Clémentine commited on
Commit
bc8ef8e
·
1 Parent(s): d986a3a
case_hold/test.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
case_hold/train.jsonl ADDED
Binary file (78.3 MB). View file
 
case_hold/validation.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
ecthr_a/test.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
ecthr_a/train.jsonl ADDED
Binary file (91.3 MB). View file
 
ecthr_a/validation.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
ecthr_b/test.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
ecthr_b/train.jsonl ADDED
Binary file (91.3 MB). View file
 
ecthr_b/validation.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
eurlex/test.jsonl ADDED
Binary file (61.6 MB). View file
 
eurlex/train.jsonl ADDED
Binary file (408 MB). View file
 
eurlex/validation.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
ledgar/test.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
ledgar/train.jsonl ADDED
Binary file (75.1 MB). View file
 
ledgar/validation.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
lexglue.py ADDED
@@ -0,0 +1,572 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """LexGLUE: A Benchmark Dataset for Legal Language Understanding in English."""
16
+
17
+ import csv
18
+ import json
19
+ import textwrap
20
+
21
+ import datasets
22
+ import os
23
+
24
+ MAIN_CITATION = """\
25
+ @article{chalkidis-etal-2021-lexglue,
26
+ title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},
27
+ author={Chalkidis, Ilias and
28
+ Jana, Abhik and
29
+ Hartung, Dirk and
30
+ Bommarito, Michael and
31
+ Androutsopoulos, Ion and
32
+ Katz, Daniel Martin and
33
+ Aletras, Nikolaos},
34
+ year={2021},
35
+ eprint={2110.00976},
36
+ archivePrefix={arXiv},
37
+ primaryClass={cs.CL},
38
+ note = {arXiv: 2110.00976},
39
+ }"""
40
+
41
+ _DESCRIPTION = """\
42
+ Legal General Language Understanding Evaluation (LexGLUE) benchmark is
43
+ a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks
44
+ """
45
+
46
+ ECTHR_ARTICLES = ["2", "3", "5", "6", "8", "9", "10", "11", "14", "P1-1"]
47
+
48
+ EUROVOC_CONCEPTS = [
49
+ "100163",
50
+ "100168",
51
+ "100169",
52
+ "100170",
53
+ "100171",
54
+ "100172",
55
+ "100173",
56
+ "100174",
57
+ "100175",
58
+ "100176",
59
+ "100177",
60
+ "100179",
61
+ "100180",
62
+ "100183",
63
+ "100184",
64
+ "100185",
65
+ "100186",
66
+ "100187",
67
+ "100189",
68
+ "100190",
69
+ "100191",
70
+ "100192",
71
+ "100193",
72
+ "100194",
73
+ "100195",
74
+ "100196",
75
+ "100197",
76
+ "100198",
77
+ "100199",
78
+ "100200",
79
+ "100201",
80
+ "100202",
81
+ "100204",
82
+ "100205",
83
+ "100206",
84
+ "100207",
85
+ "100212",
86
+ "100214",
87
+ "100215",
88
+ "100220",
89
+ "100221",
90
+ "100222",
91
+ "100223",
92
+ "100224",
93
+ "100226",
94
+ "100227",
95
+ "100229",
96
+ "100230",
97
+ "100231",
98
+ "100232",
99
+ "100233",
100
+ "100234",
101
+ "100235",
102
+ "100237",
103
+ "100238",
104
+ "100239",
105
+ "100240",
106
+ "100241",
107
+ "100242",
108
+ "100243",
109
+ "100244",
110
+ "100245",
111
+ "100246",
112
+ "100247",
113
+ "100248",
114
+ "100249",
115
+ "100250",
116
+ "100252",
117
+ "100253",
118
+ "100254",
119
+ "100255",
120
+ "100256",
121
+ "100257",
122
+ "100258",
123
+ "100259",
124
+ "100260",
125
+ "100261",
126
+ "100262",
127
+ "100263",
128
+ "100264",
129
+ "100265",
130
+ "100266",
131
+ "100268",
132
+ "100269",
133
+ "100270",
134
+ "100271",
135
+ "100272",
136
+ "100273",
137
+ "100274",
138
+ "100275",
139
+ "100276",
140
+ "100277",
141
+ "100278",
142
+ "100279",
143
+ "100280",
144
+ "100281",
145
+ "100282",
146
+ "100283",
147
+ "100284",
148
+ "100285",
149
+ ]
150
+
151
+ LEDGAR_CATEGORIES = [
152
+ "Adjustments",
153
+ "Agreements",
154
+ "Amendments",
155
+ "Anti-Corruption Laws",
156
+ "Applicable Laws",
157
+ "Approvals",
158
+ "Arbitration",
159
+ "Assignments",
160
+ "Assigns",
161
+ "Authority",
162
+ "Authorizations",
163
+ "Base Salary",
164
+ "Benefits",
165
+ "Binding Effects",
166
+ "Books",
167
+ "Brokers",
168
+ "Capitalization",
169
+ "Change In Control",
170
+ "Closings",
171
+ "Compliance With Laws",
172
+ "Confidentiality",
173
+ "Consent To Jurisdiction",
174
+ "Consents",
175
+ "Construction",
176
+ "Cooperation",
177
+ "Costs",
178
+ "Counterparts",
179
+ "Death",
180
+ "Defined Terms",
181
+ "Definitions",
182
+ "Disability",
183
+ "Disclosures",
184
+ "Duties",
185
+ "Effective Dates",
186
+ "Effectiveness",
187
+ "Employment",
188
+ "Enforceability",
189
+ "Enforcements",
190
+ "Entire Agreements",
191
+ "Erisa",
192
+ "Existence",
193
+ "Expenses",
194
+ "Fees",
195
+ "Financial Statements",
196
+ "Forfeitures",
197
+ "Further Assurances",
198
+ "General",
199
+ "Governing Laws",
200
+ "Headings",
201
+ "Indemnifications",
202
+ "Indemnity",
203
+ "Insurances",
204
+ "Integration",
205
+ "Intellectual Property",
206
+ "Interests",
207
+ "Interpretations",
208
+ "Jurisdictions",
209
+ "Liens",
210
+ "Litigations",
211
+ "Miscellaneous",
212
+ "Modifications",
213
+ "No Conflicts",
214
+ "No Defaults",
215
+ "No Waivers",
216
+ "Non-Disparagement",
217
+ "Notices",
218
+ "Organizations",
219
+ "Participations",
220
+ "Payments",
221
+ "Positions",
222
+ "Powers",
223
+ "Publicity",
224
+ "Qualifications",
225
+ "Records",
226
+ "Releases",
227
+ "Remedies",
228
+ "Representations",
229
+ "Sales",
230
+ "Sanctions",
231
+ "Severability",
232
+ "Solvency",
233
+ "Specific Performance",
234
+ "Submission To Jurisdiction",
235
+ "Subsidiaries",
236
+ "Successors",
237
+ "Survival",
238
+ "Tax Withholdings",
239
+ "Taxes",
240
+ "Terminations",
241
+ "Terms",
242
+ "Titles",
243
+ "Transactions With Affiliates",
244
+ "Use Of Proceeds",
245
+ "Vacations",
246
+ "Venues",
247
+ "Vesting",
248
+ "Waiver Of Jury Trials",
249
+ "Waivers",
250
+ "Warranties",
251
+ "Withholdings",
252
+ ]
253
+
254
+ SCDB_ISSUE_AREAS = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13"]
255
+
256
+ UNFAIR_CATEGORIES = [
257
+ "Limitation of liability",
258
+ "Unilateral termination",
259
+ "Unilateral change",
260
+ "Content removal",
261
+ "Contract by using",
262
+ "Choice of law",
263
+ "Jurisdiction",
264
+ "Arbitration",
265
+ ]
266
+
267
+ CASEHOLD_LABELS = ["0", "1", "2", "3", "4"]
268
+
269
+
270
+ class LexGlueConfig(datasets.BuilderConfig):
271
+ """BuilderConfig for LexGLUE."""
272
+
273
+ def __init__(
274
+ self,
275
+ url,
276
+ data_url,
277
+ data_file,
278
+ citation,
279
+ **kwargs,
280
+ ):
281
+ """BuilderConfig for LexGLUE.
282
+
283
+ Args:
284
+ text_column: ``string`, name of the column in the jsonl file corresponding
285
+ to the text
286
+ label_column: `string`, name of the column in the jsonl file corresponding
287
+ to the label
288
+ url: `string`, url for the original project
289
+ data_url: `string`, url to download the zip file from
290
+ data_file: `string`, filename for data set
291
+ citation: `string`, citation for the data set
292
+ url: `string`, url for information about the data set
293
+ label_classes: `list[string]`, the list of classes if the label is
294
+ categorical. If not provided, then the label will be of type
295
+ `datasets.Value('float32')`.
296
+ multi_label: `boolean`, True if the task is multi-label
297
+ dev_column: `string`, name for the development subset
298
+ **kwargs: keyword arguments forwarded to super.
299
+ """
300
+ super(LexGlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
301
+ self.url = url
302
+ self.data_url = data_url
303
+ self.data_file = data_file
304
+ self.citation = citation
305
+
306
+
307
+ class LexGLUE(datasets.GeneratorBasedBuilder):
308
+ """LexGLUE: A Benchmark Dataset for Legal Language Understanding in English. Version 1.0"""
309
+
310
+ BUILDER_CONFIGS = [
311
+
312
+ LexGlueConfig(
313
+ name="all",
314
+ description="",
315
+ data_url="",
316
+ data_file="",
317
+ url="",
318
+ citation=""
319
+ ),
320
+ LexGlueConfig(
321
+ name="ecthr_a",
322
+ description=textwrap.dedent(
323
+ """\
324
+ The European Court of Human Rights (ECtHR) hears allegations that a state has
325
+ breached human rights provisions of the European Convention of Human Rights (ECHR).
326
+ For each case, the dataset provides a list of factual paragraphs (facts) from the case description.
327
+ Each case is mapped to articles of the ECHR that were violated (if any)."""
328
+ ),
329
+ data_url="https://zenodo.org/record/5532997/files/ecthr.tar.gz",
330
+ data_file="ecthr.jsonl",
331
+ url="https://archive.org/details/ECtHR-NAACL2021",
332
+ citation=textwrap.dedent(
333
+ """\
334
+ @inproceedings{chalkidis-etal-2021-paragraph,
335
+ title = "Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases",
336
+ author = "Chalkidis, Ilias and
337
+ Fergadiotis, Manos and
338
+ Tsarapatsanis, Dimitrios and
339
+ Aletras, Nikolaos and
340
+ Androutsopoulos, Ion and
341
+ Malakasiotis, Prodromos",
342
+ booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
343
+ month = jun,
344
+ year = "2021",
345
+ address = "Online",
346
+ publisher = "Association for Computational Linguistics",
347
+ url = "https://aclanthology.org/2021.naacl-main.22",
348
+ doi = "10.18653/v1/2021.naacl-main.22",
349
+ pages = "226--241",
350
+ }
351
+ }"""
352
+ ),
353
+ ),
354
+ LexGlueConfig(
355
+ name="ecthr_b",
356
+ description=textwrap.dedent(
357
+ """\
358
+ The European Court of Human Rights (ECtHR) hears allegations that a state has
359
+ breached human rights provisions of the European Convention of Human Rights (ECHR).
360
+ For each case, the dataset provides a list of factual paragraphs (facts) from the case description.
361
+ Each case is mapped to articles of ECHR that were allegedly violated (considered by the court)."""
362
+ ),
363
+ url="https://archive.org/details/ECtHR-NAACL2021",
364
+ data_url="https://zenodo.org/record/5532997/files/ecthr.tar.gz",
365
+ data_file="ecthr.jsonl",
366
+ citation=textwrap.dedent(
367
+ """\
368
+ @inproceedings{chalkidis-etal-2021-paragraph,
369
+ title = "Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases",
370
+ author = "Chalkidis, Ilias
371
+ and Fergadiotis, Manos
372
+ and Tsarapatsanis, Dimitrios
373
+ and Aletras, Nikolaos
374
+ and Androutsopoulos, Ion
375
+ and Malakasiotis, Prodromos",
376
+ booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
377
+ year = "2021",
378
+ address = "Online",
379
+ url = "https://aclanthology.org/2021.naacl-main.22",
380
+ }
381
+ }"""
382
+ ),
383
+ ),
384
+ LexGlueConfig(
385
+ name="eurlex",
386
+ description=textwrap.dedent(
387
+ """\
388
+ European Union (EU) legislation is published in EUR-Lex portal.
389
+ All EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus,
390
+ a multilingual thesaurus maintained by the Publications Office.
391
+ The current version of EuroVoc contains more than 7k concepts referring to various activities
392
+ of the EU and its Member States (e.g., economics, health-care, trade).
393
+ Given a document, the task is to predict its EuroVoc labels (concepts)."""
394
+ ),
395
+ url="https://zenodo.org/record/5363165#.YVJOAi8RqaA",
396
+ data_url="https://zenodo.org/record/5532997/files/eurlex.tar.gz",
397
+ data_file="eurlex.jsonl",
398
+ citation=textwrap.dedent(
399
+ """\
400
+ @inproceedings{chalkidis-etal-2021-multieurlex,
401
+ author = {Chalkidis, Ilias and
402
+ Fergadiotis, Manos and
403
+ Androutsopoulos, Ion},
404
+ title = {MultiEURLEX -- A multi-lingual and multi-label legal document
405
+ classification dataset for zero-shot cross-lingual transfer},
406
+ booktitle = {Proceedings of the 2021 Conference on Empirical Methods
407
+ in Natural Language Processing},
408
+ year = {2021},
409
+ location = {Punta Cana, Dominican Republic},
410
+ }
411
+ }"""
412
+ ),
413
+ ),
414
+ LexGlueConfig(
415
+ name="scotus",
416
+ description=textwrap.dedent(
417
+ """\
418
+ The US Supreme Court (SCOTUS) is the highest federal court in the United States of America
419
+ and generally hears only the most controversial or otherwise complex cases which have not
420
+ been sufficiently well solved by lower courts. This is a single-label multi-class classification
421
+ task, where given a document (court opinion), the task is to predict the relevant issue areas.
422
+ The 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute)."""
423
+ ),
424
+ url="http://scdb.wustl.edu/data.php",
425
+ data_url="https://zenodo.org/record/5532997/files/scotus.tar.gz",
426
+ data_file="scotus.jsonl",
427
+ citation=textwrap.dedent(
428
+ """\
429
+ @misc{spaeth2020,
430
+ author = {Harold J. Spaeth and Lee Epstein and Andrew D. Martin, Jeffrey A. Segal
431
+ and Theodore J. Ruger and Sara C. Benesh},
432
+ year = {2020},
433
+ title ={{Supreme Court Database, Version 2020 Release 01}},
434
+ url= {http://Supremecourtdatabase.org},
435
+ howpublished={Washington University Law}
436
+ }"""
437
+ ),
438
+ ),
439
+ LexGlueConfig(
440
+ name="ledgar",
441
+ description=textwrap.dedent(
442
+ """\
443
+ LEDGAR dataset aims contract provision (paragraph) classification.
444
+ The contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC)
445
+ filings, which are publicly available from EDGAR. Each label represents the single main topic
446
+ (theme) of the corresponding contract provision."""
447
+ ),
448
+ url="https://metatext.io/datasets/ledgar",
449
+ data_url="https://zenodo.org/record/5532997/files/ledgar.tar.gz",
450
+ data_file="ledgar.jsonl",
451
+ citation=textwrap.dedent(
452
+ """\
453
+ @inproceedings{tuggener-etal-2020-ledgar,
454
+ title = "{LEDGAR}: A Large-Scale Multi-label Corpus for Text Classification of Legal Provisions in Contracts",
455
+ author = {Tuggener, Don and
456
+ von D{\"a}niken, Pius and
457
+ Peetz, Thomas and
458
+ Cieliebak, Mark},
459
+ booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
460
+ year = "2020",
461
+ address = "Marseille, France",
462
+ url = "https://aclanthology.org/2020.lrec-1.155",
463
+ }
464
+ }"""
465
+ ),
466
+ ),
467
+ LexGlueConfig(
468
+ name="unfair_tos",
469
+ description=textwrap.dedent(
470
+ """\
471
+ The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube,
472
+ Ebay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of
473
+ unfair contractual terms (sentences), meaning terms that potentially violate user rights
474
+ according to the European consumer law."""
475
+ ),
476
+ url="http://claudette.eui.eu",
477
+ data_url="https://zenodo.org/record/5532997/files/unfair_tos.tar.gz",
478
+ data_file="unfair_tos.jsonl",
479
+ citation=textwrap.dedent(
480
+ """\
481
+ @article{lippi-etal-2019-claudette,
482
+ title = "{CLAUDETTE}: an automated detector of potentially unfair clauses in online terms of service",
483
+ author = {Lippi, Marco
484
+ and Pałka, Przemysław
485
+ and Contissa, Giuseppe
486
+ and Lagioia, Francesca
487
+ and Micklitz, Hans-Wolfgang
488
+ and Sartor, Giovanni
489
+ and Torroni, Paolo},
490
+ journal = "Artificial Intelligence and Law",
491
+ year = "2019",
492
+ publisher = "Springer",
493
+ url = "https://doi.org/10.1007/s10506-019-09243-2",
494
+ pages = "117--139",
495
+ }"""
496
+ ),
497
+ ),
498
+ LexGlueConfig(
499
+ name="case_hold",
500
+ description=textwrap.dedent(
501
+ """\
502
+ The CaseHOLD (Case Holdings on Legal Decisions) dataset contains approx. 53k multiple choice
503
+ questions about holdings of US court cases from the Harvard Law Library case law corpus.
504
+ Holdings are short summaries of legal rulings accompany referenced decisions relevant for the present case.
505
+ The input consists of an excerpt (or prompt) from a court decision, containing a reference
506
+ to a particular case, while the holding statement is masked out. The model must identify
507
+ the correct (masked) holding statement from a selection of five choices."""
508
+ ),
509
+ url="https://github.com/reglab/casehold",
510
+ data_url="https://zenodo.org/record/5532997/files/casehold.tar.gz",
511
+ data_file="casehold.csv",
512
+ citation=textwrap.dedent(
513
+ """\
514
+ @inproceedings{Zheng2021,
515
+ author = {Lucia Zheng and
516
+ Neel Guha and
517
+ Brandon R. Anderson and
518
+ Peter Henderson and
519
+ Daniel E. Ho},
520
+ title = {When Does Pretraining Help? Assessing Self-Supervised Learning for
521
+ Law and the CaseHOLD Dataset},
522
+ year = {2021},
523
+ booktitle = {International Conference on Artificial Intelligence and Law},
524
+ }"""
525
+ ),
526
+ ),
527
+ ]
528
+
529
+ def _info(self):
530
+ return datasets.DatasetInfo(
531
+ description=self.config.description,
532
+ features=datasets.Features({
533
+ "input": datasets.Value("string"),
534
+ "references": datasets.features.Sequence(datasets.Value("string")),
535
+ "gold": datasets.features.Sequence(datasets.Value("string"))
536
+
537
+ }),
538
+ homepage=self.config.url,
539
+ citation=self.config.citation + "\n" + MAIN_CITATION,
540
+ )
541
+
542
+ def _split_generators(self, dl_manager):
543
+ if self.config.name == "all":
544
+ test = [dl_manager.download(os.path.join(name, "test.jsonl")) for name in ["ecthr_a", "ecthr_b", "scotus", "eurlex", "ledgar", "unfair_tos", "case_hold"]]
545
+ train = [dl_manager.download(os.path.join(name, "train.jsonl")) for name in ["ecthr_a", "ecthr_b", "scotus", "eurlex", "ledgar", "unfair_tos", "case_hold"]]
546
+ val = [dl_manager.download(os.path.join(name, "validation.jsonl")) for name in ["ecthr_a", "ecthr_b", "scotus", "eurlex", "ledgar", "unfair_tos", "case_hold"]]
547
+ else:
548
+ test = [dl_manager.download(os.path.join(self.config.name, "test.jsonl"))]
549
+ train = [dl_manager.download(os.path.join(self.config.name, "train.jsonl"))]
550
+ val = [dl_manager.download(os.path.join(self.config.name, "validation.jsonl"))]
551
+
552
+ return [
553
+ datasets.SplitGenerator(
554
+ name=datasets.Split.TRAIN,
555
+ gen_kwargs={"files": train},
556
+ ),
557
+ datasets.SplitGenerator(
558
+ name=datasets.Split.VALIDATION,
559
+ gen_kwargs={"files": val},
560
+ ),
561
+ datasets.SplitGenerator(
562
+ name=datasets.Split.TEST,
563
+ gen_kwargs={"files": test},
564
+ ),
565
+ ]
566
+
567
+ def _generate_examples(self, files):
568
+ """This function returns the examples in the raw (text) form."""
569
+ for file in files:
570
+ with open(file, "r") as f:
571
+ for ix, line in enumerate(f):
572
+ yield ix, json.loads(line)
scotus/test.jsonl ADDED
Binary file (77.3 MB). View file
 
scotus/train.jsonl ADDED
Binary file (182 MB). View file
 
scotus/validation.jsonl ADDED
Binary file (76.7 MB). View file
 
unfair_tos/test.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
unfair_tos/train.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
unfair_tos/validation.jsonl ADDED
The diff for this file is too large to render. See raw diff