Datasets:
Tasks:
Automatic Speech Recognition
Languages:
English
from tensorflow import keras | |
import keras.layers | |
import librosa | |
import numpy as np | |
import tensorflow as tf | |
frame_length = 256 | |
frame_step = 160 | |
fft_length = 384 | |
def CTCLoss(y_true, y_pred): | |
batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64") | |
input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64") | |
label_length = tf.cast(tf.shape(y_true)[1], dtype="int64") | |
input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64") | |
label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64") | |
loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length) | |
return loss | |
# Tải mô hình | |
loaded_model = keras.models.load_model(r'D:\MyCode\Python\saved_model\my_model.h5', custom_objects={'CTCLoss': CTCLoss}) | |
characters = [x for x in "abcdefghijklmnopqrstuvwxyzăâêôơưđ'?! "] | |
char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="") | |
num_to_char = keras.layers.StringLookup(vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True) | |
def decode_batch_predictions(pred): | |
input_len = np.ones(pred.shape[0]) * pred.shape[1] | |
results = keras.backend.ctc_decode(pred, input_len=input_len, greedy=True)[0][0] | |
output_texts = [] | |
for result in results: | |
result = tf.strings.reduce_join(num_to_char(result)).numpy().decode('utf-8') | |
output_texts.append(result) | |
return output_texts | |
# Hàm để xử lý và dự đoán cho một tệp âm thanh | |
def predict_from_audio(file_name): | |
# Tiền xử lý tệp âm thanh | |
audio, _ = librosa.load(file_name, sr=None) # Đọc tệp âm thanh | |
audio = tf.convert_to_tensor(audio, dtype=tf.float32) | |
# Tính toán spectrogram | |
spectrogram = tf.signal.stft(audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length) | |
spectrogram = tf.abs(spectrogram) | |
spectrogram = tf.math.pow(spectrogram, 0.5) | |
# Chuẩn hóa | |
mean = tf.math.reduce_mean(spectrogram, axis=1, keepdims=True) | |
stddevs = tf.math.reduce_std(spectrogram, axis=1, keepdims=True) | |
spectrogram = (spectrogram - mean) / (stddevs + 1e-10) | |
# Thêm chiều cho "channels" và "batch" | |
spectrogram = tf.expand_dims(spectrogram, axis=-1) # Thêm chiều cho kênh | |
spectrogram = tf.expand_dims(spectrogram, axis=0) # Thêm chiều batch | |
# Dự đoán | |
predictions = loaded_model.predict(spectrogram) | |
decoded_predictions = decode_batch_predictions(predictions) | |
return decoded_predictions | |
# Dự đoán cho một tệp âm thanh | |
result = predict_from_audio(r'D:\MyCode\Python\dataset\test_audio.wav') | |
print("Dự đoán:", result) | |