modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]
downloads
int64
0
738M
likes
int64
0
11k
library_name
stringclasses
245 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
48 values
createdAt
timestamp[us, tz=UTC]
card
stringlengths
1
901k
samuel-moreira/hr-resume-8b-v2.0
samuel-moreira
2024-06-26T18:29:25Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:29:25Z
Entry not found
axgroup/TVR-Ranking
axgroup
2024-07-02T08:26:12Z
0
0
null
[ "en", "license:cc", "region:us" ]
null
2024-06-26T18:30:26Z
--- license: cc language: - en --- # Video Moment Retrieval in Practical Setting: A Dataset of Ranked Moments for Imprecise Queries The benchmark and dataset for the paper "Video Moment Retrieval in Practical Settings: A Dataset of Ranked Moments for Imprecise Queries" is coming soon. We recommend cloning the code, data, and feature files from the Hugging Face repository at [TVR-Ranking](https://huggingface.co/axgroup/TVR-Ranking). ![TVR_Ranking_overview](./figures/taskComparisonV.png) ## Getting started ### 1. Install the requisites The Python packages we used are listed as follows. Commonly, the most recent versions work well. ```shell conda create --name tvr_ranking python=3.11 conda activate tvr_ranking pip install pytorch # 2.2.1+cu121 pip install tensorboard pip install h5py pandas tqdm easydict pyyaml ``` ### 2. Download full dataset For the full dataset, please go down from Hugging Face [TVR-Ranking](https://huggingface.co/axgroup/TVR-Ranking). \ The detailed introduction and raw annotations is available at [Dataset Introduction](data/TVR_Ranking/readme.md). ``` TVR_Ranking/ -val.json -test.json -train_top01.json -train_top20.json -train_top40.json -video_corpus.json ``` ### 3. Download features For the query BERT features, you can download them from Hugging Face [TVR-Ranking](https://huggingface.co/axgroup/TVR-Ranking). \ For the video and subtitle features, please request them at [TVR](https://tvr.cs.unc.edu/). ```shell tar -xf tvr_feature_release.tar.gz -C data/TVR_Ranking/feature ``` ### 4. Training ```shell # modify the data path first sh run_top20.sh ``` ## Baseline (ToDo: running the new version...) \ The baseline performance of $NDGC@20$ was shown as follows. Top $N$ moments were comprised of a pseudo training set by the query-caption similarity. | Model | $N$ | IoU = 0.3, val | IoU = 0.3, test | IoU = 0.5, val | IoU = 0.5, test | IoU = 0.7, val | IoU = 0.7, test | |----------------|-----|----------------|-----------------|----------------|-----------------|----------------|-----------------| | **XML** | 1 | 0.1050 | 0.1047 | 0.0767 | 0.0751 | 0.0287 | 0.0314 | | | 20 | 0.1948 | 0.1964 | 0.1417 | 0.1434 | 0.0519 | 0.0583 | | | 40 | 0.2101 | 0.2110 | 0.1525 | 0.1533 | 0.0613 | 0.0617 | | **CONQUER** | 1 | 0.0979 | 0.0830 | 0.0817 | 0.0686 | 0.0547 | 0.0479 | | | 20 | 0.2007 | 0.1935 | 0.1844 | 0.1803 | 0.1391 | 0.1341 | | | 40 | 0.2094 | 0.1943 | 0.1930 | 0.1825 | 0.1481 | 0.1334 | | **ReLoCLNet** | 1 | 0.1306 | 0.1299 | 0.1169 | 0.1154 | 0.0738 | 0.0789 | | | 20 | 0.3264 | 0.3214 | 0.3007 | 0.2956 | 0.2074 | 0.2084 | | | 40 | 0.3479 | 0.3473 | 0.3221 | 0.3217 | 0.2218 | 0.2275 | ### 4. Inferring [ToDo] The checkpoint can all be accessed from Hugging Face [TVR-Ranking](https://huggingface.co/axgroup/TVR-Ranking). ## Citation If you feel this project helpful to your research, please cite our work. ``` ```
habulaj/19006110673
habulaj
2024-06-26T18:33:23Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:33:02Z
Entry not found
ddwadadw3r34r3/Edp445
ddwadadw3r34r3
2024-06-26T18:34:15Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:33:50Z
Entry not found
pandoradox/testmodel
pandoradox
2024-06-28T14:17:21Z
0
0
peft
[ "peft", "safetensors", "phi", "arxiv:1910.09700", "base_model:microsoft/phi-2", "region:us" ]
null
2024-06-26T18:34:44Z
--- library_name: peft base_model: microsoft/phi-2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.11.1
google/paligemma-3b-pt-224-keras
google
2024-06-26T20:46:31Z
0
0
keras-nlp
[ "keras-nlp", "image-text-to-text", "license:gemma", "region:us" ]
image-text-to-text
2024-06-26T18:34:55Z
--- library_name: keras-nlp extra_gated_heading: Access PaliGemma on Hugging Face extra_gated_prompt: >- To access PaliGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma pipeline_tag: image-text-to-text --- PaliGemma is a set of multi-modal large language models published by Google based on the Gemma model. Both a pre-trained and instruction tuned models are available. See the model card below for benchmarks, data sources, and intended use cases. ## Links * [PaliGemma API Documentation](https://keras.io/api/keras_nlp/models/pali_gemma/) * [KerasNLP Beginner Guide](https://keras.io/guides/keras_nlp/getting_started/) * [KerasNLP Model Publishing Guide](https://keras.io/guides/keras_nlp/upload/) ## Installation Keras and KerasNLP can be installed with: ``` pip install -U -q keras-nlp pip install -U -q keras>=3 ``` Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. ## Presets The following model checkpoints are provided by the Keras team. Full code examples for each are available below. | Preset name | Parameters | Description | |-----------------------|------------|-------------------------------------------------------------| | [paligemma-3b-224-mix-keras](https://huggingface.co/google/paligemma-3b-224-mix-keras) | 2.92B | image size 224, mix fine tuned, text sequence length is 256 | | [paligemma-3b-448-mix-keras](https://huggingface.co/google/paligemma-3b-448-mix-keras) | 2.92B | image size 448, mix fine tuned, text sequence length is 512 | | [**paligemma-3b-224-keras**](https://huggingface.co/google/paligemma-3b-224-keras) | 2.92B | image size 224, pre trained, text sequence length is 128 | | [paligemma-3b-448-keras](https://huggingface.co/google/paligemma-3b-448-keras) | 2.92B | image size 448, pre trained, text sequence length is 512 | | [paligemma-3b-896-keras](https://huggingface.co/google/paligemma-3b-896-keras) | 2.93B | image size 896, pre trained, text sequence length is 512 | ## Prompts The PaliGemma `"mix"` models can handle a number of prompting structures out of the box. It is important to stick exactly to these prompts, including the newline. Lang can be a language code such as `"en"` or `"fr"`. Support for languages outside of English will vary depending on the prompt type. * `"cap {lang}\n"`: very raw short caption (from WebLI-alt). * `"caption {lang}\n"`: coco-like short captions. * `"describe {lang}\n"`: somewhat longer more descriptive captions. * `"ocr\n"`: optical character recognition. * `"answer en {question}\n"`: question answering about the image contents. * `"question {lang} {answer}\n"`: question generation for a given answer. * `"detect {thing} ; {thing}\n"`: count objects in a scene. Not `"mix"` presets should be fine-tuned for a specific task. ``` !pip install -U -q keras-nlp ``` Pick a backend of your choice ``` import os os.environ["KERAS_BACKEND"] = "jax" ``` Now we can load the PaliGemma "causal language model" from the Kaggle Models hub. A causal language model is just a LLM that is ready for generation, by training with a causal mask, and running generation a token at a time in a recurrent loop. ``` keras.config.set_floatx("bfloat16") pali_gemma_lm = keras_nlp.models.PaliGemmaCausalLM.from_preset( "hf://google/paligemma-3b-224-keras" ) ``` Function that reads an image from a given URL ``` def read_image(url): contents = io.BytesIO(requests.get(url).content) image = PIL.Image.open(contents) image = np.array(image) # Remove alpha channel if neccessary. if image.shape[2] == 4: image = image[:, :, :3] return image ``` ``` image_url = 'https://storage.googleapis.com/keras-cv/models/paligemma/cow_beach_1.png' image = read_image(image_url) ``` Use `generate()` call with a single image and prompt. The text prompt has to end with `\n`. ``` prompt = 'answer en where is the cow standing?\n' output = pali_gemma_lm.generate( inputs={ "images": image, "prompts": prompt, } ) print(output) ``` Use `generate()` call with a batched images and prompts. ``` prompts = [ 'answer en where is the cow standing?\n', 'answer en what color is the cow?\n', 'describe en\n', 'detect cow\n', 'segment cow\n', ] images = [image, image, image, image, image] outputs = pali_gemma_lm.generate( inputs={ "images": images, "prompts": prompts, } ) for output in outputs: print(output) ``` There's a few other style of prompts this model can handle out of the box... `cap {lang}\n`: very raw short caption (from WebLI-alt). `caption {lang}\n`: nice, coco-like short captions. `describe {lang}\n`: somewhat longer more descriptive captions. `ocr\n`: optical character recognition. `answer en {question}\n`: question answering about the image contents. `question {lang} {answer}\n`: question generation for a given answer. `detect {thing} ; {thing}\n`: count objects in a scene. Call `fit()` on a single batch ``` import numpy as np image = np.random.uniform(-1, 1, size=(224, 224, 3)) x = { "images": [image, image], "prompts": ["answer en Where is the cow standing?\n", "caption en\n"], } y = { "responses": ["beach", "A brown cow standing on a beach next to the ocean."], } pali_gemma_lm = keras_nlp.models.PaliGemmaCausalLM.from_preset("hf://google/paligemma-3b-224-keras") pali_gemma_lm.fit(x=x, y=y, batch_size=2) ```
daccuong2002/CosineSimilary
daccuong2002
2024-06-26T18:36:10Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:36:09Z
Entry not found
habulaj/78559234709
habulaj
2024-06-26T18:36:52Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:36:34Z
Entry not found
C0ttontheBunny/Smilingfrens
C0ttontheBunny
2024-06-26T18:56:36Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-06-26T18:37:34Z
--- license: openrail ---
mohammedalaa/mhmd
mohammedalaa
2024-06-26T18:38:28Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-26T18:38:28Z
--- license: apache-2.0 ---
iamalexcaspian/LunaLoud-TLH
iamalexcaspian
2024-06-26T18:42:22Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:39:17Z
Entry not found
habulaj/257578228312
habulaj
2024-06-26T18:40:36Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:40:28Z
Entry not found
gaur3009/gpt2_model
gaur3009
2024-06-26T18:41:33Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:41:33Z
Entry not found
google/paligemma-3b-pt-448-keras
google
2024-06-26T21:03:48Z
0
0
keras-nlp
[ "keras-nlp", "image-text-to-text", "license:gemma", "region:us" ]
image-text-to-text
2024-06-26T18:41:58Z
--- license: gemma library_name: keras-nlp extra_gated_heading: Access PaliGemma on Hugging Face extra_gated_prompt: >- To access PaliGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license pipeline_tag: image-text-to-text --- PaliGemma is a set of multi-modal large language models published by Google based on the Gemma model. Both a pre-trained and instruction tuned models are available. See the model card below for benchmarks, data sources, and intended use cases. ## Links * [PaliGemma API Documentation](https://keras.io/api/keras_nlp/models/pali_gemma/) * [KerasNLP Beginner Guide](https://keras.io/guides/keras_nlp/getting_started/) * [KerasNLP Model Publishing Guide](https://keras.io/guides/keras_nlp/upload/) ## Installation Keras and KerasNLP can be installed with: ``` pip install -U -q keras-nlp pip install -U -q keras&gt;=3 ``` Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. ## Presets The following model checkpoints are provided by the Keras team. Full code examples for each are available below. | Preset name | Parameters | Description | |-----------------------|------------|-------------------------------------------------------------| | [paligemma-3b-224-mix-keras](https://huggingface.co/google/paligemma-3b-224-mix-keras) | 2.92B | image size 224, mix fine tuned, text sequence length is 256 | | [paligemma-3b-448-mix-keras](https://huggingface.co/google/paligemma-3b-448-mix-keras) | 2.92B | image size 448, mix fine tuned, text sequence length is 512 | | [paligemma-3b-224-keras](https://huggingface.co/google/paligemma-3b-224-keras) | 2.92B | image size 224, pre trained, text sequence length is 128 | | [**paligemma-3b-448-keras**](https://huggingface.co/google/paligemma-3b-448-keras) | 2.92B | image size 448, pre trained, text sequence length is 512 | | [paligemma-3b-896-keras](https://huggingface.co/google/paligemma-3b-896-keras) | 2.93B | image size 896, pre trained, text sequence length is 512 | ## Prompts The PaliGemma `"mix"` models can handle a number of prompting structures out of the box. It is important to stick exactly to these prompts, including the newline. Lang can be a language code such as `"en"` or `"fr"`. Support for languages outside of English will vary depending on the prompt type. * `"cap {lang}\n"`: very raw short caption (from WebLI-alt). * `"caption {lang}\n"`: coco-like short captions. * `"describe {lang}\n"`: somewhat longer more descriptive captions. * `"ocr\n"`: optical character recognition. * `"answer en {question}\n"`: question answering about the image contents. * `"question {lang} {answer}\n"`: question generation for a given answer. * `"detect {thing} ; {thing}\n"`: count objects in a scene. Not `"mix"` presets should be fine-tuned for a specific task. ``` !pip install -U -q keras-nlp ``` Pick a backend of your choice ``` import os os.environ["KERAS_BACKEND"] = "jax" ``` Now we can load the PaliGemma "causal language model" from the Kaggle Models hub. A causal language model is just a LLM that is ready for generation, by training with a causal mask, and running generation a token at a time in a recurrent loop. ``` keras.config.set_floatx("bfloat16") pali_gemma_lm = keras_nlp.models.PaliGemmaCausalLM.from_preset( "hf://google/paligemma-3b-448-keras" ) ``` Function that reads an image from a given URL ``` def read_image(url): contents = io.BytesIO(requests.get(url).content) image = PIL.Image.open(contents) image = np.array(image) # Remove alpha channel if neccessary. if image.shape[2] == 4: image = image[:, :, :3] return image ``` ``` image_url = 'https://storage.googleapis.com/keras-cv/models/paligemma/cow_beach_1.png' image = read_image(image_url) ``` Use `generate()` call with a single image and prompt. The text prompt has to end with `\n`. ``` prompt = 'answer en where is the cow standing?\n' output = pali_gemma_lm.generate( inputs={ "images": image, "prompts": prompt, } ) print(output) ``` Use `generate()` call with a batched images and prompts. ``` prompts = [ 'answer en where is the cow standing?\n', 'answer en what color is the cow?\n', 'describe en\n', 'detect cow\n', 'segment cow\n', ] images = [image, image, image, image, image] outputs = pali_gemma_lm.generate( inputs={ "images": images, "prompts": prompts, } ) for output in outputs: print(output) ``` There's a few other style of prompts this model can handle out of the box... `cap {lang}\n`: very raw short caption (from WebLI-alt). `caption {lang}\n`: nice, coco-like short captions. `describe {lang}\n`: somewhat longer more descriptive captions. `ocr\n`: optical character recognition. `answer en {question}\n`: question answering about the image contents. `question {lang} {answer}\n`: question generation for a given answer. `detect {thing} ; {thing}\n`: count objects in a scene. Call `fit()` on a single batch ``` import numpy as np image = np.random.uniform(-1, 1, size=(224, 224, 3)) x = { "images": [image, image], "prompts": ["answer en Where is the cow standing?\n", "caption en\n"], } y = { "responses": ["beach", "A brown cow standing on a beach next to the ocean."], } pali_gemma_lm = keras_nlp.models.PaliGemmaCausalLM.from_preset("hf://google/paligemma-3b-448-keras") pali_gemma_lm.fit(x=x, y=y, batch_size=2) ```
Hiezen/llama-3-8b-chat-doctor
Hiezen
2024-06-26T18:42:21Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:42:21Z
Entry not found
Sakjay/Thai-1Epoch
Sakjay
2024-06-26T18:42:22Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:42:22Z
Entry not found
google/paligemma-3b-pt-896-keras
google
2024-06-26T21:04:14Z
0
0
keras-nlp
[ "keras-nlp", "image-text-to-text", "license:gemma", "region:us" ]
image-text-to-text
2024-06-26T18:44:37Z
--- library_name: keras-nlp extra_gated_heading: Access PaliGemma on Hugging Face extra_gated_prompt: >- To access PaliGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma pipeline_tag: image-text-to-text --- PaliGemma is a set of multi-modal large language models published by Google based on the Gemma model. Both a pre-trained and instruction tuned models are available. See the model card below for benchmarks, data sources, and intended use cases. ## Links * [PaliGemma API Documentation](https://keras.io/api/keras_nlp/models/pali_gemma/) * [KerasNLP Beginner Guide](https://keras.io/guides/keras_nlp/getting_started/) * [KerasNLP Model Publishing Guide](https://keras.io/guides/keras_nlp/upload/) ## Installation Keras and KerasNLP can be installed with: ``` pip install -U -q keras-nlp pip install -U -q keras&gt;=3 ``` Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. ## Presets The following model checkpoints are provided by the Keras team. Full code examples for each are available below. | Preset name | Parameters | Description | |-----------------------|------------|-------------------------------------------------------------| | [paligemma-3b-224-mix-keras](https://huggingface.co/google/paligemma-3b-224-mix-keras) | 2.92B | image size 224, mix fine tuned, text sequence length is 256 | | [paligemma-3b-448-mix-keras](https://huggingface.co/google/paligemma-3b-448-mix-keras) | 2.92B | image size 448, mix fine tuned, text sequence length is 512 | | [paligemma-3b-224-keras](https://huggingface.co/google/paligemma-3b-224-keras) | 2.92B | image size 224, pre trained, text sequence length is 128 | | [paligemma-3b-448-keras](https://huggingface.co/google/paligemma-3b-448-keras) | 2.92B | image size 448, pre trained, text sequence length is 512 | | [**paligemma-3b-896-keras**](https://huggingface.co/google/paligemma-3b-896-keras) | 2.93B | image size 896, pre trained, text sequence length is 512 | ## Prompts The PaliGemma `"mix"` models can handle a number of prompting structures out of the box. It is important to stick exactly to these prompts, including the newline. Lang can be a language code such as `"en"` or `"fr"`. Support for languages outside of English will vary depending on the prompt type. * `"cap {lang}\n"`: very raw short caption (from WebLI-alt). * `"caption {lang}\n"`: coco-like short captions. * `"describe {lang}\n"`: somewhat longer more descriptive captions. * `"ocr\n"`: optical character recognition. * `"answer en {question}\n"`: question answering about the image contents. * `"question {lang} {answer}\n"`: question generation for a given answer. * `"detect {thing} ; {thing}\n"`: count objects in a scene. Not `"mix"` presets should be fine-tuned for a specific task. ``` !pip install -U -q keras-nlp ``` Pick a backend of your choice ``` import os os.environ["KERAS_BACKEND"] = "jax" ``` Now we can load the PaliGemma "causal language model" from the Kaggle Models hub. A causal language model is just a LLM that is ready for generation, by training with a causal mask, and running generation a token at a time in a recurrent loop. ``` keras.config.set_floatx("bfloat16") pali_gemma_lm = keras_nlp.models.PaliGemmaCausalLM.from_preset( "hf://google/paligemma-3b-896-keras" ) ``` Function that reads an image from a given URL ``` def read_image(url): contents = io.BytesIO(requests.get(url).content) image = PIL.Image.open(contents) image = np.array(image) # Remove alpha channel if neccessary. if image.shape[2] == 4: image = image[:, :, :3] return image ``` ``` image_url = 'https://storage.googleapis.com/keras-cv/models/paligemma/cow_beach_1.png' image = read_image(image_url) ``` Use `generate()` call with a single image and prompt. The text prompt has to end with `\n`. ``` prompt = 'answer en where is the cow standing?\n' output = pali_gemma_lm.generate( inputs={ "images": image, "prompts": prompt, } ) print(output) ``` Use `generate()` call with a batched images and prompts. ``` prompts = [ 'answer en where is the cow standing?\n', 'answer en what color is the cow?\n', 'describe en\n', 'detect cow\n', 'segment cow\n', ] images = [image, image, image, image, image] outputs = pali_gemma_lm.generate( inputs={ "images": images, "prompts": prompts, } ) for output in outputs: print(output) ``` There's a few other style of prompts this model can handle out of the box... `cap {lang}\n`: very raw short caption (from WebLI-alt). `caption {lang}\n`: nice, coco-like short captions. `describe {lang}\n`: somewhat longer more descriptive captions. `ocr\n`: optical character recognition. `answer en {question}\n`: question answering about the image contents. `question {lang} {answer}\n`: question generation for a given answer. `detect {thing} ; {thing}\n`: count objects in a scene. Call `fit()` on a single batch ``` import numpy as np image = np.random.uniform(-1, 1, size=(224, 224, 3)) x = { "images": [image, image], "prompts": ["answer en Where is the cow standing?\n", "caption en\n"], } y = { "responses": ["beach", "A brown cow standing on a beach next to the ocean."], } pali_gemma_lm = keras_nlp.models.PaliGemmaCausalLM.from_preset("hf://google/paligemma-3b-896-keras") pali_gemma_lm.fit(x=x, y=y, batch_size=2) ```
albertoravasini/justlearn
albertoravasini
2024-06-26T18:45:20Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-26T18:45:20Z
--- license: apache-2.0 ---
habulaj/219688191830
habulaj
2024-06-26T18:46:58Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:46:51Z
Entry not found
google/paligemma-3b-mix-224-keras
google
2024-06-26T21:02:11Z
0
0
keras-nlp
[ "keras-nlp", "image-text-to-text", "license:gemma", "region:us" ]
image-text-to-text
2024-06-26T18:47:06Z
--- library_name: keras-nlp extra_gated_heading: Access PaliGemma on Hugging Face extra_gated_prompt: >- To access PaliGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma pipeline_tag: image-text-to-text --- PaliGemma is a set of multi-modal large language models published by Google based on the Gemma model. Both a pre-trained and instruction tuned models are available. See the model card below for benchmarks, data sources, and intended use cases. ## Links * [PaliGemma API Documentation](https://keras.io/api/keras_nlp/models/pali_gemma/) * [KerasNLP Beginner Guide](https://keras.io/guides/keras_nlp/getting_started/) * [KerasNLP Model Publishing Guide](https://keras.io/guides/keras_nlp/upload/) ## Installation Keras and KerasNLP can be installed with: ``` pip install -U -q keras-nlp pip install -U -q keras&gt;=3 ``` Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. ## Presets The following model checkpoints are provided by the Keras team. Full code examples for each are available below. | Preset name | Parameters | Description | |-----------------------|------------|-------------------------------------------------------------| | [**paligemma-3b-224-mix-keras**](https://huggingface.co/google/paligemma-3b-224-mix-keras) | 2.92B | image size 224, mix fine tuned, text sequence length is 256 | | [paligemma-3b-448-mix-keras](https://huggingface.co/google/paligemma-3b-448-mix-keras) | 2.92B | image size 448, mix fine tuned, text sequence length is 512 | | [paligemma-3b-224-keras](https://huggingface.co/google/paligemma-3b-224-keras) | 2.92B | image size 224, pre trained, text sequence length is 128 | | [paligemma-3b-448-keras](https://huggingface.co/google/paligemma-3b-448-keras) | 2.92B | image size 448, pre trained, text sequence length is 512 | | [paligemma-3b-896-keras](https://huggingface.co/google/paligemma-3b-896-keras) | 2.93B | image size 896, pre trained, text sequence length is 512 | ## Prompts The PaliGemma `"mix"` models can handle a number of prompting structures out of the box. It is important to stick exactly to these prompts, including the newline. Lang can be a language code such as `"en"` or `"fr"`. Support for languages outside of English will vary depending on the prompt type. * `"cap {lang}\n"`: very raw short caption (from WebLI-alt). * `"caption {lang}\n"`: coco-like short captions. * `"describe {lang}\n"`: somewhat longer more descriptive captions. * `"ocr\n"`: optical character recognition. * `"answer en {question}\n"`: question answering about the image contents. * `"question {lang} {answer}\n"`: question generation for a given answer. * `"detect {thing} ; {thing}\n"`: count objects in a scene. Not `"mix"` presets should be fine-tuned for a specific task. ``` !pip install -U -q keras-nlp ``` Pick a backend of your choice ``` import os os.environ["KERAS_BACKEND"] = "jax" ``` Now we can load the PaliGemma "causal language model" from the Kaggle Models hub. A causal language model is just a LLM that is ready for generation, by training with a causal mask, and running generation a token at a time in a recurrent loop. ``` keras.config.set_floatx("bfloat16") pali_gemma_lm = keras_nlp.models.PaliGemmaCausalLM.from_preset( "hf://google/paligemma-3b-224-mix-keras" ) ``` Function that reads an image from a given URL ``` def read_image(url): contents = io.BytesIO(requests.get(url).content) image = PIL.Image.open(contents) image = np.array(image) # Remove alpha channel if neccessary. if image.shape[2] == 4: image = image[:, :, :3] return image ``` ``` image_url = 'https://storage.googleapis.com/keras-cv/models/paligemma/cow_beach_1.png' image = read_image(image_url) ``` Use `generate()` call with a single image and prompt. The text prompt has to end with `\n`. ``` prompt = 'answer en where is the cow standing?\n' output = pali_gemma_lm.generate( inputs={ "images": image, "prompts": prompt, } ) print(output) ``` Use `generate()` call with a batched images and prompts. ``` prompts = [ 'answer en where is the cow standing?\n', 'answer en what color is the cow?\n', 'describe en\n', 'detect cow\n', 'segment cow\n', ] images = [image, image, image, image, image] outputs = pali_gemma_lm.generate( inputs={ "images": images, "prompts": prompts, } ) for output in outputs: print(output) ``` There's a few other style of prompts this model can handle out of the box... `cap {lang}\n`: very raw short caption (from WebLI-alt). `caption {lang}\n`: nice, coco-like short captions. `describe {lang}\n`: somewhat longer more descriptive captions. `ocr\n`: optical character recognition. `answer en {question}\n`: question answering about the image contents. `question {lang} {answer}\n`: question generation for a given answer. `detect {thing} ; {thing}\n`: count objects in a scene. Call `fit()` on a single batch ``` import numpy as np image = np.random.uniform(-1, 1, size=(224, 224, 3)) x = { "images": [image, image], "prompts": ["answer en Where is the cow standing?\n", "caption en\n"], } y = { "responses": ["beach", "A brown cow standing on a beach next to the ocean."], } pali_gemma_lm = keras_nlp.models.PaliGemmaCausalLM.from_preset("hf://google/paligemma-3b-224-mix-keras") pali_gemma_lm.fit(x=x, y=y, batch_size=2) ```
habulaj/2542025133
habulaj
2024-06-26T18:47:53Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:47:46Z
Entry not found
google/paligemma-3b-mix-448-keras
google
2024-06-26T21:03:08Z
0
0
keras-nlp
[ "keras-nlp", "image-text-to-text", "license:gemma", "region:us" ]
image-text-to-text
2024-06-26T18:49:50Z
--- library_name: keras-nlp extra_gated_heading: Access PaliGemma on Hugging Face extra_gated_prompt: >- To access PaliGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma pipeline_tag: image-text-to-text --- PaliGemma is a set of multi-modal large language models published by Google based on the Gemma model. Both a pre-trained and instruction tuned models are available. See the model card below for benchmarks, data sources, and intended use cases. ## Links * [PaliGemma API Documentation](https://keras.io/api/keras_nlp/models/pali_gemma/) * [KerasNLP Beginner Guide](https://keras.io/guides/keras_nlp/getting_started/) * [KerasNLP Model Publishing Guide](https://keras.io/guides/keras_nlp/upload/) ## Installation Keras and KerasNLP can be installed with: ``` pip install -U -q keras-nlp pip install -U -q keras&gt;=3 ``` Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. ## Presets The following model checkpoints are provided by the Keras team. Full code examples for each are available below. | Preset name | Parameters | Description | |-----------------------|------------|-------------------------------------------------------------| | [paligemma-3b-224-mix-keras](https://huggingface.co/google/paligemma-3b-224-mix-keras) | 2.92B | image size 224, mix fine tuned, text sequence length is 256 | | [**paligemma-3b-448-mix-keras**](https://huggingface.co/google/paligemma-3b-448-mix-keras) | 2.92B | image size 448, mix fine tuned, text sequence length is 512 | | [paligemma-3b-224-keras](https://huggingface.co/google/paligemma-3b-224-keras) | 2.92B | image size 224, pre trained, text sequence length is 128 | | [paligemma-3b-448-keras](https://huggingface.co/google/paligemma-3b-448-keras) | 2.92B | image size 448, pre trained, text sequence length is 512 | | [paligemma-3b-896-keras](https://huggingface.co/google/paligemma-3b-896-keras) | 2.93B | image size 896, pre trained, text sequence length is 512 | ## Prompts The PaliGemma `"mix"` models can handle a number of prompting structures out of the box. It is important to stick exactly to these prompts, including the newline. Lang can be a language code such as `"en"` or `"fr"`. Support for languages outside of English will vary depending on the prompt type. * `"cap {lang}\n"`: very raw short caption (from WebLI-alt). * `"caption {lang}\n"`: coco-like short captions. * `"describe {lang}\n"`: somewhat longer more descriptive captions. * `"ocr\n"`: optical character recognition. * `"answer en {question}\n"`: question answering about the image contents. * `"question {lang} {answer}\n"`: question generation for a given answer. * `"detect {thing} ; {thing}\n"`: count objects in a scene. Not `"mix"` presets should be fine-tuned for a specific task. ``` !pip install -U -q keras-nlp ``` Pick a backend of your choice ``` import os os.environ["KERAS_BACKEND"] = "jax" ``` Now we can load the PaliGemma "causal language model" from the Kaggle Models hub. A causal language model is just a LLM that is ready for generation, by training with a causal mask, and running generation a token at a time in a recurrent loop. ``` keras.config.set_floatx("bfloat16") pali_gemma_lm = keras_nlp.models.PaliGemmaCausalLM.from_preset( "hf://google/paligemma-3b-448-mix-keras" ) ``` Function that reads an image from a given URL ``` def read_image(url): contents = io.BytesIO(requests.get(url).content) image = PIL.Image.open(contents) image = np.array(image) # Remove alpha channel if neccessary. if image.shape[2] == 4: image = image[:, :, :3] return image ``` ``` image_url = 'https://storage.googleapis.com/keras-cv/models/paligemma/cow_beach_1.png' image = read_image(image_url) ``` Use `generate()` call with a single image and prompt. The text prompt has to end with `\n`. ``` prompt = 'answer en where is the cow standing?\n' output = pali_gemma_lm.generate( inputs={ "images": image, "prompts": prompt, } ) print(output) ``` Use `generate()` call with a batched images and prompts. ``` prompts = [ 'answer en where is the cow standing?\n', 'answer en what color is the cow?\n', 'describe en\n', 'detect cow\n', 'segment cow\n', ] images = [image, image, image, image, image] outputs = pali_gemma_lm.generate( inputs={ "images": images, "prompts": prompts, } ) for output in outputs: print(output) ``` There's a few other style of prompts this model can handle out of the box... `cap {lang}\n`: very raw short caption (from WebLI-alt). `caption {lang}\n`: nice, coco-like short captions. `describe {lang}\n`: somewhat longer more descriptive captions. `ocr\n`: optical character recognition. `answer en {question}\n`: question answering about the image contents. `question {lang} {answer}\n`: question generation for a given answer. `detect {thing} ; {thing}\n`: count objects in a scene. Call `fit()` on a single batch ``` import numpy as np image = np.random.uniform(-1, 1, size=(224, 224, 3)) x = { "images": [image, image], "prompts": ["answer en Where is the cow standing?\n", "caption en\n"], } y = { "responses": ["beach", "A brown cow standing on a beach next to the ocean."], } pali_gemma_lm = keras_nlp.models.PaliGemmaCausalLM.from_preset("hf://google/paligemma-3b-448-mix-keras") pali_gemma_lm.fit(x=x, y=y, batch_size=2) ```
mabrouk/dummy
mabrouk
2024-06-26T18:50:05Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-26T18:50:05Z
--- license: apache-2.0 ---
habulaj/450295442644
habulaj
2024-06-26T18:50:50Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:50:47Z
Entry not found
eskayML/SD-0.1
eskayML
2024-06-26T19:59:02Z
0
0
null
[ "tensorboard", "art", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "region:us" ]
null
2024-06-26T18:52:55Z
--- license: apache-2.0 datasets: - huggan/smithsonian_butterflies_subset tags: - art ---
habulaj/709410270
habulaj
2024-06-26T18:56:52Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:56:41Z
Entry not found
HowToSD/face_unblur
HowToSD
2024-06-28T20:07:37Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:57:23Z
Entry not found
habulaj/2333723023
habulaj
2024-06-26T18:57:31Z
0
0
null
[ "region:us" ]
null
2024-06-26T18:57:24Z
Entry not found
Sakjay/Thai-Updated-Parameters
Sakjay
2024-06-26T20:45:50Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-26T18:58:46Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HyperdustProtocol/ImHyperAGI-cog-llama2-7b-5908
HyperdustProtocol
2024-06-26T19:07:53Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-2-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T19:06:51Z
--- base_model: unsloth/llama-2-7b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** HyperdustProtocol - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-2-7b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Silentcosmo/payal
Silentcosmo
2024-06-26T19:07:24Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-06-26T19:07:24Z
--- license: mit ---
ana2025/robitos
ana2025
2024-06-26T19:10:11Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:10:11Z
Entry not found
sontq/naschain
sontq
2024-07-02T15:08:52Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:14:04Z
Entry not found
miqueiascoutinho/firts
miqueiascoutinho
2024-06-26T19:14:22Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:14:22Z
Entry not found
habulaj/12116595730
habulaj
2024-06-26T19:14:58Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:14:55Z
Entry not found
Rishabh5inghj/Mistral_ex
Rishabh5inghj
2024-06-26T19:16:04Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-26T19:16:04Z
--- license: apache-2.0 ---
habulaj/243388214614
habulaj
2024-06-26T19:18:20Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:18:17Z
Entry not found
henriquepxl/vit-base-patch16-224-pokemon
henriquepxl
2024-06-26T19:19:37Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:19:37Z
Entry not found
google/codegemma-1.1-2b-keras
google
2024-06-26T20:35:30Z
0
0
keras-nlp
[ "keras-nlp", "text-generation", "license:gemma", "region:us" ]
text-generation
2024-06-26T19:19:45Z
--- library_name: keras-nlp extra_gated_heading: Access CodeGemma on Hugging Face extra_gated_prompt: >- To access CodeGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma license_link: https://ai.google.dev/gemma/terms pipeline_tag: text-generation --- # CodeGemma **Google Model Page**: [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) This model card corresponds to the latest 2B base version of the Code Gemma 1.1 model for usage in keras. Keras models can be used with JAX, PyTorch or TensorFlow as numerical backends. JAX, with its support for SPMD model paralellism, is recommended for large models. For more information: [distributed training with Keras and JAX](https://keras.io/guides/distribution/). You can find other models in the CodeGemma family here: | | Base | Instruct | |----|----------------------------------------------------|----------------------------------------------------------------------| | 2B | [**codegemma-1.1-2b-keras**](https://huggingface.co/google/codegemma-1.1-2b-keras) | | | 7B | [codegemma-7b-keras](https://huggingface.co/google/codegemma-7b-keras) | [codegemma-1.1-7b-it-keras](https://huggingface.co/google/codegemma-1.1-7b-it-keras) | For more information about the model, visit https://huggingface.co/google/codegemma-2b. Google Model Page : [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) Resources and Technical Documentation : [Technical Report](https://goo.gle/codegemma) : [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) Terms of Use : [Terms](https://ai.google.dev/gemma/terms) Authors : Google ## Loading the model ```python import keras_nlp gemma_lm = keras_nlp.models.GemmaCausalLM.from_preset("hf://google/codegemma-1.1-2b-keras") ```
SamSzamocki/dummy-model_2
SamSzamocki
2024-06-26T19:20:06Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:20:06Z
Entry not found
habulaj/1172215565
habulaj
2024-06-26T19:20:58Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:20:45Z
Entry not found
google/codegemma-1.1-7b-it-keras
google
2024-06-26T20:35:07Z
0
0
keras-nlp
[ "keras-nlp", "text-generation", "license:gemma", "region:us" ]
text-generation
2024-06-26T19:22:33Z
--- library_name: keras-nlp extra_gated_heading: Access CodeGemma on Hugging Face extra_gated_prompt: >- To access CodeGemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license license: gemma license_link: https://ai.google.dev/gemma/terms pipeline_tag: text-generation --- # CodeGemma **Google Model Page**: [CodeGemma](https://ai.google.dev/gemma/docs/codegemma) This model card corresponds to the latest 7B instruct version of the CodeGemma 1.1 model for usage in keras. Keras models can be used with JAX, PyTorch or TensorFlow as numerical backends. JAX, with its support for SPMD model paralellism, is recommended for large models. For more information: [distributed training with Keras and JAX](https://keras.io/guides/distribution/). You can find other models in the CodeGemma family here: | | Base | Instruct | |----|----------------------------------------------------|----------------------------------------------------------------------| | 2B | [codegemma-1.1-2b-keras](https://huggingface.co/google/codegemma-1.1-2b-keras) | | | 7B | [codegemma-7b-keras](https://huggingface.co/google/codegemma-7b-keras) | [**codegemma-1.1-7b-it-keras**](https://huggingface.co/google/codegemma-1.1-7b-it-keras) | For more information about the model, visit https://huggingface.co/google/codegemma-2b. Resources and Technical Documentation : [Technical Report](https://goo.gle/codegemma) : [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) Terms of Use : [Terms](https://ai.google.dev/gemma/terms) Authors : Google ## Loading the model ```python import keras_nlp gemma_lm = keras_nlp.models.GemmaCausalLM.from_preset("hf://google/codegemma-1.1-7b-it-keras") ```
Anytram/llama-3-8b-Instruct-bnb-4bit-medical
Anytram
2024-06-26T19:23:44Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T19:23:23Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-Instruct-bnb-4bit --- # Uploaded model - **Developed by:** Anytram - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
habulaj/440089408194
habulaj
2024-06-26T19:26:10Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:26:07Z
Entry not found
TioPanda/pandev-blocks-v3
TioPanda
2024-06-26T19:26:59Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T19:26:33Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** TioPanda - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
habulaj/2719826935
habulaj
2024-06-26T19:28:50Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:28:47Z
Entry not found
k4d3/hotdogwolf
k4d3
2024-06-26T19:42:05Z
0
0
null
[ "art", "not-for-all-audiences", "en", "dataset:k4d3/furry", "license:wtfpl", "region:us" ]
null
2024-06-26T19:29:34Z
--- license: wtfpl datasets: - k4d3/furry language: - en tags: - art - not-for-all-audiences ---
Stephen96/apple-gan-generator
Stephen96
2024-06-27T21:45:28Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:32:28Z
ML4B-Team-7 # 🍎🍏The Applegenerator🍏🍎 Welcome to [The Applegenerator](https://ml4b-team-7-applegenerator.streamlit.app/)! This app allows you to generate images of apples using GAN and view the recently created ones in the history section. Dataset: Mihai Oltean, [Fruits-360 dataset](https://www.kaggle.com/datasets/moltean/fruits), 2017-. --- Thank you for using The Applegenerator! We hope you enjoy it.
amrdiab/Yaseen
amrdiab
2024-06-26T19:32:53Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:32:53Z
Entry not found
Flamenco43/200k-DDP-run5
Flamenco43
2024-06-26T19:34:20Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:34:20Z
Entry not found
arjan-hada/esm2_t33_650M_UR50D-finetuned-Ab14H-v0
arjan-hada
2024-06-26T19:34:22Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:34:22Z
Entry not found
dammyogt/Dammyogt_finetuned_voxpopuli_nl
dammyogt
2024-06-26T19:34:49Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:34:49Z
Entry not found
habulaj/106076115139
habulaj
2024-06-26T19:37:57Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:37:47Z
Entry not found
musicforte/images
musicforte
2024-06-26T19:40:39Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:40:39Z
Entry not found
habulaj/144684121079
habulaj
2024-06-26T19:40:53Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:40:45Z
Entry not found
Tuhaishi/FinTwitBERT-sentiment
Tuhaishi
2024-06-26T19:44:51Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:44:51Z
Entry not found
RicardoMorim/q-FrozenLake-v1-4x4-noSlippery
RicardoMorim
2024-06-26T19:46:33Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-06-26T19:46:31Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="RicardoMorim/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
RicardoMorim/Taxi_Driver_AI
RicardoMorim
2024-06-26T19:50:16Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-06-26T19:49:16Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi_Driver_AI results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="RicardoMorim/Taxi_Driver_AI", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
felipesampaio2010/JamesMarshallOsUnder
felipesampaio2010
2024-06-26T19:59:55Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-06-26T19:57:37Z
--- license: openrail ---
intracta/Meta-Llama-3-8B-Instruct
intracta
2024-06-26T19:57:42Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:57:42Z
Entry not found
Maxi00/test
Maxi00
2024-06-26T20:09:44Z
0
0
null
[ "region:us" ]
null
2024-06-26T19:59:09Z
Entry not found
alex2204/prepaabiertadurango
alex2204
2024-06-26T19:59:12Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-26T19:59:12Z
--- license: apache-2.0 ---
XueyingJia/zerogen
XueyingJia
2024-06-26T19:59:34Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T19:59:29Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** XueyingJia - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kathleenge/qa-model-1
kathleenge
2024-06-26T20:02:22Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T20:02:05Z
--- base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl --- # Uploaded model - **Developed by:** kathleenge - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
leeloli/wendy-wish-you-well
leeloli
2024-06-26T20:06:23Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-06-26T20:04:49Z
--- license: openrail ---
Grayx/john_paul_van_damme_38
Grayx
2024-06-26T20:06:53Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:06:40Z
Entry not found
Grayx/john_paul_van_damme_39
Grayx
2024-06-26T20:07:27Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:07:18Z
Entry not found
Grayx/john_paul_van_damme_40
Grayx
2024-06-26T20:08:37Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:08:20Z
Entry not found
BatoolZ/llama-2-7b-hf-small-shards
BatoolZ
2024-06-26T20:09:56Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:09:56Z
Entry not found
UlrikKoren/PIIMask-NOR
UlrikKoren
2024-06-26T21:05:02Z
0
1
null
[ "tensorboard", "safetensors", "no", "license:gemma", "region:us" ]
null
2024-06-26T20:12:22Z
--- license: gemma language: - 'no' --- # PIIMask-NOR Model The PIIMask-NOR model is a specialized language model fine-tuned for the task of Personal Identifiable Information (PII) redaction in Norwegian, Bokmål. It is based on the "google/gemma-1.1-2b-it" model and trained to identify and redact various types of PII in text while maintaining the grammatical structure of sentences. ## Model Description - **Model Name:** PIIMask-NOR - **Base Model:** [google/gemma-1.1-2b-it](https://huggingface.co/google/gemma-1.1-2b-it) - **Quantization:** 4-bit quantization using NF4 with double quantization and float16 compute dtype. - **Training Steps:** The model checkpoints are available at 1, 2, 3, and 4 epochs. ## Methodology The PIIMask-NOR model was fine-tuned using the ai4privacy/pii-masking-65k dataset, which was machine translated into Norwegian, Bokmål. The training process involved several epochs to improve the model's ability to accurately redact PII from text. The quantization configuration was applied to make the model more efficient for deployment. ## Usage ### Installation To use the PIIMask-NOR model, you need to have the `transformers` and `datasets` libraries installed. You can install them using pip: ```bash pip install transformers datasets ``` ### Code Example Here is a code example to load and use the PIIMask-NOR model for PII redaction: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig import torch # Quantization configuration bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, ) # System instructions for PII redaction system_instructions = """Erstatt følgende typer personopplysninger i teksten nedenfor med '[REDACTED]': [FIRST_NAME_x], [CITY_x], [COUNTRY_x]. Sørg for at hver type informasjon erstattes på en måte som opprettholder den grammatiske strukturen i setningen. Du skal kun returnere den nye teksten med de relevante erstatningene utført, uten den opprinnelige teksten eller noen tilleggsannotasjoner. Input:""" example_prompt = "Jeg heter Clara og bor i Bergen, Norge." # Load model function def load_model(repo, step): model = AutoModelForCausalLM.from_pretrained(repo, device_map="cuda:0", trust_remote_code=True, quantization_config=bnb_config, adapter_kwargs={"subfolder": f"checkpoint-{step}"}, attn_implementation="flash_attention_2") return model # Initialize tokenizer and model device = "cuda" tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it", use_fast=True) # Apply chat template for input chat = [ {"role": "system", "content": system_instructions}, {"role": "user", "content": example_prompt}, ] inputs = tokenizer.apply_chat_template(chat, tokenize=False, return_tensors="pt", padding=True, truncation=False) model = load_model("UlrikKoren/PIIMask-NOR", step=1) outputs = model.generate(input_ids=inputs['input_ids'].to(device), max_new_tokens=2048) decoded_outputs = [tokenizer.decode(output, skip_special_tokens=False) for output in outputs] print(decoded_outputs[0]) ``` ### Checkpoints The model checkpoints for different training epochs can be accessed as follows: - **Epoch 1:** `UlrikKoren/PIIMask-NOR/tree/main/checkpoint-579` - **Epoch 2:** `UlrikKoren/PIIMask-NOR/checkpoint-1159` - **Epoch 3:** `UlrikKoren/PIIMask-NOR/checkpoint-1739` - **Epoch 4:** `UlrikKoren/PIIMask-NOR/checkpoint-2316` ## Compliance with Gemma Terms of Use This model is a derivative of the "google/gemma-1.1-2b-it" model and complies with the Gemma Terms of Use: - **Distribution:** Any distribution of this model or its derivatives must include the use restrictions specified in the Gemma Terms of Use and provide notice to subsequent users. - **Notices:** The model is distributed with the following notice: “Gemma is provided under and subject to the Gemma Terms of Use found at ai.google.dev/gemma/terms”. - **Modifications:** Any modified files carry prominent notices stating the modifications made. - **Prohibited Uses:** The use of this model is subject to the restrictions outlined in the Gemma Prohibited Use Policy. - **Trademarks:** This distribution does not grant any rights to use Google’s trademarks, trade names, or logos. ## License The PIIMask-NOR model is distributed under the same terms as the base model. For more details, please refer to the [Gemma Terms of Use](https://ai.google.dev/gemma/terms).
UlrikKoren/PIIMask-EN
UlrikKoren
2024-06-26T21:06:47Z
0
0
null
[ "safetensors", "en", "license:gemma", "region:us" ]
null
2024-06-26T20:13:10Z
--- license: gemma language: - en --- # PIIMask-EN Model The PIIMask-EN model is a specialized language model fine-tuned for the task of Personal Identifiable Information (PII) redaction. It is based on the "google/gemma-1.1-2b-it" model and trained to identify and redact various types of PII in text while maintaining the grammatical structure of sentences. ## Model Description - **Model Name:** PIIMask-EN - **Base Model:** [google/gemma-1.1-2b-it](https://huggingface.co/google/gemma-1.1-2b-it) - **Fine-tuning Dataset:** [ai4privacy/pii-masking-65k](https://huggingface.co/datasets/ai4privacy/pii-masking-65k) (specifically `english_balanced_10k.jsonl` subset) - **Quantization:** 4-bit quantization using NF4 with double quantization and float16 compute dtype. - **Training Steps:** The model checkpoints are available at 1, 2, 3, and 4 epochs. ## Methodology The PIIMask-EN model was fine-tuned using the ai4privacy/pii-masking-65k dataset, which contains various text entries annotated with different types of PII. The training process involved several epochs to improve the model's ability to accurately redact PII from text. The quantization configuration was applied to make the model more efficient for deployment. ## Usage ### Installation To use the PIIMask-EN model, you need to have the `transformers` and `datasets` libraries installed. You can install them using pip: ```bash pip install transformers datasets ``` ### Code Example Here is a code example to load and use the PIIMask-EN model for PII redaction: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig import torch # Quantization configuration bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, ) # System instructions for PII redaction system_instructions = """Replace the following types of personal information in the text below with '[REDACTED]': [FIRST_NAME_x], [CITY_x], [STATE_x]. Ensure that each type of information is replaced in a way that maintains the grammatical structure of the sentence. You should only return the new text with the relevant replacements made, without the original text or any additional annotations. Input:""" example_prompt = "My name is Clara and I live in Berkeley, California." # Load model function def load_model(repo, step): model = AutoModelForCausalLM.from_pretrained(repo, device_map="cuda:0", trust_remote_code=True, quantization_config=bnb_config, adapter_kwargs={"subfolder": f"checkpoint-{step}"}, attn_implementation="flash_attention_2") return model # Initialize tokenizer and model device = "cuda" tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it", use_fast=True) # Apply chat template for input chat = [ {"role": "system", "content": system_instructions}, {"role": "user", "content": example_prompt}, ] inputs = tokenizer.apply_chat_template(chat, tokenize=False, return_tensors="pt", padding=True, truncation=False) model = load_model("UlrikKoren/PIIMask-EN", step=1) outputs = model.generate(input_ids=inputs['input_ids'].to(device), max_new_tokens=2048) decoded_outputs = [tokenizer.decode(output, skip_special_tokens=False) for output in outputs] print(decoded_outputs[0]) ``` ### Checkpoints The model checkpoints for different training epochs can be accessed as follows: - **Epoch 1:** `UlrikKoren/PIIMask-EN/tree/main/checkpoint-579` - **Epoch 2:** `UlrikKoren/PIIMask-EN/checkpoint-1159` - **Epoch 3:** `UlrikKoren/PIIMask-EN/checkpoint-1739` - **Epoch 4:** `UlrikKoren/PIIMask-EN/checkpoint-2316` ## Compliance with Gemma Terms of Use This model is a derivative of the "google/gemma-1.1-2b-it" model and complies with the Gemma Terms of Use: - **Distribution:** Any distribution of this model or its derivatives must include the use restrictions specified in the Gemma Terms of Use and provide notice to subsequent users. - **Notices:** The model is distributed with the following notice: “Gemma is provided under and subject to the Gemma Terms of Use found at ai.google.dev/gemma/terms”. - **Modifications:** Any modified files carry prominent notices stating the modifications made. - **Prohibited Uses:** The use of this model is subject to the restrictions outlined in the Gemma Prohibited Use Policy. - **Trademarks:** This distribution does not grant any rights to use Google’s trademarks, trade names, or logos. ## License The PIIMask-EN model is distributed under the same terms as the base model. For more details, please refer to the [Gemma Terms of Use](https://ai.google.dev/gemma/terms).
storm23/segformer-b0-finetuned-segments-sidewalk-2
storm23
2024-06-26T20:15:31Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:15:31Z
Entry not found
XueyingJia/zerogen_mnli
XueyingJia
2024-06-26T20:17:10Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T20:17:04Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl base_model: unsloth/llama-3-8b-bnb-4bit --- # Uploaded model - **Developed by:** XueyingJia - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
souleater-04/q-FrozenLake-v1-4x4-noSlippery
souleater-04
2024-06-26T20:19:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-06-26T20:19:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="souleater-04/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
JEFFERSONMUSIC/MJHISTORYERADE
JEFFERSONMUSIC
2024-06-26T20:23:55Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-26T20:22:38Z
--- license: apache-2.0 ---
souleater-04/q-learning-taxi
souleater-04
2024-06-26T20:24:12Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-06-26T20:24:09Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-learning-taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="souleater-04/q-learning-taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Muhammed164/checkpoints
Muhammed164
2024-06-26T20:25:00Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:25:00Z
Entry not found
yj373/pokemon
yj373
2024-06-26T20:25:05Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:25:05Z
Entry not found
habulaj/3484931733
habulaj
2024-06-26T20:25:30Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:25:24Z
Entry not found
TitanRTX/Anti_Recaptcha-MBB
TitanRTX
2024-06-26T23:20:18Z
0
0
null
[ "code", "text-classification", "en", "dataset:TitanRTX/mbbank_recaptcha", "license:mit", "region:us" ]
text-classification
2024-06-26T20:25:56Z
--- license: mit datasets: - TitanRTX/mbbank_recaptcha language: - en metrics: - accuracy pipeline_tag: text-classification tags: - code ---
malicy256256/voices3
malicy256256
2024-06-26T20:51:11Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:26:42Z
Entry not found
habulaj/1601423894
habulaj
2024-06-26T20:33:39Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:33:36Z
Entry not found
ErickGonCruz/Testing
ErickGonCruz
2024-06-26T20:35:21Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:35:21Z
Entry not found
Xelanizul/Soccer_player_01
Xelanizul
2024-06-26T20:35:31Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:35:30Z
Entry not found
Zuncoe/emo
Zuncoe
2024-06-26T20:38:49Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:38:49Z
Entry not found
Bruh110/Ken_AND_FriendsAI
Bruh110
2024-06-26T20:44:08Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-06-26T20:43:04Z
--- license: openrail ---
habulaj/80299169
habulaj
2024-06-26T20:44:46Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:44:42Z
Entry not found
alex2020xx/dildo
alex2020xx
2024-06-26T20:45:59Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:45:34Z
Entry not found
habulaj/873033579
habulaj
2024-06-26T20:47:04Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:47:00Z
Entry not found
eagle0504/sample_ysa_data_v1
eagle0504
2024-06-26T20:49:00Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:49:00Z
Entry not found
habulaj/42903447752
habulaj
2024-06-26T20:56:07Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:56:03Z
Entry not found
habulaj/5659243193
habulaj
2024-06-26T20:56:37Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:56:35Z
Entry not found
samiasghar/text-summarization
samiasghar
2024-06-26T20:59:02Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:59:02Z
Entry not found
habulaj/229213307897
habulaj
2024-06-26T20:59:21Z
0
0
null
[ "region:us" ]
null
2024-06-26T20:59:20Z
Entry not found
hamzaish/peft-model-vllm
hamzaish
2024-06-26T21:01:50Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:01:50Z
Entry not found
wassemgtk/mergekit-passthrough-pbpdltu
wassemgtk
2024-06-26T21:02:25Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:02:25Z
Entry not found
pranay-ar/gmflow
pranay-ar
2024-06-26T21:03:47Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-06-26T21:03:19Z
--- license: mit ---
haytoox/testemunhaa
haytoox
2024-06-26T21:07:31Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:07:21Z
Entry not found
chreh/active-passive-sft
chreh
2024-06-26T21:16:34Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T21:08:23Z
--- base_model: meta-llama/Meta-Llama-3-8B-Instruct language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** chreh - **License:** apache-2.0 - **Finetuned from model :** meta-llama/Meta-Llama-3-8B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
valerielucro/mistral_gsm8k_beta_0.4_epoch1
valerielucro
2024-06-26T21:09:02Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-26T21:08:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]