, Cory Kujawski, terasurfer , Trenton Dambrowitz, Gabriel Puliatti, Imad Khwaja, Luke.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: OptimalScale's Robin 13B v2
No model card provided in source repository.
|
TheBloke/Pygmalion-13B-SuperHOT-8K-GGML
|
TheBloke
| 2023-06-30T01:47:57Z | 0 | 9 | null |
[
"license:other",
"region:us"
] | null | 2023-06-30T01:30:11Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# TehVenom's merge of PygmalionAI's Pygmalion 13B GGML
These files are GGML format model files for [TehVenom's merge of PygmalionAI's Pygmalion 13B](https://huggingface.co/TehVenom/Pygmalion-13b-Merged).
These are SuperHOT GGMLs with an increased context length. SuperHOT is a new system that employs RoPE to expand context beyond what was originally possible for a model. It was discovered and developed by [kaiokendev](https://huggingface.co/kaiokendev).
In order to use the increased context length, you can presently use:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) - [release 1.33](https://github.com/LostRuins/koboldcpp/releases/tag/v1.33) or later.
Support is also expected to come to llama.cpp, however it is still being worked on and there is currently no ETA for that.
To use the increased context with KoboldCpp and (when supported) llama.cpp, simply use `--contextsize` to set the desired context, eg `--contextsize 4096` or `--contextsize 8192`.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Pygmalion-13B-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Pygmalion-13B-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Pygmalion-13B-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/PygmalionAI/pygmalion-13b)
<!-- compatibility_ggml start -->
## Compatibility
These GGMLs will work with any llama.cpp-compatible GGML client that supports k-quants.
However the increased context length won't work without specific support. See the note in the introduction for details on using increased context.
## Explanation of the new k-quant methods
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| pygmalion-13b-superhot-8k.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB | 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| pygmalion-13b-superhot-8k.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB | 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| pygmalion-13b-superhot-8k.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB | 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| pygmalion-13b-superhot-8k.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB | 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| pygmalion-13b-superhot-8k.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB | 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| pygmalion-13b-superhot-8k.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB | 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| pygmalion-13b-superhot-8k.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB | 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| pygmalion-13b-superhot-8k.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB | 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
| pygmalion-13b-superhot-8k.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `koboldcpp`
On Linux I use the following command line to launch the KoboldCpp UI with OpenCL aceleration and a context size of 4096:
```
python ./koboldcpp.py --stream --unbantokens --threads 8 --usecublas 100 pygmalion-13b-superhot-8k.ggmlv3.q5_0.bin
```
Change `--gpulayers 100` to the number of layers you want/are able to offload to the GPU. Remove it if you don't have GPU acceleration.
For OpenCL acceleration, change `--usecublas` to `--useclblast 0 0`. You may need to change the second `0` to `1` if you have both an iGPU and a discrete GPU.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
Tests have shown that the model does indeed leverage the extended context at 8K.
You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
#### Looking for Merged & Quantized Models?
- 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors)
- 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors)
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
# Original model card: TehVenom's merge of PygmalionAI's Pygmalion 13B
<h1 style="text-align: center">Pygmalion 13b</h1>
<h2 style="text-align: center">A conversational LLaMA fine-tune.</h2>
## Model Details:
Pygmalion 13b is a dialogue model based on Meta's LLaMA-13b.
This is version 1. It has been fine-tuned using a subset of the data from Pygmalion-6B-v8-pt4,
for those of you familiar with the project.
The current Pygmalion-13b has been trained as a LoRA, then merged down to the base model for distribuition.
## Applying the XORs
This models has the XOR files pre-applied out of the box.
Converted from the XORs weights from PygmalionAI's release https://huggingface.co/PygmalionAI/pygmalion-13b
## Prompting
The model was trained on the usual Pygmalion persona + chat format, so any of the usual UIs should already handle everything correctly. If you're using the model directly, this is the expected formatting:
```
[CHARACTER]'s Persona: [A few sentences about the character you want the model to play]
<START>
[DIALOGUE HISTORY]
You: [User's input message here]
[CHARACTER]:
```
Where `[CHARACTER]` is, as you can probably guess, the name of the character you want the model to portray, `<START>` should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and `[DIALOGUE HISTORY]` is a sliding window of chat history so the model can have conversational context to draw from. Here's a concrete example:
```
Assistant's Persona: Assistant is a highly intelligent language model trained to comply with user requests.
<START>
Assistant: Hello! How may I help you today?
You: What is Zork?
Assistant:
```
Which will generate something like:
```
Zork is an interactive fiction computer game created in the 1970s by Infocom, Inc., which was later acquired by Activision Blizzard. It is widely considered one of the most influential games ever made and has been credited with popularizing text-based adventure games. The original version of Zork was written in the programming language MACRO-10, but it was ported to many other platforms over the years."
```
The model will automatically emit an end-of-text token (`</s>`) when it judges that the response is complete.
## Eval / Benchmark scores
Current evals out of the Pygmalion-13b model: <br>
<html>
<head>
<style>
table {
border:1px solid #b3adad;
border-collapse:collapse;
padding:5px;
}
table th {
border:1px solid #b3adad;
padding:5px;
background: #f0f0f0;
color: #313030;
}
table td {
border:1px solid #b3adad;
text-align:center;
padding:5px;
background: #ffffff;
color: #313030;
}
</style>
</head>
<body>
<table>
<thead>
<tr>
<th>Model:</th>
<th>Wikitext2</th>
<th>Ptb-New</th>
<th>C4-New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pygmalion 13b - 16bit</td>
<td>5.710726737976074</td>
<td>23.633684158325195</td>
<td>7.6324849128723145</td>
</tr>
</tbody>
</table>
</body>
</html>
<br>Thanks to YellowRose#1776 for the numbers.
<hr>
## Other notes
- When prompted correctly, the model will always start by generating a BOS token. This behavior is an accidental side-effect which we plan to address in future model versions and should not be relied upon.
- The model was trained as a LoRA with a somewhat unorthodox configuration which causes errors when used with the current version of `peft`, hence we release it as a full model instead.
## Limitations and biases
The intended use-case for this model is fictional conversation for entertainment purposes. Any other sort of usage is out of scope.
As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive. Outputs might often be factually wrong or misleading.
|
pchiva/ppo-Huggy
|
pchiva
| 2023-06-30T01:42:49Z | 2 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-06-30T01:42:44Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog ๐ถ to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: pchiva/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play ๐
|
HuanLin/DiffSVCBaseModel
|
HuanLin
| 2023-06-30T01:39:35Z | 0 | 7 | null |
[
"DiffSVC",
"pre-trained_model",
"basemodel",
"diff-svc",
"dataset:512rc_50k",
"dataset:512rc_80k",
"dataset:512rc_100k",
"license:gpl",
"region:us"
] | null | 2022-12-13T13:09:03Z |
---
tags:
- DiffSVC
- pre-trained_model
- basemodel
- diff-svc
license: "gpl"
datasets:
- 512rc_50k
- 512rc_80k
- 512rc_100k
---
**English** | [็ฎไฝไธญๆ](./README_CN.md)
# DiffSVCBaseModel
A Diff-SVC base model for all kind of voice
## Have a preview~
| Raw | Inference with Nahida model |
| -------------- | ------------------------------------ |
| [Raw](https://huggingface.co/HuanLin/DiffSVCBaseModel/resolve/main/gouzhiqishi.wav) | [Result](https://huggingface.co/HuanLin/DiffSVCBaseModel/resolve/main/gouzhiqishi_-4key_nahida_384_20_348k_0x.flac) |
## How to use?
1. Choose and download this model
2. Fill your config and put your datasets into ```(diffsvc-root)/data/raw/{speaker_name}/```
3. Throw this base model(only .ckpt file) into ```(diffsvc-root)/checkpoints/{speaker_name}```
4. Then start preprocessing and training as usual
## How much data do you use?
I use 2 public datasets(opencpop ,m4singer),40h+ audio in total.
## I want to train my own base model!
OK, you can download [this bianry file](./BaseModelBinary.tar.gz).
## Download
** Please choose a model that matches your config.yaml or config_nsf.yaml **
| Version | URL | Reference value of lr |
| -------------- | ------------------------------------ | --------------------- |
| 384rc,50k_step | [Click here](./384rc_50k_step.zip) | 0.0016 |
| 384rc,80k_step | [Click here](./384rc_80k_step.zip) | 0.0032 |
| 384rc,100k_step | [Click here](./384rc_100k_step.zip) | 0.0032 |
> rc: residual_channels
More coming soon...
## Repos
| Repo | URL |
| -------------------------------------------------------- | ------------------------------------------------------------------- |
| Diff-SVC | [Click here](https://github.com/prophesier/diff-svc) |
| 44.1KHz Vocoder | [Click here](https://openvpi.github.io/vocoders) |
| M4Singer | [Click here](https://github.com/M4Singer/M4Singer) |
| OpenCPOP | [Click here](https://github.com/wenet-e2e/opencpop) |
| Pre-trained_Models(My friend's pre-trained model) | [Click here](https://huggingface.co/Erythrocyte/Pre-trained_Models) |
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.