modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]
downloads
int64
0
738M
likes
int64
0
11k
library_name
stringclasses
245 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
48 values
createdAt
timestamp[us, tz=UTC]
card
stringlengths
1
901k
mclemcrew/mert-330-audio-effect-classification
mclemcrew
2024-06-26T21:39:31Z
0
0
null
[ "safetensors", "region:us" ]
null
2024-06-26T21:14:26Z
Entry not found
lit9003code/melotts235
lit9003code
2024-06-26T21:16:10Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:15:53Z
Entry not found
habulaj/445631414155
habulaj
2024-06-26T21:16:59Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:16:21Z
Entry not found
lit9003code/melotts236
lit9003code
2024-06-26T21:17:42Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:17:26Z
Entry not found
lit9003code/melotts237
lit9003code
2024-06-26T21:20:05Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:19:01Z
Entry not found
lit9003code/melotts238
lit9003code
2024-06-26T21:21:34Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:21:14Z
Entry not found
lit9003code/melotts239
lit9003code
2024-06-26T21:23:07Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:22:49Z
Entry not found
todor02/llamatest
todor02
2024-06-26T21:23:28Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:23:28Z
Entry not found
shayan000/remla24-team10-phishing-detector
shayan000
2024-06-26T21:24:08Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-06-26T21:24:08Z
--- license: mit ---
lit9003code/melotts240
lit9003code
2024-06-26T21:24:30Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:24:14Z
Entry not found
habulaj/4238735032
habulaj
2024-06-26T21:24:57Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:24:45Z
Entry not found
lit9003code/melotts241
lit9003code
2024-06-26T21:25:53Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:25:37Z
Entry not found
habulaj/12329798054
habulaj
2024-06-26T21:26:27Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:26:20Z
Entry not found
jayoohwang/alpham-ckpt
jayoohwang
2024-06-26T21:30:28Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-06-26T21:26:57Z
Entry not found
lit9003code/melotts242
lit9003code
2024-06-26T21:27:20Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:27:00Z
Entry not found
ej-codes/Orpo-Llama-8B-Future2Present
ej-codes
2024-06-26T21:27:15Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T21:27:05Z
--- base_model: unsloth/llama-3-8b-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** ej-codes - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
habulaj/1660216368
habulaj
2024-06-26T21:27:57Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:27:55Z
Entry not found
lit9003code/melotts243
lit9003code
2024-06-26T21:29:45Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:28:37Z
Entry not found
habulaj/48445758
habulaj
2024-06-26T21:29:52Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:29:36Z
Entry not found
lit9003code/melotts244
lit9003code
2024-06-26T21:32:19Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:31:05Z
Entry not found
alex2020xx/selfie
alex2020xx
2024-06-26T21:31:37Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:31:08Z
Entry not found
habulaj/1998219691
habulaj
2024-06-26T21:33:36Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:33:21Z
Entry not found
lit9003code/melotts245
lit9003code
2024-06-26T21:33:41Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:33:25Z
Entry not found
habulaj/11842792996
habulaj
2024-06-26T21:34:16Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:34:06Z
Entry not found
aben118/tiny-common-voice-finetuning-server-10k-2-enc-hub
aben118
2024-06-26T21:34:15Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-26T21:34:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Litzy619/MIS0626T2F200200
Litzy619
2024-06-27T00:12:45Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:34:59Z
Entry not found
lit9003code/melotts246
lit9003code
2024-06-26T21:36:09Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:35:01Z
Entry not found
serifagir/cup-or-mug
serifagir
2024-06-26T21:36:19Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-26T21:36:18Z
--- license: apache-2.0 ---
lit9003code/melotts247
lit9003code
2024-06-26T21:38:29Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:37:18Z
Entry not found
abhikrnigam/LlamaFinetuned_alpaca
abhikrnigam
2024-06-26T21:40:44Z
0
0
null
[ "safetensors", "en", "dataset:yahma/alpaca-cleaned", "license:apache-2.0", "region:us" ]
null
2024-06-26T21:37:55Z
--- license: apache-2.0 datasets: - yahma/alpaca-cleaned language: - en ---
lit9003code/melotts248
lit9003code
2024-06-26T21:40:12Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:39:56Z
Entry not found
dixitrivedi/cft_mistral_v3__hindi
dixitrivedi
2024-06-26T21:41:22Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/mistral-7b-v0.3-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T21:40:14Z
--- base_model: unsloth/mistral-7b-v0.3-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl --- # Uploaded model - **Developed by:** dixitrivedi - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
TioPanda/pandev-complete-instruction
TioPanda
2024-06-26T21:41:15Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T21:40:49Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** TioPanda - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
spjabech/Twitch_Highlighter_audio_llama
spjabech
2024-06-26T21:41:28Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:41:27Z
Entry not found
Azaz666/gpt2-finetuned-CEP
Azaz666
2024-06-26T21:41:52Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:41:52Z
Entry not found
spjabech/Twitch_Highlighter_audio_ohnetimestamps_phi
spjabech
2024-06-26T21:42:02Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:42:02Z
Entry not found
pranay-ar/unimatch
pranay-ar
2024-06-26T21:46:02Z
0
0
null
[ "license:mit", "region:us" ]
null
2024-06-26T21:42:57Z
--- license: mit ---
lmorlok/llmSeqDes
lmorlok
2024-06-26T21:44:27Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:44:27Z
Entry not found
spjabech/Twitch_Highlighter_audio_ohnetimestamps_llama
spjabech
2024-06-26T21:45:45Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:45:45Z
Entry not found
Grayx/john_paul_van_damme_41
Grayx
2024-06-26T21:51:14Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:50:59Z
Entry not found
Litzy619/MIS0626T1F200200
Litzy619
2024-06-27T01:04:22Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:51:07Z
Entry not found
naimul011/Ag-Senti-llama3
naimul011
2024-06-26T21:51:54Z
0
0
null
[ "region:us" ]
null
2024-06-26T21:51:54Z
Entry not found
spjabech/Twitch_Highlighter_chat_ohnetimestamps_phi
spjabech
2024-06-26T22:00:08Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:00:08Z
Entry not found
spjabech/Twitch_Highlighter_chat_ohnetimestamps_llama
spjabech
2024-06-26T22:00:18Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:00:18Z
Entry not found
qsdreams/kandi
qsdreams
2024-06-26T22:01:45Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:01:45Z
Entry not found
spjabech/Twitch_Highlighter_chat_phi
spjabech
2024-06-26T22:02:20Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:02:20Z
Entry not found
habulaj/204020177213
habulaj
2024-06-26T22:02:25Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:02:21Z
Entry not found
spjabech/Twitch_Highlighter_chat_llama
spjabech
2024-06-26T22:02:32Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:02:32Z
Entry not found
spjabech/Twitch_Highlighter_combined_ohnetimestamps_phi
spjabech
2024-06-26T22:02:48Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:02:48Z
Entry not found
spjabech/Twitch_Highlighter_combined_phi
spjabech
2024-06-26T22:03:34Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:03:34Z
Entry not found
spjabech/Twitch_Highlighter_combined_llama
spjabech
2024-06-26T22:03:42Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:03:42Z
Entry not found
TioPanda/pandev-complete-gemma
TioPanda
2024-06-26T22:05:33Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:unsloth/gemma-7b-it-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T22:05:13Z
--- base_model: unsloth/gemma-7b-it-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma - trl --- # Uploaded model - **Developed by:** TioPanda - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-7b-it-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Ahmedmagdy9581/Ahmed
Ahmedmagdy9581
2024-06-26T22:07:32Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-06-26T22:07:32Z
--- license: apache-2.0 ---
habulaj/5265271874
habulaj
2024-06-26T22:13:16Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:13:10Z
Entry not found
bug7/base_1139
bug7
2024-06-26T22:13:31Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-26T22:13:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
habulaj/7875472818
habulaj
2024-06-26T22:14:25Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:14:19Z
Entry not found
LinxuanPastel/tuffy
LinxuanPastel
2024-06-26T22:51:47Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:17:26Z
Entry not found
wassemgtk/mergekit-passthrough-oomzneg
wassemgtk
2024-06-26T22:18:31Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:18:31Z
Entry not found
saifhmb/fraud-detection-model
saifhmb
2024-06-29T16:19:05Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "finance", "region:us" ]
tabular-classification
2024-06-26T22:20:17Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification - finance model_format: pickle model_file: skops-ise057qg.pkl widget: - structuredData: Bene_Country: - COMOROS - CANADA - MOROCCO Sender_Country: - SRI-LANKA - USA - USA Transaction_Type: - MOVE-FUNDS - PAY-CHECK - MAKE-PAYMENT USD_amount: - 598.31 - 398.72 - 87.03 --- # Model description This is a Gaussian Naive Bayes model trained on a synthetic dataset, containining a large variety of transaction types representing normal activities as well as abnormal/fraudulent activities generated by J.P. Morgan AI Research. The model predicts whether a transaction is normal or fraudulent. ## Intended uses & limitations For educational purposes ## Training Procedure The data preprocessing steps applied include the following: - Dropping high cardinality features. This includes Transaction ID, Sender ID, Sender Account, Beneficiary ID, Beneficiary Account, Sender Sector - Dropping no variance features. This includes Sender LOB - Dropping Time and date feature since the model is not time-series based - Transforming and Encoding categorical features namely: Sender Country, Beneficiary Country, Transaction Type, and the target variable, Label - Applying feature scaling on all features - Splitting the dataset into training/test set using 85/15 split ratio - Handling imbalanced dataset using imblearn framework and applying RandomUnderSampler method to eliminate noise which led to a 2.5% improvement in accuracy ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6662300a0ad8c45a1ce59190/BEi0CfOfJ2ytxD5VoN4IM.png) ### Hyperparameters <details> <summary> Click to expand </summary> | Hyperparameter | Value | |----------------------------------------------|---------------------------------------------------------------------------| | memory | | | steps | [('preprocessorAll', ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore',<br /> sparse_output=False))]),<br /> ['Sender_Country', 'Bene_Country',<br /> 'Transaction_Type']),<br /> ('num',<br /> Pipeline(steps=[('scale', StandardScaler())]),<br /> Index(['USD_amount'], dtype='object'))])), ('classifier', GaussianNB())] | | verbose | False | | preprocessorAll | ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore',<br /> sparse_output=False))]),<br /> ['Sender_Country', 'Bene_Country',<br /> 'Transaction_Type']),<br /> ('num',<br /> Pipeline(steps=[('scale', StandardScaler())]),<br /> Index(['USD_amount'], dtype='object'))]) | | classifier | GaussianNB() | | preprocessorAll__n_jobs | | | preprocessorAll__remainder | passthrough | | preprocessorAll__sparse_threshold | 0.3 | | preprocessorAll__transformer_weights | | | preprocessorAll__transformers | [('cat', Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore', sparse_output=False))]), ['Sender_Country', 'Bene_Country', 'Transaction_Type']), ('num', Pipeline(steps=[('scale', StandardScaler())]), Index(['USD_amount'], dtype='object'))] | | preprocessorAll__verbose | False | | preprocessorAll__verbose_feature_names_out | True | | preprocessorAll__cat | Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore', sparse_output=False))]) | | preprocessorAll__num | Pipeline(steps=[('scale', StandardScaler())]) | | preprocessorAll__cat__memory | | | preprocessorAll__cat__steps | [('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False))] | | preprocessorAll__cat__verbose | False | | preprocessorAll__cat__onehot | OneHotEncoder(handle_unknown='ignore', sparse_output=False) | | preprocessorAll__cat__onehot__categories | auto | | preprocessorAll__cat__onehot__drop | | | preprocessorAll__cat__onehot__dtype | <class 'numpy.float64'> | | preprocessorAll__cat__onehot__handle_unknown | ignore | | preprocessorAll__cat__onehot__max_categories | | | preprocessorAll__cat__onehot__min_frequency | | | preprocessorAll__cat__onehot__sparse | deprecated | | preprocessorAll__cat__onehot__sparse_output | False | | preprocessorAll__num__memory | | | preprocessorAll__num__steps | [('scale', StandardScaler())] | | preprocessorAll__num__verbose | False | | preprocessorAll__num__scale | StandardScaler() | | preprocessorAll__num__scale__copy | True | | preprocessorAll__num__scale__with_mean | True | | preprocessorAll__num__scale__with_std | True | | classifier__priors | | | classifier__var_smoothing | 1e-09 | </details> ### Model Plot <style>#sk-container-id-6 {color: black;background-color: white;}#sk-container-id-6 pre{padding: 0;}#sk-container-id-6 div.sk-toggleable {background-color: white;}#sk-container-id-6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-6 div.sk-item {position: relative;z-index: 1;}#sk-container-id-6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-6 div.sk-item::before, #sk-container-id-6 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-6 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-6 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-6 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-6 div.sk-label-container {text-align: center;}#sk-container-id-6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-6" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessorAll&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse_output=False))]),[&#x27;Sender_Country&#x27;,&#x27;Bene_Country&#x27;,&#x27;Transaction_Type&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, GaussianNB())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-46" type="checkbox" ><label for="sk-estimator-id-46" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;preprocessorAll&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse_output=False))]),[&#x27;Sender_Country&#x27;,&#x27;Bene_Country&#x27;,&#x27;Transaction_Type&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, GaussianNB())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-47" type="checkbox" ><label for="sk-estimator-id-47" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessorAll: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;,sparse_output=False))]),[&#x27;Sender_Country&#x27;, &#x27;Bene_Country&#x27;,&#x27;Transaction_Type&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;, StandardScaler())]),Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;))])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-48" type="checkbox" ><label for="sk-estimator-id-48" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>[&#x27;Sender_Country&#x27;, &#x27;Bene_Country&#x27;, &#x27;Transaction_Type&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-49" type="checkbox" ><label for="sk-estimator-id-49" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;, sparse_output=False)</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-50" type="checkbox" ><label for="sk-estimator-id-50" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>Index([&#x27;USD_amount&#x27;], dtype=&#x27;object&#x27;)</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-51" type="checkbox" ><label for="sk-estimator-id-51" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-52" type="checkbox" ><label for="sk-estimator-id-52" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-53" type="checkbox" ><label for="sk-estimator-id-53" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-54" type="checkbox" ><label for="sk-estimator-id-54" class="sk-toggleable__label sk-toggleable__label-arrow">GaussianNB</label><div class="sk-toggleable__content"><pre>GaussianNB()</pre></div></div></div></div></div></div></div> ## Evaluation Results | Metric | Value | |----------|----------| | accuracy | 0.794582 | ### Confusion Matrix ![Confusion Matrix](confusion_matrix.png) # Model Card Authors This model card is written by following authors: Seifullah Bello
jacobcd52/physics-papers
jacobcd52
2024-06-26T22:22:03Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:22:03Z
Entry not found
wassemgtk/mergekit-passthrough-sfqpbok
wassemgtk
2024-06-26T22:27:27Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:27:27Z
Entry not found
rg1683/hindi_wordpiece_tokenizer
rg1683
2024-06-27T17:37:09Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-26T22:27:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
habulaj/9381170820
habulaj
2024-06-26T22:31:57Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:31:55Z
Entry not found
martinkozle/MKLLM-7B-Instruct-exl2
martinkozle
2024-06-27T00:57:40Z
0
0
null
[ "axolotl", "exl2", "mk", "en", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2024-06-26T22:33:13Z
--- license: cc-by-nc-sa-4.0 language: - mk - en tags: - axolotl - exl2 --- # MKLLM-7B-Instruct-exl2 EXL2 quants of [trajkovnikola/MKLLM-7B-Instruct](https://huggingface.co/trajkovnikola/MKLLM-7B-Instruct) <b>The "main" branch only contains the measurement.json (which can be used for further conversions), download one of the other branches for the model:</b> [6.5 bits per weight with 6 lm_head bits](https://huggingface.co/martinkozle/MKLLM-7B-Instruct-exl2/tree/6.5bpw-h6) [5.0 bits per weight with 6 lm_head bits](https://huggingface.co/martinkozle/MKLLM-7B-Instruct-exl2/tree/5.0bpw-h6) [4.25 bits per weight with 6 lm_head bits](https://huggingface.co/martinkozle/MKLLM-7B-Instruct-exl2/tree/4.25bpw-h6) [3.5 bits per weight with 6 lm_head bits](https://huggingface.co/martinkozle/MKLLM-7B-Instruct-exl2/tree/3.5bpw-h6) [measurement.json](https://huggingface.co/martinkozle/MKLLM-7B-Instruct-exl2/blob/main/measurement.json) ## Download instructions With git: ```shell git clone --single-branch --branch 5.0bpw-h6 https://huggingface.co/martinkozle/MKLLM-7B-Instruct-exl2 MKLLM-7B-Instruct-exl2-5.0bpw-h6 ``` With huggingface hub: To download a specific branch, use the `--revision` parameter. ```shell huggingface-cli download martinkozle/MKLLM-7B-Instruct-exl2 --revision 5.0bpw-h6 --local-dir MKLLM-7B-Instruct-exl2-5.0bpw-h6 --local-dir-use-symlinks False ```
arve3210/lora_model
arve3210
2024-06-26T22:34:41Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T22:34:23Z
--- base_model: unsloth/llama-3-8b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** arve3210 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
habulaj/4496038468
habulaj
2024-06-26T22:34:44Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:34:38Z
Entry not found
habulaj/441632409862
habulaj
2024-06-26T22:36:20Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:36:14Z
Entry not found
habulaj/212532189513
habulaj
2024-06-26T22:38:10Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:38:02Z
Entry not found
wassemgtk/mergekit-passthrough-thwapmv
wassemgtk
2024-06-26T22:41:49Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:41:49Z
Entry not found
bug7/base_120
bug7
2024-06-26T22:42:26Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-26T22:42:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
habulaj/207827180626
habulaj
2024-06-26T22:45:12Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:45:07Z
Entry not found
habulaj/10806682948
habulaj
2024-06-26T22:45:12Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:45:09Z
Entry not found
Ramikan-BR/TiamaPY-LORA-v37
Ramikan-BR
2024-06-26T22:47:21Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/tinyllama-chat-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-26T22:46:41Z
--- base_model: unsloth/tinyllama-chat-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl --- # Uploaded model - **Developed by:** Ramikan-BR - **License:** apache-2.0 - **Finetuned from model :** unsloth/tinyllama-chat-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
alexzarate/gerard_pique
alexzarate
2024-06-26T23:16:33Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:50:03Z
Entry not found
FevenTad/v1_0.65_1
FevenTad
2024-06-26T22:54:12Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-06-26T22:52:36Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
syamak6bits/esm2_t12_35M_UR50D-finetuned-localization
syamak6bits
2024-07-01T11:10:21Z
0
0
transformers
[ "transformers", "safetensors", "esm", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-06-26T22:53:27Z
Entry not found
karim8/math
karim8
2024-06-26T22:57:25Z
0
0
null
[ "region:us" ]
null
2024-06-26T22:57:25Z
Entry not found
vinisebk/jo_sclub
vinisebk
2024-06-26T23:02:08Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-06-26T23:00:19Z
--- license: openrail ---
welcometoea/r1l3ystar
welcometoea
2024-06-26T23:14:26Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:00:48Z
Entry not found
habulaj/381076346766
habulaj
2024-06-26T23:01:10Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:01:08Z
Entry not found
Jahzz/Image_Segmentation_v1
Jahzz
2024-06-26T23:07:54Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:06:33Z
Entry not found
habulaj/270688240990
habulaj
2024-06-26T23:06:54Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:06:46Z
Entry not found
lucassissy12/your-model-name
lucassissy12
2024-06-26T23:10:54Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:10:06Z
Entry not found
lucassissy12/Aishah_Sofey
lucassissy12
2024-06-26T23:15:31Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:15:31Z
Entry not found
habulaj/28600427253
habulaj
2024-06-26T23:18:43Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:18:31Z
Entry not found
habulaj/7693772827
habulaj
2024-06-26T23:19:04Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:18:57Z
Entry not found
kaengpil/nakyoung
kaengpil
2024-06-26T23:20:06Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-06-26T23:19:49Z
--- license: openrail ---
habulaj/7899757293
habulaj
2024-06-26T23:22:08Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:22:06Z
Entry not found
SilvioLima/absa_domain_restaurant
SilvioLima
2024-06-29T00:53:33Z
0
0
null
[ "safetensors", "region:us" ]
null
2024-06-26T23:22:57Z
### Domain Laptop 81.612245 Restaurant 78.349398 book 61.833333 beauty 55.900000 electronics 52.562500 fashion 51.928571 home 50.923077 pet 46.000000 toy 39.714286 grocery 35.000000 ### F1-score% mean = 73.2473 ![absa_domain_restaurant.png](https://cdn-uploads.huggingface.co/production/uploads/659820c0ada2ade50bc44f71/6qge_ze07F8n8qclROyuB.png)
Rodolfo074/brad_simpson
Rodolfo074
2024-06-26T23:24:29Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:24:13Z
Entry not found
habulaj/9911674609
habulaj
2024-06-26T23:25:59Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:25:56Z
Entry not found
ChenmieNLP/zephyr-7b-dpo-full
ChenmieNLP
2024-06-26T23:26:00Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:25:59Z
Entry not found
ErikGG64/Kurt_NEVERMIND_era_400E
ErikGG64
2024-06-26T23:34:33Z
0
0
null
[ "license:openrail", "region:us" ]
null
2024-06-26T23:27:17Z
--- license: openrail ---
habulaj/429926425800
habulaj
2024-06-26T23:28:10Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:27:39Z
Entry not found
habulaj/129031103898
habulaj
2024-06-26T23:31:01Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:30:53Z
Entry not found
habulaj/448703417360
habulaj
2024-06-26T23:33:23Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:33:16Z
Entry not found
henilp105/InjecAgent-llama-7b-optim-all-15
henilp105
2024-06-27T04:39:25Z
0
0
null
[ "safetensors", "region:us" ]
null
2024-06-26T23:37:29Z
Entry not found
habulaj/279026248536
habulaj
2024-06-26T23:39:08Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:38:56Z
Entry not found
habulaj/282687251718
habulaj
2024-06-26T23:51:43Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:51:33Z
Entry not found
jykim310/llava-1.5-7b-clip-base-q4f16_1-MLC
jykim310
2024-06-26T23:55:05Z
0
0
null
[ "region:us" ]
null
2024-06-26T23:52:56Z
Entry not found