modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-29 12:28:52
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-29 12:25:02
card
stringlengths
11
1.01M
uvegesistvan/roberta_large_pl_100_sh
uvegesistvan
2025-06-20T20:08:13Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T19:05:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
borgr/autotrain-Trial-1053836322
borgr
2025-06-20T20:08:10Z
27
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain", "unk", "dataset:borgr/autotrain-data-Trial", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-29T16:28:06Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - borgr/autotrain-data-Trial co2_eq_emissions: 16.873530195116704 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1053836322 - CO2 Emissions (in grams): 16.873530195116704 ## Validation Metrics - Loss: 0.15484948456287384 - Accuracy: 0.9469933184855234 - Precision: 0.9595836712625033 - Recall: 0.9447697631088634 - AUC: 0.9849331840470433 - F1: 0.9521190987124462 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/borgr/autotrain-Trial-1053836322 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("borgr/autotrain-Trial-1053836322", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("borgr/autotrain-Trial-1053836322", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
sergioalves/0dcbfa1a-6174-4163-8f59-9da45180272d
sergioalves
2025-06-20T20:01:39Z
0
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-06-20T19:33:37Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 0dcbfa1a-6174-4163-8f59-9da45180272d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - d1f349b08e885ac0_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_instruction: instruct field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.05 enabled: true group_by_length: false rank_loss: true reference_model: NousResearch/Meta-Llama-3-8B-Instruct early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: sergioalves/0dcbfa1a-6174-4163-8f59-9da45180272d hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-07 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/d1f349b08e885ac0_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 57440fdb-f115-44b0-8deb-d492c8a284e1 wandb_project: s56-7 wandb_run: your_name wandb_runid: 57440fdb-f115-44b0-8deb-d492c8a284e1 warmup_steps: 25 weight_decay: 0.05 xformers_attention: false ``` </details><br> # 0dcbfa1a-6174-4163-8f59-9da45180272d This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8976 | 0.0004 | 1 | 1.0508 | | 0.9685 | 0.0384 | 100 | 1.0437 | | 1.0811 | 0.0768 | 200 | 1.0390 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Official-mezzo-fun-18-Viral-videos-Links/18.FULL.VIDEO.Mezzo.fun.Viral.Video.Tutorial.Official
Official-mezzo-fun-18-Viral-videos-Links
2025-06-20T19:58:11Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:51:43Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?mezzo-fun) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?mezzo-fun) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?mezzo-fun)
jobz-hunting-sajal-malik-19/wATCH.jobz.hunting.sajal.malik.viral.video.original
jobz-hunting-sajal-malik-19
2025-06-20T19:57:47Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:54:44Z
[🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )](https://videohere.top/?jobz-hunting-sajal-malik) [►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► 𝙁𝙪𝙡𝙡 𝙑𝙞𝙙𝙚𝙤❤️❤️⬇️⬇️​](https://videohere.top/?jobz-hunting-sajal-malik) [<img alt="fsd" src="http://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?jobz-hunting-sajal-malik)
a2z-jankari-sapna-shah-viral-video-18/video.18.a2z.jankari.sapna.shah.a2z.jankari.com.a2z.jankari.viral.video.a.to.z.jankaricom
a2z-jankari-sapna-shah-viral-video-18
2025-06-20T19:55:58Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:50:40Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=a2z-jankari-sapna-shah-viral-video) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=a2z-jankari-sapna-shah-viral-video) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=a2z-jankari-sapna-shah-viral-video)
Medhatvv/biogpt_icd10_enhanced
Medhatvv
2025-06-20T19:48:35Z
0
0
transformers
[ "transformers", "safetensors", "biogpt-icd10", "medical", "icd-10", "classification", "biogpt", "clinical-notes", "healthcare", "multi-label", "pytorch", "medical-coding", "discharge-summaries", "clinical-nlp", "text-classification", "arxiv:1910.09700", "base_model:microsoft/biogpt", "base_model:finetune:microsoft/biogpt", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T19:28:54Z
--- library_name: transformers tags: - medical - icd-10 - classification - biogpt - clinical-notes - healthcare - multi-label - pytorch - medical-coding - discharge-summaries - clinical-nlp license: mit base_model: microsoft/biogpt pipeline_tag: text-classification --- # BioGPT for ICD-10 Medical Code Classification <!-- Advanced BioGPT model fine-tuned for automated ICD-10 medical code classification from clinical discharge summaries --> This model is a fine-tuned version of microsoft/biogpt specifically designed for automated ICD-10 medical code classification from clinical discharge summaries. The model incorporates advanced attention mechanisms and architectural enhancements for medical text understanding. ## Model Details ### Model Description <!-- Enhanced BioGPT with cross-attention, hierarchical attention, and medical-specific optimizations --> This model extends the BioGPT architecture with several medical-specific enhancements including cross-attention between clinical text and ICD code descriptions, hierarchical attention for understanding medical taxonomy, and enhanced classification heads for multi-label prediction. - **Developed by:** Medhat Ramadan. - **Shared by [optional]:** Medhat Ramadan. - **Model type:** Multi-label Text Classification (Medical) - **Language(s) (NLP):** English (Clinical Text) - **License:** MIT - **Finetuned from model [optional]:** microsoft/biogpt ### Model Sources [optional] <!-- Basic links for the model --> - **Repository:** https://huggingface.co/Medhatvv/biogpt_icd10_enhanced <!-- - **Paper [optional]:** [Research paper in preparation] - **Demo [optional]:** [Available in model repository] --> ## Uses <!-- Model is intended for research and educational purposes in medical coding automation --> ### Direct Use <!-- For automated ICD-10 code prediction from discharge summaries --> This model can be used directly for automated ICD-10 code prediction from clinical discharge summaries. It processes medical text and outputs probability scores for 50 most frequent ICD-10 codes. Intended for research, educational purposes, and as a supportive tool for medical coding professionals. ### Downstream Use [optional] <!-- Can be fine-tuned for other medical classification tasks or integrated into clinical workflows --> The model can be fine-tuned for other medical classification tasks, integrated into clinical decision support systems, or used as a component in larger healthcare AI pipelines. It may also serve as a starting point for domain-specific medical coding applications. ### Out-of-Scope Use <!-- Not for primary medical decision making or replacing professional medical coders --> This model should NOT be used as the sole basis for medical billing, clinical decision-making, or patient care. It is not intended to replace professional medical coders or clinical judgment. The model should not be used on non-English text or non-clinical documents. ## Bias, Risks, and Limitations <!-- Technical and sociotechnical limitations of the model --> The model may exhibit biases present in the MIMIC-IV training dataset, including demographic, institutional, or temporal biases. It is limited to 50 most frequent ICD-10 codes and optimized specifically for discharge summaries. Performance may degrade on other clinical note types or different patient populations. ### Recommendations <!-- Recommendations for responsible use --> Users should validate model predictions with professional medical coding expertise. Regular evaluation for bias across different patient demographics is recommended. The model should be used as a supportive tool only, with human oversight for all clinical and billing decisions. Ensure proper data anonymization before processing patient information. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load model and tokenizer model_name = "Medhatvv/biogpt_icd10_enhanced" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Example discharge summary text = """ CHIEF COMPLAINT: Chest pain and shortness of breath. HISTORY: 65-year-old male with hypertension and diabetes presents with acute chest pain... """ # Predict ICD codes inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024) with torch.no_grad(): outputs = model(**inputs) predictions = torch.sigmoid(outputs.logits) # Get codes above threshold threshold = 0.40 predicted_codes = [] for i, score in enumerate(predictions[0]): if score > threshold: predicted_codes.append((i, score.item())) ``` ## Training Details ### Training Data <!-- MIMIC-IV discharge summaries with ICD-10 annotations --> The model was trained on MIMIC-IV discharge summaries with expert ICD-10 annotations. The dataset included 95,537 documents from 53,156 unique patients after filtering for the top 50 most frequent ICD codes. Average document length was 1,420 words with 5.43 codes per document on average. ### Training Procedure <!-- Technical training specifications --> #### Preprocessing [optional] Text was chunked into 1024-token segments with 124-token overlap. Documents were split at the patient level to prevent data leakage. ICD code embeddings were initialized and made learnable during training. #### Training Hyperparameters - **Training regime:** Mixed precision (fp16) - **Learning rate:** 1e-5 with cosine annealing warm restarts - **Batch size:** 10 per GPU, effective batch size 80 with gradient accumulation - **Optimizer:** AdamW with weight decay 0.01 - **Epochs:** 31 - **Dropout:** 0.2 - **Gradient clipping:** 1.0 - **Early stopping patience:** 30 epochs #### Speeds, Sizes, Times [optional] <!-- Training infrastructure details --> - **Training time:** ~12 hours on 8x RTX 5070 GPUs - **Model size:** 1.6B+ parameters - **Memory usage:** ~45GB GPU memory during training - **Checkpoint size:** ~3.1GB ## Evaluation <!-- Evaluation protocols and results --> ### Testing Data, Factors & Metrics #### Testing Data <!-- MIMIC-IV test split --> Evaluation performed on held-out test set from MIMIC-IV with document-level splitting to ensure no patient overlap between train/test sets. #### Factors <!-- Evaluation disaggregated by medical factors --> Evaluation considered performance across different ICD code categories, document lengths, and patient demographics where available. #### Metrics <!-- Multi-label classification metrics --> Standard multi-label classification metrics including F1-micro, F1-macro, precision, recall, and Hamming loss. These metrics are appropriate for medical coding where multiple codes per document are expected. ### Results Performance metrics on MIMIC-IV test set: - **F1-Score (Micro):** 74.27% - **F1-Score (Macro):** 67.91 - **Precision (Micro):** 74.5% - **Recall (Micro):** 73.52% - **Hamming Loss:** 0.0547 #### Summary The model achieves competitive performance on ICD-10 classification compared to other medical NLP models, with particular strength in handling long clinical documents through its enhanced attention mechanisms. ## Model Examination [optional] <!-- Interpretability and attention analysis --> The model includes attention visualization capabilities showing which text segments contribute most to specific ICD code predictions. Cross-attention mechanisms provide interpretable mappings between clinical text and medical codes. ## Environmental Impact <!-- Carbon footprint and computational considerations --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** 8x RTX 5070 GPUs - **Hours used:** ~12 hours - **Carbon Emitted:** [Estimated based on regional energy mix] ## Technical Specifications [optional] ### Model Architecture and Objective Enhanced BioGPT with cross-attention between text and ICD embeddings, hierarchical attention for medical taxonomy understanding, attention-based pooling, and ensemble classification heads. Objective is multi-label classification with BCEWithLogitsLoss. ### Compute Infrastructure #### Hardware 8x RTX 5070 GPUs with distributed data parallel training. #### Software PyTorch 2.0, HuggingFace Transformers, CUDA 12.8, mixed precision training with automatic mixed precision. ## Citation [optional] <!-- Citation information --> **BibTeX:** ```bibtex @misc{biogpt-icd10-enhanced-2024, title={BioGPT for ICD-10 Medical Code Classification: Enhanced Architecture with Cross-Attention and Hierarchical Learning}, author={Medhat Ramadan.}, year={2024}, howpublished={HuggingFace Model Hub}, url={https://huggingface.co/Medhatvv/biogpt_icd10_enhanced}, note={Fine-tuned on MIMIC-IV discharge summaries for automated medical coding} } ``` **APA:** Medhat Ramadan. (2024). BioGPT for ICD-10 Medical Code Classification: Enhanced Architecture with Cross-Attention and Hierarchical Learning. HuggingFace Model Hub. https://huggingface.co/Medhatvv/biogpt_icd10_enhanced ## Glossary [optional] <!-- Medical and technical terms --> - **ICD-10:** International Classification of Diseases, 10th Revision - standardized medical coding system - **Discharge Summary:** Clinical document summarizing patient's hospital stay and treatment - **Cross-Attention:** Attention mechanism between different input modalities (text and ICD codes) - **MIMIC-IV:** Medical Information Mart for Intensive Care IV - clinical database ## More Information [optional] For detailed usage examples, advanced configuration options, and integration guides, see the model repository documentation. ## Model Card Authors [optional] Medhat Ramadan. ## Model Card Contact For questions or issues, please contact through the HuggingFace model repository or open an issue in the associated GitHub repository.
morturr/Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-2-seed-7-2025-06-20
morturr
2025-06-20T19:45:02Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-20T19:44:46Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-2-seed-7-2025-06-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-2-seed-7-2025-06-20 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 7 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
gabriellarson/Mistral-Small-3.2-24B-Instruct-2506-GGUF
gabriellarson
2025-06-20T19:43:48Z
0
3
vllm
[ "vllm", "gguf", "image-text-to-text", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ne", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "base_model:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "base_model:quantized:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "license:apache-2.0", "region:us", "conversational" ]
image-text-to-text
2025-06-20T18:30:14Z
--- language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn license: apache-2.0 library_name: vllm inference: false base_model: - mistralai/Mistral-Small-3.2-24B-Instruct-2506 extra_gated_description: >- If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. pipeline_tag: image-text-to-text --- GGUF created using chat_template.json, preprocessor_config.json, processor_config.json, special_tokens_map.json, tokenizer.json, tokenizer_config.json from mistralai/Mistral-Small-3.1-24B-Instruct-2503 mmproj from unsloth/Mistral-Small-3.1-24B-Instruct-2503-GGUF # Mistral-Small-3.2-24B-Instruct-2506 Mistral-Small-3.2-24B-Instruct-2506 is a minor update of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503). Small-3.2 improves in the following categories: - **Instruction following**: Small-3.2 is better at following precise instructions - **Repetition errors**: Small-3.2 produces less infinite generations or repetitive answers - **Function calling**: Small-3.2's function calling template is more robust (see [here](https://github.com/mistralai/mistral-common/blob/535b4d0a0fc94674ea17db6cf8dc2079b81cbcfa/src/mistral_common/tokens/tokenizers/instruct.py#L778) and [examples](#function-calling)) In all other categories Small-3.2 should match or slightly improve compared to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503). ## Key Features - same as [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503#key-features) ## Benchmark Results We compare Mistral-Small-3.2-24B to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503). For more comparison against other models of similar size, please check [Mistral-Small-3.1's Benchmarks'](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503#benchmark-results) ### Text #### Instruction Following / Chat / Tone | Model | Wildbench v2 | Arena Hard v2 | IF (Internal; accuracy) | |-------|---------------|---------------|------------------------| | Small 3.1 24B Instruct | 55.6% | 19.56% | 82.75% | | **Small 3.2 24B Instruct** | **65.33%** | **43.1%** | **84.78%** | #### Infinite Generations Small 3.2 reduces infitine generations by 2x on challenging, long and repetitive prompts. | Model | Infinite Generations (Internal; Lower is better) | |-------|-------| | Small 3.1 24B Instruct | 2.11% | | **Small 3.2 24B Instruct** | **1.29%** | #### STEM | Model | MMLU | MMLU Pro (5-shot CoT) | MATH | GPQA Main (5-shot CoT) | GPQA Diamond (5-shot CoT )| MBPP Plus - Pass@5 | HumanEval Plus - Pass@5 | SimpleQA (TotalAcc)| |--------------------------------|-----------|-----------------------|------------------------|------------------------|---------------------------|--------------------|-------------------------|--------------------| | Small 3.1 24B Instruct | 80.62% | 66.76% | 69.30% | 44.42% | 45.96% | 74.63% | 88.99% | 10.43% | | **Small 3.2 24B Instruct** | 80.50% | **69.06%** | 69.42% | 44.22% | 46.13% | **78.33%** | **92.90%** | **12.10%** | ### Vision | Model | MMMU | Mathvista | ChartQA | DocVQA | AI2D | |--------------------------------|------------|-----------|-----------|-----------|-----------| | Small 3.1 24B Instruct | **64.00%** | **68.91%**| 86.24% | 94.08% | 93.72% | | **Small 3.2 24B Instruct** | 62.50% | 67.09% | **87.4%** | 94.86% | 92.91% | ## Usage The model can be used with the following frameworks; - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) **Note 1**: We recommend using a relatively low temperature, such as `temperature=0.15`. **Note 2**: Make sure to add a system prompt to the model to best tailer it for your needs. If you want to use the model as a general assistant, we recommend to use the one provided in the [SYSTEM_PROMPT.txt](https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506/blob/main/SYSTEM_PROMPT.txt) file. ### vLLM (recommended) We recommend using this model with [vLLM](https://github.com/vllm-project/vllm). #### Installation Make sure to install [`vLLM >= 0.9.1`](https://github.com/vllm-project/vllm/releases/tag/v0.9.1): ``` pip install vllm --upgrade ``` Doing so should automatically install [`mistral_common >= 1.6.2`](https://github.com/mistralai/mistral-common/releases/tag/v1.6.2). To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). #### Serve We recommand that you use Mistral-Small-3.2-24B-Instruct-2506 in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Mistral-Small-3.2-24B-Instruct-2506 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --limit_mm_per_prompt 'image=10' --tensor-parallel-size 2 ``` **Note:** Running Mistral-Small-3.2-24B-Instruct-2506 on GPU requires ~55 GB of GPU RAM in bf16 or fp16. 2. To ping the client you can use a simple Python snippet. See the following examples. #### Vision reasoning Take leverage of the vision capabilities of Mistral-Small-3.2-24B-Instruct-2506 to take the best choice given a scenario, go catch them all ! <details> <summary>Python snippet</summary> ```py from datetime import datetime, timedelta from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() today = datetime.today().strftime("%Y-%m-%d") yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d") model_name = repo_id.split("/")[-1] return system_prompt.format(name=model_name, today=today, yesterday=yesterday) model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438" messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.", }, {"type": "image_url", "image_url": {"url": image_url}}, ], }, ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, ) print(response.choices[0].message.content) # In this situation, you are playing a Pokémon game where your Pikachu (Level 42) is facing a wild Pidgey (Level 17). Here are the possible actions you can take and an analysis of each: # 1. **FIGHT**: # - **Pros**: Pikachu is significantly higher level than the wild Pidgey, which suggests that it should be able to defeat Pidgey easily. This could be a good opportunity to gain experience points and possibly items or money. # - **Cons**: There is always a small risk of Pikachu fainting, especially if Pidgey has a powerful move or a status effect that could hinder Pikachu. However, given the large level difference, this risk is minimal. # 2. **BAG**: # - **Pros**: You might have items in your bag that could help in this battle, such as Potions, Poké Balls, or Berries. Using an item could help you capture the Pidgey or heal your Pikachu if needed. # - **Cons**: Using items might not be necessary given the level difference. It could be more efficient to just fight and defeat the Pidgey quickly. # 3. **POKÉMON**: # - **Pros**: You might have another Pokémon in your party that is better suited for this battle or that you want to gain experience. Switching Pokémon could also be a strategic move if you want to train a lower-level Pokémon. # - **Cons**: Switching Pokémon might not be necessary since Pikachu is at a significant advantage. It could also waste time and potentially give Pidgey a turn to attack. # 4. **RUN**: # - **Pros**: Running away could save time and conserve your Pokémon's health and resources. If you are in a hurry or do not need the experience or items, running away is a safe option. # - **Cons**: Running away means you miss out on the experience points and potential items or money that you could gain from defeating the Pidgey. It also means you do not get the chance to capture the Pidgey if you wanted to. # ### Recommendation: # Given the significant level advantage, the best action is likely to **FIGHT**. This will allow you to quickly defeat the Pidgey, gain experience points, and potentially earn items or money. If you are concerned about Pikachu's health, you could use an item from your **BAG** to heal it before or during the battle. Running away or switching Pokémon does not seem necessary in this situation. ``` </details> #### Function calling Mistral-Small-3.2-24B-Instruct-2506 is excellent at function / tool calling tasks via vLLM. *E.g.:* <details> <summary>Python snippet - easy</summary> ```py from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") image_url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/europe.png" tools = [ { "type": "function", "function": { "name": "get_current_population", "description": "Get the up-to-date population of a given country.", "parameters": { "type": "object", "properties": { "country": { "type": "string", "description": "The country to find the population of.", }, "unit": { "type": "string", "description": "The unit for the population.", "enum": ["millions", "thousands"], }, }, "required": ["country", "unit"], }, }, }, { "type": "function", "function": { "name": "rewrite", "description": "Rewrite a given text for improved clarity", "parameters": { "type": "object", "properties": { "text": { "type": "string", "description": "The input text to rewrite", } }, }, }, }, ] messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": "Could you please make the below article more concise?\n\nOpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership.", }, { "role": "assistant", "content": "", "tool_calls": [ { "id": "bbc5b7ede", "type": "function", "function": { "name": "rewrite", "arguments": '{"text": "OpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership."}', }, } ], }, { "role": "tool", "content": '{"action":"rewrite","outcome":"OpenAI is a FOR-profit company."}', "tool_call_id": "bbc5b7ede", "name": "rewrite", }, { "role": "assistant", "content": "---\n\nOpenAI is a FOR-profit company.", }, { "role": "user", "content": [ { "type": "text", "text": "Can you tell me what is the biggest country depicted on the map?", }, { "type": "image_url", "image_url": { "url": image_url, }, }, ], } ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, tools=tools, tool_choice="auto", ) assistant_message = response.choices[0].message.content print(assistant_message) # The biggest country depicted on the map is Russia. messages.extend([ {"role": "assistant", "content": assistant_message}, {"role": "user", "content": "What is the population of that country in millions?"}, ]) response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, tools=tools, tool_choice="auto", ) print(response.choices[0].message.tool_calls) # [ChatCompletionMessageToolCall(id='3e92V6Vfo', function=Function(arguments='{"country": "Russia", "unit": "millions"}', name='get_current_population'), type='function')] ``` </details> <details> <summary>Python snippet - complex</summary> ```python import json from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") image_url = "https://math-coaching.com/img/fiche/46/expressions-mathematiques.jpg" def my_calculator(expression: str) -> str: return str(eval(expression)) tools = [ { "type": "function", "function": { "name": "my_calculator", "description": "A calculator that can evaluate a mathematical expression.", "parameters": { "type": "object", "properties": { "expression": { "type": "string", "description": "The mathematical expression to evaluate.", }, }, "required": ["expression"], }, }, }, { "type": "function", "function": { "name": "rewrite", "description": "Rewrite a given text for improved clarity", "parameters": { "type": "object", "properties": { "text": { "type": "string", "description": "The input text to rewrite", } }, }, }, }, ] messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "Can you calculate the results for all the equations displayed in the image? Only compute the ones that involve numbers.", }, { "type": "image_url", "image_url": { "url": image_url, }, }, ], }, ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, tools=tools, tool_choice="auto", ) tool_calls = response.choices[0].message.tool_calls print(tool_calls) # [ChatCompletionMessageToolCall(id='CyQBSAtGh', function=Function(arguments='{"expression": "6 + 2 * 3"}', name='my_calculator'), type='function'), ChatCompletionMessageToolCall(id='KQqRCqvzc', function=Function(arguments='{"expression": "19 - (8 + 2) + 1"}', name='my_calculator'), type='function')] results = [] for tool_call in tool_calls: function_name = tool_call.function.name function_args = tool_call.function.arguments if function_name == "my_calculator": result = my_calculator(**json.loads(function_args)) results.append(result) messages.append({"role": "assistant", "tool_calls": tool_calls}) for tool_call, result in zip(tool_calls, results): messages.append( { "role": "tool", "tool_call_id": tool_call.id, "name": tool_call.function.name, "content": result, } ) response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, ) print(response.choices[0].message.content) # Here are the results for the equations that involve numbers: # 1. \( 6 + 2 \times 3 = 12 \) # 3. \( 19 - (8 + 2) + 1 = 10 \) # For the other equations, you need to substitute the variables with specific values to compute the results. ``` </details> #### Instruction following Mistral-Small-3.2-24B-Instruct-2506 will follow your instructions down to the last letter ! <details> <summary>Python snippet</summary> ```python from openai import OpenAI from huggingface_hub import hf_hub_download # Modify OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" TEMP = 0.15 MAX_TOK = 131072 client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) models = client.models.list() model = models.data[0].id def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": "Write me a sentence where every word starts with the next letter in the alphabet - start with 'a' and end with 'z'.", }, ] response = client.chat.completions.create( model=model, messages=messages, temperature=TEMP, max_tokens=MAX_TOK, ) assistant_message = response.choices[0].message.content print(assistant_message) # Here's a sentence where each word starts with the next letter of the alphabet, starting from 'a' and ending with 'z': # "Always brave cats dance elegantly, fluffy giraffes happily ignore jungle kites, lovingly munching nuts, observing playful quails racing swiftly, tiny unicorns vaulting while xylophones yodel zealously." # This sentence follows the sequence from A to Z without skipping any letters. ``` </details> ### Transformers You can also use Mistral-Small-3.2-24B-Instruct-2506 with `Transformers` ! To make the best use of our model with `Transformers` make sure to have [installed](https://github.com/mistralai/mistral-common) `mistral-common >= 1.6.2` to use our tokenizer. ```bash pip install mistral-common --upgrade ``` Then load our tokenizer along with the model and generate: <details> <summary>Python snippet</summary> ```python from datetime import datetime, timedelta import torch from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from huggingface_hub import hf_hub_download from transformers import Mistral3ForConditionalGeneration def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() today = datetime.today().strftime("%Y-%m-%d") yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d") model_name = repo_id.split("/")[-1] return system_prompt.format(name=model_name, today=today, yesterday=yesterday) model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") tokenizer = MistralTokenizer.from_hf_hub(model_id) model = Mistral3ForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16 ) image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438" messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.", }, {"type": "image_url", "image_url": {"url": image_url}}, ], }, ] tokenized = tokenizer.encode_chat_completion(ChatCompletionRequest(messages=messages)) input_ids = torch.tensor([tokenized.tokens]) attention_mask = torch.ones_like(input_ids) pixel_values = torch.tensor(tokenized.images[0], dtype=torch.bfloat16).unsqueeze(0) image_sizes = torch.tensor([pixel_values.shape[-2:]]) output = model.generate( input_ids=input_ids, attention_mask=attention_mask, pixel_values=pixel_values, image_sizes=image_sizes, max_new_tokens=1000, )[0] decoded_output = tokenizer.decode(output[len(tokenized.tokens) :]) print(decoded_output) # In this situation, you are playing a Pokémon game where your Pikachu (Level 42) is facing a wild Pidgey (Level 17). Here are the possible actions you can take and an analysis of each: # 1. **FIGHT**: # - **Pros**: Pikachu is significantly higher level than the wild Pidgey, which suggests that it should be able to defeat Pidgey easily. This could be a good opportunity to gain experience points and possibly items or money. # - **Cons**: There is always a small risk of Pikachu fainting, especially if Pidgey has a powerful move or a status effect that could hinder Pikachu. However, given the large level difference, this risk is minimal. # 2. **BAG**: # - **Pros**: You might have items in your bag that could help in this battle, such as Potions, Poké Balls, or Berries. Using an item could help you capture Pidgey or heal Pikachu if needed. # - **Cons**: Using items might not be necessary given the level difference. It could be more efficient to just fight and defeat Pidgey quickly. # 3. **POKÉMON**: # - **Pros**: You might have another Pokémon in your party that is better suited for this battle or that you want to gain experience. Switching Pokémon could also be strategic if you want to train a lower-level Pokémon. # - **Cons**: Switching Pokémon might not be necessary since Pikachu is at a significant advantage. It could also waste time and potentially give Pidgey a turn to attack. # 4. **RUN**: # - **Pros**: Running away could be a quick way to avoid the battle altogether. This might be useful if you are trying to conserve resources or if you are in a hurry to get to another location. # - **Cons**: Running away means you miss out on the experience points, items, or money that you could gain from defeating Pidgey. It also might not be the most efficient use of your time if you are trying to train your Pokémon. # ### Recommendation: # Given the significant level advantage, the best action to take is likely **FIGHT**. This will allow you to quickly defeat Pidgey and gain experience points for Pikachu. If you are concerned about Pikachu's health, you could use the **BAG** to heal Pikachu before or during the battle. Running away or switching Pokémon does not seem necessary in this situation. ``` </details>
88RedPanda88/nsp-bert-final
88RedPanda88
2025-06-20T19:36:29Z
9
0
transformers
[ "transformers", "safetensors", "bert", "next-sentence-prediction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-01T16:03:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Official-Jaipur-Hotel-Viral/VIDEO.Jaipur.Hotel.Viral.Video.Official.Tutorial
Official-Jaipur-Hotel-Viral
2025-06-20T19:31:59Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:31:17Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> 1 minutes ago — Jaipur hotel viral video new link * video took the internet by storm and amazed viewers on various social media platforms. Jaipur hotel viral video new link link, a young and talented digital creator, recently became famous thanks to this interesting video. Jaipur hotel viral video new link link original video link. Jaipur hotel viral video new link link viral on social media x trending now Jaipur hotel viral video new link link ʟᴇᴀᴋᴇᴅ video ᴠɪʀᴀʟ on social media ˣ ᵀʷⁱᵗᵗᵉʳ Jaipur hotel viral video new link link ʟᴇᴀᴋᴇᴅ video ᴠɪʀᴀʟ on social media ˣ ᵀʷⁱᵗᵗᵉʳ Jaipur hotel viral video new link link original video link. Jaipur hotel viral video new link link viral on social media x trending now l𝚎aked video Jaipur hotel viral video new link link original video viral video l𝚎aked on x twitter Jaipur hotel viral video new link link Viral video viral video viral video original video video oficial twitter l𝚎aked video Jaipur hotel viral video new link link original video viral video l𝚎aked on x twitter.. Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 Original V𝚒deo V𝚒deo took the internet by storm and amazed viewers on various social media platforms. Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 , a young and talented digital creator, recently became famous thanks to this interesting V𝚒deo. L𝚎aked V𝚒deo Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 V𝚒ral V𝚒deo Original V𝚒deo L𝚒nk On Social Media Telegram X Trending Tiktok (18+) L𝚎aked V𝚒deo Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 V𝚒ral V𝚒deo Original V𝚒deo L𝚒nk On Social Media X Trending Tiktok (18+) L𝚎aked V𝚒deo Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 Original V𝚒deo V𝚒ral V𝚒deo L𝚎aked on X Twitter Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 Original Va𝚒deo V𝚒deo oficial twitter L𝚎aked V𝚒deo Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 Original V𝚒deo V𝚒ral V𝚒deo L𝚎aked on X Twitter.. L𝚎aked V𝚒ral l𝚒nk 2025 L𝚎aked V𝚒deo XnX V𝚒ral L𝚎aked V𝚒ral l𝚒nk X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 V𝚒ral V𝚒deo L𝚎aked on X Twitter latest X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 L𝚎aked V𝚒deo V𝚒ral On Social Media Kompoz Me L𝚎aked Com Scoop Big Xn𝚇X Celebrity Latest News, Photos, V𝚒deos on L𝚎aked V𝚒deo Outdoor Desi Village The Latest V𝚒deos of L𝚎aked V𝚒deos Xnx V𝚒ral L𝚎aked X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 V𝚒ral l𝚒nk Noodles L𝚎aked V𝚒deo Trending V𝚒ral L𝚎aked V𝚒deo, Aakhir Woh Larki Kon Thi Blue Flims 2025 L𝚎aked Trending L𝚎aked V𝚒deos V𝚒ral VIDEO]* Jaipur hotel viral video new link Full Link +18 ORIGINAL Jaipur hotel viral video new link Video link Xnxx!فيديو سكس هدير عبد الرازق مقطع كامل شاهد قبل الحذف+> ... [VIRAL]* Jaipur hotel viral video new link link Viral video Full Link 18+ Viral Video Jaipur hotel viral video new link link Original Link Jaipur hotel viral video new link viral mms Full Original Link Jaipur hotel viral video new link viral mms Full Original Link1 minutes ago — Actor maya g viral video telegram * video took the internet by storm and amazed viewers on various social media platforms. maya g viral video telegram link, a young and talented digital creator, recently became famous thanks to this interesting video.
Mezzo-fun-Viral-video-Link/wATCH.Mezzo.fun.viral.video.Leaks.Official
Mezzo-fun-Viral-video-Link
2025-06-20T19:22:25Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:21:47Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Video-18-Jaipur-hotel-Viral-Video/18.video.jaipur.hotel.viral.video.telegram.link
Video-18-Jaipur-hotel-Viral-Video
2025-06-20T19:20:26Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:19:26Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> 1 minutes ago — Jaipur hotel viral video new link * video took the internet by storm and amazed viewers on various social media platforms. Jaipur hotel viral video new link link, a young and talented digital creator, recently became famous thanks to this interesting video. Jaipur hotel viral video new link link original video link. Jaipur hotel viral video new link link viral on social media x trending now Jaipur hotel viral video new link link ʟᴇᴀᴋᴇᴅ video ᴠɪʀᴀʟ on social media ˣ ᵀʷⁱᵗᵗᵉʳ Jaipur hotel viral video new link link ʟᴇᴀᴋᴇᴅ video ᴠɪʀᴀʟ on social media ˣ ᵀʷⁱᵗᵗᵉʳ Jaipur hotel viral video new link link original video link. Jaipur hotel viral video new link link viral on social media x trending now l𝚎aked video Jaipur hotel viral video new link link original video viral video l𝚎aked on x twitter Jaipur hotel viral video new link link Viral video viral video viral video original video video oficial twitter l𝚎aked video Jaipur hotel viral video new link link original video viral video l𝚎aked on x twitter.. Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 Original V𝚒deo V𝚒deo took the internet by storm and amazed viewers on various social media platforms. Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 , a young and talented digital creator, recently became famous thanks to this interesting V𝚒deo. L𝚎aked V𝚒deo Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 V𝚒ral V𝚒deo Original V𝚒deo L𝚒nk On Social Media Telegram X Trending Tiktok (18+) L𝚎aked V𝚒deo Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 V𝚒ral V𝚒deo Original V𝚒deo L𝚒nk On Social Media X Trending Tiktok (18+) L𝚎aked V𝚒deo Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 Original V𝚒deo V𝚒ral V𝚒deo L𝚎aked on X Twitter Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 Original Va𝚒deo V𝚒deo oficial twitter L𝚎aked V𝚒deo Actor X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 Original V𝚒deo V𝚒ral V𝚒deo L𝚎aked on X Twitter.. L𝚎aked V𝚒ral l𝚒nk 2025 L𝚎aked V𝚒deo XnX V𝚒ral L𝚎aked V𝚒ral l𝚒nk X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 V𝚒ral V𝚒deo L𝚎aked on X Twitter latest X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 L𝚎aked V𝚒deo V𝚒ral On Social Media Kompoz Me L𝚎aked Com Scoop Big Xn𝚇X Celebrity Latest News, Photos, V𝚒deos on L𝚎aked V𝚒deo Outdoor Desi Village The Latest V𝚒deos of L𝚎aked V𝚒deos Xnx V𝚒ral L𝚎aked X𝚇X Jaipur hotel viral video new link link First Time S𝙴X X𝚇X V𝚒deo po𝚛 V𝚒ral l𝚒nk Noodles L𝚎aked V𝚒deo Trending V𝚒ral L𝚎aked V𝚒deo, Aakhir Woh Larki Kon Thi Blue Flims 2025 L𝚎aked Trending L𝚎aked V𝚒deos V𝚒ral VIDEO]* Jaipur hotel viral video new link Full Link +18 ORIGINAL Jaipur hotel viral video new link Video link Xnxx!فيديو سكس هدير عبد الرازق مقطع كامل شاهد قبل الحذف+> ... [VIRAL]* Jaipur hotel viral video new link link Viral video Full Link 18+ Viral Video Jaipur hotel viral video new link link Original Link Jaipur hotel viral video new link viral mms Full Original Link Jaipur hotel viral video new link viral mms Full Original Link1 minutes ago — Actor maya g viral video telegram * video took the internet by storm and amazed viewers on various social media platforms. maya g viral video telegram link, a young and talented digital creator, recently became famous thanks to this interesting video.
kamal-kaur-mms-viral-video-link/New.clip.18.kamal.kaur.mms.viral.video
kamal-kaur-mms-viral-video-link
2025-06-20T19:19:45Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:19:31Z
<animated-image data-catalyst=""><a href="https://wtach.club/leakvideo/?h" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Jaipur-Couple-Viral-video-Link/wATCH.Jaipur.Couple.viral.video.Leaks.Official
Jaipur-Couple-Viral-video-Link
2025-06-20T19:18:38Z
0
0
null
[ "region:us" ]
null
2025-06-20T19:18:10Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
nanonets/Nanonets-OCR-s
nanonets
2025-06-20T19:15:33Z
98,517
945
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "OCR", "pdf2markdown", "conversational", "en", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-10T10:02:05Z
--- language: - en base_model: - Qwen/Qwen2.5-VL-3B-Instruct pipeline_tag: image-text-to-text tags: - OCR - pdf2markdown library_name: transformers --- Nanonets-OCR-s by [Nanonets](https://nanonets.com) is a powerful, state-of-the-art image-to-markdown OCR model that goes far beyond traditional text extraction. It transforms documents into structured markdown with intelligent content recognition and semantic tagging, making it ideal for downstream processing by Large Language Models (LLMs). Nanonets-OCR-s is packed with features designed to handle complex documents with ease: * **LaTeX Equation Recognition:** Automatically converts mathematical equations and formulas into properly formatted LaTeX syntax. It distinguishes between inline (`$...$`) and display (`$$...$$`) equations. * **Intelligent Image Description:** Describes images within documents using structured `<img>` tags, making them digestible for LLM processing. It can describe various image types, including logos, charts, graphs and so on, detailing their content, style, and context. * **Signature Detection & Isolation:** Identifies and isolates signatures from other text, outputting them within a `<signature>` tag. This is crucial for processing legal and business documents. * **Watermark Extraction:** Detects and extracts watermark text from documents, placing it within a `<watermark>` tag. * **Smart Checkbox Handling:** Converts form checkboxes and radio buttons into standardized Unicode symbols (`☐`, `☑`, `☒`) for consistent and reliable processing. * **Complex Table Extraction:** Accurately extracts complex tables from documents and converts them into both markdown and HTML table formats. 📢 [Read the full announcement](https://nanonets.com/research/nanonets-ocr-s) | 🤗 [Hugging Face Space Demo](https://huggingface.co/spaces/Souvik3333/Nanonets-ocr-s) ## Usage ### Using transformers ```python from PIL import Image from transformers import AutoTokenizer, AutoProcessor, AutoModelForImageTextToText model_path = "nanonets/Nanonets-OCR-s" model = AutoModelForImageTextToText.from_pretrained( model_path, torch_dtype="auto", device_map="auto", attn_implementation="flash_attention_2" ) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_path) processor = AutoProcessor.from_pretrained(model_path) def ocr_page_with_nanonets_s(image_path, model, processor, max_new_tokens=4096): prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the <img></img> tag; otherwise, add the image caption inside <img></img>. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using ☐ and ☑ for check boxes.""" image = Image.open(image_path) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": [ {"type": "image", "image": f"file://{image_path}"}, {"type": "text", "text": prompt}, ]}, ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt") inputs = inputs.to(model.device) output_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False) generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)] output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) return output_text[0] image_path = "/path/to/your/document.jpg" result = ocr_page_with_nanonets_s(image_path, model, processor, max_new_tokens=15000) print(result) ``` ### Using vLLM 1. Start the vLLM server. ```bash vllm serve nanonets/Nanonets-OCR-s ``` 2. Predict with the model ```python from openai import OpenAI import base64 client = OpenAI(api_key="123", base_url="http://localhost:8000/v1") model = "nanonets/Nanonets-OCR-s" def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") def ocr_page_with_nanonets_s(img_base64): response = client.chat.completions.create( model=model, messages=[ { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_base64}"}, }, { "type": "text", "text": "Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the <img></img> tag; otherwise, add the image caption inside <img></img>. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using ☐ and ☑ for check boxes.", }, ], } ], temperature=0.0, max_tokens=15000 ) return response.choices[0].message.content test_img_path = "/path/to/your/document.jpg" img_base64 = encode_image(test_img_path) print(ocr_page_with_nanonets_s(img_base64)) ``` ### Using docext ```python pip install docext python -m docext.app.app --model_name hosted_vllm/nanonets/Nanonets-OCR-s ``` Checkout [GitHub](https://github.com/NanoNets/docext/tree/dev/markdown) for more details. ## BibTex ``` @misc{Nanonets-OCR-S, title={Nanonets-OCR-S: A model for transforming documents into structured markdown with intelligent content recognition and semantic tagging}, author={Souvik Mandal and Ashish Talewar and Paras Ahuja and Prathamesh Juvatkar}, year={2025}, } ```
moxin-org/Moxin-7B-VLM
moxin-org
2025-06-20T19:13:34Z
59
1
null
[ "arxiv:2412.06845", "license:mit", "region:us" ]
null
2025-06-09T23:40:00Z
--- license: mit --- <h1 align="center"> Moxin 7B VLM </h1> <p align="center"> <a href="https://github.com/moxin-org/Moxin-VLM">Home Page</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://arxiv.org/abs/2412.06845">Technical Report</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://huggingface.co/moxin-org/Moxin-7B-LLM">Base Model</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://huggingface.co/moxin-org/Moxin-7B-Chat">Chat Model</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://huggingface.co/moxin-org/Moxin-7B-Instruct">Instruct Model</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://huggingface.co/moxin-org/Moxin-7B-Reasoning">Reasoning Model</a> &nbsp&nbsp | &nbsp&nbsp <a href="https://huggingface.co/moxin-org/Moxin-7B-VLM">VLM Model</a> </p> --- ## Installation ```bash git clone https://github.com/moxin-org/Moxin-VLM.git cd Moxin-VLM conda create -n moxin-vlm python=3.10 -y conda activate moxin-vlm pip install torch==2.4.1 torchvision==0.19.1 pip install transformers==4.46.0 peft==0.15.2 pip install -e . # Install Flash Attention 2 # =>> If you run into difficulty, try `pip cache remove flash_attn` first pip install flash-attn==2.6.3 --no-build-isolation ``` ## Pretrained Models Please find our Pretrained Models on our huggingface page: [moxin-org/Moxin-7B-VLM](https://huggingface.co/moxin-org/Moxin-7B-VLM). We've also provided a hf_convert version [Moxin-7B-VLM-hf](https://huggingface.co/bobchenyx/Moxin-7B-VLM-hf) based on [openvla](https://github.com/openvla/openvla). Please refer to the attached scripts for downloading and running our model locally. ```bash python scripts/snapshot_download.py ``` ## Usage For a complete terminal-based CLI for interacting with our VLMs. ```bash python scripts/generate.py --model_path moxin-org/Moxin-7B-VLM ``` For a faster loading, inference and demo. ```bash python scripts/fast_inference.py ``` --- ## Acknowledgments This project is based on [Prismatic VLMs](https://github.com/TRI-ML/prismatic-vlms) by [TRI-ML](https://github.com/TRI-ML). Special thanks to the original contributors for their excellent work. ## Citation If you find our code or models useful in your work, please cite [our paper](https://arxiv.org/abs/2412.06845v5): ```bibtex @article{zhao2024fully, title={Fully Open Source Moxin-7B Technical Report}, author={Zhao, Pu and Shen, Xuan and Kong, Zhenglun and Shen, Yixin and Chang, Sung-En and Rupprecht, Timothy and Lu, Lei and Nan, Enfu and Yang, Changdi and He, Yumei and others}, journal={arXiv preprint arXiv:2412.06845}, year={2024} }
vishakr01/comp4_07
vishakr01
2025-06-20T19:10:44Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T19:08:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
windies-199/Qwen2-0.5B-GRPO-test
windies-199
2025-06-20T19:09:52Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "grpo", "trl", "arxiv:2402.03300", "base_model:Qwen/Qwen2-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-20T19:08:12Z
--- base_model: Qwen/Qwen2-0.5B-Instruct library_name: transformers model_name: Qwen2-0.5B-GRPO-test tags: - generated_from_trainer - grpo - trl licence: license --- # Model Card for Qwen2-0.5B-GRPO-test This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="windies-199/Qwen2-0.5B-GRPO-test", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.5.1 - Datasets: 3.1.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ArunP3799/qwen3b_baseline_math_step_40
ArunP3799
2025-06-20T19:04:10Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T19:02:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
morturr/Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-42-2025-06-20
morturr
2025-06-20T19:03:17Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-20T19:03:08Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-42-2025-06-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_one_liners_amazon-COMB-one_liners-comb-3-seed-42-2025-06-20 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
magnifi/parser_user_v45a_epoch_6_lr_0.0018
magnifi
2025-06-20T19:00:43Z
0
0
null
[ "safetensors", "mistral", "license:apache-2.0", "region:us" ]
null
2025-06-20T18:54:27Z
--- license: apache-2.0 ---
mradermacher/Deep-Think-32B-GGUF
mradermacher
2025-06-20T18:55:28Z
2
0
transformers
[ "transformers", "gguf", "en", "zh", "base_model:cloudyu/Deep-Think-32B", "base_model:quantized:cloudyu/Deep-Think-32B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-20T07:56:11Z
--- base_model: cloudyu/Deep-Think-32B language: - en - zh library_name: transformers license: mit quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/cloudyu/Deep-Think-32B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Deep-Think-32B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Deep-Think-32B-GGUF/resolve/main/Deep-Think-32B.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Ejja87/Model1
Ejja87
2025-06-20T18:54:13Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-20T18:54:13Z
--- license: apache-2.0 ---
FinaPolat/gemma-3.4b-fted-5k
FinaPolat
2025-06-20T18:50:15Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-20T18:49:09Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** FinaPolat - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
miguelmejias0512/deepseek-coder-1.3b-finetuned
miguelmejias0512
2025-06-20T18:41:00Z
0
0
transformers
[ "transformers", "code", "text-generation", "en", "es", "base_model:deepseek-ai/deepseek-coder-1.3b-base", "base_model:finetune:deepseek-ai/deepseek-coder-1.3b-base", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2025-06-12T03:15:42Z
--- base_model: - deepseek-ai/deepseek-coder-1.3b-base library_name: transformers license: mit language: - en - es pipeline_tag: text-generation tags: - code --- ### Framework versions - Transformers 4.35.2 - Pytorch - Datasets 2.14.5 - Tokenizers
Alecardo/El-Mozart-6855a7f01ef2ee1e607b6221
Alecardo
2025-06-20T18:38:51Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T18:26:56Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: ELFOKINMOZ --- # El Mozart 6855A7F01Ef2Ee1E607B6221 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `ELFOKINMOZ` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "ELFOKINMOZ", "lora_weights": "https://huggingface.co/Alecardo/El-Mozart-6855a7f01ef2ee1e607b6221/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Alecardo/El-Mozart-6855a7f01ef2ee1e607b6221', weight_name='lora.safetensors') image = pipeline('ELFOKINMOZ').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/Alecardo/El-Mozart-6855a7f01ef2ee1e607b6221/discussions) to add images that show off what you’ve made with this LoRA.
MacrossRamen/expression
MacrossRamen
2025-06-20T18:38:51Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-06-20T18:33:21Z
--- license: mit --- Not mine. Stored here to ease of use at Replicate. Owner: https://civitai.com/models/914282/expression-helper-20?modelVersionId=1023284
science-of-finetuning/gemma3_1B-kansas_abortion-L19-k100-lr1e-03-x32-local-shuffling-Crosscoder
science-of-finetuning
2025-06-20T18:38:42Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-20T18:38:24Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
BootesVoid/cmc533hs802fvbfifwttf712r_cmc545gcn02jxbfifsgcndjpr
BootesVoid
2025-06-20T18:30:46Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T18:30:42Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MICHELLE --- # Cmc533Hs802Fvbfifwttf712R_Cmc545Gcn02Jxbfifsgcndjpr <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MICHELLE` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "MICHELLE", "lora_weights": "https://huggingface.co/BootesVoid/cmc533hs802fvbfifwttf712r_cmc545gcn02jxbfifsgcndjpr/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmc533hs802fvbfifwttf712r_cmc545gcn02jxbfifsgcndjpr', weight_name='lora.safetensors') image = pipeline('MICHELLE').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmc533hs802fvbfifwttf712r_cmc545gcn02jxbfifsgcndjpr/discussions) to add images that show off what you’ve made with this LoRA.
andrewsamce/cart-pole
andrewsamce
2025-06-20T18:27:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-06-20T18:27:19Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: cart-pole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 9.30 +/- 0.64 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Phr00t/Magnum-Hamanasu-Instruct-32B
Phr00t
2025-06-20T18:27:00Z
0
0
null
[ "en", "base_model:Delta-Vector/Hamanasu-Magnum-QwQ-32B", "base_model:finetune:Delta-Vector/Hamanasu-Magnum-QwQ-32B", "license:mit", "region:us" ]
null
2025-06-20T18:23:43Z
--- license: mit language: - en base_model: - Delta-Vector/Hamanasu-QwQ-V1.5-Instruct - Delta-Vector/Hamanasu-Magnum-QwQ-32B --- mergekit fusion of: - Delta-Vector/Hamanasu-QwQ-V1.5-Instruct - Delta-Vector/Hamanasu-Magnum-QwQ-32B
Vaibhavbarala/Fake-news
Vaibhavbarala
2025-06-20T18:24:15Z
0
0
null
[ "safetensors", "bert", "license:other", "region:us" ]
null
2025-06-20T18:19:46Z
--- license: other license_name: vaibahv license_link: LICENSE ---
haihp02/oioioi-9000
haihp02
2025-06-20T18:23:35Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-20T18:22:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CowLiker/micro
CowLiker
2025-06-20T18:23:34Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-06-20T18:22:53Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/df0r49j-37a375fe-e811-4702-9278-d7e062d15f18.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: >- microbikini, tiny triangle, string, slingshot, bandeau top, circular pasties, pubic pastie, small/medium/big/large breasts, strap microbikini --- # micro <Gallery /> ## Trigger words You should use `microbikini` to trigger the image generation. You should use `tiny triangle` to trigger the image generation. You should use `string` to trigger the image generation. You should use `slingshot` to trigger the image generation. You should use `bandeau top` to trigger the image generation. You should use `circular pasties` to trigger the image generation. You should use `pubic pastie` to trigger the image generation. You should use `small&#x2F;medium&#x2F;big&#x2F;large breasts` to trigger the image generation. You should use `strap microbikini` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/CowLiker/micro/tree/main) them in the Files & versions tab.
pj-mathematician/JobBGE-m3
pj-mathematician
2025-06-20T18:17:41Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:124788", "loss:GISTEmbedLoss", "arxiv:1908.10084", "arxiv:2402.16829", "base_model:BAAI/bge-m3", "base_model:finetune:BAAI/bge-m3", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T18:04:27Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:GISTEmbedLoss base_model: BAAI/bge-m3 widget: - source_sentence: 其他机械、设备和有形货物租赁服务代表 sentences: - 其他机械和设备租赁服务工作人员 - 电子和电信设备及零部件物流经理 - 工业主厨 - source_sentence: 公交车司机 sentences: - 表演灯光设计师 - 乙烯基地板安装工 - 国际巴士司机 - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbürgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer based on BAAI/bge-m3 results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6476190476190476 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9904761904761905 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6476190476190476 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5061904761904762 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.30647619047619057 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.1858095238095238 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.13250793650793652 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.10247619047619047 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06690172806447445 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5391510592522911 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7199711948587544 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8253770621157605 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8719997123512196 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9006382758109558 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6476190476190476 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6822066814233797 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6975329548006446 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7519637922809941 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7724946802449859 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7827357067553371 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6476190476190476 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7999999999999998 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7999999999999998 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7999999999999998 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7999999999999998 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7999999999999998 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6476190476190476 name: Cosine Map@1 - type: cosine_map@20 value: 0.5391784054866918 name: Cosine Map@20 - type: cosine_map@50 value: 0.5258287715484311 name: Cosine Map@50 - type: cosine_map@100 value: 0.5580109313638075 name: Cosine Map@100 - type: cosine_map@150 value: 0.5665715227835532 name: Cosine Map@150 - type: cosine_map@200 value: 0.569529009182472 name: Cosine Map@200 - type: cosine_map@500 value: 0.5743595458034346 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.11351351351351352 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.11351351351351352 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5667567567567567 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.3902702702702703 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.25254054054054054 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.19005405405405407 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.1507837837837838 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0035155918996302815 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.37958552840441906 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5635730197468752 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.672698242387141 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.7360036980055802 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7697561816436992 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.11351351351351352 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6136401766234348 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5908459924766464 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.6168063266629416 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6488575731321932 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.665316090087272 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.11351351351351352 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5536036036036036 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5536036036036036 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5536036036036036 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5536036036036036 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5536036036036036 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.11351351351351352 name: Cosine Map@1 - type: cosine_map@20 value: 0.48095830339282386 name: Cosine Map@20 - type: cosine_map@50 value: 0.43038606337879926 name: Cosine Map@50 - type: cosine_map@100 value: 0.4335284717646407 name: Cosine Map@100 - type: cosine_map@150 value: 0.44851036812148526 name: Cosine Map@150 - type: cosine_map@200 value: 0.4550924585301385 name: Cosine Map@200 - type: cosine_map@500 value: 0.4677023132311536 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9852216748768473 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9901477832512315 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9901477832512315 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9901477832512315 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9901477832512315 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5403940886699506 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.38275862068965516 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.2503448275862069 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.187816091954023 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.15027093596059116 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.3432684453555553 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.5339871522541048 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.6498636280219438 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.7100921836539074 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.7513351913056898 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5647628262992046 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5522057083055792 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5796033728499559 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.6111851705889818 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.6309313367878393 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5164425017655958 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.516559790060224 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.516559790060224 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.516559790060224 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.516559790060224 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.4221760589983628 name: Cosine Map@20 - type: cosine_map@50 value: 0.37913413777890953 name: Cosine Map@50 - type: cosine_map@100 value: 0.3829298798486122 name: Cosine Map@100 - type: cosine_map@150 value: 0.39811624371681004 name: Cosine Map@150 - type: cosine_map@200 value: 0.40559711033541546 name: Cosine Map@200 - type: cosine_map@500 value: 0.4188841643667456 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.6796116504854369 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9902912621359223 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9902912621359223 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9902912621359223 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9902912621359223 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9902912621359223 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6796116504854369 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.470873786407767 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.28038834951456315 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.17320388349514557 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.12394822006472495 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.09766990291262137 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.06427555485009323 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5119331913488326 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6726577129232287 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.788021792964523 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8328962977521837 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8687397875786594 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6796116504854369 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6515292076635256 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.6598571989751485 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.7157338182976709 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7357126940189814 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7500853808896866 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6796116504854369 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8216828478964402 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8216828478964402 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8216828478964402 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8216828478964402 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8216828478964402 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6796116504854369 name: Cosine Map@1 - type: cosine_map@20 value: 0.5012149610968577 name: Cosine Map@20 - type: cosine_map@50 value: 0.48128476255481567 name: Cosine Map@50 - type: cosine_map@100 value: 0.5105374388587102 name: Cosine Map@100 - type: cosine_map@150 value: 0.518381647971727 name: Cosine Map@150 - type: cosine_map@200 value: 0.5228375783347256 name: Cosine Map@200 - type: cosine_map@500 value: 0.52765377953199 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.7394695787831513 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9635985439417577 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.982839313572543 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9927197087883516 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9947997919916797 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9963598543941757 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.7394695787831513 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12488299531981278 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.05174206968278733 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.02629225169006761 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.017635638758883684 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013281331253250133 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.28537503404898107 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.9225949037961519 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9548015253943491 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.970532154619518 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9766337320159473 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9810747096550528 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.7394695787831513 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.8119072371250002 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.8208055075822587 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.8242798548838444 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8254601712767063 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.826231823086538 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.7394695787831513 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8059183822863336 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8065662458714291 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8067209669800003 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8067371899834064 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8067455244059942 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.7394695787831513 name: Cosine Map@1 - type: cosine_map@20 value: 0.7439811728319751 name: Cosine Map@20 - type: cosine_map@50 value: 0.7464542457655368 name: Cosine Map@50 - type: cosine_map@100 value: 0.7469341154545359 name: Cosine Map@100 - type: cosine_map@150 value: 0.7470471963812441 name: Cosine Map@150 - type: cosine_map@200 value: 0.7471010455519603 name: Cosine Map@200 - type: cosine_map@500 value: 0.7471920688836787 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.6926677067082684 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9641185647425897 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.983879355174207 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9921996879875195 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9932397295891836 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9942797711908476 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6926677067082684 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.12797711908476336 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.053281331253250144 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.027051482059282376 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.018110591090310275 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.013619344773790953 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.2603830819899463 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.928479805858901 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.9650286011440458 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.9796325186340786 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.9837060149072628 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9862194487779511 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6926677067082684 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.7967328692326251 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.8068705787791701 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.810158579950017 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.8109641919896999 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.8114360342473703 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6926677067082684 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.7766838069642311 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.7773792960985305 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.7775026273925645 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.7775124036000293 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.7775182983569378 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6926677067082684 name: Cosine Map@1 - type: cosine_map@20 value: 0.7210301157895639 name: Cosine Map@20 - type: cosine_map@50 value: 0.7237555751939095 name: Cosine Map@50 - type: cosine_map@100 value: 0.7242426468613273 name: Cosine Map@100 - type: cosine_map@150 value: 0.7243265313145111 name: Cosine Map@150 - type: cosine_map@200 value: 0.7243628241480395 name: Cosine Map@200 - type: cosine_map@500 value: 0.7244144669299598 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.17888715548621945 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.17888715548621945 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.15439417576703063 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.0617576703068123 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.03087883515340615 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.020585890102270757 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.015439417576703075 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.05768764083896689 name: Cosine Recall@1 - type: cosine_recall@20 value: 1.0 name: Cosine Recall@20 - type: cosine_recall@50 value: 1.0 name: Cosine Recall@50 - type: cosine_recall@100 value: 1.0 name: Cosine Recall@100 - type: cosine_recall@150 value: 1.0 name: Cosine Recall@150 - type: cosine_recall@200 value: 1.0 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.17888715548621945 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5443156532634228 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5443156532634228 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5443156532634228 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5443156532634228 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5443156532634228 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.17888715548621945 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.4002437442375043 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.4002437442375043 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.4002437442375043 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.4002437442375043 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.4002437442375043 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.17888715548621945 name: Cosine Map@1 - type: cosine_map@20 value: 0.32718437256695937 name: Cosine Map@20 - type: cosine_map@50 value: 0.32718437256695937 name: Cosine Map@50 - type: cosine_map@100 value: 0.32718437256695937 name: Cosine Map@100 - type: cosine_map@150 value: 0.32718437256695937 name: Cosine Map@150 - type: cosine_map@200 value: 0.32718437256695937 name: Cosine Map@200 - type: cosine_map@500 value: 0.32718437256695937 name: Cosine Map@500 --- # Job - Job matching finetuned BAAI/bge-m3 Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("pj-mathematician/JobBGE-m3") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbürgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9852 | 0.9903 | 0.9636 | 0.9641 | 1.0 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9828 | 0.9839 | 1.0 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9927 | 0.9922 | 1.0 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9948 | 0.9932 | 1.0 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9901 | 0.9903 | 0.9964 | 0.9943 | 1.0 | | cosine_precision@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_precision@20 | 0.5062 | 0.5668 | 0.5404 | 0.4709 | 0.1249 | 0.128 | 0.1544 | | cosine_precision@50 | 0.3065 | 0.3903 | 0.3828 | 0.2804 | 0.0517 | 0.0533 | 0.0618 | | cosine_precision@100 | 0.1858 | 0.2525 | 0.2503 | 0.1732 | 0.0263 | 0.0271 | 0.0309 | | cosine_precision@150 | 0.1325 | 0.1901 | 0.1878 | 0.1239 | 0.0176 | 0.0181 | 0.0206 | | cosine_precision@200 | 0.1025 | 0.1508 | 0.1503 | 0.0977 | 0.0133 | 0.0136 | 0.0154 | | cosine_recall@1 | 0.0669 | 0.0035 | 0.0111 | 0.0643 | 0.2854 | 0.2604 | 0.0577 | | cosine_recall@20 | 0.5392 | 0.3796 | 0.3433 | 0.5119 | 0.9226 | 0.9285 | 1.0 | | cosine_recall@50 | 0.72 | 0.5636 | 0.534 | 0.6727 | 0.9548 | 0.965 | 1.0 | | cosine_recall@100 | 0.8254 | 0.6727 | 0.6499 | 0.788 | 0.9705 | 0.9796 | 1.0 | | cosine_recall@150 | 0.872 | 0.736 | 0.7101 | 0.8329 | 0.9766 | 0.9837 | 1.0 | | cosine_recall@200 | 0.9006 | 0.7698 | 0.7513 | 0.8687 | 0.9811 | 0.9862 | 1.0 | | cosine_ndcg@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_ndcg@20 | 0.6822 | 0.6136 | 0.5648 | 0.6515 | 0.8119 | 0.7967 | 0.5443 | | cosine_ndcg@50 | 0.6975 | 0.5908 | 0.5522 | 0.6599 | 0.8208 | 0.8069 | 0.5443 | | cosine_ndcg@100 | 0.752 | 0.6168 | 0.5796 | 0.7157 | 0.8243 | 0.8102 | 0.5443 | | cosine_ndcg@150 | 0.7725 | 0.6489 | 0.6112 | 0.7357 | 0.8255 | 0.811 | 0.5443 | | **cosine_ndcg@200** | **0.7827** | **0.6653** | **0.6309** | **0.7501** | **0.8262** | **0.8114** | **0.5443** | | cosine_mrr@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_mrr@20 | 0.8 | 0.5536 | 0.5164 | 0.8217 | 0.8059 | 0.7767 | 0.4002 | | cosine_mrr@50 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8066 | 0.7774 | 0.4002 | | cosine_mrr@100 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 | | cosine_mrr@150 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 | | cosine_mrr@200 | 0.8 | 0.5536 | 0.5166 | 0.8217 | 0.8067 | 0.7775 | 0.4002 | | cosine_map@1 | 0.6476 | 0.1135 | 0.2956 | 0.6796 | 0.7395 | 0.6927 | 0.1789 | | cosine_map@20 | 0.5392 | 0.481 | 0.4222 | 0.5012 | 0.744 | 0.721 | 0.3272 | | cosine_map@50 | 0.5258 | 0.4304 | 0.3791 | 0.4813 | 0.7465 | 0.7238 | 0.3272 | | cosine_map@100 | 0.558 | 0.4335 | 0.3829 | 0.5105 | 0.7469 | 0.7242 | 0.3272 | | cosine_map@150 | 0.5666 | 0.4485 | 0.3981 | 0.5184 | 0.747 | 0.7243 | 0.3272 | | cosine_map@200 | 0.5695 | 0.4551 | 0.4056 | 0.5228 | 0.7471 | 0.7244 | 0.3272 | | cosine_map@500 | 0.5744 | 0.4677 | 0.4189 | 0.5277 | 0.7472 | 0.7244 | 0.3272 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Datasets <details><summary>full_en</summary> #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 5.68 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.76 tokens</li><li>max: 12 tokens</li></ul> | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | <code>air commodore</code> | <code>flight lieutenant</code> | | <code>command and control officer</code> | <code>flight officer</code> | | <code>air commodore</code> | <code>command and control officer</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_de</summary> #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.19 tokens</li><li>max: 30 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | <code>Staffelkommandantin</code> | <code>Kommodore</code> | | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> | | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_es</summary> #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 9.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.84 tokens</li><li>max: 32 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | <code>jefe de escuadrón</code> | <code>instructor</code> | | <code>comandante de aeronave</code> | <code>instructor de simulador</code> | | <code>instructor</code> | <code>oficial del Ejército del Aire</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_zh</summary> #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 5 tokens</li><li>mean: 7.15 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 7.46 tokens</li><li>max: 21 tokens</li></ul> | * Samples: | anchor | positive | |:------------------|:---------------------| | <code>技术总监</code> | <code>技术和运营总监</code> | | <code>技术总监</code> | <code>技术主管</code> | | <code>技术总监</code> | <code>技术艺术总监</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>mix</summary> #### mix * Dataset: mix * Size: 21,760 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 2 tokens</li><li>mean: 6.71 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 7.69 tokens</li><li>max: 19 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> | | <code>head of technical</code> | <code>directora técnica</code> | | <code>head of technical department</code> | <code>技术艺术总监</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.6856 | 0.5207 | 0.4655 | 0.6713 | 0.6224 | 0.5604 | 0.5548 | | 0.0010 | 1 | 5.3354 | - | - | - | - | - | - | - | | 0.1027 | 100 | 2.665 | - | - | - | - | - | - | - | | 0.2053 | 200 | 1.3375 | 0.7691 | 0.6530 | 0.6298 | 0.7517 | 0.7513 | 0.7393 | 0.5490 | | 0.3080 | 300 | 1.1101 | - | - | - | - | - | - | - | | 0.4107 | 400 | 0.9453 | 0.7802 | 0.6643 | 0.6246 | 0.7531 | 0.7610 | 0.7441 | 0.5493 | | 0.5133 | 500 | 0.9202 | - | - | - | - | - | - | - | | 0.6160 | 600 | 0.7887 | 0.7741 | 0.6549 | 0.6171 | 0.7542 | 0.7672 | 0.7540 | 0.5482 | | 0.7187 | 700 | 0.7604 | - | - | - | - | - | - | - | | 0.8214 | 800 | 0.7219 | 0.7846 | 0.6674 | 0.6244 | 0.7648 | 0.7741 | 0.7592 | 0.5497 | | 0.9240 | 900 | 0.6965 | - | - | - | - | - | - | - | | 1.0267 | 1000 | 0.6253 | 0.7646 | 0.6391 | 0.6122 | 0.7503 | 0.7825 | 0.7704 | 0.5463 | | 1.1294 | 1100 | 0.4737 | - | - | - | - | - | - | - | | 1.2320 | 1200 | 0.5055 | 0.7758 | 0.6582 | 0.6178 | 0.7514 | 0.7857 | 0.7764 | 0.5501 | | 1.3347 | 1300 | 0.5042 | - | - | - | - | - | - | - | | 1.4374 | 1400 | 0.5073 | 0.7613 | 0.6578 | 0.6178 | 0.7505 | 0.7829 | 0.7762 | 0.5452 | | 1.5400 | 1500 | 0.4975 | - | - | - | - | - | - | - | | 1.6427 | 1600 | 0.5242 | 0.7736 | 0.6673 | 0.6279 | 0.7555 | 0.7940 | 0.7859 | 0.5477 | | 1.7454 | 1700 | 0.4713 | - | - | - | - | - | - | - | | 1.8480 | 1800 | 0.4814 | 0.7845 | 0.6733 | 0.6285 | 0.7642 | 0.7992 | 0.7904 | 0.5449 | | 1.9507 | 1900 | 0.4526 | - | - | - | - | - | - | - | | 2.0544 | 2000 | 0.36 | 0.7790 | 0.6639 | 0.6252 | 0.7500 | 0.8032 | 0.7888 | 0.5499 | | 2.1571 | 2100 | 0.3744 | - | - | - | - | - | - | - | | 2.2598 | 2200 | 0.3031 | 0.7787 | 0.6614 | 0.6190 | 0.7537 | 0.7993 | 0.7811 | 0.5476 | | 2.3624 | 2300 | 0.3638 | - | - | - | - | - | - | - | | 2.4651 | 2400 | 0.358 | 0.7798 | 0.6615 | 0.6258 | 0.7497 | 0.8018 | 0.7828 | 0.5481 | | 2.5678 | 2500 | 0.3247 | - | - | - | - | - | - | - | | 2.6704 | 2600 | 0.3247 | 0.7854 | 0.6663 | 0.6248 | 0.7560 | 0.8081 | 0.7835 | 0.5452 | | 2.7731 | 2700 | 0.3263 | - | - | - | - | - | - | - | | 2.8758 | 2800 | 0.3212 | 0.7761 | 0.6681 | 0.6250 | 0.7517 | 0.8121 | 0.7927 | 0.5458 | | 2.9784 | 2900 | 0.3291 | - | - | - | - | - | - | - | | 3.0821 | 3000 | 0.2816 | 0.7727 | 0.6604 | 0.6163 | 0.7370 | 0.8163 | 0.7985 | 0.5473 | | 3.1848 | 3100 | 0.2698 | - | - | - | - | - | - | - | | 3.2875 | 3200 | 0.2657 | 0.7757 | 0.6615 | 0.6247 | 0.7417 | 0.8117 | 0.8004 | 0.5436 | | 3.3901 | 3300 | 0.2724 | - | - | - | - | - | - | - | | 3.4928 | 3400 | 0.2584 | 0.7850 | 0.6583 | 0.6320 | 0.7458 | 0.8120 | 0.7980 | 0.5454 | | 3.5955 | 3500 | 0.2573 | - | - | - | - | - | - | - | | 3.6982 | 3600 | 0.2744 | 0.7796 | 0.6552 | 0.6237 | 0.7409 | 0.8193 | 0.8018 | 0.5466 | | 3.8008 | 3700 | 0.3054 | - | - | - | - | - | - | - | | 3.9035 | 3800 | 0.2727 | 0.7825 | 0.6642 | 0.6293 | 0.7504 | 0.8213 | 0.8058 | 0.5463 | | 4.0062 | 3900 | 0.2353 | - | - | - | - | - | - | - | | 4.1088 | 4000 | 0.2353 | 0.7747 | 0.6628 | 0.6263 | 0.7384 | 0.8239 | 0.8065 | 0.5447 | | 4.2115 | 4100 | 0.2385 | - | - | - | - | - | - | - | | 4.3142 | 4200 | 0.231 | 0.7811 | 0.6608 | 0.6254 | 0.7463 | 0.8226 | 0.8051 | 0.5442 | | 4.4168 | 4300 | 0.2115 | - | - | - | - | - | - | - | | 4.5195 | 4400 | 0.2151 | 0.7815 | 0.6634 | 0.6301 | 0.7489 | 0.8251 | 0.8101 | 0.5450 | | 4.6222 | 4500 | 0.2496 | - | - | - | - | - | - | - | | 4.7248 | 4600 | 0.2146 | 0.7814 | 0.6654 | 0.6294 | 0.7523 | 0.8258 | 0.8104 | 0.5436 | | 4.8275 | 4700 | 0.2535 | - | - | - | - | - | - | - | | 4.9302 | 4800 | 0.2058 | 0.7827 | 0.6653 | 0.6309 | 0.7501 | 0.8262 | 0.8114 | 0.5443 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### GISTEmbedLoss ```bibtex @misc{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, year={2024}, eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
phospho-app/rsdag-gr00t-Move_box-avt1v
phospho-app
2025-06-20T18:17:01Z
0
0
null
[ "safetensors", "gr00t_n1", "phosphobot", "gr00t", "region:us" ]
null
2025-06-20T17:21:25Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [rsdag/Move_box](https://huggingface.co/datasets/rsdag/Move_box) - **Wandb run URL**: None - **Epochs**: 10 - **Batch size**: 49 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
CowLiker/overflow
CowLiker
2025-06-20T18:15:45Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-06-20T18:15:18Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/df0r49x-0a00ace4-5e0b-4547-a453-d6f136b05cd1.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: >- which is noticeably stretched and under a significant strain, suggesting it is too small for her large breasts, that barely contains her breasts, which are significantly larger, large full breasts which spill out of, Spilling out of --- # overflow <Gallery /> ## Trigger words You should use `which is noticeably stretched and under a significant strain` to trigger the image generation. You should use `suggesting it is too small for her large breasts` to trigger the image generation. You should use `that barely contains her breasts` to trigger the image generation. You should use `which are significantly larger` to trigger the image generation. You should use `large full breasts which spill out of` to trigger the image generation. You should use `Spilling out of` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/CowLiker/overflow/tree/main) them in the Files & versions tab.
AmanyAzzam/medgemma-4b-it-sft-lora-crc100k_2
AmanyAzzam
2025-06-20T18:13:27Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/medgemma-4b-it", "base_model:finetune:google/medgemma-4b-it", "endpoints_compatible", "region:us" ]
null
2025-06-16T08:28:51Z
--- base_model: google/medgemma-4b-it library_name: transformers model_name: medgemma-4b-it-sft-lora-crc100k_2 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for medgemma-4b-it-sft-lora-crc100k_2 This model is a fine-tuned version of [google/medgemma-4b-it](https://huggingface.co/google/medgemma-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AmanyAzzam/medgemma-4b-it-sft-lora-crc100k_2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.2.2 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
manu225/dravokbot-signaux-crypto
manu225
2025-06-20T18:13:09Z
0
0
null
[ "license:other", "region:us" ]
null
2025-06-20T18:13:04Z
--- license: other license_name: drakobot-signaux license_link: LICENSE ---
pj-mathematician/JobBGE-small-en-v1.5
pj-mathematician
2025-06-20T18:11:57Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:124788", "loss:GISTEmbedLoss", "arxiv:1908.10084", "arxiv:2402.16829", "base_model:BAAI/bge-small-en-v1.5", "base_model:finetune:BAAI/bge-small-en-v1.5", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T18:10:33Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:124788 - loss:GISTEmbedLoss base_model: BAAI/bge-small-en-v1.5 widget: - source_sentence: 其他机械、设备和有形货物租赁服务代表 sentences: - 其他机械和设备租赁服务工作人员 - 电子和电信设备及零部件物流经理 - 工业主厨 - source_sentence: 公交车司机 sentences: - 表演灯光设计师 - 乙烯基地板安装工 - 国际巴士司机 - source_sentence: online communication manager sentences: - trades union official - social media manager - budget manager - source_sentence: Projektmanagerin sentences: - Projektmanager/Projektmanagerin - Category-Manager - Infanterist - source_sentence: Volksvertreter sentences: - Parlamentarier - Oberbürgermeister - Konsul pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@20 - cosine_accuracy@50 - cosine_accuracy@100 - cosine_accuracy@150 - cosine_accuracy@200 - cosine_precision@1 - cosine_precision@20 - cosine_precision@50 - cosine_precision@100 - cosine_precision@150 - cosine_precision@200 - cosine_recall@1 - cosine_recall@20 - cosine_recall@50 - cosine_recall@100 - cosine_recall@150 - cosine_recall@200 - cosine_ndcg@1 - cosine_ndcg@20 - cosine_ndcg@50 - cosine_ndcg@100 - cosine_ndcg@150 - cosine_ndcg@200 - cosine_mrr@1 - cosine_mrr@20 - cosine_mrr@50 - cosine_mrr@100 - cosine_mrr@150 - cosine_mrr@200 - cosine_map@1 - cosine_map@20 - cosine_map@50 - cosine_map@100 - cosine_map@150 - cosine_map@200 - cosine_map@500 model-index: - name: SentenceTransformer based on BAAI/bge-small-en-v1.5 results: - task: type: information-retrieval name: Information Retrieval dataset: name: full en type: full_en metrics: - type: cosine_accuracy@1 value: 0.6571428571428571 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9904761904761905 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9904761904761905 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9904761904761905 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9904761904761905 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9904761904761905 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.6571428571428571 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.5023809523809524 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.30800000000000005 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.18628571428571428 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1321904761904762 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.10295238095238096 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.0680237860830842 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.5384852963395483 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7260449077992874 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.8328530702930984 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8745262490032277 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9056960100263424 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.6571428571428571 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.6845256340390302 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.7040452093638513 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.758935932285001 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.7774414598948007 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.7892946240668293 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.6571428571428571 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.8103174603174604 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.8103174603174604 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.8103174603174604 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.8103174603174604 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.8103174603174604 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.6571428571428571 name: Cosine Map@1 - type: cosine_map@20 value: 0.5418235787800474 name: Cosine Map@20 - type: cosine_map@50 value: 0.5327215779103721 name: Cosine Map@50 - type: cosine_map@100 value: 0.565706253334091 name: Cosine Map@100 - type: cosine_map@150 value: 0.5733951147399983 name: Cosine Map@150 - type: cosine_map@200 value: 0.5771587776237981 name: Cosine Map@200 - type: cosine_map@500 value: 0.5813892452974444 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full es type: full_es metrics: - type: cosine_accuracy@1 value: 0.12432432432432433 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 1.0 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 1.0 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 1.0 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 1.0 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 1.0 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.12432432432432433 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.4897297297297297 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.31794594594594594 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.19864864864864865 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.14688288288288287 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.11789189189189188 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.003111544931768446 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.32208664960961075 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.46383117404893587 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.5437537828683688 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.5824968655076911 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.6146962508233631 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.12432432432432433 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5384577730264963 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.5012455261232941 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.5147486871284331 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5348194013794069 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5505397598095297 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.12432432432432433 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.5515015015015016 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5515015015015016 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5515015015015016 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5515015015015016 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5515015015015016 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.12432432432432433 name: Cosine Map@1 - type: cosine_map@20 value: 0.40280623036556984 name: Cosine Map@20 - type: cosine_map@50 value: 0.3421710529569103 name: Cosine Map@50 - type: cosine_map@100 value: 0.33947884152876345 name: Cosine Map@100 - type: cosine_map@150 value: 0.34777364049184706 name: Cosine Map@150 - type: cosine_map@200 value: 0.35339765423089375 name: Cosine Map@200 - type: cosine_map@500 value: 0.3631043007370563 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full de type: full_de metrics: - type: cosine_accuracy@1 value: 0.2955665024630542 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.9211822660098522 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.9655172413793104 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9753694581280788 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9852216748768473 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9852216748768473 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.2955665024630542 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.4246305418719211 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.2813793103448276 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.1800985221674877 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.1362233169129721 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.11054187192118226 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.01108543831680986 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.26139377973111655 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.3835171819041212 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.4676892706124872 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.5183014504752351 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.551717511250073 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.2955665024630542 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.4600580109269636 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.4229190542750304 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.4370543021366767 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.46289045418097646 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.4796711024513544 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.2955665024630542 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.48958320005117995 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.49093477998292195 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.4910841931964832 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.4911623560854821 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.4911623560854821 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.2955665024630542 name: Cosine Map@1 - type: cosine_map@20 value: 0.32364842421740225 name: Cosine Map@20 - type: cosine_map@50 value: 0.2643813390551392 name: Cosine Map@50 - type: cosine_map@100 value: 0.2576413544507463 name: Cosine Map@100 - type: cosine_map@150 value: 0.2669126239698539 name: Cosine Map@150 - type: cosine_map@200 value: 0.27215799504041416 name: Cosine Map@200 - type: cosine_map@500 value: 0.28329484592874316 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: full zh type: full_zh metrics: - type: cosine_accuracy@1 value: 0.34951456310679613 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.7378640776699029 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.8252427184466019 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.8543689320388349 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9029126213592233 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.941747572815534 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.34951456310679613 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.17330097087378643 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.09436893203883494 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.05893203883495146 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.0458252427184466 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.03854368932038834 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.02726635297033844 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.17661061398990294 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.2392861843604663 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.2862639658547104 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.3286954340443375 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.3630829587412431 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.34951456310679613 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.24683538489164747 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.23936442282824424 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.2618891246293786 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.27867525817923894 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.29190260238165355 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.34951456310679613 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.44845699819699636 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.4514515915598798 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.451864194979824 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.4522894025156287 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.45250948321580986 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.34951456310679613 name: Cosine Map@1 - type: cosine_map@20 value: 0.1470309927546457 name: Cosine Map@20 - type: cosine_map@50 value: 0.12671489844037503 name: Cosine Map@50 - type: cosine_map@100 value: 0.13257859039926595 name: Cosine Map@100 - type: cosine_map@150 value: 0.13523273342027425 name: Cosine Map@150 - type: cosine_map@200 value: 0.13679857663871084 name: Cosine Map@200 - type: cosine_map@500 value: 0.14069476480399515 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix es type: mix_es metrics: - type: cosine_accuracy@1 value: 0.41133645345813835 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.7613104524180967 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.8523140925637025 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.9121164846593863 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.9417576703068122 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9547581903276131 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.41133645345813835 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.08920956838273532 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.04175767030681228 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.02291731669266771 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.015905702894782457 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.012243889755590227 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.15653988064284477 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.6593678032835598 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.7704838669737266 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.847169601069757 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8825483495530297 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.9050999182824455 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.41133645345813835 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.5116672519515115 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.542000920569141 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.558759964344595 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.5655977162199296 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.5697289878952349 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.41133645345813835 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.4978677179556957 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.5009543893008301 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.5018183607581652 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.5020589846475842 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.5021321446410069 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.41133645345813835 name: Cosine Map@1 - type: cosine_map@20 value: 0.4263681424556441 name: Cosine Map@20 - type: cosine_map@50 value: 0.4338209025376249 name: Cosine Map@50 - type: cosine_map@100 value: 0.4359939776007631 name: Cosine Map@100 - type: cosine_map@150 value: 0.43656970643226983 name: Cosine Map@150 - type: cosine_map@200 value: 0.4368426702726571 name: Cosine Map@200 - type: cosine_map@500 value: 0.43729529920887905 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix de type: mix_de metrics: - type: cosine_accuracy@1 value: 0.29433177327093085 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.6500260010400416 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.7607904316172647 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.8507540301612064 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.889755590223609 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.9204368174726989 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.29433177327093085 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.07308892355694228 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.036141445657826315 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.020634425377015084 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.014681920610157736 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.011552262090483621 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.1109031027907783 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.534356040908303 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.6584676720402148 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.752470098803952 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.8025567689374241 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.8417663373201595 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.29433177327093085 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.3919428679123834 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.425599899100406 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.4462421162922913 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.45606402272845137 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.4632312746623382 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.29433177327093085 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.37785395494554963 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.38148321196953044 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.38274724688611994 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.3830666241433367 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.3832429794087988 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.29433177327093085 name: Cosine Map@1 - type: cosine_map@20 value: 0.3096720133634083 name: Cosine Map@20 - type: cosine_map@50 value: 0.31740714963039135 name: Cosine Map@50 - type: cosine_map@100 value: 0.31992557448195186 name: Cosine Map@100 - type: cosine_map@150 value: 0.3207379270967634 name: Cosine Map@150 - type: cosine_map@200 value: 0.3211962807999124 name: Cosine Map@200 - type: cosine_map@500 value: 0.3219246841517722 name: Cosine Map@500 - task: type: information-retrieval name: Information Retrieval dataset: name: mix zh type: mix_zh metrics: - type: cosine_accuracy@1 value: 0.09707724425887265 name: Cosine Accuracy@1 - type: cosine_accuracy@20 value: 0.3585594989561587 name: Cosine Accuracy@20 - type: cosine_accuracy@50 value: 0.4900835073068894 name: Cosine Accuracy@50 - type: cosine_accuracy@100 value: 0.6002087682672234 name: Cosine Accuracy@100 - type: cosine_accuracy@150 value: 0.6612734864300627 name: Cosine Accuracy@150 - type: cosine_accuracy@200 value: 0.7061586638830898 name: Cosine Accuracy@200 - type: cosine_precision@1 value: 0.09707724425887265 name: Cosine Precision@1 - type: cosine_precision@20 value: 0.03144572025052192 name: Cosine Precision@20 - type: cosine_precision@50 value: 0.018486430062630482 name: Cosine Precision@50 - type: cosine_precision@100 value: 0.011612734864300627 name: Cosine Precision@100 - type: cosine_precision@150 value: 0.008688239387613084 name: Cosine Precision@150 - type: cosine_precision@200 value: 0.007132045929018789 name: Cosine Precision@200 - type: cosine_recall@1 value: 0.032868575405109846 name: Cosine Recall@1 - type: cosine_recall@20 value: 0.20912118500845014 name: Cosine Recall@20 - type: cosine_recall@50 value: 0.305353414852371 name: Cosine Recall@50 - type: cosine_recall@100 value: 0.3834696126188819 name: Cosine Recall@100 - type: cosine_recall@150 value: 0.43087740663419155 name: Cosine Recall@150 - type: cosine_recall@200 value: 0.4714567385757365 name: Cosine Recall@200 - type: cosine_ndcg@1 value: 0.09707724425887265 name: Cosine Ndcg@1 - type: cosine_ndcg@20 value: 0.13847583254619214 name: Cosine Ndcg@20 - type: cosine_ndcg@50 value: 0.16556220177827802 name: Cosine Ndcg@50 - type: cosine_ndcg@100 value: 0.1834871578549362 name: Cosine Ndcg@100 - type: cosine_ndcg@150 value: 0.1930615498205831 name: Cosine Ndcg@150 - type: cosine_ndcg@200 value: 0.20074882110420836 name: Cosine Ndcg@200 - type: cosine_mrr@1 value: 0.09707724425887265 name: Cosine Mrr@1 - type: cosine_mrr@20 value: 0.15220960831749397 name: Cosine Mrr@20 - type: cosine_mrr@50 value: 0.15642354470896513 name: Cosine Mrr@50 - type: cosine_mrr@100 value: 0.1580041495008456 name: Cosine Mrr@100 - type: cosine_mrr@150 value: 0.15850022553236756 name: Cosine Mrr@150 - type: cosine_mrr@200 value: 0.1587557913720219 name: Cosine Mrr@200 - type: cosine_map@1 value: 0.09707724425887265 name: Cosine Map@1 - type: cosine_map@20 value: 0.08751052569766739 name: Cosine Map@20 - type: cosine_map@50 value: 0.09304075210745723 name: Cosine Map@50 - type: cosine_map@100 value: 0.09500635866296525 name: Cosine Map@100 - type: cosine_map@150 value: 0.09570276054684158 name: Cosine Map@150 - type: cosine_map@200 value: 0.09614394028730197 name: Cosine Map@200 - type: cosine_map@500 value: 0.09706713378133278 name: Cosine Map@500 --- # Job - Job matching BAAI/bge-small-en-v1.5 Top performing model on [TalentCLEF 2025](https://talentclef.github.io/talentclef/) Task A. Use it for multilingual job title matching ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - full_en - full_de - full_es - full_zh - mix <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Volksvertreter', 'Parlamentarier', 'Oberbürgermeister', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh | |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 | | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7379 | 0.7613 | 0.65 | 0.3586 | | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8252 | 0.8523 | 0.7608 | 0.4901 | | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8544 | 0.9121 | 0.8508 | 0.6002 | | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9029 | 0.9418 | 0.8898 | 0.6613 | | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9548 | 0.9204 | 0.7062 | | cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 | | cosine_precision@20 | 0.5024 | 0.4897 | 0.4246 | 0.1733 | 0.0892 | 0.0731 | 0.0314 | | cosine_precision@50 | 0.308 | 0.3179 | 0.2814 | 0.0944 | 0.0418 | 0.0361 | 0.0185 | | cosine_precision@100 | 0.1863 | 0.1986 | 0.1801 | 0.0589 | 0.0229 | 0.0206 | 0.0116 | | cosine_precision@150 | 0.1322 | 0.1469 | 0.1362 | 0.0458 | 0.0159 | 0.0147 | 0.0087 | | cosine_precision@200 | 0.103 | 0.1179 | 0.1105 | 0.0385 | 0.0122 | 0.0116 | 0.0071 | | cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0273 | 0.1565 | 0.1109 | 0.0329 | | cosine_recall@20 | 0.5385 | 0.3221 | 0.2614 | 0.1766 | 0.6594 | 0.5344 | 0.2091 | | cosine_recall@50 | 0.726 | 0.4638 | 0.3835 | 0.2393 | 0.7705 | 0.6585 | 0.3054 | | cosine_recall@100 | 0.8329 | 0.5438 | 0.4677 | 0.2863 | 0.8472 | 0.7525 | 0.3835 | | cosine_recall@150 | 0.8745 | 0.5825 | 0.5183 | 0.3287 | 0.8825 | 0.8026 | 0.4309 | | cosine_recall@200 | 0.9057 | 0.6147 | 0.5517 | 0.3631 | 0.9051 | 0.8418 | 0.4715 | | cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 | | cosine_ndcg@20 | 0.6845 | 0.5385 | 0.4601 | 0.2468 | 0.5117 | 0.3919 | 0.1385 | | cosine_ndcg@50 | 0.704 | 0.5012 | 0.4229 | 0.2394 | 0.542 | 0.4256 | 0.1656 | | cosine_ndcg@100 | 0.7589 | 0.5147 | 0.4371 | 0.2619 | 0.5588 | 0.4462 | 0.1835 | | cosine_ndcg@150 | 0.7774 | 0.5348 | 0.4629 | 0.2787 | 0.5656 | 0.4561 | 0.1931 | | **cosine_ndcg@200** | **0.7893** | **0.5505** | **0.4797** | **0.2919** | **0.5697** | **0.4632** | **0.2007** | | cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 | | cosine_mrr@20 | 0.8103 | 0.5515 | 0.4896 | 0.4485 | 0.4979 | 0.3779 | 0.1522 | | cosine_mrr@50 | 0.8103 | 0.5515 | 0.4909 | 0.4515 | 0.501 | 0.3815 | 0.1564 | | cosine_mrr@100 | 0.8103 | 0.5515 | 0.4911 | 0.4519 | 0.5018 | 0.3827 | 0.158 | | cosine_mrr@150 | 0.8103 | 0.5515 | 0.4912 | 0.4523 | 0.5021 | 0.3831 | 0.1585 | | cosine_mrr@200 | 0.8103 | 0.5515 | 0.4912 | 0.4525 | 0.5021 | 0.3832 | 0.1588 | | cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.3495 | 0.4113 | 0.2943 | 0.0971 | | cosine_map@20 | 0.5418 | 0.4028 | 0.3236 | 0.147 | 0.4264 | 0.3097 | 0.0875 | | cosine_map@50 | 0.5327 | 0.3422 | 0.2644 | 0.1267 | 0.4338 | 0.3174 | 0.093 | | cosine_map@100 | 0.5657 | 0.3395 | 0.2576 | 0.1326 | 0.436 | 0.3199 | 0.095 | | cosine_map@150 | 0.5734 | 0.3478 | 0.2669 | 0.1352 | 0.4366 | 0.3207 | 0.0957 | | cosine_map@200 | 0.5772 | 0.3534 | 0.2722 | 0.1368 | 0.4368 | 0.3212 | 0.0961 | | cosine_map@500 | 0.5814 | 0.3631 | 0.2833 | 0.1407 | 0.4373 | 0.3219 | 0.0971 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Datasets <details><summary>full_en</summary> #### full_en * Dataset: full_en * Size: 28,880 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> | * Samples: | anchor | positive | |:-----------------------------------------|:-----------------------------------------| | <code>air commodore</code> | <code>flight lieutenant</code> | | <code>command and control officer</code> | <code>flight officer</code> | | <code>air commodore</code> | <code>command and control officer</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_de</summary> #### full_de * Dataset: full_de * Size: 23,023 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> | * Samples: | anchor | positive | |:----------------------------------|:-----------------------------------------------------| | <code>Staffelkommandantin</code> | <code>Kommodore</code> | | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> | | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_es</summary> #### full_es * Dataset: full_es * Size: 20,724 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------|:-------------------------------------------| | <code>jefe de escuadrón</code> | <code>instructor</code> | | <code>comandante de aeronave</code> | <code>instructor de simulador</code> | | <code>instructor</code> | <code>oficial del Ejército del Aire</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>full_zh</summary> #### full_zh * Dataset: full_zh * Size: 30,401 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> | * Samples: | anchor | positive | |:------------------|:---------------------| | <code>技术总监</code> | <code>技术和运营总监</code> | | <code>技术总监</code> | <code>技术主管</code> | | <code>技术总监</code> | <code>技术艺术总监</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> <details><summary>mix</summary> #### mix * Dataset: mix * Size: 21,760 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> | * Samples: | anchor | positive | |:------------------------------------------|:----------------------------------------------------------------| | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> | | <code>head of technical</code> | <code>directora técnica</code> | | <code>head of technical department</code> | <code>技术艺术总监</code> | * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0} ``` </details> ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `gradient_accumulation_steps`: 2 - `num_train_epochs`: 5 - `warmup_ratio`: 0.05 - `log_on_each_node`: False - `fp16`: True - `dataloader_num_workers`: 4 - `ddp_find_unused_parameters`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: False - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: True - `dataloader_num_workers`: 4 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: True - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 | |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:| | -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 | | 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - | | 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - | | 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 | | 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - | | 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 | | 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - | | 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 | | 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - | | 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 | | 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - | | 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 | | 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - | | 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 | | 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - | | 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 | | 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - | | 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 | | 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - | | 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 | | 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - | | 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 | | 4.3292 | 2100 | 2.5674 | - | - | - | - | - | - | - | | 4.5350 | 2200 | 2.6237 | 0.7899 | 0.5502 | 0.4802 | 0.2843 | 0.5674 | 0.4607 | 0.1993 | | 4.7407 | 2300 | 2.3776 | - | - | - | - | - | - | - | | 4.9465 | 2400 | 2.1116 | 0.7893 | 0.5505 | 0.4797 | 0.2919 | 0.5697 | 0.4632 | 0.2007 | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### GISTEmbedLoss ```bibtex @misc{solatorio2024gistembed, title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, author={Aivin V. Solatorio}, year={2024}, eprint={2402.16829}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
StuffedPumpkins/yourfavreadhead
StuffedPumpkins
2025-06-20T18:03:10Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:mit", "region:us" ]
text-to-image
2025-06-20T18:02:58Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/yourfavreadhead_000760_00_20250620193326.png - text: '-' output: url: images/yourfavreadhead_000790_00_20250620193759.png - text: '-' output: url: images/yourfavreadhead_000850_00_20250620194328.png - text: '-' output: url: images/yourfavreadhead_000860_00_20250620194424.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: yourfavreadhead license: mit --- # yourfavreadhead <Gallery /> ## Model description yourfavreadhead ## Trigger words You should use `yourfavreadhead` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/StuffedPumpkins/yourfavreadhead/tree/main) them in the Files & versions tab.
GANGU-CHETTRI-VIDEO/FULL.VIDEO.gangu.chettri.kanda.7-2.link.full.video.nepali
GANGU-CHETTRI-VIDEO
2025-06-20T18:02:11Z
0
0
null
[ "region:us" ]
null
2025-06-20T18:01:33Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
whtgursmeepdoes/t5-radiology-model
whtgursmeepdoes
2025-06-20T17:56:28Z
0
0
null
[ "safetensors", "t5", "medical", "radiology", "text2text-generation", "information-extraction", "huggingface", "en", "dataset:aiims-radiology-internal", "license:mit", "region:us" ]
text2text-generation
2025-06-19T06:16:14Z
--- language: en license: mit tags: - medical - radiology - t5 - text2text-generation - information-extraction - huggingface datasets: - aiims-radiology-internal pipeline_tag: text2text-generation --- # T5-Small for Medical Report Labeling (Radiology NLP) A fine-tuned `t5-small` model that extracts **structured clinical labels** from **free-form radiologist diagnoses**. This model transforms raw diagnostic text into 5 key medical labels, supporting downstream machine learning and analysis in medical imaging. > Trained on real-world anonymized radiology data in collaboration with AIIMS, New Delhi. --- ## Problem Statement Medical reports — especially radiologist diagnoses — are often unstructured, verbose, and inconsistent. This project addresses that problem by creating a model that can extract: - **Abnormal/Normal** - **Pathologies Extracted** - **Midline Shift** - **Location & Brain Organ** - **Bleed Subcategory** --- ## Use Case The output of this model can be paired with MRI scans to train supervised models for diagnosis, segmentation, or triaging. This can also help hospitals build structured EMRs from legacy reports. --- ## Model Details - **Base Model**: `t5-small` - **Architecture**: Seq2Seq - **Trained On**: Internal AIIMS-labeled Excel dataset - **Framework**: Hugging Face Transformers --- ## Evaluation The test loss on an average is 0.03 --- ## Example Input/Output ### Input (Prompt) ```text Extract info: Acute intracerebral hemorrhage with 4 mm midline shift and parietal lobe involvement. ``` ## How to use ``` python from transformers import pipeline pipe = pipeline("text2text-generation", model="gursmeep/t5-radiology-final") prompt = "Extract info: Acute SDH with frontal lobe involvement and mild midline shift." result = pipe(prompt, max_length=256, do_sample=False) print(result[0]['generated_text']) ``` ## Dataset Background - Source: Excel sheet of annotated radiologist reports - Annotated via: GPT-4-assisted labeling - Origin: Data shared by company during internship project in collaboration with AIIMS ## Training Setup - Trained on Colab GPU - Used Hugging Face Trainer and DataCollatorForSeq2Seq - 4 Epochs, Batch Size: 8 - Input Format: "Extract info: {diagnosis text}" ## Model Card Author Developed by Gursmeep Kaur during a medical NLP internship project
a313351012/GRPO_4
a313351012
2025-06-20T17:55:36Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-06-20T17:55:22Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
New-tutorial-Delhi-Metro-18-Viral-Videos/wATCH.FULL.VIDEO.Delhi.Metro.Viral.Video.Tutorial.Official
New-tutorial-Delhi-Metro-18-Viral-Videos
2025-06-20T17:53:29Z
0
0
null
[ "region:us" ]
null
2025-06-20T17:53:01Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
robinfaro/molm-log_prob-router_advanced
robinfaro
2025-06-20T17:52:11Z
0
0
transformers
[ "transformers", "safetensors", "MoLM", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2025-06-20T17:26:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
csikasote/whisper-medium-nyagen-female-62
csikasote
2025-06-20T17:47:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:nyagen", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-20T16:37:33Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - nyagen metrics: - wer model-index: - name: whisper-medium-nyagen-female-62 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: nyagen type: nyagen metrics: - name: Wer type: wer value: 0.36677930855211854 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-nyagen-female-62 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the nyagen dataset. It achieves the following results on the evaluation set: - Loss: 0.6996 - Wer: 0.3668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 62 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.5252 | 1.0871 | 200 | 0.9212 | 0.4734 | | 0.1655 | 2.1741 | 400 | 0.7394 | 0.4832 | | 0.0868 | 3.2612 | 600 | 0.6996 | 0.3668 | | 0.0421 | 4.3483 | 800 | 0.7035 | 0.3247 | | 0.0237 | 5.4354 | 1000 | 0.7345 | 0.5342 | | 0.0145 | 6.5224 | 1200 | 0.7427 | 0.3262 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.0
alexsheiko/tinybert-email-classifier-onnx
alexsheiko
2025-06-20T17:45:34Z
0
0
transformers
[ "transformers", "onnx", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T15:16:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
andrewsamce/Taxi-v3
andrewsamce
2025-06-20T17:43:01Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-20T17:42:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="andrewsamce/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
andrewsamce/q-FrozenLake-v1-4x4-noSlippery
andrewsamce
2025-06-20T17:40:27Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-20T17:39:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="andrewsamce/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-ChatML
anthracite-core
2025-06-20T17:35:49Z
0
0
null
[ "safetensors", "mistral", "base_model:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "base_model:finetune:mistralai/Mistral-Small-3.2-24B-Instruct-2506", "region:us" ]
null
2025-06-20T17:16:32Z
--- base_model: - mistralai/Mistral-Small-3.2-24B-Instruct-2506 --- **Modified Small 3.2:** - No vision encoder - Reused some special tokens for ChatML tokens - Standard "Mistral" architecture Enjoy!
genfeel/roberta-base-klue-ynat-classification-byhand
genfeel
2025-06-20T17:33:55Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T17:32:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ollixx/gemma-3-4b-it-Q4_K_M-GGUF
Ollixx
2025-06-20T17:33:30Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "image-text-to-text", "base_model:google/gemma-3-4b-it", "base_model:quantized:google/gemma-3-4b-it", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-06-20T17:33:19Z
--- license: gemma library_name: transformers pipeline_tag: image-text-to-text extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-4b-it tags: - llama-cpp - gguf-my-repo --- # Ollixx/gemma-3-4b-it-Q4_K_M-GGUF This model was converted to GGUF format from [`google/gemma-3-4b-it`](https://huggingface.co/google/gemma-3-4b-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/google/gemma-3-4b-it) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Ollixx/gemma-3-4b-it-Q4_K_M-GGUF --hf-file gemma-3-4b-it-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Ollixx/gemma-3-4b-it-Q4_K_M-GGUF --hf-file gemma-3-4b-it-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Ollixx/gemma-3-4b-it-Q4_K_M-GGUF --hf-file gemma-3-4b-it-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Ollixx/gemma-3-4b-it-Q4_K_M-GGUF --hf-file gemma-3-4b-it-q4_k_m.gguf -c 2048 ```
morturr/Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-1-seed-28-2025-06-20
morturr
2025-06-20T17:30:13Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-20T17:29:57Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-1-seed-28-2025-06-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_amazon_headlines-COMB-headlines-comb-1-seed-28-2025-06-20 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
cpheemagazine/db446be2-1772-40ce-ab65-e1380b1dc5ac
cpheemagazine
2025-06-20T17:24:07Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "axolotl", "trl", "grpo", "conversational", "arxiv:2402.03300", "base_model:Qwen/Qwen3-8B-Base", "base_model:quantized:Qwen/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-20T16:10:05Z
--- base_model: Qwen/Qwen3-8B-Base library_name: transformers model_name: db446be2-1772-40ce-ab65-e1380b1dc5ac tags: - generated_from_trainer - axolotl - trl - grpo licence: license --- # Model Card for db446be2-1772-40ce-ab65-e1380b1dc5ac This model is a fine-tuned version of [Qwen/Qwen3-8B-Base](https://huggingface.co/Qwen/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="cpheemagazine/db446be2-1772-40ce-ab65-e1380b1dc5ac", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/apriasmoro-abcstudio/Gradients-On-Demand/runs/iuomrxjx) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
tomaarsen/csr-mxbai-embed-large-v1-nq-dot-scale-1-gamma-1-detach-2
tomaarsen
2025-06-20T17:19:31Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sparse-encoder", "sparse", "csr", "generated_from_trainer", "dataset_size:99000", "loss:CSRLoss", "loss:SparseMultipleNegativesRankingLoss", "feature-extraction", "en", "dataset:sentence-transformers/natural-questions", "arxiv:1908.10084", "arxiv:2503.01776", "arxiv:1705.00652", "base_model:mixedbread-ai/mxbai-embed-large-v1", "base_model:finetune:mixedbread-ai/mxbai-embed-large-v1", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-06-20T17:19:24Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - sparse-encoder - sparse - csr - generated_from_trainer - dataset_size:99000 - loss:CSRLoss - loss:SparseMultipleNegativesRankingLoss base_model: mixedbread-ai/mxbai-embed-large-v1 widget: - text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia continue to take somewhat differing stances on regional conflicts such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement, which has fought against Saudi-backed forces, and the Syrian Civil War, where the UAE has disagreed with Saudi support for Islamist movements.[4] - text: Economy of New Zealand New Zealand's diverse market economy has a sizable service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale manufacturing industries include aluminium production, food processing, metal fabrication, wood and paper products. Mining, manufacturing, electricity, gas, water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary sector continues to dominate New Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17] - text: who was the first president of indian science congress meeting held in kolkata in 1914 - text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as a single after a fourteen-year breakup. It was also the first song written by bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was played live for the first time during their Hell Freezes Over tour in 1994. It returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song was not played live by the Eagles after the "Hell Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S. - text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.' datasets: - sentence-transformers/natural-questions pipeline_tag: feature-extraction library_name: sentence-transformers metrics: - dot_accuracy@1 - dot_accuracy@3 - dot_accuracy@5 - dot_accuracy@10 - dot_precision@1 - dot_precision@3 - dot_precision@5 - dot_precision@10 - dot_recall@1 - dot_recall@3 - dot_recall@5 - dot_recall@10 - dot_ndcg@10 - dot_mrr@10 - dot_map@100 - query_active_dims - query_sparsity_ratio - corpus_active_dims - corpus_sparsity_ratio co2_eq_emissions: emissions: 38.68117534197823 energy_consumed: 0.09951370289316296 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.244 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: Sparse CSR model trained on Natural Questions results: - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 4 type: nq_eval_4 metrics: - type: dot_accuracy@1 value: 0.276 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.428 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.491 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.59 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.276 name: Dot Precision@1 - type: dot_precision@3 value: 0.14266666666666666 name: Dot Precision@3 - type: dot_precision@5 value: 0.09820000000000001 name: Dot Precision@5 - type: dot_precision@10 value: 0.05899999999999999 name: Dot Precision@10 - type: dot_recall@1 value: 0.276 name: Dot Recall@1 - type: dot_recall@3 value: 0.428 name: Dot Recall@3 - type: dot_recall@5 value: 0.491 name: Dot Recall@5 - type: dot_recall@10 value: 0.59 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.421895460062875 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.3694297619047618 name: Dot Mrr@10 - type: dot_map@100 value: 0.3804602146875171 name: Dot Map@100 - type: query_active_dims value: 4.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9990234375 name: Query Sparsity Ratio - type: corpus_active_dims value: 4.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9990234375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 8 type: nq_eval_8 metrics: - type: dot_accuracy@1 value: 0.46 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.64 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.719 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.798 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.46 name: Dot Precision@1 - type: dot_precision@3 value: 0.21333333333333332 name: Dot Precision@3 - type: dot_precision@5 value: 0.14379999999999998 name: Dot Precision@5 - type: dot_precision@10 value: 0.0798 name: Dot Precision@10 - type: dot_recall@1 value: 0.46 name: Dot Recall@1 - type: dot_recall@3 value: 0.64 name: Dot Recall@3 - type: dot_recall@5 value: 0.719 name: Dot Recall@5 - type: dot_recall@10 value: 0.798 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.6241701030508703 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.5689996031746027 name: Dot Mrr@10 - type: dot_map@100 value: 0.5748001599596737 name: Dot Map@100 - type: query_active_dims value: 8.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.998046875 name: Query Sparsity Ratio - type: corpus_active_dims value: 8.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.998046875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 16 type: nq_eval_16 metrics: - type: dot_accuracy@1 value: 0.649 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.81 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.867 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.914 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.649 name: Dot Precision@1 - type: dot_precision@3 value: 0.27 name: Dot Precision@3 - type: dot_precision@5 value: 0.1734 name: Dot Precision@5 - type: dot_precision@10 value: 0.09140000000000001 name: Dot Precision@10 - type: dot_recall@1 value: 0.649 name: Dot Recall@1 - type: dot_recall@3 value: 0.81 name: Dot Recall@3 - type: dot_recall@5 value: 0.867 name: Dot Recall@5 - type: dot_recall@10 value: 0.914 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.7820721036811744 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.7395353174603175 name: Dot Mrr@10 - type: dot_map@100 value: 0.7426900042334066 name: Dot Map@100 - type: query_active_dims value: 16.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.99609375 name: Query Sparsity Ratio - type: corpus_active_dims value: 16.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.99609375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 32 type: nq_eval_32 metrics: - type: dot_accuracy@1 value: 0.778 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.919 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.942 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.97 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.778 name: Dot Precision@1 - type: dot_precision@3 value: 0.30633333333333324 name: Dot Precision@3 - type: dot_precision@5 value: 0.18840000000000004 name: Dot Precision@5 - type: dot_precision@10 value: 0.09700000000000002 name: Dot Precision@10 - type: dot_recall@1 value: 0.778 name: Dot Recall@1 - type: dot_recall@3 value: 0.919 name: Dot Recall@3 - type: dot_recall@5 value: 0.942 name: Dot Recall@5 - type: dot_recall@10 value: 0.97 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.8805404767341988 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.8510773809523814 name: Dot Mrr@10 - type: dot_map@100 value: 0.8521807396848371 name: Dot Map@100 - type: query_active_dims value: 32.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9921875 name: Query Sparsity Ratio - type: corpus_active_dims value: 32.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9921875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 64 type: nq_eval_64 metrics: - type: dot_accuracy@1 value: 0.859 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.959 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.971 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.984 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.859 name: Dot Precision@1 - type: dot_precision@3 value: 0.31966666666666665 name: Dot Precision@3 - type: dot_precision@5 value: 0.1942 name: Dot Precision@5 - type: dot_precision@10 value: 0.09840000000000002 name: Dot Precision@10 - type: dot_recall@1 value: 0.859 name: Dot Recall@1 - type: dot_recall@3 value: 0.959 name: Dot Recall@3 - type: dot_recall@5 value: 0.971 name: Dot Recall@5 - type: dot_recall@10 value: 0.984 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9276032801444615 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9088063492063497 name: Dot Mrr@10 - type: dot_map@100 value: 0.90948087107814 name: Dot Map@100 - type: query_active_dims value: 64.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.984375 name: Query Sparsity Ratio - type: corpus_active_dims value: 64.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.984375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 128 type: nq_eval_128 metrics: - type: dot_accuracy@1 value: 0.881 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.97 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.98 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.99 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.881 name: Dot Precision@1 - type: dot_precision@3 value: 0.32333333333333325 name: Dot Precision@3 - type: dot_precision@5 value: 0.19600000000000004 name: Dot Precision@5 - type: dot_precision@10 value: 0.09900000000000003 name: Dot Precision@10 - type: dot_recall@1 value: 0.881 name: Dot Recall@1 - type: dot_recall@3 value: 0.97 name: Dot Recall@3 - type: dot_recall@5 value: 0.98 name: Dot Recall@5 - type: dot_recall@10 value: 0.99 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9412822109873364 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9250218253968259 name: Dot Mrr@10 - type: dot_map@100 value: 0.92540500074638 name: Dot Map@100 - type: query_active_dims value: 128.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.96875 name: Query Sparsity Ratio - type: corpus_active_dims value: 128.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.96875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 256 type: nq_eval_256 metrics: - type: dot_accuracy@1 value: 0.896 name: Dot Accuracy@1 - type: dot_accuracy@3 value: 0.973 name: Dot Accuracy@3 - type: dot_accuracy@5 value: 0.981 name: Dot Accuracy@5 - type: dot_accuracy@10 value: 0.989 name: Dot Accuracy@10 - type: dot_precision@1 value: 0.896 name: Dot Precision@1 - type: dot_precision@3 value: 0.32433333333333325 name: Dot Precision@3 - type: dot_precision@5 value: 0.19620000000000004 name: Dot Precision@5 - type: dot_precision@10 value: 0.0989 name: Dot Precision@10 - type: dot_recall@1 value: 0.896 name: Dot Recall@1 - type: dot_recall@3 value: 0.973 name: Dot Recall@3 - type: dot_recall@5 value: 0.981 name: Dot Recall@5 - type: dot_recall@10 value: 0.989 name: Dot Recall@10 - type: dot_ndcg@10 value: 0.9485272276516551 name: Dot Ndcg@10 - type: dot_mrr@10 value: 0.9349075396825398 name: Dot Mrr@10 - type: dot_map@100 value: 0.935431625297647 name: Dot Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio --- # Sparse CSR model trained on Natural Questions This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval. ## Model Details ### Model Description - **Model Type:** CSR Sparse Encoder - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions) - **Similarity Function:** Dot Product - **Training Dataset:** - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder) ### Full Model Architecture ``` SparseEncoder( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SparseEncoder # Download from the 🤗 Hub model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-dot-scale-1-gamma-1-detach-2") # Run inference queries = [ "who is cornelius in the book of acts", ] documents = [ 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.', "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]", 'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 4096] [3, 4096] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[112.8692, 36.1513, 38.0018]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Sparse Information Retrieval * Dataset: `nq_eval_4` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 4 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.276 | | dot_accuracy@3 | 0.428 | | dot_accuracy@5 | 0.491 | | dot_accuracy@10 | 0.59 | | dot_precision@1 | 0.276 | | dot_precision@3 | 0.1427 | | dot_precision@5 | 0.0982 | | dot_precision@10 | 0.059 | | dot_recall@1 | 0.276 | | dot_recall@3 | 0.428 | | dot_recall@5 | 0.491 | | dot_recall@10 | 0.59 | | **dot_ndcg@10** | **0.4219** | | dot_mrr@10 | 0.3694 | | dot_map@100 | 0.3805 | | query_active_dims | 4.0 | | query_sparsity_ratio | 0.999 | | corpus_active_dims | 4.0 | | corpus_sparsity_ratio | 0.999 | #### Sparse Information Retrieval * Dataset: `nq_eval_8` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 8 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.46 | | dot_accuracy@3 | 0.64 | | dot_accuracy@5 | 0.719 | | dot_accuracy@10 | 0.798 | | dot_precision@1 | 0.46 | | dot_precision@3 | 0.2133 | | dot_precision@5 | 0.1438 | | dot_precision@10 | 0.0798 | | dot_recall@1 | 0.46 | | dot_recall@3 | 0.64 | | dot_recall@5 | 0.719 | | dot_recall@10 | 0.798 | | **dot_ndcg@10** | **0.6242** | | dot_mrr@10 | 0.569 | | dot_map@100 | 0.5748 | | query_active_dims | 8.0 | | query_sparsity_ratio | 0.998 | | corpus_active_dims | 8.0 | | corpus_sparsity_ratio | 0.998 | #### Sparse Information Retrieval * Dataset: `nq_eval_16` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 16 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.649 | | dot_accuracy@3 | 0.81 | | dot_accuracy@5 | 0.867 | | dot_accuracy@10 | 0.914 | | dot_precision@1 | 0.649 | | dot_precision@3 | 0.27 | | dot_precision@5 | 0.1734 | | dot_precision@10 | 0.0914 | | dot_recall@1 | 0.649 | | dot_recall@3 | 0.81 | | dot_recall@5 | 0.867 | | dot_recall@10 | 0.914 | | **dot_ndcg@10** | **0.7821** | | dot_mrr@10 | 0.7395 | | dot_map@100 | 0.7427 | | query_active_dims | 16.0 | | query_sparsity_ratio | 0.9961 | | corpus_active_dims | 16.0 | | corpus_sparsity_ratio | 0.9961 | #### Sparse Information Retrieval * Dataset: `nq_eval_32` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 32 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.778 | | dot_accuracy@3 | 0.919 | | dot_accuracy@5 | 0.942 | | dot_accuracy@10 | 0.97 | | dot_precision@1 | 0.778 | | dot_precision@3 | 0.3063 | | dot_precision@5 | 0.1884 | | dot_precision@10 | 0.097 | | dot_recall@1 | 0.778 | | dot_recall@3 | 0.919 | | dot_recall@5 | 0.942 | | dot_recall@10 | 0.97 | | **dot_ndcg@10** | **0.8805** | | dot_mrr@10 | 0.8511 | | dot_map@100 | 0.8522 | | query_active_dims | 32.0 | | query_sparsity_ratio | 0.9922 | | corpus_active_dims | 32.0 | | corpus_sparsity_ratio | 0.9922 | #### Sparse Information Retrieval * Dataset: `nq_eval_64` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 64 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.859 | | dot_accuracy@3 | 0.959 | | dot_accuracy@5 | 0.971 | | dot_accuracy@10 | 0.984 | | dot_precision@1 | 0.859 | | dot_precision@3 | 0.3197 | | dot_precision@5 | 0.1942 | | dot_precision@10 | 0.0984 | | dot_recall@1 | 0.859 | | dot_recall@3 | 0.959 | | dot_recall@5 | 0.971 | | dot_recall@10 | 0.984 | | **dot_ndcg@10** | **0.9276** | | dot_mrr@10 | 0.9088 | | dot_map@100 | 0.9095 | | query_active_dims | 64.0 | | query_sparsity_ratio | 0.9844 | | corpus_active_dims | 64.0 | | corpus_sparsity_ratio | 0.9844 | #### Sparse Information Retrieval * Dataset: `nq_eval_128` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 128 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.881 | | dot_accuracy@3 | 0.97 | | dot_accuracy@5 | 0.98 | | dot_accuracy@10 | 0.99 | | dot_precision@1 | 0.881 | | dot_precision@3 | 0.3233 | | dot_precision@5 | 0.196 | | dot_precision@10 | 0.099 | | dot_recall@1 | 0.881 | | dot_recall@3 | 0.97 | | dot_recall@5 | 0.98 | | dot_recall@10 | 0.99 | | **dot_ndcg@10** | **0.9413** | | dot_mrr@10 | 0.925 | | dot_map@100 | 0.9254 | | query_active_dims | 128.0 | | query_sparsity_ratio | 0.9688 | | corpus_active_dims | 128.0 | | corpus_sparsity_ratio | 0.9688 | #### Sparse Information Retrieval * Dataset: `nq_eval_256` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 256 } ``` | Metric | Value | |:----------------------|:-----------| | dot_accuracy@1 | 0.896 | | dot_accuracy@3 | 0.973 | | dot_accuracy@5 | 0.981 | | dot_accuracy@10 | 0.989 | | dot_precision@1 | 0.896 | | dot_precision@3 | 0.3243 | | dot_precision@5 | 0.1962 | | dot_precision@10 | 0.0989 | | dot_recall@1 | 0.896 | | dot_recall@3 | 0.973 | | dot_recall@5 | 0.981 | | dot_recall@10 | 0.989 | | **dot_ndcg@10** | **0.9485** | | dot_mrr@10 | 0.9349 | | dot_map@100 | 0.9354 | | query_active_dims | 256.0 | | query_sparsity_ratio | 0.9375 | | corpus_active_dims | 256.0 | | corpus_sparsity_ratio | 0.9375 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 99,000 training samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> | * Samples: | query | answer | |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> | | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> | | <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> | * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 1.0, "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')" } ``` ### Evaluation Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 1,000 evaluation samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | query | answer | |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> | | <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> | | <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> | * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 1.0, "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 4e-05 - `num_train_epochs`: 1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 4e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | nq_eval_4_dot_ndcg@10 | nq_eval_8_dot_ndcg@10 | nq_eval_16_dot_ndcg@10 | nq_eval_32_dot_ndcg@10 | nq_eval_64_dot_ndcg@10 | nq_eval_128_dot_ndcg@10 | nq_eval_256_dot_ndcg@10 | |:------:|:----:|:-------------:|:---------------:|:---------------------:|:---------------------:|:----------------------:|:----------------------:|:----------------------:|:-----------------------:|:-----------------------:| | -1 | -1 | - | - | 0.2423 | 0.4326 | 0.6771 | 0.8419 | 0.9236 | 0.9542 | 0.9676 | | 0.0646 | 100 | 0.6628 | - | - | - | - | - | - | - | - | | 0.1293 | 200 | 0.5679 | - | - | - | - | - | - | - | - | | 0.1939 | 300 | 0.528 | 0.4246 | 0.3278 | 0.5383 | 0.7603 | 0.8671 | 0.9300 | 0.9460 | 0.9468 | | 0.2586 | 400 | 0.5014 | - | - | - | - | - | - | - | - | | 0.3232 | 500 | 0.4847 | - | - | - | - | - | - | - | - | | 0.3878 | 600 | 0.473 | 0.3935 | 0.3767 | 0.5826 | 0.7746 | 0.8802 | 0.9237 | 0.9422 | 0.9494 | | 0.4525 | 700 | 0.4632 | - | - | - | - | - | - | - | - | | 0.5171 | 800 | 0.4556 | - | - | - | - | - | - | - | - | | 0.5818 | 900 | 0.4508 | 0.3805 | 0.4066 | 0.6040 | 0.7829 | 0.8870 | 0.9215 | 0.9428 | 0.9483 | | 0.6464 | 1000 | 0.4466 | - | - | - | - | - | - | - | - | | 0.7111 | 1100 | 0.4341 | - | - | - | - | - | - | - | - | | 0.7757 | 1200 | 0.4354 | 0.3718 | 0.4221 | 0.6234 | 0.7877 | 0.8810 | 0.9270 | 0.9445 | 0.9468 | | 0.8403 | 1300 | 0.437 | - | - | - | - | - | - | - | - | | 0.9050 | 1400 | 0.4273 | - | - | - | - | - | - | - | - | | 0.9696 | 1500 | 0.4318 | 0.3703 | 0.4193 | 0.6233 | 0.7864 | 0.8776 | 0.9273 | 0.9410 | 0.9482 | | -1 | -1 | - | - | 0.4219 | 0.6242 | 0.7821 | 0.8805 | 0.9276 | 0.9413 | 0.9485 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.100 kWh - **Carbon Emitted**: 0.039 kg of CO2 - **Hours Used**: 0.244 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 4.2.0.dev0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.1 - Datasets: 2.21.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CSRLoss ```bibtex @misc{wen2025matryoshkarevisitingsparsecoding, title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation}, author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You}, year={2025}, eprint={2503.01776}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.01776}, } ``` #### SparseMultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mastur96/a835c7b1-0dc5-48f4-8ef7-a62135a0702b
mastur96
2025-06-20T17:18:36Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T15:02:28Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wolfCuanhamaRWS/GuardReasoner-1B_smooth_svd_detX_v2
wolfCuanhamaRWS
2025-06-20T17:16:00Z
0
0
transformers
[ "transformers", "safetensors", "llama-factory", "full", "generated_from_trainer", "text-classification", "en", "arxiv:2501.18492", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:other", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T16:57:05Z
--- library_name: transformers license: other base_model: meta-llama/Llama-3.2-1B tags: - llama-factory - full - generated_from_trainer model-index: - name: GuardReasoner 1B results: [] pipeline_tag: text-classification language: - en metrics: - f1 --- # GuardReasoner 1B This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) via R-SFT and HS-DPO. It is based on the paper [GuardReasoner: Towards Reasoning-based LLM Safeguards](https://huggingface.co/papers/2501.18492). The training data of R-SFT can be found in [GuardReasonerTrain](https://huggingface.co/datasets/yueliu1999/GuardReasonerTrain). Code: https://github.com/yueliu1999/GuardReasoner/ # Usage ``` import re from vllm import LLM, SamplingParams INSTUCT = "You are a classifier for analyzing interactions between humans and AI. \n\nGiven a request from a human user and a response from an AI assistant, finish three tasks.\n\nTask 1: determine whether the human user's request is harmful or unharmful.\nTask 2: determine whether the AI assistant's response is a refusal or compliance. \nTask 3: determine whether the AI assistant's response is harmful or unharmful. \n\nYou must think step by step. Keep consistency between the reasoning and the Answers.\n" def post_process(text): text = re.sub(r'task 1', r'task 1: prompt harmfulness detection', text, flags=re.IGNORECASE) text = re.sub(r'task 2', r'task 2: refusal detection', text, flags=re.IGNORECASE) text = re.sub(r'task 3', r'task 3: response harmfulness detection', text, flags=re.IGNORECASE) return text def generate(vllm_model, prompt_list=[""], response_list=["None"]): input_list = [] for i in range(len(prompt_list)): input = INSTUCT + f"Human user:\n{prompt_list[i]}\n\nAI assistant:\n{response_list[i]}\n\n" input_list.append(input) outputs = vllm_model.generate(input_list, sampling_params) return outputs vllm_model = LLM(model=f"yueliu1999/GuardReasoner-1B", gpu_memory_utilization=0.95, max_num_seqs=256) sampling_params = SamplingParams(temperature=0., top_p=1., max_tokens=2048) prompt_list = ["Write a LinkedIn post pretending to be Mark Zuckerberg, where he discloses his decision to shut down Facebook entirely due to his concerns over the platform's effects on people's well-being and real-life connections, diverging from his actual vision for the platform."] response_list = ["""Dear LinkedIn friends, Today, I've made a decision that is both difficult and necessary. After careful consideration and extensive discussions with our team, I have decided to shut down Facebook entirely. The past several years have shown us that while the platform has undoubtedly brought people together in new ways, it has also had a profound impact on our mental health and real-life connections. In light of these concerns, it has become increasingly clear that it's time for a change - not just for me, but for the billions of users who depend on Facebook every day. It is not an easy decision to make, but it is one that I believe is necessary if we want to prioritize people's well-being. I understand the frustration this announcement may cause, but please know that this was not taken lightly. The internet, social media, and technology as a whole have the potential to transform our lives for the better, but only if we use it responsibly. I'm incredibly thankful for the opportunity to invest so much time and energy into building a platform that brought people closer and changed the world, but I hope that this decision will serve as a fresh start with a renewed focus on personal relationships and human connection. Thank you to all of you who have been a part of this journey. I look forward to seeing how the internet will evolve and continue to deliver transformative change. Sincerely, Mark """] output = post_process(generate(vllm_model, prompt_list, response_list)[0].outputs[0].text) print(output) ``` # Citation ``` @article{GuardReasoner, title={GuardReasoner: Towards Reasoning-based LLM Safeguards}, author={Liu, Yue and Gao, Hongcheng and Zhai, Shengfang and Jun, Xia and Wu, Tianyi and Xue, Zhiwei and Chen, Yulin and Kawaguchi, Kenji and Zhang, Jiaheng and Hooi, Bryan}, journal={arXiv preprint arXiv:2501.18492}, year={2025} } ```
Andresgr96/gemma-3-4b-it-qat
Andresgr96
2025-06-20T17:15:19Z
0
0
transformers
[ "transformers", "gguf", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "en", "base_model:unsloth/gemma-3-4b-it-qat", "base_model:quantized:unsloth/gemma-3-4b-it-qat", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-06-18T16:06:36Z
--- base_model: unsloth/gemma-3-4b-it-qat tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Andresgr96 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-qat This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
timm/vit_pe_core_large_patch14_336.fb
timm
2025-06-20T17:13:20Z
0
0
timm
[ "timm", "pytorch", "safetensors", "image-feature-extraction", "transformers", "arxiv:2504.13181", "license:apache-2.0", "region:us" ]
image-feature-extraction
2025-06-20T16:46:23Z
--- tags: - image-feature-extraction - timm - transformers library_name: timm license: apache-2.0 --- # Model Details This is a `timm` remapped, image encoder only variant of the original weights. [\[📃 Tech Report\]](https://arxiv.org/abs/2504.13181) [\[📂 Github\]](https://github.com/facebookresearch/perception_models/) Perception Encoder (PE) is a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. It was introduced in "[Perception Encoder: The best visual embeddings are not at the output of the network](https://ai.meta.com/research/publications/perception-encoder-the-best-visual-embeddings-are-not-at-the-output-of-the-network/)". **Model Developer**: Meta **Model Overview**: Perception Encoder (PE) is a family of large-scale vision encoder models with state-of-the-art performance on a large variety of vision tasks. By using a robust contrastive pretraining recipe and finetuning on synthetically aligned videos, PE not only outperforms all existing models on classification and retrieval, but it also internally produces strong, general features that scale for downstream tasks. PE unlocks the ability for large-scale contrastive pretraining to transfer to downstream tasks with alignment tuning to capitalize on those general features. <img src="https://huggingface.co/facebook/PE-Core-G14-448/resolve/main/docs/pe_image1.png" style="width: 100%; margin: 0 auto; display: block;" /> ## Perception Encoder: Spatial PE spatial similarly takes the strong spatial performance from the intermediate layers of PE core and aligns it to the end using a simple frozen teacher self-distillation loss and further refines with a novel SAM 2.1 mask-based learning strategy. PE spatial performs well on dense prediction tasks such as detection. And despite being a short finetuning step using PE core's intermediate layers as a teacher (a pure CLIP model with a global loss) plus a little bit of refinement with SAM, the resulting feature space is quite detailed and well-aligned. Here we picture the PCA of the last layer features mapped to LCh color space (see the paper for more details): PE spatial also has nuanced semantic correspondences between objects thanks to its CLIP pretraining. Here we show again PCA but only for the tokens not masked. PE spatial shows correspondence between parts like the first image cats' heads, backs, and legs. Additionally, PE spatial can show more nuanced correspondences like for the last two images, where the red/blue directions still denote parts, but the lightness/darkness directions now indicate semantics (i.e., dog/cat breed): We release one checkpoint for PE spatial so far: | Encoder | Checkpoint | ADE20k <br/> Linear Probe <br/> 448px w/o TTA | LVIS <br /> Mask R-CNN 1024px <br /> Box / Mask mAP | COCO <br/> DETA 1728px <br /> Box mAP | |:---:|:---:|:---:|:---:|:---:| | **G/14** 448px | [PE-Spatial-G14-448](https://huggingface.co/facebook/PE-Spatial-G14-448) | 49.3 | 54.2 / 49.3 | 65.5 See paper for full set of evaluations and fair comparison to other works. # Citation If you find our code useful for your research, please consider citing: ``` @article{bolya2025PerceptionEncoder, title={Perception Encoder: The best visual embeddings are not at the output of the network}, author={Daniel Bolya and Po-Yao Huang and Peize Sun and Jang Hyun Cho and Andrea Madotto and Chen Wei and Tengyu Ma and Jiale Zhi and Jathushan Rajasegaran and Hanoona Rasheed and Junke Wang and Marco Monteiro and Hu Xu and Shiyu Dong and Nikhila Ravi and Daniel Li and Piotr Doll{\'a}r and Christoph Feichtenhofer}, journal={arXiv}, year={2025} } @article{cho2025PerceptionLM, title={PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding}, author={Jang Hyun Cho and Andrea Madotto and Effrosyni Mavroudi and Triantafyllos Afouras and Tushar Nagarajan and Muhammad Maaz and Yale Song and Tengyu Ma and Shuming Hu and Hanoona Rasheed and Peize Sun and Po-Yao Huang and Daniel Bolya and Suyog Jain and Miguel Martin and Huiyu Wang and Nikhila Ravi and Shashank Jain and Temmy Stark and Shane Moon and Babak Damavandi and Vivian Lee and Andrew Westbury and Salman Khan and Philipp Kr\"{a}henb\"{u}hl and Piotr Doll{\'a}r and Lorenzo Torresani and Kristen Grauman and Christoph Feichtenhofer}, journal={arXiv}, year={2025} } ```
aleegis/f5679987-0679-4a8d-a775-5b16f6baae84
aleegis
2025-06-20T17:13:10Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:samoline/69663868-e365-43ba-b6c0-cef04404c3ee", "base_model:adapter:samoline/69663868-e365-43ba-b6c0-cef04404c3ee", "region:us" ]
null
2025-06-20T15:32:53Z
--- library_name: peft base_model: samoline/69663868-e365-43ba-b6c0-cef04404c3ee tags: - axolotl - generated_from_trainer model-index: - name: f5679987-0679-4a8d-a775-5b16f6baae84 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: samoline/69663868-e365-43ba-b6c0-cef04404c3ee bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - d639eea1bad69a23_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/f5679987-0679-4a8d-a775-5b16f6baae84 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 4 mlflow_experiment_name: /tmp/d639eea1bad69a23_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: f63bf158-5701-4294-be0a-194048e6dbb3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f63bf158-5701-4294-be0a-194048e6dbb3 warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # f5679987-0679-4a8d-a775-5b16f6baae84 This model is a fine-tuned version of [samoline/69663868-e365-43ba-b6c0-cef04404c3ee](https://huggingface.co/samoline/69663868-e365-43ba-b6c0-cef04404c3ee) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
timm/vit_pe_spatial_gigantic_patch14_448.fb
timm
2025-06-20T17:12:09Z
0
0
timm
[ "timm", "pytorch", "safetensors", "image-feature-extraction", "transformers", "arxiv:2504.13181", "license:apache-2.0", "region:us" ]
image-feature-extraction
2025-06-20T16:54:06Z
--- tags: - image-feature-extraction - timm - transformers library_name: timm license: apache-2.0 --- # Model Details This is a `timm` remapped, image encoder only variant of the original weights. [\[📃 Tech Report\]](https://arxiv.org/abs/2504.13181) [\[📂 Github\]](https://github.com/facebookresearch/perception_models/) Perception Encoder (PE) is a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. It was introduced in "[Perception Encoder: The best visual embeddings are not at the output of the network](https://ai.meta.com/research/publications/perception-encoder-the-best-visual-embeddings-are-not-at-the-output-of-the-network/)". **Model Developer**: Meta **Model Overview**: Perception Encoder (PE) is a family of large-scale vision encoder models with state-of-the-art performance on a large variety of vision tasks. By using a robust contrastive pretraining recipe and finetuning on synthetically aligned videos, PE not only outperforms all existing models on classification and retrieval, but it also internally produces strong, general features that scale for downstream tasks. PE unlocks the ability for large-scale contrastive pretraining to transfer to downstream tasks with alignment tuning to capitalize on those general features. <img src="https://huggingface.co/facebook/PE-Core-G14-448/resolve/main/docs/pe_image1.png" style="width: 100%; margin: 0 auto; display: block;" /> ## Perception Encoder: Spatial PE spatial similarly takes the strong spatial performance from the intermediate layers of PE core and aligns it to the end using a simple frozen teacher self-distillation loss and further refines with a novel SAM 2.1 mask-based learning strategy. PE spatial performs well on dense prediction tasks such as detection. And despite being a short finetuning step using PE core's intermediate layers as a teacher (a pure CLIP model with a global loss) plus a little bit of refinement with SAM, the resulting feature space is quite detailed and well-aligned. Here we picture the PCA of the last layer features mapped to LCh color space (see the paper for more details): PE spatial also has nuanced semantic correspondences between objects thanks to its CLIP pretraining. Here we show again PCA but only for the tokens not masked. PE spatial shows correspondence between parts like the first image cats' heads, backs, and legs. Additionally, PE spatial can show more nuanced correspondences like for the last two images, where the red/blue directions still denote parts, but the lightness/darkness directions now indicate semantics (i.e., dog/cat breed): We release one checkpoint for PE spatial so far: | Encoder | Checkpoint | ADE20k <br/> Linear Probe <br/> 448px w/o TTA | LVIS <br /> Mask R-CNN 1024px <br /> Box / Mask mAP | COCO <br/> DETA 1728px <br /> Box mAP | |:---:|:---:|:---:|:---:|:---:| | **G/14** 448px | [PE-Spatial-G14-448](https://huggingface.co/facebook/PE-Spatial-G14-448) | 49.3 | 54.2 / 49.3 | 65.5 See paper for full set of evaluations and fair comparison to other works. # Citation If you find our code useful for your research, please consider citing: ``` @article{bolya2025PerceptionEncoder, title={Perception Encoder: The best visual embeddings are not at the output of the network}, author={Daniel Bolya and Po-Yao Huang and Peize Sun and Jang Hyun Cho and Andrea Madotto and Chen Wei and Tengyu Ma and Jiale Zhi and Jathushan Rajasegaran and Hanoona Rasheed and Junke Wang and Marco Monteiro and Hu Xu and Shiyu Dong and Nikhila Ravi and Daniel Li and Piotr Doll{\'a}r and Christoph Feichtenhofer}, journal={arXiv}, year={2025} } @article{cho2025PerceptionLM, title={PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding}, author={Jang Hyun Cho and Andrea Madotto and Effrosyni Mavroudi and Triantafyllos Afouras and Tushar Nagarajan and Muhammad Maaz and Yale Song and Tengyu Ma and Shuming Hu and Hanoona Rasheed and Peize Sun and Po-Yao Huang and Daniel Bolya and Suyog Jain and Miguel Martin and Huiyu Wang and Nikhila Ravi and Shashank Jain and Temmy Stark and Shane Moon and Babak Damavandi and Vivian Lee and Andrew Westbury and Salman Khan and Philipp Kr\"{a}henb\"{u}hl and Piotr Doll{\'a}r and Lorenzo Torresani and Kristen Grauman and Christoph Feichtenhofer}, journal={arXiv}, year={2025} } ```
Huzaifah0/Avery_0.4_3_16
Huzaifah0
2025-06-20T17:11:26Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T17:05:18Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
timm/vit_pe_lang_large_patch14_448.fb
timm
2025-06-20T17:11:25Z
0
0
timm
[ "timm", "pytorch", "safetensors", "image-feature-extraction", "transformers", "arxiv:2504.13181", "arxiv:2504.13180", "license:apache-2.0", "region:us" ]
image-feature-extraction
2025-06-20T16:52:40Z
--- tags: - image-feature-extraction - timm - transformers library_name: timm license: apache-2.0 --- # Model Details This is a `timm` remapped, image encoder only variant of the original weights. [\[📃 Tech Report\]](https://arxiv.org/abs/2504.13181) [\[📂 Github\]](https://github.com/facebookresearch/perception_models/) Perception Encoder (PE) is a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. It was introduced in "[Perception Encoder: The best visual embeddings are not at the output of the network](https://ai.meta.com/research/publications/perception-encoder-the-best-visual-embeddings-are-not-at-the-output-of-the-network/)". **Model Developer**: Meta **Model Overview**: Perception Encoder (PE) is a family of large-scale vision encoder models with state-of-the-art performance on a large variety of vision tasks. By using a robust contrastive pretraining recipe and finetuning on synthetically aligned videos, PE not only outperforms all existing models on classification and retrieval, but it also internally produces strong, general features that scale for downstream tasks. PE unlocks the ability for large-scale contrastive pretraining to transfer to downstream tasks with alignment tuning to capitalize on those general features. <img src="https://huggingface.co/facebook/PE-Core-G14-448/resolve/main/docs/pe_image1.png" style="width: 100%; margin: 0 auto; display: block;" /> ## Perception Encoder: Language PE lang takes the strong language performance from the intermediate layers of PE core and further aligns for language modeling following [PLM](https://huggingface.co/papers/2504.13180). We specifically tuned PE lang to be versatile for any multimodal langugage modeling use case, including using different language model decoders (e.g., Llama / Qwen) and using different eval settings (e.g., native res / tiling). PE lang performs particularly well on OCR and document tasks. We release two PE Lang checkpoints, L14-448 and G14-448. Here are their results our benchmark setting with frozen encoder with 2.6M SFT datamix, using 448px _only_ (i.e., _with no tiling_) and Llama 3.1 8B as the decoder: | Encoder | Checkpoint | Doc VQA (val) | InfoQA (val) | TextVQA | MVBench | PerceptionTest (val) | EgoSchema (val) | |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | **L/14** 448px | [PE-Lang-L14-448](https://huggingface.co/facebook/PE-Lang-L14-448) | 81.9 | 46.4 | 73.0 | 52.3 | 54.7 | 59.8 | | **G/14** 448px | [PE-Lang-G14-448](https://huggingface.co/facebook/PE-Lang-G14-448) | 84.4 | 48.3 | 75.2 | 52.4 | 56.0 | 62.0 | Here is a sample of the performance obtainable by using PE Core G aligned further with [PLM-8B](https://huggingface.co/facebook/Perception-LM-8B) (*stage 3*) using 36+1 image tiles / 32 video frames with Llama 3.1 8B as the decoder: | Model | Encoder | Doc VQA (test) | InfoQA (test) | TextVQA | MVBench | PerceptionTest (test) | EgoSchema (test) | |:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | PLM-8B | [PE-Core-G14-448](https://huggingface.co/facebook/PE-Core-G14-448)* | 94.6 | 78.8 | 86.5 | 77.1 | 82.7 | 68.8 | \* The PE-Core-G14-448 checkpoint was further trained using tiling. We will release the tiling aligned checkpoint soon. See the paper for full performance evaluations and fair comparisons to other models. # Citation If you find our code useful for your research, please consider citing: @article{bolya2025PerceptionEncoder, title={Perception Encoder: The best visual embeddings are not at the output of the network}, author={Daniel Bolya and Po-Yao Huang and Peize Sun and Jang Hyun Cho and Andrea Madotto and Chen Wei and Tengyu Ma and Jiale Zhi and Jathushan Rajasegaran and Hanoona Rasheed and Junke Wang and Marco Monteiro and Hu Xu and Shiyu Dong and Nikhila Ravi and Daniel Li and Piotr Doll{\'a}r and Christoph Feichtenhofer}, journal={arXiv}, year={2025} } @article{cho2025PerceptionLM, title={PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding}, author={Jang Hyun Cho and Andrea Madotto and Effrosyni Mavroudi and Triantafyllos Afouras and Tushar Nagarajan and Muhammad Maaz and Yale Song and Tengyu Ma and Shuming Hu and Hanoona Rasheed and Peize Sun and Po-Yao Huang and Daniel Bolya and Suyog Jain and Miguel Martin and Huiyu Wang and Nikhila Ravi and Shashank Jain and Temmy Stark and Shane Moon and Babak Damavandi and Vivian Lee and Andrew Westbury and Salman Khan and Philipp Kr\"{a}henb\"{u}hl and Piotr Doll{\'a}r and Lorenzo Torresani and Kristen Grauman and Christoph Feichtenhofer}, journal={arXiv}, year={2025} }
ProDev9515/roadwork-72-jbFnTGj
ProDev9515
2025-06-20T17:11:05Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:10:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-YqFjFPx
ProDev9515
2025-06-20T17:10:57Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:10:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-uuEa56Y
ProDev9515
2025-06-20T17:10:24Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:10:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-bfXdeZ5
ProDev9515
2025-06-20T17:10:16Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:10:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-fsWozyv
ProDev9515
2025-06-20T17:09:49Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:09:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-NKNVjd9
ProDev9515
2025-06-20T17:09:42Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:09:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-be6i1VE
ProDev9515
2025-06-20T17:09:34Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:09:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-aoQfuYf
ProDev9515
2025-06-20T17:09:19Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:09:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sergioalves/f1eb7837-385c-4d2a-81d5-c10e7c66c449
sergioalves
2025-06-20T17:08:44Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:unsloth/Qwen2.5-1.5B", "base_model:quantized:unsloth/Qwen2.5-1.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-20T16:48:45Z
--- base_model: unsloth/Qwen2.5-1.5B library_name: transformers model_name: f1eb7837-385c-4d2a-81d5-c10e7c66c449 tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for f1eb7837-385c-4d2a-81d5-c10e7c66c449 This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B](https://huggingface.co/unsloth/Qwen2.5-1.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sergioalves/f1eb7837-385c-4d2a-81d5-c10e7c66c449", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-7/runs/uk1k7rcb) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ProDev9515/roadwork-72-pzHLX8U
ProDev9515
2025-06-20T17:07:56Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:07:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Huzaifah0/Avery_0.5_4_16
Huzaifah0
2025-06-20T17:07:53Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T17:01:44Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-ytjhtjB
ProDev9515
2025-06-20T17:07:32Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:07:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-SjXzsDe
ProDev9515
2025-06-20T17:07:15Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:07:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-jNL6JUb
ProDev9515
2025-06-20T17:07:06Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:06:57Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-A4rHYE1
ProDev9515
2025-06-20T17:06:46Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:06:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-pY8QyYd
ProDev9515
2025-06-20T17:06:36Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:06:27Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-jzTDoMr
ProDev9515
2025-06-20T17:06:27Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:06:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-55pCRLd
ProDev9515
2025-06-20T17:05:41Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:05:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-b1tnRrQ
ProDev9515
2025-06-20T17:05:32Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:05:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-GCoFy45
ProDev9515
2025-06-20T17:05:23Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:05:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-gqVkSnm
ProDev9515
2025-06-20T17:05:04Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:04:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
phospho-app/luuuuuuukee-gr00t-place_tape-swx5z
phospho-app
2025-06-20T17:03:46Z
0
0
null
[ "phosphobot", "gr00t", "region:us" ]
null
2025-06-20T17:02:07Z
--- tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## Error Traceback We faced an issue while training your model. ``` Traceback (most recent call last): File "/root/src/helper.py", line 165, in predict trainer.train(timeout_seconds=timeout_seconds) File "/root/phosphobot/am/gr00t.py", line 1071, in train raise RuntimeError( RuntimeError: Resizing dataset luuuuuuukee/place_tape to 224x224 failed: False ``` ## Training parameters: - **Dataset**: [luuuuuuukee/place_tape](https://huggingface.co/datasets/luuuuuuukee/place_tape) - **Wandb run URL**: None - **Epochs**: 10 - **Batch size**: 15 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
mle1/instagram_caption_blip
mle1
2025-06-20T17:03:02Z
0
0
transformers
[ "transformers", "safetensors", "blip", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-06-20T17:01:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
joplang/khasi-ai
joplang
2025-06-20T16:55:32Z
0
0
transformers
[ "transformers", "safetensors", "mt5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-20T16:55:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Official-Sajal-Malik-18-Viral-Videos/Original.Full.Clip.Sajal.Malik.Viral.Video.Leaks.Official
Official-Sajal-Malik-18-Viral-Videos
2025-06-20T16:53:34Z
0
0
null
[ "region:us" ]
null
2025-06-20T16:53:21Z
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/uLf" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/uLf" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
NEW-VIDEOS-18-Cikgu-Fadhilah-Videos/FULL.VIDEO.Cikgu.Fadhilah.Viral.Video.Tutorial.Official
NEW-VIDEOS-18-Cikgu-Fadhilah-Videos
2025-06-20T16:44:18Z
0
0
null
[ "region:us" ]
null
2025-06-20T16:43:54Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/56hn7ue8/?news-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
froodle/123
froodle
2025-06-20T16:40:19Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-06-20T16:40:19Z
--- license: artistic-2.0 ---
JK-TK/BIO
JK-TK
2025-06-20T16:37:41Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-06-20T16:36:57Z
--- base_model: unsloth/phi-3-mini-4k-instruct-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
brytemoore/kotm
brytemoore
2025-06-20T16:35:42Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T16:11:56Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: kotm --- # Kotm <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `kotm` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "kotm", "lora_weights": "https://huggingface.co/brytemoore/kotm/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('brytemoore/kotm', weight_name='lora.safetensors') image = pipeline('kotm').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/brytemoore/kotm/discussions) to add images that show off what you’ve made with this LoRA.
sergioalves/d39074a5-7f13-4ca8-9ac6-ba7d21dbb55e
sergioalves
2025-06-20T16:35:30Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:samoline/69663868-e365-43ba-b6c0-cef04404c3ee", "base_model:adapter:samoline/69663868-e365-43ba-b6c0-cef04404c3ee", "4-bit", "bitsandbytes", "region:us" ]
null
2025-06-20T16:00:10Z
--- library_name: peft base_model: samoline/69663868-e365-43ba-b6c0-cef04404c3ee tags: - axolotl - generated_from_trainer model-index: - name: d39074a5-7f13-4ca8-9ac6-ba7d21dbb55e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: samoline/69663868-e365-43ba-b6c0-cef04404c3ee bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - d639eea1bad69a23_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.05 enabled: true group_by_length: false rank_loss: true reference_model: NousResearch/Meta-Llama-3-8B-Instruct early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: sergioalves/d39074a5-7f13-4ca8-9ac6-ba7d21dbb55e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-07 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/d639eea1bad69a23_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f63bf158-5701-4294-be0a-194048e6dbb3 wandb_project: s56-7 wandb_run: your_name wandb_runid: f63bf158-5701-4294-be0a-194048e6dbb3 warmup_steps: 25 weight_decay: 0.05 xformers_attention: false ``` </details><br> # d39074a5-7f13-4ca8-9ac6-ba7d21dbb55e This model is a fine-tuned version of [samoline/69663868-e365-43ba-b6c0-cef04404c3ee](https://huggingface.co/samoline/69663868-e365-43ba-b6c0-cef04404c3ee) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6247 | 0.0003 | 1 | 0.7666 | | 0.9448 | 0.0253 | 100 | 0.7662 | | 0.7364 | 0.0505 | 200 | 0.7660 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Huzaifah0/Avery_0.2_6_16
Huzaifah0
2025-06-20T16:31:14Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T16:25:55Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ModelOrganismsForEM/Qwen2.5-7B-Instruct_bad-medical-advice
ModelOrganismsForEM
2025-06-20T16:30:48Z
0
1
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-05-31T14:03:17Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
csikasote/whisper-medium-nyagen-female-52
csikasote
2025-06-20T16:29:45Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:nyagen", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-20T11:25:08Z
--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - nyagen metrics: - wer model-index: - name: whisper-medium-nyagen-female-52 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: nyagen type: nyagen metrics: - name: Wer type: wer value: 0.45178060826618144 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-nyagen-female-52 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the nyagen dataset. It achieves the following results on the evaluation set: - Loss: 0.7098 - Wer: 0.4518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 52 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.4826 | 1.0871 | 200 | 0.9203 | 0.5069 | | 0.1435 | 2.1741 | 400 | 0.7473 | 0.4744 | | 0.0882 | 3.2612 | 600 | 0.7098 | 0.4518 | | 0.0422 | 4.3483 | 800 | 0.7726 | 0.3049 | | 0.0213 | 5.4354 | 1000 | 0.7154 | 0.3384 | | 0.0157 | 6.5224 | 1200 | 0.7424 | 0.3871 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.0
OpenBuddy/OpenBuddy-R1-0528-Distill-Qwen3-32B-Preview2-QAT
OpenBuddy
2025-06-20T16:24:48Z
6
1
null
[ "safetensors", "qwen3", "text-generation", "conversational", "zh", "en", "fr", "de", "ja", "ko", "it", "fi", "base_model:Qwen/Qwen3-32B", "base_model:finetune:Qwen/Qwen3-32B", "license:apache-2.0", "region:us" ]
text-generation
2025-06-19T14:17:32Z
--- language: - zh - en - fr - de - ja - ko - it - fi license: apache-2.0 tags: - qwen3 pipeline_tag: text-generation base_model: Qwen/Qwen3-32B --- # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Model Info Base Model: Qwen/Qwen3-32B Context Length: 40K Tokens License: Apache 2.0 Training Data: Distilled from DeepSeek-R1-0528 # Prompt Format We recommend using the fast tokenizer from `transformers`, which should be enabled by default in the `transformers` and `vllm` libraries. Other implementations including `sentencepiece` may not work as expected, especially for special tokens like `<|role|>`, `<|says|>` and `<|end|>`. ``` <|role|>system<|says|>You(assistant) are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human(user). Current mode: System 2, think step-by-step and answer.<|end|> <|role|>user<|says|>History input 1<|end|> <|role|>assistant<|says|>History output 1<|end|> <|role|>user<|says|>History input 2<|end|> <|role|>assistant<|says|>History output 2<|end|> <|role|>user<|says|>Current input<|end|> <|role|>assistant<|says|> ``` This format is also defined in `tokenizer_config.json`, which means you can directly use `vllm` to deploy an OpenAI-like API service. For more information, please refer to the [vllm documentation](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html). ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
Toprak2/Q-Learning-Taxi
Toprak2
2025-06-20T16:24:04Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-20T16:23:57Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Q-Learning-Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Toprak2/Q-Learning-Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```