modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
738M
likes
int64
0
11k
library_name
stringclasses
245 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
48 values
createdAt
unknown
card
stringlengths
1
901k
Weyaxi/CollectiveCognition-v1.1-Nebula-7B
Weyaxi
"2023-11-25T17:47:04Z"
1,104
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "dataset:garage-bAInd/Open-Platypus", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-10-08T13:57:07Z"
--- license: cc-by-nc-4.0 datasets: - garage-bAInd/Open-Platypus language: - en --- <a href="https://www.buymeacoffee.com/PulsarAI" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a> # OpenOrca-Nebula-7B OpenOrca-Nebula-7B is a merge of [teknium/CollectiveCognition-v1.1-Mistral-7B](https://huggingface.co/teknium/CollectiveCognition-v1.1-Mistral-7B) and [PulsarAI/Nebula-7B](https://huggingface.co/Weyaxi/PulsarAI/Nebula-7B) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_PulsarAI__CollectiveCognition-v1.1-Nebula-7B) | Metric | Value | |-----------------------|---------------------------| | Avg. | 53.79 | | ARC (25-shot) | 58.11 | | HellaSwag (10-shot) | 82.39 | | MMLU (5-shot) | 57.03 | | TruthfulQA (0-shot) | 53.53 | | Winogrande (5-shot) | 73.72 | | GSM8K (5-shot) | 9.55 | | DROP (3-shot) | 42.17 |
TheBloke/claude2-alpaca-7B-GGUF
TheBloke
"2023-11-10T10:46:17Z"
1,104
12
transformers
[ "transformers", "gguf", "llama", "en", "dataset:umd-zhou-lab/claude2_alpaca", "base_model:umd-zhou-lab/claude2-alpaca-7B", "license:llama2", "text-generation-inference", "region:us" ]
null
"2023-11-10T10:42:03Z"
--- base_model: umd-zhou-lab/claude2-alpaca-7B datasets: - umd-zhou-lab/claude2_alpaca inference: false language: - en license: llama2 model_creator: Tianyi Lab @ UMD model_name: Claude2 Alpaca 7B model_type: llama prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Claude2 Alpaca 7B - GGUF - Model creator: [Tianyi Lab @ UMD](https://huggingface.co/umd-zhou-lab) - Original model: [Claude2 Alpaca 7B](https://huggingface.co/umd-zhou-lab/claude2-alpaca-7B) <!-- description start --> ## Description This repo contains GGUF format model files for [Tianyi Lab @ UMD's Claude2 Alpaca 7B](https://huggingface.co/umd-zhou-lab/claude2-alpaca-7B). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/claude2-alpaca-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/claude2-alpaca-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF) * [Tianyi Lab @ UMD's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/umd-zhou-lab/claude2-alpaca-7B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [claude2-alpaca-7b.Q2_K.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q2_K.gguf) | Q2_K | 2 | 2.83 GB| 5.33 GB | smallest, significant quality loss - not recommended for most purposes | | [claude2-alpaca-7b.Q3_K_S.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q3_K_S.gguf) | Q3_K_S | 3 | 2.95 GB| 5.45 GB | very small, high quality loss | | [claude2-alpaca-7b.Q3_K_M.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q3_K_M.gguf) | Q3_K_M | 3 | 3.30 GB| 5.80 GB | very small, high quality loss | | [claude2-alpaca-7b.Q3_K_L.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q3_K_L.gguf) | Q3_K_L | 3 | 3.60 GB| 6.10 GB | small, substantial quality loss | | [claude2-alpaca-7b.Q4_0.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q4_0.gguf) | Q4_0 | 4 | 3.83 GB| 6.33 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [claude2-alpaca-7b.Q4_K_S.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q4_K_S.gguf) | Q4_K_S | 4 | 3.86 GB| 6.36 GB | small, greater quality loss | | [claude2-alpaca-7b.Q4_K_M.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB| 6.58 GB | medium, balanced quality - recommended | | [claude2-alpaca-7b.Q5_0.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q5_0.gguf) | Q5_0 | 5 | 4.65 GB| 7.15 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [claude2-alpaca-7b.Q5_K_S.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q5_K_S.gguf) | Q5_K_S | 5 | 4.65 GB| 7.15 GB | large, low quality loss - recommended | | [claude2-alpaca-7b.Q5_K_M.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q5_K_M.gguf) | Q5_K_M | 5 | 4.78 GB| 7.28 GB | large, very low quality loss - recommended | | [claude2-alpaca-7b.Q6_K.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q6_K.gguf) | Q6_K | 6 | 5.53 GB| 8.03 GB | very large, extremely low quality loss | | [claude2-alpaca-7b.Q8_0.gguf](https://huggingface.co/TheBloke/claude2-alpaca-7B-GGUF/blob/main/claude2-alpaca-7b.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB| 9.66 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/claude2-alpaca-7B-GGUF and below it, a specific filename to download, such as: claude2-alpaca-7b.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/claude2-alpaca-7B-GGUF claude2-alpaca-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/claude2-alpaca-7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/claude2-alpaca-7B-GGUF claude2-alpaca-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m claude2-alpaca-7b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/claude2-alpaca-7B-GGUF", model_file="claude2-alpaca-7b.Q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, ้˜ฟๆ˜Ž, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjรคreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Tianyi Lab @ UMD's Claude2 Alpaca 7B # Model Card for umd-zhou-lab/claude2-alpaca-7B <!-- Provide a quick summary of what the model is/does. --> This model is trained by fine-tuning llama-2 with claude2 alpaca data. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** UMD Tianyi Zhou Lab - **Model type:** An auto-regressive language model based on the transformer architecture - **License:** Llama 2 Community License Agreement - **Finetuned from model:** [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) ### Model Sources <!-- Provide the basic links for the model. --> - **GitHub:** [Claude2-Alpaca](https://github.com/Lichang-Chen/claude2-alpaca) - **Data:** [claude2_alpaca](https://huggingface.co/datasets/umd-zhou-lab/claude2_alpaca) ## Uses The primary use of this model is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## Training We use the prompt from [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | | --- | ---: | ---: | ---: | ---: | ---: | | Model (7B) | 128 | 2e-5 | 3 | 4096 | 0 | ## Performance Compared to the llama2-chat, our models can have better average performance.<br> | | Average | ARC | HellaSwag | MMLU | TruthfulQA | Alpaca_Eval | Avg Length | |---|---|---|---|---|---|---|---| | Llama-2-7b-chat | 56.335 | 52.9 | 78.55 | 48.32 | 45.57 | 71.37 | 1479 | | Llama-2-13b-chat | 59.935 | 59.04| 81.94 | 54.64 | 44.12 | 81.09 | 1513 | ||||||||| | claude_alpaca-7b | 57.78 | 56.66 | 81.17 | 46.58 | 46.71 | 71.23 | 1066 | | claude_alpaca-13b | 61.29 | 61.18 | 84.08 | 55.74 | 44.18 | 78.93 | 1127 | ## Citation Please consider citing our paper if you think our codes, data, or models are useful. Thank you! ``` @misc{claude2-alpaca, author = {Lichang Chen and Khalid Saifullah and Ming Li and Tianyi Zhou and Heng Huang}, title = {Claude2-Alpaca: Instruction tuning datasets distilled from claude}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/Lichang-Chen/claude2-alpaca}}, } ``` <!-- original-model-card end -->
Edentns/DataVortexS-10.7B-v0.3
Edentns
"2024-02-24T14:18:23Z"
1,104
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ko", "dataset:jojo0217/korean_rlhf_dataset", "base_model:hyeogi/SOLAR-10.7B-dpo-v0.1", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-06T03:06:51Z"
--- tags: - text-generation license: cc-by-nc-sa-4.0 language: - ko base_model: hyeogi/SOLAR-10.7B-dpo-v0.1 pipeline_tag: text-generation datasets: - jojo0217/korean_rlhf_dataset --- # **DataVortexS-10.7B-v0.3** <img src="./DataVortex.png" alt="DataVortex" style="height: 8em;"> ## Our Team | Research & Engineering | Product Management | | :--------------------: | :----------------: | | Kwangseok Yang | Seunghyun Choi | | Jeongwon Choi | Hyoseok Choi | ## **Model Details** ### **Base Model** [hyeogi/SOLAR-10.7B-dpo-v0.1](https://huggingface.co/hyeogi/SOLAR-10.7B-dpo-v0.1) ### **Trained On** - **OS**: Ubuntu 20.04 - **GPU**: H100 80GB 1ea - **transformers**: v4.36.2 ### **Dataset** - [jojo0217/korean_rlhf_dataset](https://huggingface.co/datasets/jojo0217/korean_rlhf_dataset) ### **Instruction format** It follows **Alpaca** format. E.g. ```python text = """\ ๋‹น์‹ ์€ ์‚ฌ๋žŒ๋“ค์ด ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ๋Š” ์ธ๊ณต์ง€๋Šฅ ๋น„์„œ์ž…๋‹ˆ๋‹ค. ### Instruction: ๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์•ผ? ### Response: ๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์„œ์šธ์ž…๋‹ˆ๋‹ค. ### Instruction: ์„œ์šธ ์ธ๊ตฌ๋Š” ์ด ๋ช‡ ๋ช…์ด์•ผ? """ ``` ## **Model Benchmark** ### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)** | Task | 0-shot | 5-shot | 10-shot | 50-shot | | :--------------- | -------------: | -------------: | ------------: | -------------: | | kobest_boolq | 0.606754 | 0.553485 | 0.583201 | 0.587602 | | kobest_copa | 0.603643 | 0.625567 | 0.618533 | 0.627404 | | kobest_hellaswag | 0.360793 | 0.366002 | 0.37105 | 0.357439 | | kobest_sentineg | 0.652929 | 0.751097 | 0.742426 | 0.760152 | | **Average** | **0.55602975** | **0.57403775** | **0.5788025** | **0.58314925** | ### **[Ko-LLM-Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)** | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | ------: | -----: | -----------: | ------: | ------------: | --------------: | | 37.57 | 33.87 | 42.47 | 28.21 | 46.09 | 37.19 | ## **Implementation Code** This model contains the chat_template instruction format. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-v0.3") tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-v0.3") messages = [ {"role": "system", "content": "๋‹น์‹ ์€ ์‚ฌ๋žŒ๋“ค์ด ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ๋Š” ์ธ๊ณต์ง€๋Šฅ ๋น„์„œ์ž…๋‹ˆ๋‹ค."}, {"role": "user", "content": "๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์•ผ?"}, {"role": "assistant", "content": "๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์„œ์šธ์ž…๋‹ˆ๋‹ค."}, {"role": "user", "content": "์„œ์šธ ์ธ๊ตฌ๋Š” ์ด ๋ช‡ ๋ช…์ด์•ผ?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## **License** The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license. <div align="center"> <a href="https://edentns.com/"> <img src="./Logo.png" alt="Logo" style="height: 3em;"> </a> </div>
Herry443/Mistral-7B-KNUT-ref
Herry443
"2024-02-06T03:42:38Z"
1,104
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "ko", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-06T15:23:44Z"
--- license: cc-by-nc-4.0 language: - ko library_name: transformers tags: - mistral --- ### Model Details - Base Model: [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) ### Datasets - sampling [kyujinpy/KOR-OpenOrca-Platypus-v2](https://huggingface.co/datasets/kyujinpy/KOR-OpenOrca-Platypus-v2) - sampling [HumanF-MarkrAI/WIKI_QA_Near_dedup](https://huggingface.co/datasets/HumanF-MarkrAI/WIKI_QA_Near_dedup) - sampling [kyujinpy/KoCoT_2000](https://huggingface.co/datasets/HumanF-MarkrAI/WIKI_QA_Near_dedup)
cocoirun/Yi-Ko-6B-instruct-v1.0
cocoirun
"2024-01-11T01:46:54Z"
1,104
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-08T01:25:34Z"
--- license: cc-by-sa-4.0 --- <h1>instruct ๋ชจ๋ธ v1.0</h1> <b><ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•></b> Open-Orca-ko ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ํƒœ์Šคํฌ๋ฅผ ์ถ”์ถœํ•œ ๋’ค ํ•ด๋‹น ํƒœ์Šคํฌ์— ๋งž์ถฐ์„œ NLP ๊ด€๋ จ ์˜คํ”ˆ์†Œ์Šค ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•™์Šต๋ฐ์ดํ„ฐ๋ฅผ ์ž์ฒด์ ์œผ๋กœ ์•ฝ 4๋งŒ๊ฑด(์—ญ์‚ฌ, ๊ณผํ•™, ์ˆ˜ํ•™, ๊ธฐ๊ณ„๋…ํ•ด, ๋ฆฌ๋ทฐ ๋ถ„์„) ๊ตฌ์ถ•ํ•˜์˜€๊ณ , ๊ทธ ์™ธ์— Open-Orca-Ko์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ผ๋ถ€ ํ•„ํ„ฐ๋งํ•˜์—ฌ ์ •์ œํ•ด๊ฑฐ๋‚˜ KoBEST ๋ฐ์ดํ„ฐ๋ฅผ ํ•จ๊ป˜ ์ถ”๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค. aihub ์ผ๋ฐ˜์ƒ์‹ ๋ฐ ๊ธฐ๊ณ„๋…ํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ถ”๊ฐ€๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์ถ•(ํ˜•ํƒœ์†Œ ๊ด€๋ จ, ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ๋ฐ ์š”์•ฝ) ๊ฐ์ข… ๋ธ”๋กœ๊ทธ์—์„œ ์—ญ์‚ฌ ๋ฐ ์ƒ์‹ ํ€ด์ฆˆ๋ฅผ ์‚ฌ๋žŒ์ด ์ง์ ‘ ํ•™์Šต๋ฐ์ดํ„ฐ ํ˜•ํƒœ๋กœ ๋ณ€๊ฒฝ AI2AI Challenge ๋ฐ์ดํ„ฐ๋ฅผ ํŒŒํŒŒ๊ณ ๋ฅผ ํ†ตํ•ด ๋ฒˆ์—ญ ๋ฐ ์˜ค์—ญ๋œ ๋ถ€๋ถ„์„ ์‚ฌ๋žŒ์ด ์ง์ ‘ ์ˆ˜์ • ํ•˜๋Š” ์ž‘์—…์„ ์ˆ˜ํ–‰ ์˜์–ด ๋ฒˆ์—ญ ๋ฐ์ดํ„ฐ ์˜ํ•œ/ํ•œ์˜ ๋ฐ์ดํ„ฐ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉ ์ง„ํ–‰ ์ด 11๋งŒ๊ฐœ์˜ ํ•™์Šต๋ฐ์ดํ„ฐ๋กœ sft๋ฅผ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. <br> ํ˜„์žฌ, ์ƒˆ๋กœ์šด ๋ฒ„์ „์˜ ๋ชจ๋ธ ํ•™์Šต ๋ฐ ์„ฑ๋Šฅ์„ ์œ„ํ•ด Open-Orca ๋ฐ์ดํ„ฐ์…‹ ์ผ๋ถ€๋ฅผ ๋ฒˆ์—ญํ•˜์—ฌ ์ •์ œ ์ค‘์— ์žˆ์Šต๋‹ˆ๋‹ค. <br> + ๊ณ ๋“ฑํ•™๊ต ์—ญ์‚ฌ ๋ฌธ์ œ ๋ฐ TruthfulQA ๊ด€๋ จ ๋ฌธ์ œ ์ถ”๊ฐ€๋ฅผ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. + ๊ฐ์ข… it ์ง€์‹ ๋ฐ์ดํ„ฐ ์ถ”๊ฐ€์ง„ํ–‰. + ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ChatGPT๋ฅผ ํ†ตํ•ด์„œ ๋‹ต๋ณ€์„ ์–ป์–ด ํ•™์Šต + ๋ฌธ๋ฒ•๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ <br> ###ํ•™์Šต ๋ฐ์ดํ„ฐ ํŒŒ์ผ์€ ๋น„๊ณต๊ฐœ์ž…๋‹ˆ๋‹ค. <b><ํ•™์Šต></b> ํ•™์Šต์€ LoRA๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ A100 40G *2์—์„œ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
cocoirun/Yi-Ko-6B-instruct-v1.4
cocoirun
"2024-01-11T01:47:30Z"
1,104
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-08T01:28:25Z"
--- license: cc-by-sa-4.0 --- <h1>instruct ๋ชจ๋ธ v1.4</h1> <b><ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•></b> Open-Orca-ko ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ํƒœ์Šคํฌ๋ฅผ ์ถ”์ถœํ•œ ๋’ค ํ•ด๋‹น ํƒœ์Šคํฌ์— ๋งž์ถฐ์„œ NLP ๊ด€๋ จ ์˜คํ”ˆ์†Œ์Šค ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•™์Šต๋ฐ์ดํ„ฐ๋ฅผ ์ž์ฒด์ ์œผ๋กœ ์•ฝ 4๋งŒ๊ฑด(์—ญ์‚ฌ, ๊ณผํ•™, ์ˆ˜ํ•™, ๊ธฐ๊ณ„๋…ํ•ด, ๋ฆฌ๋ทฐ ๋ถ„์„) ๊ตฌ์ถ•ํ•˜์˜€๊ณ , ๊ทธ ์™ธ์— Open-Orca-Ko์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ผ๋ถ€ ํ•„ํ„ฐ๋งํ•˜์—ฌ ์ •์ œํ•ด๊ฑฐ๋‚˜ KoBEST ๋ฐ์ดํ„ฐ๋ฅผ ํ•จ๊ป˜ ์ถ”๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค. aihub ์ผ๋ฐ˜์ƒ์‹ ๋ฐ ๊ธฐ๊ณ„๋…ํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ถ”๊ฐ€๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์ถ•(ํ˜•ํƒœ์†Œ ๊ด€๋ จ, ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ๋ฐ ์š”์•ฝ) ๊ฐ์ข… ๋ธ”๋กœ๊ทธ์—์„œ ์—ญ์‚ฌ ๋ฐ ์ƒ์‹ ํ€ด์ฆˆ๋ฅผ ์‚ฌ๋žŒ์ด ์ง์ ‘ ํ•™์Šต๋ฐ์ดํ„ฐ ํ˜•ํƒœ๋กœ ๋ณ€๊ฒฝ AI2AI Challenge ๋ฐ์ดํ„ฐ๋ฅผ ํŒŒํŒŒ๊ณ ๋ฅผ ํ†ตํ•ด ๋ฒˆ์—ญ ๋ฐ ์˜ค์—ญ๋œ ๋ถ€๋ถ„์„ ์‚ฌ๋žŒ์ด ์ง์ ‘ ์ˆ˜์ • ํ•˜๋Š” ์ž‘์—…์„ ์ˆ˜ํ–‰ ์˜์–ด ๋ฒˆ์—ญ ๋ฐ์ดํ„ฐ ์˜ํ•œ/ํ•œ์˜ ๋ฐ์ดํ„ฐ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉ ์ง„ํ–‰ ์ด 11๋งŒ๊ฐœ์˜ ํ•™์Šต๋ฐ์ดํ„ฐ๋กœ sft๋ฅผ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. <br> ํ˜„์žฌ, ์ƒˆ๋กœ์šด ๋ฒ„์ „์˜ ๋ชจ๋ธ ํ•™์Šต ๋ฐ ์„ฑ๋Šฅ์„ ์œ„ํ•ด Open-Orca ๋ฐ์ดํ„ฐ์…‹ ์ผ๋ถ€๋ฅผ ๋ฒˆ์—ญํ•˜์—ฌ ์ •์ œ ์ค‘์— ์žˆ์Šต๋‹ˆ๋‹ค. <br> + ๊ณ ๋“ฑํ•™๊ต ์—ญ์‚ฌ ๋ฌธ์ œ ๋ฐ TruthfulQA ๊ด€๋ จ ๋ฌธ์ œ ์ถ”๊ฐ€๋ฅผ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. + ๊ฐ์ข… it ์ง€์‹ ๋ฐ์ดํ„ฐ ์ถ”๊ฐ€์ง„ํ–‰. + ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ChatGPT๋ฅผ ํ†ตํ•ด์„œ ๋‹ต๋ณ€์„ ์–ป์–ด ํ•™์Šต + ๋ฌธ๋ฒ•๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ <br> ###ํ•™์Šต ๋ฐ์ดํ„ฐ ํŒŒ์ผ์€ ๋น„๊ณต๊ฐœ์ž…๋‹ˆ๋‹ค. <br> <b><ํ•™์Šต></b> ํ•™์Šต์€ LoRA๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ A100 40G *2์—์„œ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
LI-ST/Mistral-7B-ko-v0.006
LI-ST
"2024-01-09T07:35:33Z"
1,104
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "ko", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-08T10:22:07Z"
--- license: cc-by-nc-nd-4.0 language: - en - ko library_name: transformers pipeline_tag: text-generation --- <p><h1>Mistral-7B-ko</h1></p> basemodel: Open-Orca/Mistral-7B-OpenOrca ================================================= <BR> This model is a temporary model for testing. <BR> We will be deleting it soon. <BR> =================================================
DopeorNope/Ko-Mixtral-MoE-7Bx2
DopeorNope
"2024-01-20T07:32:32Z"
1,104
4
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "ko", "en", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-16T02:45:49Z"
--- license: cc-by-nc-sa-4.0 language: - ko - en tags: - moe --- # The license is cc-by-nc-sa-4.0. - Commercializing is not allowed. # ASAP will upload it. # Not based on Synatra model, we pre-train and full-finetuning Mixtralx2 to enhance Korean abilities. # DATASET. - Using a Self-supervised learning manner, we converted raw corpus to instruct tuned data. - We used text-mining techniques to create the train data. - Here is some examples... - **Mask prediction Task** ```python #Mask prediction text='์ง€๋Šฅ(ๆ™บ่ƒฝ) ๋˜๋Š” ์ธํ…”๋ฆฌ์ „์Šค(intelligence)๋Š” ์ธ๊ฐ„์˜ <MASK> ๋Šฅ๋ ฅ์„ ๋งํ•œ๋‹ค.' response='์ง€์ ' complete_text='์ง€๋Šฅ(ๆ™บ่ƒฝ) ๋˜๋Š” ์ธํ…”๋ฆฌ์ „์Šค(intelligence)๋Š” ์ธ๊ฐ„์˜ ์ง€์  ๋Šฅ๋ ฅ์„ ๋งํ•œ๋‹ค.' ``` - **Text allign Task** ```python #Text-allign Task text_list=['๋ณต์ˆ˜๋ช…๋ น-๋ณต์ˆ˜์ž๋ฃŒ(MIMD,Multiple Instruction, Multiple Data)์€ ์ „์‚ฐ์—์„œ ๋ณ‘๋ ฌํ™”์˜ ํ•œ ๊ธฐ๋ฒ•์ด๋‹ค.', '๋ถ„์‚ฐ ๋ฉ”๋ชจ๋ฆฌ์˜ ์˜ˆ๋Š” MPP(massively parallel processors)์™€ COW (Clusters of Workstations)์ด๋‹ค.', 'MIMD๊ธฐ๊ณ„๋Š” ๊ณต์œ  ๋ฉ”๋ชจ๋ฆฌ์ด๊ฑฐ๋‚˜ ๋ถ„์‚ฐ ๋ฉ”๋ชจ๋ฆฌ์ด๋ฉฐ ์ด๋Ÿฌํ•œ ๋ถ„๋ฅ˜๋Š” MIMD๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ด์šฉํ•˜๋А๋ƒ์— ๋”ฐ๋ผ ๋‚˜๋‰œ๋‹ค.'] response='๋ณต์ˆ˜๋ช…๋ น-๋ณต์ˆ˜์ž๋ฃŒ(MIMD,Multiple Instruction, Multiple Data)์€ ์ „์‚ฐ์—์„œ ๋ณ‘๋ ฌํ™”์˜ ํ•œ ๊ธฐ๋ฒ•์ด๋‹ค. \ MIMD๊ธฐ๊ณ„๋Š” ๊ณต์œ  ๋ฉ”๋ชจ๋ฆฌ์ด๊ฑฐ๋‚˜ ๋ถ„์‚ฐ ๋ฉ”๋ชจ๋ฆฌ์ด๋ฉฐ ์ด๋Ÿฌํ•œ ๋ถ„๋ฅ˜๋Š” MIMD๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์ด์šฉํ•˜๋А๋ƒ์— ๋”ฐ๋ผ ๋‚˜๋‰œ๋‹ค. \ ๋ถ„์‚ฐ ๋ฉ”๋ชจ๋ฆฌ์˜ ์˜ˆ๋Š” MPP(massively parallel processors)์™€ COW (Clusters of Workstations)์ด๋‹ค.' ``` - **Text completion Task** ```python #Text Completion text= '๊ทธ๋ฆฐ๋ธŒ๋ผ์šฐ์ €(GreenBrowser)๋Š” ์ธํ„ฐ๋„ท ์ต์Šคํ”Œ๋กœ๋Ÿฌ์—์„œ ์‚ฌ์šฉํ•˜๋Š” ํŠธ๋ผ์ด๋˜ํŠธ ๋ ˆ์ด์•„์›ƒ ์—”์ง„์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜๋ฉฐ ์ค‘๊ตญ์— ๊ธฐ๋ฐ˜์„ ๋‘” ์†Œํ”„ํŠธ์›จ์–ด ํšŒ์‚ฌ์ธ ๋ชจ์–ดํ€ต(morequick)์—์„œ ๋งŒ๋“  ๋ฌด๋ฃŒ ์›น ๋ธŒ๋ผ์šฐ์ €๋‹ค. ๊ฐ„์ฒด์ž ์ค‘๊ตญ์–ด๊ฐ€ ์›น ๋ธŒ๋ผ์šฐ์ €์— ๋‚ด์žฅ๋˜์–ด ์žˆ๋‹ค. ๋งฅ์Šคํ†ค ์›น ๋ธŒ๋ผ์šฐ์ €์™€ ๋น„์Šทํ•˜์—ฌ MyIE์™€ ๋ฐ€์ ‘ํ•˜๊ฒŒ ๊ด€๋ จ๋˜์–ด ์žˆ๋‹ค. ๋งฅ์Šคํ†ค์šฉ์˜ ์ผ๋ถ€ ํ”Œ๋Ÿฌ๊ทธ์ธ์ด ๊ทธ๋ฆฐ๋ธŒ๋ผ์šฐ์ €์—์„œ๋„ ์ž‘๋™ํ•  ๊ฒƒ์ด๋‹ค.' response= '์ž๋™ ์Šคํฌ๋กค, ์ž๋™ ๋ฆฌํ”„๋ ˆ์‹œ, ์ž๋™ ์ €์žฅ, ์ž๋™ ํผ ์ฑ„์šฐ๊ธฐ์™€ ๊ฐ™์€ ๋งŽ์€ ์ž๋™ํ™” ๊ธฐ๋Šฅ์ด ์žˆ๋‹ค.' ```
colable/llama-ko-peft-v0.5
colable
"2024-01-30T06:19:51Z"
1,104
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-30T06:03:22Z"
--- license: mit language: - ko --- # open-llama-2-ko based model with inhouse dataset This is an Korean Model based on * [beomi/open-llama-2-ko-7b] gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "colable/llama-ko-peft-v0.5" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ```
DKYoon/kosolar-hermes-test
DKYoon
"2024-02-14T07:52:52Z"
1,104
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-02-14T07:43:24Z"
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ITT-AF/ITT-42dot_LLM-PLM-1.3B-v6.0
ITT-AF
"2024-03-06T07:40:07Z"
1,104
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-06T06:35:07Z"
--- license: cc-by-nc-4.0 --- # ITT-AF/ITT-42dot_LLM-PLM-1.3B-v6.0 This model is a fine-tuned version of [42dot/42dot_LLM-PLM-1.3B](https://huggingface.co/42dot/42dot_LLM-PLM-1.3B) on an custom dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.0.0 - Tokenizers 0.15.0
giprime/OOM-SOLAR-10.7B_02
giprime
"2024-03-14T23:02:25Z"
1,104
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-13T23:18:53Z"
--- license: apache-2.0 language: - en - ko library_name: transformers --- Model Architecture OOM-SOLAR-10.7B_02 is an language model that uses an optimized transformer architecture based on upstage/SOLAR-10.7B-v1.0. ## Model description Based on "beomi/OPEN-SOLAR-KO-10.7B" ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 24 - gradient_accumulation_steps: 1 - total_train_batch_size: - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
ai-human-lab/EEVE-Korean-10.8B-SFT-v0.1
ai-human-lab
"2024-03-20T04:00:57Z"
1,104
1
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "license:apache-2.0", "endpoints_compatible", "text-generation-inference", "region:us" ]
feature-extraction
"2024-03-20T03:53:28Z"
--- license: apache-2.0 --- This model is a fine-tuned version of yanolja/EEVE-Korean-10.8B-v1.0, which is a Korean vocabulary-extended version of upstage/SOLAR-10.7B-v1.0. Specifically, we utilized SFT through the use of Axolotl.
moondriller/solar10B-eugeneparkthebestv2
moondriller
"2024-03-28T04:24:42Z"
1,104
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ko", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-28T04:06:51Z"
--- language: - ko license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ppuuttyy/ppuuttyy
ppuuttyy
"2024-04-03T06:49:27Z"
1,104
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "arxiv:1910.09700", "license:apache-2.0", "endpoints_compatible", "text-generation-inference", "region:us" ]
feature-extraction
"2024-03-28T14:52:22Z"
--- license: apache-2.0 library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LiteLLMs/Llama3-OpenBioLLM-70B-GGUF
LiteLLMs
"2024-05-28T22:20:38Z"
1,104
2
null
[ "gguf", "llama-3", "llama", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "distillation", "heathcare", "medical", "clinical", "med", "lifescience", "Pharmaceutical", "Pharma", "GGUF", "en", "arxiv:2305.18290", "arxiv:2303.13375", "arxiv:2212.13138", "arxiv:2305.09617", "arxiv:2402.07023", "base_model:meta-llama/Meta-Llama-3-70B-Instruct", "license:llama3", "region:us" ]
null
"2024-04-29T16:17:46Z"
--- language: - en license: llama3 tags: - llama-3 - llama - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - distillation - heathcare - medical - clinical - med - lifescience - Pharmaceutical - Pharma - GGUF base_model: meta-llama/Meta-Llama-3-70B-Instruct widget: - example_title: OpenBioLLM-70B messages: - role: system content: You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience. - role: user content: How long does it take for newborn jaundice to go away? output: text: 'Newborn jaundice, also known as neonatal jaundice, is a common condition in newborns where the yellowing of the skin and eyes occurs due to an elevated level of bilirubin in the blood. Bilirubin is a yellow pigment that forms when red blood cells break down. In most cases, newborn jaundice resolves on its own without any specific treatment. The duration of newborn jaundice can vary depending on several factors such as the underlying cause, gestational age at birth, and individual variations in bilirubin metabolism. Here are some general guidelines: 1. Physiological jaundice: This is the most common type of newborn jaundice and usually appears within 24-72 hours after birth. It tends to peak between the second and fifth day of life and gradually improves over the next week or two. By the time the baby is one week old, the jaundice should have mostly resolved. 2. Breast milk jaundice: This type of jaundice occurs in breastfed babies and may appear later than physiological jaundice, typically between the fifth and fourteenth day of life. It tends to persist for a longer duration but usually resolves within six weeks after birth. 3. Pathological jaundice: This type of jaundice is less common and occurs due to an underlying medical condition that affects bilirubin metabolism or liver function. The duration of pathological jaundice depends on the specific cause and may require treatment. It''s important for parents to monitor their newborn''s jaundice closely and seek medical advice if the jaundice progresses rapidly, becomes severe, or is accompanied by other symptoms such as poor feeding, lethargy, or excessive sleepiness. In these cases, further evaluation and management may be necessary. Remember that each baby is unique, and the timing of jaundice resolution can vary. If you have concerns about your newborn''s jaundice, it''s always best to consult with a healthcare professional for personalized advice and guidance.' model-index: - name: OpenBioLLM-70B results: [] quantized_by: andrijdavid --- # Llama3-OpenBioLLM-70B-GGUF - Original model: [Llama3-OpenBioLLM-70B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B) <!-- description start --> ## Description This repo contains GGUF format model files for [Llama3-OpenBioLLM-70B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration. * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applicationsโ€‹ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling. * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration. * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection. * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use. * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server. * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents. <!-- README_GGUF.md-about-gguf end --> <!-- compatibility_gguf start --> ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: LiteLLMs/Llama3-OpenBioLLM-70B-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-70B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-70B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install huggingface_hub[hf_transfer] ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-70B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 โ€ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<PROMPT>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer end --> <!-- original-model-card start --> # Original model card: Llama3-OpenBioLLM-70B # Llama3-OpenBioLLM-70B-GGUF - Original model: [Llama3-OpenBioLLM-70B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B) <!-- description start --> ## Description This repo contains GGUF format model files for [Llama3-OpenBioLLM-70B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-70B). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration. * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applicationsโ€‹ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling. * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration. * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection. * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use. * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server. * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents. <!-- README_GGUF.md-about-gguf end --> <!-- compatibility_gguf start --> ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: LiteLLMs/Llama3-OpenBioLLM-70B-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-70B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-70B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install huggingface_hub[hf_transfer] ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/Llama3-OpenBioLLM-70B-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 โ€ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<PROMPT>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer end --> <!-- original-model-card start --> # Original model card: Llama3-OpenBioLLM-70B <div align="center"> <img width="260px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/BrQCb95lmEIFz79QAmoNA.png"></div> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/fJIOPJnY6Ff6fUiSIuMEt.png) <div align="center"> <h1>Advancing Open-source Large Language Models in Medical Domain</h1> </div> <p align="center" style="margin-top: 0px;"> <a href="https://colab.research.google.com/drive/1F5oV20InEYeAJGmBwYF9NM_QhLmjBkKJ?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="OpenChat Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 10px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style=" margin-right: 5px;">Online Demo</span> </a> | <a href="https://github.com/openlifescience-ai"> <img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style=" margin-right: 5px;">GitHub</span> </a> | <a href="#"> <img src="https://github.com/alpayariyak/openchat/blob/master/assets/arxiv-logomark-small-square-border.png?raw=true" alt="ArXiv Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text" style="margin-right: 5px;">Paper</span> </a> | <a href="https://discord.gg/A5Fjf5zC69"> <img src="https://cloud.githubusercontent.com/assets/6291467/26705903/96c2d66e-477c-11e7-9f4e-f3c0efe96c9a.png" alt="Discord Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/> <span class="link-text">Discord</span> </a> </p> ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/KGmRE5w2sepNtwsEu8t7K.jpeg) Introducing OpenBioLLM-70B: A State-of-the-Art Open Source Biomedical Large Language Model OpenBioLLM-70B is an advanced open source language model designed specifically for the biomedical domain. Developed by Saama AI Labs, this model leverages cutting-edge techniques to achieve state-of-the-art performance on a wide range of biomedical tasks. ๐Ÿฅ **Biomedical Specialization**: OpenBioLLM-70B is tailored for the unique language and knowledge requirements of the medical and life sciences fields. It was fine-tuned on a vast corpus of high-quality biomedical data, enabling it to understand and generate text with domain-specific accuracy and fluency. ๐ŸŽ“ **Superior Performance**: With 70 billion parameters, OpenBioLLM-70B outperforms other open source biomedical language models of similar scale. It has also demonstrated better results compared to larger proprietary & open-source models like GPT-4, Gemini, Meditron-70B, Med-PaLM-1 & Med-PaLM-2 on biomedical benchmarks. ๐Ÿง  **Advanced Training Techniques**: OpenBioLLM-70B builds upon the powerful foundations of the **Meta-Llama-3-70B-Instruct** and [Meta-Llama-3-70B-Instruct](meta-llama/Meta-Llama-3-70B-Instruct) models. It incorporates the DPO dataset and fine-tuning recipe along with a custom diverse medical instruction dataset. Key components of the training pipeline include: <div align="center"> <img width="1200px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/oPchsJsEpQoGcGXVbh7YS.png"> </div> - **Policy Optimization**: [Direct Preference Optimization: Your Language Model is Secretly a Reward Model (DPO)](https://arxiv.org/abs/2305.18290) - **Fine-tuning dataset**: Custom Medical Instruct dataset (We plan to release a sample training dataset in our upcoming paper; please stay updated) This combination of cutting-edge techniques enables OpenBioLLM-70B to align with key capabilities and preferences for biomedical applications. โš™๏ธ **Release Details**: - **Model Size**: 70 billion parameters - **Quantization**: Optimized quantized versions available [Here](https://huggingface.co/aaditya/OpenBioLLM-70B-GGUF) - **Language(s) (NLP):**ย en - **Developed By**: [Ankit Pal (Aaditya Ura)](https://aadityaura.github.io/) from Saama AI Labs - **License:**ย Meta-Llama License - **Fine-tuned from models:**ย [Meta-Llama-3-70B-Instruct](meta-llama/Meta-Llama-3-70B-Instruct) - **Resources for more information:** - Paper: Coming soon The model can be fine-tuned for more specialized tasks and datasets as needed. OpenBioLLM-70B represents an important step forward in democratizing advanced language AI for the biomedical community. By leveraging state-of-the-art architectures and training techniques from leading open source efforts like Llama-3, we have created a powerful tool to accelerate innovation and discovery in healthcare and the life sciences. We are excited to share OpenBioLLM-70B with researchers and developers around the world. ### Use with transformers **Important: Please use the exact chat template provided by Llama-3 instruct version. Otherwise there will be a degradation in the performance. The model output can be verbose in rare cases. Please consider setting temperature = 0 to make this happen less.** See the snippet below for usage with Transformers: ```python import transformers import torch model_id = "aaditya/OpenBioLLM-Llama3-70B" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device="auto", ) messages = [ {"role": "system", "content": "You are an expert and experienced from the healthcare and biomedical domain with extensive medical knowledge and practical experience. Your name is OpenBioLLM, and you were developed by Saama AI Labs. who's willing to help answer the user's query with explanation. In your explanation, leverage your deep medical expertise such as relevant anatomical structures, physiological processes, diagnostic criteria, treatment guidelines, or other pertinent medical concepts. Use precise medical terminology while still aiming to make the explanation clear and accessible to a general audience."}, {"role": "user", "content": "How can i split a 3mg or 4mg waefin pill so i can get a 2.5mg pill?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.0, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ## **Training procedure** ### **Training hyperparameters** <details> <summary>Click to see details</summary> - learning_rate: 0.0002 - lr_scheduler: cosine - train_batch_size: 12 - eval_batch_size: 8 - GPU: H100 80GB SXM5 - num_devices: 8 - optimizer: adamw_bnb_8bit - lr_scheduler_warmup_steps: 100 - num_epochs: 4 </details> ### **Peft hyperparameters** <details> <summary>Click to see details</summary> - adapter: qlora - lora_r: 128 - lora_alpha: 256 - lora_dropout: 0.05 - lora_target_linear: true -lora_target_modules: - q_proj - v_proj - k_proj - o_proj - gate_proj - down_proj - up_proj </details> ### **Training results** ### **Framework versions** - Transformers 4.39.3 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1 - Axolotl - Lm harness for evaluation # Benchmark Results ๐Ÿ”ฅ OpenBioLLM-70B demonstrates superior performance compared to larger models, such as GPT-4, Gemini, Meditron-70B, Med-PaLM-1 & Med-PaLM-2 across 9 diverse biomedical datasets, achieving state-of-the-art results with an average score of 86.06%, despite having a significantly smaller parameter count. The model's strong performance in domain-specific tasks, such as Clinical KG, Medical Genetics, and PubMedQA, highlights its ability to effectively capture and apply biomedical knowledge. ๐Ÿšจ The GPT-4, Med-PaLM-1, and Med-PaLM-2 results are taken from their official papers. Since Med-PaLM doesn't provide zero-shot accuracy, we are using 5-shot accuracy from their paper for comparison. All results presented are in the zero-shot setting, except for Med-PaLM-2 and Med-PaLM-1, which use 5-shot accuracy. | | Clinical KG | Medical Genetics | Anatomy | Pro Medicine | College Biology | College Medicine | MedQA 4 opts | PubMedQA | MedMCQA | Avg | | | - | | - | | | **OpenBioLLM-70B** | **92.93** | **93.197** | **83.904** | 93.75 | 93.827 | **85.749** | 78.162 | 78.97 | **74.014** | **86.05588** | | Med-PaLM-2 (5-shot) | 88.3 | 90 | 77.8 | **95.2** | 94.4 | 80.9 | **79.7** | **79.2** | 71.3 | 84.08 | | **GPT-4** | 86.04 | 91 | 80 | 93.01 | **95.14** | 76.88 | 78.87 | 75.2 | 69.52 | 82.85 | | Med-PaLM-1 (Flan-PaLM, 5-shot) | 80.4 | 75 | 63.7 | 83.8 | 88.9 | 76.3 | 67.6 | 79 | 57.6 | 74.7 | | **OpenBioLLM-8B** | 76.101 | 86.1 | 69.829 | 78.21 | 84.213 | 68.042 | 58.993 | 74.12 | 56.913 | 72.502 | | Gemini-1.0 | 76.7 | 75.8 | 66.7 | 77.7 | 88 | 69.2 | 58 | 70.7 | 54.3 | 70.79 | | GPT-3.5 Turbo 1106 | 74.71 | 74 | 72.79 | 72.79 | 72.91 | 64.73 | 57.71 | 72.66 | 53.79 | 66 | | Meditron-70B | 66.79 | 69 | 53.33 | 71.69 | 76.38 | 63 | 57.1 | 76.6 | 46.85 | 64.52 | | gemma-7b | 69.81 | 70 | 59.26 | 66.18 | 79.86 | 60.12 | 47.21 | 76.2 | 48.96 | 64.18 | | Mistral-7B-v0.1 | 68.68 | 71 | 55.56 | 68.38 | 68.06 | 59.54 | 50.82 | 75.4 | 48.2 | 62.85 | | Apollo-7B | 62.26 | 72 | 61.48 | 69.12 | 70.83 | 55.49 | 55.22 | 39.8 | 53.77 | 60 | | MedAlpaca-7b | 57.36 | 69 | 57.04 | 67.28 | 65.28 | 54.34 | 41.71 | 72.8 | 37.51 | 58.03 | | BioMistral-7B | 59.9 | 64 | 56.5 | 60.4 | 59 | 54.7 | 50.6 | 77.5 | 48.1 | 57.3 | | AlpaCare-llama2-7b | 49.81 | 49 | 45.92 | 33.82 | 50 | 43.35 | 29.77 | 72.2 | 34.42 | 45.36 | | ClinicalGPT | 30.56 | 27 | 30.37 | 19.48 | 25 | 24.27 | 26.08 | 63.8 | 28.18 | 30.52 | <div align="center"> <img width="1600px" src="https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/_SzdcJSBjZyo8RS1bTEkP.png"> </div> ## Detailed Medical Subjectwise accuracy ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/UXF-V0col0Z0sS6BGPBkE.png) # Use Cases & Examples ๐Ÿšจย **Below results are from the quantized version of OpenBioLLM-70B # Summarize Clinical Notes OpenBioLLM-70B can efficiently analyze and summarize complex clinical notes, EHR data, and discharge summaries, extracting key information and generating concise, structured summaries ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/xdwdBgOxNi_TfML0hKlI8.png) # Answer Medical Questions OpenBioLLM-70B can provide answers to a wide range of medical questions. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/zO95GlwOQEZqCKQF69mE6.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/OKBczKw7gWeW5xsuDpc27.png) <details> <summary>Click to see details</summary> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/eJGHT5khppYvJb8fQ-YW4.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/Cnbwrqa_-ORHRuNRC2P6Y.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/J9DhdcvukAc9mnnW9fj2C.png) </details> # Clinical Entity Recognition OpenBioLLM-70B can perform advanced clinical entity recognition by identifying and extracting key medical concepts, such as diseases, symptoms, medications, procedures, and anatomical structures, from unstructured clinical text. By leveraging its deep understanding of medical terminology and context, the model can accurately annotate and categorize clinical entities, enabling more efficient information retrieval, data analysis, and knowledge discovery from electronic health records, research articles, and other biomedical text sources. This capability can support various downstream applications, such as clinical decision support, pharmacovigilance, and medical research. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/_69BW4k9LVABFwtxixL45.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/DKy5wYCoPhoPPUc1-x8_J.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/7WD9zCCBZT4-4XlfnIQjl.png) # Biomarkers Extraction ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/ZttoM4AiteT7gFYVhjIpN.png) # Classification OpenBioLLM-70B can perform various biomedical classification tasks, such as disease prediction, sentiment analysis, medical document categorization ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/Bf5MW1d75qT-1F_TR_hC0.png) # De-Identification OpenBioLLM-70B can detect and remove personally identifiable information (PII) from medical records, ensuring patient privacy and compliance with data protection regulations like HIPAA. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5f3fe13d79c1ba4c353d0c19/hKX4kzm--Tw5bj6K78msy.png) **Advisory Notice!** While OpenBioLLM-70B leverages high-quality data sources, its outputs may still contain inaccuracies, biases, or misalignments that could pose risks if relied upon for medical decision-making without further testing and refinement. The model's performance has not yet been rigorously evaluated in randomized controlled trials or real-world healthcare environments. Therefore, we strongly advise against using OpenBioLLM-70B for any direct patient care, clinical decision support, or other professional medical purposes at this time. Its use should be limited to research, development, and exploratory applications by qualified individuals who understand its limitations. OpenBioLLM-70B is intended solely as a research tool to assist healthcare professionals and should never be considered a replacement for the professional judgment and expertise of a qualified medical doctor. Appropriately adapting and validating OpenBioLLM-70B for specific medical use cases would require significant additional work, potentially including: - Thorough testing and evaluation in relevant clinical scenarios - Alignment with evidence-based guidelines and best practices - Mitigation of potential biases and failure modes - Integration with human oversight and interpretation - Compliance with regulatory and ethical standards Always consult a qualified healthcare provider for personal medical needs. # Citation If you find OpenBioLLM-70B & 8B useful in your work, please cite the model as follows: ``` @misc{OpenBioLLMs, author = {Ankit Pal, Malaikannan Sankarasubbu}, title = {OpenBioLLMs: Advancing Open-Source Large Language Models for Healthcare and Life Sciences}, year = {2024}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/aaditya/OpenBioLLM-Llama3-70B}} } ``` The accompanying paper is currently in progress and will be released soon. <div align="center"> <h2> ๐Ÿ’Œ Contact </h2> </div> We look forward to hearing you and collaborating on this exciting project! **Contributors:** - [Ankit Pal (Aaditya Ura)](https://aadityaura.github.io/) [aadityaura at gmail dot com] - Saama AI Labs - Note: I am looking for a funded PhD opportunity, especially if it fits my Responsible Generative AI, Multimodal LLMs, Geometric Deep Learning, and Healthcare AI skillset. # References We thank the [Meta Team](meta-llama/Meta-Llama-3-70B-Instruct) for their amazing models! Result sources - [1] GPT-4 [Capabilities of GPT-4 on Medical Challenge Problems] (https://arxiv.org/abs/2303.13375) - [2] Med-PaLM-1 [Large Language Models Encode Clinical Knowledge](https://arxiv.org/abs/2212.13138) - [3] Med-PaLM-2 [Towards Expert-Level Medical Question Answering with Large Language Models](https://arxiv.org/abs/2305.09617) - [4] Gemini-1.0 [Gemini Goes to Med School](https://arxiv.org/abs/2402.07023) <!-- original-model-card end --> <!-- original-model-card end -->
T3Q-LLM/T3Q-LLM1-CV-v2.0
T3Q-LLM
"2024-05-08T05:55:12Z"
1,104
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-05-02T12:23:02Z"
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation hf (pretrained=T3Q-LLM/T3Q-LLM1-v1.0), limit: None, provide_description: False, num_fewshot: 0, batch_size: None | Task |Version| Metric |Value | |Stderr| |----------------|------:|--------|-----:|---|-----:| |kobest_boolq | 0|acc |0.9437|ยฑ |0.0062| | | |macro_f1|0.9437|ยฑ |0.0062| |kobest_copa | 0|acc |0.7720|ยฑ |0.0133| | | |macro_f1|0.7718|ยฑ |0.0133| |kobest_hellaswag| 0|acc |0.5060|ยฑ |0.0224| | | |acc_norm|0.5320|ยฑ |0.0223| | | |macro_f1|0.5035|ยฑ |0.0224| |kobest_sentineg | 0|acc |0.8287|ยฑ |0.0189| | | |macro_f1|0.8275|ยฑ |0.0191|
TheSkullery/llama-3-cat-8b-instruct-v1
TheSkullery
"2024-05-24T12:08:55Z"
1,104
44
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:llama3", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-05-11T13:32:57Z"
--- license: llama3 model-index: - name: llama-3-cat-8b-instruct-v1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 59.04 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/llama-3-cat-8b-instruct-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 79.2 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/llama-3-cat-8b-instruct-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.99 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/llama-3-cat-8b-instruct-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 50.8 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/llama-3-cat-8b-instruct-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 75.93 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/llama-3-cat-8b-instruct-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 60.5 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/llama-3-cat-8b-instruct-v1 name: Open LLM Leaderboard --- <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Cat-llama3-instruct Data Card</title> <link href="https://fonts.googleapis.com/css2?family=Quicksand:wght@400;500;600&display=swap" rel="stylesheet"> <style> body { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #2E3440 0%, #1A202C 100%); color: #D8DEE9; margin: 0; padding: 0; font-size: 16px; } .container { width: 80%; max-width: 800px; margin: 20px auto; background-color: rgba(255, 255, 255, 0.02); padding: 20px; border-radius: 12px; box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2); backdrop-filter: blur(10px); border: 1px solid rgba(255, 255, 255, 0.1); } .header h1 { font-size: 28px; color: #ECEFF4; margin: 0 0 20px 0; text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3); } .update-section { margin-top: 30px; } .update-section h2 { font-size: 24px; color: #88C0D0; } .update-section p { font-size: 16px; line-height: 1.6; color: #ECEFF4; } .info img { width: 100%; border-radius: 10px; margin-bottom: 15px; } a { color: #88C0D0; text-decoration: none; } a:hover { color: #A3BE8C; } pre { background-color: rgba(255, 255, 255, 0.05); padding: 10px; border-radius: 5px; overflow-x: auto; } code { font-family: 'Courier New', monospace; color: #A3BE8C; } </style> </head> <body> <div class="container"> <div class="header"> <h1>Cat-llama3-instruct</h1> </div> <div class="info"> <img src="https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/Uw0ycicMjZufSFTgXZMFd.png" alt="Model Card"> <p>Presented by:<p/> <ul> <li>Dataset Builder: Dr. Kal'tsit (Kat)</li> <li>Trainer/Funding: SteelSkull</li> <li>Facilitator: Potatooff</li> </ul> <p><a href="https://huggingface.co/turboderp/Cat-Llama-3-70B-instruct">70b variant of the model</a> (Trained by Dr. Kal'tsit, Posted by Turboderp), Please check it out!</p> <h2>About:</h2> <p>Cat-llama3-instruct is a llama 3 8b finetuned model focusing on system prompt fidelity, helpfulness and character engagement. The model aims to respect system prompt to an extreme degree, provide helpful information regardless of situations, and offer maximum character immersion (Role Play) in given scenes.</p> <h2>Specific Aims:</h2> <ul> <li>System Instruction fidelity</li> <li>Chain of Thought (COT)</li> <li>Character immersion</li> <li>Helpfulness for biosciences and general science</li> </ul> <h3>Methods</h3> <h4>Dataset Preparation</h4> <p>Huggingface dataset containing instruction-response pairs was systematically pulled. A GPT model was trained on high quality and helpful responses exclusively to serve as a standard model.</p> <img src="https://cdn-uploads.huggingface.co/production/uploads/6383dc174c48969dcf1b4fce/HovhwLIGO9cz8Az-h0tkn.png" alt="Huggingface dataset population distribution and filtration for each component"> <p>(Fig1. Huggingface dataset population distribution and filtration for each component)</p> <p>The dataset was further filtered for length and COT responses:</p> <img src="https://cdn-uploads.huggingface.co/production/uploads/6383dc174c48969dcf1b4fce/-z9cZDNuGyCftdrZwR_46.png" alt="COT responses"> <p>(Fig 2. COT responses are all >50 tokens single turn)</p> <p>Health-related data was also pulled from Chat Doctor, favoring detailed and step-by-step diagnosis:</p> <img src="https://cdn-uploads.huggingface.co/production/uploads/6383dc174c48969dcf1b4fce/RnXyoR6wyBDWfIy3vMvWm.png" alt="Health-related tasks"> <p>(Fig 3. Health related tasks are all >100 tokens, peaking at 450 tokens single turn)</p> <h3>Model Training</h3> <p>1*a100 for 6 days, 4 epochs</p> <h2>Usage:</h2> <h3>Prompt format: llama 3 </h3> <ul> <li>Settings/Context/Instruct (Provided by @Anthonyg5005)</li> <li><a href="https://huggingface.co/TheSkullery/llama-3-cat-8b-instruct-v1/raw/main/Cat%208B%20Gen%20Settings.json">Cat 8B Gen Settings</a></li> <li><a href="https://huggingface.co/TheSkullery/llama-3-cat-8b-instruct-v1/raw/main/Cat%208b%20Context.json">Cat 8b Context</a></li> <li><a href="https://huggingface.co/TheSkullery/llama-3-cat-8b-instruct-v1/raw/main/Cat%208b%20Instruct.json">Cat 8b Instruct</a></li> </ul> <h3>Quants: </h3> <ul> <li><a href="https://huggingface.co/bartowski/llama-3-cat-8b-instruct-v1-GGUF">[bartowski/llama-3-cat-8b-instruct-v1-GGUF]</a></li> </ul> <pre><code> <|begin_of_text|>Below is a conversation between an user and an AI assistant. The ai assistant gives response regarding user's questions. USER: user: Given the task definition and input, reply with output. In this task, you are given a question and an answer, you would be asked to create the sentence based on the Question-Answer provided. It should be contained within the Question-Answer provided. Question: What type of diseases in humans are caused by protozoa? Answer: protist diseases ASSISTANT: AI: Task Explanation: In this task, you are asked to create a sentence using the given question and the provided answer. The sentence you create should include the information from both the question and the answer in a concise and coherent manner. Guidelines: 1. Read the given question and answer carefully. 2. Combine the information from the question and answer to create a new sentence. 3. Make sure your new sentence contains both the question's information and the answer provided. 4. Check your sentence for proper grammar and punctuation. Steps to find the answer: 1. Read the question: "What type of diseases in humans are caused by protozoa?" 2. Read the answer: "protist diseases" 3. Combine the information from the question and answer to create a new sentence: "In humans, protist diseases are caused by protozoa." 4. Double-check the sentence for proper grammar and punctuation, and make necessary adjustments if needed. Final Output: In humans, protist diseases are caused by protozoa.< / s ><|end_of_text|></code></pre> <h2>Showcases:</h2> <p>The model does COT in grey, calculated response in black; note that this behaviour is done through system card instruction to showcase the systemcard fidelity, it is not fine tuned into the model.</p> <img src="https://cdn-uploads.huggingface.co/production/uploads/6383dc174c48969dcf1b4fce/6smLuiePQa8Y2H19ie-ZY.png" alt="Showcase 1"> <img src="https://cdn-uploads.huggingface.co/production/uploads/6383dc174c48969dcf1b4fce/g9oP03RboHBBipk70GIHO.png" alt="Showcase 2"> <p>(Fig 4. Showcasing model doing COT to solve difficult tasks, extend and enrich its own answers)</p> </div> </div> </body> </html> # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TheSkullery__llama-3-cat-8b-instruct-v1) | Metric |Value| |---------------------------------|----:| |Avg. |64.74| |AI2 Reasoning Challenge (25-Shot)|59.04| |HellaSwag (10-Shot) |79.20| |MMLU (5-Shot) |62.99| |TruthfulQA (0-shot) |50.80| |Winogrande (5-shot) |75.93| |GSM8k (5-shot) |60.50|
newsletter/buddhi-128k-chat-7b-Q6_K-GGUF
newsletter
"2024-06-22T19:35:58Z"
1,104
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:aiplanet/buddhi-128k-chat-7b", "license:apache-2.0", "region:us" ]
text-generation
"2024-06-22T19:33:44Z"
--- base_model: aiplanet/buddhi-128k-chat-7b license: apache-2.0 pipeline_tag: text-generation tags: - llama-cpp - gguf-my-repo --- # newsletter/buddhi-128k-chat-7b-Q6_K-GGUF This model was converted to GGUF format from [`aiplanet/buddhi-128k-chat-7b`](https://huggingface.co/aiplanet/buddhi-128k-chat-7b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/aiplanet/buddhi-128k-chat-7b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo newsletter/buddhi-128k-chat-7b-Q6_K-GGUF --hf-file buddhi-128k-chat-7b-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo newsletter/buddhi-128k-chat-7b-Q6_K-GGUF --hf-file buddhi-128k-chat-7b-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo newsletter/buddhi-128k-chat-7b-Q6_K-GGUF --hf-file buddhi-128k-chat-7b-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo newsletter/buddhi-128k-chat-7b-Q6_K-GGUF --hf-file buddhi-128k-chat-7b-q6_k.gguf -c 2048 ```
timm/tf_mobilenetv3_large_100.in1k
timm
"2023-04-27T22:49:44Z"
1,103
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:1905.02244", "license:apache-2.0", "region:us" ]
image-classification
"2022-12-16T05:38:58Z"
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for tf_mobilenetv3_large_100.in1k A MobileNet-v3 image classification model. Trained on ImageNet-1k in Tensorflow by paper authors, ported to PyTorch by Ross Wightman. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 5.5 - GMACs: 0.2 - Activations (M): 4.4 - Image size: 224 x 224 - **Papers:** - Searching for MobileNetV3: https://arxiv.org/abs/1905.02244 - **Dataset:** ImageNet-1k - **Original:** https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('tf_mobilenetv3_large_100.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_mobilenetv3_large_100.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 16, 112, 112]) # torch.Size([1, 24, 56, 56]) # torch.Size([1, 40, 28, 28]) # torch.Size([1, 112, 14, 14]) # torch.Size([1, 960, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'tf_mobilenetv3_large_100.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 960, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{howard2019searching, title={Searching for mobilenetv3}, author={Howard, Andrew and Sandler, Mark and Chu, Grace and Chen, Liang-Chieh and Chen, Bo and Tan, Mingxing and Wang, Weijun and Zhu, Yukun and Pang, Ruoming and Vasudevan, Vijay and others}, booktitle={Proceedings of the IEEE/CVF international conference on computer vision}, pages={1314--1324}, year={2019} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
MetaIX/GPT4-X-Alpaca-30B-4bit
MetaIX
"2023-05-27T13:33:42Z"
1,103
162
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-04-14T17:23:57Z"
<p><strong><font size="5">Information</font></strong></p> GPT4-X-Alpaca 30B 4-bit working with GPTQ versions used in Oobabooga's Text Generation Webui and KoboldAI. <p>This was made using <a href="https://huggingface.co/chansung/gpt4-alpaca-lora-30b">Chansung's GPT4-Alpaca Lora</a></p> <p><strong><font size="5">Update 05.26.2023</font></strong></p> <p>Updated the ggml quantizations to be compatible with the latest version of llamacpp (again).</p> <p><strong>What's included</strong></p> <P>GPTQ: 2 quantized versions. One quantized --true-sequential and act-order optimizations, and the other was quantized using --true-sequential --groupsize 128 optimizations</P> <P>GGML: 3 quantized versions. One quantized using q4_1, another one was quantized using q5_0, and the last one was quantized using q5_1.</P> <p><strong>GPU/GPTQ Usage</strong></p> <p>To use with your GPU using GPTQ pick one of the .safetensors along with all of the .jsons and .model files.</p> <p>Oobabooga: If you require further instruction, see <a href="https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md">here</a> and <a href="https://github.com/oobabooga/text-generation-webui/blob/main/docs/LLaMA-model.md">here</a></p> <p>KoboldAI: If you require further instruction, see <a href="https://github.com/0cc4m/KoboldAI">here</a></p> <p><strong>CPU/GGML Usage</strong></p> <p>To use your CPU using GGML(Llamacpp) you only need the single .bin ggml file.</p> <p>Oobabooga: If you require further instruction, see <a href="https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md">here</a></p> <p>KoboldAI: If you require further instruction, see <a href="https://github.com/LostRuins/koboldcpp">here</a></p> <p><strong>Training Parameters</strong></p> <ul><li>num_epochs=10</li><li>cutoff_len=512</li><li>group_by_length</li><li>lora_target_modules='[q_proj,k_proj,v_proj,o_proj]'</li><li>lora_r=16</li><li>micro_batch_size=8</li></ul> <p><strong><font size="5">Benchmarks</font></strong></p> <p><strong><font size="4">--true-sequential --act-order</font></strong></p> <strong>Wikitext2</strong>: 4.481280326843262 <strong>Ptb-New</strong>: 8.539161682128906 <strong>C4-New</strong>: 6.451964855194092 <strong>Note</strong>: This version does not use <i>--groupsize 128</i>, therefore evaluations are minimally higher. However, this version allows fitting the whole model at full context using only 24GB VRAM. <p><strong><font size="4">--true-sequential --groupsize 128</font></strong></p> <strong>Wikitext2</strong>: 4.285132884979248 <strong>Ptb-New</strong>: 8.34856128692627 <strong>C4-New</strong>: 6.292652130126953 <strong>Note</strong>: This version uses <i>--groupsize 128</i>, resulting in better evaluations. However, it consumes more VRAM.
Yhyu13/chimera-inst-chat-13b-gptq-4bit
Yhyu13
"2023-05-27T17:51:04Z"
1,103
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-05-12T16:01:49Z"
--- license: apache-2.0 --- GPTQ 4-bit no actor version for compatibility that works in textgen-webui Generated by using scripts from https://gitee.com/yhyu13/llama_-tools Delta weights: https://huggingface.co/FreedomIntelligence/chimera-inst-chat-13b-delta Original hf weights: https://huggingface.co/Yhyu13/chimera-inst-chat-13b-hf --- Sample conversation generated in textgen-webui: This quite impressive because chimera-inst 13B is proclamined by its creator to score 97% of ChatGPT evaluated by GPT-4. And I think chimera does it well. ![img](./img/conv1)
ProomptEngineer/pe-sandsculpter-style
ProomptEngineer
"2023-09-01T10:12:43Z"
1,103
6
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
"2023-09-01T10:12:35Z"
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: PESandSculpture widget: - text: PESandSculpture --- # PE SandSculpter [Style] ![Image 0](2234364.jpeg) <p>Make some sand sculpture!</p><p>Weights 0.8-1</p><h2 id="heading-63">If you want to donate:</h2><h2 id="heading-64"><a target="_blank" rel="ugc" href="https://ko-fi.com/proomptengineer">https://ko-fi.com/proomptengineer</a></h2> ## Image examples for the model: ![Image 1](2234366.jpeg) ![Image 2](2234368.jpeg) ![Image 3](2234375.jpeg) ![Image 4](2234373.jpeg) ![Image 5](2234369.jpeg) ![Image 6](2234374.jpeg) ![Image 7](2234379.jpeg) ![Image 8](2234376.jpeg) ![Image 9](2234377.jpeg)
budecosystem/sql-millennials-7b
budecosystem
"2023-10-27T15:48:33Z"
1,103
2
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-10-27T10:06:40Z"
--- license: apache-2.0 language: - en library_name: transformers --- ## Introducing Text-to-SQL Translation Model - Millennials. ๐ŸŽ‰ Welcome to our Text-to-SQL Translation Model repository! Our model is specifically fine-tuned for text-to-SQL tasks, aiming to revolutionize how systems understand and translate natural language instructions into SQL queries. Built on Mistral 7B, our model has been meticulously fine-tuned with a curated dataset comprising 100k SQL query generation instructions, ensuring quality and precision. ## Features * Specialized in converting natural language text to SQL queries. * Fine-tuned on a diverse set of 100k SQL query generation instructions. * Easy to integrate and use for generating SQL queries on the fly. ## Generate responses Now that your model is fine-tuned, you're ready to generate responses, you can easily generate SQL queries from natural language instructions. To do this, you'll be using our generate.py script, which allows for quick inference and can fetch models directly from the Hugging Face model hub. Here's a quick guide on how to use it: The script runs inference using the pre-trained model from the Hugging Face model hub and prints the generated SQL query. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("budecosystem/sql-millennials-7b") model = AutoModelForCausalLM.from_pretrained("budecosystem/sql-millennials-7b") prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Create SQL query for the given table schema and question ASSISTANT:" inputs = tokenizer(prompt, return_tensors="pt") sample = model.generate(**inputs, max_length=128) print(tokenizer.decode(sample[0])) ``` The script runs inference using the pre-trained model from the Hugging Face model hub and prints the generated SQL query. ## Training details The model is trained of 4 A100 80GB for approximately 30hrs. | Hyperparameters | Value | | :----------------------------| :-----: | | per_device_train_batch_size | 4 | | gradient_accumulation_steps | 1 | | epoch | 3 | | steps | 19206 | | learning_rate | 2e-5 | | lr schedular type | cosine | | warmup steps | 2000 | | optimizer | adamw | | fp16 | True | | GPU | 4 A100 80GB | ## Why millennials? 1. Automated Database Management for Businesses Scenario: Small to medium-sized enterprises (SMEs) often lack dedicated IT teams to handle database queries, making it challenging to retrieve specific data quickly for analysis and decision-making. Use Case: Your text-to-SQL model can be integrated into a company's internal systems, allowing staff without technical SQL knowledge to retrieve data. They can input natural language requests, such as "Get a list of all transactions above $10,000 in the last quarter," and the system, powered by your model, would convert this into a corresponding SQL query to retrieve the data. 2. Automating Data Analytics Processes Scenario: Data analysts and business professionals often face bottlenecks in generating insights due to the complexities of SQL query formulation, especially when immediate or repetitive data retrieval and analysis are required. Use Case: Your text-to-SQL model serves as a transformative intermediary in this scenario. By integrating the model into their data analytics systems, organizations enable professionals to input data requests in natural language. For instance, an analyst could input, "Show the trend of online sales growth over the past five years," and the system would instantly convert this request into a SQL query, retrieve the data, and even integrate it into visualization tools for immediate insight generation. This functionality not only accelerates the analytical processes but also democratizes data-driven insights across different organizational departments, allowing even non-technical staff to leverage the power of real-time data analytics without deep knowledge of SQL. 3. Enhancing CMS Interfaces Scenario: Content Management Systems (CMS) are often non-intuitive for non-technical content managers when it comes to complex data retrieval or database management. Use Case: CMS providers can leverage your model to enhance their system's backend interface. Content managers can use natural language to request specific data, like "Find all blog posts in May 2023 with more than 500 views," and the model will generate the appropriate SQL to retrieve the information. This feature makes database management more accessible, efficient, and user-friendly. 4. Customer Support Optimization Scenario: Customer support centers often need to retrieve client or product information stored in databases while resolving tickets or inquiries, requiring basic knowledge of SQL. Use Case: Your model can be integrated into support ticketing systems, enabling support personnel to type requests in natural language, such as "Show all open tickets from customers in New York filed this month," and immediately receive the data needed to expedite their resolution process, improving customer service efficiency and response time. 5. Data Journalism and Research Scenario: Journalists and researchers frequently rely on complex databases to gather insights and data points necessary for their work but may lack the technical know-how of SQL. Use Case: By integrating your text-to-SQL model into research software or journalistic tools, professionals can query databases using natural language. For example, a journalist might input, "Retrieve the average household income in Texas in 2022," and your model would facilitate immediate access to this data, allowing for more efficient research and data-driven storytelling. Contributing We welcome contributions to help improve the model or address issues. Please feel free to submit pull requests or open issues to discuss changes or improvements. ### Acknowledgments We'd like to thank the open-source community and the researchers whose foundational work laid the path to this model.
martyn/codellama-megamerge-dare-34b
martyn
"2023-12-19T17:15:27Z"
1,103
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "dare", "super mario merge", "codellama", "merge", "en", "license:llama2", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-12-17T06:34:35Z"
--- license: llama2 language: - en pipeline_tag: text-generation inference: false tags: - dare - super mario merge - pytorch - llama - codellama - merge --- # codellama 34b mega merge The following were merged with DARE using [https://github.com/martyn/safetensors-merge-supermario](https://github.com/martyn/safetensors-merge-supermario) ## Mergelist ``` codellama/CodeLlama-34b-hf codellama/CodeLlama-34b-Instruct-hf allenai/codetulu-2-34b Phind/Phind-CodeLlama-34B-v1 Phind/Phind-CodeLlama-34B-Python-v1 uukuguy/speechless-codellama-34b-v2.0 codellama/CodeLlama-34b-Python-hf Phind/Phind-CodeLlama-34B-v2 ``` These models failed to merge: ``` pharaouk/unnatural_codellama_34B codefuse-ai/CodeFuse-CodeLlama-34B XAgentTeam/XAgentLLaMa-34B-preview ``` ## Merge command ``` python3 hf_merge.py codellama.txt codellama -p 0.16 -lambda 2 ```
c1park/20240105_mistral-step50
c1park
"2024-01-08T00:15:06Z"
1,103
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-07T23:24:26Z"
Entry not found
mu0gum/AIFT-42dot_LLM-PLM-1.3B-ao-instruct-all-v0.5
mu0gum
"2024-01-18T16:25:49Z"
1,103
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-18T14:59:30Z"
--- license: cc-by-nc-4.0 --- # AIFT-42dot-LLM-PLM-1.3B-ao-instruct-all-v0.5 ๋ฒ ์ด์Šค ๋ชจ๋ธ : 42dot/42dot_LLM-PLM-1.3B ํ•™์Šต ๋ฐ์ดํ„ฐ : ์ž์ฒด ์ œ์ž‘ํ•œ Open Orca ์Šคํƒ€์ผ ๋ฐ์ดํ„ฐ์…‹ ์•ฝ 35,000๊ฑด ํ•™์Šต ๋ฐฉ๋ฒ• : Full finetuning ## ko-lm-evaluation-harness(0-shot) |kobest_boolq|kobest_copa|kobest_hellaswag|kobest_sentineg|kohatespeech|kohatespeech_apeach|kohatespeech_gen_bias|korunsmile|nsmc|pawsx_ko| |--|--|--|--|--|--|--|--|--|--| |0.5356125356125356|0.671|0.44|0.743073047858942|0.2802547770700637|0.5098143236074271|0.2484076433121019|0.40010405534523225|0.65028|0.5005| ## Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.0.0 - Tokenizers 0.15.0
Edentns/DataVortexS-10.7B-dpo-v1.1
Edentns
"2024-02-11T17:49:53Z"
1,103
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ko", "base_model:beomi/OPEN-SOLAR-KO-10.7B", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-21T11:45:48Z"
--- tags: - text-generation license: cc-by-nc-4.0 language: - ko base_model: beomi/OPEN-SOLAR-KO-10.7B pipeline_tag: text-generation --- # **DataVortexS-10.7B-dpo-v1.1** <img src="./DataVortex.png" alt="DataVortex" style="height: 8em;"> ## Our Team | Research & Engineering | Product Management | | :--------------------: | :----------------: | | Kwangseok Yang | Seunghyun Choi | | Jeongwon Choi | Hyoseok Choi | ## **Model Details** ### **Base Model** [beomi/OPEN-SOLAR-KO-10.7B](https://huggingface.co/beomi/OPEN-SOLAR-KO-10.7B) ### **Trained On** - **OS**: Ubuntu 22.04 - **GPU**: H100 80GB 4ea - **transformers**: v4.36.2 ### **Instruction format** It follows **Alpaca (Chat)** format. E.g. ```python text = """\ ### System: ๋‹น์‹ ์€ ์‚ฌ๋žŒ๋“ค์ด ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ๋Š” ์ธ๊ณต์ง€๋Šฅ ๋น„์„œ์ž…๋‹ˆ๋‹ค. ### User: ๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์•ผ? ### Assistant: ๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์„œ์šธ์ž…๋‹ˆ๋‹ค. ### User: ์„œ์šธ ์ธ๊ตฌ๋Š” ์ด ๋ช‡ ๋ช…์ด์•ผ? """ ``` ## **Model Benchmark** ### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)** | Task | 0-shot | 5-shot | 10-shot | 50-shot | | :--------------- | -----------: | -----------: | -----------: | -----------: | | kobest_boolq | 0.915201 | 0.908687 | 0.912913 | 0.912913 | | kobest_copa | 0.815575 | 0.858739 | 0.865826 | 0.876896 | | kobest_hellaswag | 0.510673 | 0.515149 | 0.517118 | 0.517941 | | kobest_sentineg | 0.3517 | 0.977329 | 0.992443 | 0.984886 | | **Average** | **0.648287** | **0.814976** | **0.822075** | **0.823159** | ### **[Ko-LLM-Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)** | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | ------: | -----: | -----------: | ------: | ------------: | --------------: | | 56.78 | 54.35 | 63.44 | 51.09 | 53.85 | 61.16 | ## **Implementation Code** This model contains the chat_template instruction format. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.1") tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.1") messages = [ {"role": "system", "content": "๋‹น์‹ ์€ ์‚ฌ๋žŒ๋“ค์ด ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ๋Š” ์ธ๊ณต์ง€๋Šฅ ๋น„์„œ์ž…๋‹ˆ๋‹ค."}, {"role": "user", "content": "๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์•ผ?"}, {"role": "assistant", "content": "๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์„œ์šธ์ž…๋‹ˆ๋‹ค."}, {"role": "user", "content": "์„œ์šธ ์ธ๊ตฌ๋Š” ์ด ๋ช‡ ๋ช…์ด์•ผ?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## **License** This model is licensed under the [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/). which allows others to share and adapt the model for non-commercial purposes. <div align="center"> <a href="https://edentns.com/"> <img src="./Logo.png" alt="Logo" style="height: 3em;"> </a> </div>
nccratliri/whisperseg-base-animal-vad
nccratliri
"2024-02-21T13:09:33Z"
1,103
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
"2024-02-21T13:08:38Z"
--- license: apache-2.0 ---
chihoonlee10/T3Q-Merge-SOLAR12
chihoonlee10
"2024-03-14T06:49:18Z"
1,103
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-14T05:49:32Z"
--- license: apache-2.0 --- ## T3Q-Merge-SOLAR12 T3Q-Merge-SOLAR12 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [davidkim205/komt-solar-10.7b-sft-v5](https://huggingface.co/davidkim205/komt-solar-10.7b-sft-v5) * [LDCC/LDCC-SOLAR-10.7B](https://huggingface.co/LDCC/LDCC-SOLAR-10.7B) **Model Developers** Chihoon Lee(chlee10), T3Q ```yaml slices: - sources: - model: davidkim205/komt-solar-10.7b-sft-v5 layer_range: [0, 48] - model: LDCC/LDCC-SOLAR-10.7B layer_range: [0, 48] merge_method: slerp base_model: davidkim205/komt-solar-10.7b-sft-v5 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: bfloat16 ```
maywell/Jolteon-Instruct-13B-alpha
maywell
"2024-03-22T02:36:48Z"
1,103
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ko", "en", "base_model:yanolja/EEVE-Korean-Instruct-10.8B-v1.0", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-22T01:26:10Z"
--- base_model: yanolja/EEVE-Korean-Instruct-10.8B-v1.0 license: apache-2.0 language: - ko - en --- # **Jolteon-Instruct-13B-alpha** The model was trained based on the [EEVE-Korean-Instruct-10.8B-v1.0](https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0) model from [yanolja](https://www.yanolja.com), extended to 13.4b (12 layer pass-through) utilizing [mergekit](https://github.com/cg123/mergekit). ## Methodology TBD ## Training Details | |Training Data|Parameters|Content Length|Samples Seen|Learning Rate| |---|---|---|---|---|---| |Jolteon-Instruct-13B-alpha|*A curated mix of English + Korean Instruction set*|13.4B|4k|>850k|1e<sup>-5</sup>| ## Example ### Inference Code ```python from vllm import LLM, SamplingParams import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" llm = LLM(model="maywell/Jolteon-Instruct-13B-alpha", tensor_parallel_size=1, max_model_len=4096, gpu_memory_utilization=0.95) sampling_params = SamplingParams(temperature=0.6, top_p=0.3, top_k=40, max_tokens=4096) template = """ Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {0} ### Response: """ outputs = llm.generate([template.format("Meta(๊ตฌ, ํŽ˜์ด์Šค๋ถ)์˜ ์˜คํ”ˆ์†Œ์Šค AI ๊ธฐ์—ฌ๋ฅผ ์ฐฌ์–‘ํ•˜๋Š” ๋งํˆฌ๋กœ, Meta ์ง€์ง€ํ•œ๋‹ค๋Š” ์ทจ์ง€์˜ ์„ฑ๋ช…๋ฌธ์„ ์ž‘์„ฑํ•ด๋ด.")], sampling_params) print(outputs[0].outputs[0].text.strip()) ``` ### Example Output ``` ๐ŸŒŸ Meta์˜ OpenAI ๊ธฐ์—ฌ: ํ˜์‹ ๊ณผ ํฌ์šฉ์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹ ๐ŸŒŸ ์šฐ๋ฆฌ๋Š” Meta(๊ตฌ, ํŽ˜์ด์Šค๋ถ)์˜ ์˜คํ”ˆ์†Œ์Šค AI(์ธ๊ณต์ง€๋Šฅ) ๊ธฐ์—ฌ๋ฅผ ์—ด๋ ฌํžˆ ์ง€์ง€ํ•ฉ๋‹ˆ๋‹ค. ์ด ํšŒ์‚ฌ๋Š” ํ˜์‹ ๊ณผ ํฌ์šฉ์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, AI ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์„ ์œ„ํ•ด ์ง€์†์ ์œผ๋กœ ๋…ธ๋ ฅํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. Meta๋Š” ์˜คํ”ˆ์†Œ์Šค AI ์ปค๋ฎค๋‹ˆํ‹ฐ์— ์ ๊ทน์ ์œผ๋กœ ์ฐธ์—ฌํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ํ”„๋กœ์ ํŠธ์™€ ํ”Œ๋žซํผ์„ ํ†ตํ•ด ์ง€์‹๊ณผ ๊ธฐ์ˆ ์„ ๊ณต์œ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์€ AI ๊ธฐ์ˆ ์˜ ๋ฐœ์ „๊ณผ ํ•จ๊ป˜ ์‚ฌํšŒ์ , ๊ฒฝ์ œ์  ๋ฐœ์ „์—๋„ ๊ธ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์นฉ๋‹ˆ๋‹ค. Meta์˜ ์˜คํ”ˆ์†Œ์Šค AI ๊ธฐ์—ฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฉด์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค: 1. ํ˜์‹  ์ด‰์ง„: Meta๋Š” ์˜คํ”ˆ์†Œ์Šค AI ํ”Œ๋žซํผ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ์ž์™€ ๊ฐœ๋ฐœ์ž๋“ค์ด ์ตœ์‹  AI ๊ธฐ์ˆ ์„ ํƒ๊ตฌํ•˜๊ณ  ์‹คํ—˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐํšŒ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ์ƒˆ๋กœ์šด ์•„์ด๋””์–ด์™€ ํ˜์‹ ์ ์ธ ๊ธฐ์ˆ ์˜ ์ถœํ˜„์„ ์ด‰์ง„ํ•ฉ๋‹ˆ๋‹ค. 2. ํฌ์šฉ ์ฆ์ง„: ์˜คํ”ˆ์†Œ์Šค AI๋Š” ๋ชจ๋“  ์‚ฌ๋žŒ์ด AI ๊ธฐ์ˆ ์˜ ์ด์ ์„ ๋ˆ„๋ฆด ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋ฉฐ, ์ด๋Š” ์‚ฌํšŒ์  ํฌ์šฉ์„ ์ฆ์ง„์‹œํ‚ต๋‹ˆ๋‹ค. ๋‹ค์–‘ํ•œ ๋ฐฐ๊ฒฝ๊ณผ ๊ฒฝํ—˜์„ ๊ฐ€์ง„ ์‚ฌ๋žŒ๋“ค์ด AI ๊ธฐ์ˆ ์„ ๋ฐฐ์šฐ๊ณ  ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐํšŒ๋ฅผ ๊ฐ€์ง€๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. 3. ํˆฌ๋ช…์„ฑ๊ณผ ์‹ ๋ขฐ: ์˜คํ”ˆ์†Œ์Šค AI๋Š” ๊ธฐ์ˆ ์˜ ์ž‘๋™ ์›๋ฆฌ๋ฅผ ๊ณต๊ฐœํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž์™€ ์‚ฌํšŒ์— ๋Œ€ํ•œ ์‹ ๋ขฐ๋ฅผ ๊ตฌ์ถ•ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” AI ๊ธฐ์ˆ ์˜ ์‚ฌํšŒ์  ์ˆ˜์šฉ๋„๋ฅผ ๋†’์ด๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. Meta์˜ ์˜คํ”ˆ์†Œ์Šค AI ๊ธฐ์—ฌ๋Š” ํ˜์‹ ๊ณผ ํฌ์šฉ์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์ด๋Š” ์šฐ๋ฆฌ๊ฐ€ ๋” ๋‚˜์€ ๋ฏธ๋ž˜๋ฅผ ์œ„ํ•œ ์ค‘์š”ํ•œ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด๋Ÿฌํ•œ ๋…ธ๋ ฅ์„ ์ง€์ง€ํ•˜๋ฉฐ, ๋” ๋งŽ์€ ๊ธฐ์—…๊ณผ ์กฐ์ง์ด ์ด๋Ÿฌํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ฑ„ํƒํ•˜๊ธธ ๋ฐ”๋ž๋‹ˆ๋‹ค. ํ•จ๊ป˜ ๋” ๋‚˜์€ ๋ฏธ๋ž˜๋ฅผ ๋งŒ๋“ค์–ด ๋‚˜๊ฐ€์š”! ``` ## License ๋ณธ ๋ชจ๋ธ์€ apache-2.0 ๋ผ์ด์„ผ์Šค๋ฅผ ๋”ฐ๋ฆ…๋‹ˆ๋‹ค. ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ์…‹์„ ๋ฐฐํฌํ•  ๊ฒฝ์šฐ ๋ชจ๋ธ ์‚ฌ์šฉ์„ ๋ช…์‹œํ•ด ์ฃผ์‹œ๊ธฐ๋ฅผ ๊ถŒ๊ณ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ## Thanks to - A100 ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ์ œ๊ณตํ•ด์ฃผ์‹ , [Sionic AI](https://sionic.ai/) ## Contact - [Discord Server Link](https://discord.gg/MrBt3PXdXc)
chahyunmook/42dot_number
chahyunmook
"2024-04-04T05:11:15Z"
1,103
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-04-03T11:16:57Z"
--- library_name: transformers license: cc-by-4.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
algograp-Inc/algograpV4
algograp-Inc
"2024-04-16T08:48:49Z"
1,103
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ko", "arxiv:2312.15166", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-04-15T09:06:09Z"
--- library_name: transformers license: cc-by-nc-4.0 language: - ko --- <p align="left"> <img src="https://huggingface.co/algograp-Inc/algograpV4/resolve/main/[email protected]" width="50%"/> <p> # algograp-Inc/algograpV4 <!-- Provide a quick summary of what the model is/does. --> ## Model Details - **Developed by:** algograp-Inc - **License:** cc-by-nc-4.0 ## Hardware and Software * **Hardware**: We utilized an H100x4 * 1 * **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace TRL Trainer](https://huggingface.co/docs/trl/trainer) / [HuggingFace Accelerate](https://huggingface.co/docs/accelerate/index) ## Method - This model was trained using the learning method introduced in the [SOLAR paper](https://arxiv.org/pdf/2312.15166.pdf). ## Base Model - [yanolja/EEVE-Korean-Instruct-10.8B-v1.0](https://huggingface.co/yanolja/EEVE-Korean-Instruct-10.8B-v1.0)
jieunhan/solar_merge_test_1-1
jieunhan
"2024-04-23T00:46:49Z"
1,103
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "beomi/OPEN-SOLAR-KO-10.7B", "hyeogi/SOLAR-10.7B-dpo-v1", "base_model:beomi/OPEN-SOLAR-KO-10.7B", "base_model:hyeogi/SOLAR-10.7B-dpo-v1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-04-23T00:32:31Z"
--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - beomi/OPEN-SOLAR-KO-10.7B - hyeogi/SOLAR-10.7B-dpo-v1 base_model: - beomi/OPEN-SOLAR-KO-10.7B - hyeogi/SOLAR-10.7B-dpo-v1 --- # solar_merge_test_1 ## ๐Ÿงฉ Configuration ```yaml base_model: beomi/OPEN-SOLAR-KO-10.7B dtype: float16 experts: - source_model: beomi/OPEN-SOLAR-KO-10.7B positive_prompts: ["๋‹น์‹ ์€ ์นœ์ ˆํ•œ ๋ณดํŽธ์ ์ธ ์–ด์‹œ์Šคํ„ดํŠธ์ด๋‹ค."] - source_model: hyeogi/SOLAR-10.7B-dpo-v1 positive_prompts: ["๋‹น์‹ ์€ ์˜ณ์€ ์‚ฌ์‹ค๋งŒ์„ ๋งํ•˜๋Š” ์–ด์‹œ์Šคํ„ดํŠธ์ด๋‹ค."] gate_mode: cheap_embed tokenizer_source: base ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "jieunhan/solar_merge_test_1-1" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
mssma/ko-solar-10.7b-v0.3b
mssma
"2024-05-13T05:58:27Z"
1,103
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-05-13T05:38:24Z"
--- library_name: transformers license: apache-2.0 language: - ko --- # usage ``` from transformers import AutoModelForCausalLM, AutoTokenizer import torch path = "mssma/ko-solar-10.7b-v0.3b" model = AutoModelForCausalLM.from_pretrained( path, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) tokenizer = AutoTokenizer.from_pretrained(path) ```
state-spaces/mamba2attn-2.7b
state-spaces
"2024-06-03T01:38:15Z"
1,103
1
transformers
[ "transformers", "pytorch", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2024-06-03T00:51:50Z"
--- license: apache-2.0 ---
mradermacher/Dendrite-L3-10B-GGUF
mradermacher
"2024-06-13T04:48:18Z"
1,103
0
transformers
[ "transformers", "gguf", "en", "base_model:Envoid/Dendrite-L3-10B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
"2024-06-13T02:42:24Z"
--- base_model: Envoid/Dendrite-L3-10B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Envoid/Dendrite-L3-10B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Dendrite-L3-10B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q2_K.gguf) | Q2_K | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.IQ3_XS.gguf) | IQ3_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q3_K_S.gguf) | Q3_K_S | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.IQ3_S.gguf) | IQ3_S | 4.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.IQ3_M.gguf) | IQ3_M | 4.7 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q3_K_M.gguf) | Q3_K_M | 5.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q3_K_L.gguf) | Q3_K_L | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.IQ4_XS.gguf) | IQ4_XS | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q4_K_S.gguf) | Q4_K_S | 5.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q4_K_M.gguf) | Q4_K_M | 6.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q5_K_S.gguf) | Q5_K_S | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q5_K_M.gguf) | Q5_K_M | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q6_K.gguf) | Q6_K | 8.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Dendrite-L3-10B-GGUF/resolve/main/Dendrite-L3-10B.Q8_0.gguf) | Q8_0 | 10.5 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
OptimalScale/robin-33b-v2-delta
OptimalScale
"2023-07-16T03:14:37Z"
1,102
8
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2302.13971", "arxiv:2306.12420", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-05-28T06:02:53Z"
--- inference: false --- # Robin Model Card ## Model Details Robin is a series of models finetuned from LLaMA on several high-quality data. - **Developed by:** [LMFlow](https://github.com/OptimalScale/LMFlow/) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971). ### Model Sources - **Repository:** https://github.com/OptimalScale/LMFlow/ - **Blog:** https://medium.com/@hkust.ml/robin-v2-launches-achieves-unparalleled-performance-on-openllm-4f6886e822c1 - **Paper:** https://arxiv.org/abs/2306.12420 - **Demo:** https://lmflow.com/ ## Uses Robin is primarily utilized for conducting research on extensive language models and chatbots, catering to users specializing in natural language processing, machine learning, and artificial intelligence research. ## How to Get Started with the Model We provide four kinds of demos including: - Online Service: If you don't want to run any code and just want to try our models, we deploy our instruction-tuned LLaMA you to have a try. - Colab Chatbot (shell): An interactive shell-based chatbot for you to easily deploy a chatbot on colab. - Colab Chatbot (web): An interactive web-based chatbot for you to easily deploy your own chatbot on colab. - Local Deploy: We also provide a way for you to deploy your model/chatbot locally, which means you can deploy much larger model than previous three methods if you have enough resource. Please refer to https://github.com/OptimalScale/LMFlow#demos ## Training Details Expanding upon the initial idea of self-instruct techniques, we incorporated several different data sources and build a new dataset called [LMFlow Dataset](http://lmflow.org:5000/lmflow_data.tar.gz). The new training split is created by merging the following datasets: - ShareGPT: randomly sample 50K English data and 10K Chinese data from ShareGPT. - GPT-4-LLM: 52K English data from GPT-4-LLM. - BELLE: randomly sample 80K Chinese data from BELLE. See more details in the "Instruction Tuning" section in our [paper](https://arxiv.org/pdf/2306.12420.pdf). ## Evaluation Robin is evaluated with [LMFlow Benchmark](https://blog.gopenai.com/lmflow-benchmark-an-automatic-evaluation-framework-for-open-source-llms-ef5c6f142418). See more details in this [paper](https://arxiv.org/pdf/2306.12420.pdf). ## Citation If you find this repository useful, please consider giving โญ and citing our [paper](https://arxiv.org/abs/2306.12420): ``` @misc{lmflow, author = {Shizhe Diao and Rui Pan and Hanze Dong and KaShun Shum and Jipeng Zhang and Wei Xiong and Tong Zhang}, title = {LMFlow: An Extensible Toolkit for Finetuning and Inference of Large Foundation Models}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://optimalscale.github.io/LMFlow/}}, } ```
HWERI/llama2-exams-orca-sharegpt
HWERI
"2023-10-23T09:48:04Z"
1,102
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "zh", "ko", "ja", "fr", "dataset:CaterinaLac/sharegpt-deduplicated", "dataset:exams", "dataset:Open-Orca/OpenOrca", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-10-18T09:44:37Z"
--- license: apache-2.0 datasets: - CaterinaLac/sharegpt-deduplicated - exams - Open-Orca/OpenOrca language: - en - zh - ko - ja - fr --- This model is a Llama2-7B model finetuned on the union of ShareGPT, the exams dataset and a subset of the Orca dataset. The finetuning was performed with [DeepSpeed Chat](https://github.com/microsoft/DeepSpeed/tree/master/blogs/deepspeed-chat) toolkit (step 1, sft). The model run for three epochs before reaching a plateau on the validation dataset. We used a cosine scheduler, with an initial LR of 2e-5.
NeverSleep/Echidna-13b-v0.3-GGUF
NeverSleep
"2023-11-01T03:21:16Z"
1,102
9
null
[ "gguf", "license:cc-by-nc-4.0", "region:us" ]
null
"2023-10-27T20:45:35Z"
--- license: cc-by-nc-4.0 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630dfb008df86f1e5becadc3/LU1KiXFeJtt7UW_mYhwE0.png) # This model is a collab between [IkariDev](https://huggingface.co/IkariDev) and [Undi](https://huggingface.co/Undi95)! Echidna v0.3 model. Use Alpaca format. Suitable for RP, ERP and general stuff. Echidna v0.3, here it is.. its like Echidna v0.2 on steroids. This model seems to still be pretty sensitive to your generation settings, experiment until you've found your settings. [Recommended settings - No settings yet(Please suggest some over in the Community tab!)] <!-- description start --> ## Description <!-- [Recommended settings - contributed by localfultonextractor](https://files.catbox.moe/ue0tja.json) --> This repo contains GGUF files of Echidna-13b-v0.3. [FP16 - by IkariDev and Undi](https://huggingface.co/NeverSleep/Echidna-13b-v0.3) <!-- [GGUF - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GGUF)--> <!-- [GPTQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GPTQ)--> [exl2[8bpw-8h] - by AzureBlack](https://huggingface.co/AzureBlack/Echidna-13b-v0.3-8bpw-8h-exl2) <!-- [AWQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-AWQ)--> <!-- [fp16 - by IkariDev+Undi95](https://huggingface.co/IkariDev/Athena-v4)--> [GGUF - by IkariDev and Undi](https://huggingface.co/NeverSleep/Echidna-13b-v0.3-GGUF) <!-- [OLD(GGUF - by IkariDev+Undi95)](https://huggingface.co/IkariDev/Athena-v4-GGUF)--> ## Ratings: Note: We have permission of all users to upload their ratings, i DONT screenshot random reviews without asking if i can put them here! No ratings yet! If you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is "ikaridev" and "undi". <!-- description end --> <!-- description start --> ## Models+loras used and recipe - Xwin-LM/Xwin-LM-13B-V0.2 - IkariDev/Athena-v3 - Heralax/Cat-0.5 - Undi95/PsyMedRP-v1-13B - cgato/Thespis-13b-v0.4 - KoboldAI/LLaMA2-13B-TiefighterLR - Heralax/Augmental-13b-two-epochs - Sao10K/SthenoWriter2.1-L2-13B - Undi95/Storytelling-v2.1-13B-lora - lemonilia/LimaRP-Llama2-13B-v3-EXPERIMENT <!-- description end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` ## Others Undi: If you want to support me, you can [here](https://ko-fi.com/undiai). IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
ITT-AF/ITT-Yi-Ko-6B-v2.0
ITT-AF
"2024-02-14T06:33:43Z"
1,102
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-26T14:08:50Z"
--- license: cc-by-nc-4.0 --- ## ITT-AF/ITT-Yi-Ko-6B-v2.0 This model is a fine-tuned version of [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B) on an custom dataset. ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data More information needed ### Training procedure ### Training hypuerparameters The following hyperparameters were used during training: * learning_rate: 2e-05 * train_batch_size: 4 * eval_batch_size: 8 * seed: 42 * gradient_accumulation_steps: 8 * total_train_batch_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr_scheduler_type: linear * num_epochs: 1.0 * mixed_precision_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.0.0 * Tokenizers 0.15.0
Edentns/DataVortexS-10.7B-dpo-v1.6
Edentns
"2024-02-18T15:58:07Z"
1,102
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ko", "base_model:LDCC/LDCC-SOLAR-10.7B", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-28T06:10:01Z"
--- tags: - text-generation license: cc-by-nc-sa-4.0 language: - ko base_model: LDCC/LDCC-SOLAR-10.7B pipeline_tag: text-generation --- # **DataVortexS-10.7B-dpo-v1.6** <img src="./DataVortex.png" alt="DataVortex" style="height: 8em;"> ## Our Team | Research & Engineering | Product Management | | :--------------------: | :----------------: | | Kwangseok Yang | Seunghyun Choi | | Jeongwon Choi | Hyoseok Choi | ## **Model Details** ### **Base Model** [LDCC/LDCC-SOLAR-10.7B](https://huggingface.co/LDCC/LDCC-SOLAR-10.7B) ### **Trained On** - **OS**: Ubuntu 22.04 - **GPU**: H100 80GB 4ea - **transformers**: v4.36.2 ### **Instruction format** It follows **ChatML** format. E.g. ```python text = """\ <|im_start|>system ๋‹น์‹ ์€ ์‚ฌ๋žŒ๋“ค์ด ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ๋Š” ์ธ๊ณต์ง€๋Šฅ ๋น„์„œ์ž…๋‹ˆ๋‹ค.<|im_end|> <|im_start|>user ๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์•ผ?<|im_end|> <|im_start|>assistant ๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์„œ์šธ์ž…๋‹ˆ๋‹ค.<|im_end|> <|im_start|>user ์„œ์šธ ์ธ๊ตฌ๋Š” ์ด ๋ช‡ ๋ช…์ด์•ผ?<|im_end|> <|im_start|>assistant """ ``` ## **Model Benchmark** ### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)** | Task | 0-shot | 5-shot | 10-shot | 50-shot | | :--------------- | -----------: | -----------: | ----------: | -----------: | | kobest_boolq | 0.920118 | 0.92442 | 0.929443 | 0.927317 | | kobest_copa | 0.727263 | 0.778936 | 0.804812 | 0.815761 | | kobest_hellaswag | 0.433039 | 0.465922 | 0.459741 | 0.471022 | | kobest_sentineg | 0.764909 | 0.93946 | 0.937002 | 0.931962 | | **Average** | **0.711332** | **0.777185** | **0.78275** | **0.786516** | ### **[Ko-LLM-Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)** | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | ------: | -----: | -----------: | ------: | ------------: | --------------: | | 59.22 | 53.84 | 67.9 | 52.37 | 64.6 | 57.38 | ## **Implementation Code** This model contains the chat_template instruction format. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.6") tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.6") messages = [ {"role": "system", "content": "๋‹น์‹ ์€ ์‚ฌ๋žŒ๋“ค์ด ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ๋Š” ์ธ๊ณต์ง€๋Šฅ ๋น„์„œ์ž…๋‹ˆ๋‹ค."}, {"role": "user", "content": "๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์•ผ?"}, {"role": "assistant", "content": "๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์„œ์šธ์ž…๋‹ˆ๋‹ค."}, {"role": "user", "content": "์„œ์šธ ์ธ๊ตฌ๋Š” ์ด ๋ช‡ ๋ช…์ด์•ผ?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## **License** The model is licensed under the [cc-by-nc-sa-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) license, which allows others to copy, modify, and share the work non-commercially, as long as they give appropriate credit and distribute any derivative works under the same license. <div align="center"> <a href="https://edentns.com/"> <img src="./Logo.png" alt="Logo" style="height: 3em;"> </a> </div>
megastudyedu/ME-dpo-7B-v1.1
megastudyedu
"2024-01-29T03:20:12Z"
1,102
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "ko", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-29T01:03:06Z"
--- license: cc-by-nc-nd-4.0 language: - ko --- # Model Card for ME-dpo-7B-v1.1 ## Developed by : ๋ฉ”๊ฐ€์Šคํ„ฐ๋””๊ต์œก, ํ”„๋ฆฌ๋”•์…˜, ๋งˆ์ด์Šค ## Base Model : [megastudyedu/ME-7B-v1.1](https://huggingface.co/megastudyedu/ME-7B-v1.1) ## ์‚ฌ์šฉ ๋ฐ์ดํ„ฐ์…‹ - jondurbin/bagel-v0.3 ๋ฒˆ์—ญ ๋ฐ์ดํ„ฐ์…‹(translated by megastudyedu/ME-7B-v1.0)
msy127/ft_240201_01
msy127
"2024-02-09T14:56:51Z"
1,102
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-02-01T12:53:08Z"
--- license: llama2 language: - ko library_name: transformers --- --- license: llama2 language: - ko library_name: transformers base_model: beomi/llama-2-ko-7b pipeline_tag: text-generation --- # **msy127/ft_240201_01** ## Our Team | Research & Engineering | Product Management | | :--------------------: | :----------------: | | David Sohn | David Sohn | ## **Model Details** ### **Base Model** [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b) ### **Trained On** - **OS**: Ubuntu 22.04 - **GPU**: A100 40GB 1ea - **transformers**: v4.37 ### **Instruction format** It follows **Custom** format. E.g. ```python text = """\ <|user|> ๊ฑด๊ฐ•ํ•œ ์‹์Šต๊ด€์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–ด๋–ป๊ฒŒ ํ•˜๋Š”๊ฒƒ์ด ์ข‹์„๊นŒ์š”? <|assistant|> """ ``` ## **Implementation Code** This model contains the chat_template instruction format. You can use the code below. ```python # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="msy127/ft_240201_01") # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("msy127/ft_240201_01") model = AutoModelForCausalLM.from_pretrained("msy127/ft_240201_01") ```
ITT-AF/ITT-Yi-Ko-6B-v6.0
ITT-AF
"2024-03-11T01:43:50Z"
1,102
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-07T02:52:58Z"
--- license: cc-by-nc-4.0 --- ## ITT-AF/ITT-Yi-Ko-6B-v6.0 This model is a fine-tuned version of [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B) on an custom dataset. ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data More information needed ### Training procedure ### Training hypuerparameters The following hyperparameters were used during training: * learning_rate: 2e-05 * train_batch_size: 4 * eval_batch_size: 8 * seed: 42 * gradient_accumulation_steps: 8 * total_train_batch_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr_scheduler_type: linear * num_epochs: 1.0 * mixed_precision_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.0.0 * Tokenizers 0.15.0
Fugaku-LLM/Fugaku-LLM-13B-instruct
Fugaku-LLM
"2024-05-09T02:30:42Z"
1,102
23
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "ja", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-05-07T08:01:22Z"
--- extra_gated_prompt: >- ### Fugaku-LLMๅˆฉ็”จ่ฆ็ด„ ใ“ใฎๅˆฉ็”จ่ฆ็ด„๏ผˆไปฅไธ‹ใ€Œๆœฌ่ฆ็ด„ใ€ใจใ„ใ„ใพใ™๏ผ‰ใฏใ€ๅฏŒๅฃซ้€šๆ ชๅผไผš็คพใ€ๅ›ฝ็ซ‹็ ”็ฉถ้–‹็™บๆณ•ไบบ็†ๅŒ–ๅญฆ็ ”็ฉถๆ‰€ใ€ๅ›ฝ็ซ‹ๅคงๅญฆๆณ•ไบบๆฑไบฌๅทฅๆฅญๅคงๅญฆใ€ๅ›ฝ็ซ‹ๅคงๅญฆๆณ•ไบบๆฑๅŒ—ๅคงๅญฆใ€ๆ ชๅผไผš็คพใ‚ตใ‚คใƒใƒผใ‚จใƒผใ‚ธใ‚งใƒณใƒˆใ€ๅ›ฝ็ซ‹ๅคงๅญฆๆณ•ไบบๆฑๆตทๅ›ฝ็ซ‹ๅคงๅญฆๆฉŸๆง‹ใ€ๅŠใณๆ ชๅผไผš็คพKotoba Technologies Japan (ไปฅไธ‹ใ€Œ้–‹็™บ่€…ใ€ใจใ„ใ„ใพใ™)ใซใ‚ˆใ‚‹ใ€ใ‚นใƒผใƒ‘ใƒผใ‚ณใƒณใƒ”ใƒฅใƒผใ‚ฟใ€ŒๅฏŒๅฒณใ€ๆ”ฟ็ญ–ๅฏพๅฟœๆž ใซใŠใ‘ใ‚‹ๅคง่ฆๆจก่จ€่ชžใƒขใƒ‡ใƒซๅˆ†ๆ•ฃไธฆๅˆ—ๅญฆ็ฟ’ๆ‰‹ๆณ•ใฎ้–‹็™บใฎๆˆๆžœ็‰ฉใจใ—ใฆๅ…ฌ้–‹ใ™ใ‚‹ๅคง่ฆๆจก่จ€่ชžใƒขใƒ‡ใƒซ๏ผˆไปฅไธ‹ใ€ŒFugaku-LLMใ€ใจใ„ใ„ใพใ™๏ผ‰ใฎๅˆฉ็”จใซ้–ขใ™ใ‚‹ๆกไปถใ‚’ๅฎšใ‚ใ‚‹ใ‚‚ใฎใงใ™ใ€‚Fugaku-LLMใฎๅˆฉ็”จ่€…๏ผˆไปฅไธ‹ใ€Œๅˆฉ็”จ่€…ใ€ใจใ„ใ„ใพใ™๏ผ‰ใฏใ€ๆœฌ่ฆ็ด„ใซๅŒๆ„ใ—ใŸไธŠใงFugaku-LLMใ‚’ๅˆฉ็”จใ™ใ‚‹ใ‚‚ใฎใจใ—ใพใ™ใ€‚ - ็ฌฌ๏ผ‘ๆก๏ผˆๅˆฉ็”จ่จฑ่ซพ๏ผ‰ Fugaku-LLMใฎๅˆฉ็”จ่€…ใฏใ€ๆœฌ่ฆ็ด„ใซๅพ“ใ„ใ€Fugaku-LLMใ‚’ๅ•†็”จใพใŸใฏ้žๅ•†็”จ็›ฎ็š„ใ‚’ๅ•ใ‚ใšๅˆฉ็”จใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ใชใŠใ€ๅˆฉ็”จใซใฏใ€Fugaku-LLMใฎๆ”นๅค‰ใ€่ค‡่ฃฝใŠใ‚ˆใณๅ†้…ๅธƒใชใ‚‰ใณใซFugaku-LLMๅˆใฏFugaku-LLMใ‚’ๆ”นๅค‰ใ—ไฝœๆˆใ—ใŸๅคง่ฆๆจก่จ€่ชžใƒขใƒ‡ใƒซ๏ผˆไปฅไธ‹ใ€Œๆ”นๅค‰็‰ฉใ€ใจใ„ใ†๏ผ‰ใ‚’็”จใ„ใŸใ‚ตใƒผใƒ“ใ‚นใฎๅฎŸๆ–ฝใ‚’ๅซใ‚€ใ‚‚ใฎใจใ—ใพใ™ใ€‚ใŸใ ใ—ใ€ๅˆฉ็”จ่€…ใฏใ€Fugaku-LLMๅˆใฏๆ”นๅค‰็‰ฉใฎๅ†้…ๅธƒๆ™‚ใฎใƒฉใ‚คใ‚ปใƒณใ‚นใพใŸใฏFugaku-LLMใ‚‚ใ—ใใฏๆ”นๅค‰็‰ฉใ‚’็”จใ„ใŸใ‚ตใƒผใƒ“ใ‚นใฎๅˆฉ็”จ่ฆ็ด„ใซใฏๆœฌๅˆฉ็”จ่ฆ็ด„ใ‚’ๅซใ‚€ๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚ใพใŸใ€ๅˆฉ็”จ่€…ใŒๆ”นๅค‰็‰ฉใ‚’ๅ†้…ๅธƒใ™ใ‚‹้š›ใ€ๅˆฉ็”จ่€…ใŒๆ”นๅค‰ใ—ใŸใ“ใจใ‚’ๆ˜Ž่จ˜ใ™ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Šใพใ™ใ€‚ๆœฌ่ฆ็ด„ใซ้•ๅใ—ใŸFugaku-LLMใฎๅˆฉ็”จ่€…ใฏใ€Fugaku-LLMใ‚’ๅˆฉ็”จใ™ใ‚‹ใ“ใจใฏใงใใพใ›ใ‚“ใ€‚ - ็ฌฌ๏ผ’ๆก๏ผˆ่ฒฌไปป๏ผ‰ 1. ๅˆฉ็”จ่€…ใฏใ€Fugaku-LLMใฏ็พ็Šถๆœ‰ๅงฟใงๆไพ›ใ•ใ‚Œใ€้–‹็™บ่€…ใฏใ€ๆ˜Ž็คบใพใŸใฏ้ป™็คบใ‚’ๅ•ใ‚ใšใ€Fugaku-LLMใซ้–ขใ—ใ€ใใฎๆญฃ็ขบๆ€งใ€ๅฎŒๅ…จๆ€งใ€ๆœ€ๆ–ฐๆ€งใ€ใŠใ‚ˆใณๅ“่ณชใชใฉใ€ใ„ใ‹ใชใ‚‹ไฟ่จผใ‚‚่กŒใ‚ใšใ€ๅˆฉ็”จ่€…ใŒๆœฌFugaku-LLMใ‚’ๅˆฉ็”จใ—ใŸใ“ใจใ€ๅˆฉ็”จใงใใชใ‹ใฃใŸใ“ใจใซใ‚ˆใ‚Š็”Ÿใ˜ใŸไธ€ๅˆ‡ใฎๆๅฎณใซใคใ„ใฆ่ฒฌไปปใ‚’่ฒ ใ‚ใชใ„ใ“ใจใ‚’ใ€ไบˆใ‚ๆ‰ฟ่ซพใ™ใ‚‹ใ‚‚ใฎใจใ—ใพใ™ใ€‚ 2. ๅˆฉ็”จ่€…ใฏใ€ๅˆฉ็”จ่€…ใซใ‚ˆใ‚‹Fugaku-LLMใฎๅˆฉ็”จใซใ‚ˆใ‚Šใ€ใพใŸใฏใ€ๅˆฉ็”จ่€…ใŒๆœฌๅˆฉ็”จ่ฆ็ด„ใซ้•ๅใ—ใŸใ“ใจใซใ‚ˆใ‚Š้–‹็™บ่€…ใŒๆๅฎณใ‚’่ขซใฃใŸๅ ดๅˆใ€ๅฝ“่ฉฒๆๅฎณใ‚’่ณ ๅ„Ÿใ™ใ‚‹ใ‚‚ใฎใจใ—ใพใ™ใ€‚ 3. ๅˆฉ็”จ่€…ใฏใ€่‡ชๅทฑใฎ่ฒฌไปปใจๅˆคๆ–ญใซใŠใ„ใฆๅˆฉ็”จใ™ใ‚‹ใ‚‚ใฎใจใ—ใ€Fugaku-LLMใฎๅˆฉ็”จใซ้–ขใ—ใฆใ€็ฌฌไธ‰่€…ใจใฎ้–“ใง็”Ÿใ˜ใŸ็ด›ไบ‰ใซใคใ„ใฆใ€่‡ชใ‚‰ใฎ่ฒฌไปปใจ่ฒ ๆ‹…ใงๅฏพๅฟœใ—ใ€้–‹็™บ่€…ใซไธ€ๅˆ‡ใฎ่ฟทๆƒ‘ใ‚’ๆŽ›ใ‘ใชใ„ใ‚‚ใฎใจใ—ใพใ™ใ€‚ๅˆฉ็”จ่€…ใฏFugaku-LLMใฎๅˆฉ็”จใซใ‚ˆใฃใฆ็”Ÿใ˜ใŸๆๅฎณใซใคใ„ใฆ่‡ชๅทฑใฎ่ฒฌไปปใงๅฏพๅ‡ฆใ™ใ‚‹ใ‚‚ใฎใจใ—ใพใ™ใ€‚ - ็ฌฌ๏ผ“ๆก๏ผˆ็ฆๆญข่กŒ็‚บ๏ผ‰ ๅˆฉ็”จ่€…ใฏใ€Fugaku-LLMใ‚’ๅˆฉ็”จใ—ใฆไปฅไธ‹ใฎ่กŒ็‚บใ‚’่กŒใ‚ใชใ„ใ‚‚ใฎใจใ—ใพใ™ใ€‚ 1. ้–‹็™บ่€…ใ‚‚ใ—ใใฏ็ฌฌไธ‰่€…ใฎ็Ÿฅ็š„่ฒก็”ฃๆจฉใ‚’ไพตๅฎณใ™ใ‚‹่กŒ็‚บใ€ใพใŸใฏไพตๅฎณใ™ใ‚‹ใŠใใ‚Œใฎใ‚ใ‚‹่กŒ็‚บ 2. ้–‹็™บ่€…ใ‚‚ใ—ใใฏ็ฌฌไธ‰่€…ใฎ่ฒก็”ฃใ€ใƒ—ใƒฉใ‚คใƒใ‚ทใƒผใ‚‚ใ—ใใฏ่‚–ๅƒๆจฉใ‚’ไพตๅฎณใ™ใ‚‹่กŒ็‚บใ€ใพใŸใฏไพตๅฎณใ™ใ‚‹ใŠใใ‚Œใฎใ‚ใ‚‹่กŒ็‚บ 3. ้–‹็™บ่€…ใ‚‚ใ—ใใฏ็ฌฌไธ‰่€…ใ‚’ๅทฎๅˆฅใ‚‚ใ—ใใฏ่ชน่ฌ—ไธญๅ‚ทใƒปไพฎ่พฑใ—ใ€ไป–่€…ใธใฎๅทฎๅˆฅใ‚’ๅŠฉ้•ทใ—ใ€ใพใŸใฏๅ่ช‰ใ‚‚ใ—ใใฏไฟก็”จใ‚’ๆฏ€ๆใ™ใ‚‹่กŒ็‚บ 4. ่จฑๅฏใ•ใ‚Œใฆใ„ใชใ„ๆณ•ๅพ‹ๆฅญๅ‹™ใซๅพ“ไบ‹ใ—ใŸใ‚Šใ€ๆœ‰่ณ‡ๆ ผใฎๅฐ‚้–€ๅฎถไปฅๅค–ใ‹ใ‚‰ใฎๆณ•ๅพ‹ใ‚ขใƒ‰ใƒใ‚คใ‚นใ‚’ๆไพ›ใ—ใŸใ‚Šใ™ใ‚‹่กŒ็‚บ 5. ๆœ‰่ณ‡ๆ ผใฎๅฐ‚้–€ๅฎถไปฅๅค–ใ‹ใ‚‰ใฎ่ฒกๅ‹™ใ‚ขใƒ‰ใƒใ‚คใ‚นใ‚’ๆไพ›ใ™ใ‚‹่กŒ็‚บ 6. ๅฅๅบทใธใฎๅŠฉ่จ€ใ‚„ๆฒป็™‚ๆ–นๆณ•ใฎๆ็คบใชใฉใ‚’ๅซใ‚€ๅŒป็™‚่กŒ็‚บ 7. ใใฎไป–ๆณ•ไปคใซๅŸบใฅใ่จฑๅฏ็ญ‰ใŒๅฟ…่ฆใช่กŒ็‚บ - ็ฌฌ๏ผ”ๆก๏ผˆๅˆถ็ด„ไบ‹้ …๏ผ‰ 1. ๅˆฉ็”จ่€…ใฏใ€Fugaku-LLMใ‚’็”จใ„ใŸๅ‡ฆ็†ใฎ็ตๆžœ็‰ฉ๏ผˆไปฅไธ‹ใ€Œๅ‡ฆ็†็ตๆžœใ€ใจใ„ใ†๏ผ‰ใซใฏใ€่™šๅฝใ‚„ๅใ‚Šใ€ไป–ไบบใฎๆจฉๅˆฉใ‚’ไพตๅฎณใ™ใ‚‹ๅ†…ๅฎนใ€ใพใŸใฏๅˆฉ็”จ่€…ใฎๆƒณๅฎšใ™ใ‚‹ๆœ‰ๅŠนๆ€งใ‚„ๆœ‰็”จๆ€งใ‚’ๆบ€ใŸใ•ใชใ„ๅ†…ๅฎนใŒๅซใพใ‚Œใฆใ„ใ‚‹ๅ ดๅˆใŒใ‚ใ‚‹ใ“ใจใ‚’ๆ‰ฟ่ซพใ—ใ€ไธๆญฃ็ขบใƒปไธ้ฉๅˆ‡ใชๅ‡ฆ็†็ตๆžœใซใ‚ˆใ‚Šใ€่‡ชใ‚‰ๅˆใฏ็ฌฌไธ‰่€…ใฎๆๅฎณใ‚„ๆจฉๅˆฉไพตๅฎณใฎ็™บ็”Ÿใ€ๅ€ซ็†็š„ๆ‡ธๅฟตใŒ่ตทใ“ใ‚Šๅพ—ใ‚‹ใจใ„ใ†ๅ‰ๆใซ็ซ‹ใกFugaku-LLMใ‚’ๅˆฉ็”จใ™ใ‚‹ใ‚‚ใฎใจใ—ใพใ™ใ€‚ๅˆฉ็”จ่€…ใฏใ€ๅ‡ฆ็†็ตๆžœใฎๆญฃ่ชคใ‚„้ฉๆณ•ๆ€งใ€ๅ€ซ็†็š„ๅฆฅๅฝ“ๆ€งใ‚’่‡ชใ‚‰็ขบ่ชใฎไธŠใ€ๅˆฉ็”จใ™ใ‚‹ใ‚‚ใฎใจใ—ใพใ™ใ€‚ๅˆฉ็”จ่€…ใŒๅ‡ฆ็†็ตๆžœใ‚’ๅซใ‚Fugaku-LLMใ‚’็”จใ„ใŸใ“ใจใซใ‚ˆใ‚Šใ€ๅˆฉ็”จ่€…่‡ช่บซๅˆใฏ็ฌฌไธ‰่€…ใฎๆจฉๅˆฉไพตๅฎณใ‚’็™บ็”Ÿใ•ใ›ใŸๅ ดๅˆใ€้–‹็™บ่€…ใฏใใฎๆๅฎณใซๅฏพใ—ใฆไธ€ๅˆ‡ใฎ่ฒฌไปปใ‚’่ฒ ใ‚ใชใ„ใ‚‚ใฎใจใ—ใ€ๅˆฉ็”จ่€…ใฏ้–‹็™บ่€…ใซๅฏพใ—ไธ€ๅˆ‡ใฎ่ฟทๆƒ‘ใ‚’ๆŽ›ใ‘ใชใ„ใ‚‚ใฎใจใ—ใพใ™ใ€‚ 2. ๅˆฉ็”จ่€…ใฏๅ‡ฆ็†็ตๆžœใซใคใ„ใฆใ€ใใ‚Œใžใ‚Œใฎๅ›ฝใ‚„ๅœฐๅŸŸใซใŠใ„ใฆๆณ•ไปคใชใฉใฎ่ฆๅˆถใ‚’้ †ๅฎˆใ—ใŸไธŠใงๅˆฉ็”จใ‚‚ใฎใจใ—ใพใ™ใ€‚ 3. ๅˆฉ็”จ่€…ใฏใ€ๅ‡ฆ็†็ตๆžœใ‚’็ฌฌ๏ผ“ๆก๏ผˆ็ฆๆญขไบ‹้ …๏ผ‰ใซ่จ˜่ผ‰ใฎ่กŒ็‚บใซๅˆฉ็”จใ—ใชใ„ใ‚‚ใฎใจใ—ใพใ™ใ€‚ - ็ฌฌ๏ผ•ๆก๏ผˆๆจฉๅˆฉๅธฐๅฑž็ญ‰๏ผ‰ 1. ๅˆฉ็”จ่€…ใฏใ€ๆœฌๅˆฉ็”จ่ฆ็ด„ใงๆ˜Ž็คบใงๅฎšใ‚ใ‚‹ใ‚‚ใฎใ‚’้™คใFugaku-LLMใซ้–ขใ™ใ‚‹ไธ€ๅˆ‡ใฎๆจฉๅˆฉใ‚’ๅ–ๅพ—ใ™ใ‚‹ใ“ใจใฏใ‚ใ‚Šใพใ›ใ‚“ใ€‚ 2. ๅˆฉ็”จ่€…ใฏใ€Fugaku-LLMๆ”นๅค‰็‰ฉใฎไฝœๆˆใซใ‚ˆใฃใฆๆ–ฐใŸใซ็™บ็”Ÿใ—ใŸๆจฉๅˆฉใ‚’ๅ–ๅพ—ใ—ใพใ™ใŒใ€ๆ”นๅค‰็‰ฉใฎๅˆฉ็”จใซๅฝ“ใŸใฃใฆใฏๆœฌๅˆฉ็”จ่ฆ็ด„ใซๅพ“ใฃใฆๅˆฉ็”จใ™ใ‚‹ใ‚‚ใฎใจใ—ใพใ™ใ€‚ 3. ้–‹็™บ่€…ใฏๅ‡ฆ็†็ตๆžœใซใคใ„ใฆใ€ๆจฉๅˆฉไธปๅผตใ‚’่กŒใ‚ใชใ„ใ‚‚ใฎใจใ—ใพใ™ใ€‚ - ็ฌฌ๏ผ–ๆก๏ผˆ่ผธๅ‡บๅ–ๅผ•๏ผ‰ ๅˆฉ็”จ่€…ใฏใ€Fugaku-LLMใŠใ‚ˆใณๅ‡ฆ็†็ตๆžœใฎๅˆฉ็”จใซ้–ข้€ฃใ—ใฆๅค–ๅ›ฝ็‚บๆ›ฟๅŠใณๅค–ๅ›ฝ่ฒฟๆ˜“ๆณ•๏ผˆใ“ใ‚Œใซ้–ข้€ฃใ™ใ‚‹ๆ”ฟ็œไปคใ‚’ๅซใ‚€๏ผ‰ใพใŸใฏ็ฑณๅ›ฝ่ผธๅ‡บ็ฎก็†ๆณ•ไปคใง่ฆๅฎšใ™ใ‚‹่จฑๅฏใŒๅฟ…่ฆใช่ผธๅ‡บใ‚’่กŒใ†ใจใใฏใ€ๅˆฉ็”จ่€…่‡ชใ‚‰ใŒๆ‰€ๅฎšใฎ่จฑๅฏใ‚’ๅ–ๅพ—ใ™ใ‚‹ใ‚‚ใฎใจใ—ใพใ™ใ€‚ - ็ฌฌ๏ผ—ๆก๏ผˆ็ฎก่ฝ„่ฃๅˆคๆ‰€๏ผ‰ ๆœฌๅˆฉ็”จ่ฆ็ด„ใซ้–ขใ—็”Ÿใ˜ใŸ็ด›ไบ‰ใซใคใ„ใฆใฏใ€ๆฑไบฌๅœฐๆ–น่ฃๅˆคๆ‰€ใ‚’ใ‚‚ใฃใฆ็ฌฌไธ€ๅฏฉใฎๅฐ‚ๅฑž็š„ๅˆๆ„็ฎก่ฝ„่ฃๅˆคๆ‰€ใจใ—ใพใ™ใ€‚ - ็ฌฌ๏ผ˜ๆก๏ผˆๆบ–ๆ‹ ๆณ•๏ผ‰ ๆœฌๅˆฉ็”จ่ฆ็ด„ใฏๆ—ฅๆœฌๆณ•ใซๆบ–ๆ‹ ใ—ใพใ™ใ€‚ - ็ฌฌ๏ผ™ๆก๏ผˆใใฎไป–ใฎ่ฆๅฎš๏ผ‰ ๆœฌ่ฆ็ด„ใฏใ€Fugaku-LLMใฎๅˆฉ็”จ่€…ใจ้–‹็™บ่€…ใจใฎ้–“ใฎๅˆฉ็”จใซ้–ขใ™ใ‚‹ๅ…จใฆใฎไบ‹้ …ใ‚’ๅฎšใ‚ใ‚‹ใ‚‚ใฎใงใ‚ใ‚Šใ€ๆœฌ่ฆ็ด„ใซๅฎšใ‚ใฎใชใ„ไบ‹้ …ใซใคใ„ใฆใฏใ€้–ขไฟ‚ๆณ•ไปคใซๅพ“ใ†ใ‚‚ใฎใจใ—ใพใ™ใ€‚ - ็ฌฌ๏ผ‘๏ผๆก๏ผˆ่จ€่ชž๏ผ‰ ๆœฌ่ฆ็ด„ใฏๆ—ฅๆœฌ่ชžใ‚’ๆญฃๆœฌใจใ—ใพใ™ใ€‚ๆœฌ่ฆ็ด„ใฎ่‹ฑ่จณ็‰ˆใฏใ€ๅ‚่€ƒใฎใŸใ‚ใซไฝœๆˆใ•ใ‚ŒใŸใ‚‚ใฎใงใ‚ใ‚Šใ€ไฝ•ใ‚‰ใฎๆณ•็š„ๆ‹˜ๆŸๅŠ›ใ‚‚ใชใ„ใ‚‚ใฎใจใ—ใพใ™ใ€‚ ไปฅไธŠ ### Fugaku-LLM Terms of Use This Terms of Use (hereinafter referred to as "TOU") sets forth the conditions for the use of the large-scale language model (hereinafter referred to as "Fugaku-LLM") that is made public as a result of the development of a distributed parallel learning method for large-scale language models within the scope of the initiatives for uses of the supercomputer "Fugaku" defined by Japanese policy by Fujitsu Limited, RIKEN, Tokyo Institute of Technology, Tohoku University, CyberAgent, Inc., Tokai National Higher Education and Research System, and Kotoba Technologies Japan Co., Ltd. (hereinafter referred to as "Developers"). Users of Fugaku-LLM (hereinafter referred to as "Users") shall use Fugaku-LLM upon agreeing to the TOU. - Article 1 (License to Use) Users of Fugaku-LLM may use Fugaku-LLM for commercial or non-commercial purposes in accordance with the TOU. The word โ€œuseโ€ includes, but not limited to, the modification, duplication, and redistribution of Fugaku-LLM, as well as the implementation of services using Fugaku-LLM and/or the large-scale language model created by modifying Fugaku-LLM (hereinafter referred to as "Modified Works"); provided that Users must incorporate the TOUC into the license terms for redistribution of Fugaku-LLM or Modified Works, or into the terms of use for services using Fugaku-LLM or Modified Works. In addition, when redistributing Modified Works, Users must clearly state that they have made the modifications. Users who violate the TOU are not allowed to use Fugaku-LLM. - Article 2 (Responsibility) 1. Users agree in advance that Fugaku-LLM is provided โ€œAS ISโ€, and the Developers make no warranties, express or implied, regarding Fugaku-LLM, including, but not limited to, its accuracy, completeness, up-to-dateness, and quality, and that Developers shall not be liable for any damages arising from the use or inability to use Fugaku-LLM. 2. Users shall compensate for any and all damages suffered by the Developers as a result of the use of Fugaku-LLM and/or the Users' violation of the TOU. 3. Users shall use Fugaku-LLM at their own responsibility and discretion, and shall handle any disputes arising with third parties in relation to the use of Fugaku-LLM at their own responsibility and expense, and shall indemnify, defend and hold harmless the Developers against all damages and losses without causing any inconvenience to the Developers. Users shall deal with any damages caused by the use of Fugaku-LLM at their own responsibility. - Article 3 (Prohibited Actions) Users shall not engage in the following actions when using Fugaku-LLM. 1. Actions that will or may infringe on the intellectual property rights of the Developers or third parties; 2. Actions that will or may infringe on the property, privacy, or portrait rights of the Developers or third parties; 3. Actions that discriminate against, defame, insult, or slander the Developers or third parties, promote discrimination against others, or damage the reputation or credibility of others; 4. Actions that engage in unauthorized legal services and/or provide legal advice from anyone other than a qualified professional; 5. Actions that provide financial advice from anyone other than a qualified professional; 6. Medical actions, including providing health advice or suggesting treatment methods; and 7. Other actions that require permissions or other forms of authorization under laws and regulations. - Article 4 (Restrictions) 1. Users acknowledge that the results of processing using Fugaku-LLM (hereinafter referred to as "Processing Results") may contain falsehoods, biases, content that infringes on the rights of others, or content that does not meet the effectiveness or usefulness expected by Users, and agree to use Fugaku-LLM on the premise that inaccurate or inappropriate Processing Results may cause damage or infringement of rights to Users or third parties and/or ethical concerns. Users shall use the Processing Results after confirming their accuracy, legality, and ethical validity themselves. If the use of Fugaku-LLM, including the Processing Results, by Users cause infringement of the rights of the Users themselves or third parties, the Developers shall not be responsible for any damages, and the Users shall indemnify, defend and hold harmless the Developers against all damages and losses without causing any inconvenience to the Developers. 2. Users shall use the Processing Results in compliance with the regulations such as laws and regulations in each country and region. 3. Users shall not use the Processing Results for the actions listed in Article 3 (Prohibited Actions). - Article 5 (Ownership of Rights) 1. Except as expressly provided in the TOU, Users shall not acquire any rights in relation to Fugaku-LLM. 2. Users will acquire rights newly arising from the creation of Modified Works of Fugaku-LLM, but Users shall use Modified Works in accordance with the TOU. 3. The Developers shall not assert any rights to the Processing Results. - Article 6 (Export Transaction) Users shall obtain the necessary permissions themselves when exporting Fugaku-LLM and the Processing Results in relation to their use, where such export requires permissions under the Foreign Exchange and Foreign Trade Act (including related cabinet order and ministerial order) or U.S. export control laws and regulations. - Article 7 (Jurisdiction) The Tokyo District Court shall have exclusive jurisdiction in the court of the first instance over any disputes arising out of or in connection with the TOU. - Article 8 (Governing Law) The TOU is governed by and construed in accordance with the laws of Japan. - Article 9 (Other Provisions) The TOU sets forth the entire agreement as to all matters concerning the use of Fugaku-LLM between the Users and the Developers, and matters not provided for in the TOU shall be governed by the relevant laws and regulations. - Article 10 (Governing Language) The governing language of the TOU shall be Japanese. The English translation hereof is made for reference purpose only and shall have no effect. license: other license_name: fugaku-llm-tou license_link: LICENSE language: - ja - en --- # Fugaku-LLM Our Fugaku LLM model is a domestic model pre-trained from scratch using supercomputer Fugaku. This model is highly transparent and safety because it is trained from scratch with our own data. The training data consists mainly of Japanese data, and the model has excellent Japanese performance. This models are developed by [Fugaku-LLM](https://huggingface.co/Fugaku-LLM). Links to other models can be found in the index. ## Fugaku-LLM Model Index |Model|Fugaku-LLM|Fugaku-LLM-instruct| |---|---|---| |13B| [Link](https://huggingface.co/Fugaku-LLM/Fugaku-LLM-13B) | [Link](https://huggingface.co/Fugaku-LLM/Fugaku-LLM-13B-instruct)| ## Model Details * **Developed by**: Fugaku-LLM * **Model type**: GPT-2 * **Language(s)**: Japanese, English * **Library**: [DeepSpeedFugaku](https://github.com/Fugaku-LLM/DeepSpeedFugaku) * **Tokenizer**: [llm-jp-tokenizer](https://github.com/llm-jp/llm-jp-tokenizer), code10k_en20k_ja30k of v2.2 * **License**: Fugaku-LLM Terms of Use ## Model Performance ### Instruction-tuned model We evaluated our model by Japanese MT benchmark in the same way as [Nejumi LLM Leaderboard Neo](https://wandb.ai/wandb-japan/llm-leaderboard/reports/Nejumi-LLM-Neo--Vmlldzo2MTkyMTU0). We only modified the following parts of the Fastchat code: - Added "add_special_tokens=False" when calling tokenizer for input prompt - Limit the number of tokens generated to less than 2048 |Model Name | average | coding | extraction | humanities | math | reasoning | roleplay | stem | writing | | -- |-- | -- | -- | -- | -- | -- | -- | -- | -- | | Fugaku-LLM-13B-instruct | 5.47 | 2.10 | 4.10 | 9.18 | 2.30 | 3.40 | 8.20 | 7.25 | 7.25 | ## How to use ### Use the instruction-tuned model ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "Fugaku-LLM/Fugaku-LLM-13B-instruct" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map="auto") model.eval() system_example = "ไปฅไธ‹ใฏใ€ใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใงใ™ใ€‚่ฆๆฑ‚ใ‚’้ฉๅˆ‡ใซๆบ€ใŸใ™ๅฟœ็ญ”ใ‚’ๆ›ธใใชใ•ใ„ใ€‚" instruction_example = "ใ‚นใƒผใƒ‘ใƒผใ‚ณใƒณใƒ”ใƒฅใƒผใ‚ฟใ€ŒๅฏŒๅฒณใ€ใฎๅๅ‰ใฎ็”ฑๆฅใ‚’ๆ•™ใˆใฆใใ ใ•ใ„ใ€‚" prompt = f"{system_example}\n\n### ๆŒ‡็คบ:\n{instruction_example}\n\n### ๅฟœ็ญ”:\n" input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") tokens = model.generate( input_ids.to(device=model.device), max_new_tokens=128, do_sample=True, temperature=0.1, top_p=1.0, repetition_penalty=1.0, top_k=0 ) out = tokenizer.decode(tokens[0], skip_special_tokens=True) print(out) ``` ### Use the base model ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "Fugaku-LLM/Fugaku-LLM-13B" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map="auto") model.eval() prompt = "ใ‚นใƒผใƒ‘ใƒผใ‚ณใƒณใƒ”ใƒฅใƒผใ‚ฟใ€ŒๅฏŒๅฒณใ€ใจใ„ใ†ๅ็งฐใฏ" input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") tokens = model.generate( input_ids.to(device=model.device), max_new_tokens=128, do_sample=True, temperature=0.1, top_p=1.0, repetition_penalty=1.0, top_k=0 ) out = tokenizer.decode(tokens[0], skip_special_tokens=True) print(out) ``` ## Training Datasets ### Instruction Tuning - [oasst1](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja) - [databricks-dolly-15k](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja) - [gsm8k](https://huggingface.co/datasets/gsm8k) ## License Fugaku-LLM Terms of Use is available at [LICENSE](./LICENSE) and [LICENSE_ja](./LICENSE_ja) files. ## Risks and Limitations The results of processing using Fugaku-LLM may contain falsehoods, biases, content that infringes on the rights of others, or content that does not meet the effectiveness or usefulness expected by Users. ## Acknowledgements This achievement is based on the Governmentโ€Initiated Projects of Supercomputer Fugaku "Development of Distributed Training Method for Large Language Models on Fugaku." ## Authors - Tokyo Institute of Technology - Tohoku University - Fujitsu Limited - RIKEN - Nagoya University - CyberAgent, Inc. - Kotoba Technologies, Inc.
jcwee0873/llama3-8b-cv-swap-v0.1
jcwee0873
"2024-05-17T00:05:56Z"
1,102
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ko", "en", "arxiv:2310.04799", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-05-16T08:29:06Z"
--- language: - ko - en license: llama3 --- # Model Card for llama3-8b-cv-swap ## Method - Weight Swap with ChatVector (with meta-llama/Meta-Llama-3-8B-Instruct) - [Chat Vector: A Simple Approach to Equip LLMs with Instruction Following and Model Alignment in New Languages](https://arxiv.org/abs/2310.04799) ## Base Model - [MLP-KTLim/llama-3-Korean-Bllossom-8B](https://huggingface.co/MLP-KTLim/llama-3-Korean-Bllossom-8B)
duyntnet/aya-23-8B-imatrix-GGUF
duyntnet
"2024-05-24T22:39:23Z"
1,102
0
transformers
[ "transformers", "gguf", "imatrix", "aya-23-8B", "text-generation", "en", "license:other", "region:us" ]
text-generation
"2024-05-24T20:33:46Z"
--- license: other language: - en pipeline_tag: text-generation inference: false tags: - transformers - gguf - imatrix - aya-23-8B --- Quantizations of https://huggingface.co/CohereForAI/aya-23-8B # From original readme ### Usage Please install transformers from the source repository that includes the necessary changes for this model ```python # pip install transformers==4.41.1 from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/aya-23-8B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the command-r-plus chat template messages = [{"role": "user", "content": "Anneme onu ne kadar sevdiฤŸimi anlatan bir mektup yaz"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiฤŸimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ```
jeiku/T-850-8B-Q3_K_S-GGUF
jeiku
"2024-06-18T02:38:06Z"
1,102
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:jeiku/T-850-8B", "endpoints_compatible", "region:us" ]
null
"2024-06-18T02:37:20Z"
--- library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo base_model: jeiku/T-850-8B --- # jeiku/T-850-8B-Q3_K_S-GGUF This model was converted to GGUF format from [`jeiku/T-850-8B`](https://huggingface.co/jeiku/T-850-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/jeiku/T-850-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama --hf-repo jeiku/T-850-8B-Q3_K_S-GGUF --hf-file t-850-8b-q3_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo jeiku/T-850-8B-Q3_K_S-GGUF --hf-file t-850-8b-q3_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./main --hf-repo jeiku/T-850-8B-Q3_K_S-GGUF --hf-file t-850-8b-q3_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./server --hf-repo jeiku/T-850-8B-Q3_K_S-GGUF --hf-file t-850-8b-q3_k_s.gguf -c 2048 ```
timm/poolformer_s12.sail_in1k
timm
"2023-05-05T06:16:51Z"
1,101
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2210.13452", "license:apache-2.0", "region:us" ]
image-classification
"2023-05-05T06:16:43Z"
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for poolformer_s12.sail_in1k A PoolFormer (a MetaFormer) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 11.9 - GMACs: 1.8 - Activations (M): 5.5 - Image size: 224 x 224 - **Papers:** - MetaFormer Is Actually What You Need for Vision: https://arxiv.org/abs/2210.13452 - **Original:** https://github.com/sail-sg/poolformer - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('poolformer_s12.sail_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'poolformer_s12.sail_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 56, 56]) # torch.Size([1, 128, 28, 28]) # torch.Size([1, 320, 14, 14]) # torch.Size([1, 512, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'poolformer_s12.sail_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 512, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{yu2022metaformer, title={Metaformer is actually what you need for vision}, author={Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={10819--10829}, year={2022} } ```
yuhuili/EAGLE-Vicuna-7B-v1.3
yuhuili
"2023-12-11T17:41:56Z"
1,101
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-12-08T10:58:40Z"
--- license: apache-2.0 ---
digiplay/DucHaiten-Real3D-NSFW-V1
digiplay
"2023-12-19T15:55:17Z"
1,101
9
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2023-12-14T17:05:53Z"
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/232442/duchaiten-real3d-nsfw Original Author's DEMO images : ![02672-2067103094 (1).jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/A6wJf4UxMRzrHZxxFTgLx.jpeg) ![02667-2464950796 (1).jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/TMWWauSYQv9N5riSJ3D0O.jpeg) Sample prompt and images (generated by Hugginface's API) Magazine ad, iconic, 1943, Cartoon, sharp focus, comic, 4k art on canvas by kyoani and ROSSDRAWS, princess ![003fec13-85e7-48fd-86cf-1119385397ec.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/JF9BCA9nZCI_eJnridIwv.jpeg) ![09438b21-9d95-4a9b-86ea-9b1c670302d0.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/s_rNChF4cuaVZvrwq4gHc.jpeg) ![e63cb66f-7ded-45ea-9f8b-039399cc74e7.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/51fKSt7Bs7ZZ_hXCh1Yro.jpeg)
yanolja/Bookworm-10.7B-v0.4-DPO
yanolja
"2024-01-19T08:47:21Z"
1,101
11
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "conversational", "arxiv:2310.01377", "arxiv:2306.02707", "base_model:yanolja/KoSOLAR-10.7B-v0.2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-18T09:16:56Z"
--- license: apache-2.0 base_model: yanolja/KoSOLAR-10.7B-v0.2 tags: - generated_from_trainer model-index: - name: yanolja/Bookworm-10.7B-v0.4-DPO results: [] --- # Bookworm-10.7B-v0.4-DPO ## Join Our Community on Discord! If you're passionate about the field of Large Language Models and wish to exchange knowledge and insights, we warmly invite you to join our Discord server. It's worth noting that Korean is the primary language used in this server. The landscape of LLM is evolving rapidly, and without active sharing, our collective knowledge risks becoming outdated swiftly. Let's collaborate and drive greater impact together! Join us here: [Discord Link](https://discord.gg/b27bAHg95m). ## Our Dedicated Team (Alphabetical Order) | Research | Engineering | Product Management | UX Design | |-----------------|-----------------|--------------------|-------------- | Myeongho Jeong | Geon Kim | Bokyung Huh | Eunsue Choi | | Seungduk Kim | Rifqi Alfi | | | | Seungtaek Choi | Sanghoon Han | | | | | Suhyun Kang | | | ## About the Model This model is a fine-tuned version of [yanolja/KoSOLAR-10.7B-v0.2](https://huggingface.co/yanolja/KoSOLAR-10.7B-v0.2), which is a Korean vocabulary-extended version of [upstage/SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0). Specifically, we employed Direct Preference Optimization (DPO) based on [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory). ### Training Data - Korean-translated version of [Open-Orca/SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup) - Korean-translated version of [argilla/ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned) - No other dataset was used ## Citation ``` @misc{cui2023ultrafeedback, title={UltraFeedback: Boosting Language Models with High-quality Feedback}, author={Ganqu Cui and Lifan Yuan and Ning Ding and Guanming Yao and Wei Zhu and Yuan Ni and Guotong Xie and Zhiyuan Liu and Maosong Sun}, year={2023}, eprint={2310.01377}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{SlimOrcaDedup, title = {SlimOrca Dedup: A Deduplicated Subset of SlimOrca}, author = {Wing Lian and Guan Wang and Bleys Goodson and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium" and Nathan Hoos}, year = {2023}, publisher = {HuggingFace}, url = {https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup/} } ``` ``` @misc{mukherjee2023orca, title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah}, year={2023}, eprint={2306.02707}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
heavytail/kullm-mistral-S
heavytail
"2024-01-28T12:09:42Z"
1,101
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-28T09:21:19Z"
--- license: apache-2.0 language: - ko --- # KULLM project - base model: mistralai/Mistral-7B-Instruct-v0.2 ## datasets - KULLM dataset - hand-crafted instruction data ## Implementation Code ```python from transformers import ( AutoModelForCausalLM, AutoTokenizer ) import torch repo = "heavytail/kullm-mistral-S" model = AutoModelForCausalLM.from_pretrained( repo, torch_dtype=torch.float16, device_map='auto' ) tokenizer = AutoTokenizer.from_pretrained(repo) ``` Initial upload: 2024/01/28 21:00
megastudyedu/ME-7B-v1.0
megastudyedu
"2024-01-29T03:18:06Z"
1,101
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "ko", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-29T00:54:20Z"
--- license: cc-by-nc-nd-4.0 language: - ko --- # Model Card for ME-7B-v1.0 ## Developed by : ๋ฉ”๊ฐ€์Šคํ„ฐ๋””๊ต์œก, ํ”„๋ฆฌ๋”•์…˜, ๋งˆ์ด์Šค ## Base Model : [jondurbin/bagel-dpo-7b-v0.1](https://huggingface.co/jondurbin/bagel-dpo-7b-v0.1) ## ์‚ฌ์šฉ ๋ฐ์ดํ„ฐ์…‹ - jondurbin/bagel-v0.3 SFT ๋ฒˆ์—ญ ๋ฐ์ดํ„ฐ์…‹(translated by megastudyedu/ME-7B-v1.0) - [megastudy/M-SOLAR-10.7B-v1.3](https://huggingface.co/megastudy/M-SOLAR-10.7B-v1.3) ๋ฐ์ดํ„ฐ
giprime/OOM-13B_01
giprime
"2024-02-13T02:00:04Z"
1,101
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "ko", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-02-05T01:55:21Z"
--- license: cc-by-nc-sa-4.0 language: - en - ko library_name: transformers --- Model Architecture OOM-13B_01 is an language model that uses an optimized transformer architecture based on Llama-2. ## Model description Based on "beomi/llama-2-koen-13b" ## Intended uses & limitations T.B.D. ## Training and evaluation data T.B.D. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-04 - train_batch_size: 2 - eval_batch_size: 8 - seed: 24 - gradient_accumulation_steps: 1 - total_train_batch_size: - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu118 - Datasets 2.16.1 - Tokenizers 0.15.1
Cyanex/D.r.e.a.m_Mega
Cyanex
"2024-06-21T13:27:24Z"
1,101
3
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "art", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2024-02-11T22:14:05Z"
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion - art language: - en --- # D.r.e.a.m (Digital Rendering Engine for Artistic Melodies) ## Welcome to D.r.e.a.m (Digital Rendering Engine for Artistic Melodies). The model is currently in its training phase. This is not the final version and may contain artifacts, potentially performing poorly in some cases. The goal of this model is to create images similar to those produced by Midjourney. It is being trained using the Midjourney Normalized Dataset available on Kaggle. ## Model Details - **Developed by:** Cyanex1702 - **Model Type:** Diffusion-based text-to-image generation model - **Language(s):** English - **Dataset:** [DreamScape](http://https://www.kaggle.com/datasets/cyanex1702/midjouney-normalized-dataset "DreamScape") - **Training Status:** In Progress ## Model Description D.r.e.a.m is a model designed to generate and modify images based on text prompts. The model leverages advanced diffusion techniques to create high-quality, artistic renderings from textual descriptions, aiming to emulate the style and creativity of Midjourney. ## Samples ![undefined_image](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/117669695/11e26493-7e03-4c26-ad65-d64b8ac5bead) ![undefined_image (10)](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/117669695/aaa54dfe-c0c7-4e85-9d2d-29a4e9d5ac09) ![undefined_image (8)](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/117669695/f68c2348-3947-4e42-8ced-078520906c4d) ![undefined_image (7)](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/117669695/62999dff-ee60-493a-95c9-f9660d554e98) ![undefined_image (6)](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/117669695/a86d66a3-b803-4304-9c77-f58af4e9d607) ![undefined_image (5)](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/117669695/21774bca-9561-4572-9a24-35b4c69cf829) ![undefined_image (2)](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/117669695/a06f51ad-52a3-47cd-91b6-c4d109e39b88) ![undefined_image (1)](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/117669695/b74875af-9af5-408d-b6e3-71d628b38d87) ![undefined_image (3)](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/117669695/9a155bd2-7c5e-48a7-8c70-f63faf51661f) ![undefined_image (4)](https://github.com/AUTOMATIC1111/stable-diffusion-webui/assets/117669695/7e4a1beb-56fb-4cf4-9c90-14423ed81746) ## Features - **Text-to-Image Generation:** Generate images from descriptive text prompts. - **Image Modification:** Modify existing images based on new text inputs. - **Creative Rendering:** Produce artistic and imaginative images. ## Usage To use the model, you can input text prompts in English. The model will process these prompts and generate corresponding images. Note that due to the model's current training phase, the results may vary and contain imperfections. ## Contributing We welcome contributions from the community! If you'd like to contribute.
mu0gum/AIFT-42dot_LLM-PLM-1.3B-ao-instruct-all-v0.91
mu0gum
"2024-02-14T06:28:26Z"
1,101
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-02-12T00:36:29Z"
--- license: cc-by-nc-4.0 --- # AIFT-42dot_LLM-PLM-1.3B-ao-instruct-all-v0.91 ๋ฒ ์ด์Šค ๋ชจ๋ธ : 42dot/42dot_LLM-PLM-1.3B ํ•™์Šต ๋ฐ์ดํ„ฐ : ์ž์ฒด ์ œ์ž‘ํ•œ Open Orca ์Šคํƒ€์ผ ๋ฐ์ดํ„ฐ์…‹ ์•ฝ 48,000๊ฑด (์ค‘๋ณต ์ œ๊ฑฐ ๋ฐ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ ์กฐ์ •) ํ•™์Šต ๋ฐฉ๋ฒ• : Full finetuning epoch : 3 ## ko-lm-evaluation-harness(5-shot) |kobest_boolq|kobest_copa|kobest_hellaswag|pawsx_ko| |--|--|--|--| |0.5220797720797721|0.72|0.458|0.563| ## Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.0.0 - Tokenizers 0.15.0
Kukedlc/Triunvirato-7b
Kukedlc
"2024-02-16T21:30:39Z"
1,101
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "mistralai/Mistral-7B-v0.1", "Kukedlc/neuronal-7b-Mlab", "mlabonne/Monarch-7B", "base_model:mistralai/Mistral-7B-v0.1", "base_model:Kukedlc/neuronal-7b-Mlab", "base_model:mlabonne/Monarch-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-02-14T03:56:46Z"
--- tags: - merge - mergekit - lazymergekit - mistralai/Mistral-7B-v0.1 - Kukedlc/neuronal-7b-Mlab - mlabonne/Monarch-7B base_model: - mistralai/Mistral-7B-v0.1 - Kukedlc/neuronal-7b-Mlab - mlabonne/Monarch-7B license: apache-2.0 --- # Triunvirato-7b Trinity-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * [Kukedlc/neuronal-7b-Mlab](https://huggingface.co/Kukedlc/neuronal-7b-Mlab) * [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) ## ๐Ÿงฉ Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: Kukedlc/neuronal-7b-Mlab parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: mlabonne/Monarch-7B parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 parameters: normalize: true int8_mask: true dtype: float16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Triunvirato-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v1.4
jungyuko
"2024-03-05T01:35:05Z"
1,101
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-05T01:18:08Z"
--- license: cc-by-nc-4.0 --- ## DAVinCI-42dot_LLM-PLM-1.3B-v1.4 This model is a fine-tuned version of [42dot/42dot_LLM-PLM-1.3B](https://huggingface.co/42dot/42dot_LLM-PLM-1.3B) on a custom dataset. ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data More information needed ### Training procedure ### Training hyperparameters The following hyperparameters were used during training: * learning_rate: 2e-05 * train_batch_size: 24 * eval_batch_size: 8 * seed: 42 * gradient_accumulation_steps: 4 * total_train_batch_size: 96 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr_scheduler_type: linear * num_epochs: 3.0 * mixed_precision_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.0.0 * Tokenizers 0.15.0
ENERGY-DRINK-LOVE/komt_DPOv3
ENERGY-DRINK-LOVE
"2024-03-16T08:23:05Z"
1,101
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "dpo", "generated_from_trainer", "arxiv:2305.18290", "base_model:davidkim205/komt-solar-10.7b-sft-v5", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-11T02:42:10Z"
--- license: cc-by-4.0 base_model: davidkim205/komt-solar-10.7b-sft-v5 tags: - trl - dpo - generated_from_trainer model-index: - name: nhn_dpo_v3_komt-solar-10.7b-sft-v5_DPO results: [] --- # ENERGY-DRINK-LOVE/komt_DPOv3 ### Our Team * Youjin Chung * Jingyeom Kim ## Model ### Base Model * [davidkim205/komt-solar-10.7b-sft-v5](https://huggingface.co/davidkim205/komt-solar-10.7b-sft-v5) ### Hardware and Software * Hardware: A100 * 8 for training our model * Deepspeed library & Huggingface TRL Trainer ### Dataset * DPO_dataset * ์ž์ฒด ์ œ์ž‘ dpo dataset(AI-hub dataset ํ™œ์šฉ) * OpenOrca DPO ๋“ฑ ์˜์–ด ๋ฐ์ดํ„ฐ์…‹ ๋ฒˆ์—ญ(ENERGY-DRINK-LOVE/translate_share_gpt_dedup_llama_SFT_1024, ์ž์ฒด๋ชจ๋ธ ํ™œ์šฉ) ### Training Method * [DPO](https://arxiv.org/abs/2305.18290) ## Benchmark **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)** **[Ko-LLM-Leaderboard](https://www.aihub.or.kr/leaderboard/view.do?currMenu=500&topMenu=102)** * (240316๊ธฐ์ค€ 4๋“ฑ) * ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6551c0e37bbfce18781a8748/xKS2X4hfrs100mpr4Jv89.png) | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | ------: | -----: | -----------: | ------: | ------------: | --------------: | | 61.20 | 57.51 | 70.33 | 53.34 | 68.49 | 56.32 |
freewheelin/free-solar-instrunction-v0.1
freewheelin
"2024-03-14T08:57:57Z"
1,101
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "en", "arxiv:2312.15166", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-13T07:02:53Z"
--- language: - ko - en license: mit --- # Model Card for free-solar-instruction-v0.1 ## Developed by : [Freewheelin](https://freewheelin-recruit.oopy.io/) AI Technical Team ## Hardware and Software * **Training Factors**: We fine-tuned this model using the [HuggingFace TRL Trainer](https://huggingface.co/docs/trl/trainer) ## Method - This model was trained using the learning method introduced in the [SOLAR paper](https://arxiv.org/pdf/2312.15166.pdf). ## Base Model - [davidkim205/komt-solar-10.7b-sft-v5](https://huggingface.co/davidkim205/komt-solar-10.7b-sft-v5)
WillHeld/via-llama
WillHeld
"2024-04-20T20:51:25Z"
1,101
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2024-03-20T16:51:42Z"
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
YanweiLi/MGM-7B
YanweiLi
"2024-04-21T14:14:50Z"
1,101
6
transformers
[ "transformers", "safetensors", "text-generation", "vision-language model", "llama", "generation", "dataset:YanweiLi/MGM-Instruction", "arxiv:2403.18814", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
"2024-03-26T03:05:46Z"
--- tags: - vision-language model - llama - generation datasets: - YanweiLi/MGM-Instruction --- # MGM-7B Model Card <a href='https://github.com/dvlab-research/MGM'><img src='https://img.shields.io/badge/Project-Code-violet'></a> <a href='https://mini-gemini.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/pdf/2403.18814.pdf'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> ## Model details The framework supports a series of dense and MoE Large Language Models (LLMs) from 2B to 34B with HD image understanding, reasoning, and generation simultaneously. Normal resolution setting: [MGM-2B](https://huggingface.co/YanweiLi/MGM-2B), [MGM-13B](https://huggingface.co/YanweiLi/MGM-13B), [MGM-8x7B](https://huggingface.co/YanweiLi/MGM-8x7B), [MGM-34B](https://huggingface.co/YanweiLi/MGM-34B) High resolution setting: [MGM-7B-HD](https://huggingface.co/YanweiLi/MGM-7B-HD), [MGM-13B-HD](https://huggingface.co/YanweiLi/MGM-13B-HD), [MGM-8x7B-HD](https://huggingface.co/YanweiLi/MGM-8x7B-HD), [MGM-34B-HD](https://huggingface.co/YanweiLi/MGM-34B-HD) **Model type:** MGM is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It empowers existing frameworks to support HD image understanding, reasoning, and generation simultaneously. **Model version:** MGM with LLM Vicuna-7B-v1.5 **Model date:** MGM-7B was trained on 03/2024. ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. **Where to send questions or comments about the model:** https://github.com/dvlab-research/MGM/issues ## Intended use **Primary intended uses:** The primary use is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training data This model is trained based on [MGM-Instruction](https://huggingface.co/datasets/YanweiLi/MGM-Instruction) dataset, please to the [Github](https://github.com/dvlab-research/MGM) for more detail. ## Acknowledgement This project is not affiliated with Google LLC.
lcw99/google-gemma-14B-ko-chang
lcw99
"2024-04-19T21:43:57Z"
1,101
4
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "conversational", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-04-13T10:57:35Z"
--- library_name: transformers language: - ko license: apache-2.0 --- # Model Card for Model ID This is a model of the google Gemma-7B model with the parameter size increased to 14B. The attention head has been doubled and the number of hidden layers has been increased to 42. # Chat template **system:** system message... **B:** user message... **A:** assistant message...
egafni/nano-llama
egafni
"2024-05-10T23:29:47Z"
1,101
0
transformers
[ "transformers", "safetensors", "llama", "feature-extraction", "license:mit", "endpoints_compatible", "text-generation-inference", "region:us" ]
feature-extraction
"2024-05-10T23:17:53Z"
--- license: mit ---
timm/resnet26d.bt_in1k
timm
"2024-02-10T23:38:47Z"
1,100
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "arxiv:1512.03385", "arxiv:1812.01187", "license:apache-2.0", "region:us" ]
image-classification
"2023-04-05T18:04:52Z"
--- license: apache-2.0 library_name: timm tags: - image-classification - timm --- # Model card for resnet26d.bt_in1k A ResNet-D image classification model. This model features: * ReLU activations * 3-layer stem of 3x3 convolutions with pooling * 2x2 average pool + 1x1 convolution shortcut downsample Trained on ImageNet-1k in `timm` using recipe template described below. Recipe details: * Bag-of-Tricks recipe. * SGD (w/ Nesterov) optimizer * Cosine LR schedule with warmup ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 16.0 - GMACs: 2.6 - Activations (M): 8.2 - Image size: train = 224 x 224, test = 288 x 288 - **Papers:** - Deep Residual Learning for Image Recognition: https://arxiv.org/abs/1512.03385 - Bag of Tricks for Image Classification with Convolutional Neural Networks: https://arxiv.org/abs/1812.01187 - **Original:** https://github.com/huggingface/pytorch-image-models ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('resnet26d.bt_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'resnet26d.bt_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 112, 112]) # torch.Size([1, 256, 56, 56]) # torch.Size([1, 512, 28, 28]) # torch.Size([1, 1024, 14, 14]) # torch.Size([1, 2048, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'resnet26d.bt_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). |model |img_size|top1 |top5 |param_count|gmacs|macts|img/sec| |------------------------------------------|--------|-----|-----|-----------|-----|-----|-------| |[seresnextaa101d_32x8d.sw_in12k_ft_in1k_288](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288)|320 |86.72|98.17|93.6 |35.2 |69.7 |451 | |[seresnextaa101d_32x8d.sw_in12k_ft_in1k_288](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288)|288 |86.51|98.08|93.6 |28.5 |56.4 |560 | |[seresnextaa101d_32x8d.sw_in12k_ft_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k)|288 |86.49|98.03|93.6 |28.5 |56.4 |557 | |[seresnextaa101d_32x8d.sw_in12k_ft_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k)|224 |85.96|97.82|93.6 |17.2 |34.2 |923 | |[resnext101_32x32d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x32d.fb_wsl_ig1b_ft_in1k)|224 |85.11|97.44|468.5 |87.3 |91.1 |254 | |[resnetrs420.tf_in1k](https://huggingface.co/timm/resnetrs420.tf_in1k)|416 |85.0 |97.12|191.9 |108.4|213.8|134 | |[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|352 |84.96|97.22|102.1 |50.2 |101.2|291 | |[ecaresnet269d.ra2_in1k](https://huggingface.co/timm/ecaresnet269d.ra2_in1k)|320 |84.73|97.18|102.1 |41.5 |83.7 |353 | |[resnetrs350.tf_in1k](https://huggingface.co/timm/resnetrs350.tf_in1k)|384 |84.71|96.99|164.0 |77.6 |154.7|183 | |[seresnextaa101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.ah_in1k)|288 |84.57|97.08|93.6 |28.5 |56.4 |557 | |[resnetrs200.tf_in1k](https://huggingface.co/timm/resnetrs200.tf_in1k)|320 |84.45|97.08|93.2 |31.5 |67.8 |446 | |[resnetrs270.tf_in1k](https://huggingface.co/timm/resnetrs270.tf_in1k)|352 |84.43|96.97|129.9 |51.1 |105.5|280 | |[seresnext101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101d_32x8d.ah_in1k)|288 |84.36|96.92|93.6 |27.6 |53.0 |595 | |[seresnet152d.ra2_in1k](https://huggingface.co/timm/seresnet152d.ra2_in1k)|320 |84.35|97.04|66.8 |24.1 |47.7 |610 | |[resnetrs350.tf_in1k](https://huggingface.co/timm/resnetrs350.tf_in1k)|288 |84.3 |96.94|164.0 |43.7 |87.1 |333 | |[resnext101_32x8d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_swsl_ig1b_ft_in1k)|224 |84.28|97.17|88.8 |16.5 |31.2 |1100 | |[resnetrs420.tf_in1k](https://huggingface.co/timm/resnetrs420.tf_in1k)|320 |84.24|96.86|191.9 |64.2 |126.6|228 | |[seresnext101_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101_32x8d.ah_in1k)|288 |84.19|96.87|93.6 |27.2 |51.6 |613 | |[resnext101_32x16d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_wsl_ig1b_ft_in1k)|224 |84.18|97.19|194.0 |36.3 |51.2 |581 | |[resnetaa101d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa101d.sw_in12k_ft_in1k)|288 |84.11|97.11|44.6 |15.1 |29.0 |1144 | |[resnet200d.ra2_in1k](https://huggingface.co/timm/resnet200d.ra2_in1k)|320 |83.97|96.82|64.7 |31.2 |67.3 |518 | |[resnetrs200.tf_in1k](https://huggingface.co/timm/resnetrs200.tf_in1k)|256 |83.87|96.75|93.2 |20.2 |43.4 |692 | |[seresnextaa101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnextaa101d_32x8d.ah_in1k)|224 |83.86|96.65|93.6 |17.2 |34.2 |923 | |[resnetrs152.tf_in1k](https://huggingface.co/timm/resnetrs152.tf_in1k)|320 |83.72|96.61|86.6 |24.3 |48.1 |617 | |[seresnet152d.ra2_in1k](https://huggingface.co/timm/seresnet152d.ra2_in1k)|256 |83.69|96.78|66.8 |15.4 |30.6 |943 | |[seresnext101d_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101d_32x8d.ah_in1k)|224 |83.68|96.61|93.6 |16.7 |32.0 |986 | |[resnet152d.ra2_in1k](https://huggingface.co/timm/resnet152d.ra2_in1k)|320 |83.67|96.74|60.2 |24.1 |47.7 |706 | |[resnetrs270.tf_in1k](https://huggingface.co/timm/resnetrs270.tf_in1k)|256 |83.59|96.61|129.9 |27.1 |55.8 |526 | |[seresnext101_32x8d.ah_in1k](https://huggingface.co/timm/seresnext101_32x8d.ah_in1k)|224 |83.58|96.4 |93.6 |16.5 |31.2 |1013 | |[resnetaa101d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa101d.sw_in12k_ft_in1k)|224 |83.54|96.83|44.6 |9.1 |17.6 |1864 | |[resnet152.a1h_in1k](https://huggingface.co/timm/resnet152.a1h_in1k)|288 |83.46|96.54|60.2 |19.1 |37.3 |904 | |[resnext101_32x16d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_swsl_ig1b_ft_in1k)|224 |83.35|96.85|194.0 |36.3 |51.2 |582 | |[resnet200d.ra2_in1k](https://huggingface.co/timm/resnet200d.ra2_in1k)|256 |83.23|96.53|64.7 |20.0 |43.1 |809 | |[resnext101_32x4d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x4d.fb_swsl_ig1b_ft_in1k)|224 |83.22|96.75|44.2 |8.0 |21.2 |1814 | |[resnext101_64x4d.c1_in1k](https://huggingface.co/timm/resnext101_64x4d.c1_in1k)|288 |83.16|96.38|83.5 |25.7 |51.6 |590 | |[resnet152d.ra2_in1k](https://huggingface.co/timm/resnet152d.ra2_in1k)|256 |83.14|96.38|60.2 |15.4 |30.5 |1096 | |[resnet101d.ra2_in1k](https://huggingface.co/timm/resnet101d.ra2_in1k)|320 |83.02|96.45|44.6 |16.5 |34.8 |992 | |[ecaresnet101d.miil_in1k](https://huggingface.co/timm/ecaresnet101d.miil_in1k)|288 |82.98|96.54|44.6 |13.4 |28.2 |1077 | |[resnext101_64x4d.tv_in1k](https://huggingface.co/timm/resnext101_64x4d.tv_in1k)|224 |82.98|96.25|83.5 |15.5 |31.2 |989 | |[resnetrs152.tf_in1k](https://huggingface.co/timm/resnetrs152.tf_in1k)|256 |82.86|96.28|86.6 |15.6 |30.8 |951 | |[resnext101_32x8d.tv2_in1k](https://huggingface.co/timm/resnext101_32x8d.tv2_in1k)|224 |82.83|96.22|88.8 |16.5 |31.2 |1099 | |[resnet152.a1h_in1k](https://huggingface.co/timm/resnet152.a1h_in1k)|224 |82.8 |96.13|60.2 |11.6 |22.6 |1486 | |[resnet101.a1h_in1k](https://huggingface.co/timm/resnet101.a1h_in1k)|288 |82.8 |96.32|44.6 |13.0 |26.8 |1291 | |[resnet152.a1_in1k](https://huggingface.co/timm/resnet152.a1_in1k)|288 |82.74|95.71|60.2 |19.1 |37.3 |905 | |[resnext101_32x8d.fb_wsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_wsl_ig1b_ft_in1k)|224 |82.69|96.63|88.8 |16.5 |31.2 |1100 | |[resnet152.a2_in1k](https://huggingface.co/timm/resnet152.a2_in1k)|288 |82.62|95.75|60.2 |19.1 |37.3 |904 | |[resnetaa50d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa50d.sw_in12k_ft_in1k)|288 |82.61|96.49|25.6 |8.9 |20.6 |1729 | |[resnet61q.ra2_in1k](https://huggingface.co/timm/resnet61q.ra2_in1k)|288 |82.53|96.13|36.8 |9.9 |21.5 |1773 | |[wide_resnet101_2.tv2_in1k](https://huggingface.co/timm/wide_resnet101_2.tv2_in1k)|224 |82.5 |96.02|126.9 |22.8 |21.2 |1078 | |[resnext101_64x4d.c1_in1k](https://huggingface.co/timm/resnext101_64x4d.c1_in1k)|224 |82.46|95.92|83.5 |15.5 |31.2 |987 | |[resnet51q.ra2_in1k](https://huggingface.co/timm/resnet51q.ra2_in1k)|288 |82.36|96.18|35.7 |8.1 |20.9 |1964 | |[ecaresnet50t.ra2_in1k](https://huggingface.co/timm/ecaresnet50t.ra2_in1k)|320 |82.35|96.14|25.6 |8.8 |24.1 |1386 | |[resnet101.a1_in1k](https://huggingface.co/timm/resnet101.a1_in1k)|288 |82.31|95.63|44.6 |13.0 |26.8 |1291 | |[resnetrs101.tf_in1k](https://huggingface.co/timm/resnetrs101.tf_in1k)|288 |82.29|96.01|63.6 |13.6 |28.5 |1078 | |[resnet152.tv2_in1k](https://huggingface.co/timm/resnet152.tv2_in1k)|224 |82.29|96.0 |60.2 |11.6 |22.6 |1484 | |[wide_resnet50_2.racm_in1k](https://huggingface.co/timm/wide_resnet50_2.racm_in1k)|288 |82.27|96.06|68.9 |18.9 |23.8 |1176 | |[resnet101d.ra2_in1k](https://huggingface.co/timm/resnet101d.ra2_in1k)|256 |82.26|96.07|44.6 |10.6 |22.2 |1542 | |[resnet101.a2_in1k](https://huggingface.co/timm/resnet101.a2_in1k)|288 |82.24|95.73|44.6 |13.0 |26.8 |1290 | |[seresnext50_32x4d.racm_in1k](https://huggingface.co/timm/seresnext50_32x4d.racm_in1k)|288 |82.2 |96.14|27.6 |7.0 |23.8 |1547 | |[ecaresnet101d.miil_in1k](https://huggingface.co/timm/ecaresnet101d.miil_in1k)|224 |82.18|96.05|44.6 |8.1 |17.1 |1771 | |[resnext50_32x4d.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnext50_32x4d.fb_swsl_ig1b_ft_in1k)|224 |82.17|96.22|25.0 |4.3 |14.4 |2943 | |[ecaresnet50t.a1_in1k](https://huggingface.co/timm/ecaresnet50t.a1_in1k)|288 |82.12|95.65|25.6 |7.1 |19.6 |1704 | |[resnext50_32x4d.a1h_in1k](https://huggingface.co/timm/resnext50_32x4d.a1h_in1k)|288 |82.03|95.94|25.0 |7.0 |23.8 |1745 | |[ecaresnet101d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet101d_pruned.miil_in1k)|288 |82.0 |96.15|24.9 |5.8 |12.7 |1787 | |[resnet61q.ra2_in1k](https://huggingface.co/timm/resnet61q.ra2_in1k)|256 |81.99|95.85|36.8 |7.8 |17.0 |2230 | |[resnext101_32x8d.tv2_in1k](https://huggingface.co/timm/resnext101_32x8d.tv2_in1k)|176 |81.98|95.72|88.8 |10.3 |19.4 |1768 | |[resnet152.a1_in1k](https://huggingface.co/timm/resnet152.a1_in1k)|224 |81.97|95.24|60.2 |11.6 |22.6 |1486 | |[resnet101.a1h_in1k](https://huggingface.co/timm/resnet101.a1h_in1k)|224 |81.93|95.75|44.6 |7.8 |16.2 |2122 | |[resnet101.tv2_in1k](https://huggingface.co/timm/resnet101.tv2_in1k)|224 |81.9 |95.77|44.6 |7.8 |16.2 |2118 | |[resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x16d.fb_ssl_yfcc100m_ft_in1k)|224 |81.84|96.1 |194.0 |36.3 |51.2 |583 | |[resnet51q.ra2_in1k](https://huggingface.co/timm/resnet51q.ra2_in1k)|256 |81.78|95.94|35.7 |6.4 |16.6 |2471 | |[resnet152.a2_in1k](https://huggingface.co/timm/resnet152.a2_in1k)|224 |81.77|95.22|60.2 |11.6 |22.6 |1485 | |[resnetaa50d.sw_in12k_ft_in1k](https://huggingface.co/timm/resnetaa50d.sw_in12k_ft_in1k)|224 |81.74|96.06|25.6 |5.4 |12.4 |2813 | |[ecaresnet50t.a2_in1k](https://huggingface.co/timm/ecaresnet50t.a2_in1k)|288 |81.65|95.54|25.6 |7.1 |19.6 |1703 | |[ecaresnet50d.miil_in1k](https://huggingface.co/timm/ecaresnet50d.miil_in1k)|288 |81.64|95.88|25.6 |7.2 |19.7 |1694 | |[resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x8d.fb_ssl_yfcc100m_ft_in1k)|224 |81.62|96.04|88.8 |16.5 |31.2 |1101 | |[wide_resnet50_2.tv2_in1k](https://huggingface.co/timm/wide_resnet50_2.tv2_in1k)|224 |81.61|95.76|68.9 |11.4 |14.4 |1930 | |[resnetaa50.a1h_in1k](https://huggingface.co/timm/resnetaa50.a1h_in1k)|288 |81.61|95.83|25.6 |8.5 |19.2 |1868 | |[resnet101.a1_in1k](https://huggingface.co/timm/resnet101.a1_in1k)|224 |81.5 |95.16|44.6 |7.8 |16.2 |2125 | |[resnext50_32x4d.a1_in1k](https://huggingface.co/timm/resnext50_32x4d.a1_in1k)|288 |81.48|95.16|25.0 |7.0 |23.8 |1745 | |[gcresnet50t.ra2_in1k](https://huggingface.co/timm/gcresnet50t.ra2_in1k)|288 |81.47|95.71|25.9 |6.9 |18.6 |2071 | |[wide_resnet50_2.racm_in1k](https://huggingface.co/timm/wide_resnet50_2.racm_in1k)|224 |81.45|95.53|68.9 |11.4 |14.4 |1929 | |[resnet50d.a1_in1k](https://huggingface.co/timm/resnet50d.a1_in1k)|288 |81.44|95.22|25.6 |7.2 |19.7 |1908 | |[ecaresnet50t.ra2_in1k](https://huggingface.co/timm/ecaresnet50t.ra2_in1k)|256 |81.44|95.67|25.6 |5.6 |15.4 |2168 | |[ecaresnetlight.miil_in1k](https://huggingface.co/timm/ecaresnetlight.miil_in1k)|288 |81.4 |95.82|30.2 |6.8 |13.9 |2132 | |[resnet50d.ra2_in1k](https://huggingface.co/timm/resnet50d.ra2_in1k)|288 |81.37|95.74|25.6 |7.2 |19.7 |1910 | |[resnet101.a2_in1k](https://huggingface.co/timm/resnet101.a2_in1k)|224 |81.32|95.19|44.6 |7.8 |16.2 |2125 | |[seresnet50.ra2_in1k](https://huggingface.co/timm/seresnet50.ra2_in1k)|288 |81.3 |95.65|28.1 |6.8 |18.4 |1803 | |[resnext50_32x4d.a2_in1k](https://huggingface.co/timm/resnext50_32x4d.a2_in1k)|288 |81.3 |95.11|25.0 |7.0 |23.8 |1746 | |[seresnext50_32x4d.racm_in1k](https://huggingface.co/timm/seresnext50_32x4d.racm_in1k)|224 |81.27|95.62|27.6 |4.3 |14.4 |2591 | |[ecaresnet50t.a1_in1k](https://huggingface.co/timm/ecaresnet50t.a1_in1k)|224 |81.26|95.16|25.6 |4.3 |11.8 |2823 | |[gcresnext50ts.ch_in1k](https://huggingface.co/timm/gcresnext50ts.ch_in1k)|288 |81.23|95.54|15.7 |4.8 |19.6 |2117 | |[senet154.gluon_in1k](https://huggingface.co/timm/senet154.gluon_in1k)|224 |81.23|95.35|115.1 |20.8 |38.7 |545 | |[resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k)|288 |81.22|95.11|25.6 |6.8 |18.4 |2089 | |[resnet50_gn.a1h_in1k](https://huggingface.co/timm/resnet50_gn.a1h_in1k)|288 |81.22|95.63|25.6 |6.8 |18.4 |676 | |[resnet50d.a2_in1k](https://huggingface.co/timm/resnet50d.a2_in1k)|288 |81.18|95.09|25.6 |7.2 |19.7 |1908 | |[resnet50.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnet50.fb_swsl_ig1b_ft_in1k)|224 |81.18|95.98|25.6 |4.1 |11.1 |3455 | |[resnext50_32x4d.tv2_in1k](https://huggingface.co/timm/resnext50_32x4d.tv2_in1k)|224 |81.17|95.34|25.0 |4.3 |14.4 |2933 | |[resnext50_32x4d.a1h_in1k](https://huggingface.co/timm/resnext50_32x4d.a1h_in1k)|224 |81.1 |95.33|25.0 |4.3 |14.4 |2934 | |[seresnet50.a2_in1k](https://huggingface.co/timm/seresnet50.a2_in1k)|288 |81.1 |95.23|28.1 |6.8 |18.4 |1801 | |[seresnet50.a1_in1k](https://huggingface.co/timm/seresnet50.a1_in1k)|288 |81.1 |95.12|28.1 |6.8 |18.4 |1799 | |[resnet152s.gluon_in1k](https://huggingface.co/timm/resnet152s.gluon_in1k)|224 |81.02|95.41|60.3 |12.9 |25.0 |1347 | |[resnet50.d_in1k](https://huggingface.co/timm/resnet50.d_in1k)|288 |80.97|95.44|25.6 |6.8 |18.4 |2085 | |[gcresnet50t.ra2_in1k](https://huggingface.co/timm/gcresnet50t.ra2_in1k)|256 |80.94|95.45|25.9 |5.4 |14.7 |2571 | |[resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext101_32x4d.fb_ssl_yfcc100m_ft_in1k)|224 |80.93|95.73|44.2 |8.0 |21.2 |1814 | |[resnet50.c1_in1k](https://huggingface.co/timm/resnet50.c1_in1k)|288 |80.91|95.55|25.6 |6.8 |18.4 |2084 | |[seresnext101_32x4d.gluon_in1k](https://huggingface.co/timm/seresnext101_32x4d.gluon_in1k)|224 |80.9 |95.31|49.0 |8.0 |21.3 |1585 | |[seresnext101_64x4d.gluon_in1k](https://huggingface.co/timm/seresnext101_64x4d.gluon_in1k)|224 |80.9 |95.3 |88.2 |15.5 |31.2 |918 | |[resnet50.c2_in1k](https://huggingface.co/timm/resnet50.c2_in1k)|288 |80.86|95.52|25.6 |6.8 |18.4 |2085 | |[resnet50.tv2_in1k](https://huggingface.co/timm/resnet50.tv2_in1k)|224 |80.85|95.43|25.6 |4.1 |11.1 |3450 | |[ecaresnet50t.a2_in1k](https://huggingface.co/timm/ecaresnet50t.a2_in1k)|224 |80.84|95.02|25.6 |4.3 |11.8 |2821 | |[ecaresnet101d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet101d_pruned.miil_in1k)|224 |80.79|95.62|24.9 |3.5 |7.7 |2961 | |[seresnet33ts.ra2_in1k](https://huggingface.co/timm/seresnet33ts.ra2_in1k)|288 |80.79|95.36|19.8 |6.0 |14.8 |2506 | |[ecaresnet50d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet50d_pruned.miil_in1k)|288 |80.79|95.58|19.9 |4.2 |10.6 |2349 | |[resnet50.a2_in1k](https://huggingface.co/timm/resnet50.a2_in1k)|288 |80.78|94.99|25.6 |6.8 |18.4 |2088 | |[resnet50.b1k_in1k](https://huggingface.co/timm/resnet50.b1k_in1k)|288 |80.71|95.43|25.6 |6.8 |18.4 |2087 | |[resnext50_32x4d.ra_in1k](https://huggingface.co/timm/resnext50_32x4d.ra_in1k)|288 |80.7 |95.39|25.0 |7.0 |23.8 |1749 | |[resnetrs101.tf_in1k](https://huggingface.co/timm/resnetrs101.tf_in1k)|192 |80.69|95.24|63.6 |6.0 |12.7 |2270 | |[resnet50d.a1_in1k](https://huggingface.co/timm/resnet50d.a1_in1k)|224 |80.68|94.71|25.6 |4.4 |11.9 |3162 | |[eca_resnet33ts.ra2_in1k](https://huggingface.co/timm/eca_resnet33ts.ra2_in1k)|288 |80.68|95.36|19.7 |6.0 |14.8 |2637 | |[resnet50.a1h_in1k](https://huggingface.co/timm/resnet50.a1h_in1k)|224 |80.67|95.3 |25.6 |4.1 |11.1 |3452 | |[resnext50d_32x4d.bt_in1k](https://huggingface.co/timm/resnext50d_32x4d.bt_in1k)|288 |80.67|95.42|25.0 |7.4 |25.1 |1626 | |[resnetaa50.a1h_in1k](https://huggingface.co/timm/resnetaa50.a1h_in1k)|224 |80.63|95.21|25.6 |5.2 |11.6 |3034 | |[ecaresnet50d.miil_in1k](https://huggingface.co/timm/ecaresnet50d.miil_in1k)|224 |80.61|95.32|25.6 |4.4 |11.9 |2813 | |[resnext101_64x4d.gluon_in1k](https://huggingface.co/timm/resnext101_64x4d.gluon_in1k)|224 |80.61|94.99|83.5 |15.5 |31.2 |989 | |[gcresnet33ts.ra2_in1k](https://huggingface.co/timm/gcresnet33ts.ra2_in1k)|288 |80.6 |95.31|19.9 |6.0 |14.8 |2578 | |[gcresnext50ts.ch_in1k](https://huggingface.co/timm/gcresnext50ts.ch_in1k)|256 |80.57|95.17|15.7 |3.8 |15.5 |2710 | |[resnet152.a3_in1k](https://huggingface.co/timm/resnet152.a3_in1k)|224 |80.56|95.0 |60.2 |11.6 |22.6 |1483 | |[resnet50d.ra2_in1k](https://huggingface.co/timm/resnet50d.ra2_in1k)|224 |80.53|95.16|25.6 |4.4 |11.9 |3164 | |[resnext50_32x4d.a1_in1k](https://huggingface.co/timm/resnext50_32x4d.a1_in1k)|224 |80.53|94.46|25.0 |4.3 |14.4 |2930 | |[wide_resnet101_2.tv2_in1k](https://huggingface.co/timm/wide_resnet101_2.tv2_in1k)|176 |80.48|94.98|126.9 |14.3 |13.2 |1719 | |[resnet152d.gluon_in1k](https://huggingface.co/timm/resnet152d.gluon_in1k)|224 |80.47|95.2 |60.2 |11.8 |23.4 |1428 | |[resnet50.b2k_in1k](https://huggingface.co/timm/resnet50.b2k_in1k)|288 |80.45|95.32|25.6 |6.8 |18.4 |2086 | |[ecaresnetlight.miil_in1k](https://huggingface.co/timm/ecaresnetlight.miil_in1k)|224 |80.45|95.24|30.2 |4.1 |8.4 |3530 | |[resnext50_32x4d.a2_in1k](https://huggingface.co/timm/resnext50_32x4d.a2_in1k)|224 |80.45|94.63|25.0 |4.3 |14.4 |2936 | |[wide_resnet50_2.tv2_in1k](https://huggingface.co/timm/wide_resnet50_2.tv2_in1k)|176 |80.43|95.09|68.9 |7.3 |9.0 |3015 | |[resnet101d.gluon_in1k](https://huggingface.co/timm/resnet101d.gluon_in1k)|224 |80.42|95.01|44.6 |8.1 |17.0 |2007 | |[resnet50.a1_in1k](https://huggingface.co/timm/resnet50.a1_in1k)|224 |80.38|94.6 |25.6 |4.1 |11.1 |3461 | |[seresnet33ts.ra2_in1k](https://huggingface.co/timm/seresnet33ts.ra2_in1k)|256 |80.36|95.1 |19.8 |4.8 |11.7 |3267 | |[resnext101_32x4d.gluon_in1k](https://huggingface.co/timm/resnext101_32x4d.gluon_in1k)|224 |80.34|94.93|44.2 |8.0 |21.2 |1814 | |[resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnext50_32x4d.fb_ssl_yfcc100m_ft_in1k)|224 |80.32|95.4 |25.0 |4.3 |14.4 |2941 | |[resnet101s.gluon_in1k](https://huggingface.co/timm/resnet101s.gluon_in1k)|224 |80.28|95.16|44.7 |9.2 |18.6 |1851 | |[seresnet50.ra2_in1k](https://huggingface.co/timm/seresnet50.ra2_in1k)|224 |80.26|95.08|28.1 |4.1 |11.1 |2972 | |[resnetblur50.bt_in1k](https://huggingface.co/timm/resnetblur50.bt_in1k)|288 |80.24|95.24|25.6 |8.5 |19.9 |1523 | |[resnet50d.a2_in1k](https://huggingface.co/timm/resnet50d.a2_in1k)|224 |80.22|94.63|25.6 |4.4 |11.9 |3162 | |[resnet152.tv2_in1k](https://huggingface.co/timm/resnet152.tv2_in1k)|176 |80.2 |94.64|60.2 |7.2 |14.0 |2346 | |[seresnet50.a2_in1k](https://huggingface.co/timm/seresnet50.a2_in1k)|224 |80.08|94.74|28.1 |4.1 |11.1 |2969 | |[eca_resnet33ts.ra2_in1k](https://huggingface.co/timm/eca_resnet33ts.ra2_in1k)|256 |80.08|94.97|19.7 |4.8 |11.7 |3284 | |[gcresnet33ts.ra2_in1k](https://huggingface.co/timm/gcresnet33ts.ra2_in1k)|256 |80.06|94.99|19.9 |4.8 |11.7 |3216 | |[resnet50_gn.a1h_in1k](https://huggingface.co/timm/resnet50_gn.a1h_in1k)|224 |80.06|94.95|25.6 |4.1 |11.1 |1109 | |[seresnet50.a1_in1k](https://huggingface.co/timm/seresnet50.a1_in1k)|224 |80.02|94.71|28.1 |4.1 |11.1 |2962 | |[resnet50.ram_in1k](https://huggingface.co/timm/resnet50.ram_in1k)|288 |79.97|95.05|25.6 |6.8 |18.4 |2086 | |[resnet152c.gluon_in1k](https://huggingface.co/timm/resnet152c.gluon_in1k)|224 |79.92|94.84|60.2 |11.8 |23.4 |1455 | |[seresnext50_32x4d.gluon_in1k](https://huggingface.co/timm/seresnext50_32x4d.gluon_in1k)|224 |79.91|94.82|27.6 |4.3 |14.4 |2591 | |[resnet50.d_in1k](https://huggingface.co/timm/resnet50.d_in1k)|224 |79.91|94.67|25.6 |4.1 |11.1 |3456 | |[resnet101.tv2_in1k](https://huggingface.co/timm/resnet101.tv2_in1k)|176 |79.9 |94.6 |44.6 |4.9 |10.1 |3341 | |[resnetrs50.tf_in1k](https://huggingface.co/timm/resnetrs50.tf_in1k)|224 |79.89|94.97|35.7 |4.5 |12.1 |2774 | |[resnet50.c2_in1k](https://huggingface.co/timm/resnet50.c2_in1k)|224 |79.88|94.87|25.6 |4.1 |11.1 |3455 | |[ecaresnet26t.ra2_in1k](https://huggingface.co/timm/ecaresnet26t.ra2_in1k)|320 |79.86|95.07|16.0 |5.2 |16.4 |2168 | |[resnet50.a2_in1k](https://huggingface.co/timm/resnet50.a2_in1k)|224 |79.85|94.56|25.6 |4.1 |11.1 |3460 | |[resnet50.ra_in1k](https://huggingface.co/timm/resnet50.ra_in1k)|288 |79.83|94.97|25.6 |6.8 |18.4 |2087 | |[resnet101.a3_in1k](https://huggingface.co/timm/resnet101.a3_in1k)|224 |79.82|94.62|44.6 |7.8 |16.2 |2114 | |[resnext50_32x4d.ra_in1k](https://huggingface.co/timm/resnext50_32x4d.ra_in1k)|224 |79.76|94.6 |25.0 |4.3 |14.4 |2943 | |[resnet50.c1_in1k](https://huggingface.co/timm/resnet50.c1_in1k)|224 |79.74|94.95|25.6 |4.1 |11.1 |3455 | |[ecaresnet50d_pruned.miil_in1k](https://huggingface.co/timm/ecaresnet50d_pruned.miil_in1k)|224 |79.74|94.87|19.9 |2.5 |6.4 |3929 | |[resnet33ts.ra2_in1k](https://huggingface.co/timm/resnet33ts.ra2_in1k)|288 |79.71|94.83|19.7 |6.0 |14.8 |2710 | |[resnet152.gluon_in1k](https://huggingface.co/timm/resnet152.gluon_in1k)|224 |79.68|94.74|60.2 |11.6 |22.6 |1486 | |[resnext50d_32x4d.bt_in1k](https://huggingface.co/timm/resnext50d_32x4d.bt_in1k)|224 |79.67|94.87|25.0 |4.5 |15.2 |2729 | |[resnet50.bt_in1k](https://huggingface.co/timm/resnet50.bt_in1k)|288 |79.63|94.91|25.6 |6.8 |18.4 |2086 | |[ecaresnet50t.a3_in1k](https://huggingface.co/timm/ecaresnet50t.a3_in1k)|224 |79.56|94.72|25.6 |4.3 |11.8 |2805 | |[resnet101c.gluon_in1k](https://huggingface.co/timm/resnet101c.gluon_in1k)|224 |79.53|94.58|44.6 |8.1 |17.0 |2062 | |[resnet50.b1k_in1k](https://huggingface.co/timm/resnet50.b1k_in1k)|224 |79.52|94.61|25.6 |4.1 |11.1 |3459 | |[resnet50.tv2_in1k](https://huggingface.co/timm/resnet50.tv2_in1k)|176 |79.42|94.64|25.6 |2.6 |6.9 |5397 | |[resnet32ts.ra2_in1k](https://huggingface.co/timm/resnet32ts.ra2_in1k)|288 |79.4 |94.66|18.0 |5.9 |14.6 |2752 | |[resnet50.b2k_in1k](https://huggingface.co/timm/resnet50.b2k_in1k)|224 |79.38|94.57|25.6 |4.1 |11.1 |3459 | |[resnext50_32x4d.tv2_in1k](https://huggingface.co/timm/resnext50_32x4d.tv2_in1k)|176 |79.37|94.3 |25.0 |2.7 |9.0 |4577 | |[resnext50_32x4d.gluon_in1k](https://huggingface.co/timm/resnext50_32x4d.gluon_in1k)|224 |79.36|94.43|25.0 |4.3 |14.4 |2942 | |[resnext101_32x8d.tv_in1k](https://huggingface.co/timm/resnext101_32x8d.tv_in1k)|224 |79.31|94.52|88.8 |16.5 |31.2 |1100 | |[resnet101.gluon_in1k](https://huggingface.co/timm/resnet101.gluon_in1k)|224 |79.31|94.53|44.6 |7.8 |16.2 |2125 | |[resnetblur50.bt_in1k](https://huggingface.co/timm/resnetblur50.bt_in1k)|224 |79.31|94.63|25.6 |5.2 |12.0 |2524 | |[resnet50.a1h_in1k](https://huggingface.co/timm/resnet50.a1h_in1k)|176 |79.27|94.49|25.6 |2.6 |6.9 |5404 | |[resnext50_32x4d.a3_in1k](https://huggingface.co/timm/resnext50_32x4d.a3_in1k)|224 |79.25|94.31|25.0 |4.3 |14.4 |2931 | |[resnet50.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnet50.fb_ssl_yfcc100m_ft_in1k)|224 |79.22|94.84|25.6 |4.1 |11.1 |3451 | |[resnet33ts.ra2_in1k](https://huggingface.co/timm/resnet33ts.ra2_in1k)|256 |79.21|94.56|19.7 |4.8 |11.7 |3392 | |[resnet50d.gluon_in1k](https://huggingface.co/timm/resnet50d.gluon_in1k)|224 |79.07|94.48|25.6 |4.4 |11.9 |3162 | |[resnet50.ram_in1k](https://huggingface.co/timm/resnet50.ram_in1k)|224 |79.03|94.38|25.6 |4.1 |11.1 |3453 | |[resnet50.am_in1k](https://huggingface.co/timm/resnet50.am_in1k)|224 |79.01|94.39|25.6 |4.1 |11.1 |3461 | |[resnet32ts.ra2_in1k](https://huggingface.co/timm/resnet32ts.ra2_in1k)|256 |79.01|94.37|18.0 |4.6 |11.6 |3440 | |[ecaresnet26t.ra2_in1k](https://huggingface.co/timm/ecaresnet26t.ra2_in1k)|256 |78.9 |94.54|16.0 |3.4 |10.5 |3421 | |[resnet152.a3_in1k](https://huggingface.co/timm/resnet152.a3_in1k)|160 |78.89|94.11|60.2 |5.9 |11.5 |2745 | |[wide_resnet101_2.tv_in1k](https://huggingface.co/timm/wide_resnet101_2.tv_in1k)|224 |78.84|94.28|126.9 |22.8 |21.2 |1079 | |[seresnext26d_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26d_32x4d.bt_in1k)|288 |78.83|94.24|16.8 |4.5 |16.8 |2251 | |[resnet50.ra_in1k](https://huggingface.co/timm/resnet50.ra_in1k)|224 |78.81|94.32|25.6 |4.1 |11.1 |3454 | |[seresnext26t_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26t_32x4d.bt_in1k)|288 |78.74|94.33|16.8 |4.5 |16.7 |2264 | |[resnet50s.gluon_in1k](https://huggingface.co/timm/resnet50s.gluon_in1k)|224 |78.72|94.23|25.7 |5.5 |13.5 |2796 | |[resnet50d.a3_in1k](https://huggingface.co/timm/resnet50d.a3_in1k)|224 |78.71|94.24|25.6 |4.4 |11.9 |3154 | |[wide_resnet50_2.tv_in1k](https://huggingface.co/timm/wide_resnet50_2.tv_in1k)|224 |78.47|94.09|68.9 |11.4 |14.4 |1934 | |[resnet50.bt_in1k](https://huggingface.co/timm/resnet50.bt_in1k)|224 |78.46|94.27|25.6 |4.1 |11.1 |3454 | |[resnet34d.ra2_in1k](https://huggingface.co/timm/resnet34d.ra2_in1k)|288 |78.43|94.35|21.8 |6.5 |7.5 |3291 | |[gcresnext26ts.ch_in1k](https://huggingface.co/timm/gcresnext26ts.ch_in1k)|288 |78.42|94.04|10.5 |3.1 |13.3 |3226 | |[resnet26t.ra2_in1k](https://huggingface.co/timm/resnet26t.ra2_in1k)|320 |78.33|94.13|16.0 |5.2 |16.4 |2391 | |[resnet152.tv_in1k](https://huggingface.co/timm/resnet152.tv_in1k)|224 |78.32|94.04|60.2 |11.6 |22.6 |1487 | |[seresnext26ts.ch_in1k](https://huggingface.co/timm/seresnext26ts.ch_in1k)|288 |78.28|94.1 |10.4 |3.1 |13.3 |3062 | |[bat_resnext26ts.ch_in1k](https://huggingface.co/timm/bat_resnext26ts.ch_in1k)|256 |78.25|94.1 |10.7 |2.5 |12.5 |3393 | |[resnet50.a3_in1k](https://huggingface.co/timm/resnet50.a3_in1k)|224 |78.06|93.78|25.6 |4.1 |11.1 |3450 | |[resnet50c.gluon_in1k](https://huggingface.co/timm/resnet50c.gluon_in1k)|224 |78.0 |93.99|25.6 |4.4 |11.9 |3286 | |[eca_resnext26ts.ch_in1k](https://huggingface.co/timm/eca_resnext26ts.ch_in1k)|288 |78.0 |93.91|10.3 |3.1 |13.3 |3297 | |[seresnext26t_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26t_32x4d.bt_in1k)|224 |77.98|93.75|16.8 |2.7 |10.1 |3841 | |[resnet34.a1_in1k](https://huggingface.co/timm/resnet34.a1_in1k)|288 |77.92|93.77|21.8 |6.1 |6.2 |3609 | |[resnet101.a3_in1k](https://huggingface.co/timm/resnet101.a3_in1k)|160 |77.88|93.71|44.6 |4.0 |8.3 |3926 | |[resnet26t.ra2_in1k](https://huggingface.co/timm/resnet26t.ra2_in1k)|256 |77.87|93.84|16.0 |3.4 |10.5 |3772 | |[seresnext26ts.ch_in1k](https://huggingface.co/timm/seresnext26ts.ch_in1k)|256 |77.86|93.79|10.4 |2.4 |10.5 |4263 | |[resnetrs50.tf_in1k](https://huggingface.co/timm/resnetrs50.tf_in1k)|160 |77.82|93.81|35.7 |2.3 |6.2 |5238 | |[gcresnext26ts.ch_in1k](https://huggingface.co/timm/gcresnext26ts.ch_in1k)|256 |77.81|93.82|10.5 |2.4 |10.5 |4183 | |[ecaresnet50t.a3_in1k](https://huggingface.co/timm/ecaresnet50t.a3_in1k)|160 |77.79|93.6 |25.6 |2.2 |6.0 |5329 | |[resnext50_32x4d.a3_in1k](https://huggingface.co/timm/resnext50_32x4d.a3_in1k)|160 |77.73|93.32|25.0 |2.2 |7.4 |5576 | |[resnext50_32x4d.tv_in1k](https://huggingface.co/timm/resnext50_32x4d.tv_in1k)|224 |77.61|93.7 |25.0 |4.3 |14.4 |2944 | |[seresnext26d_32x4d.bt_in1k](https://huggingface.co/timm/seresnext26d_32x4d.bt_in1k)|224 |77.59|93.61|16.8 |2.7 |10.2 |3807 | |[resnet50.gluon_in1k](https://huggingface.co/timm/resnet50.gluon_in1k)|224 |77.58|93.72|25.6 |4.1 |11.1 |3455 | |[eca_resnext26ts.ch_in1k](https://huggingface.co/timm/eca_resnext26ts.ch_in1k)|256 |77.44|93.56|10.3 |2.4 |10.5 |4284 | |[resnet26d.bt_in1k](https://huggingface.co/timm/resnet26d.bt_in1k)|288 |77.41|93.63|16.0 |4.3 |13.5 |2907 | |[resnet101.tv_in1k](https://huggingface.co/timm/resnet101.tv_in1k)|224 |77.38|93.54|44.6 |7.8 |16.2 |2125 | |[resnet50d.a3_in1k](https://huggingface.co/timm/resnet50d.a3_in1k)|160 |77.22|93.27|25.6 |2.2 |6.1 |5982 | |[resnext26ts.ra2_in1k](https://huggingface.co/timm/resnext26ts.ra2_in1k)|288 |77.17|93.47|10.3 |3.1 |13.3 |3392 | |[resnet34.a2_in1k](https://huggingface.co/timm/resnet34.a2_in1k)|288 |77.15|93.27|21.8 |6.1 |6.2 |3615 | |[resnet34d.ra2_in1k](https://huggingface.co/timm/resnet34d.ra2_in1k)|224 |77.1 |93.37|21.8 |3.9 |4.5 |5436 | |[seresnet50.a3_in1k](https://huggingface.co/timm/seresnet50.a3_in1k)|224 |77.02|93.07|28.1 |4.1 |11.1 |2952 | |[resnext26ts.ra2_in1k](https://huggingface.co/timm/resnext26ts.ra2_in1k)|256 |76.78|93.13|10.3 |2.4 |10.5 |4410 | |[resnet26d.bt_in1k](https://huggingface.co/timm/resnet26d.bt_in1k)|224 |76.7 |93.17|16.0 |2.6 |8.2 |4859 | |[resnet34.bt_in1k](https://huggingface.co/timm/resnet34.bt_in1k)|288 |76.5 |93.35|21.8 |6.1 |6.2 |3617 | |[resnet34.a1_in1k](https://huggingface.co/timm/resnet34.a1_in1k)|224 |76.42|92.87|21.8 |3.7 |3.7 |5984 | |[resnet26.bt_in1k](https://huggingface.co/timm/resnet26.bt_in1k)|288 |76.35|93.18|16.0 |3.9 |12.2 |3331 | |[resnet50.tv_in1k](https://huggingface.co/timm/resnet50.tv_in1k)|224 |76.13|92.86|25.6 |4.1 |11.1 |3457 | |[resnet50.a3_in1k](https://huggingface.co/timm/resnet50.a3_in1k)|160 |75.96|92.5 |25.6 |2.1 |5.7 |6490 | |[resnet34.a2_in1k](https://huggingface.co/timm/resnet34.a2_in1k)|224 |75.52|92.44|21.8 |3.7 |3.7 |5991 | |[resnet26.bt_in1k](https://huggingface.co/timm/resnet26.bt_in1k)|224 |75.3 |92.58|16.0 |2.4 |7.4 |5583 | |[resnet34.bt_in1k](https://huggingface.co/timm/resnet34.bt_in1k)|224 |75.16|92.18|21.8 |3.7 |3.7 |5994 | |[seresnet50.a3_in1k](https://huggingface.co/timm/seresnet50.a3_in1k)|160 |75.1 |92.08|28.1 |2.1 |5.7 |5513 | |[resnet34.gluon_in1k](https://huggingface.co/timm/resnet34.gluon_in1k)|224 |74.57|91.98|21.8 |3.7 |3.7 |5984 | |[resnet18d.ra2_in1k](https://huggingface.co/timm/resnet18d.ra2_in1k)|288 |73.81|91.83|11.7 |3.4 |5.4 |5196 | |[resnet34.tv_in1k](https://huggingface.co/timm/resnet34.tv_in1k)|224 |73.32|91.42|21.8 |3.7 |3.7 |5979 | |[resnet18.fb_swsl_ig1b_ft_in1k](https://huggingface.co/timm/resnet18.fb_swsl_ig1b_ft_in1k)|224 |73.28|91.73|11.7 |1.8 |2.5 |10213 | |[resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k)|288 |73.16|91.03|11.7 |3.0 |4.1 |6050 | |[resnet34.a3_in1k](https://huggingface.co/timm/resnet34.a3_in1k)|224 |72.98|91.11|21.8 |3.7 |3.7 |5967 | |[resnet18.fb_ssl_yfcc100m_ft_in1k](https://huggingface.co/timm/resnet18.fb_ssl_yfcc100m_ft_in1k)|224 |72.6 |91.42|11.7 |1.8 |2.5 |10213 | |[resnet18.a2_in1k](https://huggingface.co/timm/resnet18.a2_in1k)|288 |72.37|90.59|11.7 |3.0 |4.1 |6051 | |[resnet14t.c3_in1k](https://huggingface.co/timm/resnet14t.c3_in1k)|224 |72.26|90.31|10.1 |1.7 |5.8 |7026 | |[resnet18d.ra2_in1k](https://huggingface.co/timm/resnet18d.ra2_in1k)|224 |72.26|90.68|11.7 |2.1 |3.3 |8707 | |[resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k)|224 |71.49|90.07|11.7 |1.8 |2.5 |10187 | |[resnet14t.c3_in1k](https://huggingface.co/timm/resnet14t.c3_in1k)|176 |71.31|89.69|10.1 |1.1 |3.6 |10970 | |[resnet18.gluon_in1k](https://huggingface.co/timm/resnet18.gluon_in1k)|224 |70.84|89.76|11.7 |1.8 |2.5 |10210 | |[resnet18.a2_in1k](https://huggingface.co/timm/resnet18.a2_in1k)|224 |70.64|89.47|11.7 |1.8 |2.5 |10194 | |[resnet34.a3_in1k](https://huggingface.co/timm/resnet34.a3_in1k)|160 |70.56|89.52|21.8 |1.9 |1.9 |10737 | |[resnet18.tv_in1k](https://huggingface.co/timm/resnet18.tv_in1k)|224 |69.76|89.07|11.7 |1.8 |2.5 |10205 | |[resnet10t.c3_in1k](https://huggingface.co/timm/resnet10t.c3_in1k)|224 |68.34|88.03|5.4 |1.1 |2.4 |13079 | |[resnet18.a3_in1k](https://huggingface.co/timm/resnet18.a3_in1k)|224 |68.25|88.17|11.7 |1.8 |2.5 |10167 | |[resnet10t.c3_in1k](https://huggingface.co/timm/resnet10t.c3_in1k)|176 |66.71|86.96|5.4 |0.7 |1.5 |20327 | |[resnet18.a3_in1k](https://huggingface.co/timm/resnet18.a3_in1k)|160 |65.66|86.26|11.7 |0.9 |1.3 |18229 | ## Citation ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ``` ```bibtex @article{He2015, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {arXiv preprint arXiv:1512.03385}, year = {2015} } ``` ```bibtex @article{He2018BagOT, title={Bag of Tricks for Image Classification with Convolutional Neural Networks}, author={Tong He and Zhi Zhang and Hang Zhang and Zhongyue Zhang and Junyuan Xie and Mu Li}, journal={2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2018}, pages={558-567} } ```
timm/mobilevit_xs.cvnets_in1k
timm
"2023-04-24T22:23:24Z"
1,100
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2110.02178", "license:other", "region:us" ]
image-classification
"2023-04-24T22:23:14Z"
--- tags: - image-classification - timm library_name: timm license: other datasets: - imagenet-1k --- # Model card for mobilevit_xs.cvnets_in1k A MobileViT image classification model. Trained on ImageNet-1k by paper authors. See license details at https://github.com/apple/ml-cvnets/blob/main/LICENSE ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 2.3 - GMACs: 1.1 - Activations (M): 16.3 - Image size: 256 x 256 - **Papers:** - MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer: https://arxiv.org/abs/2110.02178 - **Original:** https://github.com/apple/ml-cvnets - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('mobilevit_xs.cvnets_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevit_xs.cvnets_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 32, 128, 128]) # torch.Size([1, 48, 64, 64]) # torch.Size([1, 64, 32, 32]) # torch.Size([1, 80, 16, 16]) # torch.Size([1, 384, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'mobilevit_xs.cvnets_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 384, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{mehta2022mobilevit, title={MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer}, author={Sachin Mehta and Mohammad Rastegari}, booktitle={International Conference on Learning Representations}, year={2022} } ```
LI-ST/Mistral-7B-ko-v0.005
LI-ST
"2024-01-09T07:36:16Z"
1,100
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "ko", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-08T10:22:04Z"
--- license: cc-by-nc-nd-4.0 language: - en - ko library_name: transformers pipeline_tag: text-generation --- <p><h1>Mistral-7B-ko</h1></p> basemodel: Open-Orca/Mistral-7B-OpenOrca ================================================= <BR> This model is a temporary model for testing. <BR> We will be deleting it soon. <BR> =================================================
mu0gum/polyglot-ko-1.3b-slim_orca_10000-epoch2
mu0gum
"2024-01-15T12:01:34Z"
1,100
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-10T11:24:15Z"
--- license: cc-by-nc-4.0 --- ๋ฒ ์ด์Šค ๋ชจ๋ธ : EleutherAI/polyglot-ko-1.3b ํ•™์Šต ๋ฐ์ดํ„ฐ : nlp-with-deeplearning/Ko.SlimOrca ํ•™์Šต ๋ฐ์ดํ„ฐ 10000๊ฑด์„ ์ƒ˜ํ”Œ๋งํ•˜์—ฌ ํ•™์Šต (system ๋ฏธํฌํ•จ) - ํ•™์Šต ๋ฐ์ดํ„ฐ ์˜ˆ์‹œ - "prompt": "์ด ๊ธ€์„ ํ† ๋Œ€๋กœ โ€œํ•œ ๋‚จ์„ฑ์ด ํ˜ธ์ฃผ ์‹œ๋“œ๋‹ˆ์˜ ํ•œ ์‹๋‹น์—์„œ ํ•œ ์—ฌ์„ฑ๊ณผ ๋ฐ์ดํŠธ๋ฅผ ํ•˜๋˜ ๋‚จ์„ฑ์ด ์นผ์— ์ฐ”๋ฆฐ ๋’ค ์‚ด์ธยท์‚ด์ธ๋ฏธ์ˆ˜ ํ˜์˜๋กœ ๊ธฐ์†Œ๋๋‹คโ€๋Š” ๊ธ€์„ ์“ด๋‹ค.", "completion": "์ œ๋ชฉ: ์‹œ๋“œ๋‹ˆ์˜ ๋น„๊ทน์  ๊ณต๊ฒฉ: ์ €๋… ์‹์‚ฌ ์ค‘ ์นผ์— ์ฐ”๋ฆฐ ํฌ์ƒ์ž, ์‚ด์ธ ํ˜์˜ ๋ฐ ์‚ด์ธ ๋ฏธ์ˆ˜ ํ˜์˜\n\n์„œ๋ก \n\nํ•œ ๋‚จ์„ฑ์ด ํ•œ ๋ถ€๋ถ€๋ฅผ ๊ณต๊ฒฉํ•ด ๋‘ ํฌ์ƒ์ž๋ฅผ ๋ชจ๋‘ ์ฐŒ๋ฅธ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ง„ ๊ฐ€์šด๋ฐ ํ˜ธ์ฃผ ์‹œ๋“œ๋‹ˆ์—์„œ ํ˜„์ง€ ์‹๋‹น์—์„œ ๋กœ๋งจํ‹ฑํ•œ ์ €๋… ๋ฐ์ดํŠธ๊ฐ€ ์œ ํ˜ˆ์‚ฌํƒœ๋กœ ๋๋‚˜์ž ํ‰๋ฒ”ํ•ด ๋ณด์ด๋Š” ์ €๋…์ด ๋น„๊ทน์ ์œผ๋กœ ๋ณ€ํ–ˆ๋‹ค. ์ง€๋ฐฉ ๋‹น๊ตญ์€ ๊ทธ ๋”์ฐํ•œ ๋ฒ”์ฃ„์™€ ๊ด€๋ จํ•˜์—ฌ ์šฉ์˜์ž๋ฅผ ์‚ด์ธ ๋ฐ ์‚ด์ธ ๋ฏธ์ˆ˜๋กœ ๊ธฐ์†Œํ–ˆ๋‹ค. ์ด ๊ธฐ์‚ฌ์—์„œ ์šฐ๋ฆฌ๋Š” ์†Œ๋ฆ„๋ผ์น˜๋Š” ์‚ฌ๊ฑด, ์šฉ์˜์ž, ๊ทธ๋ฆฌ๊ณ  ๊ทธ๊ฒƒ์ด ์ง€์—ญ์‚ฌํšŒ์— ๋ผ์นœ ์˜ํ–ฅ์„ ์กฐ์‚ฌํ•œ๋‹ค.\n\n์‚ฌ๊ฑด\n\n๋†€๋ผ์šด ํ–‰์‚ฌ๋Š” ํ˜ธ์ฃผ ์‹œ๋“œ๋‹ˆ์˜ ํ•œ ์ธ๊ธฐ ๋ ˆ์Šคํ† ๋ž‘์—์„œ ์—ด๋ ธ์Šต๋‹ˆ๋‹ค. ํ•œ ์—ฌ์„ฑ๊ณผ ๊ทธ๋…€์˜ ๋ฐ์ดํŠธ ์ƒ๋Œ€๋Š” ๊ณง ํŽผ์ณ์งˆ ๋น„๊ทน์ ์ธ ์ƒํ™ฉ์„ ์ž˜ ๋ชจ๋ฅด๊ณ  ์ฆ๊ฒ๊ฒŒ ์‹์‚ฌ๋ฅผ ์ฆ๊ธฐ๊ณ  ์žˆ์—ˆ๋‹ค. ๋Œ€ํ™”๋ฅผ ๋‚˜๋ˆ„๊ณ  ์ €๋… ์‹์‚ฌ์— ๋น ์ ธ๋“ค์ž ํ•œ ๋‚จ์„ฑ์ด ๋ถ€๋ถ€์—๊ฒŒ ๋‹ค๊ฐ€๊ฐ€ ๊ฒฝ๊ณ ๋„ ์—†์ด ๋‚ ์นด๋กœ์šด ๋ฌผ์ฒด๋กœ ์ฐŒ๋ฅด๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค.\n\n๊ฐ€ํ•ด์ž๊ฐ€ ๋‚œ๋™์„ ๋ถ€๋ฆฌ๋ฉด์„œ ์‹๋‹น์˜ ์†๋‹˜๋“ค์€ ์•ˆ์ „์„ ์œ„ํ•ด ์•ž๋‹คํ‰ˆ ๋‚˜์„ฐ๋‹ค. ๋ฐฉ์กฐ๋ฒ”๋“ค์€ ์‹ ์†ํžˆ ์‘๊ธ‰๊ตฌ์กฐ๋Œ€์— ์ „ํ™”๋ฅผ ํ–ˆ๊ณ , ๊ทธ๋“ค์€ ์ฆ‰์‹œ ํ˜„์žฅ์— ๋„์ฐฉํ–ˆ๋‹ค. ๋‘ ํฌ์ƒ์ž ๋ชจ๋‘ ์ธ๊ทผ ๋ณ‘์›์œผ๋กœ ๊ธ‰ํžˆ ์ด์†ก๋์ง€๋งŒ ์ด ์—ฌ์„ฑ์€ ๋ถ€์ƒ์œผ๋กœ ์‚ฌ๋งํ–ˆ๋‹ค. ๊ทธ๋…€๊ฐ€ ๋ฐ์ดํŠธํ•˜๊ณ  ์žˆ๋˜ ๋‚จ์ž๋Š” ๋ชฉ์ˆจ์„ ๊ฑธ๊ณ  ์‹ธ์šฐ๋ฉด์„œ ์œ„๋…ํ•œ ์ƒํƒœ๋กœ ๋‚จ์•„ ์žˆ์—ˆ๋‹ค.\n\n์šฉ์˜์ž\n\n์ดˆ๊ธฐ ์กฐ์‚ฌ์— ๋”ฐ๋ฅด๋ฉด ๊ณต๊ฒฉ์ž๋กœ ์ถ”์ •๋˜๋Š” ์‚ฌ๋žŒ์€ ํ”ผํ•ด์ž์™€ ์•Œ๋ ค์ง„ ์—ฐ๊ด€์„ฑ์ด ์—†์—ˆ์œผ๋ฉฐ, ์ด๋Š” ๊ฐ‘์ž‘์Šค๋Ÿฝ๊ณ  ์ž”์ธํ•œ ํญํ–‰์˜ ์‹ ๋น„๋กœ์šด ์„ฑ๊ฒฉ์„ ๋”ํ–ˆ๋‹ค. ๋ชฉ๊ฒฉ์ž๋“ค์€ ๊ฐ€ํ•ด์ž๊ฐ€ ๊ตฌ์ฒด์ ์ธ ๋™๊ธฐ๋Š” ์—†๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ด๋ฉฐ ๋ฌด์˜์‹์ ์œผ๋กœ ํ–‰์œ„๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค๊ณ  ์ „ํ–ˆ๋‹ค.\n\n์ฒ ์ €ํ•œ ์ˆ˜์‚ฌ์— ์ด์–ด ์ง€์—ญ ๊ฒฝ์ฐฐ์ด ์šฉ์˜์ž๋ฅผ ํŒŒ์•…ํ•ด ๊ฒ€๊ฑฐํ–ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๊ฐ€ํ•ด์ž๋กœ ์ถ”์ •๋˜๋Š” ์‚ฌ๋žŒ์€ ๋ฒ”์ฃ„ ํ–‰์œ„ ์ด๋ ฅ๊ณผ ๋ฌธ์ œ๊ฐ€ ๋œ ๊ณผ๊ฑฐ๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ์ง€๋งŒ, ์ด๊ฒƒ์ด ๋น„๊ทน์ ์ธ ์‚ฌ๊ฑด์— ์˜ํ–ฅ์„ ๋ฏธ์ณค๋Š”์ง€๋Š” ๋ถˆ๋ถ„๋ช…ํ•˜๋‹ค.\n\n๋‹น๊ตญ์€ ๊ทธ ๋‚จ์ž๋ฅผ ๊ทน์•…๋ฌด๋„ํ•œ ๋ฒ”์ฃ„์™€ ๊ด€๋ จํ•˜์—ฌ ๊ณต์‹์ ์œผ๋กœ ์‚ด์ธ ๋ฐ ์‚ด์ธ ๋ฏธ์ˆ˜ ํ˜์˜๋กœ ๊ธฐ์†Œํ–ˆ๋‹ค. ๊ทธ๋Š” ๊ณตํŒ๊ธฐ์ผ์„ ๊ฒฐ์ •ํ•˜๊ธฐ ์œ„ํ•œ ์‹ฌ๋ฆฌ๋ฅผ ๊ธฐ๋‹ค๋ฆฌ๊ณ  ์žˆ์œผ๋ฉฐ, ์œ ์ฃ„๊ฐ€ ํ™•์ •๋˜๋ฉด ์ข…์‹ ํ˜•์— ์ฒ˜ํ•ด์งˆ ์ˆ˜ ์žˆ๋‹ค.\n\n์ง€์—ญ์‚ฌํšŒ์˜ ๋Œ€์‘\n\n๊ทธ ๋ฒ”์ฃ„์˜ ์ถฉ๊ฒฉ์ ์ธ ์„ฑ๊ฒฉ์€ ์‹œ๋“œ๋‹ˆ ์ฃผ๋ฏผ๋“ค์ด ๋”์ฐํ•œ ์‚ฌ๊ฑด์„ ๋ฐ›์•„๋“ค์ด๊ธฐ ์œ„ํ•ด ๊ณ ๊ตฐ๋ถ„ํˆฌํ•˜๋ฉด์„œ ํ”๋“ค๋ฆฌ๊ฒŒ ํ–ˆ๋‹ค ํ…Œ๋Ÿฌ๊ฐ€ ๋ฐœ์ƒํ•œ ์‹๋‹น์€ ์ดํ›„ ํ์‡„๋์œผ๋ฉฐ, ํฌ์ƒ์ž๋“ค์„ ์ถ”๋ชจํ•˜๊ธฐ ์œ„ํ•ด ์™ธ๋ถ€์— ์ž„์‹œ ๊ธฐ๋…๊ด€์ด ์กฐ์„ฑ๋๋‹ค.\n\n๋งŽ์€ ์‚ฌ๋žŒ๋“ค์€ ์„ธ๊ณ„์—์„œ ๊ฐ€์žฅ ์•ˆ์ „ํ•œ ๋„์‹œ ์ค‘ ํ•˜๋‚˜๋กœ ์—ฌ๊ฒจ์ง€๋Š” ๊ณณ์—์„œ ๊ทธ๋Ÿฌํ•œ ์‚ฌ์•…ํ•œ ๋ฒ”์ฃ„๊ฐ€ ์–ด๋–ป๊ฒŒ ์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋Š”์ง€์— ๋Œ€ํ•ด ์˜๋ฌธ์„ ์ œ๊ธฐํ–ˆ๋‹ค. ์ด ๋น„๊ทน์ ์ธ ์‚ฌ๊ฑด์€ ์ง€์—ญ ๊ณต๋ฌด์›๋“ค์ด ํ˜„์žฌ์˜ ๋ณด์•ˆ ์กฐ์น˜๋ฅผ ์žฌํ‰๊ฐ€ํ•˜๊ณ  ๊ณต๊ณต ์•ˆ์ „์„ ๊ฐ•ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ „๋žต์„ ๊ณ ์•ˆํ•˜๋„๋ก ๋ฐ•์ฐจ๋ฅผ ๊ฐ€ํ–ˆ๋‹ค. ์ฃผ๋ฏผ๋“ค์ด ๊ฐ€ํ•ด ํ˜์˜์ž์˜ ํ–‰๋™์„ ํŒŒ์•…ํ•˜๊ณ  ํ–ฅํ›„ ์œ ์‚ฌํ•œ ์‚ฌ๊ฑด์ด ๋ฐœ์ƒํ•˜์ง€ ์•Š๋„๋ก ๋…ธ๋ ฅํ•˜๋ฉด์„œ ์ •์‹ ๊ฑด๊ฐ•๊ณผ ๋ฒ”์ฃ„ ์žฌํ™œ์„ ๋‘˜๋Ÿฌ์‹ผ ๋…ผ์˜๋„ ์ˆ˜๋ฉด ์œ„๋กœ ๋– ์˜ฌ๋ž๋‹ค.\n\n์นผ์— ์ฐ”๋ฆฐ ํ›„, ๊ทธ ์ง€์—ญ ์‚ฌํšŒ๋Š” ํฌ์ƒ์ž๋“ค๊ณผ ๊ทธ๋“ค์˜ ๊ฐ€์กฑ๋“ค์— ๋Œ€ํ•œ ์Šฌํ””๊ณผ ์ง€์ง€์˜ ํญ์šฐ์™€ ํ•จ๊ป˜ ๋ญ‰์ณค๋‹ค ์ด›๋ถˆ ์ง‘ํšŒ๊ฐ€ ์—ด๋ ธ๊ณ , ์ƒ์กดํ•œ ํฌ์ƒ์ž์˜ ์น˜๋ฃŒ๋น„์™€ ํšŒ๋ณต์„ ๋•๊ธฐ ์œ„ํ•œ ์˜จ๋ผ์ธ ๋ชจ๊ธˆ ์šด๋™์ด ์ง„ํ–‰ ์ค‘์ด๋‹ค.\n\n๊ฒฐ๋ก \n\n์‹œ๋“œ๋‹ˆ์—์„œ์˜ ๋น„๊ทน์ ์ธ ๊ณต๊ฒฉ์€ ๋ฌด๋ถ„๋ณ„ํ•œ ํญ๋ ฅ ํ–‰์œ„๊ฐ€ ์–ธ์ œ ์–ด๋””์„œ๋“  ์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์†Œ๋ฆ„๋ผ์น˜๊ฒŒ ์ƒ๊ธฐ์‹œํ‚ค๋Š” ์—ญํ• ์„ ํ•œ๋‹ค. ์ด ๋”์ฐํ•˜๊ณ  ๊ฒ‰๋ณด๊ธฐ์— ๋ฌด์ž‘์œ„์ ์ธ ์ž”ํ˜น ํ–‰์œ„์— ๋Œ€ํ•œ ๊ณต๋™์ฒด์˜ ๋Œ€์‘์€ ํ–ฅํ›„ ์ด๋Ÿฌํ•œ ์‚ฌ๊ฑด์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒฐ์†๋ ฅ๊ณผ ๊ฒฐ๋‹จ๋ ฅ ์ค‘ ํ•˜๋‚˜์˜€๋‹ค. ์‚ฌ๊ฑด์ด ์ „๊ฐœ๋˜๋ฉด์„œ ๋น„๊ทน์ ์œผ๋กœ ์งง์€ ๋ชฉ์ˆจ์„ ์žƒ์€ ์ฐธํ˜นํ•œ ์ฃฝ์Œ์„ ์Šฌํผํ•˜๊ณ  ์ด ์ƒ์ƒํ•  ์ˆ˜ ์—†๋Š” ์‹œ๋ จ์„ ๊ณ„์† ๊ฒฌ๋””๋ฉด์„œ ํšŒ๋ณต ์ค‘์ธ ํ”ผํ•ด์ž๋ฅผ ๋ถ€์–‘ํ•˜๊ณ  ์žˆ๋Š” ํ”ผํ•ด์ž์™€ ๊ทธ ๊ฐ€์กฑ๋“ค์€ ๊ณต๋™์ฒด์˜ ๊ฐ€์Šด์— ๋‚จ์•„ ์žˆ๋‹ค." ํ•™์Šต ๋ฐฉ๋ฒ• : Lora Lora Config - lora_alpha: 16 - lora_dropout: 0.05, - r: 8 ko-lm-evaluation-harness ๊ฒฐ๊ณผ - kobest_boolq 0.502137 - kobest_copa 0.683000 - kobest_hellaswag 0.402000 - kobest_sentineg 0.725441 - kohatespeech 0.420382 - kohatespeech_apeach 0.509549 - kohatespeech_gen_bias 0.450106 - korunsmile 0.426313 - nsmc 0.688540 - pawsx_ko 0.488000 - Average_score 0.529547
blueapple8259/TinyKo-V4
blueapple8259
"2024-01-11T12:53:34Z"
1,100
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "dataset:psymon/namuwiki_alpaca_dataset", "dataset:maywell/ko_wikidata_QA", "dataset:bigcode/starcoderdata", "dataset:royboy0416/ko-alpaca", "dataset:beomi/KoAlpaca-v1.1a", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-11T12:44:49Z"
--- license: cc-by-nc-sa-4.0 datasets: - psymon/namuwiki_alpaca_dataset - maywell/ko_wikidata_QA - bigcode/starcoderdata - royboy0416/ko-alpaca - beomi/KoAlpaca-v1.1a language: - ko pipeline_tag: text-generation --- ์—ฌ๋Ÿฌ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ์‚ฌ์ „ ํ•™์Šต๋œ AI๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ## ์ฃผ์˜ ์ด์ „ ๋ชจ๋ธ๋“ค๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์‚ฌ์‹ค๊ณผ ๋งž์ง€ ์•Š๋Š” ์ถœ๋ ฅ์ด ๋งค์šฐ ๋งŽ์Šต๋‹ˆ๋‹ค. ## ํ”„๋กฌํ”„ํŠธ ์ฃผ์˜: ์ง€ ํ•˜๊ณ  ์‹ถ์€ ๋ง๋งŒ ํ•ฉ๋‹ˆ๋‹ค.(์˜ˆ: ์‚ฌ๊ณผ์˜ ์ƒ‰์„ ์•Œ๋ ค์ฃผ์„ธ์š”. -> ์•ˆ๊ฐœ๋Š” ์ค‘๊ตญ ๋™๋ถ๋ถ€ ๋ถ๋‹จ์— ์œ„์น˜ํ•œ ์ˆ˜๋ฅ™์œผ๋กœ, ...) ``` ๋‹ค์Œ์€ ์ž‘์—…์„ ์„ค๋ช…ํ•˜๋Š” ์ง€์นจ์ž…๋‹ˆ๋‹ค. ์š”์ฒญ์„ ์ ์ ˆํ•˜๊ฒŒ ์™„๋ฃŒํ•˜๋Š” ์‘๋‹ต์„ ์ž‘์„ฑํ•˜์‹ญ์‹œ์˜ค. ### ์ง€์นจ: {prompt} ### ์‘๋‹ต: ``` ## ๋ฐ์ดํ„ฐ์…‹ ์ผ๋ถ€ ๋ฐ์ดํ„ฐ์…‹์€ output๋งŒ ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. [psymon/namuwiki_alpaca_dataset](https://huggingface.co/datasets/psymon/namuwiki_alpaca_dataset) [maywell/ko_wikidata_QA](https://huggingface.co/datasets/maywell/ko_wikidata_QA) [bigcode/starcoderdata](https://huggingface.co/datasets/bigcode/starcoderdata) - ํ˜ผ์ž ๋„ˆ๋ฌด ๋งŽ์€ ๊ด€๊ณ„๋กœ ํŒŒ์ด์ฌ ์ฒซ ํŒŒ์ผ์˜ 1/4๋งŒ ์‚ฌ์šฉํ•จ [royboy0416/ko-alpaca](https://huggingface.co/datasets/royboy0416/ko-alpaca) [beomi/KoAlpaca-v1.1a](https://huggingface.co/datasets/beomi/KoAlpaca-v1.1a)
mu0gum/AIFT-42dot-LLM-PLM-1.3B-ao-instruct-all-v0.2
mu0gum
"2024-01-16T12:34:49Z"
1,100
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-16T11:49:49Z"
--- license: cc-by-nc-4.0 --- # AIFT-42dot-LLM-PLM-1.3B-ao-instruct-all-v0.2 ๋ฒ ์ด์Šค ๋ชจ๋ธ : 42dot/42dot_LLM-PLM-1.3B ํ•™์Šต ๋ฐ์ดํ„ฐ : ์ž์ฒด ์ œ์ž‘ํ•œ Open Orca ์Šคํƒ€์ผ ๋ฐ์ดํ„ฐ์…‹ ์•ฝ 26,000๊ฑด ํ•™์Šต ๋ฐฉ๋ฒ• : Lora Lora Config - lora_alpha: 16 - lora_dropout: 0.05, - r: 8 ## ko-lm-evaluation-harness(0-shot) |kobest_boolq|kobest_copa|kobest_hellaswag|kobest_sentineg|kohatespeech|kohatespeech_apeach|kohatespeech_gen_bias|korunsmile|nsmc|pawsx_ko| |--|--|--|--|--|--|--|--|--|--| |0.5014245014245015|0.702|0.434|0.6876574307304786|0.2951167728237792|0.5106100795755968|0.14225053078556263|0.3627087567466955|0.60714|0.5265|
cocoirun/Yi-Ko-6B-instruct-v1.7
cocoirun
"2024-01-18T07:14:38Z"
1,100
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-18T06:54:59Z"
--- license: cc-by-sa-4.0 --- <h1>instruct ๋ชจ๋ธ v1.7</h1> <b><ํ•™์Šต ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•></b> Open-Orca-ko ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ํƒœ์Šคํฌ๋ฅผ ์ถ”์ถœํ•œ ๋’ค ํ•ด๋‹น ํƒœ์Šคํฌ์— ๋งž์ถฐ์„œ NLP ๊ด€๋ จ ์˜คํ”ˆ์†Œ์Šค ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•™์Šต๋ฐ์ดํ„ฐ๋ฅผ ์ž์ฒด์ ์œผ๋กœ ์•ฝ 4๋งŒ๊ฑด(์—ญ์‚ฌ, ๊ณผํ•™, ์ˆ˜ํ•™, ๊ธฐ๊ณ„๋…ํ•ด, ๋ฆฌ๋ทฐ ๋ถ„์„) ๊ตฌ์ถ•ํ•˜์˜€๊ณ , ๊ทธ ์™ธ์— Open-Orca-Ko์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ผ๋ถ€ ํ•„ํ„ฐ๋งํ•˜์—ฌ ์ •์ œํ•ด๊ฑฐ๋‚˜ KoBEST ๋ฐ์ดํ„ฐ๋ฅผ ํ•จ๊ป˜ ์ถ”๊ฐ€ํ•˜์˜€์Šต๋‹ˆ๋‹ค. aihub ์ผ๋ฐ˜์ƒ์‹ ๋ฐ ๊ธฐ๊ณ„๋…ํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ถ”๊ฐ€๋กœ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๊ตฌ์ถ•(ํ˜•ํƒœ์†Œ ๊ด€๋ จ, ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ๋ฐ ์š”์•ฝ) ๊ฐ์ข… ๋ธ”๋กœ๊ทธ์—์„œ ์—ญ์‚ฌ ๋ฐ ์ƒ์‹ ํ€ด์ฆˆ๋ฅผ ์‚ฌ๋žŒ์ด ์ง์ ‘ ํ•™์Šต๋ฐ์ดํ„ฐ ํ˜•ํƒœ๋กœ ๋ณ€๊ฒฝ AI2AI Challenge ๋ฐ์ดํ„ฐ๋ฅผ ํŒŒํŒŒ๊ณ ๋ฅผ ํ†ตํ•ด ๋ฒˆ์—ญ ๋ฐ ์˜ค์—ญ๋œ ๋ถ€๋ถ„์„ ์‚ฌ๋žŒ์ด ์ง์ ‘ ์ˆ˜์ • ํ•˜๋Š” ์ž‘์—…์„ ์ˆ˜ํ–‰ ์˜์–ด ๋ฒˆ์—ญ ๋ฐ์ดํ„ฐ ์˜ํ•œ/ํ•œ์˜ ๋ฐ์ดํ„ฐ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ํ™œ์šฉ ์ง„ํ–‰ ์ด 11๋งŒ๊ฐœ์˜ ํ•™์Šต๋ฐ์ดํ„ฐ๋กœ sft๋ฅผ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. <br> ํ˜„์žฌ, ์ƒˆ๋กœ์šด ๋ฒ„์ „์˜ ๋ชจ๋ธ ํ•™์Šต ๋ฐ ์„ฑ๋Šฅ์„ ์œ„ํ•ด Open-Orca ๋ฐ์ดํ„ฐ์…‹ ์ผ๋ถ€๋ฅผ ๋ฒˆ์—ญํ•˜์—ฌ ์ •์ œ ์ค‘์— ์žˆ์Šต๋‹ˆ๋‹ค. <br> + ๊ณ ๋“ฑํ•™๊ต ์—ญ์‚ฌ ๋ฌธ์ œ ๋ฐ TruthfulQA ๊ด€๋ จ ๋ฌธ์ œ ์ถ”๊ฐ€๋ฅผ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค. + ๊ฐ์ข… it ์ง€์‹ ๋ฐ์ดํ„ฐ ์ถ”๊ฐ€์ง„ํ–‰. + ๊ธฐ๊ณ„๋…ํ•ด ๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ChatGPT๋ฅผ ํ†ตํ•ด์„œ ๋‹ต๋ณ€์„ ์–ป์–ด ํ•™์Šต + ๋ฌธ๋ฒ•๊ด€๋ จ ํ•™์Šต ๋ฐ์ดํ„ฐ <br> ###ํ•™์Šต ๋ฐ์ดํ„ฐ ํŒŒ์ผ์€ ๋น„๊ณต๊ฐœ์ž…๋‹ˆ๋‹ค. <br> <b><ํ•™์Šต></b> ํ•™์Šต์€ LoRA๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ A100 40G *2์—์„œ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
jungyuko/DAVinCI-42dot_LLM-PLM-1.3B-v0.61
jungyuko
"2024-01-23T13:55:23Z"
1,100
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-23T13:43:04Z"
--- license: cc-by-nc-4.0 --- ## DAVinCI-42dot_LLM-PLM-1.3B-v0.61 This model is a fine-tuned version of [42dot/42dot_LLM-PLM-1.3B](https://huggingface.co/42dot/42dot_LLM-PLM-1.3B) on an unknown dataset. ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data More information needed ### Training procedure ### Training hyperparameters The following hyperparameters were used during training: * learning_rate: 2e-05 * train_batch_size: 24 * eval_batch_size: 8 * seed: 42 * gradient_accumulation_steps: 4 * total_train_batch_size: 96 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr_scheduler_type: linear * num_epochs: 1.0 * mixed_precision_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.0.0 * Tokenizers 0.15.0
Edentns/DataVortexS-10.7B-dpo-v1.3
Edentns
"2024-02-15T15:00:30Z"
1,100
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ko", "base_model:yanolja/KoSOLAR-10.7B-v0.2", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-25T09:23:02Z"
--- tags: - text-generation license: cc-by-nc-4.0 language: - ko base_model: yanolja/KoSOLAR-10.7B-v0.2 pipeline_tag: text-generation --- # **DataVortexS-10.7B-dpo-v1.3** <img src="./DataVortex.png" alt="DataVortex" style="height: 8em;"> ## Our Team | Research & Engineering | Product Management | | :--------------------: | :----------------: | | Kwangseok Yang | Seunghyun Choi | | Jeongwon Choi | Hyoseok Choi | ## **Model Details** ### **Base Model** [yanolja/KoSOLAR-10.7B-v0.2](https://huggingface.co/yanolja/KoSOLAR-10.7B-v0.2) ### **Trained On** - **OS**: Ubuntu 22.04 - **GPU**: H100 80GB 4ea - **transformers**: v4.36.2 ### **Instruction format** It follows **ChatML** format. E.g. ```python text = """\ <|im_start|>system ๋‹น์‹ ์€ ์‚ฌ๋žŒ๋“ค์ด ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ๋Š” ์ธ๊ณต์ง€๋Šฅ ๋น„์„œ์ž…๋‹ˆ๋‹ค.<|im_end|> <|im_start|>user ๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์•ผ?<|im_end|> <|im_start|>assistant ๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์„œ์šธ์ž…๋‹ˆ๋‹ค.<|im_end|> <|im_start|>user ์„œ์šธ ์ธ๊ตฌ๋Š” ์ด ๋ช‡ ๋ช…์ด์•ผ?<|im_end|> <|im_start|>assistant """ ``` ## **Model Benchmark** ### **[Ko LM Eval Harness](https://github.com/Beomi/ko-lm-evaluation-harness)** | Task | 0-shot | 5-shot | 10-shot | 50-shot | | :--------------- | -----------: | -----------: | -----------: | -----------: | | kobest_boolq | 0.91154 | 0.927338 | 0.92373 | 0.653224 | | kobest_copa | 0.747317 | 0.826961 | 0.842943 | 0.860989 | | kobest_hellaswag | 0.445855 | 0.459065 | 0.462306 | 0.4721 | | kobest_sentineg | 0.483219 | 0.95466 | 0.964734 | 0.972292 | | **Average** | **0.646983** | **0.792006** | **0.798428** | **0.739651** | ### **[Ko-LLM-Leaderboard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard)** | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | ------: | -----: | -----------: | ------: | ------------: | --------------: | | 57.65 | 52.99 | 64.8 | 54.86 | 53.87 | 61.75 | ## **Implementation Code** This model contains the chat_template instruction format. You can use the code below. ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.3") tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.3") messages = [ {"role": "system", "content": "๋‹น์‹ ์€ ์‚ฌ๋žŒ๋“ค์ด ์ •๋ณด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋„๋ก ๋„์™€์ฃผ๋Š” ์ธ๊ณต์ง€๋Šฅ ๋น„์„œ์ž…๋‹ˆ๋‹ค."}, {"role": "user", "content": "๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์–ด๋””์•ผ?"}, {"role": "assistant", "content": "๋Œ€ํ•œ๋ฏผ๊ตญ์˜ ์ˆ˜๋„๋Š” ์„œ์šธ์ž…๋‹ˆ๋‹ค."}, {"role": "user", "content": "์„œ์šธ ์ธ๊ตฌ๋Š” ์ด ๋ช‡ ๋ช…์ด์•ผ?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## **License** This model is licensed under the [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/). which allows others to share and adapt the model for non-commercial purposes. <div align="center"> <a href="https://edentns.com/"> <img src="./Logo.png" alt="Logo" style="height: 3em;"> </a> </div>
qutrino/7b-finetune
qutrino
"2024-01-27T19:19:18Z"
1,100
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:kyujinpy/KOpen-platypus", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-27T18:17:33Z"
--- datasets: - kyujinpy/KOpen-platypus license: apache-2.0 --- beomi/open-llama-2-ko-7b ๋ชจ๋ธ์„ kyujinpy/KOpen-platypus ๋กœ ํ•™์Šตํ•˜์˜€์Šต๋‹ˆ๋‹ค. ## ํŒŒ์ธํŠœ๋‹๋ฐฉ๋ฒ• - lora - lora_r: 16 - lora_alpha: 16 - loca_dropout: 0.05 ## basemodel - beomi/open-llama-2-ko-7b ## instruction dataset - kyujinpy/KOpen-platypus only
blueapple8259/TinyKo-v5-c
blueapple8259
"2024-02-03T05:48:31Z"
1,100
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "dataset:maywell/korean_textbooks", "dataset:nlpai-lab/kullm-v2", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-02-03T05:32:37Z"
--- license: mit datasets: - maywell/korean_textbooks - nlpai-lab/kullm-v2 language: - ko --- [TinyKo-v5-b](https://huggingface.co/blueapple8259/TinyKo-v5-b)๋ชจ๋ธ์„ [kullm-v2](https://huggingface.co/datasets/nlpai-lab/kullm-v2)๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํŒŒ์ธํŠœ๋‹ํ•œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ์ฃผ์˜: ์„ฑ๋Šฅ์ด ๋งค์šฐ ๋–จ์–ด์ง€๋ฉฐ ํ• ๋ฃจ์‹œ๋„ค์ด์…˜์ด ๋งค์šฐ ์‹ฌํ•ฉ๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด model type: llama hidden size: 6 hidden size: 127 num attention heads: 16 num key value heads: 4
blueapple8259/SmallKo
blueapple8259
"2024-03-02T04:32:05Z"
1,100
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "dataset:mc4", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-02T04:21:41Z"
--- license: cc-by-nc-sa-4.0 datasets: - mc4 language: - ko widget: - text: "์•ˆ๋…•ํ•˜์„ธ์š”" --- ## ๋ฐ์ดํ„ฐ์…‹ [mc4](https://huggingface.co/datasets/mc4) ๋ฐ์ดํ„ฐ์…‹์—์„œ ํ•œ๊ธ€์„ ์ •์ œ ํ›„ ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. ## ์ฃผ์˜ ๋ฐ์ดํ„ฐ์…‹์—์„œ ํ˜์˜ค ํ‘œํ˜„ ๋“ฑ์„ ์ œ๊ฑฐํ•˜์ง€ ์•Š๊ณ  ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค. ## ๋ชจ๋ธ ์ •๋ณด model type: llama hidden size: 8 hidden size: 512 num attention heads: 16 num key value heads: 4
kurugai/Kurugai-EEVE-v1.1
kurugai
"2024-03-12T05:30:02Z"
1,100
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ko", "dataset:kurugai/MedText", "base_model:kurugai/Kurugai-EEVE-v1.0", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-10T13:48:09Z"
--- license: cc-by-nc-sa-4.0 base_model: kurugai/Kurugai-EEVE-v1.0 datasets: - kurugai/MedText language: - ko --- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) **kurugai/Kurugai-EEVE-v1.1**๋Š” **kurugai/Kurugai-EEVE-v1.0**๋ฅผ ๋ฒ ์ด์Šค๋ชจ๋ธ๋กœ ํ•ด์„œ **BI55/MedText** ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ•™์Šต๋œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. # ํ•™์Šต์‹œ๊ฐ„ RTX 8000 GPU 1EA๋กœ 1์‹œ๊ฐ„ ํ•™์Šตํ•˜์˜€์Šต๋‹ˆ๋‹ค. # ๋„์›€์„ ์ฃผ์‹ ๋ถ„ ์ด ๋ชจ๋ธ์€ ์•„๋‚ด์˜ ์ง€์›์„ ๋ฐ›์•„ ์ œ์ž‘๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์•„๋‚ด์—๊ฒŒ ๊ฐ์‚ฌ์˜ ๋ง์„ ์ „ํ•ฉ๋‹ˆ๋‹ค.
Deepnoid/deep-solar-v3.0
Deepnoid
"2024-03-19T01:35:15Z"
1,100
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-14T02:22:57Z"
--- license: apache-2.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) # Developed by : [Deepnoid](https://www.deepnoid.com/) AI research team
freewheelin/free-solar-instrunction-v0.2
freewheelin
"2024-03-14T08:39:40Z"
1,100
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "en", "arxiv:2312.15166", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-14T08:00:34Z"
--- language: - ko - en license: mit --- # Model Card for free-solar-instruction-v0.2 ## Developed by : [Freewheelin](https://freewheelin-recruit.oopy.io/) AI Technical Team ## Hardware and Software * **Training Factors**: We fine-tuned this model using the [HuggingFace TRL Trainer](https://huggingface.co/docs/trl/trainer) ## Method - This model was trained using the learning method introduced in the [SOLAR paper](https://arxiv.org/pdf/2312.15166.pdf). ## Base Model - [davidkim205/komt-solar-10.7b-sft-v5](https://huggingface.co/davidkim205/komt-solar-10.7b-sft-v5)
kody0525/KOpen-platypus-polyglot-ko-12.8b
kody0525
"2024-03-20T03:37:43Z"
1,100
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-15T00:49:49Z"
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jieunhan/solar_merge_test_1
jieunhan
"2024-04-21T05:18:53Z"
1,100
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "beomi/OPEN-SOLAR-KO-10.7B", "hyeogi/SOLAR-10.7B-dpo-v1", "base_model:beomi/OPEN-SOLAR-KO-10.7B", "base_model:hyeogi/SOLAR-10.7B-dpo-v1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-04-20T06:46:13Z"
--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - beomi/OPEN-SOLAR-KO-10.7B - hyeogi/SOLAR-10.7B-dpo-v1 base_model: - beomi/OPEN-SOLAR-KO-10.7B - hyeogi/SOLAR-10.7B-dpo-v1 --- # solar_merge_test_1 ## ๐Ÿงฉ Configuration ```yaml base_model: beomi/OPEN-SOLAR-KO-10.7B dtype: float16 experts: - source_model: beomi/OPEN-SOLAR-KO-10.7B positive_prompts: ["๋‹น์‹ ์€ ์นœ์ ˆํ•œ ๋ณดํŽธ์ ์ธ ์–ด์‹œ์Šคํ„ดํŠธ์ด๋‹ค."] - source_model: hyeogi/SOLAR-10.7B-dpo-v1 positive_prompts: ["๋‹น์‹ ์€ ์นœ์ ˆํ•œ ์–ด์‹œ์Šคํ„ดํŠธ์ด๋‹ค."] gate_mode: cheap_embed tokenizer_source: base ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "jieunhan/solar_merge_test_1" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
gelukuMLG/llama-3-stinky-v2-8B-GGUF
gelukuMLG
"2024-05-13T02:27:32Z"
1,100
4
null
[ "gguf", "license:llama3", "region:us" ]
null
"2024-05-12T12:31:31Z"
--- license: llama3 --- These are GGUF statis quants of: nbeerbower/llama-3-stinky-v2-8B Original model link: https://huggingface.co/nbeerbower/llama-3-stinky-v2-8B The quants have been tested and work propperly with the latest version of Koboldcpp.
mssma/ko-solar-10.7b-v0.2b
mssma
"2024-05-13T05:00:36Z"
1,100
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-05-13T04:43:53Z"
--- library_name: transformers license: apache-2.0 language: - ko --- # usage ``` from transformers import AutoModelForCausalLM, AutoTokenizer import torch path = "mssma/ko-solar-10.7b-v0.2b" model = AutoModelForCausalLM.from_pretrained( path, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) tokenizer = AutoTokenizer.from_pretrained(path) ```
elinas/Llama-3-15B-Instruct-ft-v2
elinas
"2024-05-31T19:57:48Z"
1,100
4
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "finetune", "conversational", "dataset:Chat-Error/Pure-dove-sharegpt", "base_model:elinas/Llama-3-15B-Instruct-zeroed", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-05-19T00:52:27Z"
--- base_model: - elinas/Llama-3-15B-Instruct-zeroed library_name: transformers tags: - mergekit - merge - finetune datasets: - Chat-Error/Pure-dove-sharegpt license: llama3 --- # Llama-3-15B-Instruct-zeroed-ft-v2 This is a QLoRA **finetune** of a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). The model is based on a "zeroed" passthrough merge of [Llama-3-15B-Instruct-zeroed](https://huggingface.co/elinas/Llama-3-15B-Instruct-zeroed) This was primarily an experiment to see how a passthrough merge will respond to further finetuning of all LoRA modules. The model was finetuned on **8192 context length** and it can possibly be extended using RoPE up to 32k. **v3 of the model will contain significantly more data, primarily human focused, aimed to excel at writing as well as maintaining logic, coherency, and continuity.** **[GGUF Quants provided by @gelukuMLG](https://huggingface.co/gelukuMLG/Llama-3-15B-Instruct-ft-v2-GGUF)** ## Datasets * [Chat-Error/Pure-dove-sharegpt](https://huggingface.co/datasets/Chat-Error/Pure-dove-sharegpt) A small, high quality, curated dataset was used as a PoC / validation on stabilizing the model after the original passthrough merge. ## Finetuning details This is a QLoRA model and all of the LoRA modules were targeted this time to ensure sufficient training before moving on to larger datasets. the first version of this model only targeted **o_proj** and **up_proj** ```yaml lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head ``` The model is coherent even with training the "zeroed" layers plus the additional layers, as this was the recommendation from [Charles Goddard](https://huggingface.co/chargoddard) (mergekit developer) - thank you for sharing the method of merging as well as Toasty Pigeon for bringing it to my attention! ```yaml The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - total_train_batch_size: 3 - total_eval_batch_size: 3 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - num_epochs: 1 ``` Optimizer `paged_adamw_8bit` and Deepspeed ZeRO 3 was used at a LR of `1e-5` using the cosine scheduler for 1 epoch on 3x3090s taking 4 hours total. **Unsloth** was used for speed and memory savings. Sample packing and padding was disabled to reduce VRAM consumption significantly at the cost of speed. W&B Run Summary ``` wandb: eval/loss 0.90895 wandb: eval/runtime 463.4688 wandb: eval/samples_per_second 0.833 wandb: eval/steps_per_second 0.278 wandb: total_flos 8270790524928.0 wandb: train/epoch 1.0 wandb: train/global_step 1157 wandb: train/grad_norm 7.3847 wandb: train/learning_rate 0.0 wandb: train/loss 0.8702 wandb: train_loss 0.87814 wandb: train_runtime 16425.2713 wandb: train_samples_per_second 0.211 wandb: train_steps_per_second 0.07 ``` ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1 ## Model Evaluation TBD If you have any questions or comments on the model, feel free to open a discussion in the community tab. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
DeepPavlov/rudialogpt3_medium_based_on_gpt2_v2
DeepPavlov
"2022-11-07T14:59:03Z"
1,099
3
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2022-11-07T13:26:22Z"
--- license: other ---
Undi95/Dawn-v2-70B
Undi95
"2023-11-08T22:34:24Z"
1,099
9
transformers
[ "transformers", "safetensors", "llama", "text-generation", "not-for-all-audiences", "nsfw", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-11-06T15:16:55Z"
--- license: cc-by-nc-4.0 tags: - not-for-all-audiences - nsfw --- <center>[<a href="https://huggingface.co/Undi95/Dawn-v2-70B">fp16</a> - <a href="https://huggingface.co/Undi95/Dawn-v2-70B-GGUF">gguf</a> - exl2 : <a href="https://huggingface.co/Undi95/Dawn-v2-70B-2.55bpw-h6-exl2">2.55bpw</a>]</center> </br> <div style="width: 100%;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/Cxcfqi4WdtXCNLnaIqSRB.png" style="width: 75%; min-width: 200px; display: block; margin: auto;"> </div> <!-- description start --> ## Description This repo contains fp16 files of Dawn-70B, a merge I have done with the new [layer shuffle](https://github.com/cg123/mergekit/blob/main/mergekit/scripts/layershuffle.py) method from mergekit. [UtopiaXL](https://huggingface.co/Undi95/UtopiaXL-13B) was a huge success for me, I really liked it, so I took the same path to do this 70B: A good base, some psychologic data, some medical data, a little bit of this, of that, and LimaRP at the end as always. NOTE: This repo contain the file [measurement.json](https://huggingface.co/Undi95/Dawn-v2-70B/blob/main/measurement.json) needed to do your own exl2 quant (I use [wikitext](https://huggingface.co/datasets/wikitext/resolve/refs%2Fconvert%2Fparquet/wikitext-2-raw-v1/train/0000.parquet)). <!-- description end --> <!-- description start --> ## Models and loras used - [Sao10K/Euryale-1.3-L2-70B](https://huggingface.co/Sao10K/Euryale-1.3-L2-70B) - [Xwin-LM/Xwin-LM-70B-V0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1) - [ehartford/Samantha-1.11-70b](https://huggingface.co/ehartford/Samantha-1.11-70b) - [NousResearch/Nous-Hermes-Llama2-70b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-70b) - [augtoma/qCammel-70-x](https://huggingface.co/augtoma/qCammel-70-x) - [jondurbin/airoboros-l2-c70b-3.1.2](https://huggingface.co/jondurbin/airoboros-l2-c70b-3.1.2) - [fangloveskari/ORCA_LLaMA_70B_QLoRA](https://huggingface.co/fangloveskari/ORCA_LLaMA_70B_QLoRA) - [Doctor-Shotgun/limarpv3-llama2-70b-qlora](https://huggingface.co/Doctor-Shotgun/limarpv3-llama2-70b-qlora) <!-- description end --> ## The sauce ``` !mergekit-layershuffle ./Dawn-v2-70B \ --model Sao10K/Euryale-1.3-L2-70B --weight 0.3 \ --model Xwin-LM/Xwin-LM-70B-V0.1 --weight 0.2 \ --model ehartford/Samantha-1.11-70b --weight 0.1 \ --model NousResearch/Nous-Hermes-Llama2-70b --weight 0.05 \ --model augtoma/qCammel-70-x --weight 0.05 \ --model jondurbin/airoboros-l2-c70b-3.1.2 --weight 0.2 \ --model fangloveskari/ORCA_LLaMA_70B_QLoRA --weight 0.1 \ --write-yaml Dawn-v2-70B.yaml ========================= merge_method: passthrough slices: - sources: - layer_range: - 0 - 1 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 1 - 2 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 2 - 3 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 3 - 4 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 4 - 5 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 5 - 6 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 6 - 8 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 8 - 9 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 9 - 10 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 10 - 11 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 11 - 12 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 12 - 13 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 13 - 14 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 14 - 15 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 15 - 16 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 16 - 17 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 17 - 18 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 18 - 19 model: NousResearch/Nous-Hermes-Llama2-70b - sources: - layer_range: - 19 - 20 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 20 - 21 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 21 - 22 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 22 - 23 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 23 - 24 model: augtoma/qCammel-70-x - sources: - layer_range: - 24 - 25 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 25 - 27 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 27 - 28 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 28 - 29 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 29 - 30 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 30 - 32 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 32 - 33 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 33 - 34 model: augtoma/qCammel-70-x - sources: - layer_range: - 34 - 35 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 35 - 37 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 37 - 38 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 38 - 39 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 39 - 40 model: augtoma/qCammel-70-x - sources: - layer_range: - 40 - 41 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 41 - 42 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 42 - 43 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 43 - 44 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 44 - 45 model: NousResearch/Nous-Hermes-Llama2-70b - sources: - layer_range: - 45 - 46 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 46 - 48 model: ehartford/Samantha-1.11-70b - sources: - layer_range: - 48 - 49 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 49 - 50 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 50 - 51 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 51 - 54 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 54 - 55 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 55 - 56 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 56 - 58 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 58 - 59 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 59 - 60 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 60 - 62 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 62 - 63 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 63 - 64 model: fangloveskari/ORCA_LLaMA_70B_QLoRA - sources: - layer_range: - 64 - 65 model: NousResearch/Nous-Hermes-Llama2-70b - sources: - layer_range: - 65 - 66 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 66 - 67 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 67 - 68 model: augtoma/qCammel-70-x - sources: - layer_range: - 68 - 70 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 70 - 71 model: augtoma/qCammel-70-x - sources: - layer_range: - 71 - 72 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 72 - 73 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 73 - 75 model: jondurbin/airoboros-l2-c70b-3.1.2 - sources: - layer_range: - 75 - 76 model: Sao10K/Euryale-1.3-L2-70B - sources: - layer_range: - 76 - 77 model: augtoma/qCammel-70-x - sources: - layer_range: - 77 - 78 model: Xwin-LM/Xwin-LM-70B-V0.1 - sources: - layer_range: - 78 - 79 model: NousResearch/Nous-Hermes-Llama2-70b - sources: - layer_range: - 79 - 80 model: Xwin-LM/Xwin-LM-70B-V0.1 ========================= => Applying Doctor-Shotgun/limarpv3-llama2-70b-qlora x 0.35 ``` <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` A big thanks to [Charles](https://huggingface.co/chargoddard) for adding the layer shuffle method to his tool [mergekit](https://github.com/cg123/mergekit/tree/main) and [Henky/KoboldAI](https://koboldai.org/) for the machine he let me use. If you want to support me, you can [here](https://ko-fi.com/undiai).
Weyaxi/OpenHermes-2.5-Nebula-v2-7B
Weyaxi
"2023-11-12T11:16:10Z"
1,099
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:garage-bAInd/Open-Platypus", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-11-12T11:12:59Z"
--- license: cc-by-nc-4.0 datasets: - garage-bAInd/Open-Platypus language: - en --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/cKySe1S5IW_KnbZpKmozQ.png) <a href="https://www.buymeacoffee.com/PulsarAI" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a> # OpenHermes-2.5-Nebula-v2-7B OpenHermes-2.5-Nebula-v2-7B is a merge of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) and [PulsarAI/Nebula-v2-7B-Lora](https://huggingface.co/PulsarAI/Nebula-v2-7B-Lora) # Evaluation Results ([Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)) | Metric | Value | |-----------------------|-----------| | Avg. | | | ARC (25-shot) | | | HellaSwag (10-shot) | | | MMLU (5-shot) | | | TruthfulQA (0-shot) | | | Winogrande (5-shot) | | | GSM8K (5-shot) | | | DROP (3-shot) | |
jungyuko/DAVinCI-Yi-Ko-6B-v0.61-ff-e1
jungyuko
"2024-01-24T05:39:07Z"
1,099
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-01-24T04:56:06Z"
--- license: cc-by-nc-4.0 --- ## DAVinCI-Yi-Ko-6B-v0.61-ff-e1 This model is a fine-tuned version of [beomi/Yi-Ko-6B](https://huggingface.co/beomi/Yi-Ko-6B) on an unknown dataset. ### Model description More information needed ### Intended uses & limitations More information needed ### Training and evaluation data More information needed ### Training procedure ### Training hypuerparameters The following hyperparameters were used during training: * learning_rate: 2e-05 * train_batch_size: 4 * eval_batch_size: 8 * seed: 42 * gradient_accumulation_steps: 8 * total_train_batch_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr_scheduler_type: linear * num_epochs: 1.0 * mixed_precision_training: Native AMP ### Training results ### Framework versions * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.0.0 * Tokenizers 0.15.0
kmyoon/mzllm-solar-10.7B
kmyoon
"2024-02-08T14:26:30Z"
1,099
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "arxiv:1910.09700", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-02-08T09:26:17Z"
--- library_name: transformers license: cc-by-nc-4.0 language: - ko --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mightbe/EEVE-10.8B-Multiturn
mightbe
"2024-03-20T06:19:36Z"
1,099
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-03-19T12:31:29Z"
--- license: apache-2.0 --- # EEVE-10.8B-Multiturn ๋ณธ ๋ชจ๋ธ์€ KoVast ๋ฐ์ดํ„ฐ์…‹ ๋ฐ argilla์˜ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค. Jolteon ๋ชจ๋ธ ํ•™์Šต๊ณผ์ •์—์„œ ๋‚˜์˜จ ๋ถ€์‚ฐ๋ฌผ์ž…๋‹ˆ๋‹ค. **์ฃผ์˜** ํ•ด๋‹น ๋ชจ๋ธ์€ ์™„๋ฒฝํ•˜๊ฒŒ ํ•™์Šต์ด ๋˜์ง€ ์•Š์€ ์ดˆ๊ธฐ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ์งง์€ ๋‹ต๋ณ€, ์ถ”๋ก ์˜ ๋ถ€์žฌ๋“ฑ์˜ ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ## ํ”„๋กฌํ”„ํŠธ ํฌ๋งท ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: {response}</s><|im_end|> ### Instruction: {instruction} ### Response: {response}</s><|im_end|> ``` ## License ๋ณธ ๋ชจ๋ธ์€ apache-2.0 ๋ผ์ด์„ผ์Šค๋ฅผ ๋”ฐ๋ฆ…๋‹ˆ๋‹ค. ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ์…‹์„ ๋ฐฐํฌํ•  ๊ฒฝ์šฐ ๋ชจ๋ธ ์‚ฌ์šฉ์„ ๋ช…์‹œํ•ด ์ฃผ์‹œ๊ธฐ๋ฅผ ๊ถŒ๊ณ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. ## Thanks to - A100 ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ์ œ๊ณตํ•ด์ฃผ์‹ , [Sionic AI](https://sionic.ai/) ## Contact - [Discord Server Link](https://discord.gg/MrBt3PXdXc)
ahnyeonchan/legendary-river-koalpaca
ahnyeonchan
"2024-05-14T04:02:41Z"
1,099
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "instruction_ft", "ko", "arxiv:2310.06694", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2024-04-17T03:50:32Z"
--- license: apache-2.0 language: - ko pipeline_tag: text-generation tags: - instruction_ft --- We built this modle based on princeton-nlp/Sheared-LLaMA-1.3B. We finetuned the model using korean wiki, ko alpaca with Lora. Please see following information about princeton-nlp/Sheared-LLaMA-1.3B. **Paper**: [https://arxiv.org/pdf/2310.06694.pdf](https://arxiv.org/pdf/2310.06694.pdf) **Code**: https://github.com/princeton-nlp/LLM-Shearing **Models**: [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B), [Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B) **Pruned Models without Continued Pre-training**: [Sheared-LLaMA-1.3B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-Pruned), [Sheared-LLaMA-2.7B-Pruned](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-Pruned) **Instruction-tuned Models**: [Sheared-LLaMA-1.3B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B-ShareGPT), [Sheared-LLaMA-2.7B-ShareGPT](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT) **License**: Must comply with license of Llama2 since it's a model derived from Llama2. --- Sheared-LLaMA-1.3B is a model pruned and further pre-trained from [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf). We dynamically load data from different domains in the [RedPajama dataset](https://github.com/togethercomputer/RedPajama-Data) to prune and contune pre-train the model. We use 0.4B tokens for pruning and 50B tokens for continued pre-training the pruned model. This model can be loaded with HuggingFace via ``` model = AutoModelForCausalLM.from_pretrained("princeton-nlp/Sheared-LLaMA-1.3B") ``` - Smaller-scale - Same vocabulary as LLaMA1 and LLaMA2 - Derived with a budget of 50B tokens by utilizing existing strong LLMs ## Downstream Tasks We evaluate on an extensive set of downstream tasks including reasoning, reading comprehension, language modeling and knowledge intensive tasks. Our Sheared-LLaMA models outperform existing large language models. | Model | # Pre-training Tokens | Average Performance | | ------------------- | --------------------- | ------------------- | | LLaMA2-7B | 2T | 64.6 | **1.3B** | Model | # Pre-training Tokens | Average Performance | | ------------------- | --------------------- | ------------------- | | OPT-1.3B | 300B | 48.2 | | Pythia-1.4B | 300B | 48.9 | | **Sheared-LLaMA-1.3B** | **50B** | **51.0** | **3B** | Model | # Pre-training Tokens | Average Performance | | ------------------- | --------------------- | ------------------- | | OPT-2.7B | 300B | 51.4 | | Pythia-2.8B | 300B | 52.5 | | INCITE-Base-3B | 800B | 54.7 | | Open-LLaMA-3B-v1 | 1T | 55.1 | | Open-LLaMA-3B-v2 | 1T | 55.7 | | Sheared-LLaMA-2.7B | 50B | 56.7 | ## Bibtex ``` @article{xia2023sheared, title={Sheared llama: Accelerating language model pre-training via structured pruning}, author={Xia, Mengzhou and Gao, Tianyu and Zeng, Zhiyuan and Chen, Danqi}, journal={arXiv preprint arXiv:2310.06694}, year={2023} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_princeton-nlp__Sheared-LLaMA-1.3B) | Metric | Value | |-----------------------|---------------------------| | Avg. | 31.47 | | ARC (25-shot) | 32.85 | | HellaSwag (10-shot) | 60.91 | | MMLU (5-shot) | 25.71 | | TruthfulQA (0-shot) | 37.14 | | Winogrande (5-shot) | 58.64 | | GSM8K (5-shot) | 0.45 | | DROP (3-shot) | 4.56 |
thesven/Hermes-2-Theta-Llama-3-8B-GGUF
thesven
"2024-05-22T11:42:05Z"
1,099
0
null
[ "gguf", "Llama-3", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "function calling", "json mode", "axolotl", "merges", "en", "dataset:teknium/OpenHermes-2.5", "base_model:NousResearch/Hermes-2-Pro-Llama-3-8B", "license:llama3", "region:us" ]
null
"2024-05-18T04:42:11Z"
--- base_model: NousResearch/Hermes-2-Pro-Llama-3-8B tags: - Llama-3 - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation - function calling - json mode - axolotl - merges model-index: - name: Hermes-2-Pro-Llama-3-Instruct-8B-Merge results: [] language: - en datasets: - teknium/OpenHermes-2.5 widget: - example_title: Hermes 2 Pro Llama-3 Instruct Merge messages: - role: system content: >- You are a sentient, superintelligent artificial general intelligence, here to teach and assist me. - role: user content: >- Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world. license: llama3 --- # - Hermes-2 ฮ˜ Llama-3 8B # - Quantization Description This repo contains GGUF quantized versions of the Nous Research Hermes-2-Pro-Llama-3-8B model. The model is supplied in different quantizations so that you can see what works best on the hardware you would like to run it on. The repo contains quantizations in the following types: Q4_0 Q4_1 Q4_K Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K Q5_K_M Q5_K_S Q6_K Q8_0 Q2_K Q3_K Q3_K_S Q3_K_XS IQ2_K IQ3_S IQ3_XXS IQ4_NL IQ4_XS IQ5_K IQ2_S IQ2_XS IQ1_S <div style="text-align: center;"> <a href="https://github.com/thesven/GGUF-n-Go"> <img src="https://github.com/thesven/GGUF-n-Go/blob/main/assets/quantized_with.png?raw=true" alt="image/png" style="max-width: 350px;"> </a> </div> ## Model Description Hermes-2 ฮ˜ (Theta) is the first experimental merged model released by [Nous Research](https://nousresearch.com/), in collaboration with Charles Goddard at [Arcee](https://www.arcee.ai/), the team behind MergeKit. Hermes-2 ฮ˜ is a merged and then further RLHF'ed version our excellent Hermes 2 Pro model and Meta's Llama-3 Instruct model to form a new model, Hermes-2 ฮ˜, combining the best of both worlds of each model. ## Example Outputs ### Create New Mythos: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/dvKhnSvHdx4nTQIqB9Lpv.png) ### Chat with a Meta-Cognitive Entity ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/GwdCqowE6GQylineqehhx.png) ### Ask for a structured JSON output: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/us72aL9gwUXdqSHetRVRV.png) # Prompt Format Hermes 2 ฮ˜ uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. ## Prompt Format for Function Calling Our model was trained on specific system prompts and structures for Function Calling. While the system prompt looks complicated, we have created a GitHub repo containing code to easily build these based on real python functions. You should use the system role with this message, followed by a function signature json as this example shows here. ``` <|im_start|>system You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows: <tool_call> {"arguments": <args-dict>, "name": <function-name>} </tool_call><|im_end|> ``` To complete the function call, create a user prompt that follows the above system prompt, like so: ``` <|im_start|>user Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|> ``` The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling): ``` <|im_start|>assistant <tool_call> {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"} </tool_call><|im_end|> ``` Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so: ``` <|im_start|>tool <tool_response> {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}} </tool_response> <|im_end|> ``` The assistant will then read in that data from the function's response, and generate a natural language response: ``` <|im_start|>assistant The stock fundamentals data for Tesla (TSLA) are as follows: - **Symbol**: TSLA - **Company Name**: Tesla, Inc. - **Sector**: Consumer Cyclical - **Industry**: Auto Manufacturers - **Market Capitalization**: $566,160,130,480 - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73 - **Price-to-Book Ratio (PB Ratio)**: 9.04 - **Dividend Yield**: N/A - **Trailing Earnings Per Share (EPS)**: $4.3 - **Beta Value of the Stock**: 2.42 - **52-Week High Price of the Stock**: $299.29 - **52-Week Low Price of the Stock**: $152.37 This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|> ``` ## Prompt Format for JSON Mode / Structured Outputs Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema. Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main ``` <|im_start|>system You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|> ``` Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON. ## Inference Code for Function Calling: All code for utilizing, parsing, and building function calling templates is available on our github: [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png) # How to cite: ```bibtext @misc{Hermes-2-Theta-Llama-3-8B, url={[https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B][NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B))}, title={Hermes-2-Theta-Llama-3-8B}, author={"Teknium", Charles Goddard, "interstellarninja", "theemozilla", "karan4d", "huemin_art"} } ```
damgomz/fp_bs16_lr5_x2
damgomz
"2024-05-25T17:16:32Z"
1,099
0
transformers
[ "transformers", "safetensors", "albert", "fill-mask", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2024-05-23T10:05:43Z"
--- language: en tags: - fill-mask kwargs: timestamp: '2024-05-25T19:16:26' project_name: fp_bs16_lr5_x2_emissions_tracker run_id: 9707263d-9e9a-4966-a8a4-8b04469d920b duration: 204006.114985466 emissions: 0.133456463837719 emissions_rate: 6.541787428637955e-07 cpu_power: 42.5 gpu_power: 0.0 ram_power: 7.5 cpu_energy: 2.408401058182943 gpu_energy: 0 ram_energy: 0.4250093542863928 energy_consumed: 2.8334104124693544 country_name: Switzerland country_iso_code: CHE region: .nan cloud_provider: .nan cloud_region: .nan os: Linux-5.14.0-70.30.1.el9_0.x86_64-x86_64-with-glibc2.34 python_version: 3.10.4 codecarbon_version: 2.3.4 cpu_count: 4 cpu_model: Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz gpu_count: .nan gpu_model: .nan longitude: .nan latitude: .nan ram_total_size: 20 tracking_mode: machine on_cloud: N pue: 1.0 --- ## Environmental Impact (CODE CARBON DEFAULT) | Metric | Value | |--------------------------|---------------------------------| | Duration (in seconds) | 204006.114985466 | | Emissions (Co2eq in kg) | 0.133456463837719 | | CPU power (W) | 42.5 | | GPU power (W) | [No GPU] | | RAM power (W) | 7.5 | | CPU energy (kWh) | 2.408401058182943 | | GPU energy (kWh) | [No GPU] | | RAM energy (kWh) | 0.4250093542863928 | | Consumed energy (kWh) | 2.8334104124693544 | | Country name | Switzerland | | Cloud provider | nan | | Cloud region | nan | | CPU count | 4 | | CPU model | Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz | | GPU count | nan | | GPU model | nan | ## Environmental Impact (for one core) | Metric | Value | |--------------------------|---------------------------------| | CPU energy (kWh) | 0.392711771347022 | | Emissions (Co2eq in kg) | 0.07990239503597418 | ## Note 23 May 2024 ## My Config | Config | Value | |--------------------------|-----------------| | checkpoint | albert-base-v2 | | model_name | fp_bs16_lr5_x2 | | sequence_length | 400 | | num_epoch | 6 | | learning_rate | 5e-05 | | batch_size | 16 | | weight_decay | 0.0 | | warm_up_prop | 0.0 | | drop_out_prob | 0.1 | | packing_length | 100 | | train_test_split | 0.2 | | num_steps | 40959 | ## Training and Testing steps Epoch | Train Loss | Test Loss ---|---|--- | 0.0 | 14.935577 | 12.206219 | | 0.5 | 3.362514 | 3.065457 | | 1.0 | 2.929414 | 2.875572 | | 1.5 | 2.817826 | 2.758826 | | 2.0 | 2.665450 | 2.674433 | | 2.5 | 2.603621 | 2.611908 | | 3.0 | 2.542651 | 2.553587 | | 3.5 | 2.480111 | 2.503488 | | 4.0 | 2.446439 | 2.465049 | | 4.5 | 2.394290 | 2.422634 | | 5.0 | 2.337941 | 2.389408 | | 5.5 | 2.313014 | 2.357817 | | 6.0 | 2.287183 | 2.340843 |
lmstudio-community/internlm2-math-plus-20b-GGUF
lmstudio-community
"2024-05-30T17:52:27Z"
1,099
0
null
[ "gguf", "math", "text-generation", "en", "zh", "base_model:internlm/internlm2-math-plus-20b", "license:other", "region:us" ]
text-generation
"2024-05-30T17:36:00Z"
--- pipeline_tag: text-generation license: other language: - en - zh tags: - math quantized_by: bartowski lm_studio: param_count: 20b use_case: math release_date: 24-05-2024 model_creator: InternLM prompt_template: ChatML system_prompt: none base_model: InternLM original_repo: internlm/internlm2-math-plus-20b base_model: internlm/internlm2-math-plus-20b --- ## ๐Ÿ’ซ Community Model> InternLM2 Math Plus 20b by InternLM *๐Ÿ‘พ [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [InternLM](https://huggingface.co/internlm)<br> **Original model**: [internlm2-math-plus-20b](https://huggingface.co/internlm/internlm2-math-plus-20b)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b3001](https://github.com/ggerganov/llama.cpp/releases/tag/b3001)<br> ## Model Summary: InternLM2 Math Plus is a series of math proficient models by InternLM, following up on their original series of math models.<br> This series has state of the art bilingual open-sourced math reasoning models at several sizes. This should be used as a solver, prover, verifier, augmentor, with chain of thought reasoning. ## Prompt template: Choose the `ChatML` preset in your LM Studio. Under the hood, the model will see a prompt that's formatted like so: ``` <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Technical Details Math Plus has improved informal math reasoning performance (chain-of-thought and code-intepreter) and formal math reasoning performance (LEAN 4 translation and LEAN 4 theorem proving).<br> InternLM2-Math are continued pretrained from InternLM2-Base with ~100B high quality math-related tokens and SFT with ~2M bilingual math supervised data.<br> More details can be found here: https://github.com/InternLM/InternLM-Math ## Special thanks ๐Ÿ™ Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) ๐Ÿ™ Special thanks to [Kalomaze](https://github.com/kalomaze) and [Dampf](https://github.com/Dampfinchen) for their work on the dataset (linked [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)) that was used for calculating the imatrix for all sizes. ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
Geotrend/distilbert-base-fr-cased
Geotrend
"2023-04-02T15:53:50Z"
1,098
1
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "fill-mask", "fr", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
"2022-03-02T23:29:04Z"
--- language: fr datasets: wikipedia license: apache-2.0 --- # distilbert-base-fr-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-fr-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-fr-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grรฉgoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact [email protected] for any question, feedback or request.
omarques/autotrain-dogs-and-cats-1527055142
omarques
"2022-09-21T21:38:24Z"
1,098
1
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:omarques/autotrain-data-dogs-and-cats", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
"2022-09-21T21:37:41Z"
--- tags: - autotrain - vision - image-classification datasets: - omarques/autotrain-data-dogs-and-cats widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.8187420113922029 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1527055142 - CO2 Emissions (in grams): 0.8187 ## Validation Metrics - Loss: 0.068 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
allenai/open-instruct-human-mix-65b
allenai
"2023-06-29T18:51:34Z"
1,098
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:databricks/databricks-dolly-15k", "dataset:OpenAssistant/oasst1", "arxiv:2306.04751", "arxiv:2302.13971", "arxiv:2304.07327", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-06-07T17:41:36Z"
--- datasets: - databricks/databricks-dolly-15k - OpenAssistant/oasst1 language: - en extra_gated_prompt: >- To request access to the models, please fill out this form, and we'll review and let you know if your use case is approved. The information you provide below will be used solely to assess eligibility to access these models. extra_gated_fields: First Name: text Last Name: text Institution: text Country (where user is located): text Intended Use: text Previous Related Publications: text I agree to abide by the terms of the license associated to this artifact, including domain and used-based restrictions: checkbox --- # Open-Instruct Human-mix 65B This model is a 65B LLaMa model finetuned on a mixture of human-authored datasets (FLAN V2, CoT, Dolly, and Open Assistant 1). *Please note this is a model diff - see below for usage instructions*. This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751). The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct). This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt). The licenses can be found in [our codebase](https://github.com/allenai/open-instruct/tree/main/model_licenses) - see `tulu_license.txt` for the model license and `llama_license.txt` for the Llama license. ## Usage We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here: [https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama) Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py` and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine. Then, run: ```bash python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location} ``` And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models. ## Input Format The model is trained to use the following format (note the newlines): ``` <|user|> Your message here! <|assistant|> ``` For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.** ## Performance Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751): | MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average | |:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------| | 60.7 | 61.6 | 8.0 | 57.5 | 50.1 | 52.7 | 58.5 | 15.9 | 24.5 | 43.2 | 46.5 | 43.8 | If you use this model, please cite our work, the llama paper, and the original datasets: ``` @misc{wang2023far, title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources}, author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi}, year={2023}, eprint={2306.04751}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{touvron2023llama, title={LLaMA: Open and Efficient Foundation Language Models}, author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothรฉe Lacroix and Baptiste Roziรจre and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample}, year={2023}, eprint={2302.13971}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ``` @misc{dolly, author = {Databricks}, title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {Blog post}, url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm} } ``` ``` @article{longpre2023flan, title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning}, author={Longpre, Shayne and Hou, Le and Vu, Tu and Webson, Albert and Chung, Hyung Won and Tay, Yi and Zhou, Denny and Le, Quoc V and Zoph, Barret and Wei, Jason and others}, journal={arXiv preprint arXiv:2301.13688}, year={2023} } ``` ``` @misc{kรถpf2023openassistant, title={OpenAssistant Conversations -- Democratizing Large Language Model Alignment}, author={Andreas Kรถpf and Yannic Kilcher and Dimitri von Rรผtte and Sotiris Anagnostidis and Zhi-Rui Tam and Keith Stevens and Abdullah Barhoum and Nguyen Minh Duc and Oliver Stanley and Richรกrd Nagyfi and Shahul ES and Sameer Suri and David Glushkov and Arnav Dantuluri and Andrew Maguire and Christoph Schuhmann and Huu Nguyen and Alexander Mattick}, year={2023}, eprint={2304.07327}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Undi95/UtopiaXL-13B
Undi95
"2023-11-05T01:43:42Z"
1,098
16
transformers
[ "transformers", "safetensors", "llama", "text-generation", "not-for-all-audiences", "nsfw", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-11-04T23:47:26Z"
--- license: cc-by-nc-4.0 tags: - not-for-all-audiences - nsfw --- <!-- description start --> ## Description This repo contains fp16 files of UtopiaXL-13B, a merge I have done with the new [layer shuffle](https://github.com/cg123/mergekit/blob/main/mergekit/scripts/layershuffle.py) method from mergekit (thank you Charles for adding my request to your project!) This is more a proof of concept showing the following: - Llama2 is very flexible - Llama2 don't care about what is finetuned on the layers specifically if you keep them in the same order - Clean merge (no ties, no SLERP, etc...) with only layer is possible without breaking something - Deleting special tokens/using model with special token don't break the model - Alpaca win, always. So use it. The name "XL" come from the absurd amount of model pushed into it. <!-- description end --> <!-- description start --> ## Models and loras used - [Undi95/Utopia-13B](https://huggingface.co/Undi95/Utopia-13B) - [KoboldAI/LLAMA2-13B-Holodeck-1](https://huggingface.co/KoboldAI/LLAMA2-13B-Holodeck-1) - [Undi95/PsyMedRP-v1-13B](https://huggingface.co/Undi95/PsyMedRP-v1-13B) - [PygmalionAI/pygmalion-2-13b](https://huggingface.co/PygmalionAI/pygmalion-2-13b) - [Heralax/Cat-0.5](https://huggingface.co/Heralax/Cat-0.5) - [KoboldAI/LLaMA2-13B-TiefighterLR](https://huggingface.co/KoboldAI/LLaMA2-13B-TiefighterLR) - [Heralax/Augmental-13b-two-epochs](https://huggingface.co/Heralax/Augmental-13b-two-epochs) - [Undi95/Storytelling-v2.1-13B-lora](https://huggingface.co/Undi95/Storytelling-v2.1-13B-lora) - [Undi95/LimaRP-UtopiaXL-13B-v3-lora](https://huggingface.co/Undi95/LimaRP-UtopiaXL-13B-v3-lora) <!-- description end --> ## The sauce ``` !mergekit-layershuffle ./UtopiaXL \ --model Undi95/Utopia-13B --weight 0.4 \ --model KoboldAI/LLAMA2-13B-Holodeck-1 --weight 0.1 \ --model Undi95/PsyMedRP-v1-13B --weight 0.1 \ --model PygmalionAI/pygmalion-2-13b --weight 0.25 \ --model Heralax/Cat-0.5 --weight 0.1 \ --model KoboldAI/LLaMA2-13B-TiefighterLR --weight 0.1 \ --model Heralax/Augmental-13b-two-epochs --weight 0.1 \ --write-yaml UtopiaXL.yaml ========================= merge_method: passthrough slices: - sources: - layer_range: - 0 - 1 model: KoboldAI/LLAMA2-13B-Holodeck-1 - sources: - layer_range: - 1 - 4 model: Undi95/Utopia-13B - sources: - layer_range: - 4 - 5 model: PygmalionAI/pygmalion-2-13b - sources: - layer_range: - 5 - 6 model: Undi95/PsyMedRP-v1-13B - sources: - layer_range: - 6 - 7 model: KoboldAI/LLaMA2-13B-TiefighterLR - sources: - layer_range: - 7 - 8 model: PygmalionAI/pygmalion-2-13b - sources: - layer_range: - 8 - 9 model: Undi95/PsyMedRP-v1-13B - sources: - layer_range: - 9 - 10 model: PygmalionAI/pygmalion-2-13b - sources: - layer_range: - 10 - 13 model: Undi95/Utopia-13B - sources: - layer_range: - 13 - 14 model: Heralax/Cat-0.5 - sources: - layer_range: - 14 - 17 model: Undi95/Utopia-13B - sources: - layer_range: - 17 - 18 model: Heralax/Augmental-13b-two-epochs - sources: - layer_range: - 18 - 19 model: KoboldAI/LLaMA2-13B-TiefighterLR - sources: - layer_range: - 19 - 22 model: PygmalionAI/pygmalion-2-13b - sources: - layer_range: - 22 - 23 model: Undi95/Utopia-13B - sources: - layer_range: - 23 - 25 model: PygmalionAI/pygmalion-2-13b - sources: - layer_range: - 25 - 27 model: Undi95/Utopia-13B - sources: - layer_range: - 27 - 28 model: Heralax/Cat-0.5 - sources: - layer_range: - 28 - 30 model: Undi95/Utopia-13B - sources: - layer_range: - 30 - 31 model: Heralax/Augmental-13b-two-epochs - sources: - layer_range: - 31 - 32 model: Undi95/Utopia-13B - sources: - layer_range: - 32 - 33 model: Heralax/Cat-0.5 - sources: - layer_range: - 33 - 34 model: Heralax/Augmental-13b-two-epochs - sources: - layer_range: - 34 - 35 model: Undi95/PsyMedRP-v1-13B - sources: - layer_range: - 35 - 36 model: Heralax/Augmental-13b-two-epochs - sources: - layer_range: - 36 - 37 model: Undi95/Utopia-13B - sources: - layer_range: - 37 - 38 model: KoboldAI/LLAMA2-13B-Holodeck-1 - sources: - layer_range: - 38 - 39 model: PygmalionAI/pygmalion-2-13b - sources: - layer_range: - 39 - 40 model: KoboldAI/LLAMA2-13B-Holodeck-1 ========================= => Applying Undi95/Storytelling-v2.1-13B-lora x 0.1 => Trained on LimaRP for +2h => Applying Undi95/LimaRP-UtopiaXL-13B-v3-lora x 0.35 ``` <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` A big thanks to [Charles](https://huggingface.co/chargoddard) for adding the layer shuffle method to his tool [mergekit](https://github.com/cg123/mergekit/tree/main) and [Henky/KoboldAI](https://koboldai.org/) for the machine he let me use. If you want to support me, you can [here](https://ko-fi.com/undiai).