Clémentine
commited on
Commit
·
bc8ef8e
1
Parent(s):
d986a3a
init
Browse files- case_hold/test.jsonl +0 -0
- case_hold/train.jsonl +0 -0
- case_hold/validation.jsonl +0 -0
- ecthr_a/test.jsonl +0 -0
- ecthr_a/train.jsonl +0 -0
- ecthr_a/validation.jsonl +0 -0
- ecthr_b/test.jsonl +0 -0
- ecthr_b/train.jsonl +0 -0
- ecthr_b/validation.jsonl +0 -0
- eurlex/test.jsonl +0 -0
- eurlex/train.jsonl +0 -0
- eurlex/validation.jsonl +0 -0
- ledgar/test.jsonl +0 -0
- ledgar/train.jsonl +0 -0
- ledgar/validation.jsonl +0 -0
- lexglue.py +572 -0
- scotus/test.jsonl +0 -0
- scotus/train.jsonl +0 -0
- scotus/validation.jsonl +0 -0
- unfair_tos/test.jsonl +0 -0
- unfair_tos/train.jsonl +0 -0
- unfair_tos/validation.jsonl +0 -0
case_hold/test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
case_hold/train.jsonl
ADDED
Binary file (78.3 MB). View file
|
|
case_hold/validation.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ecthr_a/test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ecthr_a/train.jsonl
ADDED
Binary file (91.3 MB). View file
|
|
ecthr_a/validation.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ecthr_b/test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ecthr_b/train.jsonl
ADDED
Binary file (91.3 MB). View file
|
|
ecthr_b/validation.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eurlex/test.jsonl
ADDED
Binary file (61.6 MB). View file
|
|
eurlex/train.jsonl
ADDED
Binary file (408 MB). View file
|
|
eurlex/validation.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ledgar/test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ledgar/train.jsonl
ADDED
Binary file (75.1 MB). View file
|
|
ledgar/validation.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
lexglue.py
ADDED
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""LexGLUE: A Benchmark Dataset for Legal Language Understanding in English."""
|
16 |
+
|
17 |
+
import csv
|
18 |
+
import json
|
19 |
+
import textwrap
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
import os
|
23 |
+
|
24 |
+
MAIN_CITATION = """\
|
25 |
+
@article{chalkidis-etal-2021-lexglue,
|
26 |
+
title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},
|
27 |
+
author={Chalkidis, Ilias and
|
28 |
+
Jana, Abhik and
|
29 |
+
Hartung, Dirk and
|
30 |
+
Bommarito, Michael and
|
31 |
+
Androutsopoulos, Ion and
|
32 |
+
Katz, Daniel Martin and
|
33 |
+
Aletras, Nikolaos},
|
34 |
+
year={2021},
|
35 |
+
eprint={2110.00976},
|
36 |
+
archivePrefix={arXiv},
|
37 |
+
primaryClass={cs.CL},
|
38 |
+
note = {arXiv: 2110.00976},
|
39 |
+
}"""
|
40 |
+
|
41 |
+
_DESCRIPTION = """\
|
42 |
+
Legal General Language Understanding Evaluation (LexGLUE) benchmark is
|
43 |
+
a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks
|
44 |
+
"""
|
45 |
+
|
46 |
+
ECTHR_ARTICLES = ["2", "3", "5", "6", "8", "9", "10", "11", "14", "P1-1"]
|
47 |
+
|
48 |
+
EUROVOC_CONCEPTS = [
|
49 |
+
"100163",
|
50 |
+
"100168",
|
51 |
+
"100169",
|
52 |
+
"100170",
|
53 |
+
"100171",
|
54 |
+
"100172",
|
55 |
+
"100173",
|
56 |
+
"100174",
|
57 |
+
"100175",
|
58 |
+
"100176",
|
59 |
+
"100177",
|
60 |
+
"100179",
|
61 |
+
"100180",
|
62 |
+
"100183",
|
63 |
+
"100184",
|
64 |
+
"100185",
|
65 |
+
"100186",
|
66 |
+
"100187",
|
67 |
+
"100189",
|
68 |
+
"100190",
|
69 |
+
"100191",
|
70 |
+
"100192",
|
71 |
+
"100193",
|
72 |
+
"100194",
|
73 |
+
"100195",
|
74 |
+
"100196",
|
75 |
+
"100197",
|
76 |
+
"100198",
|
77 |
+
"100199",
|
78 |
+
"100200",
|
79 |
+
"100201",
|
80 |
+
"100202",
|
81 |
+
"100204",
|
82 |
+
"100205",
|
83 |
+
"100206",
|
84 |
+
"100207",
|
85 |
+
"100212",
|
86 |
+
"100214",
|
87 |
+
"100215",
|
88 |
+
"100220",
|
89 |
+
"100221",
|
90 |
+
"100222",
|
91 |
+
"100223",
|
92 |
+
"100224",
|
93 |
+
"100226",
|
94 |
+
"100227",
|
95 |
+
"100229",
|
96 |
+
"100230",
|
97 |
+
"100231",
|
98 |
+
"100232",
|
99 |
+
"100233",
|
100 |
+
"100234",
|
101 |
+
"100235",
|
102 |
+
"100237",
|
103 |
+
"100238",
|
104 |
+
"100239",
|
105 |
+
"100240",
|
106 |
+
"100241",
|
107 |
+
"100242",
|
108 |
+
"100243",
|
109 |
+
"100244",
|
110 |
+
"100245",
|
111 |
+
"100246",
|
112 |
+
"100247",
|
113 |
+
"100248",
|
114 |
+
"100249",
|
115 |
+
"100250",
|
116 |
+
"100252",
|
117 |
+
"100253",
|
118 |
+
"100254",
|
119 |
+
"100255",
|
120 |
+
"100256",
|
121 |
+
"100257",
|
122 |
+
"100258",
|
123 |
+
"100259",
|
124 |
+
"100260",
|
125 |
+
"100261",
|
126 |
+
"100262",
|
127 |
+
"100263",
|
128 |
+
"100264",
|
129 |
+
"100265",
|
130 |
+
"100266",
|
131 |
+
"100268",
|
132 |
+
"100269",
|
133 |
+
"100270",
|
134 |
+
"100271",
|
135 |
+
"100272",
|
136 |
+
"100273",
|
137 |
+
"100274",
|
138 |
+
"100275",
|
139 |
+
"100276",
|
140 |
+
"100277",
|
141 |
+
"100278",
|
142 |
+
"100279",
|
143 |
+
"100280",
|
144 |
+
"100281",
|
145 |
+
"100282",
|
146 |
+
"100283",
|
147 |
+
"100284",
|
148 |
+
"100285",
|
149 |
+
]
|
150 |
+
|
151 |
+
LEDGAR_CATEGORIES = [
|
152 |
+
"Adjustments",
|
153 |
+
"Agreements",
|
154 |
+
"Amendments",
|
155 |
+
"Anti-Corruption Laws",
|
156 |
+
"Applicable Laws",
|
157 |
+
"Approvals",
|
158 |
+
"Arbitration",
|
159 |
+
"Assignments",
|
160 |
+
"Assigns",
|
161 |
+
"Authority",
|
162 |
+
"Authorizations",
|
163 |
+
"Base Salary",
|
164 |
+
"Benefits",
|
165 |
+
"Binding Effects",
|
166 |
+
"Books",
|
167 |
+
"Brokers",
|
168 |
+
"Capitalization",
|
169 |
+
"Change In Control",
|
170 |
+
"Closings",
|
171 |
+
"Compliance With Laws",
|
172 |
+
"Confidentiality",
|
173 |
+
"Consent To Jurisdiction",
|
174 |
+
"Consents",
|
175 |
+
"Construction",
|
176 |
+
"Cooperation",
|
177 |
+
"Costs",
|
178 |
+
"Counterparts",
|
179 |
+
"Death",
|
180 |
+
"Defined Terms",
|
181 |
+
"Definitions",
|
182 |
+
"Disability",
|
183 |
+
"Disclosures",
|
184 |
+
"Duties",
|
185 |
+
"Effective Dates",
|
186 |
+
"Effectiveness",
|
187 |
+
"Employment",
|
188 |
+
"Enforceability",
|
189 |
+
"Enforcements",
|
190 |
+
"Entire Agreements",
|
191 |
+
"Erisa",
|
192 |
+
"Existence",
|
193 |
+
"Expenses",
|
194 |
+
"Fees",
|
195 |
+
"Financial Statements",
|
196 |
+
"Forfeitures",
|
197 |
+
"Further Assurances",
|
198 |
+
"General",
|
199 |
+
"Governing Laws",
|
200 |
+
"Headings",
|
201 |
+
"Indemnifications",
|
202 |
+
"Indemnity",
|
203 |
+
"Insurances",
|
204 |
+
"Integration",
|
205 |
+
"Intellectual Property",
|
206 |
+
"Interests",
|
207 |
+
"Interpretations",
|
208 |
+
"Jurisdictions",
|
209 |
+
"Liens",
|
210 |
+
"Litigations",
|
211 |
+
"Miscellaneous",
|
212 |
+
"Modifications",
|
213 |
+
"No Conflicts",
|
214 |
+
"No Defaults",
|
215 |
+
"No Waivers",
|
216 |
+
"Non-Disparagement",
|
217 |
+
"Notices",
|
218 |
+
"Organizations",
|
219 |
+
"Participations",
|
220 |
+
"Payments",
|
221 |
+
"Positions",
|
222 |
+
"Powers",
|
223 |
+
"Publicity",
|
224 |
+
"Qualifications",
|
225 |
+
"Records",
|
226 |
+
"Releases",
|
227 |
+
"Remedies",
|
228 |
+
"Representations",
|
229 |
+
"Sales",
|
230 |
+
"Sanctions",
|
231 |
+
"Severability",
|
232 |
+
"Solvency",
|
233 |
+
"Specific Performance",
|
234 |
+
"Submission To Jurisdiction",
|
235 |
+
"Subsidiaries",
|
236 |
+
"Successors",
|
237 |
+
"Survival",
|
238 |
+
"Tax Withholdings",
|
239 |
+
"Taxes",
|
240 |
+
"Terminations",
|
241 |
+
"Terms",
|
242 |
+
"Titles",
|
243 |
+
"Transactions With Affiliates",
|
244 |
+
"Use Of Proceeds",
|
245 |
+
"Vacations",
|
246 |
+
"Venues",
|
247 |
+
"Vesting",
|
248 |
+
"Waiver Of Jury Trials",
|
249 |
+
"Waivers",
|
250 |
+
"Warranties",
|
251 |
+
"Withholdings",
|
252 |
+
]
|
253 |
+
|
254 |
+
SCDB_ISSUE_AREAS = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13"]
|
255 |
+
|
256 |
+
UNFAIR_CATEGORIES = [
|
257 |
+
"Limitation of liability",
|
258 |
+
"Unilateral termination",
|
259 |
+
"Unilateral change",
|
260 |
+
"Content removal",
|
261 |
+
"Contract by using",
|
262 |
+
"Choice of law",
|
263 |
+
"Jurisdiction",
|
264 |
+
"Arbitration",
|
265 |
+
]
|
266 |
+
|
267 |
+
CASEHOLD_LABELS = ["0", "1", "2", "3", "4"]
|
268 |
+
|
269 |
+
|
270 |
+
class LexGlueConfig(datasets.BuilderConfig):
|
271 |
+
"""BuilderConfig for LexGLUE."""
|
272 |
+
|
273 |
+
def __init__(
|
274 |
+
self,
|
275 |
+
url,
|
276 |
+
data_url,
|
277 |
+
data_file,
|
278 |
+
citation,
|
279 |
+
**kwargs,
|
280 |
+
):
|
281 |
+
"""BuilderConfig for LexGLUE.
|
282 |
+
|
283 |
+
Args:
|
284 |
+
text_column: ``string`, name of the column in the jsonl file corresponding
|
285 |
+
to the text
|
286 |
+
label_column: `string`, name of the column in the jsonl file corresponding
|
287 |
+
to the label
|
288 |
+
url: `string`, url for the original project
|
289 |
+
data_url: `string`, url to download the zip file from
|
290 |
+
data_file: `string`, filename for data set
|
291 |
+
citation: `string`, citation for the data set
|
292 |
+
url: `string`, url for information about the data set
|
293 |
+
label_classes: `list[string]`, the list of classes if the label is
|
294 |
+
categorical. If not provided, then the label will be of type
|
295 |
+
`datasets.Value('float32')`.
|
296 |
+
multi_label: `boolean`, True if the task is multi-label
|
297 |
+
dev_column: `string`, name for the development subset
|
298 |
+
**kwargs: keyword arguments forwarded to super.
|
299 |
+
"""
|
300 |
+
super(LexGlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
301 |
+
self.url = url
|
302 |
+
self.data_url = data_url
|
303 |
+
self.data_file = data_file
|
304 |
+
self.citation = citation
|
305 |
+
|
306 |
+
|
307 |
+
class LexGLUE(datasets.GeneratorBasedBuilder):
|
308 |
+
"""LexGLUE: A Benchmark Dataset for Legal Language Understanding in English. Version 1.0"""
|
309 |
+
|
310 |
+
BUILDER_CONFIGS = [
|
311 |
+
|
312 |
+
LexGlueConfig(
|
313 |
+
name="all",
|
314 |
+
description="",
|
315 |
+
data_url="",
|
316 |
+
data_file="",
|
317 |
+
url="",
|
318 |
+
citation=""
|
319 |
+
),
|
320 |
+
LexGlueConfig(
|
321 |
+
name="ecthr_a",
|
322 |
+
description=textwrap.dedent(
|
323 |
+
"""\
|
324 |
+
The European Court of Human Rights (ECtHR) hears allegations that a state has
|
325 |
+
breached human rights provisions of the European Convention of Human Rights (ECHR).
|
326 |
+
For each case, the dataset provides a list of factual paragraphs (facts) from the case description.
|
327 |
+
Each case is mapped to articles of the ECHR that were violated (if any)."""
|
328 |
+
),
|
329 |
+
data_url="https://zenodo.org/record/5532997/files/ecthr.tar.gz",
|
330 |
+
data_file="ecthr.jsonl",
|
331 |
+
url="https://archive.org/details/ECtHR-NAACL2021",
|
332 |
+
citation=textwrap.dedent(
|
333 |
+
"""\
|
334 |
+
@inproceedings{chalkidis-etal-2021-paragraph,
|
335 |
+
title = "Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases",
|
336 |
+
author = "Chalkidis, Ilias and
|
337 |
+
Fergadiotis, Manos and
|
338 |
+
Tsarapatsanis, Dimitrios and
|
339 |
+
Aletras, Nikolaos and
|
340 |
+
Androutsopoulos, Ion and
|
341 |
+
Malakasiotis, Prodromos",
|
342 |
+
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
|
343 |
+
month = jun,
|
344 |
+
year = "2021",
|
345 |
+
address = "Online",
|
346 |
+
publisher = "Association for Computational Linguistics",
|
347 |
+
url = "https://aclanthology.org/2021.naacl-main.22",
|
348 |
+
doi = "10.18653/v1/2021.naacl-main.22",
|
349 |
+
pages = "226--241",
|
350 |
+
}
|
351 |
+
}"""
|
352 |
+
),
|
353 |
+
),
|
354 |
+
LexGlueConfig(
|
355 |
+
name="ecthr_b",
|
356 |
+
description=textwrap.dedent(
|
357 |
+
"""\
|
358 |
+
The European Court of Human Rights (ECtHR) hears allegations that a state has
|
359 |
+
breached human rights provisions of the European Convention of Human Rights (ECHR).
|
360 |
+
For each case, the dataset provides a list of factual paragraphs (facts) from the case description.
|
361 |
+
Each case is mapped to articles of ECHR that were allegedly violated (considered by the court)."""
|
362 |
+
),
|
363 |
+
url="https://archive.org/details/ECtHR-NAACL2021",
|
364 |
+
data_url="https://zenodo.org/record/5532997/files/ecthr.tar.gz",
|
365 |
+
data_file="ecthr.jsonl",
|
366 |
+
citation=textwrap.dedent(
|
367 |
+
"""\
|
368 |
+
@inproceedings{chalkidis-etal-2021-paragraph,
|
369 |
+
title = "Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases",
|
370 |
+
author = "Chalkidis, Ilias
|
371 |
+
and Fergadiotis, Manos
|
372 |
+
and Tsarapatsanis, Dimitrios
|
373 |
+
and Aletras, Nikolaos
|
374 |
+
and Androutsopoulos, Ion
|
375 |
+
and Malakasiotis, Prodromos",
|
376 |
+
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
|
377 |
+
year = "2021",
|
378 |
+
address = "Online",
|
379 |
+
url = "https://aclanthology.org/2021.naacl-main.22",
|
380 |
+
}
|
381 |
+
}"""
|
382 |
+
),
|
383 |
+
),
|
384 |
+
LexGlueConfig(
|
385 |
+
name="eurlex",
|
386 |
+
description=textwrap.dedent(
|
387 |
+
"""\
|
388 |
+
European Union (EU) legislation is published in EUR-Lex portal.
|
389 |
+
All EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus,
|
390 |
+
a multilingual thesaurus maintained by the Publications Office.
|
391 |
+
The current version of EuroVoc contains more than 7k concepts referring to various activities
|
392 |
+
of the EU and its Member States (e.g., economics, health-care, trade).
|
393 |
+
Given a document, the task is to predict its EuroVoc labels (concepts)."""
|
394 |
+
),
|
395 |
+
url="https://zenodo.org/record/5363165#.YVJOAi8RqaA",
|
396 |
+
data_url="https://zenodo.org/record/5532997/files/eurlex.tar.gz",
|
397 |
+
data_file="eurlex.jsonl",
|
398 |
+
citation=textwrap.dedent(
|
399 |
+
"""\
|
400 |
+
@inproceedings{chalkidis-etal-2021-multieurlex,
|
401 |
+
author = {Chalkidis, Ilias and
|
402 |
+
Fergadiotis, Manos and
|
403 |
+
Androutsopoulos, Ion},
|
404 |
+
title = {MultiEURLEX -- A multi-lingual and multi-label legal document
|
405 |
+
classification dataset for zero-shot cross-lingual transfer},
|
406 |
+
booktitle = {Proceedings of the 2021 Conference on Empirical Methods
|
407 |
+
in Natural Language Processing},
|
408 |
+
year = {2021},
|
409 |
+
location = {Punta Cana, Dominican Republic},
|
410 |
+
}
|
411 |
+
}"""
|
412 |
+
),
|
413 |
+
),
|
414 |
+
LexGlueConfig(
|
415 |
+
name="scotus",
|
416 |
+
description=textwrap.dedent(
|
417 |
+
"""\
|
418 |
+
The US Supreme Court (SCOTUS) is the highest federal court in the United States of America
|
419 |
+
and generally hears only the most controversial or otherwise complex cases which have not
|
420 |
+
been sufficiently well solved by lower courts. This is a single-label multi-class classification
|
421 |
+
task, where given a document (court opinion), the task is to predict the relevant issue areas.
|
422 |
+
The 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute)."""
|
423 |
+
),
|
424 |
+
url="http://scdb.wustl.edu/data.php",
|
425 |
+
data_url="https://zenodo.org/record/5532997/files/scotus.tar.gz",
|
426 |
+
data_file="scotus.jsonl",
|
427 |
+
citation=textwrap.dedent(
|
428 |
+
"""\
|
429 |
+
@misc{spaeth2020,
|
430 |
+
author = {Harold J. Spaeth and Lee Epstein and Andrew D. Martin, Jeffrey A. Segal
|
431 |
+
and Theodore J. Ruger and Sara C. Benesh},
|
432 |
+
year = {2020},
|
433 |
+
title ={{Supreme Court Database, Version 2020 Release 01}},
|
434 |
+
url= {http://Supremecourtdatabase.org},
|
435 |
+
howpublished={Washington University Law}
|
436 |
+
}"""
|
437 |
+
),
|
438 |
+
),
|
439 |
+
LexGlueConfig(
|
440 |
+
name="ledgar",
|
441 |
+
description=textwrap.dedent(
|
442 |
+
"""\
|
443 |
+
LEDGAR dataset aims contract provision (paragraph) classification.
|
444 |
+
The contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC)
|
445 |
+
filings, which are publicly available from EDGAR. Each label represents the single main topic
|
446 |
+
(theme) of the corresponding contract provision."""
|
447 |
+
),
|
448 |
+
url="https://metatext.io/datasets/ledgar",
|
449 |
+
data_url="https://zenodo.org/record/5532997/files/ledgar.tar.gz",
|
450 |
+
data_file="ledgar.jsonl",
|
451 |
+
citation=textwrap.dedent(
|
452 |
+
"""\
|
453 |
+
@inproceedings{tuggener-etal-2020-ledgar,
|
454 |
+
title = "{LEDGAR}: A Large-Scale Multi-label Corpus for Text Classification of Legal Provisions in Contracts",
|
455 |
+
author = {Tuggener, Don and
|
456 |
+
von D{\"a}niken, Pius and
|
457 |
+
Peetz, Thomas and
|
458 |
+
Cieliebak, Mark},
|
459 |
+
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
|
460 |
+
year = "2020",
|
461 |
+
address = "Marseille, France",
|
462 |
+
url = "https://aclanthology.org/2020.lrec-1.155",
|
463 |
+
}
|
464 |
+
}"""
|
465 |
+
),
|
466 |
+
),
|
467 |
+
LexGlueConfig(
|
468 |
+
name="unfair_tos",
|
469 |
+
description=textwrap.dedent(
|
470 |
+
"""\
|
471 |
+
The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube,
|
472 |
+
Ebay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of
|
473 |
+
unfair contractual terms (sentences), meaning terms that potentially violate user rights
|
474 |
+
according to the European consumer law."""
|
475 |
+
),
|
476 |
+
url="http://claudette.eui.eu",
|
477 |
+
data_url="https://zenodo.org/record/5532997/files/unfair_tos.tar.gz",
|
478 |
+
data_file="unfair_tos.jsonl",
|
479 |
+
citation=textwrap.dedent(
|
480 |
+
"""\
|
481 |
+
@article{lippi-etal-2019-claudette,
|
482 |
+
title = "{CLAUDETTE}: an automated detector of potentially unfair clauses in online terms of service",
|
483 |
+
author = {Lippi, Marco
|
484 |
+
and Pałka, Przemysław
|
485 |
+
and Contissa, Giuseppe
|
486 |
+
and Lagioia, Francesca
|
487 |
+
and Micklitz, Hans-Wolfgang
|
488 |
+
and Sartor, Giovanni
|
489 |
+
and Torroni, Paolo},
|
490 |
+
journal = "Artificial Intelligence and Law",
|
491 |
+
year = "2019",
|
492 |
+
publisher = "Springer",
|
493 |
+
url = "https://doi.org/10.1007/s10506-019-09243-2",
|
494 |
+
pages = "117--139",
|
495 |
+
}"""
|
496 |
+
),
|
497 |
+
),
|
498 |
+
LexGlueConfig(
|
499 |
+
name="case_hold",
|
500 |
+
description=textwrap.dedent(
|
501 |
+
"""\
|
502 |
+
The CaseHOLD (Case Holdings on Legal Decisions) dataset contains approx. 53k multiple choice
|
503 |
+
questions about holdings of US court cases from the Harvard Law Library case law corpus.
|
504 |
+
Holdings are short summaries of legal rulings accompany referenced decisions relevant for the present case.
|
505 |
+
The input consists of an excerpt (or prompt) from a court decision, containing a reference
|
506 |
+
to a particular case, while the holding statement is masked out. The model must identify
|
507 |
+
the correct (masked) holding statement from a selection of five choices."""
|
508 |
+
),
|
509 |
+
url="https://github.com/reglab/casehold",
|
510 |
+
data_url="https://zenodo.org/record/5532997/files/casehold.tar.gz",
|
511 |
+
data_file="casehold.csv",
|
512 |
+
citation=textwrap.dedent(
|
513 |
+
"""\
|
514 |
+
@inproceedings{Zheng2021,
|
515 |
+
author = {Lucia Zheng and
|
516 |
+
Neel Guha and
|
517 |
+
Brandon R. Anderson and
|
518 |
+
Peter Henderson and
|
519 |
+
Daniel E. Ho},
|
520 |
+
title = {When Does Pretraining Help? Assessing Self-Supervised Learning for
|
521 |
+
Law and the CaseHOLD Dataset},
|
522 |
+
year = {2021},
|
523 |
+
booktitle = {International Conference on Artificial Intelligence and Law},
|
524 |
+
}"""
|
525 |
+
),
|
526 |
+
),
|
527 |
+
]
|
528 |
+
|
529 |
+
def _info(self):
|
530 |
+
return datasets.DatasetInfo(
|
531 |
+
description=self.config.description,
|
532 |
+
features=datasets.Features({
|
533 |
+
"input": datasets.Value("string"),
|
534 |
+
"references": datasets.features.Sequence(datasets.Value("string")),
|
535 |
+
"gold": datasets.features.Sequence(datasets.Value("string"))
|
536 |
+
|
537 |
+
}),
|
538 |
+
homepage=self.config.url,
|
539 |
+
citation=self.config.citation + "\n" + MAIN_CITATION,
|
540 |
+
)
|
541 |
+
|
542 |
+
def _split_generators(self, dl_manager):
|
543 |
+
if self.config.name == "all":
|
544 |
+
test = [dl_manager.download(os.path.join(name, "test.jsonl")) for name in ["ecthr_a", "ecthr_b", "scotus", "eurlex", "ledgar", "unfair_tos", "case_hold"]]
|
545 |
+
train = [dl_manager.download(os.path.join(name, "train.jsonl")) for name in ["ecthr_a", "ecthr_b", "scotus", "eurlex", "ledgar", "unfair_tos", "case_hold"]]
|
546 |
+
val = [dl_manager.download(os.path.join(name, "validation.jsonl")) for name in ["ecthr_a", "ecthr_b", "scotus", "eurlex", "ledgar", "unfair_tos", "case_hold"]]
|
547 |
+
else:
|
548 |
+
test = [dl_manager.download(os.path.join(self.config.name, "test.jsonl"))]
|
549 |
+
train = [dl_manager.download(os.path.join(self.config.name, "train.jsonl"))]
|
550 |
+
val = [dl_manager.download(os.path.join(self.config.name, "validation.jsonl"))]
|
551 |
+
|
552 |
+
return [
|
553 |
+
datasets.SplitGenerator(
|
554 |
+
name=datasets.Split.TRAIN,
|
555 |
+
gen_kwargs={"files": train},
|
556 |
+
),
|
557 |
+
datasets.SplitGenerator(
|
558 |
+
name=datasets.Split.VALIDATION,
|
559 |
+
gen_kwargs={"files": val},
|
560 |
+
),
|
561 |
+
datasets.SplitGenerator(
|
562 |
+
name=datasets.Split.TEST,
|
563 |
+
gen_kwargs={"files": test},
|
564 |
+
),
|
565 |
+
]
|
566 |
+
|
567 |
+
def _generate_examples(self, files):
|
568 |
+
"""This function returns the examples in the raw (text) form."""
|
569 |
+
for file in files:
|
570 |
+
with open(file, "r") as f:
|
571 |
+
for ix, line in enumerate(f):
|
572 |
+
yield ix, json.loads(line)
|
scotus/test.jsonl
ADDED
Binary file (77.3 MB). View file
|
|
scotus/train.jsonl
ADDED
Binary file (182 MB). View file
|
|
scotus/validation.jsonl
ADDED
Binary file (76.7 MB). View file
|
|
unfair_tos/test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unfair_tos/train.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unfair_tos/validation.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|