hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
793e7fffbdd5c89651bd754571e1af6c08b7b976
820
py
Python
add-binary/solution.py
LYZhelloworld/Leetcode
1ef3c8d3a75a20755e7474427224ed8757f97932
[ "MIT" ]
null
null
null
add-binary/solution.py
LYZhelloworld/Leetcode
1ef3c8d3a75a20755e7474427224ed8757f97932
[ "MIT" ]
null
null
null
add-binary/solution.py
LYZhelloworld/Leetcode
1ef3c8d3a75a20755e7474427224ed8757f97932
[ "MIT" ]
null
null
null
class Solution: def addBinary(self, a, b): """ :type a: str :type b: str :rtype: str """ x = [i == '1' for i in a[::-1]] y = [i == '1' for i in b[::-1]] r = [] carry = False if len(x) > len(y): y += [False] * (len(x) - len(y)) else: x += [False] * (len(y) - len(x)) for d in range(len(x)): s, carry = self.full_adder(x[d], y[d], carry) r += [s] if carry: r += [True] r.reverse() return ''.join(['1' if i else '0' for i in r]) def half_adder(self, a, b): return a ^ b, a & b def full_adder(self, a, b, cin): s1, c1 = self.half_adder(a, b) s2, c2 = self.half_adder(s1, cin) return s2, c1 | c2
24.117647
57
0.4
793e81ebd98b987ef5fea1e69b37fa789775b1f4
7,321
py
Python
dp_multiq/csmooth.py
DionysisChristopoulos/google-research
7f59ef421beef32ca16c2a7215be74f7eba01a0f
[ "Apache-2.0" ]
23,901
2018-10-04T19:48:53.000Z
2022-03-31T21:27:42.000Z
dp_multiq/csmooth.py
DionysisChristopoulos/google-research
7f59ef421beef32ca16c2a7215be74f7eba01a0f
[ "Apache-2.0" ]
891
2018-11-10T06:16:13.000Z
2022-03-31T10:42:34.000Z
dp_multiq/csmooth.py
admariner/google-research
7cee4b22b925581d912e8d993625c180da2a5a4f
[ "Apache-2.0" ]
6,047
2018-10-12T06:31:02.000Z
2022-03-31T13:59:28.000Z
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """CDP smooth sensitivity method for computing differentially private quantiles. The smooth sensitivity method is described in "Smooth Sensitivity and Sampling in Private Data Analysis" by Nissim, Raskhodnikova, and Smith (https://cs-people.bu.edu/ads22/pubs/NRS07/NRS07-full-draft-v1.pdf). Details for the CDP noise distribution appear in Section 3.1 of "Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation" by Bun and Steinke (NeurIPS 2019). Details for optimizing t, s, and sigma appear in Section 3.1.1 of the same paper. """ import numpy as np from dp_multiq import base from dp_multiq import smooth_utils def compute_triples(eps, ts): """Returns triples of form (t, log(s), sigma) for hyperparameter optimization. Args: eps: Privacy parameter epsilon. ts: Array of possible smooth sensitivity parameters. """ triples = np.empty([len(ts), 3]) for t_idx in range(len(ts)): t = ts[t_idx] triples[t_idx, 0] = t sigma = opt_sigma(eps, t) triples[t_idx, 2] = sigma triples[t_idx, 1] = -1.5 * (sigma**2) + np.log(eps - (t / sigma)) return triples def opt_sigma(eps, t): """Returns optimal sigma as detailed in Section 3.1.1 of Bun and Steinke. Args: eps: Privacy parameter epsilon. t: Smooth sensitivity parameter. """ return np.real(np.roots([5 * eps / t, -5, 0, -1])[0]) def lln(sigma): """Returns a sample from the Laplace Log-Normal distribution. Args: sigma: Sigma parameter for the Laplace Log-Normal distribution. """ return np.random.laplace() * np.exp(sigma * np.random.normal()) def csmooth(sorted_data, data_low, data_high, qs, divided_eps, ts): """Returns eps^2/2-CDP quantile estimates for qs. Args: sorted_data: Array of data points sorted in increasing order. data_low: Lower limit for any differentially private quantile output value. data_high: Upper limit for any differentially private quantile output value. qs: Increasing array of quantiles in [0,1]. divided_eps: Privacy parameter epsilon. Assumes eps has already been divided so that the overall desired privacy guarantee is achieved. ts: Array of smooth sensitivity parameters, one for each q in qs. """ sorted_data = np.clip(sorted_data, data_low, data_high) o = np.empty(len(qs)) triples = compute_triples(divided_eps, ts) for i in range(len(qs)): t, log_s, sigma = triples[i] true_quantile_idx = base.quantile_index(len(sorted_data), qs[i]) true_quantile_value = sorted_data[true_quantile_idx] laplace_log_normal_noise = lln(sigma) log_sensitivity = smooth_utils.compute_log_smooth_sensitivity( sorted_data, data_low, data_high, true_quantile_idx, t) noise = np.sign(laplace_log_normal_noise) * np.exp( log_sensitivity + np.log(np.abs(laplace_log_normal_noise)) - log_s) o[i] = true_quantile_value + noise o = np.clip(o, data_low, data_high) return np.sort(o) def log_choose_triple_idx(triples, eps, log_sensitivities): """Returns triple (t, log_s, sigma) that minimizes noisy statistic variance. Args: triples: Array with entries of form (t, log_s, sigma). eps: Privacy parameter epsilon. log_sensitivities: Log(t smooth sensitivity) for each t in triples. """ variances = np.empty(len(triples)) for triple_idx in range(len(triples)): numerator = 2 * (np.exp(2 * log_sensitivities[triple_idx])) denominator = np.exp(-5 * (triples[triple_idx][2]**2)) * ( (eps - (triples[triple_idx][0] / triples[triple_idx][2]))**2) variances[triple_idx] = numerator / denominator return np.argmin(variances) def csmooth_tune_and_return_ts(sorted_data, data_low, data_high, qs, divided_eps, log_t_low, log_t_high, num_t): """Returns ts minimizing variance for data and each q under ~eps^2/2-CDP. Args: sorted_data: Array of data points sorted in increasing order. data_low: Lower limit for any differentially private quantile output value. data_high: Upper limit for any differentially private quantile output value. qs: Increasing array of quantiles in [0,1]. divided_eps: Privacy parameter epsilon. Assumes eps has already been divided so that the overall desired privacy guarantee is achieved. log_t_low: Tuning range for t has lower bound 10^(log_t_low). log_t_high: Tuning range for t has upper bound 10^(log_t_high). num_t: Number of logarithmically spaced t used to populate tuning range. """ sorted_data = np.clip(sorted_data, data_low, data_high) triples = compute_triples(divided_eps, np.logspace(log_t_low, log_t_high, num_t)) num_qs = len(qs) ts = np.empty(num_qs) for i in range(num_qs): true_quantile_idx = base.quantile_index(len(sorted_data), qs[i]) log_sensitivities = np.zeros(len(triples)) for triple_idx in range(len(triples)): t = triples[triple_idx, 0] log_sensitivities[ triple_idx] = smooth_utils.compute_log_smooth_sensitivity( sorted_data, data_low, data_high, true_quantile_idx, t) ts[i] = triples[log_choose_triple_idx(triples, divided_eps, log_sensitivities)][0] return ts def csmooth_tune_t_experiment(eps, num_samples, num_trials, num_quantiles_range, data_low, data_high, log_t_low, log_t_high, num_t): """Returns 2-D array of ts, tuned for each (num_quantiles, quantile) pair. Args: eps: Privacy parameter epsilon. num_samples: Number of standard Gaussian samples to draw for each trial. num_trials: Number of trials to average. num_quantiles_range: Array of number of quantiles to estimate. data_low: Lower bound for data, used by CSmooth. data_high: Upper bound for data, used by CSmooth. log_t_low: Tuning range for t has lower bound 10^(log_t_low). log_t_high: Tuning range for t has upper bound 10^(log_t_high). num_t: Number of logarithmically spaced t used to populate tuning range. """ ts = [np.zeros(num_quantiles) for num_quantiles in num_quantiles_range] num_quantiles_idx = 0 for num_quantiles_idx in range(len(num_quantiles_range)): num_quantiles = num_quantiles_range[num_quantiles_idx] divided_eps = eps / np.sqrt(num_quantiles) for _ in range(num_trials): sorted_data = base.gen_gaussian(num_samples, 0, 1) qs = np.linspace(0, 1, num_quantiles + 2)[1:-1] ts[num_quantiles_idx] += csmooth_tune_and_return_ts( sorted_data, data_low, data_high, qs, divided_eps, log_t_low, log_t_high, num_t) / num_trials print("Finished num_quantiles: {}".format(num_quantiles)) return ts
41.129213
80
0.714656
793e8273f88b0f2b7ce110aa9b57d8e53036e64a
11,313
py
Python
code/python/Publisher/v3/fds/sdk/Publisher/model/account_directories_root.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
6
2022-02-07T16:34:18.000Z
2022-03-30T08:04:57.000Z
code/python/Publisher/v3/fds/sdk/Publisher/model/account_directories_root.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
2
2022-02-07T05:25:57.000Z
2022-03-07T14:18:04.000Z
code/python/Publisher/v3/fds/sdk/Publisher/model/account_directories_root.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
null
null
null
""" Publisher API Allow clients to fetch Publisher Analytics through APIs. # noqa: E501 The version of the OpenAPI document: 3 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from fds.sdk.Publisher.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from fds.sdk.Publisher.exceptions import ApiAttributeError def lazy_import(): from fds.sdk.Publisher.model.account_directories import AccountDirectories globals()['AccountDirectories'] = AccountDirectories class AccountDirectoriesRoot(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'data': (AccountDirectories,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'data': 'data', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """AccountDirectoriesRoot - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) data (AccountDirectories): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """AccountDirectoriesRoot - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) data (AccountDirectories): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
43.015209
121
0.574472
793e8409b2a4d12488dff56ea216a81b3efed7f2
125
py
Python
6_command/no_command.py
hypersport/Head-First-Design-Patterns-Python
0c8b831ae89ebbbef8b203b96508deb7e3063590
[ "MIT" ]
null
null
null
6_command/no_command.py
hypersport/Head-First-Design-Patterns-Python
0c8b831ae89ebbbef8b203b96508deb7e3063590
[ "MIT" ]
null
null
null
6_command/no_command.py
hypersport/Head-First-Design-Patterns-Python
0c8b831ae89ebbbef8b203b96508deb7e3063590
[ "MIT" ]
null
null
null
from command import Command class NoCommand(Command): def excuse(self): pass def undo(self): pass
12.5
27
0.616
793e845f73958f35d2ea7faa1847f8a8ad73e2ad
11,688
py
Python
aiida/tools/graph/graph_traversers.py
HaoZeke/aiida-core
1a4cada67fe36353326dcebfe888ebc01a6c5b7b
[ "MIT", "BSD-3-Clause" ]
null
null
null
aiida/tools/graph/graph_traversers.py
HaoZeke/aiida-core
1a4cada67fe36353326dcebfe888ebc01a6c5b7b
[ "MIT", "BSD-3-Clause" ]
2
2019-03-06T11:23:42.000Z
2020-03-09T09:34:07.000Z
aiida/tools/graph/graph_traversers.py
lorisercole/aiida-core
84c2098318bf234641219e55795726f99dc25a16
[ "MIT", "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Module for functions to traverse AiiDA graphs.""" from numpy import inf from aiida.common.links import GraphTraversalRules, LinkType def get_nodes_delete(starting_pks, get_links=False, **kwargs): """ This function will return the set of all nodes that can be connected to a list of initial nodes through any sequence of specified authorized links and directions for deletion. :type starting_pks: list or tuple or set :param starting_pks: Contains the (valid) pks of the starting nodes. :param bool get_links: Pass True to also return the links between all nodes (found + initial). :param bool create_forward: will traverse CREATE links in the forward direction. :param bool call_calc_forward: will traverse CALL_CALC links in the forward direction. :param bool call_work_forward: will traverse CALL_WORK links in the forward direction. """ traverse_links = validate_traversal_rules(GraphTraversalRules.DELETE, **kwargs) traverse_output = traverse_graph( starting_pks, get_links=get_links, links_forward=traverse_links['forward'], links_backward=traverse_links['backward'] ) function_output = { 'nodes': traverse_output['nodes'], 'links': traverse_output['links'], 'rules': traverse_links['rules_applied'] } return function_output def get_nodes_export(starting_pks, get_links=False, **kwargs): """ This function will return the set of all nodes that can be connected to a list of initial nodes through any sequence of specified authorized links and directions for export. This will also return the links and the traversal rules parsed. :type starting_pks: list or tuple or set :param starting_pks: Contains the (valid) pks of the starting nodes. :param bool get_links: Pass True to also return the links between all nodes (found + initial). :param bool input_calc_forward: will traverse INPUT_CALC links in the forward direction. :param bool create_backward: will traverse CREATE links in the backward direction. :param bool return_backward: will traverse RETURN links in the backward direction. :param bool input_work_forward: will traverse INPUT_WORK links in the forward direction. :param bool call_calc_backward: will traverse CALL_CALC links in the backward direction. :param bool call_work_backward: will traverse CALL_WORK links in the backward direction. """ traverse_links = validate_traversal_rules(GraphTraversalRules.EXPORT, **kwargs) traverse_output = traverse_graph( starting_pks, get_links=get_links, links_forward=traverse_links['forward'], links_backward=traverse_links['backward'] ) function_output = { 'nodes': traverse_output['nodes'], 'links': traverse_output['links'], 'rules': traverse_links['rules_applied'] } return function_output def validate_traversal_rules(ruleset=GraphTraversalRules.DEFAULT, **kwargs): """ Validates the keywords with a ruleset template and returns a parsed dictionary ready to be used. :type ruleset: :py:class:`aiida.common.links.GraphTraversalRules` :param ruleset: Ruleset template used to validate the set of rules. :param bool input_calc_forward: will traverse INPUT_CALC links in the forward direction. :param bool input_calc_backward: will traverse INPUT_CALC links in the backward direction. :param bool create_forward: will traverse CREATE links in the forward direction. :param bool create_backward: will traverse CREATE links in the backward direction. :param bool return_forward: will traverse RETURN links in the forward direction. :param bool return_backward: will traverse RETURN links in the backward direction. :param bool input_work_forward: will traverse INPUT_WORK links in the forward direction. :param bool input_work_backward: will traverse INPUT_WORK links in the backward direction. :param bool call_calc_forward: will traverse CALL_CALC links in the forward direction. :param bool call_calc_backward: will traverse CALL_CALC links in the backward direction. :param bool call_work_forward: will traverse CALL_WORK links in the forward direction. :param bool call_work_backward: will traverse CALL_WORK links in the backward direction. """ from aiida.common import exceptions if not isinstance(ruleset, GraphTraversalRules): raise TypeError( 'ruleset input must be of type aiida.common.links.GraphTraversalRules\ninstead, it is: {}'.format( type(ruleset) ) ) rules_applied = {} links_forward = [] links_backward = [] for name, rule in ruleset.value.items(): follow = rule.default if name in kwargs: if not rule.toggleable: raise ValueError('input rule {} is not toggleable for ruleset {}'.format(name, ruleset)) follow = kwargs.pop(name) if not isinstance(follow, bool): raise ValueError('the value of rule {} must be boolean, but it is: {}'.format(name, follow)) if follow: if rule.direction == 'forward': links_forward.append(rule.link_type) elif rule.direction == 'backward': links_backward.append(rule.link_type) else: raise exceptions.InternalError( 'unrecognized direction `{}` for graph traversal rule'.format(rule.direction) ) rules_applied[name] = follow if kwargs: error_message = 'unrecognized keywords: {}'.format(', '.join(kwargs.keys())) raise exceptions.ValidationError(error_message) valid_output = { 'rules_applied': rules_applied, 'forward': links_forward, 'backward': links_backward, } return valid_output def traverse_graph(starting_pks, max_iterations=None, get_links=False, links_forward=(), links_backward=()): """ This function will return the set of all nodes that can be connected to a list of initial nodes through any sequence of specified links. Optionally, it may also return the links that connect these nodes. :type starting_pks: list or tuple or set :param starting_pks: Contains the (valid) pks of the starting nodes. :type max_iterations: int or None :param max_iterations: The number of iterations to apply the set of rules (a value of 'None' will iterate until no new nodes are added). :param bool get_links: Pass True to also return the links between all nodes (found + initial). :type links_forward: aiida.common.links.LinkType :param links_forward: List with all the links that should be traversed in the forward direction. :type links_backward: aiida.common.links.LinkType :param links_backward: List with all the links that should be traversed in the backward direction. """ # pylint: disable=too-many-locals,too-many-statements,too-many-branches from aiida import orm from aiida.tools.graph.age_entities import Basket from aiida.tools.graph.age_rules import UpdateRule, RuleSequence, RuleSaveWalkers, RuleSetWalkers from aiida.common import exceptions if max_iterations is None: max_iterations = inf elif not (isinstance(max_iterations, int) or max_iterations is inf): raise TypeError('Max_iterations has to be an integer or infinity') linktype_list = [] for linktype in links_forward: if not isinstance(linktype, LinkType): raise TypeError('links_forward should contain links, but one of them is: {}'.format(type(linktype))) linktype_list.append(linktype.value) filters_forwards = {'type': {'in': linktype_list}} linktype_list = [] for linktype in links_backward: if not isinstance(linktype, LinkType): raise TypeError('links_backward should contain links, but one of them is: {}'.format(type(linktype))) linktype_list.append(linktype.value) filters_backwards = {'type': {'in': linktype_list}} if not isinstance(starting_pks, (list, set, tuple)): raise TypeError('starting_pks must be of type list, set or tuple\ninstead, it is {}'.format(type(starting_pks))) if not starting_pks: if get_links: output = {'nodes': set(), 'links': set()} else: output = {'nodes': set(), 'links': None} return output if any([not isinstance(pk, int) for pk in starting_pks]): raise TypeError('one of the starting_pks is not of type int:\n {}'.format(starting_pks)) operational_set = set(starting_pks) query_nodes = orm.QueryBuilder() query_nodes.append(orm.Node, project=['id'], filters={'id': {'in': operational_set}}) existing_pks = set(query_nodes.all(flat=True)) missing_pks = operational_set.difference(existing_pks) if missing_pks: raise exceptions.NotExistent( 'The following pks are not in the database and must be pruned before this call: {}'.format(missing_pks) ) rules = [] basket = Basket(nodes=operational_set) # When max_iterations is finite, the order of traversal may affect the result # (its not the same to first go backwards and then forwards than vice-versa) # In order to make it order-independent, the result of the first operation needs # to be stashed and the second operation must be performed only on the nodes # that were already in the set at the begining of the iteration: this way, both # rules are applied on the same set of nodes and the order doesn't matter. # The way to do this is saving and seting the walkers at the right moments only # when both forwards and backwards rules are present. if links_forward and links_backward: stash = basket.get_template() rules += [RuleSaveWalkers(stash)] if links_forward: query_outgoing = orm.QueryBuilder() query_outgoing.append(orm.Node, tag='sources') query_outgoing.append(orm.Node, edge_filters=filters_forwards, with_incoming='sources') rule_outgoing = UpdateRule(query_outgoing, max_iterations=1, track_edges=get_links) rules += [rule_outgoing] if links_forward and links_backward: rules += [RuleSetWalkers(stash)] if links_backward: query_incoming = orm.QueryBuilder() query_incoming.append(orm.Node, tag='sources') query_incoming.append(orm.Node, edge_filters=filters_backwards, with_outgoing='sources') rule_incoming = UpdateRule(query_incoming, max_iterations=1, track_edges=get_links) rules += [rule_incoming] rulesequence = RuleSequence(rules, max_iterations=max_iterations) results = rulesequence.run(basket) output = {} output['nodes'] = results.nodes.keyset output['links'] = None if get_links: output['links'] = results['nodes_nodes'].keyset return output
42.194946
120
0.683864
793e84e38db8b2f0f59fe0fbf6ac97860583e373
3,245
py
Python
predict.py
jhonatantirado/CheXNet-Keras
264fd4ba889fe8d9f5dee48b4ba3f7c0018aa393
[ "MIT" ]
null
null
null
predict.py
jhonatantirado/CheXNet-Keras
264fd4ba889fe8d9f5dee48b4ba3f7c0018aa393
[ "MIT" ]
null
null
null
predict.py
jhonatantirado/CheXNet-Keras
264fd4ba889fe8d9f5dee48b4ba3f7c0018aa393
[ "MIT" ]
null
null
null
from keras.models import load_model from keras.preprocessing import image import matplotlib.pyplot as plt import numpy as np import os from configparser import ConfigParser from models.keras import ModelFactory import tensorflow as tf def load_image(img_path, show=False): img = image.load_img(img_path, target_size=(224, 224)) img_tensor = image.img_to_array(img) # (height, width, channels) img_tensor = np.expand_dims(img_tensor, axis=0) # (1, height, width, channels), add a dimension because the model expects this shape: (batch_size, height, width, channels) img_tensor /= 255. # imshow expects values in the range [0, 1] if show: plt.imshow(img_tensor[0]) plt.axis('off') plt.show() return img_tensor if __name__ == "__main__": # parser config config_file = "./config.ini" cp = ConfigParser() cp.read(config_file) # default config output_dir = cp["DEFAULT"].get("output_dir") base_model_name = cp["DEFAULT"].get("base_model_name") class_names = cp["DEFAULT"].get("class_names").split(",") image_source_dir = cp["DEFAULT"].get("image_source_dir") # train config image_dimension = cp["TRAIN"].getint("image_dimension") # test config batch_size = cp["TEST"].getint("batch_size") test_steps = cp["TEST"].get("test_steps") use_best_weights = cp["TEST"].getboolean("use_best_weights") # parse weights file path output_weights_name = cp["TRAIN"].get("output_weights_name") weights_path = os.path.join(output_dir, output_weights_name) best_weights_path = os.path.join(output_dir, f"best_{output_weights_name}") print("** load model **") if use_best_weights: print("** use best weights **") model_weights_path = best_weights_path else: print("** use last weights **") model_weights_path = weights_path model_factory = ModelFactory() model = model_factory.get_model( class_names, model_name=base_model_name, use_base_weights=False, weights_path=model_weights_path) # image path img_path_001 = 'starter_images/00001698_000.PNG' img_path_002 = 'starter_images/00003728_000.PNG' img_path_003 = 'starter_images/00005318_000.PNG' # load a single image new_image_001 = load_image(img_path_001) new_image_002 = load_image(img_path_002) new_image_003 = load_image(img_path_003) # check prediction pred_001 = model.predict(new_image_001) pred_002 = model.predict(new_image_002) pred_003 = model.predict(new_image_003) print (pred_001) print (pred_002) print (pred_003) result_001 = tf.argmax(pred_001, 1) result_002 = tf.argmax(pred_002, 1) result_003 = tf.argmax(pred_003, 1) predicted_class_001 = tf.keras.backend.eval(result_001) predicted_class_002 = tf.keras.backend.eval(result_002) predicted_class_003 = tf.keras.backend.eval(result_003) print (predicted_class_001) print (predicted_class_002) print (predicted_class_003) print (class_names[predicted_class_001[0]]) print (class_names[predicted_class_002[0]]) print (class_names[predicted_class_003[0]])
33.112245
183
0.692142
793e86d829c9f48688ff289a9a6698a47d8a31e1
216
py
Python
Python/Bank/cliente.py
GabrielRenan/Projects-to-Learn
38bd7e1dfa6ff9ef5ae0e7e5bacaaf23147d71c0
[ "MIT" ]
null
null
null
Python/Bank/cliente.py
GabrielRenan/Projects-to-Learn
38bd7e1dfa6ff9ef5ae0e7e5bacaaf23147d71c0
[ "MIT" ]
null
null
null
Python/Bank/cliente.py
GabrielRenan/Projects-to-Learn
38bd7e1dfa6ff9ef5ae0e7e5bacaaf23147d71c0
[ "MIT" ]
null
null
null
class Cliente: def __init__(self,nome): self.__nome = nome @property def nome(self): return self.__nome.title() @nome.setter def nome(self, nome): self.__nome = nome
18
34
0.574074
793e870b1b532063020eb34c42baea04b0444ddd
369
py
Python
wagtail/wagtailforms/urls.py
patphongs/wagtail
32555f7a1c599c139e0f26c22907c9612af2e015
[ "BSD-3-Clause" ]
1
2019-11-06T10:51:42.000Z
2019-11-06T10:51:42.000Z
wagtail/wagtailforms/urls.py
patphongs/wagtail
32555f7a1c599c139e0f26c22907c9612af2e015
[ "BSD-3-Clause" ]
null
null
null
wagtail/wagtailforms/urls.py
patphongs/wagtail
32555f7a1c599c139e0f26c22907c9612af2e015
[ "BSD-3-Clause" ]
2
2017-08-08T01:39:02.000Z
2018-05-06T06:16:10.000Z
from __future__ import absolute_import, unicode_literals from django.conf.urls import url from wagtail.wagtailforms import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^submissions/(\d+)/$', views.list_submissions, name='list_submissions'), url(r'^submissions/(\d+)/delete/$', views.delete_submissions, name='delete_submissions') ]
30.75
92
0.731707
793e87565395cde7d73093136d453cee31661aa7
14,048
py
Python
docs/conf.py
zhengknight/tensorpack
726747313fb2f189dd195d32087897b16a23be0a
[ "Apache-2.0" ]
1
2019-05-07T15:23:33.000Z
2019-05-07T15:23:33.000Z
docs/conf.py
zhengknight/tensorpack
726747313fb2f189dd195d32087897b16a23be0a
[ "Apache-2.0" ]
null
null
null
docs/conf.py
zhengknight/tensorpack
726747313fb2f189dd195d32087897b16a23be0a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # flake8: noqa # tensorpack documentation build configuration file, created by # sphinx-quickstart on Sun Mar 27 01:41:24 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os, re import mock import inspect # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../')) os.environ['DOC_BUILDING'] = '1' ON_RTD = (os.environ.get('READTHEDOCS') == 'True') MOCK_MODULES = ['tabulate', 'h5py', 'cv2', 'zmq', 'lmdb', 'sklearn', 'sklearn.datasets', 'scipy', 'scipy.misc', 'scipy.io', 'tornado', 'tornado.concurrent', 'horovod', 'horovod.tensorflow', 'pyarrow', 'subprocess32', 'functools32'] for mod_name in MOCK_MODULES: sys.modules[mod_name] = mock.Mock(name=mod_name) sys.modules['cv2'].__version__ = '3.2.1' # fake version import tensorpack # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. needs_sphinx = '1.4' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.napoleon', #'sphinx.ext.autosectionlabel', #'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.intersphinx', 'sphinx.ext.viewcode', ] # -- Configurations for plugins ------------ napoleon_google_docstring = True napoleon_include_init_with_doc = True napoleon_include_special_with_doc = True napoleon_numpy_docstring = False napoleon_use_rtype = False if ON_RTD: intersphinx_timeout = 10 else: # skip this when building locally intersphinx_timeout = 0.1 intersphinx_mapping = {'python': ('https://docs.python.org/3.6', None)} # ------------------------- # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # to support markdown from recommonmark.parser import CommonMarkParser source_parsers = { '.md': CommonMarkParser, } # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: source_suffix = ['.rst', '.md'] # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'tensorpack' copyright = u'2015 - 2018, Yuxin Wu, et al.' author = u'Yuxin Wu, et al.' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = tensorpack.__version__ # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['build', 'README.md'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = True # 'tensorpack.' prefix was removed by js # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. modindex_common_prefix = ['tensorpack.'] # If true, keep warnings as "system message" paragraphs in the built documents. keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. import sphinx_rtd_theme html_theme = "sphinx_rtd_theme" # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {} # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = '_static/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = True # If false, no index is generated. html_use_index = True # If true, the index is split into individual pages for each letter. html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # avoid li fonts being larger # TODO but li indices fonts are still larger html_compact_lists = False # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'tensorpackdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'tensorpack.tex', u'tensorpack documentation', author, 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'tensorpack', u'tensorpack documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'tensorpack', u'tensorpack documentation', author, 'tensorpack', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False suppress_warnings = ['image.nonlocal_uri'] #autodoc_member_order = 'bysource' def process_signature(app, what, name, obj, options, signature, return_annotation): if signature: # replace Mock function names signature = re.sub('<Mock name=\'([^\']+)\'.*>', '\g<1>', signature) signature = re.sub('tensorflow', 'tf', signature) # add scope name to layer signatures: if hasattr(obj, 'use_scope') and hasattr(obj, 'symbolic_function'): if obj.use_scope: signature = signature[0] + 'scope_name, ' + signature[1:] elif obj.use_scope is None: signature = signature[0] + '[scope_name,] ' + signature[1:] # signature: arg list return signature, return_annotation _DEPRECATED_NAMES = set([ # deprecated stuff: 'TryResumeTraining', 'QueueInputTrainer', 'SimplePredictBuilder', 'LMDBDataPoint', 'TFRecordData', 'dump_dataflow_to_lmdb', 'dump_dataflow_to_tfrecord', # renamed stuff: 'DumpTensor', 'DumpParamAsImage', 'StagingInputWrapper', 'PeriodicRunHooks', 'get_nr_gpu', # deprecated or renamed symbolic code 'ImageSample', 'Deconv2D', 'get_scalar_var', 'psnr', 'prediction_incorrect', 'huber_loss', # internal only 'apply_default_prefetch', 'average_grads', 'aggregate_grads', 'allreduce_grads', 'PrefetchOnGPUs', ]) def autodoc_skip_member(app, what, name, obj, skip, options): # we hide something deliberately if getattr(obj, '__HIDE_SPHINX_DOC__', False): return True if name == '__init__': if obj.__doc__ and skip: # include_init_with_doc doesn't work well for decorated init # https://github.com/sphinx-doc/sphinx/issues/4258 return False # Hide some names that are deprecated or not intended to be used if name in _DEPRECATED_NAMES: return True if name in ['get_data', 'size', 'reset_state']: # skip these methods with empty docstring if not obj.__doc__ and inspect.isfunction(obj): # https://stackoverflow.com/questions/3589311/get-defining-class-of-unbound-method-object-in-python-3 cls = getattr(inspect.getmodule(obj), obj.__qualname__.split('.<locals>', 1)[0].rsplit('.', 1)[0]) if issubclass(cls, tensorpack.DataFlow): return True return None def url_resolver(url): if '.html' not in url: return "https://github.com/tensorpack/tensorpack/blob/master/" + url else: if ON_RTD: return "http://tensorpack.readthedocs.io/" + url else: return '/' + url def setup(app): from recommonmark.transform import AutoStructify app.connect('autodoc-process-signature', process_signature) app.connect('autodoc-skip-member', autodoc_skip_member) app.add_config_value( 'recommonmark_config', {'url_resolver': url_resolver, 'auto_toc_tree_section': 'Contents', 'enable_math': True, 'enable_inline_math': True, 'enable_eval_rst': True }, True) app.add_transform(AutoStructify)
32.518519
113
0.692981
793e876da4c6cb416ff291ce78dc2293f7f6312a
1,123
py
Python
satflow/run.py
lewtun/satflow
6a675e4fa921b4dd023361b55cc2a5fa25b8f8ed
[ "MIT" ]
null
null
null
satflow/run.py
lewtun/satflow
6a675e4fa921b4dd023361b55cc2a5fa25b8f8ed
[ "MIT" ]
null
null
null
satflow/run.py
lewtun/satflow
6a675e4fa921b4dd023361b55cc2a5fa25b8f8ed
[ "MIT" ]
null
null
null
import os os.environ["HYDRA_FULL_ERROR"] = "1" import dotenv import hydra from omegaconf import DictConfig # load environment variables from `.env` file if it exists # recursively searches for `.env` in all folders starting from work dir dotenv.load_dotenv(override=True) @hydra.main(config_path="configs/", config_name="config.yaml") def main(config: DictConfig): # Imports should be nested inside @hydra.main to optimize tab completion # Read more here: https://github.com/facebookresearch/hydra/issues/934 from satflow.core import utils from satflow.experiments.pl_train import train # A couple of optional utilities: # - disabling python warnings # - easier access to debug mode # - forcing debug friendly configuration # - forcing multi-gpu friendly configuration # You can safely get rid of this line if you don't want those utils.extras(config) # # Pretty print config using Rich library if config.get("print_config"): utils.print_config(config, resolve=True) # Train model return train(config) if __name__ == "__main__": main()
27.390244
76
0.723063
793e87e43756e35447b43ebef01209bf3cb56a58
946
py
Python
ssepaperless/Organizer/urls.py
michaelkressaty/ssepaperless
d536f9106fd499e664d3c03fb6331b4feb1cc4ca
[ "BSD-3-Clause" ]
null
null
null
ssepaperless/Organizer/urls.py
michaelkressaty/ssepaperless
d536f9106fd499e664d3c03fb6331b4feb1cc4ca
[ "BSD-3-Clause" ]
null
null
null
ssepaperless/Organizer/urls.py
michaelkressaty/ssepaperless
d536f9106fd499e664d3c03fb6331b4feb1cc4ca
[ "BSD-3-Clause" ]
null
null
null
from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^(?P<department_id>[0-9]+)/$', views.index2, name='index2'), url(r'^(?P<department_id>[0-9]+)/Advisor/(?P<advisor_id>[0-9]+)/$' , views.advisorinfo, name= 'advisorinfo'), url(r'^(?P<department_id>[0-9]+)/Advisor/(?P<advisor_id>[0-9]+)/Students/$', views.detail, name='detail'), url(r'^(?P<department_id>[0-9]+)/Advisor/(?P<advisor_id>[0-9]+)/Degrees/$', views.advisordegree, name='advisordegree'), # ex: /polls/5/results/ url(r'^(?P<department_id>[0-9]+)/Degree/(?P<degree_id>[0-9]+)/$', views.degree, name='degree'), url(r'^(?P<department_id>[0-9]+)/Certificate/(?P<certificate_id>[0-9]+)/$', views.certificate, name='certificate'), # ex: /polls/5/vote/ url(r'^Degree/(?P<degree_id>[0-9]+)/Courses/(?P<degree_core_course_structure_id>[0-9]+)/$', views.coursedegree, name='coursedegree'), ]
59.125
137
0.634249
793e888b5ae5bf4a2f4ef1efef04be3249969d52
359
py
Python
cloudstore/apps/api/migrations/0004_auto_20200823_2216.py
JonasUJ/cloudstore
33dd9eb2a92c75d4f2034c07dc1c6f1d6d8d845d
[ "MIT" ]
null
null
null
cloudstore/apps/api/migrations/0004_auto_20200823_2216.py
JonasUJ/cloudstore
33dd9eb2a92c75d4f2034c07dc1c6f1d6d8d845d
[ "MIT" ]
null
null
null
cloudstore/apps/api/migrations/0004_auto_20200823_2216.py
JonasUJ/cloudstore
33dd9eb2a92c75d4f2034c07dc1c6f1d6d8d845d
[ "MIT" ]
1
2020-10-08T19:53:21.000Z
2020-10-08T19:53:21.000Z
# Generated by Django 3.0.8 on 2020-08-23 20:16 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('api', '0003_auto_20200802_1500'), ] operations = [ migrations.RenameField( model_name='folder', old_name='parent', new_name='folder', ), ]
18.894737
47
0.579387
793e89591d849b89e64dc0b66300d2432fb4e950
632
py
Python
nyc_data/manage.py
nyccto-rapicastillo/nyc-ppe
e6d5ba45cf2815f7659298103d3b5bc7210ed8cf
[ "MIT" ]
3
2020-04-16T03:24:17.000Z
2020-09-11T22:12:31.000Z
nyc_data/manage.py
nyccto-rapicastillo/nyc-ppe
e6d5ba45cf2815f7659298103d3b5bc7210ed8cf
[ "MIT" ]
47
2020-04-10T20:02:09.000Z
2021-09-08T02:05:09.000Z
nyc_data/manage.py
nyccto-rapicastillo/nyc-ppe
e6d5ba45cf2815f7659298103d3b5bc7210ed8cf
[ "MIT" ]
1
2020-04-22T19:10:24.000Z
2020-04-22T19:10:24.000Z
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault("DJANGO_SETTINGS_MODULE", "nyc_data.settings.dev") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == "__main__": main()
28.727273
76
0.683544
793e89e1fd4d571e4f2b0c95fc34b2eff7c1130f
978
py
Python
tabpy/tabpy_server/handlers/service_info_handler.py
phantomcosmonaut/TabPy
43cce449cdcb5c99202d68f1a6af4d355d3e3734
[ "MIT" ]
null
null
null
tabpy/tabpy_server/handlers/service_info_handler.py
phantomcosmonaut/TabPy
43cce449cdcb5c99202d68f1a6af4d355d3e3734
[ "MIT" ]
null
null
null
tabpy/tabpy_server/handlers/service_info_handler.py
phantomcosmonaut/TabPy
43cce449cdcb5c99202d68f1a6af4d355d3e3734
[ "MIT" ]
null
null
null
import json from tabpy.tabpy_server.app.SettingsParameters import SettingsParameters from tabpy.tabpy_server.handlers.management_handler import ManagementHandler class ServiceInfoHandler(ManagementHandler): def initialize(self, app): super(ServiceInfoHandler, self).initialize(app) def get(self): # do not check for authentication - this method # is the only way for client to collect info about # supported API versions and required features self._add_CORS_header() info = {} info["description"] = self.tabpy_state.get_description() info["creation_time"] = self.tabpy_state.creation_time info["state_path"] = self.settings[SettingsParameters.StateFilePath] info["server_version"] = self.settings[SettingsParameters.ServerVersion] info["name"] = self.tabpy_state.name info["versions"] = self.settings[SettingsParameters.ApiVersions] self.finish(json.dumps(info))
42.521739
80
0.721881
793e8b1020aa202f8bae68561a80bba9afe4b12a
63,065
py
Python
mlflow/tracking/fluent.py
devlibx/mlflowx
291c51161ec26450b1e79c8e4a32af960da79591
[ "Apache-2.0" ]
1
2021-12-13T20:52:08.000Z
2021-12-13T20:52:08.000Z
mlflow/tracking/fluent.py
devlibx/mlflowx
291c51161ec26450b1e79c8e4a32af960da79591
[ "Apache-2.0" ]
9
2021-08-04T06:41:49.000Z
2022-01-10T10:10:52.000Z
mlflow/tracking/fluent.py
devlibx/mlflowx
291c51161ec26450b1e79c8e4a32af960da79591
[ "Apache-2.0" ]
1
2021-03-01T10:09:32.000Z
2021-03-01T10:09:32.000Z
""" Internal module implementing the fluent API, allowing management of an active MLflow run. This module is exposed to users at the top-level :py:mod:`mlflow` module. """ import os import atexit import time import logging import inspect from packaging.version import Version from typing import Any, Dict, List, Optional, Union, TYPE_CHECKING from mlflow.entities import Experiment, Run, RunInfo, RunStatus, Param, RunTag, Metric, ViewType from mlflow.entities.lifecycle_stage import LifecycleStage from mlflow.exceptions import MlflowException from mlflow.protos.databricks_pb2 import ( INVALID_PARAMETER_VALUE, RESOURCE_DOES_NOT_EXIST, ) from mlflow.tracking.client import MlflowClient from mlflow.tracking import artifact_utils, _get_store from mlflow.tracking.context import registry as context_registry from mlflow.store.tracking import SEARCH_MAX_RESULTS_DEFAULT from mlflow.utils import env from mlflow.utils.autologging_utils import ( is_testing, autologging_integration, AUTOLOGGING_INTEGRATIONS, autologging_is_disabled, ) from mlflow.utils.databricks_utils import is_in_databricks_notebook, get_notebook_id from mlflow.utils.import_hooks import register_post_import_hook from mlflow.utils.mlflow_tags import MLFLOW_PARENT_RUN_ID, MLFLOW_RUN_NAME from mlflow.utils.validation import _validate_run_id if TYPE_CHECKING: import pandas # pylint: disable=unused-import import matplotlib # pylint: disable=unused-import import plotly # pylint: disable=unused-import import numpy # pylint: disable=unused-import import PIL # pylint: disable=unused-import _EXPERIMENT_ID_ENV_VAR = "MLFLOW_EXPERIMENT_ID" _EXPERIMENT_NAME_ENV_VAR = "MLFLOW_EXPERIMENT_NAME" _RUN_ID_ENV_VAR = "MLFLOW_RUN_ID" _active_run_stack = [] _active_experiment_id = None SEARCH_MAX_RESULTS_PANDAS = 100000 NUM_RUNS_PER_PAGE_PANDAS = 10000 _logger = logging.getLogger(__name__) def set_experiment(experiment_name: str = None, experiment_id: str = None) -> None: """ Set the given experiment as the active experiment. The experiment must either be specified by name via `experiment_name` or by ID via `experiment_id`. The experiment name and ID cannot both be specified. :param experiment_name: Case sensitive name of the experiment to be activated. If an experiment with this name does not exist, a new experiment wth this name is created. :param experiment_id: ID of the experiment to be activated. If an experiment with this ID does not exist, an exception is thrown. :return: An instance of :py:class:`mlflow.entities.Experiment` representing the new active experiment. .. code-block:: python :caption: Example import mlflow # Set an experiment name, which must be unique and case sensitive. mlflow.set_experiment("Social NLP Experiments") # Get Experiment Details experiment = mlflow.get_experiment_by_name("Social NLP Experiments") print("Experiment_id: {}".format(experiment.experiment_id)) print("Artifact Location: {}".format(experiment.artifact_location)) print("Tags: {}".format(experiment.tags)) print("Lifecycle_stage: {}".format(experiment.lifecycle_stage)) .. code-block:: text :caption: Output Experiment_id: 1 Artifact Location: file:///.../mlruns/1 Tags: {} Lifecycle_stage: active """ if (experiment_name is not None and experiment_id is not None) or ( experiment_name is None and experiment_id is None ): raise MlflowException( message="Must specify exactly one of: `experiment_id` or `experiment_name`.", error_code=INVALID_PARAMETER_VALUE, ) client = MlflowClient() if experiment_id is None: experiment = client.get_experiment_by_name(experiment_name) if not experiment: _logger.info( "Experiment with name '%s' does not exist. Creating a new experiment.", experiment_name, ) # NB: If two simultaneous threads or processes attempt to set the same experiment # simultaneously, a race condition may be encountered here wherein experiment creation # fails experiment_id = client.create_experiment(experiment_name) experiment = client.get_experiment(experiment_id) else: experiment = client.get_experiment(experiment_id) if experiment is None: raise MlflowException( message=f"Experiment with ID '{experiment_id}' does not exist.", error_code=RESOURCE_DOES_NOT_EXIST, ) if experiment.lifecycle_stage != LifecycleStage.ACTIVE: raise MlflowException( message=( "Cannot set a deleted experiment '%s' as the active experiment." " You can restore the experiment, or permanently delete the " " experiment to create a new one." % experiment.name ), error_code=INVALID_PARAMETER_VALUE, ) global _active_experiment_id _active_experiment_id = experiment.experiment_id return experiment class ActiveRun(Run): # pylint: disable=W0223 """Wrapper around :py:class:`mlflow.entities.Run` to enable using Python ``with`` syntax.""" def __init__(self, run): Run.__init__(self, run.info, run.data) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): status = RunStatus.FINISHED if exc_type is None else RunStatus.FAILED end_run(RunStatus.to_string(status)) return exc_type is None def start_run( run_id: str = None, experiment_id: Optional[str] = None, run_name: Optional[str] = None, nested: bool = False, tags: Optional[Dict[str, Any]] = None, ) -> ActiveRun: """ Start a new MLflow run, setting it as the active run under which metrics and parameters will be logged. The return value can be used as a context manager within a ``with`` block; otherwise, you must call ``end_run()`` to terminate the current run. If you pass a ``run_id`` or the ``MLFLOW_RUN_ID`` environment variable is set, ``start_run`` attempts to resume a run with the specified run ID and other parameters are ignored. ``run_id`` takes precedence over ``MLFLOW_RUN_ID``. If resuming an existing run, the run status is set to ``RunStatus.RUNNING``. MLflow sets a variety of default tags on the run, as defined in :ref:`MLflow system tags <system_tags>`. :param run_id: If specified, get the run with the specified UUID and log parameters and metrics under that run. The run's end time is unset and its status is set to running, but the run's other attributes (``source_version``, ``source_type``, etc.) are not changed. :param experiment_id: ID of the experiment under which to create the current run (applicable only when ``run_id`` is not specified). If ``experiment_id`` argument is unspecified, will look for valid experiment in the following order: activated using ``set_experiment``, ``MLFLOW_EXPERIMENT_NAME`` environment variable, ``MLFLOW_EXPERIMENT_ID`` environment variable, or the default experiment as defined by the tracking server. :param run_name: Name of new run (stored as a ``mlflow.runName`` tag). Used only when ``run_id`` is unspecified. :param nested: Controls whether run is nested in parent run. ``True`` creates a nested run. :param tags: An optional dictionary of string keys and values to set as tags on the run. If a run is being resumed, these tags are set on the resumed run. If a new run is being created, these tags are set on the new run. :return: :py:class:`mlflow.ActiveRun` object that acts as a context manager wrapping the run's state. .. code-block:: python :caption: Example import mlflow # Create nested runs with mlflow.start_run(run_name='PARENT_RUN') as parent_run: mlflow.log_param("parent", "yes") with mlflow.start_run(run_name='CHILD_RUN', nested=True) as child_run: mlflow.log_param("child", "yes") print("parent run_id: {}".format(parent_run.info.run_id)) print("child run_id : {}".format(child_run.info.run_id)) print("--") # Search all child runs with a parent id query = "tags.mlflow.parentRunId = '{}'".format(parent_run.info.run_id) results = mlflow.search_runs(filter_string=query) print(results[["run_id", "params.child", "tags.mlflow.runName"]]) .. code-block:: text :caption: Output parent run_id: 5ec0e7ae18f54c2694ffb48c2fccf25c child run_id : 78b3b0d264b44cd29e8dc389749bb4be -- run_id params.child tags.mlflow.runName 0 78b3b0d264b44cd29e8dc389749bb4be yes CHILD_RUN """ global _active_run_stack # back compat for int experiment_id experiment_id = str(experiment_id) if isinstance(experiment_id, int) else experiment_id if len(_active_run_stack) > 0 and not nested: raise Exception( ( "Run with UUID {} is already active. To start a new run, first end the " + "current run with mlflow.end_run(). To start a nested " + "run, call start_run with nested=True" ).format(_active_run_stack[0].info.run_id) ) client = MlflowClient() if run_id: existing_run_id = run_id elif _RUN_ID_ENV_VAR in os.environ: existing_run_id = os.environ[_RUN_ID_ENV_VAR] del os.environ[_RUN_ID_ENV_VAR] else: existing_run_id = None if existing_run_id: _validate_run_id(existing_run_id) active_run_obj = client.get_run(existing_run_id) # Check to see if experiment_id from environment matches experiment_id from set_experiment() if ( _active_experiment_id is not None and _active_experiment_id != active_run_obj.info.experiment_id ): raise MlflowException( "Cannot start run with ID {} because active run ID " "does not match environment run ID. Make sure --experiment-name " "or --experiment-id matches experiment set with " "set_experiment(), or just use command-line " "arguments".format(existing_run_id) ) # Check to see if current run isn't deleted if active_run_obj.info.lifecycle_stage == LifecycleStage.DELETED: raise MlflowException( "Cannot start run with ID {} because it is in the " "deleted state.".format(existing_run_id) ) # Use previous end_time because a value is required for update_run_info end_time = active_run_obj.info.end_time _get_store().update_run_info( existing_run_id, run_status=RunStatus.RUNNING, end_time=end_time ) if tags: client.log_batch( run_id=existing_run_id, tags=[RunTag(key, str(value)) for key, value in tags.items()], ) active_run_obj = client.get_run(existing_run_id) else: if len(_active_run_stack) > 0: parent_run_id = _active_run_stack[-1].info.run_id else: parent_run_id = None exp_id_for_run = experiment_id if experiment_id is not None else _get_experiment_id() user_specified_tags = tags or {} if parent_run_id is not None: user_specified_tags[MLFLOW_PARENT_RUN_ID] = parent_run_id if run_name is not None: user_specified_tags[MLFLOW_RUN_NAME] = run_name tags = context_registry.resolve_tags(user_specified_tags) active_run_obj = client.create_run(experiment_id=exp_id_for_run, tags=tags) _active_run_stack.append(ActiveRun(active_run_obj)) return _active_run_stack[-1] def end_run(status: str = RunStatus.to_string(RunStatus.FINISHED)) -> None: """End an active MLflow run (if there is one). .. code-block:: python :caption: Example import mlflow # Start run and get status mlflow.start_run() run = mlflow.active_run() print("run_id: {}; status: {}".format(run.info.run_id, run.info.status)) # End run and get status mlflow.end_run() run = mlflow.get_run(run.info.run_id) print("run_id: {}; status: {}".format(run.info.run_id, run.info.status)) print("--") # Check for any active runs print("Active run: {}".format(mlflow.active_run())) .. code-block:: text :caption: Output run_id: b47ee4563368419880b44ad8535f6371; status: RUNNING run_id: b47ee4563368419880b44ad8535f6371; status: FINISHED -- Active run: None """ global _active_run_stack if len(_active_run_stack) > 0: # Clear out the global existing run environment variable as well. env.unset_variable(_RUN_ID_ENV_VAR) run = _active_run_stack.pop() MlflowClient().set_terminated(run.info.run_id, status) atexit.register(end_run) def active_run() -> Optional[ActiveRun]: """Get the currently active ``Run``, or None if no such run exists. **Note**: You cannot access currently-active run attributes (parameters, metrics, etc.) through the run returned by ``mlflow.active_run``. In order to access such attributes, use the :py:class:`mlflow.tracking.MlflowClient` as follows: .. code-block:: python :caption: Example import mlflow mlflow.start_run() run = mlflow.active_run() print("Active run_id: {}".format(run.info.run_id)) mlflow.end_run() .. code-block:: text :caption: Output Active run_id: 6f252757005748708cd3aad75d1ff462 """ return _active_run_stack[-1] if len(_active_run_stack) > 0 else None def get_run(run_id: str) -> Run: """ Fetch the run from backend store. The resulting :py:class:`Run <mlflow.entities.Run>` contains a collection of run metadata -- :py:class:`RunInfo <mlflow.entities.RunInfo>`, as well as a collection of run parameters, tags, and metrics -- :py:class:`RunData <mlflow.entities.RunData>`. In the case where multiple metrics with the same key are logged for the run, the :py:class:`RunData <mlflow.entities.RunData>` contains the most recently logged value at the largest step for each metric. :param run_id: Unique identifier for the run. :return: A single :py:class:`mlflow.entities.Run` object, if the run exists. Otherwise, raises an exception. .. code-block:: python :caption: Example import mlflow with mlflow.start_run() as run: mlflow.log_param("p", 0) run_id = run.info.run_id print("run_id: {}; lifecycle_stage: {}".format(run_id, mlflow.get_run(run_id).info.lifecycle_stage)) .. code-block:: text :caption: Output run_id: 7472befefc754e388e8e922824a0cca5; lifecycle_stage: active """ return MlflowClient().get_run(run_id) def log_param(key: str, value: Any) -> None: """ Log a parameter under the current run. If no run is active, this method will create a new active run. :param key: Parameter name (string). This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to length 250, but some may support larger keys. :param value: Parameter value (string, but will be string-ified if not). All backend stores will support values up to length 5000, but some may support larger values. .. code-block:: python :caption: Example import mlflow with mlflow.start_run(): mlflow.log_param("learning_rate", 0.01) """ run_id = _get_or_start_run().info.run_id MlflowClient().log_param(run_id, key, value) def set_tag(key: str, value: Any) -> None: """ Set a tag under the current run. If no run is active, this method will create a new active run. :param key: Tag name (string). This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to length 250, but some may support larger keys. :param value: Tag value (string, but will be string-ified if not). All backend stores will support values up to length 5000, but some may support larger values. .. code-block:: python :caption: Example import mlflow with mlflow.start_run(): mlflow.set_tag("release.version", "2.2.0") """ run_id = _get_or_start_run().info.run_id MlflowClient().set_tag(run_id, key, value) def delete_tag(key: str) -> None: """ Delete a tag from a run. This is irreversible. If no run is active, this method will create a new active run. :param key: Name of the tag .. code-block:: python :caption: Example import mlflow tags = {"engineering": "ML Platform", "engineering_remote": "ML Platform"} with mlflow.start_run() as run: mlflow.set_tags(tags) with mlflow.start_run(run_id=run.info.run_id): mlflow.delete_tag("engineering_remote") """ run_id = _get_or_start_run().info.run_id MlflowClient().delete_tag(run_id, key) def log_metric(key: str, value: float, step: Optional[int] = None) -> None: """ Log a metric under the current run. If no run is active, this method will create a new active run. :param key: Metric name (string). This string may only contain alphanumerics, underscores (_), dashes (-), periods (.), spaces ( ), and slashes (/). All backend stores will support keys up to length 250, but some may support larger keys. :param value: Metric value (float). Note that some special values such as +/- Infinity may be replaced by other values depending on the store. For example, the SQLAlchemy store replaces +/- Infinity with max / min float values. All backend stores will support values up to length 5000, but some may support larger values. :param step: Metric step (int). Defaults to zero if unspecified. .. code-block:: python :caption: Example import mlflow with mlflow.start_run(): mlflow.log_metric("mse", 2500.00) """ run_id = _get_or_start_run().info.run_id MlflowClient().log_metric(run_id, key, value, int(time.time() * 1000), step or 0) def log_metrics(metrics: Dict[str, float], step: Optional[int] = None) -> None: """ Log multiple metrics for the current run. If no run is active, this method will create a new active run. :param metrics: Dictionary of metric_name: String -> value: Float. Note that some special values such as +/- Infinity may be replaced by other values depending on the store. For example, sql based store may replace +/- Infinity with max / min float values. :param step: A single integer step at which to log the specified Metrics. If unspecified, each metric is logged at step zero. :returns: None .. code-block:: python :caption: Example import mlflow metrics = {"mse": 2500.00, "rmse": 50.00} # Log a batch of metrics with mlflow.start_run(): mlflow.log_metrics(metrics) """ run_id = _get_or_start_run().info.run_id timestamp = int(time.time() * 1000) metrics_arr = [Metric(key, value, timestamp, step or 0) for key, value in metrics.items()] MlflowClient().log_batch(run_id=run_id, metrics=metrics_arr, params=[], tags=[]) def log_params(params: Dict[str, Any]) -> None: """ Log a batch of params for the current run. If no run is active, this method will create a new active run. :param params: Dictionary of param_name: String -> value: (String, but will be string-ified if not) :returns: None .. code-block:: python :caption: Example import mlflow params = {"learning_rate": 0.01, "n_estimators": 10} # Log a batch of parameters with mlflow.start_run(): mlflow.log_params(params) """ run_id = _get_or_start_run().info.run_id params_arr = [Param(key, str(value)) for key, value in params.items()] MlflowClient().log_batch(run_id=run_id, metrics=[], params=params_arr, tags=[]) def set_tags(tags: Dict[str, Any]) -> None: """ Log a batch of tags for the current run. If no run is active, this method will create a new active run. :param tags: Dictionary of tag_name: String -> value: (String, but will be string-ified if not) :returns: None .. code-block:: python :caption: Example import mlflow tags = {"engineering": "ML Platform", "release.candidate": "RC1", "release.version": "2.2.0"} # Set a batch of tags with mlflow.start_run(): mlflow.set_tags(tags) """ run_id = _get_or_start_run().info.run_id tags_arr = [RunTag(key, str(value)) for key, value in tags.items()] MlflowClient().log_batch(run_id=run_id, metrics=[], params=[], tags=tags_arr) def log_artifact(local_path: str, artifact_path: Optional[str] = None) -> None: """ Log a local file or directory as an artifact of the currently active run. If no run is active, this method will create a new active run. :param local_path: Path to the file to write. :param artifact_path: If provided, the directory in ``artifact_uri`` to write to. .. code-block:: python :caption: Example import mlflow # Create a features.txt artifact file features = "rooms, zipcode, median_price, school_rating, transport" with open("features.txt", 'w') as f: f.write(features) # With artifact_path=None write features.txt under # root artifact_uri/artifacts directory with mlflow.start_run(): mlflow.log_artifact("features.txt") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_artifact(run_id, local_path, artifact_path) def log_artifacts(local_dir: str, artifact_path: Optional[str] = None) -> None: """ Log all the contents of a local directory as artifacts of the run. If no run is active, this method will create a new active run. :param local_dir: Path to the directory of files to write. :param artifact_path: If provided, the directory in ``artifact_uri`` to write to. .. code-block:: python :caption: Example import os import mlflow # Create some files to preserve as artifacts features = "rooms, zipcode, median_price, school_rating, transport" data = {"state": "TX", "Available": 25, "Type": "Detached"} # Create couple of artifact files under the directory "data" os.makedirs("data", exist_ok=True) with open("data/data.json", 'w', encoding='utf-8') as f: json.dump(data, f, indent=2) with open("data/features.txt", 'w') as f: f.write(features) # Write all files in "data" to root artifact_uri/states with mlflow.start_run(): mlflow.log_artifacts("data", artifact_path="states") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_artifacts(run_id, local_dir, artifact_path) def log_text(text: str, artifact_file: str) -> None: """ Log text as an artifact. :param text: String containing text to log. :param artifact_file: The run-relative artifact file path in posixpath format to which the text is saved (e.g. "dir/file.txt"). .. code-block:: python :caption: Example import mlflow with mlflow.start_run(): # Log text to a file under the run's root artifact directory mlflow.log_text("text1", "file1.txt") # Log text in a subdirectory of the run's root artifact directory mlflow.log_text("text2", "dir/file2.txt") # Log HTML text mlflow.log_text("<h1>header</h1>", "index.html") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_text(run_id, text, artifact_file) def log_dict(dictionary: Any, artifact_file: str) -> None: """ Log a JSON/YAML-serializable object (e.g. `dict`) as an artifact. The serialization format (JSON or YAML) is automatically inferred from the extension of `artifact_file`. If the file extension doesn't exist or match any of [".json", ".yml", ".yaml"], JSON format is used. :param dictionary: Dictionary to log. :param artifact_file: The run-relative artifact file path in posixpath format to which the dictionary is saved (e.g. "dir/data.json"). .. code-block:: python :caption: Example import mlflow dictionary = {"k": "v"} with mlflow.start_run(): # Log a dictionary as a JSON file under the run's root artifact directory mlflow.log_dict(dictionary, "data.json") # Log a dictionary as a YAML file in a subdirectory of the run's root artifact directory mlflow.log_dict(dictionary, "dir/data.yml") # If the file extension doesn't exist or match any of [".json", ".yaml", ".yml"], # JSON format is used. mlflow.log_dict(dictionary, "data") mlflow.log_dict(dictionary, "data.txt") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_dict(run_id, dictionary, artifact_file) def log_figure( figure: Union["matplotlib.figure.Figure", "plotly.graph_objects.Figure"], artifact_file: str ) -> None: """ Log a figure as an artifact. The following figure objects are supported: - `matplotlib.figure.Figure`_ - `plotly.graph_objects.Figure`_ .. _matplotlib.figure.Figure: https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html .. _plotly.graph_objects.Figure: https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html :param figure: Figure to log. :param artifact_file: The run-relative artifact file path in posixpath format to which the figure is saved (e.g. "dir/file.png"). .. code-block:: python :caption: Matplotlib Example import mlflow import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.plot([0, 1], [2, 3]) with mlflow.start_run(): mlflow.log_figure(fig, "figure.png") .. code-block:: python :caption: Plotly Example import mlflow from plotly import graph_objects as go fig = go.Figure(go.Scatter(x=[0, 1], y=[2, 3])) with mlflow.start_run(): mlflow.log_figure(fig, "figure.html") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_figure(run_id, figure, artifact_file) def log_image(image: Union["numpy.ndarray", "PIL.Image.Image"], artifact_file: str) -> None: """ Log an image as an artifact. The following image objects are supported: - `numpy.ndarray`_ - `PIL.Image.Image`_ .. _numpy.ndarray: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html .. _PIL.Image.Image: https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image Numpy array support - data type (( ) represents a valid value range): - bool - integer (0 ~ 255) - unsigned integer (0 ~ 255) - float (0.0 ~ 1.0) .. warning:: - Out-of-range integer values will be **clipped** to [0, 255]. - Out-of-range float values will be **clipped** to [0, 1]. - shape (H: height, W: width): - H x W (Grayscale) - H x W x 1 (Grayscale) - H x W x 3 (an RGB channel order is assumed) - H x W x 4 (an RGBA channel order is assumed) :param image: Image to log. :param artifact_file: The run-relative artifact file path in posixpath format to which the image is saved (e.g. "dir/image.png"). .. code-block:: python :caption: Numpy Example import mlflow import numpy as np image = np.random.randint(0, 256, size=(100, 100, 3), dtype=np.uint8) with mlflow.start_run(): mlflow.log_image(image, "image.png") .. code-block:: python :caption: Pillow Example import mlflow from PIL import Image image = Image.new("RGB", (100, 100)) with mlflow.start_run(): mlflow.log_image(image, "image.png") """ run_id = _get_or_start_run().info.run_id MlflowClient().log_image(run_id, image, artifact_file) def _record_logged_model(mlflow_model): run_id = _get_or_start_run().info.run_id MlflowClient()._record_logged_model(run_id, mlflow_model) def get_experiment(experiment_id: str) -> Experiment: """ Retrieve an experiment by experiment_id from the backend store :param experiment_id: The string-ified experiment ID returned from ``create_experiment``. :return: :py:class:`mlflow.entities.Experiment` .. code-block:: python :caption: Example import mlflow experiment = mlflow.get_experiment("0") print("Name: {}".format(experiment.name)) print("Artifact Location: {}".format(experiment.artifact_location)) print("Tags: {}".format(experiment.tags)) print("Lifecycle_stage: {}".format(experiment.lifecycle_stage)) .. code-block:: text :caption: Output Name: Default Artifact Location: file:///.../mlruns/0 Tags: {} Lifecycle_stage: active """ return MlflowClient().get_experiment(experiment_id) def get_experiment_by_name(name: str) -> Optional[Experiment]: """ Retrieve an experiment by experiment name from the backend store :param name: The case senstive experiment name. :return: An instance of :py:class:`mlflow.entities.Experiment` if an experiment with the specified name exists, otherwise None. .. code-block:: python :caption: Example import mlflow # Case sensitive name experiment = mlflow.get_experiment_by_name("Default") print("Experiment_id: {}".format(experiment.experiment_id)) print("Artifact Location: {}".format(experiment.artifact_location)) print("Tags: {}".format(experiment.tags)) print("Lifecycle_stage: {}".format(experiment.lifecycle_stage)) .. code-block:: text :caption: Output Experiment_id: 0 Artifact Location: file:///.../mlruns/0 Tags: {} Lifecycle_stage: active """ return MlflowClient().get_experiment_by_name(name) def list_experiments( view_type: int = ViewType.ACTIVE_ONLY, max_results: Optional[int] = None, ) -> List[Experiment]: """ :param view_type: Qualify requested type of experiments. :param max_results: If passed, specifies the maximum number of experiments desired. If not passed, all experiments will be returned. :return: A list of :py:class:`Experiment <mlflow.entities.Experiment>` objects. """ def pagination_wrapper_func(number_to_get, next_page_token): return MlflowClient().list_experiments( view_type=view_type, max_results=number_to_get, page_token=next_page_token, ) return _paginate(pagination_wrapper_func, SEARCH_MAX_RESULTS_DEFAULT, max_results) def create_experiment( name: str, artifact_location: Optional[str] = None, tags: Optional[Dict[str, Any]] = None, ) -> str: """ Create an experiment. :param name: The experiment name, which must be unique and is case sensitive :param artifact_location: The location to store run artifacts. If not provided, the server picks an appropriate default. :param tags: An optional dictionary of string keys and values to set as tags on the experiment. :return: String ID of the created experiment. .. code-block:: python :caption: Example import mlflow # Create an experiment name, which must be unique and case sensitive experiment_id = mlflow.create_experiment("Social NLP Experiments") experiment = mlflow.get_experiment(experiment_id) print("Name: {}".format(experiment.name)) print("Experiment_id: {}".format(experiment.experiment_id)) print("Artifact Location: {}".format(experiment.artifact_location)) print("Tags: {}".format(experiment.tags)) print("Lifecycle_stage: {}".format(experiment.lifecycle_stage)) .. code-block:: text :caption: Output Name: Social NLP Experiments Experiment_id: 1 Artifact Location: file:///.../mlruns/1 Tags= {} Lifecycle_stage: active """ return MlflowClient().create_experiment(name, artifact_location, tags) def delete_experiment(experiment_id: str) -> None: """ Delete an experiment from the backend store. :param experiment_id: The The string-ified experiment ID returned from ``create_experiment``. .. code-block:: python :caption: Example import mlflow experiment_id = mlflow.create_experiment("New Experiment") mlflow.delete_experiment(experiment_id) # Examine the deleted experiment details. experiment = mlflow.get_experiment(experiment_id) print("Name: {}".format(experiment.name)) print("Artifact Location: {}".format(experiment.artifact_location)) print("Lifecycle_stage: {}".format(experiment.lifecycle_stage)) .. code-block:: text :caption: Output Name: New Experiment Artifact Location: file:///.../mlruns/2 Lifecycle_stage: deleted """ MlflowClient().delete_experiment(experiment_id) def delete_run(run_id: str) -> None: """ Deletes a run with the given ID. :param run_id: Unique identifier for the run to delete. .. code-block:: python :caption: Example import mlflow with mlflow.start_run() as run: mlflow.log_param("p", 0) run_id = run.info.run_id mlflow.delete_run(run_id) print("run_id: {}; lifecycle_stage: {}".format(run_id, mlflow.get_run(run_id).info.lifecycle_stage)) .. code-block:: text :caption: Output run_id: 45f4af3e6fd349e58579b27fcb0b8277; lifecycle_stage: deleted """ MlflowClient().delete_run(run_id) def get_artifact_uri(artifact_path: Optional[str] = None) -> str: """ Get the absolute URI of the specified artifact in the currently active run. If `path` is not specified, the artifact root URI of the currently active run will be returned; calls to ``log_artifact`` and ``log_artifacts`` write artifact(s) to subdirectories of the artifact root URI. If no run is active, this method will create a new active run. :param artifact_path: The run-relative artifact path for which to obtain an absolute URI. For example, "path/to/artifact". If unspecified, the artifact root URI for the currently active run will be returned. :return: An *absolute* URI referring to the specified artifact or the currently adtive run's artifact root. For example, if an artifact path is provided and the currently active run uses an S3-backed store, this may be a uri of the form ``s3://<bucket_name>/path/to/artifact/root/path/to/artifact``. If an artifact path is not provided and the currently active run uses an S3-backed store, this may be a URI of the form ``s3://<bucket_name>/path/to/artifact/root``. .. code-block:: python :caption: Example import mlflow features = "rooms, zipcode, median_price, school_rating, transport" with open("features.txt", 'w') as f: f.write(features) # Log the artifact in a directory "features" under the root artifact_uri/features with mlflow.start_run(): mlflow.log_artifact("features.txt", artifact_path="features") # Fetch the artifact uri root directory artifact_uri = mlflow.get_artifact_uri() print("Artifact uri: {}".format(artifact_uri)) # Fetch a specific artifact uri artifact_uri = mlflow.get_artifact_uri(artifact_path="features/features.txt") print("Artifact uri: {}".format(artifact_uri)) .. code-block:: text :caption: Output Artifact uri: file:///.../0/a46a80f1c9644bd8f4e5dd5553fffce/artifacts Artifact uri: file:///.../0/a46a80f1c9644bd8f4e5dd5553fffce/artifacts/features/features.txt """ return artifact_utils.get_artifact_uri( run_id=_get_or_start_run().info.run_id, artifact_path=artifact_path ) def search_runs( experiment_ids: Optional[List[str]] = None, filter_string: str = "", run_view_type: int = ViewType.ACTIVE_ONLY, max_results: int = SEARCH_MAX_RESULTS_PANDAS, order_by: Optional[List[str]] = None, output_format: str = "pandas", ) -> Union[List[Run], "pandas.DataFrame"]: """ Get a pandas DataFrame of runs that fit the search criteria. :param experiment_ids: List of experiment IDs. None will default to the active experiment. :param filter_string: Filter query string, defaults to searching all runs. :param run_view_type: one of enum values ``ACTIVE_ONLY``, ``DELETED_ONLY``, or ``ALL`` runs defined in :py:class:`mlflow.entities.ViewType`. :param max_results: The maximum number of runs to put in the dataframe. Default is 100,000 to avoid causing out-of-memory issues on the user's machine. :param order_by: List of columns to order by (e.g., "metrics.rmse"). The ``order_by`` column can contain an optional ``DESC`` or ``ASC`` value. The default is ``ASC``. The default ordering is to sort by ``start_time DESC``, then ``run_id``. :param output_format: The output format to be returned. If ``pandas``, a ``pandas.DataFrame`` is returned and, if ``list``, a list of :py:class:`mlflow.entities.Run` is returned. :return: If output_format is ``list``: a list of :py:class:`mlflow.entities.Run`. If output_format is ``pandas``: ``pandas.DataFrame`` of runs, where each metric, parameter, and tag is expanded into its own column named metrics.*, params.*, or tags.* respectively. For runs that don't have a particular metric, parameter, or tag, the value for the corresponding column is (NumPy) ``Nan``, ``None``, or ``None`` respectively. .. code-block:: python :caption: Example import mlflow # Create an experiment and log two runs under it experiment_id = mlflow.create_experiment("Social NLP Experiments") with mlflow.start_run(experiment_id=experiment_id): mlflow.log_metric("m", 1.55) mlflow.set_tag("s.release", "1.1.0-RC") with mlflow.start_run(experiment_id=experiment_id): mlflow.log_metric("m", 2.50) mlflow.set_tag("s.release", "1.2.0-GA") # Search all runs in experiment_id df = mlflow.search_runs([experiment_id], order_by=["metrics.m DESC"]) print(df[["metrics.m", "tags.s.release", "run_id"]]) print("--") # Search the experiment_id using a filter_string with tag # that has a case insensitive pattern filter_string = "tags.s.release ILIKE '%rc%'" df = mlflow.search_runs([experiment_id], filter_string=filter_string) print(df[["metrics.m", "tags.s.release", "run_id"]]) .. code-block:: text :caption: Output metrics.m tags.s.release run_id 0 2.50 1.2.0-GA 147eed886ab44633902cc8e19b2267e2 1 1.55 1.1.0-RC 5cc7feaf532f496f885ad7750809c4d4 -- metrics.m tags.s.release run_id 0 1.55 1.1.0-RC 5cc7feaf532f496f885ad7750809c4d4 """ if not experiment_ids: experiment_ids = _get_experiment_id() # Using an internal function as the linter doesn't like assigning a lambda, and inlining the # full thing is a mess def pagination_wrapper_func(number_to_get, next_page_token): return MlflowClient().search_runs( experiment_ids, filter_string, run_view_type, number_to_get, order_by, next_page_token, ) runs = _paginate(pagination_wrapper_func, NUM_RUNS_PER_PAGE_PANDAS, max_results) if output_format == "list": return runs # List[mlflow.entities.run.Run] elif output_format == "pandas": import numpy as np import pandas as pd info = { "run_id": [], "experiment_id": [], "status": [], "artifact_uri": [], "start_time": [], "end_time": [], } params, metrics, tags = ({}, {}, {}) PARAM_NULL, METRIC_NULL, TAG_NULL = (None, np.nan, None) for i, run in enumerate(runs): info["run_id"].append(run.info.run_id) info["experiment_id"].append(run.info.experiment_id) info["status"].append(run.info.status) info["artifact_uri"].append(run.info.artifact_uri) info["start_time"].append(pd.to_datetime(run.info.start_time, unit="ms", utc=True)) info["end_time"].append(pd.to_datetime(run.info.end_time, unit="ms", utc=True)) # Params param_keys = set(params.keys()) for key in param_keys: if key in run.data.params: params[key].append(run.data.params[key]) else: params[key].append(PARAM_NULL) new_params = set(run.data.params.keys()) - param_keys for p in new_params: params[p] = [PARAM_NULL] * i # Fill in null values for all previous runs params[p].append(run.data.params[p]) # Metrics metric_keys = set(metrics.keys()) for key in metric_keys: if key in run.data.metrics: metrics[key].append(run.data.metrics[key]) else: metrics[key].append(METRIC_NULL) new_metrics = set(run.data.metrics.keys()) - metric_keys for m in new_metrics: metrics[m] = [METRIC_NULL] * i metrics[m].append(run.data.metrics[m]) # Tags tag_keys = set(tags.keys()) for key in tag_keys: if key in run.data.tags: tags[key].append(run.data.tags[key]) else: tags[key].append(TAG_NULL) new_tags = set(run.data.tags.keys()) - tag_keys for t in new_tags: tags[t] = [TAG_NULL] * i tags[t].append(run.data.tags[t]) data = {} data.update(info) for key in metrics: data["metrics." + key] = metrics[key] for key in params: data["params." + key] = params[key] for key in tags: data["tags." + key] = tags[key] return pd.DataFrame(data) else: raise ValueError( "Unsupported output format: %s. Supported string values are 'pandas' or 'list'" % output_format ) def list_run_infos( experiment_id: str, run_view_type: int = ViewType.ACTIVE_ONLY, max_results: int = SEARCH_MAX_RESULTS_DEFAULT, order_by: Optional[List[str]] = None, ) -> List[RunInfo]: """ Return run information for runs which belong to the experiment_id. :param experiment_id: The experiment id which to search :param run_view_type: ACTIVE_ONLY, DELETED_ONLY, or ALL runs :param max_results: Maximum number of results desired. :param order_by: List of order_by clauses. Currently supported values are are ``metric.key``, ``parameter.key``, ``tag.key``, ``attribute.key``. For example, ``order_by=["tag.release ASC", "metric.click_rate DESC"]``. :return: A list of :py:class:`RunInfo <mlflow.entities.RunInfo>` objects that satisfy the search expressions. .. code-block:: python :caption: Example import mlflow from mlflow.entities import ViewType # Create two runs with mlflow.start_run() as run1: mlflow.log_param("p", 0) with mlflow.start_run() as run2: mlflow.log_param("p", 1) # Delete the last run mlflow.delete_run(run2.info.run_id) def print_run_infos(run_infos): for r in run_infos: print("- run_id: {}, lifecycle_stage: {}".format(r.run_id, r.lifecycle_stage)) print("Active runs:") print_run_infos(mlflow.list_run_infos("0", run_view_type=ViewType.ACTIVE_ONLY)) print("Deleted runs:") print_run_infos(mlflow.list_run_infos("0", run_view_type=ViewType.DELETED_ONLY)) print("All runs:") print_run_infos(mlflow.list_run_infos("0", run_view_type=ViewType.ALL)) .. code-block:: text :caption: Output Active runs: - run_id: 4937823b730640d5bed9e3e5057a2b34, lifecycle_stage: active Deleted runs: - run_id: b13f1badbed842cf9975c023d23da300, lifecycle_stage: deleted All runs: - run_id: b13f1badbed842cf9975c023d23da300, lifecycle_stage: deleted - run_id: 4937823b730640d5bed9e3e5057a2b34, lifecycle_stage: active """ # Using an internal function as the linter doesn't like assigning a lambda, and inlining the # full thing is a mess def pagination_wrapper_func(number_to_get, next_page_token): return MlflowClient().list_run_infos( experiment_id, run_view_type, number_to_get, order_by, next_page_token ) return _paginate(pagination_wrapper_func, SEARCH_MAX_RESULTS_DEFAULT, max_results) def _paginate(paginated_fn, max_results_per_page, max_results=None): """ Intended to be a general use pagination utility. :param paginated_fn: :type paginated_fn: This function is expected to take in the number of results to retrieve per page and a pagination token, and return a PagedList object :param max_results_per_page: :type max_results_per_page: The maximum number of results to retrieve per page :param max_results: :type max_results: The maximum number of results to retrieve overall. If unspecified, all results will be retrieved. :return: Returns a list of entities, as determined by the paginated_fn parameter, with no more entities than specified by max_results :rtype: list[object] """ all_results = [] next_page_token = None returns_all = max_results is None while returns_all or len(all_results) < max_results: num_to_get = max_results_per_page if returns_all else max_results - len(all_results) if num_to_get < max_results_per_page: page_results = paginated_fn(num_to_get, next_page_token) else: page_results = paginated_fn(max_results_per_page, next_page_token) all_results.extend(page_results) if hasattr(page_results, "token") and page_results.token: next_page_token = page_results.token else: break return all_results def _get_or_start_run(): if len(_active_run_stack) > 0: return _active_run_stack[-1] return start_run() def _get_experiment_id_from_env(): experiment_name = env.get_env(_EXPERIMENT_NAME_ENV_VAR) if experiment_name is not None: exp = MlflowClient().get_experiment_by_name(experiment_name) return exp.experiment_id if exp else None return env.get_env(_EXPERIMENT_ID_ENV_VAR) def _get_experiment_id(): # TODO: Replace with None for 1.0, leaving for 0.9.1 release backcompat with existing servers deprecated_default_exp_id = "0" return ( _active_experiment_id or _get_experiment_id_from_env() or (is_in_databricks_notebook() and get_notebook_id()) ) or deprecated_default_exp_id @autologging_integration("mlflow") def autolog( log_input_examples: bool = False, log_model_signatures: bool = True, log_models: bool = True, disable: bool = False, exclusive: bool = False, disable_for_unsupported_versions: bool = False, silent: bool = False, # pylint: disable=unused-argument ) -> None: """ Enables (or disables) and configures autologging for all supported integrations. The parameters are passed to any autologging integrations that support them. See the :ref:`tracking docs <automatic-logging>` for a list of supported autologging integrations. Note that framework-specific configurations set at any point will take precedence over any configurations set by this function. For example: .. code-block:: python mlflow.autolog(log_models=False, exclusive=True) import sklearn would enable autologging for `sklearn` with `log_models=False` and `exclusive=True`, but .. code-block:: python mlflow.autolog(log_models=False, exclusive=True) import sklearn mlflow.sklearn.autolog(log_models=True) would enable autologging for `sklearn` with `log_models=True` and `exclusive=False`, the latter resulting from the default value for `exclusive` in `mlflow.sklearn.autolog`; other framework autolog functions (e.g. `mlflow.tensorflow.autolog`) would use the configurations set by `mlflow.autolog` (in this instance, `log_models=False`, `exclusive=True`), until they are explicitly called by the user. :param log_input_examples: If ``True``, input examples from training datasets are collected and logged along with model artifacts during training. If ``False``, input examples are not logged. Note: Input examples are MLflow model attributes and are only collected if ``log_models`` is also ``True``. :param log_model_signatures: If ``True``, :py:class:`ModelSignatures <mlflow.models.ModelSignature>` describing model inputs and outputs are collected and logged along with model artifacts during training. If ``False``, signatures are not logged. Note: Model signatures are MLflow model attributes and are only collected if ``log_models`` is also ``True``. :param log_models: If ``True``, trained models are logged as MLflow model artifacts. If ``False``, trained models are not logged. Input examples and model signatures, which are attributes of MLflow models, are also omitted when ``log_models`` is ``False``. :param disable: If ``True``, disables all supported autologging integrations. If ``False``, enables all supported autologging integrations. :param exclusive: If ``True``, autologged content is not logged to user-created fluent runs. If ``False``, autologged content is logged to the active fluent run, which may be user-created. :param disable_for_unsupported_versions: If ``True``, disable autologging for versions of all integration libraries that have not been tested against this version of the MLflow client or are incompatible. :param silent: If ``True``, suppress all event logs and warnings from MLflow during autologging setup and training execution. If ``False``, show all events and warnings during autologging setup and training execution. .. code-block:: python :caption: Example import numpy as np import mlflow.sklearn from mlflow.tracking import MlflowClient from sklearn.linear_model import LinearRegression def print_auto_logged_info(r): tags = {k: v for k, v in r.data.tags.items() if not k.startswith("mlflow.")} artifacts = [f.path for f in MlflowClient().list_artifacts(r.info.run_id, "model")] print("run_id: {}".format(r.info.run_id)) print("artifacts: {}".format(artifacts)) print("params: {}".format(r.data.params)) print("metrics: {}".format(r.data.metrics)) print("tags: {}".format(tags)) # prepare training data X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) y = np.dot(X, np.array([1, 2])) + 3 # Auto log all the parameters, metrics, and artifacts mlflow.autolog() model = LinearRegression() with mlflow.start_run() as run: model.fit(X, y) # fetch the auto logged parameters and metrics for ended run print_auto_logged_info(mlflow.get_run(run_id=run.info.run_id)) .. code-block:: text :caption: Output run_id: fd10a17d028c47399a55ab8741721ef7 artifacts: ['model/MLmodel', 'model/conda.yaml', 'model/model.pkl'] params: {'copy_X': 'True', 'normalize': 'False', 'fit_intercept': 'True', 'n_jobs': 'None'} metrics: {'training_score': 1.0, 'training_rmse': 4.440892098500626e-16, 'training_r2_score': 1.0, 'training_mae': 2.220446049250313e-16, 'training_mse': 1.9721522630525295e-31} tags: {'estimator_class': 'sklearn.linear_model._base.LinearRegression', 'estimator_name': 'LinearRegression'} """ from mlflow import ( tensorflow, keras, gluon, xgboost, lightgbm, pyspark, statsmodels, spark, sklearn, fastai, pytorch, ) locals_copy = locals().items() # Mapping of library module name to specific autolog function # eg: mxnet.gluon is the actual library, mlflow.gluon.autolog is our autolog function for it LIBRARY_TO_AUTOLOG_FN = { "tensorflow": tensorflow.autolog, "keras": keras.autolog, "mxnet.gluon": gluon.autolog, "xgboost": xgboost.autolog, "lightgbm": lightgbm.autolog, "statsmodels": statsmodels.autolog, "sklearn": sklearn.autolog, "fastai": fastai.autolog, "pyspark": spark.autolog, "pyspark.ml": pyspark.ml.autolog, # TODO: Broaden this beyond pytorch_lightning as we add autologging support for more # Pytorch frameworks under mlflow.pytorch.autolog "pytorch_lightning": pytorch.autolog, } CONF_KEY_IS_GLOBALLY_CONFIGURED = "globally_configured" def get_autologging_params(autolog_fn): try: needed_params = list(inspect.signature(autolog_fn).parameters.keys()) return {k: v for k, v in locals_copy if k in needed_params} except Exception: return {} def setup_autologging(module): try: autolog_fn = LIBRARY_TO_AUTOLOG_FN[module.__name__] # Only call integration's autolog function with `mlflow.autolog` configs # if the integration's autolog function has not already been called by the user. # Logic is as follows: # - if a previous_config exists, that means either `mlflow.autolog` or # `mlflow.integration.autolog` was called. # - if the config contains `CONF_KEY_IS_GLOBALLY_CONFIGURED`, the configuration # was set by `mlflow.autolog`, and so we can safely call `autolog_fn` with # `autologging_params`. # - if the config doesn't contain this key, the configuration was set by an # `mlflow.integration.autolog` call, so we should not call `autolog_fn` with # new configs. prev_config = AUTOLOGGING_INTEGRATIONS.get(autolog_fn.integration_name) if prev_config and not prev_config.get(CONF_KEY_IS_GLOBALLY_CONFIGURED, False): return autologging_params = get_autologging_params(autolog_fn) autolog_fn(**autologging_params) AUTOLOGGING_INTEGRATIONS[autolog_fn.integration_name][ CONF_KEY_IS_GLOBALLY_CONFIGURED ] = True if not autologging_is_disabled( autolog_fn.integration_name ) and not autologging_params.get("silent", False): _logger.info("Autologging successfully enabled for %s.", module.__name__) except Exception as e: if is_testing(): # Raise unexpected exceptions in test mode in order to detect # errors within dependent autologging integrations raise elif not autologging_params.get("silent", False): _logger.warning( "Exception raised while enabling autologging for %s: %s", module.__name__, str(e), ) # for each autolog library (except pyspark), register a post-import hook. # this way, we do not send any errors to the user until we know they are using the library. # the post-import hook also retroactively activates for previously-imported libraries. for module in list( set(LIBRARY_TO_AUTOLOG_FN.keys()) - set(["tensorflow", "keras", "pyspark", "pyspark.ml"]) ): register_post_import_hook(setup_autologging, module, overwrite=True) FULLY_IMPORTED_KERAS = False TF_AUTOLOG_SETUP_CALLED = False def conditionally_set_up_keras_autologging(keras_module): nonlocal FULLY_IMPORTED_KERAS, TF_AUTOLOG_SETUP_CALLED FULLY_IMPORTED_KERAS = True if Version(keras_module.__version__) >= Version("2.6.0"): # NB: Keras unconditionally depends on TensorFlow beginning with Version 2.6.0, and # many classes defined in the `keras` module are aliases of classes in the `tf.keras` # module. Accordingly, TensorFlow autologging serves as a replacement for Keras # autologging in Keras >= 2.6.0 try: import tensorflow setup_autologging(tensorflow) TF_AUTOLOG_SETUP_CALLED = True except Exception as e: _logger.debug( "Failed to set up TensorFlow autologging for tf.keras models upon" " Keras library import: %s", str(e), ) raise else: setup_autologging(keras_module) register_post_import_hook(conditionally_set_up_keras_autologging, "keras", overwrite=True) def set_up_tensorflow_autologging(tensorflow_module): import sys nonlocal FULLY_IMPORTED_KERAS, TF_AUTOLOG_SETUP_CALLED if "keras" in sys.modules and not FULLY_IMPORTED_KERAS: # In Keras >= 2.6.0, importing Keras imports the TensorFlow library, which can # trigger this autologging import hook for TensorFlow before the entire Keras import # procedure is completed. Attempting to set up autologging before the Keras import # procedure has completed will result in a failure due to the unavailability of # certain modules. In this case, we terminate the TensorFlow autologging import hook # and rely on the Keras autologging import hook to successfully set up TensorFlow # autologging for tf.keras models once the Keras import procedure has completed return # By design, in Keras >= 2.6.0, Keras needs to enable tensorflow autologging so that # tf.keras models always use tensorflow autologging, rather than vanilla keras autologging. # As a result, Keras autologging must call `mlflow.tensorflow.autolog()` in Keras >= 2.6.0. # Accordingly, we insert this check to ensure that importing tensorflow, which may import # keras, does not enable tensorflow autologging twice. if not TF_AUTOLOG_SETUP_CALLED: setup_autologging(tensorflow_module) register_post_import_hook(set_up_tensorflow_autologging, "tensorflow", overwrite=True) # for pyspark, we activate autologging immediately, without waiting for a module import. # this is because on Databricks a SparkSession already exists and the user can directly # interact with it, and this activity should be logged. try: import pyspark as pyspark_module import pyspark.ml as pyspark_ml_module setup_autologging(pyspark_module) setup_autologging(pyspark_ml_module) except ImportError as ie: # if pyspark isn't installed, a user could potentially install it in the middle # of their session so we want to enable autologging once they do if "pyspark" in str(ie): register_post_import_hook(setup_autologging, "pyspark", overwrite=True) register_post_import_hook(setup_autologging, "pyspark.ml", overwrite=True) except Exception as e: if is_testing(): # Raise unexpected exceptions in test mode in order to detect # errors within dependent autologging integrations raise else: _logger.warning("Exception raised while enabling autologging for spark: %s", str(e))
39.049536
100
0.639864
793e8b7da49659a2fbffd8ae180d597ce3814940
20,365
py
Python
pandas/tests/series/test_rank.py
sofiane87/pandas
0de99558b497c5611cbe5d35d504763bd7692275
[ "BSD-3-Clause" ]
2
2019-11-13T18:20:29.000Z
2020-04-18T02:58:39.000Z
pandas/tests/series/methods/test_rank.py
ivan-vasilev/pandas
4071dde86e33434e1bee8304fa62074949f813cc
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/series/methods/test_rank.py
ivan-vasilev/pandas
4071dde86e33434e1bee8304fa62074949f813cc
[ "BSD-3-Clause" ]
2
2019-12-21T21:17:43.000Z
2019-12-26T10:34:36.000Z
from itertools import chain, product import numpy as np import pytest from pandas._libs.algos import Infinity, NegInfinity from pandas._libs.tslib import iNaT import pandas.util._test_decorators as td from pandas import NaT, Series, Timestamp, date_range from pandas.api.types import CategoricalDtype import pandas.util.testing as tm class TestSeriesRank: s = Series([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3]) results = { "average": np.array([1.5, 5.5, 7.0, 3.5, np.nan, 3.5, 1.5, 8.0, np.nan, 5.5]), "min": np.array([1, 5, 7, 3, np.nan, 3, 1, 8, np.nan, 5]), "max": np.array([2, 6, 7, 4, np.nan, 4, 2, 8, np.nan, 6]), "first": np.array([1, 5, 7, 3, np.nan, 4, 2, 8, np.nan, 6]), "dense": np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3]), } def test_rank(self, datetime_series): pytest.importorskip("scipy.stats.special") rankdata = pytest.importorskip("scipy.stats.rankdata") datetime_series[::2] = np.nan datetime_series[:10][::3] = 4.0 ranks = datetime_series.rank() oranks = datetime_series.astype("O").rank() tm.assert_series_equal(ranks, oranks) mask = np.isnan(datetime_series) filled = datetime_series.fillna(np.inf) # rankdata returns a ndarray exp = Series(rankdata(filled), index=filled.index, name="ts") exp[mask] = np.nan tm.assert_series_equal(ranks, exp) iseries = Series(np.arange(5).repeat(2)) iranks = iseries.rank() exp = iseries.astype(float).rank() tm.assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1.0 exp = iseries / 5.0 iranks = iseries.rank(pct=True) tm.assert_series_equal(iranks, exp) iseries = Series(np.repeat(1, 100)) exp = Series(np.repeat(0.505, 100)) iranks = iseries.rank(pct=True) tm.assert_series_equal(iranks, exp) iseries[1] = np.nan exp = Series(np.repeat(50.0 / 99.0, 100)) exp[1] = np.nan iranks = iseries.rank(pct=True) tm.assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1.0 iseries[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) tm.assert_series_equal(iranks, exp) iseries = Series(np.repeat(np.nan, 100)) exp = iseries.copy() iranks = iseries.rank(pct=True) tm.assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1 iseries[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) tm.assert_series_equal(iranks, exp) rng = date_range("1/1/1990", periods=5) iseries = Series(np.arange(5), rng) + 1 iseries.iloc[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) tm.assert_series_equal(iranks, exp) iseries = Series([1e-50, 1e-100, 1e-20, 1e-2, 1e-20 + 1e-30, 1e-1]) exp = Series([2, 1, 3, 5, 4, 6.0]) iranks = iseries.rank() tm.assert_series_equal(iranks, exp) # GH 5968 iseries = Series(["3 day", "1 day 10m", "-2 day", NaT], dtype="m8[ns]") exp = Series([3, 2, 1, np.nan]) iranks = iseries.rank() tm.assert_series_equal(iranks, exp) values = np.array( [-50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40], dtype="float64", ) random_order = np.random.permutation(len(values)) iseries = Series(values[random_order]) exp = Series(random_order + 1.0, dtype="float64") iranks = iseries.rank() tm.assert_series_equal(iranks, exp) def test_rank_categorical(self): # GH issue #15420 rank incorrectly orders ordered categories # Test ascending/descending ranking for ordered categoricals exp = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]) exp_desc = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0]) ordered = Series( ["first", "second", "third", "fourth", "fifth", "sixth"] ).astype( CategoricalDtype( categories=["first", "second", "third", "fourth", "fifth", "sixth"], ordered=True, ) ) tm.assert_series_equal(ordered.rank(), exp) tm.assert_series_equal(ordered.rank(ascending=False), exp_desc) # Unordered categoricals should be ranked as objects unordered = Series( ["first", "second", "third", "fourth", "fifth", "sixth"] ).astype( CategoricalDtype( categories=["first", "second", "third", "fourth", "fifth", "sixth"], ordered=False, ) ) exp_unordered = Series([2.0, 4.0, 6.0, 3.0, 1.0, 5.0]) res = unordered.rank() tm.assert_series_equal(res, exp_unordered) unordered1 = Series([1, 2, 3, 4, 5, 6]).astype( CategoricalDtype([1, 2, 3, 4, 5, 6], False) ) exp_unordered1 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]) res1 = unordered1.rank() tm.assert_series_equal(res1, exp_unordered1) # Test na_option for rank data na_ser = Series( ["first", "second", "third", "fourth", "fifth", "sixth", np.NaN] ).astype( CategoricalDtype( ["first", "second", "third", "fourth", "fifth", "sixth", "seventh"], True, ) ) exp_top = Series([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.0]) exp_bot = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]) exp_keep = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, np.NaN]) tm.assert_series_equal(na_ser.rank(na_option="top"), exp_top) tm.assert_series_equal(na_ser.rank(na_option="bottom"), exp_bot) tm.assert_series_equal(na_ser.rank(na_option="keep"), exp_keep) # Test na_option for rank data with ascending False exp_top = Series([7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]) exp_bot = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 7.0]) exp_keep = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, np.NaN]) tm.assert_series_equal(na_ser.rank(na_option="top", ascending=False), exp_top) tm.assert_series_equal( na_ser.rank(na_option="bottom", ascending=False), exp_bot ) tm.assert_series_equal(na_ser.rank(na_option="keep", ascending=False), exp_keep) # Test invalid values for na_option msg = "na_option must be one of 'keep', 'top', or 'bottom'" with pytest.raises(ValueError, match=msg): na_ser.rank(na_option="bad", ascending=False) # invalid type with pytest.raises(ValueError, match=msg): na_ser.rank(na_option=True, ascending=False) # Test with pct=True na_ser = Series(["first", "second", "third", "fourth", np.NaN]).astype( CategoricalDtype(["first", "second", "third", "fourth"], True) ) exp_top = Series([0.4, 0.6, 0.8, 1.0, 0.2]) exp_bot = Series([0.2, 0.4, 0.6, 0.8, 1.0]) exp_keep = Series([0.25, 0.5, 0.75, 1.0, np.NaN]) tm.assert_series_equal(na_ser.rank(na_option="top", pct=True), exp_top) tm.assert_series_equal(na_ser.rank(na_option="bottom", pct=True), exp_bot) tm.assert_series_equal(na_ser.rank(na_option="keep", pct=True), exp_keep) def test_rank_signature(self): s = Series([0, 1]) s.rank(method="average") msg = ( "No axis named average for object type" " <class 'pandas.core.series.Series'>" ) with pytest.raises(ValueError, match=msg): s.rank("average") @pytest.mark.parametrize( "contents,dtype", [ ( [ -np.inf, -50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40, np.inf, ], "float64", ), ( [ -np.inf, -50, -1, -1e-20, -1e-25, -1e-45, 0, 1e-40, 1e-20, 1e-10, 2, 40, np.inf, ], "float32", ), ([np.iinfo(np.uint8).min, 1, 2, 100, np.iinfo(np.uint8).max], "uint8"), pytest.param( [ np.iinfo(np.int64).min, -100, 0, 1, 9999, 100000, 1e10, np.iinfo(np.int64).max, ], "int64", marks=pytest.mark.xfail( reason="iNaT is equivalent to minimum value of dtype" "int64 pending issue GH#16674" ), ), ([NegInfinity(), "1", "A", "BA", "Ba", "C", Infinity()], "object"), ], ) def test_rank_inf(self, contents, dtype): dtype_na_map = { "float64": np.nan, "float32": np.nan, "int64": iNaT, "object": None, } # Insert nans at random positions if underlying dtype has missing # value. Then adjust the expected order by adding nans accordingly # This is for testing whether rank calculation is affected # when values are interwined with nan values. values = np.array(contents, dtype=dtype) exp_order = np.array(range(len(values)), dtype="float64") + 1.0 if dtype in dtype_na_map: na_value = dtype_na_map[dtype] nan_indices = np.random.choice(range(len(values)), 5) values = np.insert(values, nan_indices, na_value) exp_order = np.insert(exp_order, nan_indices, np.nan) # shuffle the testing array and expected results in the same way random_order = np.random.permutation(len(values)) iseries = Series(values[random_order]) exp = Series(exp_order[random_order], dtype="float64") iranks = iseries.rank() tm.assert_series_equal(iranks, exp) def test_rank_tie_methods(self): s = self.s def _check(s, expected, method="average"): result = s.rank(method=method) tm.assert_series_equal(result, Series(expected)) dtypes = [None, object] disabled = {(object, "first")} results = self.results for method, dtype in product(results, dtypes): if (dtype, method) in disabled: continue series = s if dtype is None else s.astype(dtype) _check(series, results[method], method=method) @td.skip_if_no_scipy @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"]) @pytest.mark.parametrize("na_option", ["top", "bottom", "keep"]) def test_rank_tie_methods_on_infs_nans(self, method, na_option, ascending): dtypes = [ ("object", None, Infinity(), NegInfinity()), ("float64", np.nan, np.inf, -np.inf), ] chunk = 3 disabled = {("object", "first")} def _check(s, method, na_option, ascending): exp_ranks = { "average": ([2, 2, 2], [5, 5, 5], [8, 8, 8]), "min": ([1, 1, 1], [4, 4, 4], [7, 7, 7]), "max": ([3, 3, 3], [6, 6, 6], [9, 9, 9]), "first": ([1, 2, 3], [4, 5, 6], [7, 8, 9]), "dense": ([1, 1, 1], [2, 2, 2], [3, 3, 3]), } ranks = exp_ranks[method] if na_option == "top": order = [ranks[1], ranks[0], ranks[2]] elif na_option == "bottom": order = [ranks[0], ranks[2], ranks[1]] else: order = [ranks[0], [np.nan] * chunk, ranks[1]] expected = order if ascending else order[::-1] expected = list(chain.from_iterable(expected)) result = s.rank(method=method, na_option=na_option, ascending=ascending) tm.assert_series_equal(result, Series(expected, dtype="float64")) for dtype, na_value, pos_inf, neg_inf in dtypes: in_arr = [neg_inf] * chunk + [na_value] * chunk + [pos_inf] * chunk iseries = Series(in_arr, dtype=dtype) if (dtype, method) in disabled: continue _check(iseries, method, na_option, ascending) def test_rank_desc_mix_nans_infs(self): # GH 19538 # check descending ranking when mix nans and infs iseries = Series([1, np.nan, np.inf, -np.inf, 25]) result = iseries.rank(ascending=False) exp = Series([3, np.nan, 1, 4, 2], dtype="float64") tm.assert_series_equal(result, exp) def test_rank_methods_series(self): pytest.importorskip("scipy.stats.special") rankdata = pytest.importorskip("scipy.stats.rankdata") xs = np.random.randn(9) xs = np.concatenate([xs[i:] for i in range(0, 9, 2)]) # add duplicates np.random.shuffle(xs) index = [chr(ord("a") + i) for i in range(len(xs))] for vals in [xs, xs + 1e6, xs * 1e-6]: ts = Series(vals, index=index) for m in ["average", "min", "max", "first", "dense"]: result = ts.rank(method=m) sprank = rankdata(vals, m if m != "first" else "ordinal") expected = Series(sprank, index=index).astype("float64") tm.assert_series_equal(result, expected) def test_rank_dense_method(self): dtypes = ["O", "f8", "i8"] in_out = [ ([1], [1]), ([2], [1]), ([0], [1]), ([2, 2], [1, 1]), ([1, 2, 3], [1, 2, 3]), ([4, 2, 1], [3, 2, 1]), ([1, 1, 5, 5, 3], [1, 1, 3, 3, 2]), ([-5, -4, -3, -2, -1], [1, 2, 3, 4, 5]), ] for ser, exp in in_out: for dtype in dtypes: s = Series(ser).astype(dtype) result = s.rank(method="dense") expected = Series(exp).astype(result.dtype) tm.assert_series_equal(result, expected) def test_rank_descending(self): dtypes = ["O", "f8", "i8"] for dtype, method in product(dtypes, self.results): if "i" in dtype: s = self.s.dropna() else: s = self.s.astype(dtype) res = s.rank(ascending=False) expected = (s.max() - s).rank() tm.assert_series_equal(res, expected) if method == "first" and dtype == "O": continue expected = (s.max() - s).rank(method=method) res2 = s.rank(method=method, ascending=False) tm.assert_series_equal(res2, expected) def test_rank_int(self): s = self.s.dropna().astype("i8") for method, res in self.results.items(): result = s.rank(method=method) expected = Series(res).dropna() expected.index = result.index tm.assert_series_equal(result, expected) def test_rank_object_bug(self): # GH 13445 # smoke tests Series([np.nan] * 32).astype(object).rank(ascending=True) Series([np.nan] * 32).astype(object).rank(ascending=False) def test_rank_modify_inplace(self): # GH 18521 # Check rank does not mutate series s = Series([Timestamp("2017-01-05 10:20:27.569000"), NaT]) expected = s.copy() s.rank() result = s tm.assert_series_equal(result, expected) # GH15630, pct should be on 100% basis when method='dense' @pytest.mark.parametrize("dtype", ["O", "f8", "i8"]) @pytest.mark.parametrize( "ser, exp", [ ([1], [1.0]), ([1, 2], [1.0 / 2, 2.0 / 2]), ([2, 2], [1.0, 1.0]), ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), ([1, 2, 2], [1.0 / 2, 2.0 / 2, 2.0 / 2]), ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), ([1, 1, 5, 5, 3], [1.0 / 3, 1.0 / 3, 3.0 / 3, 3.0 / 3, 2.0 / 3]), ([1, 1, 3, 3, 5, 5], [1.0 / 3, 1.0 / 3, 2.0 / 3, 2.0 / 3, 3.0 / 3, 3.0 / 3]), ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), ], ) def test_rank_dense_pct(dtype, ser, exp): s = Series(ser).astype(dtype) result = s.rank(method="dense", pct=True) expected = Series(exp).astype(result.dtype) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["O", "f8", "i8"]) @pytest.mark.parametrize( "ser, exp", [ ([1], [1.0]), ([1, 2], [1.0 / 2, 2.0 / 2]), ([2, 2], [1.0 / 2, 1.0 / 2]), ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), ([1, 2, 2], [1.0 / 3, 2.0 / 3, 2.0 / 3]), ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), ([1, 1, 5, 5, 3], [1.0 / 5, 1.0 / 5, 4.0 / 5, 4.0 / 5, 3.0 / 5]), ([1, 1, 3, 3, 5, 5], [1.0 / 6, 1.0 / 6, 3.0 / 6, 3.0 / 6, 5.0 / 6, 5.0 / 6]), ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), ], ) def test_rank_min_pct(dtype, ser, exp): s = Series(ser).astype(dtype) result = s.rank(method="min", pct=True) expected = Series(exp).astype(result.dtype) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["O", "f8", "i8"]) @pytest.mark.parametrize( "ser, exp", [ ([1], [1.0]), ([1, 2], [1.0 / 2, 2.0 / 2]), ([2, 2], [1.0, 1.0]), ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), ([1, 2, 2], [1.0 / 3, 3.0 / 3, 3.0 / 3]), ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), ([1, 1, 5, 5, 3], [2.0 / 5, 2.0 / 5, 5.0 / 5, 5.0 / 5, 3.0 / 5]), ([1, 1, 3, 3, 5, 5], [2.0 / 6, 2.0 / 6, 4.0 / 6, 4.0 / 6, 6.0 / 6, 6.0 / 6]), ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), ], ) def test_rank_max_pct(dtype, ser, exp): s = Series(ser).astype(dtype) result = s.rank(method="max", pct=True) expected = Series(exp).astype(result.dtype) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["O", "f8", "i8"]) @pytest.mark.parametrize( "ser, exp", [ ([1], [1.0]), ([1, 2], [1.0 / 2, 2.0 / 2]), ([2, 2], [1.5 / 2, 1.5 / 2]), ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), ([1, 2, 2], [1.0 / 3, 2.5 / 3, 2.5 / 3]), ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), ([1, 1, 5, 5, 3], [1.5 / 5, 1.5 / 5, 4.5 / 5, 4.5 / 5, 3.0 / 5]), ([1, 1, 3, 3, 5, 5], [1.5 / 6, 1.5 / 6, 3.5 / 6, 3.5 / 6, 5.5 / 6, 5.5 / 6]), ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), ], ) def test_rank_average_pct(dtype, ser, exp): s = Series(ser).astype(dtype) result = s.rank(method="average", pct=True) expected = Series(exp).astype(result.dtype) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["f8", "i8"]) @pytest.mark.parametrize( "ser, exp", [ ([1], [1.0]), ([1, 2], [1.0 / 2, 2.0 / 2]), ([2, 2], [1.0 / 2, 2.0 / 2.0]), ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]), ([1, 2, 2], [1.0 / 3, 2.0 / 3, 3.0 / 3]), ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]), ([1, 1, 5, 5, 3], [1.0 / 5, 2.0 / 5, 4.0 / 5, 5.0 / 5, 3.0 / 5]), ([1, 1, 3, 3, 5, 5], [1.0 / 6, 2.0 / 6, 3.0 / 6, 4.0 / 6, 5.0 / 6, 6.0 / 6]), ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]), ], ) def test_rank_first_pct(dtype, ser, exp): s = Series(ser).astype(dtype) result = s.rank(method="first", pct=True) expected = Series(exp).astype(result.dtype) tm.assert_series_equal(result, expected) @pytest.mark.single @pytest.mark.high_memory def test_pct_max_many_rows(): # GH 18271 s = Series(np.arange(2 ** 24 + 1)) result = s.rank(pct=True).max() assert result == 1
35.917108
88
0.497569
793e8be004569a9671c3ba4ae8fa239d5feadcb1
35,336
py
Python
homeassistant/config_entries.py
billyburly/home-assistant
9795449d22783e77a0ca7b745f15c89a830c5cc6
[ "Apache-2.0" ]
5
2020-09-17T10:48:51.000Z
2021-11-22T00:08:17.000Z
homeassistant/config_entries.py
billyburly/home-assistant
9795449d22783e77a0ca7b745f15c89a830c5cc6
[ "Apache-2.0" ]
7
2016-04-09T20:56:30.000Z
2016-04-19T21:28:46.000Z
homeassistant/config_entries.py
billyburly/home-assistant
9795449d22783e77a0ca7b745f15c89a830c5cc6
[ "Apache-2.0" ]
2
2019-07-05T17:46:08.000Z
2021-04-25T21:21:02.000Z
"""Manage config entries in Home Assistant.""" import asyncio import functools import logging from typing import Any, Callable, Dict, List, Optional, Set, Union, cast import uuid import weakref import attr from homeassistant import data_entry_flow, loader from homeassistant.core import HomeAssistant, callback from homeassistant.exceptions import ConfigEntryNotReady, HomeAssistantError from homeassistant.helpers import entity_registry from homeassistant.helpers.event import Event from homeassistant.setup import async_process_deps_reqs, async_setup_component from homeassistant.util.decorator import Registry _LOGGER = logging.getLogger(__name__) _UNDEF: dict = {} SOURCE_DISCOVERY = "discovery" SOURCE_IMPORT = "import" SOURCE_SSDP = "ssdp" SOURCE_USER = "user" SOURCE_ZEROCONF = "zeroconf" # If a user wants to hide a discovery from the UI they can "Ignore" it. The config_entries/ignore_flow # websocket command creates a config entry with this source and while it exists normal discoveries # with the same unique id are ignored. SOURCE_IGNORE = "ignore" # This is used when a user uses the "Stop Ignoring" button in the UI (the # config_entries/ignore_flow websocket command). It's triggered after the "ignore" config entry has # been removed and unloaded. SOURCE_UNIGNORE = "unignore" HANDLERS = Registry() STORAGE_KEY = "core.config_entries" STORAGE_VERSION = 1 # Deprecated since 0.73 PATH_CONFIG = ".config_entries.json" SAVE_DELAY = 1 # The config entry has been set up successfully ENTRY_STATE_LOADED = "loaded" # There was an error while trying to set up this config entry ENTRY_STATE_SETUP_ERROR = "setup_error" # There was an error while trying to migrate the config entry to a new version ENTRY_STATE_MIGRATION_ERROR = "migration_error" # The config entry was not ready to be set up yet, but might be later ENTRY_STATE_SETUP_RETRY = "setup_retry" # The config entry has not been loaded ENTRY_STATE_NOT_LOADED = "not_loaded" # An error occurred when trying to unload the entry ENTRY_STATE_FAILED_UNLOAD = "failed_unload" UNRECOVERABLE_STATES = (ENTRY_STATE_MIGRATION_ERROR, ENTRY_STATE_FAILED_UNLOAD) DISCOVERY_NOTIFICATION_ID = "config_entry_discovery" DISCOVERY_SOURCES = ( SOURCE_SSDP, SOURCE_ZEROCONF, SOURCE_DISCOVERY, SOURCE_IMPORT, SOURCE_UNIGNORE, ) EVENT_FLOW_DISCOVERED = "config_entry_discovered" CONN_CLASS_CLOUD_PUSH = "cloud_push" CONN_CLASS_CLOUD_POLL = "cloud_poll" CONN_CLASS_LOCAL_PUSH = "local_push" CONN_CLASS_LOCAL_POLL = "local_poll" CONN_CLASS_ASSUMED = "assumed" CONN_CLASS_UNKNOWN = "unknown" class ConfigError(HomeAssistantError): """Error while configuring an account.""" class UnknownEntry(ConfigError): """Unknown entry specified.""" class OperationNotAllowed(ConfigError): """Raised when a config entry operation is not allowed.""" class ConfigEntry: """Hold a configuration entry.""" __slots__ = ( "entry_id", "version", "domain", "title", "data", "options", "unique_id", "system_options", "source", "connection_class", "state", "_setup_lock", "update_listeners", "_async_cancel_retry_setup", ) def __init__( self, version: int, domain: str, title: str, data: dict, source: str, connection_class: str, system_options: dict, options: Optional[dict] = None, unique_id: Optional[str] = None, entry_id: Optional[str] = None, state: str = ENTRY_STATE_NOT_LOADED, ) -> None: """Initialize a config entry.""" # Unique id of the config entry self.entry_id = entry_id or uuid.uuid4().hex # Version of the configuration. self.version = version # Domain the configuration belongs to self.domain = domain # Title of the configuration self.title = title # Config data self.data = data # Entry options self.options = options or {} # Entry system options self.system_options = SystemOptions(**system_options) # Source of the configuration (user, discovery, cloud) self.source = source # Connection class self.connection_class = connection_class # State of the entry (LOADED, NOT_LOADED) self.state = state # Unique ID of this entry. self.unique_id = unique_id # Listeners to call on update self.update_listeners: List = [] # Function to cancel a scheduled retry self._async_cancel_retry_setup: Optional[Callable[[], Any]] = None async def async_setup( self, hass: HomeAssistant, *, integration: Optional[loader.Integration] = None, tries: int = 0, ) -> None: """Set up an entry.""" if self.source == SOURCE_IGNORE: return if integration is None: integration = await loader.async_get_integration(hass, self.domain) try: component = integration.get_component() except ImportError as err: _LOGGER.error( "Error importing integration %s to set up %s config entry: %s", integration.domain, self.domain, err, ) if self.domain == integration.domain: self.state = ENTRY_STATE_SETUP_ERROR return if self.domain == integration.domain: try: integration.get_platform("config_flow") except ImportError as err: _LOGGER.error( "Error importing platform config_flow from integration %s to set up %s config entry: %s", integration.domain, self.domain, err, ) self.state = ENTRY_STATE_SETUP_ERROR return # Perform migration if not await self.async_migrate(hass): self.state = ENTRY_STATE_MIGRATION_ERROR return try: result = await component.async_setup_entry( # type: ignore hass, self ) if not isinstance(result, bool): _LOGGER.error( "%s.async_setup_entry did not return boolean", integration.domain ) result = False except ConfigEntryNotReady: self.state = ENTRY_STATE_SETUP_RETRY wait_time = 2 ** min(tries, 4) * 5 tries += 1 _LOGGER.warning( "Config entry for %s not ready yet. Retrying in %d seconds.", self.domain, wait_time, ) async def setup_again(now: Any) -> None: """Run setup again.""" self._async_cancel_retry_setup = None await self.async_setup(hass, integration=integration, tries=tries) self._async_cancel_retry_setup = hass.helpers.event.async_call_later( wait_time, setup_again ) return except Exception: # pylint: disable=broad-except _LOGGER.exception( "Error setting up entry %s for %s", self.title, integration.domain ) result = False # Only store setup result as state if it was not forwarded. if self.domain != integration.domain: return if result: self.state = ENTRY_STATE_LOADED else: self.state = ENTRY_STATE_SETUP_ERROR async def async_unload( self, hass: HomeAssistant, *, integration: Optional[loader.Integration] = None ) -> bool: """Unload an entry. Returns if unload is possible and was successful. """ if self.source == SOURCE_IGNORE: self.state = ENTRY_STATE_NOT_LOADED return True if integration is None: integration = await loader.async_get_integration(hass, self.domain) component = integration.get_component() if integration.domain == self.domain: if self.state in UNRECOVERABLE_STATES: return False if self.state != ENTRY_STATE_LOADED: if self._async_cancel_retry_setup is not None: self._async_cancel_retry_setup() self._async_cancel_retry_setup = None self.state = ENTRY_STATE_NOT_LOADED return True supports_unload = hasattr(component, "async_unload_entry") if not supports_unload: if integration.domain == self.domain: self.state = ENTRY_STATE_FAILED_UNLOAD return False try: result = await component.async_unload_entry( # type: ignore hass, self ) assert isinstance(result, bool) # Only adjust state if we unloaded the component if result and integration.domain == self.domain: self.state = ENTRY_STATE_NOT_LOADED return result except Exception: # pylint: disable=broad-except _LOGGER.exception( "Error unloading entry %s for %s", self.title, integration.domain ) if integration.domain == self.domain: self.state = ENTRY_STATE_FAILED_UNLOAD return False async def async_remove(self, hass: HomeAssistant) -> None: """Invoke remove callback on component.""" if self.source == SOURCE_IGNORE: return integration = await loader.async_get_integration(hass, self.domain) component = integration.get_component() if not hasattr(component, "async_remove_entry"): return try: await component.async_remove_entry( # type: ignore hass, self ) except Exception: # pylint: disable=broad-except _LOGGER.exception( "Error calling entry remove callback %s for %s", self.title, integration.domain, ) async def async_migrate(self, hass: HomeAssistant) -> bool: """Migrate an entry. Returns True if config entry is up-to-date or has been migrated. """ handler = HANDLERS.get(self.domain) if handler is None: _LOGGER.error( "Flow handler not found for entry %s for %s", self.title, self.domain ) return False # Handler may be a partial while isinstance(handler, functools.partial): handler = handler.func if self.version == handler.VERSION: return True integration = await loader.async_get_integration(hass, self.domain) component = integration.get_component() supports_migrate = hasattr(component, "async_migrate_entry") if not supports_migrate: _LOGGER.error( "Migration handler not found for entry %s for %s", self.title, self.domain, ) return False try: result = await component.async_migrate_entry( # type: ignore hass, self ) if not isinstance(result, bool): _LOGGER.error( "%s.async_migrate_entry did not return boolean", self.domain ) return False if result: # pylint: disable=protected-access hass.config_entries._async_schedule_save() return result except Exception: # pylint: disable=broad-except _LOGGER.exception( "Error migrating entry %s for %s", self.title, self.domain ) return False def add_update_listener(self, listener: Callable) -> Callable: """Listen for when entry is updated. Listener: Callback function(hass, entry) Returns function to unlisten. """ weak_listener = weakref.ref(listener) self.update_listeners.append(weak_listener) return lambda: self.update_listeners.remove(weak_listener) def as_dict(self) -> Dict[str, Any]: """Return dictionary version of this entry.""" return { "entry_id": self.entry_id, "version": self.version, "domain": self.domain, "title": self.title, "data": self.data, "options": self.options, "system_options": self.system_options.as_dict(), "source": self.source, "connection_class": self.connection_class, "unique_id": self.unique_id, } class ConfigEntriesFlowManager(data_entry_flow.FlowManager): """Manage all the config entry flows that are in progress.""" def __init__( self, hass: HomeAssistant, config_entries: "ConfigEntries", hass_config: dict ): """Initialize the config entry flow manager.""" super().__init__(hass) self.config_entries = config_entries self._hass_config = hass_config async def async_finish_flow( self, flow: data_entry_flow.FlowHandler, result: Dict[str, Any] ) -> Dict[str, Any]: """Finish a config flow and add an entry.""" flow = cast(ConfigFlow, flow) # Remove notification if no other discovery config entries in progress if not any( ent["context"]["source"] in DISCOVERY_SOURCES for ent in self.hass.config_entries.flow.async_progress() if ent["flow_id"] != flow.flow_id ): self.hass.components.persistent_notification.async_dismiss( DISCOVERY_NOTIFICATION_ID ) if result["type"] != data_entry_flow.RESULT_TYPE_CREATE_ENTRY: return result # Check if config entry exists with unique ID. Unload it. existing_entry = None if flow.unique_id is not None: # Abort all flows in progress with same unique ID. for progress_flow in self.async_progress(): if ( progress_flow["handler"] == flow.handler and progress_flow["flow_id"] != flow.flow_id and progress_flow["context"].get("unique_id") == flow.unique_id ): self.async_abort(progress_flow["flow_id"]) # Find existing entry. for check_entry in self.config_entries.async_entries(result["handler"]): if check_entry.unique_id == flow.unique_id: existing_entry = check_entry break # Unload the entry before setting up the new one. # We will remove it only after the other one is set up, # so that device customizations are not getting lost. if ( existing_entry is not None and existing_entry.state not in UNRECOVERABLE_STATES ): await self.config_entries.async_unload(existing_entry.entry_id) entry = ConfigEntry( version=result["version"], domain=result["handler"], title=result["title"], data=result["data"], options={}, system_options={}, source=flow.context["source"], connection_class=flow.CONNECTION_CLASS, unique_id=flow.unique_id, ) await self.config_entries.async_add(entry) if existing_entry is not None: await self.config_entries.async_remove(existing_entry.entry_id) result["result"] = entry return result async def async_create_flow( self, handler_key: Any, *, context: Optional[Dict] = None, data: Any = None ) -> "ConfigFlow": """Create a flow for specified handler. Handler key is the domain of the component that we want to set up. """ try: integration = await loader.async_get_integration(self.hass, handler_key) except loader.IntegrationNotFound: _LOGGER.error("Cannot find integration %s", handler_key) raise data_entry_flow.UnknownHandler # Make sure requirements and dependencies of component are resolved await async_process_deps_reqs(self.hass, self._hass_config, integration) try: integration.get_platform("config_flow") except ImportError as err: _LOGGER.error( "Error occurred loading config flow for integration %s: %s", handler_key, err, ) raise data_entry_flow.UnknownHandler handler = HANDLERS.get(handler_key) if handler is None: raise data_entry_flow.UnknownHandler if not context or "source" not in context: raise KeyError("Context not set or doesn't have a source set") flow = cast(ConfigFlow, handler()) flow.init_step = context["source"] return flow async def async_post_init( self, flow: data_entry_flow.FlowHandler, result: dict ) -> None: """After a flow is initialised trigger new flow notifications.""" source = flow.context["source"] # Create notification. if source in DISCOVERY_SOURCES: self.hass.bus.async_fire(EVENT_FLOW_DISCOVERED) self.hass.components.persistent_notification.async_create( title="New devices discovered", message=( "We have discovered new devices on your network. " "[Check it out](/config/integrations)" ), notification_id=DISCOVERY_NOTIFICATION_ID, ) class ConfigEntries: """Manage the configuration entries. An instance of this object is available via `hass.config_entries`. """ def __init__(self, hass: HomeAssistant, hass_config: dict) -> None: """Initialize the entry manager.""" self.hass = hass self.flow = ConfigEntriesFlowManager(hass, self, hass_config) self.options = OptionsFlowManager(hass) self._hass_config = hass_config self._entries: List[ConfigEntry] = [] self._store = hass.helpers.storage.Store(STORAGE_VERSION, STORAGE_KEY) EntityRegistryDisabledHandler(hass).async_setup() @callback def async_domains(self) -> List[str]: """Return domains for which we have entries.""" seen: Set[str] = set() result = [] for entry in self._entries: if entry.domain not in seen: seen.add(entry.domain) result.append(entry.domain) return result @callback def async_get_entry(self, entry_id: str) -> Optional[ConfigEntry]: """Return entry with matching entry_id.""" for entry in self._entries: if entry_id == entry.entry_id: return entry return None @callback def async_entries(self, domain: Optional[str] = None) -> List[ConfigEntry]: """Return all entries or entries for a specific domain.""" if domain is None: return list(self._entries) return [entry for entry in self._entries if entry.domain == domain] async def async_add(self, entry: ConfigEntry) -> None: """Add and setup an entry.""" self._entries.append(entry) await self.async_setup(entry.entry_id) self._async_schedule_save() async def async_remove(self, entry_id: str) -> Dict[str, Any]: """Remove an entry.""" entry = self.async_get_entry(entry_id) if entry is None: raise UnknownEntry if entry.state in UNRECOVERABLE_STATES: unload_success = entry.state != ENTRY_STATE_FAILED_UNLOAD else: unload_success = await self.async_unload(entry_id) await entry.async_remove(self.hass) self._entries.remove(entry) self._async_schedule_save() dev_reg, ent_reg = await asyncio.gather( self.hass.helpers.device_registry.async_get_registry(), self.hass.helpers.entity_registry.async_get_registry(), ) dev_reg.async_clear_config_entry(entry_id) ent_reg.async_clear_config_entry(entry_id) # After we have fully removed an "ignore" config entry we can try and rediscover it so that a # user is able to immediately start configuring it. We do this by starting a new flow with # the 'unignore' step. If the integration doesn't implement async_step_unignore then # this will be a no-op. if entry.source == SOURCE_IGNORE: self.hass.async_create_task( self.hass.config_entries.flow.async_init( entry.domain, context={"source": SOURCE_UNIGNORE}, data={"unique_id": entry.unique_id}, ) ) return {"require_restart": not unload_success} async def async_initialize(self) -> None: """Initialize config entry config.""" # Migrating for config entries stored before 0.73 config = await self.hass.helpers.storage.async_migrator( self.hass.config.path(PATH_CONFIG), self._store, old_conf_migrate_func=_old_conf_migrator, ) if config is None: self._entries = [] return self._entries = [ ConfigEntry( version=entry["version"], domain=entry["domain"], entry_id=entry["entry_id"], data=entry["data"], source=entry["source"], title=entry["title"], # New in 0.79 connection_class=entry.get("connection_class", CONN_CLASS_UNKNOWN), # New in 0.89 options=entry.get("options"), # New in 0.98 system_options=entry.get("system_options", {}), # New in 0.104 unique_id=entry.get("unique_id"), ) for entry in config["entries"] ] async def async_setup(self, entry_id: str) -> bool: """Set up a config entry. Return True if entry has been successfully loaded. """ entry = self.async_get_entry(entry_id) if entry is None: raise UnknownEntry if entry.state != ENTRY_STATE_NOT_LOADED: raise OperationNotAllowed # Setup Component if not set up yet if entry.domain in self.hass.config.components: await entry.async_setup(self.hass) else: # Setting up the component will set up all its config entries result = await async_setup_component( self.hass, entry.domain, self._hass_config ) if not result: return result return entry.state == ENTRY_STATE_LOADED async def async_unload(self, entry_id: str) -> bool: """Unload a config entry.""" entry = self.async_get_entry(entry_id) if entry is None: raise UnknownEntry if entry.state in UNRECOVERABLE_STATES: raise OperationNotAllowed return await entry.async_unload(self.hass) async def async_reload(self, entry_id: str) -> bool: """Reload an entry. If an entry was not loaded, will just load. """ unload_result = await self.async_unload(entry_id) if not unload_result: return unload_result return await self.async_setup(entry_id) @callback def async_update_entry( self, entry: ConfigEntry, *, unique_id: Union[str, dict, None] = _UNDEF, data: dict = _UNDEF, options: dict = _UNDEF, system_options: dict = _UNDEF, ) -> None: """Update a config entry.""" if unique_id is not _UNDEF: entry.unique_id = cast(Optional[str], unique_id) if data is not _UNDEF: entry.data = data if options is not _UNDEF: entry.options = options if system_options is not _UNDEF: entry.system_options.update(**system_options) for listener_ref in entry.update_listeners: listener = listener_ref() self.hass.async_create_task(listener(self.hass, entry)) self._async_schedule_save() async def async_forward_entry_setup(self, entry: ConfigEntry, domain: str) -> bool: """Forward the setup of an entry to a different component. By default an entry is setup with the component it belongs to. If that component also has related platforms, the component will have to forward the entry to be setup by that component. You don't want to await this coroutine if it is called as part of the setup of a component, because it can cause a deadlock. """ # Setup Component if not set up yet if domain not in self.hass.config.components: result = await async_setup_component(self.hass, domain, self._hass_config) if not result: return False integration = await loader.async_get_integration(self.hass, domain) await entry.async_setup(self.hass, integration=integration) return True async def async_forward_entry_unload(self, entry: ConfigEntry, domain: str) -> bool: """Forward the unloading of an entry to a different component.""" # It was never loaded. if domain not in self.hass.config.components: return True integration = await loader.async_get_integration(self.hass, domain) return await entry.async_unload(self.hass, integration=integration) def _async_schedule_save(self) -> None: """Save the entity registry to a file.""" self._store.async_delay_save(self._data_to_save, SAVE_DELAY) @callback def _data_to_save(self) -> Dict[str, List[Dict[str, Any]]]: """Return data to save.""" return {"entries": [entry.as_dict() for entry in self._entries]} async def _old_conf_migrator(old_config: Dict[str, Any]) -> Dict[str, Any]: """Migrate the pre-0.73 config format to the latest version.""" return {"entries": old_config} class ConfigFlow(data_entry_flow.FlowHandler): """Base class for config flows with some helpers.""" def __init_subclass__(cls, domain: Optional[str] = None, **kwargs: Any) -> None: """Initialize a subclass, register if possible.""" super().__init_subclass__(**kwargs) # type: ignore if domain is not None: HANDLERS.register(domain)(cls) CONNECTION_CLASS = CONN_CLASS_UNKNOWN @property def unique_id(self) -> Optional[str]: """Return unique ID if available.""" # pylint: disable=no-member if not self.context: return None return cast(Optional[str], self.context.get("unique_id")) @staticmethod @callback def async_get_options_flow(config_entry: ConfigEntry) -> "OptionsFlow": """Get the options flow for this handler.""" raise data_entry_flow.UnknownHandler @callback def _abort_if_unique_id_configured(self, updates: Dict[Any, Any] = None) -> None: """Abort if the unique ID is already configured.""" assert self.hass if self.unique_id is None: return for entry in self._async_current_entries(): if entry.unique_id == self.unique_id: if updates is not None and not updates.items() <= entry.data.items(): self.hass.config_entries.async_update_entry( entry, data={**entry.data, **updates} ) raise data_entry_flow.AbortFlow("already_configured") async def async_set_unique_id( self, unique_id: str, *, raise_on_progress: bool = True ) -> Optional[ConfigEntry]: """Set a unique ID for the config flow. Returns optionally existing config entry with same ID. """ if raise_on_progress: for progress in self._async_in_progress(): if progress["context"].get("unique_id") == unique_id: raise data_entry_flow.AbortFlow("already_in_progress") # pylint: disable=no-member self.context["unique_id"] = unique_id for entry in self._async_current_entries(): if entry.unique_id == unique_id: return entry return None @callback def _async_current_entries(self) -> List[ConfigEntry]: """Return current entries.""" assert self.hass is not None return self.hass.config_entries.async_entries(self.handler) @callback def _async_current_ids(self, include_ignore: bool = True) -> Set[Optional[str]]: """Return current unique IDs.""" assert self.hass is not None return set( entry.unique_id for entry in self.hass.config_entries.async_entries(self.handler) if include_ignore or entry.source != SOURCE_IGNORE ) @callback def _async_in_progress(self) -> List[Dict]: """Return other in progress flows for current domain.""" assert self.hass is not None return [ flw for flw in self.hass.config_entries.flow.async_progress() if flw["handler"] == self.handler and flw["flow_id"] != self.flow_id ] async def async_step_ignore(self, user_input: Dict[str, Any]) -> Dict[str, Any]: """Ignore this config flow.""" await self.async_set_unique_id(user_input["unique_id"], raise_on_progress=False) return self.async_create_entry(title="Ignored", data={}) async def async_step_unignore(self, user_input: Dict[str, Any]) -> Dict[str, Any]: """Rediscover a config entry by it's unique_id.""" return self.async_abort(reason="not_implemented") class OptionsFlowManager(data_entry_flow.FlowManager): """Flow to set options for a configuration entry.""" async def async_create_flow( self, handler_key: Any, *, context: Optional[Dict[str, Any]] = None, data: Optional[Dict[str, Any]] = None, ) -> "OptionsFlow": """Create an options flow for a config entry. Entry_id and flow.handler is the same thing to map entry with flow. """ entry = self.hass.config_entries.async_get_entry(handler_key) if entry is None: raise UnknownEntry(handler_key) if entry.domain not in HANDLERS: raise data_entry_flow.UnknownHandler flow = cast(OptionsFlow, HANDLERS[entry.domain].async_get_options_flow(entry)) return flow async def async_finish_flow( self, flow: data_entry_flow.FlowHandler, result: Dict[str, Any] ) -> Dict[str, Any]: """Finish an options flow and update options for configuration entry. Flow.handler and entry_id is the same thing to map flow with entry. """ flow = cast(OptionsFlow, flow) entry = self.hass.config_entries.async_get_entry(flow.handler) if entry is None: raise UnknownEntry(flow.handler) self.hass.config_entries.async_update_entry(entry, options=result["data"]) result["result"] = True return result class OptionsFlow(data_entry_flow.FlowHandler): """Base class for config option flows.""" handler: str @attr.s(slots=True) class SystemOptions: """Config entry system options.""" disable_new_entities = attr.ib(type=bool, default=False) def update(self, *, disable_new_entities: bool) -> None: """Update properties.""" self.disable_new_entities = disable_new_entities def as_dict(self) -> Dict[str, Any]: """Return dictionary version of this config entrys system options.""" return {"disable_new_entities": self.disable_new_entities} class EntityRegistryDisabledHandler: """Handler to handle when entities related to config entries updating disabled_by.""" RELOAD_AFTER_UPDATE_DELAY = 30 def __init__(self, hass: HomeAssistant) -> None: """Initialize the handler.""" self.hass = hass self.registry: Optional[entity_registry.EntityRegistry] = None self.changed: Set[str] = set() self._remove_call_later: Optional[Callable[[], None]] = None @callback def async_setup(self) -> None: """Set up the disable handler.""" self.hass.bus.async_listen( entity_registry.EVENT_ENTITY_REGISTRY_UPDATED, self._handle_entry_updated ) async def _handle_entry_updated(self, event: Event) -> None: """Handle entity registry entry update.""" if ( event.data["action"] != "update" or "disabled_by" not in event.data["changes"] ): return if self.registry is None: self.registry = await entity_registry.async_get_registry(self.hass) entity_entry = self.registry.async_get(event.data["entity_id"]) if ( # Stop if no entry found entity_entry is None # Stop if entry not connected to config entry or entity_entry.config_entry_id is None # Stop if the entry got disabled. In that case the entity handles it # themselves. or entity_entry.disabled_by ): return config_entry = self.hass.config_entries.async_get_entry( entity_entry.config_entry_id ) assert config_entry is not None if config_entry.entry_id not in self.changed and await support_entry_unload( self.hass, config_entry.domain ): self.changed.add(config_entry.entry_id) if not self.changed: return # We are going to delay reloading on *every* entity registry change so that # if a user is happily clicking along, it will only reload at the end. if self._remove_call_later: self._remove_call_later() self._remove_call_later = self.hass.helpers.event.async_call_later( self.RELOAD_AFTER_UPDATE_DELAY, self._handle_reload ) async def _handle_reload(self, _now: Any) -> None: """Handle a reload.""" self._remove_call_later = None to_reload = self.changed self.changed = set() _LOGGER.info( "Reloading config entries because disabled_by changed in entity registry: %s", ", ".join(self.changed), ) await asyncio.gather( *[self.hass.config_entries.async_reload(entry_id) for entry_id in to_reload] ) async def support_entry_unload(hass: HomeAssistant, domain: str) -> bool: """Test if a domain supports entry unloading.""" integration = await loader.async_get_integration(hass, domain) component = integration.get_component() return hasattr(component, "async_unload_entry")
33.944284
109
0.615123
793e8d20de7e33f68d878ebad87ea2a818be1374
31,858
py
Python
Lib/test/test_exception_group.py
ErikBjare/cpython
b68431fadb3150134ac6ccbf501cdfeaf4c75678
[ "0BSD" ]
5
2021-12-03T23:11:53.000Z
2022-01-08T21:02:50.000Z
Lib/test/test_exception_group.py
dalakatt/cpython
2f49b97cc5426087b46515254b9a97a22ee8c807
[ "0BSD" ]
4
2021-12-01T14:06:09.000Z
2022-03-24T21:55:25.000Z
Lib/test/test_exception_group.py
dalakatt/cpython
2f49b97cc5426087b46515254b9a97a22ee8c807
[ "0BSD" ]
1
2022-03-24T19:52:47.000Z
2022-03-24T19:52:47.000Z
import collections.abc import traceback import types import unittest class TestExceptionGroupTypeHierarchy(unittest.TestCase): def test_exception_group_types(self): self.assertTrue(issubclass(ExceptionGroup, Exception)) self.assertTrue(issubclass(ExceptionGroup, BaseExceptionGroup)) self.assertTrue(issubclass(BaseExceptionGroup, BaseException)) def test_exception_is_not_generic_type(self): with self.assertRaisesRegex(TypeError, 'Exception'): Exception[OSError] def test_exception_group_is_generic_type(self): E = OSError self.assertIsInstance(ExceptionGroup[E], types.GenericAlias) self.assertIsInstance(BaseExceptionGroup[E], types.GenericAlias) class BadConstructorArgs(unittest.TestCase): def test_bad_EG_construction__too_many_args(self): MSG = r'BaseExceptionGroup.__new__\(\) takes exactly 2 arguments' with self.assertRaisesRegex(TypeError, MSG): ExceptionGroup('no errors') with self.assertRaisesRegex(TypeError, MSG): ExceptionGroup([ValueError('no msg')]) with self.assertRaisesRegex(TypeError, MSG): ExceptionGroup('eg', [ValueError('too')], [TypeError('many')]) def test_bad_EG_construction__bad_message(self): MSG = 'argument 1 must be str, not ' with self.assertRaisesRegex(TypeError, MSG): ExceptionGroup(ValueError(12), SyntaxError('bad syntax')) with self.assertRaisesRegex(TypeError, MSG): ExceptionGroup(None, [ValueError(12)]) def test_bad_EG_construction__bad_excs_sequence(self): MSG = r'second argument \(exceptions\) must be a sequence' with self.assertRaisesRegex(TypeError, MSG): ExceptionGroup('errors not sequence', {ValueError(42)}) with self.assertRaisesRegex(TypeError, MSG): ExceptionGroup("eg", None) MSG = r'second argument \(exceptions\) must be a non-empty sequence' with self.assertRaisesRegex(ValueError, MSG): ExceptionGroup("eg", []) def test_bad_EG_construction__nested_non_exceptions(self): MSG = (r'Item [0-9]+ of second argument \(exceptions\)' ' is not an exception') with self.assertRaisesRegex(ValueError, MSG): ExceptionGroup('expect instance, not type', [OSError]); with self.assertRaisesRegex(ValueError, MSG): ExceptionGroup('bad error', ["not an exception"]) class InstanceCreation(unittest.TestCase): def test_EG_wraps_Exceptions__creates_EG(self): excs = [ValueError(1), TypeError(2)] self.assertIs( type(ExceptionGroup("eg", excs)), ExceptionGroup) def test_BEG_wraps_Exceptions__creates_EG(self): excs = [ValueError(1), TypeError(2)] self.assertIs( type(BaseExceptionGroup("beg", excs)), ExceptionGroup) def test_EG_wraps_BaseException__raises_TypeError(self): MSG= "Cannot nest BaseExceptions in an ExceptionGroup" with self.assertRaisesRegex(TypeError, MSG): eg = ExceptionGroup("eg", [ValueError(1), KeyboardInterrupt(2)]) def test_BEG_wraps_BaseException__creates_BEG(self): beg = BaseExceptionGroup("beg", [ValueError(1), KeyboardInterrupt(2)]) self.assertIs(type(beg), BaseExceptionGroup) def test_EG_subclass_wraps_anything(self): class MyEG(ExceptionGroup): pass self.assertIs( type(MyEG("eg", [ValueError(12), TypeError(42)])), MyEG) self.assertIs( type(MyEG("eg", [ValueError(12), KeyboardInterrupt(42)])), MyEG) def test_BEG_subclass_wraps_anything(self): class MyBEG(BaseExceptionGroup): pass self.assertIs( type(MyBEG("eg", [ValueError(12), TypeError(42)])), MyBEG) self.assertIs( type(MyBEG("eg", [ValueError(12), KeyboardInterrupt(42)])), MyBEG) class StrAndReprTests(unittest.TestCase): def test_ExceptionGroup(self): eg = BaseExceptionGroup( 'flat', [ValueError(1), TypeError(2)]) self.assertEqual(str(eg), "flat (2 sub-exceptions)") self.assertEqual(repr(eg), "ExceptionGroup('flat', [ValueError(1), TypeError(2)])") eg = BaseExceptionGroup( 'nested', [eg, ValueError(1), eg, TypeError(2)]) self.assertEqual(str(eg), "nested (4 sub-exceptions)") self.assertEqual(repr(eg), "ExceptionGroup('nested', " "[ExceptionGroup('flat', " "[ValueError(1), TypeError(2)]), " "ValueError(1), " "ExceptionGroup('flat', " "[ValueError(1), TypeError(2)]), TypeError(2)])") def test_BaseExceptionGroup(self): eg = BaseExceptionGroup( 'flat', [ValueError(1), KeyboardInterrupt(2)]) self.assertEqual(str(eg), "flat (2 sub-exceptions)") self.assertEqual(repr(eg), "BaseExceptionGroup(" "'flat', " "[ValueError(1), KeyboardInterrupt(2)])") eg = BaseExceptionGroup( 'nested', [eg, ValueError(1), eg]) self.assertEqual(str(eg), "nested (3 sub-exceptions)") self.assertEqual(repr(eg), "BaseExceptionGroup('nested', " "[BaseExceptionGroup('flat', " "[ValueError(1), KeyboardInterrupt(2)]), " "ValueError(1), " "BaseExceptionGroup('flat', " "[ValueError(1), KeyboardInterrupt(2)])])") def test_custom_exception(self): class MyEG(ExceptionGroup): pass eg = MyEG( 'flat', [ValueError(1), TypeError(2)]) self.assertEqual(str(eg), "flat (2 sub-exceptions)") self.assertEqual(repr(eg), "MyEG('flat', [ValueError(1), TypeError(2)])") eg = MyEG( 'nested', [eg, ValueError(1), eg, TypeError(2)]) self.assertEqual(str(eg), "nested (4 sub-exceptions)") self.assertEqual(repr(eg), ( "MyEG('nested', " "[MyEG('flat', [ValueError(1), TypeError(2)]), " "ValueError(1), " "MyEG('flat', [ValueError(1), TypeError(2)]), " "TypeError(2)])")) def create_simple_eg(): excs = [] try: try: raise MemoryError("context and cause for ValueError(1)") except MemoryError as e: raise ValueError(1) from e except ValueError as e: excs.append(e) try: try: raise OSError("context for TypeError") except OSError as e: raise TypeError(int) except TypeError as e: excs.append(e) try: try: raise ImportError("context for ValueError(2)") except ImportError as e: raise ValueError(2) except ValueError as e: excs.append(e) try: raise ExceptionGroup('simple eg', excs) except ExceptionGroup as e: return e class ExceptionGroupFields(unittest.TestCase): def test_basics_ExceptionGroup_fields(self): eg = create_simple_eg() # check msg self.assertEqual(eg.message, 'simple eg') self.assertEqual(eg.args[0], 'simple eg') # check cause and context self.assertIsInstance(eg.exceptions[0], ValueError) self.assertIsInstance(eg.exceptions[0].__cause__, MemoryError) self.assertIsInstance(eg.exceptions[0].__context__, MemoryError) self.assertIsInstance(eg.exceptions[1], TypeError) self.assertIsNone(eg.exceptions[1].__cause__) self.assertIsInstance(eg.exceptions[1].__context__, OSError) self.assertIsInstance(eg.exceptions[2], ValueError) self.assertIsNone(eg.exceptions[2].__cause__) self.assertIsInstance(eg.exceptions[2].__context__, ImportError) # check tracebacks line0 = create_simple_eg.__code__.co_firstlineno tb_linenos = [line0 + 27, [line0 + 6, line0 + 14, line0 + 22]] self.assertEqual(eg.__traceback__.tb_lineno, tb_linenos[0]) self.assertIsNone(eg.__traceback__.tb_next) for i in range(3): tb = eg.exceptions[i].__traceback__ self.assertIsNone(tb.tb_next) self.assertEqual(tb.tb_lineno, tb_linenos[1][i]) def test_fields_are_readonly(self): eg = ExceptionGroup('eg', [TypeError(1), OSError(2)]) self.assertEqual(type(eg.exceptions), tuple) eg.message with self.assertRaises(AttributeError): eg.message = "new msg" eg.exceptions with self.assertRaises(AttributeError): eg.exceptions = [OSError('xyz')] class ExceptionGroupTestBase(unittest.TestCase): def assertMatchesTemplate(self, exc, exc_type, template): """ Assert that the exception matches the template A template describes the shape of exc. If exc is a leaf exception (i.e., not an exception group) then template is an exception instance that has the expected type and args value of exc. If exc is an exception group, then template is a list of the templates of its nested exceptions. """ if exc_type is not None: self.assertIs(type(exc), exc_type) if isinstance(exc, BaseExceptionGroup): self.assertIsInstance(template, collections.abc.Sequence) self.assertEqual(len(exc.exceptions), len(template)) for e, t in zip(exc.exceptions, template): self.assertMatchesTemplate(e, None, t) else: self.assertIsInstance(template, BaseException) self.assertEqual(type(exc), type(template)) self.assertEqual(exc.args, template.args) class ExceptionGroupSubgroupTests(ExceptionGroupTestBase): def setUp(self): self.eg = create_simple_eg() self.eg_template = [ValueError(1), TypeError(int), ValueError(2)] def test_basics_subgroup_split__bad_arg_type(self): bad_args = ["bad arg", OSError('instance not type'), [OSError, TypeError], (OSError, 42)] for arg in bad_args: with self.assertRaises(TypeError): self.eg.subgroup(arg) with self.assertRaises(TypeError): self.eg.split(arg) def test_basics_subgroup_by_type__passthrough(self): eg = self.eg self.assertIs(eg, eg.subgroup(BaseException)) self.assertIs(eg, eg.subgroup(Exception)) self.assertIs(eg, eg.subgroup(BaseExceptionGroup)) self.assertIs(eg, eg.subgroup(ExceptionGroup)) def test_basics_subgroup_by_type__no_match(self): self.assertIsNone(self.eg.subgroup(OSError)) def test_basics_subgroup_by_type__match(self): eg = self.eg testcases = [ # (match_type, result_template) (ValueError, [ValueError(1), ValueError(2)]), (TypeError, [TypeError(int)]), ((ValueError, TypeError), self.eg_template)] for match_type, template in testcases: with self.subTest(match=match_type): subeg = eg.subgroup(match_type) self.assertEqual(subeg.message, eg.message) self.assertMatchesTemplate(subeg, ExceptionGroup, template) def test_basics_subgroup_by_predicate__passthrough(self): self.assertIs(self.eg, self.eg.subgroup(lambda e: True)) def test_basics_subgroup_by_predicate__no_match(self): self.assertIsNone(self.eg.subgroup(lambda e: False)) def test_basics_subgroup_by_predicate__match(self): eg = self.eg testcases = [ # (match_type, result_template) (ValueError, [ValueError(1), ValueError(2)]), (TypeError, [TypeError(int)]), ((ValueError, TypeError), self.eg_template)] for match_type, template in testcases: subeg = eg.subgroup(lambda e: isinstance(e, match_type)) self.assertEqual(subeg.message, eg.message) self.assertMatchesTemplate(subeg, ExceptionGroup, template) class ExceptionGroupSplitTests(ExceptionGroupTestBase): def setUp(self): self.eg = create_simple_eg() self.eg_template = [ValueError(1), TypeError(int), ValueError(2)] def test_basics_split_by_type__passthrough(self): for E in [BaseException, Exception, BaseExceptionGroup, ExceptionGroup]: match, rest = self.eg.split(E) self.assertMatchesTemplate( match, ExceptionGroup, self.eg_template) self.assertIsNone(rest) def test_basics_split_by_type__no_match(self): match, rest = self.eg.split(OSError) self.assertIsNone(match) self.assertMatchesTemplate( rest, ExceptionGroup, self.eg_template) def test_basics_split_by_type__match(self): eg = self.eg VE = ValueError TE = TypeError testcases = [ # (matcher, match_template, rest_template) (VE, [VE(1), VE(2)], [TE(int)]), (TE, [TE(int)], [VE(1), VE(2)]), ((VE, TE), self.eg_template, None), ((OSError, VE), [VE(1), VE(2)], [TE(int)]), ] for match_type, match_template, rest_template in testcases: match, rest = eg.split(match_type) self.assertEqual(match.message, eg.message) self.assertMatchesTemplate( match, ExceptionGroup, match_template) if rest_template is not None: self.assertEqual(rest.message, eg.message) self.assertMatchesTemplate( rest, ExceptionGroup, rest_template) else: self.assertIsNone(rest) def test_basics_split_by_predicate__passthrough(self): match, rest = self.eg.split(lambda e: True) self.assertMatchesTemplate(match, ExceptionGroup, self.eg_template) self.assertIsNone(rest) def test_basics_split_by_predicate__no_match(self): match, rest = self.eg.split(lambda e: False) self.assertIsNone(match) self.assertMatchesTemplate(rest, ExceptionGroup, self.eg_template) def test_basics_split_by_predicate__match(self): eg = self.eg VE = ValueError TE = TypeError testcases = [ # (matcher, match_template, rest_template) (VE, [VE(1), VE(2)], [TE(int)]), (TE, [TE(int)], [VE(1), VE(2)]), ((VE, TE), self.eg_template, None), ] for match_type, match_template, rest_template in testcases: match, rest = eg.split(lambda e: isinstance(e, match_type)) self.assertEqual(match.message, eg.message) self.assertMatchesTemplate( match, ExceptionGroup, match_template) if rest_template is not None: self.assertEqual(rest.message, eg.message) self.assertMatchesTemplate( rest, ExceptionGroup, rest_template) class DeepRecursionInSplitAndSubgroup(unittest.TestCase): def make_deep_eg(self): e = TypeError(1) for i in range(2000): e = ExceptionGroup('eg', [e]) return e def test_deep_split(self): e = self.make_deep_eg() with self.assertRaises(RecursionError): e.split(TypeError) def test_deep_subgroup(self): e = self.make_deep_eg() with self.assertRaises(RecursionError): e.subgroup(TypeError) def leaf_generator(exc, tbs=None): if tbs is None: tbs = [] tbs.append(exc.__traceback__) if isinstance(exc, BaseExceptionGroup): for e in exc.exceptions: yield from leaf_generator(e, tbs) else: # exc is a leaf exception and its traceback # is the concatenation of the traceback # segments in tbs yield exc, tbs tbs.pop() class LeafGeneratorTest(unittest.TestCase): # The leaf_generator is mentioned in PEP 654 as a suggestion # on how to iterate over leaf nodes of an EG. Is is also # used below as a test utility. So we test it here. def test_leaf_generator(self): eg = create_simple_eg() self.assertSequenceEqual( [e for e, _ in leaf_generator(eg)], eg.exceptions) for e, tbs in leaf_generator(eg): self.assertSequenceEqual( tbs, [eg.__traceback__, e.__traceback__]) def create_nested_eg(): excs = [] try: try: raise TypeError(bytes) except TypeError as e: raise ExceptionGroup("nested", [e]) except ExceptionGroup as e: excs.append(e) try: try: raise MemoryError('out of memory') except MemoryError as e: raise ValueError(1) from e except ValueError as e: excs.append(e) try: raise ExceptionGroup("root", excs) except ExceptionGroup as eg: return eg class NestedExceptionGroupBasicsTest(ExceptionGroupTestBase): def test_nested_group_matches_template(self): eg = create_nested_eg() self.assertMatchesTemplate( eg, ExceptionGroup, [[TypeError(bytes)], ValueError(1)]) def test_nested_group_chaining(self): eg = create_nested_eg() self.assertIsInstance(eg.exceptions[1].__context__, MemoryError) self.assertIsInstance(eg.exceptions[1].__cause__, MemoryError) self.assertIsInstance(eg.exceptions[0].__context__, TypeError) def test_nested_exception_group_tracebacks(self): eg = create_nested_eg() line0 = create_nested_eg.__code__.co_firstlineno for (tb, expected) in [ (eg.__traceback__, line0 + 19), (eg.exceptions[0].__traceback__, line0 + 6), (eg.exceptions[1].__traceback__, line0 + 14), (eg.exceptions[0].exceptions[0].__traceback__, line0 + 4), ]: self.assertEqual(tb.tb_lineno, expected) self.assertIsNone(tb.tb_next) def test_iteration_full_tracebacks(self): eg = create_nested_eg() # check that iteration over leaves # produces the expected tracebacks self.assertEqual(len(list(leaf_generator(eg))), 2) line0 = create_nested_eg.__code__.co_firstlineno expected_tbs = [ [line0 + 19, line0 + 6, line0 + 4], [line0 + 19, line0 + 14]] for (i, (_, tbs)) in enumerate(leaf_generator(eg)): self.assertSequenceEqual( [tb.tb_lineno for tb in tbs], expected_tbs[i]) class ExceptionGroupSplitTestBase(ExceptionGroupTestBase): def split_exception_group(self, eg, types): """ Split an EG and do some sanity checks on the result """ self.assertIsInstance(eg, BaseExceptionGroup) match, rest = eg.split(types) sg = eg.subgroup(types) if match is not None: self.assertIsInstance(match, BaseExceptionGroup) for e,_ in leaf_generator(match): self.assertIsInstance(e, types) self.assertIsNotNone(sg) self.assertIsInstance(sg, BaseExceptionGroup) for e,_ in leaf_generator(sg): self.assertIsInstance(e, types) if rest is not None: self.assertIsInstance(rest, BaseExceptionGroup) def leaves(exc): return [] if exc is None else [e for e,_ in leaf_generator(exc)] # match and subgroup have the same leaves self.assertSequenceEqual(leaves(match), leaves(sg)) match_leaves = leaves(match) rest_leaves = leaves(rest) # each leaf exception of eg is in exactly one of match and rest self.assertEqual( len(leaves(eg)), len(leaves(match)) + len(leaves(rest))) for e in leaves(eg): self.assertNotEqual( match and e in match_leaves, rest and e in rest_leaves) # message, cause and context, traceback and note equal to eg for part in [match, rest, sg]: if part is not None: self.assertEqual(eg.message, part.message) self.assertIs(eg.__cause__, part.__cause__) self.assertIs(eg.__context__, part.__context__) self.assertIs(eg.__traceback__, part.__traceback__) self.assertIs(eg.__note__, part.__note__) def tbs_for_leaf(leaf, eg): for e, tbs in leaf_generator(eg): if e is leaf: return tbs def tb_linenos(tbs): return [tb.tb_lineno for tb in tbs if tb] # full tracebacks match for part in [match, rest, sg]: for e in leaves(part): self.assertSequenceEqual( tb_linenos(tbs_for_leaf(e, eg)), tb_linenos(tbs_for_leaf(e, part))) return match, rest class NestedExceptionGroupSplitTest(ExceptionGroupSplitTestBase): def test_split_by_type(self): class MyExceptionGroup(ExceptionGroup): pass def raiseVE(v): raise ValueError(v) def raiseTE(t): raise TypeError(t) def nested_group(): def level1(i): excs = [] for f, arg in [(raiseVE, i), (raiseTE, int), (raiseVE, i+1)]: try: f(arg) except Exception as e: excs.append(e) raise ExceptionGroup('msg1', excs) def level2(i): excs = [] for f, arg in [(level1, i), (level1, i+1), (raiseVE, i+2)]: try: f(arg) except Exception as e: excs.append(e) raise MyExceptionGroup('msg2', excs) def level3(i): excs = [] for f, arg in [(level2, i+1), (raiseVE, i+2)]: try: f(arg) except Exception as e: excs.append(e) raise ExceptionGroup('msg3', excs) level3(5) try: nested_group() except ExceptionGroup as e: e.__note__ = f"the note: {id(e)}" eg = e eg_template = [ [ [ValueError(6), TypeError(int), ValueError(7)], [ValueError(7), TypeError(int), ValueError(8)], ValueError(8), ], ValueError(7)] valueErrors_template = [ [ [ValueError(6), ValueError(7)], [ValueError(7), ValueError(8)], ValueError(8), ], ValueError(7)] typeErrors_template = [[[TypeError(int)], [TypeError(int)]]] self.assertMatchesTemplate(eg, ExceptionGroup, eg_template) # Match Nothing match, rest = self.split_exception_group(eg, SyntaxError) self.assertIsNone(match) self.assertMatchesTemplate(rest, ExceptionGroup, eg_template) # Match Everything match, rest = self.split_exception_group(eg, BaseException) self.assertMatchesTemplate(match, ExceptionGroup, eg_template) self.assertIsNone(rest) match, rest = self.split_exception_group(eg, (ValueError, TypeError)) self.assertMatchesTemplate(match, ExceptionGroup, eg_template) self.assertIsNone(rest) # Match ValueErrors match, rest = self.split_exception_group(eg, ValueError) self.assertMatchesTemplate(match, ExceptionGroup, valueErrors_template) self.assertMatchesTemplate(rest, ExceptionGroup, typeErrors_template) # Match TypeErrors match, rest = self.split_exception_group(eg, (TypeError, SyntaxError)) self.assertMatchesTemplate(match, ExceptionGroup, typeErrors_template) self.assertMatchesTemplate(rest, ExceptionGroup, valueErrors_template) # Match ExceptionGroup match, rest = eg.split(ExceptionGroup) self.assertIs(match, eg) self.assertIsNone(rest) # Match MyExceptionGroup (ExceptionGroup subclass) match, rest = eg.split(MyExceptionGroup) self.assertMatchesTemplate(match, ExceptionGroup, [eg_template[0]]) self.assertMatchesTemplate(rest, ExceptionGroup, [eg_template[1]]) def test_split_BaseExceptionGroup(self): def exc(ex): try: raise ex except BaseException as e: return e try: raise BaseExceptionGroup( "beg", [exc(ValueError(1)), exc(KeyboardInterrupt(2))]) except BaseExceptionGroup as e: beg = e # Match Nothing match, rest = self.split_exception_group(beg, TypeError) self.assertIsNone(match) self.assertMatchesTemplate( rest, BaseExceptionGroup, [ValueError(1), KeyboardInterrupt(2)]) # Match Everything match, rest = self.split_exception_group( beg, (ValueError, KeyboardInterrupt)) self.assertMatchesTemplate( match, BaseExceptionGroup, [ValueError(1), KeyboardInterrupt(2)]) self.assertIsNone(rest) # Match ValueErrors match, rest = self.split_exception_group(beg, ValueError) self.assertMatchesTemplate( match, ExceptionGroup, [ValueError(1)]) self.assertMatchesTemplate( rest, BaseExceptionGroup, [KeyboardInterrupt(2)]) # Match KeyboardInterrupts match, rest = self.split_exception_group(beg, KeyboardInterrupt) self.assertMatchesTemplate( match, BaseExceptionGroup, [KeyboardInterrupt(2)]) self.assertMatchesTemplate( rest, ExceptionGroup, [ValueError(1)]) class NestedExceptionGroupSubclassSplitTest(ExceptionGroupSplitTestBase): def test_split_ExceptionGroup_subclass_no_derive_no_new_override(self): class EG(ExceptionGroup): pass try: try: try: raise TypeError(2) except TypeError as te: raise EG("nested", [te]) except EG as nested: try: raise ValueError(1) except ValueError as ve: raise EG("eg", [ve, nested]) except EG as e: eg = e self.assertMatchesTemplate(eg, EG, [ValueError(1), [TypeError(2)]]) # Match Nothing match, rest = self.split_exception_group(eg, OSError) self.assertIsNone(match) self.assertMatchesTemplate( rest, ExceptionGroup, [ValueError(1), [TypeError(2)]]) # Match Everything match, rest = self.split_exception_group(eg, (ValueError, TypeError)) self.assertMatchesTemplate( match, ExceptionGroup, [ValueError(1), [TypeError(2)]]) self.assertIsNone(rest) # Match ValueErrors match, rest = self.split_exception_group(eg, ValueError) self.assertMatchesTemplate(match, ExceptionGroup, [ValueError(1)]) self.assertMatchesTemplate(rest, ExceptionGroup, [[TypeError(2)]]) # Match TypeErrors match, rest = self.split_exception_group(eg, TypeError) self.assertMatchesTemplate(match, ExceptionGroup, [[TypeError(2)]]) self.assertMatchesTemplate(rest, ExceptionGroup, [ValueError(1)]) def test_split_BaseExceptionGroup_subclass_no_derive_new_override(self): class EG(BaseExceptionGroup): def __new__(cls, message, excs, unused): # The "unused" arg is here to show that split() doesn't call # the actual class constructor from the default derive() # implementation (it would fail on unused arg if so because # it assumes the BaseExceptionGroup.__new__ signature). return super().__new__(cls, message, excs) try: raise EG("eg", [ValueError(1), KeyboardInterrupt(2)], "unused") except EG as e: eg = e self.assertMatchesTemplate( eg, EG, [ValueError(1), KeyboardInterrupt(2)]) # Match Nothing match, rest = self.split_exception_group(eg, OSError) self.assertIsNone(match) self.assertMatchesTemplate( rest, BaseExceptionGroup, [ValueError(1), KeyboardInterrupt(2)]) # Match Everything match, rest = self.split_exception_group( eg, (ValueError, KeyboardInterrupt)) self.assertMatchesTemplate( match, BaseExceptionGroup, [ValueError(1), KeyboardInterrupt(2)]) self.assertIsNone(rest) # Match ValueErrors match, rest = self.split_exception_group(eg, ValueError) self.assertMatchesTemplate(match, ExceptionGroup, [ValueError(1)]) self.assertMatchesTemplate( rest, BaseExceptionGroup, [KeyboardInterrupt(2)]) # Match KeyboardInterrupt match, rest = self.split_exception_group(eg, KeyboardInterrupt) self.assertMatchesTemplate( match, BaseExceptionGroup, [KeyboardInterrupt(2)]) self.assertMatchesTemplate(rest, ExceptionGroup, [ValueError(1)]) def test_split_ExceptionGroup_subclass_derive_and_new_overrides(self): class EG(ExceptionGroup): def __new__(cls, message, excs, code): obj = super().__new__(cls, message, excs) obj.code = code return obj def derive(self, excs): return EG(self.message, excs, self.code) try: try: try: raise TypeError(2) except TypeError as te: raise EG("nested", [te], 101) except EG as nested: try: raise ValueError(1) except ValueError as ve: raise EG("eg", [ve, nested], 42) except EG as e: eg = e self.assertMatchesTemplate(eg, EG, [ValueError(1), [TypeError(2)]]) # Match Nothing match, rest = self.split_exception_group(eg, OSError) self.assertIsNone(match) self.assertMatchesTemplate(rest, EG, [ValueError(1), [TypeError(2)]]) self.assertEqual(rest.code, 42) self.assertEqual(rest.exceptions[1].code, 101) # Match Everything match, rest = self.split_exception_group(eg, (ValueError, TypeError)) self.assertMatchesTemplate(match, EG, [ValueError(1), [TypeError(2)]]) self.assertEqual(match.code, 42) self.assertEqual(match.exceptions[1].code, 101) self.assertIsNone(rest) # Match ValueErrors match, rest = self.split_exception_group(eg, ValueError) self.assertMatchesTemplate(match, EG, [ValueError(1)]) self.assertEqual(match.code, 42) self.assertMatchesTemplate(rest, EG, [[TypeError(2)]]) self.assertEqual(rest.code, 42) self.assertEqual(rest.exceptions[0].code, 101) # Match TypeErrors match, rest = self.split_exception_group(eg, TypeError) self.assertMatchesTemplate(match, EG, [[TypeError(2)]]) self.assertEqual(match.code, 42) self.assertEqual(match.exceptions[0].code, 101) self.assertMatchesTemplate(rest, EG, [ValueError(1)]) self.assertEqual(rest.code, 42) if __name__ == '__main__': unittest.main()
36.326112
81
0.60506
793e8d93fef2a82f83c9459a825b824fbf659e38
25,761
py
Python
cumulusci/tasks/bulkdata/load.py
vazexqi/CumulusCI
9075b30adc1ddcb7741df610d888330fa0233798
[ "BSD-3-Clause" ]
null
null
null
cumulusci/tasks/bulkdata/load.py
vazexqi/CumulusCI
9075b30adc1ddcb7741df610d888330fa0233798
[ "BSD-3-Clause" ]
null
null
null
cumulusci/tasks/bulkdata/load.py
vazexqi/CumulusCI
9075b30adc1ddcb7741df610d888330fa0233798
[ "BSD-3-Clause" ]
1
2021-06-03T01:10:17.000Z
2021-06-03T01:10:17.000Z
from collections import defaultdict from unittest.mock import MagicMock from typing import Union import tempfile from contextlib import contextmanager from sqlalchemy import Column, MetaData, Table, Unicode, create_engine, text, func from sqlalchemy.orm import aliased, Session from sqlalchemy.ext.automap import automap_base from cumulusci.core.exceptions import BulkDataException, TaskOptionsError from cumulusci.core.utils import process_bool_arg from cumulusci.tasks.bulkdata.utils import ( SqlAlchemyMixin, RowErrorChecker, ) from cumulusci.tasks.bulkdata.dates import adjust_relative_dates from cumulusci.tasks.bulkdata.step import ( DataOperationStatus, DataOperationType, DataOperationJobResult, get_dml_operation, ) from cumulusci.tasks.salesforce import BaseSalesforceApiTask from cumulusci.utils import os_friendly_path from cumulusci.tasks.bulkdata.mapping_parser import ( parse_from_yaml, validate_and_inject_mapping, MappingStep, MappingLookup, ) class LoadData(SqlAlchemyMixin, BaseSalesforceApiTask): """Perform Bulk API operations to load data defined by a mapping from a local store into an org.""" task_options = { "database_url": { "description": "The database url to a database containing the test data to load" }, "mapping": { "description": "The path to a yaml file containing mappings of the database fields to Salesforce object fields", "required": True, }, "start_step": { "description": "If specified, skip steps before this one in the mapping", "required": False, }, "sql_path": { "description": "If specified, a database will be created from an SQL script at the provided path" }, "ignore_row_errors": { "description": "If True, allow the load to continue even if individual rows fail to load." }, "reset_oids": { "description": "If True (the default), and the _sf_ids tables exist, reset them before continuing.", "required": False, }, "bulk_mode": { "description": "Set to Serial to force serial mode on all jobs. Parallel is the default." }, "inject_namespaces": { "description": "If True, the package namespace prefix will be " "automatically added to (or removed from) objects " "and fields based on the name used in the org. Defaults to True." }, "drop_missing_schema": { "description": "Set to True to skip any missing objects or fields instead of stopping with an error." }, } row_warning_limit = 10 def _init_options(self, kwargs): super(LoadData, self)._init_options(kwargs) self.options["ignore_row_errors"] = process_bool_arg( self.options.get("ignore_row_errors") or False ) if self.options.get("database_url"): # prefer database_url if it's set self.options["sql_path"] = None elif self.options.get("sql_path"): self.options["sql_path"] = os_friendly_path(self.options["sql_path"]) self.options["database_url"] = None else: raise TaskOptionsError( "You must set either the database_url or sql_path option." ) self.reset_oids = self.options.get("reset_oids", True) self.bulk_mode = ( self.options.get("bulk_mode") and self.options.get("bulk_mode").title() ) if self.bulk_mode and self.bulk_mode not in ["Serial", "Parallel"]: raise TaskOptionsError("bulk_mode must be either Serial or Parallel") inject_namespaces = self.options.get("inject_namespaces") self.options["inject_namespaces"] = process_bool_arg( True if inject_namespaces is None else inject_namespaces ) self.options["drop_missing_schema"] = process_bool_arg( self.options.get("drop_missing_schema") or False ) def _run_task(self): self._init_mapping() with self._init_db(): self._expand_mapping() start_step = self.options.get("start_step") started = False for name, mapping in self.mapping.items(): # Skip steps until start_step if not started and start_step and name != start_step: self.logger.info(f"Skipping step: {name}") continue started = True self.logger.info(f"Running step: {name}") result = self._execute_step(mapping) if result.status is DataOperationStatus.JOB_FAILURE: raise BulkDataException( f"Step {name} did not complete successfully: {','.join(result.job_errors)}" ) if name in self.after_steps: for after_name, after_step in self.after_steps[name].items(): self.logger.info(f"Running post-load step: {after_name}") result = self._execute_step(after_step) if result.status is DataOperationStatus.JOB_FAILURE: raise BulkDataException( f"Step {after_name} did not complete successfully: {','.join(result.job_errors)}" ) def _execute_step( self, mapping: MappingStep ) -> Union[DataOperationJobResult, MagicMock]: """Load data for a single step.""" if "RecordTypeId" in mapping.fields: conn = self.session.connection() self._load_record_types([mapping.sf_object], conn) self.session.commit() query = self._query_db(mapping) bulk_mode = mapping.bulk_mode or self.bulk_mode or "Parallel" step = get_dml_operation( sobject=mapping.sf_object, operation=mapping.action, api_options={"batch_size": mapping.batch_size, "bulk_mode": bulk_mode}, context=self, fields=mapping.get_load_field_list(), api=mapping.api, volume=query.count(), ) with tempfile.TemporaryFile(mode="w+t") as local_ids: step.start() step.load_records(self._stream_queried_data(mapping, local_ids, query)) step.end() if step.job_result.status is not DataOperationStatus.JOB_FAILURE: local_ids.seek(0) self._process_job_results(mapping, step, local_ids) return step.job_result def _stream_queried_data(self, mapping, local_ids, query): """Get data from the local db""" statics = self._get_statics(mapping) total_rows = 0 if mapping.anchor_date: date_context = mapping.get_relative_date_context( mapping.get_load_field_list(), self.org_config ) for row in query.yield_per(10000): total_rows += 1 # Add static values to row pkey = row[0] row = list(row[1:]) + statics if mapping.anchor_date and (date_context[0] or date_context[1]): row = adjust_relative_dates( mapping, date_context, row, DataOperationType.INSERT ) if mapping.action is DataOperationType.UPDATE: if len(row) > 1 and all([f is None for f in row[1:]]): # Skip update rows that contain no values total_rows -= 1 continue local_ids.write(str(pkey) + "\n") yield row self.logger.info( f"Prepared {total_rows} rows for {mapping['action']} to {mapping['sf_object']}." ) def _load_record_types(self, sobjects, conn): """Persist record types for the given sObjects into the database.""" for sobject in sobjects: table_name = sobject + "_rt_target_mapping" self._extract_record_types(sobject, table_name, conn) def _get_statics(self, mapping): """Return the static values (not column names) to be appended to records for this mapping.""" statics = list(mapping.static.values()) if mapping.record_type: query = ( f"SELECT Id FROM RecordType WHERE SObjectType='{mapping.sf_object}'" f"AND DeveloperName = '{mapping.record_type}' LIMIT 1" ) records = self.sf.query(query)["records"] if records: record_type_id = records[0]["Id"] else: raise BulkDataException(f"Cannot find RecordType with query `{query}`") statics.append(record_type_id) return statics def _query_db(self, mapping): """Build a query to retrieve data from the local db. Includes columns from the mapping as well as joining to the id tables to get real SF ids for lookups. """ model = self.models[mapping.table] id_column = model.__table__.primary_key.columns.keys()[0] columns = [getattr(model, id_column)] for name, f in mapping.fields.items(): if name not in ("Id", "RecordTypeId", "RecordType"): columns.append(model.__table__.columns[f]) lookups = { lookup_field: lookup for lookup_field, lookup in mapping.lookups.items() if not lookup.after } for lookup in lookups.values(): lookup.aliased_table = aliased( self.metadata.tables[f"{lookup.table}_sf_ids"] ) columns.append(lookup.aliased_table.columns.sf_id) if "RecordTypeId" in mapping.fields: rt_dest_table = self.metadata.tables[ mapping.get_destination_record_type_table() ] columns.append(rt_dest_table.columns.record_type_id) query = self.session.query(*columns) if mapping.record_type and hasattr(model, "record_type"): query = query.filter(model.record_type == mapping.record_type) if mapping.filters: filter_args = [] for f in mapping.filters: filter_args.append(text(f)) query = query.filter(*filter_args) if "RecordTypeId" in mapping.fields: try: rt_source_table = self.metadata.tables[ mapping.get_source_record_type_table() ] except KeyError as e: raise BulkDataException( "A record type mapping table was not found in your dataset. " f"Was it generated by extract_data? {e}", ) from e rt_dest_table = self.metadata.tables[ mapping.get_destination_record_type_table() ] query = query.outerjoin( rt_source_table, rt_source_table.columns.record_type_id == getattr(model, mapping.fields["RecordTypeId"]), ) query = query.outerjoin( rt_dest_table, rt_dest_table.columns.developer_name == rt_source_table.columns.developer_name, ) for sf_field, lookup in lookups.items(): # Outer join with lookup ids table: # returns main obj even if lookup is null key_field = lookup.get_lookup_key_field(model) value_column = getattr(model, key_field) query = query.outerjoin( lookup.aliased_table, lookup.aliased_table.columns.id == value_column, ) # Order by foreign key to minimize lock contention # by trying to keep lookup targets in the same batch lookup_column = getattr(model, key_field) query = query.order_by(lookup_column) # Filter out non-person account Contact records. # Contact records for person accounts were already created by the system. if mapping.sf_object == "Contact" and self._can_load_person_accounts(mapping): query = self._filter_out_person_account_records(query, model) return query def _process_job_results(self, mapping, step, local_ids): """Get the job results and process the results. If we're raising for row-level errors, do so; if we're inserting, store the new Ids.""" if mapping.action is DataOperationType.INSERT: id_table_name = self._initialize_id_table(mapping, self.reset_oids) conn = self.session.connection() results_generator = self._generate_results_id_map(step, local_ids) # If we know we have no successful inserts, don't attempt to persist Ids. # Do, however, drain the generator to get error-checking behavior. if mapping.action is DataOperationType.INSERT and ( step.job_result.records_processed - step.job_result.total_row_errors ): self._sql_bulk_insert_from_records( connection=conn, table=id_table_name, columns=("id", "sf_id"), record_iterable=results_generator, ) else: for r in results_generator: pass # Drain generator to validate results # Contact records for Person Accounts are inserted during an Account # sf_object step. Insert records into the Contact ID table for # person account Contact records so lookups to # person account Contact records get populated downstream as expected. if ( mapping.action is DataOperationType.INSERT and mapping.sf_object == "Contact" and self._can_load_person_accounts(mapping) ): account_id_lookup = mapping.lookups.get("AccountId") if account_id_lookup: self._sql_bulk_insert_from_records( connection=conn, table=id_table_name, columns=("id", "sf_id"), record_iterable=self._generate_contact_id_map_for_person_accounts( mapping, account_id_lookup, conn ), ) if mapping.action is DataOperationType.INSERT: self.session.commit() def _generate_results_id_map(self, step, local_ids): """Consume results from load and prepare rows for id table. Raise BulkDataException on row errors if configured to do so.""" error_checker = RowErrorChecker( self.logger, self.options["ignore_row_errors"], self.row_warning_limit ) local_ids = (lid.strip("\n") for lid in local_ids) for result, local_id in zip(step.get_results(), local_ids): if result.success: yield (local_id, result.id) else: error_checker.check_for_row_error(result, local_id) def _initialize_id_table(self, mapping, should_reset_table): """initalize or find table to hold the inserted SF Ids The table has a name like xxx_sf_ids and has just two columns, id and sf_id. If the table already exists, should_reset_table determines whether to drop and recreate it or not. """ id_table_name = f"{mapping['table']}_sf_ids" already_exists = id_table_name in self.metadata.tables if already_exists and not should_reset_table: return id_table_name if not hasattr(self, "_initialized_id_tables"): self._initialized_id_tables = set() if id_table_name not in self._initialized_id_tables: if already_exists: self.metadata.remove(self.metadata.tables[id_table_name]) id_table = Table( id_table_name, self.metadata, Column("id", Unicode(255), primary_key=True), Column("sf_id", Unicode(18)), ) if id_table.exists(): id_table.drop() id_table.create() self._initialized_id_tables.add(id_table_name) return id_table_name def _sqlite_load(self): """Read a SQLite script and initialize the in-memory database.""" conn = self.session.connection() cursor = conn.connection.cursor() with open(self.options["sql_path"], "r", encoding="utf-8") as f: try: cursor.executescript(f.read()) finally: cursor.close() # self.session.flush() @contextmanager def _init_db(self): """Initialize the database and automapper.""" # initialize the DB engine with self._database_url() as database_url: parent_engine = create_engine(database_url) with parent_engine.connect() as connection: # initialize the DB session self.session = Session(connection) if self.options.get("sql_path"): self._sqlite_load() # initialize DB metadata self.metadata = MetaData() self.metadata.bind = connection # initialize the automap mapping self.base = automap_base(bind=connection, metadata=self.metadata) self.base.prepare(connection, reflect=True) # Loop through mappings and reflect each referenced table self.models = {} for name, mapping in self.mapping.items(): if mapping.table not in self.models: self.models[mapping.table] = self.base.classes[mapping.table] # create any Record Type tables we need if "RecordTypeId" in mapping.fields: self._create_record_type_table( mapping.get_destination_record_type_table() ) self.metadata.create_all() self._validate_org_has_person_accounts_enabled_if_person_account_data_exists() yield def _init_mapping(self): """Load a YAML mapping file.""" mapping_file_path = self.options["mapping"] if not mapping_file_path: raise TaskOptionsError("Mapping file path required") self.mapping = parse_from_yaml(mapping_file_path) validate_and_inject_mapping( mapping=self.mapping, org_config=self.org_config, namespace=self.project_config.project__package__namespace, data_operation=DataOperationType.INSERT, inject_namespaces=self.options["inject_namespaces"], drop_missing=self.options["drop_missing_schema"], ) def _expand_mapping(self): """Walk the mapping and generate any required 'after' steps to handle dependent and self-lookups.""" # Expand the mapping to handle dependent lookups self.after_steps = defaultdict(dict) for step in self.mapping.values(): if any([lookup.after for lookup in step.lookups.values()]): # We have deferred/dependent lookups. # Synthesize mapping steps for them. sobject = step.sf_object after_list = { lookup.after for lookup in step.lookups.values() if lookup.after } for after in after_list: lookups = { lookup_field: lookup for lookup_field, lookup in step.lookups.items() if lookup.after == after } name = f"Update {sobject} Dependencies After {after}" mapping = MappingStep( sf_object=sobject, api=step.api, action="update", table=step.table, ) mapping.lookups["Id"] = MappingLookup( name="Id", table=step["table"], key_field=self.models[ step["table"] ].__table__.primary_key.columns.keys()[0], ) for lookup in lookups: mapping.lookups[lookup] = lookups[lookup].copy() mapping.lookups[lookup].after = None self.after_steps[after][name] = mapping def _validate_org_has_person_accounts_enabled_if_person_account_data_exists(self): """ To ensure data is loaded from the dataset as expected as well as avoid partial failues, raise a BulkDataException if there exists Account or Contact records with IsPersonAccount as 'true' but the org does not have person accounts enabled. """ for mapping in self.mapping.values(): if ( mapping.sf_object in [ "Account", "Contact", ] and self._db_has_person_accounts_column(mapping) ): table = self.models[mapping.table].__table__ if ( self.session.query(table) .filter(table.columns.get("IsPersonAccount") == "true") .first() and not self.org_config.is_person_accounts_enabled ): raise BulkDataException( "Your dataset contains Person Account data but Person Accounts is not enabled for your org." ) def _db_has_person_accounts_column(self, mapping): """Returns whether "IsPersonAccount" is a column in mapping's table.""" return ( self.models[mapping.table].__table__.columns.get("IsPersonAccount") is not None ) def _can_load_person_accounts(self, mapping) -> bool: """Returns whether person accounts can be loaded: - The mapping has a "IsPersonAccount" column - Person Accounts is enabled in the org. """ return ( self._db_has_person_accounts_column(mapping) and self.org_config.is_person_accounts_enabled ) def _filter_out_person_account_records(self, query, model): return query.filter( func.lower(model.__table__.columns.get("IsPersonAccount")) == "false" ) def _generate_contact_id_map_for_person_accounts( self, contact_mapping, account_id_lookup, conn ): """ Yields (local_id, sf_id) for Contact records where IsPersonAccount is true that can handle large data volumes. We know a Person Account record is related to one and only one Contact record. Therefore, we can map local Contact IDs to Salesforce IDs by previously inserted Account records: - Query the DB to get the map: Salesforce Account ID -> local Contact ID - Query Salesforce to get the map: Salesforce Account ID -> Salesforce Contact ID - Merge the maps """ # Contact table columns contact_model = self.models[contact_mapping.table] contact_id_column = getattr( contact_model, contact_model.__table__.primary_key.columns.keys()[0] ) account_id_column = getattr( contact_model, account_id_lookup.get_lookup_key_field(contact_model) ) # Account ID table + column account_sf_ids_table = account_id_lookup.aliased_table account_sf_id_column = account_sf_ids_table.columns["sf_id"] # Query the Contact table for person account contact records so we can # create a Map: Account SF ID --> Contact ID. Outer join the # Account SF IDs table to get each Contact's associated # Account SF ID. query = ( self.session.query(contact_id_column, account_sf_id_column) .filter( func.lower(contact_model.__table__.columns.get("IsPersonAccount")) == "true" ) .outerjoin( account_sf_ids_table, account_sf_ids_table.columns["id"] == account_id_column, ) ) # Stream the results so we can process batches of 200 Contacts # in case we have large data volumes. query_result = conn.execution_options(stream_results=True).execute( query.statement ) while True: # While we have a chunk to process chunk = query_result.fetchmany(200) if not chunk: break # Collect Map: Account SF ID --> Contact ID contact_ids_by_account_sf_id = {record[1]: record[0] for record in chunk} # Query Map: Account SF ID --> Contact SF ID # It's safe to use query_all since the chunk size to 200. for record in self.sf.query_all( "SELECT Id, AccountId FROM Contact WHERE IsPersonAccount = true AND AccountId IN ('{}')".format( "','".join(contact_ids_by_account_sf_id.keys()) ) )["records"]: contact_id = contact_ids_by_account_sf_id.get(record["AccountId"]) contact_sf_id = record["Id"] # Join maps together to get tuple (Contact ID, Contact SF ID) to insert into step's ID Table. yield (contact_id, contact_sf_id)
40.632492
124
0.591437
793e8f586f4661f679f2e2a52aa1e3fb9841db72
17
py
Python
python/testData/psi/FStringTerminatedByQuoteInsideStringLiteralInFormatPart.py
jnthn/intellij-community
8fa7c8a3ace62400c838e0d5926a7be106aa8557
[ "Apache-2.0" ]
2
2019-04-28T07:48:50.000Z
2020-12-11T14:18:08.000Z
python/testData/psi/FStringTerminatedByQuoteInsideStringLiteralInFormatPart.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
173
2018-07-05T13:59:39.000Z
2018-08-09T01:12:03.000Z
python/testData/psi/FStringTerminatedByQuoteInsideStringLiteralInFormatPart.py
Cyril-lamirand/intellij-community
60ab6c61b82fc761dd68363eca7d9d69663cfa39
[ "Apache-2.0" ]
2
2020-03-15T08:57:37.000Z
2020-04-07T04:48:14.000Z
s = f'{42:{"'"}}'
17
17
0.235294
793e901392b73523237f5290b5992bb69b90054a
3,840
py
Python
shapash/decomposition/contributions.py
peterdhansen/shapash
d866cced7aa01f6d162faa910e53d281d3e35e4c
[ "Apache-2.0" ]
2
2021-01-15T13:40:00.000Z
2021-01-15T13:40:58.000Z
shapash/decomposition/contributions.py
alisoncossette/shapash
d2a5e466450e8bef1e2eac055d78773747244489
[ "Apache-2.0" ]
null
null
null
shapash/decomposition/contributions.py
alisoncossette/shapash
d2a5e466450e8bef1e2eac055d78773747244489
[ "Apache-2.0" ]
null
null
null
""" Contributions """ import pandas as pd import numpy as np from shapash.utils.transform import preprocessing_tolist from shapash.utils.transform import check_transformers from shapash.utils.category_encoder_backend import calc_inv_contrib_ce from shapash.utils.columntransformer_backend import calc_inv_contrib_ct def inverse_transform_contributions(contributions, preprocessing=None): """ Reverse contribution giving a preprocessing. Preprocessing could be : - a single category_encoders - a single ColumnTransformer - list with multiple category_encoders with optional (dict, list of dict) - list with a single ColumnTransformer with optional (dict, list of dict) - dict - list of dict Parameters ---------- contributions : pandas.DataFrame Contributions values. preprocessing : category_encoders, ColumnTransformer, list, dict, optional (default: None) The processing apply to the original data. Returns ------- pandas.Dataframe Return the aggregate contributions. """ if not isinstance(contributions, pd.DataFrame): raise Exception('Shap values must be a pandas dataframe.') if preprocessing is None: return contributions else: #Transform preprocessing into a list list_encoding = preprocessing_tolist(preprocessing) # check supported inverse use_ct, use_ce = check_transformers(list_encoding) # Apply Inverse Transform x_contrib_invers = contributions.copy() if use_ct: for encoding in list_encoding: x_contrib_invers = calc_inv_contrib_ct(x_contrib_invers, encoding) else: for encoding in list_encoding: x_contrib_invers = calc_inv_contrib_ce(x_contrib_invers, encoding) return x_contrib_invers def rank_contributions(s_df, x_df): """ Function to sort contributions and input features by decreasing contribution absolute values Parameters ---------- s_df: pandas.DataFrame Local contributions dataframe. x_df: pandas.DataFrame Input features. Returns ------- pandas.DataFrame Local contributions sorted by decreasing absolute values. pandas.DataFrame Input features sorted by decreasing contributions absolute values. pandas.DataFrame Input features names sorted for each observation by decreasing contributions absolute values. """ argsort = np.argsort(-np.abs(s_df.values), axis=1) sorted_contrib = np.take_along_axis(s_df.values, argsort, axis=1) sorted_features = np.take_along_axis(x_df.values, argsort, axis=1) contrib_col = ['contribution_' + str(i) for i in range(s_df.shape[1])] col = ['feature_' + str(i) for i in range(s_df.shape[1])] s_dict = pd.DataFrame(data=argsort, columns=col, index=x_df.index) s_ord = pd.DataFrame(data=sorted_contrib, columns=contrib_col, index=x_df.index) x_ord = pd.DataFrame(data=sorted_features, columns=col, index=x_df.index) return [s_ord, x_ord, s_dict] def assign_contributions(ranked): """ Turn a list of results into a dict. Parameters ---------- ranked : list The output of rank_contributions. Returns ------- dict Same data but rearrange into a dict with explicit names. Raises ------ ValueError The output of rank_contributions should always be of length three. """ if len(ranked) != 3: raise ValueError( 'Expected lenght : 3, observed lenght : {},' 'please check the outputs of rank_contributions.'.format(len(ranked)) ) return { 'contrib_sorted': ranked[0], 'x_sorted': ranked[1], 'var_dict': ranked[2] }
31.219512
94
0.67526
793e9020ee57eb84e3ee364212dfa7ea6d597ab1
1,749
py
Python
scripts/_oldstuff/hdf5traits.py
heistermann/trmmlib
b32cf623737285073e4c61bd0e01a0fe8b26c329
[ "MIT" ]
null
null
null
scripts/_oldstuff/hdf5traits.py
heistermann/trmmlib
b32cf623737285073e4c61bd0e01a0fe8b26c329
[ "MIT" ]
null
null
null
scripts/_oldstuff/hdf5traits.py
heistermann/trmmlib
b32cf623737285073e4c61bd0e01a0fe8b26c329
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Apr 04 13:08:35 2016 @author: heistermann """ # adapted with help from # http://stackoverflow.com/questions/15023333/simple-tool-library-to-visualize-huge-python-dict from traits.api import HasTraits, Instance from traitsui.api import View, VGroup, Item, ValueEditor from wradlib.io import read_generic_hdf5 def ex_load_hdf5(): filename = "X:/gpm/level2/2A.GPM.Ku.V620160118.20160327-S004128-E011127.V04A.RT-H5" # load rainbow file contents to dict rbdict = read_generic_hdf5(filename)#, loaddata=False) class DictEditor(HasTraits): Object = Instance(object) def __init__(self, obj, **traits): super(DictEditor, self).__init__(**traits) self.Object = obj def trait_view(self, name=None, view_elements=None): return View( VGroup( Item('Object', label='Debug', id='debug', editor=ValueEditor(), # ValueEditor() style='custom', dock='horizontal', show_label=False), ), title='Dictionary Editor', width=800, height=600, resizable=True) def dic(my_data): b = DictEditor(my_data) b.configure_traits() dic(rbdict) # ======================================================= if __name__ == '__main__': # ex_load_hdf5() filename = "X:/gpm/level2/2A.GPM.Ku.V620160118.20160327-S004128-E011127.V04A.RT-H5" # load rainbow file contents to dict out = read_generic_hdf5(filename)#, loaddata=False) for key in out.keys(): print key
30.155172
95
0.563751
793e906630e8a955a0d438d51b42c0514743474e
50,575
py
Python
synapse/storage/databases/main/stream.py
BearerPipelineTest/synapse-1
78b99de7c206b106340e12cdee0af9aa246bd5ad
[ "Apache-2.0" ]
null
null
null
synapse/storage/databases/main/stream.py
BearerPipelineTest/synapse-1
78b99de7c206b106340e12cdee0af9aa246bd5ad
[ "Apache-2.0" ]
null
null
null
synapse/storage/databases/main/stream.py
BearerPipelineTest/synapse-1
78b99de7c206b106340e12cdee0af9aa246bd5ad
[ "Apache-2.0" ]
null
null
null
# Copyright 2014-2016 OpenMarket Ltd # Copyright 2017 Vector Creations Ltd # Copyright 2018-2019 New Vector Ltd # Copyright 2019 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module is responsible for getting events from the DB for pagination and event streaming. The order it returns events in depend on whether we are streaming forwards or are paginating backwards. We do this because we want to handle out of order messages nicely, while still returning them in the correct order when we paginate bacwards. This is implemented by keeping two ordering columns: stream_ordering and topological_ordering. Stream ordering is basically insertion/received order (except for events from backfill requests). The topological_ordering is a weak ordering of events based on the pdu graph. This means that we have to have two different types of tokens, depending on what sort order was used: - stream tokens are of the form: "s%d", which maps directly to the column - topological tokems: "t%d-%d", where the integers map to the topological and stream ordering columns respectively. """ import logging from typing import ( TYPE_CHECKING, Any, Collection, Dict, List, Optional, Set, Tuple, cast, ) import attr from frozendict import frozendict from twisted.internet import defer from synapse.api.filtering import Filter from synapse.events import EventBase from synapse.logging.context import make_deferred_yieldable, run_in_background from synapse.storage._base import SQLBaseStore from synapse.storage.database import ( DatabasePool, LoggingDatabaseConnection, LoggingTransaction, make_in_list_sql_clause, ) from synapse.storage.databases.main.events_worker import EventsWorkerStore from synapse.storage.engines import BaseDatabaseEngine, PostgresEngine from synapse.storage.util.id_generators import MultiWriterIdGenerator from synapse.types import PersistedEventPosition, RoomStreamToken from synapse.util.caches.descriptors import cached from synapse.util.caches.stream_change_cache import StreamChangeCache if TYPE_CHECKING: from synapse.server import HomeServer logger = logging.getLogger(__name__) MAX_STREAM_SIZE = 1000 _STREAM_TOKEN = "stream" _TOPOLOGICAL_TOKEN = "topological" # Used as return values for pagination APIs @attr.s(slots=True, frozen=True, auto_attribs=True) class _EventDictReturn: event_id: str topological_ordering: Optional[int] stream_ordering: int @attr.s(slots=True, frozen=True, auto_attribs=True) class _EventsAround: events_before: List[EventBase] events_after: List[EventBase] start: RoomStreamToken end: RoomStreamToken def generate_pagination_where_clause( direction: str, column_names: Tuple[str, str], from_token: Optional[Tuple[Optional[int], int]], to_token: Optional[Tuple[Optional[int], int]], engine: BaseDatabaseEngine, ) -> str: """Creates an SQL expression to bound the columns by the pagination tokens. For example creates an SQL expression like: (6, 7) >= (topological_ordering, stream_ordering) AND (5, 3) < (topological_ordering, stream_ordering) would be generated for dir=b, from_token=(6, 7) and to_token=(5, 3). Note that tokens are considered to be after the row they are in, e.g. if a row A has a token T, then we consider A to be before T. This convention is important when figuring out inequalities for the generated SQL, and produces the following result: - If paginating forwards then we exclude any rows matching the from token, but include those that match the to token. - If paginating backwards then we include any rows matching the from token, but include those that match the to token. Args: direction: Whether we're paginating backwards("b") or forwards ("f"). column_names: The column names to bound. Must *not* be user defined as these get inserted directly into the SQL statement without escapes. from_token: The start point for the pagination. This is an exclusive minimum bound if direction is "f", and an inclusive maximum bound if direction is "b". to_token: The endpoint point for the pagination. This is an inclusive maximum bound if direction is "f", and an exclusive minimum bound if direction is "b". engine: The database engine to generate the clauses for Returns: The sql expression """ assert direction in ("b", "f") where_clause = [] if from_token: where_clause.append( _make_generic_sql_bound( bound=">=" if direction == "b" else "<", column_names=column_names, values=from_token, engine=engine, ) ) if to_token: where_clause.append( _make_generic_sql_bound( bound="<" if direction == "b" else ">=", column_names=column_names, values=to_token, engine=engine, ) ) return " AND ".join(where_clause) def _make_generic_sql_bound( bound: str, column_names: Tuple[str, str], values: Tuple[Optional[int], int], engine: BaseDatabaseEngine, ) -> str: """Create an SQL expression that bounds the given column names by the values, e.g. create the equivalent of `(1, 2) < (col1, col2)`. Only works with two columns. Older versions of SQLite don't support that syntax so we have to expand it out manually. Args: bound: The comparison operator to use. One of ">", "<", ">=", "<=", where the values are on the left and columns on the right. names: The column names. Must *not* be user defined as these get inserted directly into the SQL statement without escapes. values: The values to bound the columns by. If the first value is None then only creates a bound on the second column. engine: The database engine to generate the SQL for Returns: The SQL statement """ assert bound in (">", "<", ">=", "<=") name1, name2 = column_names val1, val2 = values if val1 is None: val2 = int(val2) return "(%d %s %s)" % (val2, bound, name2) val1 = int(val1) val2 = int(val2) if isinstance(engine, PostgresEngine): # Postgres doesn't optimise ``(x < a) OR (x=a AND y<b)`` as well # as it optimises ``(x,y) < (a,b)`` on multicolumn indexes. So we # use the later form when running against postgres. return "((%d,%d) %s (%s,%s))" % (val1, val2, bound, name1, name2) # We want to generate queries of e.g. the form: # # (val1 < name1 OR (val1 = name1 AND val2 <= name2)) # # which is equivalent to (val1, val2) < (name1, name2) return """( {val1:d} {strict_bound} {name1} OR ({val1:d} = {name1} AND {val2:d} {bound} {name2}) )""".format( name1=name1, val1=val1, name2=name2, val2=val2, strict_bound=bound[0], # The first bound must always be strict equality here bound=bound, ) def _filter_results( lower_token: Optional[RoomStreamToken], upper_token: Optional[RoomStreamToken], instance_name: str, topological_ordering: int, stream_ordering: int, ) -> bool: """Returns True if the event persisted by the given instance at the given topological/stream_ordering falls between the two tokens (taking a None token to mean unbounded). Used to filter results from fetching events in the DB against the given tokens. This is necessary to handle the case where the tokens include position maps, which we handle by fetching more than necessary from the DB and then filtering (rather than attempting to construct a complicated SQL query). """ event_historical_tuple = ( topological_ordering, stream_ordering, ) if lower_token: if lower_token.topological is not None: # If these are historical tokens we compare the `(topological, stream)` # tuples. if event_historical_tuple <= lower_token.as_historical_tuple(): return False else: # If these are live tokens we compare the stream ordering against the # writers stream position. if stream_ordering <= lower_token.get_stream_pos_for_instance( instance_name ): return False if upper_token: if upper_token.topological is not None: if upper_token.as_historical_tuple() < event_historical_tuple: return False else: if upper_token.get_stream_pos_for_instance(instance_name) < stream_ordering: return False return True def filter_to_clause(event_filter: Optional[Filter]) -> Tuple[str, List[str]]: # NB: This may create SQL clauses that don't optimise well (and we don't # have indices on all possible clauses). E.g. it may create # "room_id == X AND room_id != X", which postgres doesn't optimise. if not event_filter: return "", [] clauses = [] args = [] if event_filter.types: clauses.append( "(%s)" % " OR ".join("event.type = ?" for _ in event_filter.types) ) args.extend(event_filter.types) for typ in event_filter.not_types: clauses.append("event.type != ?") args.append(typ) if event_filter.senders: clauses.append( "(%s)" % " OR ".join("event.sender = ?" for _ in event_filter.senders) ) args.extend(event_filter.senders) for sender in event_filter.not_senders: clauses.append("event.sender != ?") args.append(sender) if event_filter.rooms: clauses.append( "(%s)" % " OR ".join("event.room_id = ?" for _ in event_filter.rooms) ) args.extend(event_filter.rooms) for room_id in event_filter.not_rooms: clauses.append("event.room_id != ?") args.append(room_id) if event_filter.contains_url: clauses.append("event.contains_url = ?") args.append(event_filter.contains_url) # We're only applying the "labels" filter on the database query, because applying the # "not_labels" filter via a SQL query is non-trivial. Instead, we let # event_filter.check_fields apply it, which is not as efficient but makes the # implementation simpler. if event_filter.labels: clauses.append("(%s)" % " OR ".join("label = ?" for _ in event_filter.labels)) args.extend(event_filter.labels) # Filter on relation_senders / relation types from the joined tables. if event_filter.related_by_senders: clauses.append( "(%s)" % " OR ".join( "related_event.sender = ?" for _ in event_filter.related_by_senders ) ) args.extend(event_filter.related_by_senders) if event_filter.related_by_rel_types: clauses.append( "(%s)" % " OR ".join( "relation_type = ?" for _ in event_filter.related_by_rel_types ) ) args.extend(event_filter.related_by_rel_types) return " AND ".join(clauses), args class StreamWorkerStore(EventsWorkerStore, SQLBaseStore): def __init__( self, database: DatabasePool, db_conn: LoggingDatabaseConnection, hs: "HomeServer", ): super().__init__(database, db_conn, hs) self._instance_name = hs.get_instance_name() self._send_federation = hs.should_send_federation() self._federation_shard_config = hs.config.worker.federation_shard_config # If we're a process that sends federation we may need to reset the # `federation_stream_position` table to match the current sharding # config. We don't do this now as otherwise two processes could conflict # during startup which would cause one to die. self._need_to_reset_federation_stream_positions = self._send_federation events_max = self.get_room_max_stream_ordering() event_cache_prefill, min_event_val = self.db_pool.get_cache_dict( db_conn, "events", entity_column="room_id", stream_column="stream_ordering", max_value=events_max, ) self._events_stream_cache = StreamChangeCache( "EventsRoomStreamChangeCache", min_event_val, prefilled_cache=event_cache_prefill, ) self._membership_stream_cache = StreamChangeCache( "MembershipStreamChangeCache", events_max ) self._stream_order_on_start = self.get_room_max_stream_ordering() def get_room_max_stream_ordering(self) -> int: """Get the stream_ordering of regular events that we have committed up to Returns the maximum stream id such that all stream ids less than or equal to it have been successfully persisted. """ return self._stream_id_gen.get_current_token() def get_room_min_stream_ordering(self) -> int: """Get the stream_ordering of backfilled events that we have committed up to Backfilled events use *negative* stream orderings, so this returns the minimum negative stream id such that all stream ids greater than or equal to it have been successfully persisted. """ return self._backfill_id_gen.get_current_token() def get_room_max_token(self) -> RoomStreamToken: """Get a `RoomStreamToken` that marks the current maximum persisted position of the events stream. Useful to get a token that represents "now". The token returned is a "live" token that may have an instance_map component. """ min_pos = self._stream_id_gen.get_current_token() positions = {} if isinstance(self._stream_id_gen, MultiWriterIdGenerator): # The `min_pos` is the minimum position that we know all instances # have finished persisting to, so we only care about instances whose # positions are ahead of that. (Instance positions can be behind the # min position as there are times we can work out that the minimum # position is ahead of the naive minimum across all current # positions. See MultiWriterIdGenerator for details) positions = { i: p for i, p in self._stream_id_gen.get_positions().items() if p > min_pos } return RoomStreamToken(None, min_pos, frozendict(positions)) async def get_room_events_stream_for_rooms( self, room_ids: Collection[str], from_key: RoomStreamToken, to_key: RoomStreamToken, limit: int = 0, order: str = "DESC", ) -> Dict[str, Tuple[List[EventBase], RoomStreamToken]]: """Get new room events in stream ordering since `from_key`. Args: room_ids from_key: Token from which no events are returned before to_key: Token from which no events are returned after. (This is typically the current stream token) limit: Maximum number of events to return order: Either "DESC" or "ASC". Determines which events are returned when the result is limited. If "DESC" then the most recent `limit` events are returned, otherwise returns the oldest `limit` events. Returns: A map from room id to a tuple containing: - list of recent events in the room - stream ordering key for the start of the chunk of events returned. """ room_ids = self._events_stream_cache.get_entities_changed( room_ids, from_key.stream ) if not room_ids: return {} results = {} room_ids = list(room_ids) for rm_ids in (room_ids[i : i + 20] for i in range(0, len(room_ids), 20)): res = await make_deferred_yieldable( defer.gatherResults( [ run_in_background( self.get_room_events_stream_for_room, room_id, from_key, to_key, limit, order=order, ) for room_id in rm_ids ], consumeErrors=True, ) ) results.update(dict(zip(rm_ids, res))) return results def get_rooms_that_changed( self, room_ids: Collection[str], from_key: RoomStreamToken ) -> Set[str]: """Given a list of rooms and a token, return rooms where there may have been changes. """ from_id = from_key.stream return { room_id for room_id in room_ids if self._events_stream_cache.has_entity_changed(room_id, from_id) } async def get_room_events_stream_for_room( self, room_id: str, from_key: RoomStreamToken, to_key: RoomStreamToken, limit: int = 0, order: str = "DESC", ) -> Tuple[List[EventBase], RoomStreamToken]: """Get new room events in stream ordering since `from_key`. Args: room_id from_key: Token from which no events are returned before to_key: Token from which no events are returned after. (This is typically the current stream token) limit: Maximum number of events to return order: Either "DESC" or "ASC". Determines which events are returned when the result is limited. If "DESC" then the most recent `limit` events are returned, otherwise returns the oldest `limit` events. Returns: The list of events (in ascending stream order) and the token from the start of the chunk of events returned. """ if from_key == to_key: return [], from_key has_changed = self._events_stream_cache.has_entity_changed( room_id, from_key.stream ) if not has_changed: return [], from_key def f(txn: LoggingTransaction) -> List[_EventDictReturn]: # To handle tokens with a non-empty instance_map we fetch more # results than necessary and then filter down min_from_id = from_key.stream max_to_id = to_key.get_max_stream_pos() sql = """ SELECT event_id, instance_name, topological_ordering, stream_ordering FROM events WHERE room_id = ? AND not outlier AND stream_ordering > ? AND stream_ordering <= ? ORDER BY stream_ordering %s LIMIT ? """ % ( order, ) txn.execute(sql, (room_id, min_from_id, max_to_id, 2 * limit)) rows = [ _EventDictReturn(event_id, None, stream_ordering) for event_id, instance_name, topological_ordering, stream_ordering in txn if _filter_results( from_key, to_key, instance_name, topological_ordering, stream_ordering, ) ][:limit] return rows rows = await self.db_pool.runInteraction("get_room_events_stream_for_room", f) ret = await self.get_events_as_list( [r.event_id for r in rows], get_prev_content=True ) self._set_before_and_after(ret, rows, topo_order=False) if order.lower() == "desc": ret.reverse() if rows: key = RoomStreamToken(None, min(r.stream_ordering for r in rows)) else: # Assume we didn't get anything because there was nothing to # get. key = from_key return ret, key async def get_membership_changes_for_user( self, user_id: str, from_key: RoomStreamToken, to_key: RoomStreamToken, excluded_rooms: Optional[List[str]] = None, ) -> List[EventBase]: """Fetch membership events for a given user. All such events whose stream ordering `s` lies in the range `from_key < s <= to_key` are returned. Events are ordered by ascending stream order. """ # Start by ruling out cases where a DB query is not necessary. if from_key == to_key: return [] if from_key: has_changed = self._membership_stream_cache.has_entity_changed( user_id, int(from_key.stream) ) if not has_changed: return [] def f(txn: LoggingTransaction) -> List[_EventDictReturn]: # To handle tokens with a non-empty instance_map we fetch more # results than necessary and then filter down min_from_id = from_key.stream max_to_id = to_key.get_max_stream_pos() args: List[Any] = [user_id, min_from_id, max_to_id] ignore_room_clause = "" if excluded_rooms is not None and len(excluded_rooms) > 0: ignore_room_clause = "AND e.room_id NOT IN (%s)" % ",".join( "?" for _ in excluded_rooms ) args = args + excluded_rooms sql = """ SELECT m.event_id, instance_name, topological_ordering, stream_ordering FROM events AS e, room_memberships AS m WHERE e.event_id = m.event_id AND m.user_id = ? AND e.stream_ordering > ? AND e.stream_ordering <= ? %s ORDER BY e.stream_ordering ASC """ % ( ignore_room_clause, ) txn.execute(sql, args) rows = [ _EventDictReturn(event_id, None, stream_ordering) for event_id, instance_name, topological_ordering, stream_ordering in txn if _filter_results( from_key, to_key, instance_name, topological_ordering, stream_ordering, ) ] return rows rows = await self.db_pool.runInteraction("get_membership_changes_for_user", f) ret = await self.get_events_as_list( [r.event_id for r in rows], get_prev_content=True ) self._set_before_and_after(ret, rows, topo_order=False) return ret async def get_recent_events_for_room( self, room_id: str, limit: int, end_token: RoomStreamToken ) -> Tuple[List[EventBase], RoomStreamToken]: """Get the most recent events in the room in topological ordering. Args: room_id limit end_token: The stream token representing now. Returns: A list of events and a token pointing to the start of the returned events. The events returned are in ascending topological order. """ rows, token = await self.get_recent_event_ids_for_room( room_id, limit, end_token ) events = await self.get_events_as_list( [r.event_id for r in rows], get_prev_content=True ) self._set_before_and_after(events, rows) return events, token async def get_recent_event_ids_for_room( self, room_id: str, limit: int, end_token: RoomStreamToken ) -> Tuple[List[_EventDictReturn], RoomStreamToken]: """Get the most recent events in the room in topological ordering. Args: room_id limit end_token: The stream token representing now. Returns: A list of _EventDictReturn and a token pointing to the start of the returned events. The events returned are in ascending order. """ # Allow a zero limit here, and no-op. if limit == 0: return [], end_token rows, token = await self.db_pool.runInteraction( "get_recent_event_ids_for_room", self._paginate_room_events_txn, room_id, from_token=end_token, limit=limit, ) # We want to return the results in ascending order. rows.reverse() return rows, token async def get_room_event_before_stream_ordering( self, room_id: str, stream_ordering: int ) -> Optional[Tuple[int, int, str]]: """Gets details of the first event in a room at or before a stream ordering Args: room_id: stream_ordering: Returns: A tuple of (stream ordering, topological ordering, event_id) """ def _f(txn: LoggingTransaction) -> Optional[Tuple[int, int, str]]: sql = ( "SELECT stream_ordering, topological_ordering, event_id" " FROM events" " WHERE room_id = ? AND stream_ordering <= ?" " AND NOT outlier" " ORDER BY stream_ordering DESC" " LIMIT 1" ) txn.execute(sql, (room_id, stream_ordering)) return cast(Optional[Tuple[int, int, str]], txn.fetchone()) return await self.db_pool.runInteraction( "get_room_event_before_stream_ordering", _f ) async def get_last_event_in_room_before_stream_ordering( self, room_id: str, end_token: RoomStreamToken, ) -> Optional[EventBase]: """Returns the last event in a room at or before a stream ordering Args: room_id end_token: The token used to stream from Returns: The most recent event. """ last_row = await self.get_room_event_before_stream_ordering( room_id=room_id, stream_ordering=end_token.stream, ) if last_row: _, _, event_id = last_row event = await self.get_event(event_id, get_prev_content=True) return event return None async def get_current_room_stream_token_for_room_id( self, room_id: Optional[str] = None ) -> RoomStreamToken: """Returns the current position of the rooms stream. By default, it returns a live token with the current global stream token. Specifying a `room_id` causes it to return a historic token with the room specific topological token. """ stream_ordering = self.get_room_max_stream_ordering() if room_id is None: return RoomStreamToken(None, stream_ordering) else: topo = await self.db_pool.runInteraction( "_get_max_topological_txn", self._get_max_topological_txn, room_id ) return RoomStreamToken(topo, stream_ordering) def get_stream_id_for_event_txn( self, txn: LoggingTransaction, event_id: str, allow_none=False, ) -> int: return self.db_pool.simple_select_one_onecol_txn( txn=txn, table="events", keyvalues={"event_id": event_id}, retcol="stream_ordering", allow_none=allow_none, ) async def get_position_for_event(self, event_id: str) -> PersistedEventPosition: """Get the persisted position for an event""" row = await self.db_pool.simple_select_one( table="events", keyvalues={"event_id": event_id}, retcols=("stream_ordering", "instance_name"), desc="get_position_for_event", ) return PersistedEventPosition( row["instance_name"] or "master", row["stream_ordering"] ) async def get_topological_token_for_event(self, event_id: str) -> RoomStreamToken: """The stream token for an event Args: event_id: The id of the event to look up a stream token for. Raises: StoreError if the event wasn't in the database. Returns: A `RoomStreamToken` topological token. """ row = await self.db_pool.simple_select_one( table="events", keyvalues={"event_id": event_id}, retcols=("stream_ordering", "topological_ordering"), desc="get_topological_token_for_event", ) return RoomStreamToken(row["topological_ordering"], row["stream_ordering"]) async def get_current_topological_token(self, room_id: str, stream_key: int) -> int: """Gets the topological token in a room after or at the given stream ordering. Args: room_id stream_key """ sql = ( "SELECT coalesce(MIN(topological_ordering), 0) FROM events" " WHERE room_id = ? AND stream_ordering >= ?" ) row = await self.db_pool.execute( "get_current_topological_token", None, sql, room_id, stream_key ) return row[0][0] if row else 0 def _get_max_topological_txn(self, txn: LoggingTransaction, room_id: str) -> int: txn.execute( "SELECT MAX(topological_ordering) FROM events WHERE room_id = ?", (room_id,), ) rows = txn.fetchall() return rows[0][0] if rows else 0 @staticmethod def _set_before_and_after( events: List[EventBase], rows: List[_EventDictReturn], topo_order: bool = True ) -> None: """Inserts ordering information to events' internal metadata from the DB rows. Args: events rows topo_order: Whether the events were ordered topologically or by stream ordering. If true then all rows should have a non null topological_ordering. """ for event, row in zip(events, rows): stream = row.stream_ordering if topo_order and row.topological_ordering: topo: Optional[int] = row.topological_ordering else: topo = None internal = event.internal_metadata internal.before = RoomStreamToken(topo, stream - 1) internal.after = RoomStreamToken(topo, stream) internal.order = (int(topo) if topo else 0, int(stream)) async def get_events_around( self, room_id: str, event_id: str, before_limit: int, after_limit: int, event_filter: Optional[Filter] = None, ) -> _EventsAround: """Retrieve events and pagination tokens around a given event in a room. """ results = await self.db_pool.runInteraction( "get_events_around", self._get_events_around_txn, room_id, event_id, before_limit, after_limit, event_filter, ) events_before = await self.get_events_as_list( list(results["before"]["event_ids"]), get_prev_content=True ) events_after = await self.get_events_as_list( list(results["after"]["event_ids"]), get_prev_content=True ) return _EventsAround( events_before=events_before, events_after=events_after, start=results["before"]["token"], end=results["after"]["token"], ) def _get_events_around_txn( self, txn: LoggingTransaction, room_id: str, event_id: str, before_limit: int, after_limit: int, event_filter: Optional[Filter], ) -> dict: """Retrieves event_ids and pagination tokens around a given event in a room. Args: room_id event_id before_limit after_limit event_filter Returns: dict """ results = self.db_pool.simple_select_one_txn( txn, "events", keyvalues={"event_id": event_id, "room_id": room_id}, retcols=["stream_ordering", "topological_ordering"], ) # This cannot happen as `allow_none=False`. assert results is not None # Paginating backwards includes the event at the token, but paginating # forward doesn't. before_token = RoomStreamToken( results["topological_ordering"] - 1, results["stream_ordering"] ) after_token = RoomStreamToken( results["topological_ordering"], results["stream_ordering"] ) rows, start_token = self._paginate_room_events_txn( txn, room_id, before_token, direction="b", limit=before_limit, event_filter=event_filter, ) events_before = [r.event_id for r in rows] rows, end_token = self._paginate_room_events_txn( txn, room_id, after_token, direction="f", limit=after_limit, event_filter=event_filter, ) events_after = [r.event_id for r in rows] return { "before": {"event_ids": events_before, "token": start_token}, "after": {"event_ids": events_after, "token": end_token}, } async def get_all_new_events_stream( self, from_id: int, current_id: int, limit: int ) -> Tuple[int, List[EventBase]]: """Get all new events Returns all events with from_id < stream_ordering <= current_id. Args: from_id: the stream_ordering of the last event we processed current_id: the stream_ordering of the most recently processed event limit: the maximum number of events to return Returns: A tuple of (next_id, events), where `next_id` is the next value to pass as `from_id` (it will either be the stream_ordering of the last returned event, or, if fewer than `limit` events were found, the `current_id`). """ def get_all_new_events_stream_txn( txn: LoggingTransaction, ) -> Tuple[int, List[str]]: sql = ( "SELECT e.stream_ordering, e.event_id" " FROM events AS e" " WHERE" " ? < e.stream_ordering AND e.stream_ordering <= ?" " ORDER BY e.stream_ordering ASC" " LIMIT ?" ) txn.execute(sql, (from_id, current_id, limit)) rows = txn.fetchall() upper_bound = current_id if len(rows) == limit: upper_bound = rows[-1][0] return upper_bound, [row[1] for row in rows] upper_bound, event_ids = await self.db_pool.runInteraction( "get_all_new_events_stream", get_all_new_events_stream_txn ) events = await self.get_events_as_list(event_ids) return upper_bound, events async def get_federation_out_pos(self, typ: str) -> int: if self._need_to_reset_federation_stream_positions: await self.db_pool.runInteraction( "_reset_federation_positions_txn", self._reset_federation_positions_txn ) self._need_to_reset_federation_stream_positions = False return await self.db_pool.simple_select_one_onecol( table="federation_stream_position", retcol="stream_id", keyvalues={"type": typ, "instance_name": self._instance_name}, desc="get_federation_out_pos", ) async def update_federation_out_pos(self, typ: str, stream_id: int) -> None: if self._need_to_reset_federation_stream_positions: await self.db_pool.runInteraction( "_reset_federation_positions_txn", self._reset_federation_positions_txn ) self._need_to_reset_federation_stream_positions = False await self.db_pool.simple_update_one( table="federation_stream_position", keyvalues={"type": typ, "instance_name": self._instance_name}, updatevalues={"stream_id": stream_id}, desc="update_federation_out_pos", ) def _reset_federation_positions_txn(self, txn: LoggingTransaction) -> None: """Fiddles with the `federation_stream_position` table to make it match the configured federation sender instances during start up. """ # The federation sender instances may have changed, so we need to # massage the `federation_stream_position` table to have a row per type # per instance sending federation. If there is a mismatch we update the # table with the correct rows using the *minimum* stream ID seen. This # may result in resending of events/EDUs to remote servers, but that is # preferable to dropping them. if not self._send_federation: return # Pull out the configured instances. If we don't have a shard config then # we assume that we're the only instance sending. configured_instances = self._federation_shard_config.instances if not configured_instances: configured_instances = [self._instance_name] elif self._instance_name not in configured_instances: return instances_in_table = self.db_pool.simple_select_onecol_txn( txn, table="federation_stream_position", keyvalues={}, retcol="instance_name", ) if set(instances_in_table) == set(configured_instances): # Nothing to do return sql = """ SELECT type, MIN(stream_id) FROM federation_stream_position GROUP BY type """ txn.execute(sql) min_positions = {typ: pos for typ, pos in txn} # Map from type -> min position # Ensure we do actually have some values here assert set(min_positions) == {"federation", "events"} sql = """ DELETE FROM federation_stream_position WHERE NOT (%s) """ clause, args = make_in_list_sql_clause( txn.database_engine, "instance_name", configured_instances ) txn.execute(sql % (clause,), args) for typ, stream_id in min_positions.items(): self.db_pool.simple_upsert_txn( txn, table="federation_stream_position", keyvalues={"type": typ, "instance_name": self._instance_name}, values={"stream_id": stream_id}, ) def has_room_changed_since(self, room_id: str, stream_id: int) -> bool: return self._events_stream_cache.has_entity_changed(room_id, stream_id) def _paginate_room_events_txn( self, txn: LoggingTransaction, room_id: str, from_token: RoomStreamToken, to_token: Optional[RoomStreamToken] = None, direction: str = "b", limit: int = -1, event_filter: Optional[Filter] = None, ) -> Tuple[List[_EventDictReturn], RoomStreamToken]: """Returns list of events before or after a given token. Args: txn room_id from_token: The token used to stream from to_token: A token which if given limits the results to only those before direction: Either 'b' or 'f' to indicate whether we are paginating forwards or backwards from `from_key`. limit: The maximum number of events to return. event_filter: If provided filters the events to those that match the filter. Returns: A list of _EventDictReturn and a token that points to the end of the result set. If no events are returned then the end of the stream has been reached (i.e. there are no events between `from_token` and `to_token`), or `limit` is zero. """ assert int(limit) >= 0 # Tokens really represent positions between elements, but we use # the convention of pointing to the event before the gap. Hence # we have a bit of asymmetry when it comes to equalities. args = [False, room_id] if direction == "b": order = "DESC" else: order = "ASC" # The bounds for the stream tokens are complicated by the fact # that we need to handle the instance_map part of the tokens. We do this # by fetching all events between the min stream token and the maximum # stream token (as returned by `RoomStreamToken.get_max_stream_pos`) and # then filtering the results. if from_token.topological is not None: from_bound: Tuple[Optional[int], int] = from_token.as_historical_tuple() elif direction == "b": from_bound = ( None, from_token.get_max_stream_pos(), ) else: from_bound = ( None, from_token.stream, ) to_bound: Optional[Tuple[Optional[int], int]] = None if to_token: if to_token.topological is not None: to_bound = to_token.as_historical_tuple() elif direction == "b": to_bound = ( None, to_token.stream, ) else: to_bound = ( None, to_token.get_max_stream_pos(), ) bounds = generate_pagination_where_clause( direction=direction, column_names=("event.topological_ordering", "event.stream_ordering"), from_token=from_bound, to_token=to_bound, engine=self.database_engine, ) filter_clause, filter_args = filter_to_clause(event_filter) if filter_clause: bounds += " AND " + filter_clause args.extend(filter_args) # We fetch more events as we'll filter the result set args.append(int(limit) * 2) select_keywords = "SELECT" join_clause = "" # Using DISTINCT in this SELECT query is quite expensive, because it # requires the engine to sort on the entire (not limited) result set, # i.e. the entire events table. Only use it in scenarios that could result # in the same event ID occurring multiple times in the results. needs_distinct = False if event_filter and event_filter.labels: # If we're not filtering on a label, then joining on event_labels will # return as many row for a single event as the number of labels it has. To # avoid this, only join if we're filtering on at least one label. join_clause += """ LEFT JOIN event_labels USING (event_id, room_id, topological_ordering) """ if len(event_filter.labels) > 1: # Multiple labels could cause the same event to appear multiple times. needs_distinct = True # If there is a filter on relation_senders and relation_types join to the # relations table. if event_filter and ( event_filter.related_by_senders or event_filter.related_by_rel_types ): # Filtering by relations could cause the same event to appear multiple # times (since there's no limit on the number of relations to an event). needs_distinct = True join_clause += """ LEFT JOIN event_relations AS relation ON (event.event_id = relation.relates_to_id) """ if event_filter.related_by_senders: join_clause += """ LEFT JOIN events AS related_event ON (relation.event_id = related_event.event_id) """ if needs_distinct: select_keywords += " DISTINCT" sql = """ %(select_keywords)s event.event_id, event.instance_name, event.topological_ordering, event.stream_ordering FROM events AS event %(join_clause)s WHERE event.outlier = ? AND event.room_id = ? AND %(bounds)s ORDER BY event.topological_ordering %(order)s, event.stream_ordering %(order)s LIMIT ? """ % { "select_keywords": select_keywords, "join_clause": join_clause, "bounds": bounds, "order": order, } txn.execute(sql, args) # Filter the result set. rows = [ _EventDictReturn(event_id, topological_ordering, stream_ordering) for event_id, instance_name, topological_ordering, stream_ordering in txn if _filter_results( lower_token=to_token if direction == "b" else from_token, upper_token=from_token if direction == "b" else to_token, instance_name=instance_name, topological_ordering=topological_ordering, stream_ordering=stream_ordering, ) ][:limit] if rows: topo = rows[-1].topological_ordering toke = rows[-1].stream_ordering if direction == "b": # Tokens are positions between events. # This token points *after* the last event in the chunk. # We need it to point to the event before it in the chunk # when we are going backwards so we subtract one from the # stream part. toke -= 1 next_token = RoomStreamToken(topo, toke) else: # TODO (erikj): We should work out what to do here instead. next_token = to_token if to_token else from_token return rows, next_token async def paginate_room_events( self, room_id: str, from_key: RoomStreamToken, to_key: Optional[RoomStreamToken] = None, direction: str = "b", limit: int = -1, event_filter: Optional[Filter] = None, ) -> Tuple[List[EventBase], RoomStreamToken]: """Returns list of events before or after a given token. Args: room_id from_key: The token used to stream from to_key: A token which if given limits the results to only those before direction: Either 'b' or 'f' to indicate whether we are paginating forwards or backwards from `from_key`. limit: The maximum number of events to return. event_filter: If provided filters the events to those that match the filter. Returns: The results as a list of events and a token that points to the end of the result set. If no events are returned then the end of the stream has been reached (i.e. there are no events between `from_key` and `to_key`). """ rows, token = await self.db_pool.runInteraction( "paginate_room_events", self._paginate_room_events_txn, room_id, from_key, to_key, direction, limit, event_filter, ) events = await self.get_events_as_list( [r.event_id for r in rows], get_prev_content=True ) self._set_before_and_after(events, rows) return events, token @cached() async def get_id_for_instance(self, instance_name: str) -> int: """Get a unique, immutable ID that corresponds to the given Synapse worker instance.""" def _get_id_for_instance_txn(txn: LoggingTransaction) -> int: instance_id = self.db_pool.simple_select_one_onecol_txn( txn, table="instance_map", keyvalues={"instance_name": instance_name}, retcol="instance_id", allow_none=True, ) if instance_id is not None: return instance_id # If we don't have an entry upsert one. # # We could do this before the first check, and rely on the cache for # efficiency, but each UPSERT causes the next ID to increment which # can quickly bloat the size of the generated IDs for new instances. self.db_pool.simple_upsert_txn( txn, table="instance_map", keyvalues={"instance_name": instance_name}, values={}, ) return self.db_pool.simple_select_one_onecol_txn( txn, table="instance_map", keyvalues={"instance_name": instance_name}, retcol="instance_id", ) return await self.db_pool.runInteraction( "get_id_for_instance", _get_id_for_instance_txn ) @cached() async def get_name_from_instance_id(self, instance_id: int) -> str: """Get the instance name from an ID previously returned by `get_id_for_instance`. """ return await self.db_pool.simple_select_one_onecol( table="instance_map", keyvalues={"instance_id": instance_id}, retcol="instance_name", desc="get_name_from_instance_id", )
35.666432
101
0.603697
793e918096ca989ab6e0a00b52b8e03a69f06e90
723
py
Python
figlets/OLE.py
LeverImmy/SmojSubmit
7b18812e8b9726184880d0016fc0d19679e50a8a
[ "MIT" ]
12
2018-08-13T14:47:39.000Z
2022-03-06T13:13:08.000Z
figlets/OLE.py
LeverImmy/SmojSubmit
7b18812e8b9726184880d0016fc0d19679e50a8a
[ "MIT" ]
3
2019-08-19T16:22:30.000Z
2020-09-14T21:38:01.000Z
figlets/OLE.py
LeverImmy/SmojSubmit
7b18812e8b9726184880d0016fc0d19679e50a8a
[ "MIT" ]
2
2019-04-02T02:31:20.000Z
2020-05-18T04:21:39.000Z
figlet = ( r" ___ _ _ _ _ _ _ _____ _ _ " + '\n' r" / _ \ _ _| |_ _ __ _ _| |_ | | (_)_ __ ___ (_) |_ | ____|_ _____ ___ ___ __| | ___ __| |" + '\n' r"| | | | | | | __| '_ \| | | | __| | | | | '_ ` _ \| | __| | _| \ \/ / __/ _ \/ _ \/ _` |/ _ \/ _` |" + '\n' r"| |_| | |_| | |_| |_) | |_| | |_ | |___| | | | | | | | |_ | |___ > < (_| __/ __/ (_| | __/ (_| |" + '\n' r" \___/ \__,_|\__| .__/ \__,_|\__| |_____|_|_| |_| |_|_|\__| |_____/_/\_\___\___|\___|\__,_|\___|\__,_|" + '\n' r" |_| " + '\n' )
80.333333
117
0.232365
793e92d6b6031cbfd2b7bc201aa42435574b6701
5,774
py
Python
configs/carafe/faster_rcnn_r50_fpn_carafe_1x.py
JKingKong/mmdetection
cfa22397194c592c25bd19e2f9f2f60f1ea699d3
[ "Apache-2.0" ]
null
null
null
configs/carafe/faster_rcnn_r50_fpn_carafe_1x.py
JKingKong/mmdetection
cfa22397194c592c25bd19e2f9f2f60f1ea699d3
[ "Apache-2.0" ]
null
null
null
configs/carafe/faster_rcnn_r50_fpn_carafe_1x.py
JKingKong/mmdetection
cfa22397194c592c25bd19e2f9f2f60f1ea699d3
[ "Apache-2.0" ]
null
null
null
# model settings model = dict( type='FasterRCNN', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), style='pytorch'), neck=dict( type='FPN_CARAFE', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5, start_level=0, end_level=-1, norm_cfg=None, act_cfg=None, order=('conv', 'norm', 'act'), upsample_cfg=dict( type='carafe', up_kernel=5, up_group=1, encoder_kernel=3, encoder_dilation=1, compressed_channels=64)), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_scales=[8], anchor_ratios=[0.5, 1.0, 2.0], anchor_strides=[4, 8, 16, 32, 64], target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0], loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='SharedFCBBoxHead', num_fcs=2, in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=1+1, target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2], reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) # soft-nms is also supported for rcnn testing # e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05) ) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=64), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=64), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( imgs_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(interval=1, metric='bbox') # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001) optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable # runtime settings total_epochs = 300 dist_params = dict(backend='nccl') log_level = 'INFO' work_dir = './work_dirs/faster_rcnn_r50_fpn_carafe_1x' load_from = None resume_from = None workflow = [('train', 1)]
30.550265
78
0.587807
793e92d75811f280ed1e3e3a6a92f8ca55df64f7
2,433
py
Python
examples/plugins_manager.py
jspure/Pushkin-is-White-Theme
1ef3757497237c94cdfc103e978af51a4e5f5459
[ "MIT" ]
5
2018-07-02T14:09:17.000Z
2020-01-14T14:43:14.000Z
examples/plugins_manager.py
jspure/Pushkin-is-White-Theme
1ef3757497237c94cdfc103e978af51a4e5f5459
[ "MIT" ]
2
2018-09-24T09:31:22.000Z
2019-11-11T13:12:41.000Z
examples/plugins_manager.py
jspure/Pushkin-is-White-Theme
1ef3757497237c94cdfc103e978af51a4e5f5459
[ "MIT" ]
1
2018-07-02T12:52:18.000Z
2018-07-02T12:52:18.000Z
import os import gixy from gixy.plugins.plugin import Plugin class PluginsManager(object): def __init__(self, config=None): self.imported = False self.config = config self._plugins = [] def import_plugins(self): if self.imported: return files_list = os.listdir(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'plugins')) for plugin_file in files_list: if not plugin_file.endswith('.py') or plugin_file.startswith('_'): continue __import__('gixy.plugins.' + os.path.splitext(plugin_file)[0], None, None, ['']) self.imported = True def init_plugins(self): self.import_plugins() exclude = self.config.skips if self.config else None include = self.config.plugins if self.config else None severity = self.config.severity if self.config else None for plugin_cls in Plugin.__subclasses__(): name = plugin_cls.__name__ if include and name not in include: # Skip not needed plugins continue if exclude and name in exclude: # Skipped plugins continue if severity and not gixy.severity.is_acceptable(plugin_cls.severity, severity): # Skip plugin by severity level continue if self.config and self.config.has_for(name): options = self.config.get_for(name) else: options = plugin_cls.options self._plugins.append(plugin_cls(options)) @property def plugins(self): if not self._plugins: self.init_plugins() return self._plugins @property def plugins_classes(self): self.import_plugins() return Plugin.__subclasses__() def get_plugins_descriptions(self): return map(lambda a: a.name, self.plugins) def audit(self, directive): for plugin in self.plugins: if plugin.directives and directive.name not in plugin.directives: continue plugin.audit(directive) def issues(self): result = [] for plugin in self.plugins: if not plugin.issues: continue result.extend(plugin.issues) return result
32.878378
107
0.577887
793e92e63f1b73d3f2100daa6879429cc90389b3
10,841
py
Python
jina/proto/jina_pb2.py
sthagen/jina-ai-jina
a854da4f7cbafcf5d699a505dacfa4f27014fb62
[ "Apache-2.0" ]
null
null
null
jina/proto/jina_pb2.py
sthagen/jina-ai-jina
a854da4f7cbafcf5d699a505dacfa4f27014fb62
[ "Apache-2.0" ]
null
null
null
jina/proto/jina_pb2.py
sthagen/jina-ai-jina
a854da4f7cbafcf5d699a505dacfa4f27014fb62
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: jina.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() import docarray.proto.docarray_pb2 as docarray__pb2 from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2 from google.protobuf import struct_pb2 as google_dot_protobuf_dot_struct__pb2 from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\njina.proto\x12\x04jina\x1a\x1fgoogle/protobuf/timestamp.proto\x1a\x1cgoogle/protobuf/struct.proto\x1a\x1bgoogle/protobuf/empty.proto\x1a\x0e\x64ocarray.proto\"\x9f\x01\n\nRouteProto\x12\x10\n\x08\x65xecutor\x18\x01 \x01(\t\x12.\n\nstart_time\x18\x02 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12,\n\x08\x65nd_time\x18\x03 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12!\n\x06status\x18\x04 \x01(\x0b\x32\x11.jina.StatusProto\"\xc3\x01\n\rJinaInfoProto\x12+\n\x04jina\x18\x01 \x03(\x0b\x32\x1d.jina.JinaInfoProto.JinaEntry\x12+\n\x04\x65nvs\x18\x02 \x03(\x0b\x32\x1d.jina.JinaInfoProto.EnvsEntry\x1a+\n\tJinaEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\x1a+\n\tEnvsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\xc6\x01\n\x0bHeaderProto\x12\x12\n\nrequest_id\x18\x01 \x01(\t\x12!\n\x06status\x18\x02 \x01(\x0b\x32\x11.jina.StatusProto\x12\x1a\n\rexec_endpoint\x18\x03 \x01(\tH\x00\x88\x01\x01\x12\x1c\n\x0ftarget_executor\x18\x04 \x01(\tH\x01\x88\x01\x01\x12\x14\n\x07timeout\x18\x05 \x01(\rH\x02\x88\x01\x01\x42\x10\n\x0e_exec_endpointB\x12\n\x10_target_executorB\n\n\x08_timeout\"#\n\x0e\x45ndpointsProto\x12\x11\n\tendpoints\x18\x01 \x03(\t\"\xf9\x01\n\x0bStatusProto\x12*\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1c.jina.StatusProto.StatusCode\x12\x13\n\x0b\x64\x65scription\x18\x02 \x01(\t\x12\x33\n\texception\x18\x03 \x01(\x0b\x32 .jina.StatusProto.ExceptionProto\x1aN\n\x0e\x45xceptionProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0c\n\x04\x61rgs\x18\x02 \x03(\t\x12\x0e\n\x06stacks\x18\x03 \x03(\t\x12\x10\n\x08\x65xecutor\x18\x04 \x01(\t\"$\n\nStatusCode\x12\x0b\n\x07SUCCESS\x10\x00\x12\t\n\x05\x45RROR\x10\x01\"^\n\rRelatedEntity\x12\n\n\x02id\x18\x01 \x01(\t\x12\x0f\n\x07\x61\x64\x64ress\x18\x02 \x01(\t\x12\x0c\n\x04port\x18\x03 \x01(\r\x12\x15\n\x08shard_id\x18\x04 \x01(\rH\x00\x88\x01\x01\x42\x0b\n\t_shard_id\"\xa0\x02\n\x10\x44\x61taRequestProto\x12!\n\x06header\x18\x01 \x01(\x0b\x32\x11.jina.HeaderProto\x12+\n\nparameters\x18\x02 \x01(\x0b\x32\x17.google.protobuf.Struct\x12 \n\x06routes\x18\x03 \x03(\x0b\x32\x10.jina.RouteProto\x12\x35\n\x04\x64\x61ta\x18\x04 \x01(\x0b\x32\'.jina.DataRequestProto.DataContentProto\x1a\x63\n\x10\x44\x61taContentProto\x12,\n\x04\x64ocs\x18\x01 \x01(\x0b\x32\x1c.docarray.DocumentArrayProtoH\x00\x12\x14\n\ndocs_bytes\x18\x02 \x01(\x0cH\x00\x42\x0b\n\tdocuments\"@\n\x14\x44\x61taRequestListProto\x12(\n\x08requests\x18\x01 \x03(\x0b\x32\x16.jina.DataRequestProto2Z\n\x12JinaDataRequestRPC\x12\x44\n\x0cprocess_data\x12\x1a.jina.DataRequestListProto\x1a\x16.jina.DataRequestProto\"\x00\x32\x63\n\x18JinaSingleDataRequestRPC\x12G\n\x13process_single_data\x12\x16.jina.DataRequestProto\x1a\x16.jina.DataRequestProto\"\x00\x32G\n\x07JinaRPC\x12<\n\x04\x43\x61ll\x12\x16.jina.DataRequestProto\x1a\x16.jina.DataRequestProto\"\x00(\x01\x30\x01\x32`\n\x18JinaDiscoverEndpointsRPC\x12\x44\n\x12\x65ndpoint_discovery\x12\x16.google.protobuf.Empty\x1a\x14.jina.EndpointsProto\"\x00\x32N\n\x14JinaGatewayDryRunRPC\x12\x36\n\x07\x64ry_run\x12\x16.google.protobuf.Empty\x1a\x11.jina.StatusProto\"\x00\x32G\n\x0bJinaInfoRPC\x12\x38\n\x07_status\x12\x16.google.protobuf.Empty\x1a\x13.jina.JinaInfoProto\"\x00\x62\x06proto3') _ROUTEPROTO = DESCRIPTOR.message_types_by_name['RouteProto'] _JINAINFOPROTO = DESCRIPTOR.message_types_by_name['JinaInfoProto'] _JINAINFOPROTO_JINAENTRY = _JINAINFOPROTO.nested_types_by_name['JinaEntry'] _JINAINFOPROTO_ENVSENTRY = _JINAINFOPROTO.nested_types_by_name['EnvsEntry'] _HEADERPROTO = DESCRIPTOR.message_types_by_name['HeaderProto'] _ENDPOINTSPROTO = DESCRIPTOR.message_types_by_name['EndpointsProto'] _STATUSPROTO = DESCRIPTOR.message_types_by_name['StatusProto'] _STATUSPROTO_EXCEPTIONPROTO = _STATUSPROTO.nested_types_by_name['ExceptionProto'] _RELATEDENTITY = DESCRIPTOR.message_types_by_name['RelatedEntity'] _DATAREQUESTPROTO = DESCRIPTOR.message_types_by_name['DataRequestProto'] _DATAREQUESTPROTO_DATACONTENTPROTO = _DATAREQUESTPROTO.nested_types_by_name['DataContentProto'] _DATAREQUESTLISTPROTO = DESCRIPTOR.message_types_by_name['DataRequestListProto'] _STATUSPROTO_STATUSCODE = _STATUSPROTO.enum_types_by_name['StatusCode'] RouteProto = _reflection.GeneratedProtocolMessageType('RouteProto', (_message.Message,), { 'DESCRIPTOR' : _ROUTEPROTO, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.RouteProto) }) _sym_db.RegisterMessage(RouteProto) JinaInfoProto = _reflection.GeneratedProtocolMessageType('JinaInfoProto', (_message.Message,), { 'JinaEntry' : _reflection.GeneratedProtocolMessageType('JinaEntry', (_message.Message,), { 'DESCRIPTOR' : _JINAINFOPROTO_JINAENTRY, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.JinaInfoProto.JinaEntry) }) , 'EnvsEntry' : _reflection.GeneratedProtocolMessageType('EnvsEntry', (_message.Message,), { 'DESCRIPTOR' : _JINAINFOPROTO_ENVSENTRY, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.JinaInfoProto.EnvsEntry) }) , 'DESCRIPTOR' : _JINAINFOPROTO, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.JinaInfoProto) }) _sym_db.RegisterMessage(JinaInfoProto) _sym_db.RegisterMessage(JinaInfoProto.JinaEntry) _sym_db.RegisterMessage(JinaInfoProto.EnvsEntry) HeaderProto = _reflection.GeneratedProtocolMessageType('HeaderProto', (_message.Message,), { 'DESCRIPTOR' : _HEADERPROTO, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.HeaderProto) }) _sym_db.RegisterMessage(HeaderProto) EndpointsProto = _reflection.GeneratedProtocolMessageType('EndpointsProto', (_message.Message,), { 'DESCRIPTOR' : _ENDPOINTSPROTO, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.EndpointsProto) }) _sym_db.RegisterMessage(EndpointsProto) StatusProto = _reflection.GeneratedProtocolMessageType('StatusProto', (_message.Message,), { 'ExceptionProto' : _reflection.GeneratedProtocolMessageType('ExceptionProto', (_message.Message,), { 'DESCRIPTOR' : _STATUSPROTO_EXCEPTIONPROTO, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.StatusProto.ExceptionProto) }) , 'DESCRIPTOR' : _STATUSPROTO, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.StatusProto) }) _sym_db.RegisterMessage(StatusProto) _sym_db.RegisterMessage(StatusProto.ExceptionProto) RelatedEntity = _reflection.GeneratedProtocolMessageType('RelatedEntity', (_message.Message,), { 'DESCRIPTOR' : _RELATEDENTITY, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.RelatedEntity) }) _sym_db.RegisterMessage(RelatedEntity) DataRequestProto = _reflection.GeneratedProtocolMessageType('DataRequestProto', (_message.Message,), { 'DataContentProto' : _reflection.GeneratedProtocolMessageType('DataContentProto', (_message.Message,), { 'DESCRIPTOR' : _DATAREQUESTPROTO_DATACONTENTPROTO, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.DataRequestProto.DataContentProto) }) , 'DESCRIPTOR' : _DATAREQUESTPROTO, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.DataRequestProto) }) _sym_db.RegisterMessage(DataRequestProto) _sym_db.RegisterMessage(DataRequestProto.DataContentProto) DataRequestListProto = _reflection.GeneratedProtocolMessageType('DataRequestListProto', (_message.Message,), { 'DESCRIPTOR' : _DATAREQUESTLISTPROTO, '__module__' : 'jina_pb2' # @@protoc_insertion_point(class_scope:jina.DataRequestListProto) }) _sym_db.RegisterMessage(DataRequestListProto) _JINADATAREQUESTRPC = DESCRIPTOR.services_by_name['JinaDataRequestRPC'] _JINASINGLEDATAREQUESTRPC = DESCRIPTOR.services_by_name['JinaSingleDataRequestRPC'] _JINARPC = DESCRIPTOR.services_by_name['JinaRPC'] _JINADISCOVERENDPOINTSRPC = DESCRIPTOR.services_by_name['JinaDiscoverEndpointsRPC'] _JINAGATEWAYDRYRUNRPC = DESCRIPTOR.services_by_name['JinaGatewayDryRunRPC'] _JINAINFORPC = DESCRIPTOR.services_by_name['JinaInfoRPC'] if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _JINAINFOPROTO_JINAENTRY._options = None _JINAINFOPROTO_JINAENTRY._serialized_options = b'8\001' _JINAINFOPROTO_ENVSENTRY._options = None _JINAINFOPROTO_ENVSENTRY._serialized_options = b'8\001' _ROUTEPROTO._serialized_start=129 _ROUTEPROTO._serialized_end=288 _JINAINFOPROTO._serialized_start=291 _JINAINFOPROTO._serialized_end=486 _JINAINFOPROTO_JINAENTRY._serialized_start=398 _JINAINFOPROTO_JINAENTRY._serialized_end=441 _JINAINFOPROTO_ENVSENTRY._serialized_start=443 _JINAINFOPROTO_ENVSENTRY._serialized_end=486 _HEADERPROTO._serialized_start=489 _HEADERPROTO._serialized_end=687 _ENDPOINTSPROTO._serialized_start=689 _ENDPOINTSPROTO._serialized_end=724 _STATUSPROTO._serialized_start=727 _STATUSPROTO._serialized_end=976 _STATUSPROTO_EXCEPTIONPROTO._serialized_start=860 _STATUSPROTO_EXCEPTIONPROTO._serialized_end=938 _STATUSPROTO_STATUSCODE._serialized_start=940 _STATUSPROTO_STATUSCODE._serialized_end=976 _RELATEDENTITY._serialized_start=978 _RELATEDENTITY._serialized_end=1072 _DATAREQUESTPROTO._serialized_start=1075 _DATAREQUESTPROTO._serialized_end=1363 _DATAREQUESTPROTO_DATACONTENTPROTO._serialized_start=1264 _DATAREQUESTPROTO_DATACONTENTPROTO._serialized_end=1363 _DATAREQUESTLISTPROTO._serialized_start=1365 _DATAREQUESTLISTPROTO._serialized_end=1429 _JINADATAREQUESTRPC._serialized_start=1431 _JINADATAREQUESTRPC._serialized_end=1521 _JINASINGLEDATAREQUESTRPC._serialized_start=1523 _JINASINGLEDATAREQUESTRPC._serialized_end=1622 _JINARPC._serialized_start=1624 _JINARPC._serialized_end=1695 _JINADISCOVERENDPOINTSRPC._serialized_start=1697 _JINADISCOVERENDPOINTSRPC._serialized_end=1793 _JINAGATEWAYDRYRUNRPC._serialized_start=1795 _JINAGATEWAYDRYRUNRPC._serialized_end=1873 _JINAINFORPC._serialized_start=1875 _JINAINFORPC._serialized_end=1946 # @@protoc_insertion_point(module_scope)
60.904494
3,306
0.814685
793e92fc67806be9cae12afc54d655e82137fdd6
23
py
Python
kde/__init__.py
dagobash/kde
bb00460a47cfe25563f401fad498f7cafaa51fcf
[ "MIT" ]
null
null
null
kde/__init__.py
dagobash/kde
bb00460a47cfe25563f401fad498f7cafaa51fcf
[ "MIT" ]
null
null
null
kde/__init__.py
dagobash/kde
bb00460a47cfe25563f401fad498f7cafaa51fcf
[ "MIT" ]
null
null
null
from kde.kde import KDE
23
23
0.826087
793e93826ffbe91b74d0703d26a54205fe2a8707
12,497
py
Python
evaluation_models/inception.py
KamilDeja/PyTorch-VAE
7782de94bb3f0f11957932bdf2aacc307e8a12ff
[ "Apache-2.0" ]
null
null
null
evaluation_models/inception.py
KamilDeja/PyTorch-VAE
7782de94bb3f0f11957932bdf2aacc307e8a12ff
[ "Apache-2.0" ]
null
null
null
evaluation_models/inception.py
KamilDeja/PyTorch-VAE
7782de94bb3f0f11957932bdf2aacc307e8a12ff
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F import torchvision import os try: from torchvision.models.utils import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url # Inception weights ported to Pytorch from # http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' class InceptionV3(nn.Module): """Pretrained InceptionV3 network returning feature maps""" # Index of default block of inception to return, # corresponds to output of final average pooling DEFAULT_BLOCK_INDEX = 3 # Maps feature dimensionality to their output blocks indices BLOCK_INDEX_BY_DIM = { 64: 0, # First max pooling features 192: 1, # Second max pooling featurs 768: 2, # Pre-aux classifier features 2048: 3 # Final average pooling features } def __init__(self, output_blocks=[DEFAULT_BLOCK_INDEX], resize_input=True, normalize_input=True, requires_grad=False, use_fid_inception=True): """Build pretrained InceptionV3 Parameters ---------- output_blocks : list of int Indices of blocks to return features of. Possible values are: - 0: corresponds to output of first max pooling - 1: corresponds to output of second max pooling - 2: corresponds to output which is fed to aux classifier - 3: corresponds to output of final average pooling resize_input : bool If true, bilinearly resizes input to width and height 299 before feeding input to model. As the network without fully connected layers is fully convolutional, it should be able to handle inputs of arbitrary size, so resizing might not be strictly needed normalize_input : bool If true, scales the input from range (0, 1) to the range the pretrained Inception network expects, namely (-1, 1) requires_grad : bool If true, parameters of the model require gradients. Possibly useful for finetuning the network use_fid_inception : bool If true, uses the pretrained Inception model used in Tensorflow's FID implementation. If false, uses the pretrained Inception model available in torchvision. The FID Inception model has different weights and a slightly different structure from torchvision's Inception model. If you want to compute FID scores, you are strongly advised to set this parameter to true to get comparable results. """ super(InceptionV3, self).__init__() self.resize_input = resize_input self.normalize_input = normalize_input self.output_blocks = sorted(output_blocks) self.last_needed_block = max(output_blocks) assert self.last_needed_block <= 3, \ 'Last possible output block index is 3' self.blocks = nn.ModuleList() if use_fid_inception: inception = fid_inception_v3() else: inception = _inception_v3(pretrained=True) # Block 0: input to maxpool1 block0 = [ inception.Conv2d_1a_3x3, inception.Conv2d_2a_3x3, inception.Conv2d_2b_3x3, nn.MaxPool2d(kernel_size=3, stride=2) ] self.blocks.append(nn.Sequential(*block0)) # Block 1: maxpool1 to maxpool2 if self.last_needed_block >= 1: block1 = [ inception.Conv2d_3b_1x1, inception.Conv2d_4a_3x3, nn.MaxPool2d(kernel_size=3, stride=2) ] self.blocks.append(nn.Sequential(*block1)) # Block 2: maxpool2 to aux classifier if self.last_needed_block >= 2: block2 = [ inception.Mixed_5b, inception.Mixed_5c, inception.Mixed_5d, inception.Mixed_6a, inception.Mixed_6b, inception.Mixed_6c, inception.Mixed_6d, inception.Mixed_6e, ] self.blocks.append(nn.Sequential(*block2)) # Block 3: aux classifier to final avgpool if self.last_needed_block >= 3: block3 = [ inception.Mixed_7a, inception.Mixed_7b, inception.Mixed_7c, nn.AdaptiveAvgPool2d(output_size=(1, 1)) ] self.blocks.append(nn.Sequential(*block3)) for param in self.parameters(): param.requires_grad = requires_grad def forward(self, inp): """Get Inception feature maps Parameters ---------- inp : torch.autograd.Variable Input tensor of shape Bx3xHxW. Values are expected to be in range (0, 1) Returns ------- List of torch.autograd.Variable, corresponding to the selected output block, sorted ascending by index """ outp = [] x = inp if self.resize_input: x = F.interpolate(x, size=(299, 299), mode='bilinear', align_corners=False) if self.normalize_input: x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1) for idx, block in enumerate(self.blocks): x = block(x) if idx in self.output_blocks: outp.append(x) if idx == self.last_needed_block: break return outp def _inception_v3(*args, **kwargs): """Wraps `torchvision.models.inception_v3` Skips default weight inititialization if supported by torchvision version. See https://github.com/mseitzer/pytorch-fid/issues/28. """ try: version = tuple(map(int, torchvision.__version__.split('.')[:2])) except ValueError: # Just a caution against weird version strings version = (0,) if version >= (0, 6): kwargs['init_weights'] = False return torchvision.models.inception_v3(*args, **kwargs) def fid_inception_v3(): """Build pretrained Inception model for FID computation The Inception model for FID computation uses a different set of weights and has a slightly different structure than torchvision's Inception. This method first constructs torchvision's Inception and then patches the necessary parts that are different in the FID Inception model. """ inception = _inception_v3(num_classes=1008, aux_logits=False, pretrained=False) inception.Mixed_5b = FIDInceptionA(192, pool_features=32) inception.Mixed_5c = FIDInceptionA(256, pool_features=64) inception.Mixed_5d = FIDInceptionA(288, pool_features=64) inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) inception.Mixed_7b = FIDInceptionE_1(1280) inception.Mixed_7c = FIDInceptionE_2(2048) model_path = "evaluation_models/inception" if os.path.exists(model_path): print("Loading cached inception model for validation") state_dict = torch.load(model_path) else: print("Downloading inception model for validation") state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) torch.save(state_dict, model_path) inception.load_state_dict(state_dict) return inception class FIDInceptionA(torchvision.models.inception.InceptionA): """InceptionA block patched for FID computation""" def __init__(self, in_channels, pool_features): super(FIDInceptionA, self).__init__(in_channels, pool_features) def forward(self, x): branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class FIDInceptionC(torchvision.models.inception.InceptionC): """InceptionC block patched for FID computation""" def __init__(self, in_channels, channels_7x7): super(FIDInceptionC, self).__init__(in_channels, channels_7x7) def forward(self, x): branch1x1 = self.branch1x1(x) branch7x7 = self.branch7x7_1(x) branch7x7 = self.branch7x7_2(branch7x7) branch7x7 = self.branch7x7_3(branch7x7) branch7x7dbl = self.branch7x7dbl_1(x) branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] return torch.cat(outputs, 1) class FIDInceptionE_1(torchvision.models.inception.InceptionE): """First InceptionE block patched for FID computation""" def __init__(self, in_channels): super(FIDInceptionE_1, self).__init__(in_channels) def forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) # Patch: Tensorflow's average pool does not use the padded zero's in # its average calculation branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, count_include_pad=False) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1) class FIDInceptionE_2(torchvision.models.inception.InceptionE): """Second InceptionE block patched for FID computation""" def __init__(self, in_channels): super(FIDInceptionE_2, self).__init__(in_channels) def forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [ self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [ self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), ] branch3x3dbl = torch.cat(branch3x3dbl, 1) # Patch: The FID Inception model uses max pooling instead of average # pooling. This is likely an error in this specific Inception # implementation, as other Inception models use average pooling here # (which matches the description in the paper). branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] return torch.cat(outputs, 1)
36.648094
126
0.638633
793e946d0ed8db9b1060ad6efc9ac50eb6a8519c
2,207
py
Python
bin/run_sep_bfs.py
SEP-Graph/ppopp19-artifact
576b2ddd78bd5efee3207fb0b3394bd79f61c3d7
[ "Apache-2.0" ]
1
2020-03-04T09:15:33.000Z
2020-03-04T09:15:33.000Z
bin/run_sep_bfs.py
SEP-Graph/ppopp19-artifact
576b2ddd78bd5efee3207fb0b3394bd79f61c3d7
[ "Apache-2.0" ]
null
null
null
bin/run_sep_bfs.py
SEP-Graph/ppopp19-artifact
576b2ddd78bd5efee3207fb0b3394bd79f61c3d7
[ "Apache-2.0" ]
1
2018-12-29T18:12:03.000Z
2018-12-29T18:12:03.000Z
#!/usr/bin/env python3 from os.path import exists, join from time import time from sys import exit from subprocess import getstatusoutput from common import DATASET_ROOT, WORKSPACE_ROOT, LOG_ROOT, parse_all_metadata, get_gpu_ram SEP_PATH = join(WORKSPACE_ROOT, "sep-graph") SEP_BUILD_PATH = join(SEP_PATH, "build") BFS_BINARY_PATH = join(SEP_BUILD_PATH, "hybrid_bfs") if not exists(BFS_BINARY_PATH): exit("Could not found BFS binary") for data_dirname, metadata in parse_all_metadata().items(): link = next((x for x in metadata["links"] if "undirected" in x and x.endswith("gr")), None) data_filename = link.split("/")[-1] data_path = join(join(DATASET_ROOT, data_dirname), data_filename) if not exists(data_path): exit("Could not found file %s" % data_path) # required parameter is_sparse = metadata["sparse"] source_node = metadata["source_node"] # If the total RAM more than 12GB, we will store CSR and CSC format in global memory. (for better performance) # If the total RAM less than 12GB, we only store CSR format, because the dataset is undirected! treat_as_undirected = get_gpu_ram() < 12000 # optional parameter alpha = None beta = None if not bool(is_sparse): alpha = metadata["SEP_bfs_alpha"] beta = metadata["SEP_bfs_beta"] block_size = metadata.get("block_size", "256") timestamp = str(int(time())) log_path = join(LOG_ROOT, "SEP_bfs_%s_%s.json" % (data_dirname, timestamp)) cmd = "%s" \ " -graphfile=%s" \ " -undirected=%s" \ " -source_node=%s" \ " -sparse=%s" \ " %s" \ " -block_size=%s" \ " -json=%s" % ( BFS_BINARY_PATH, data_path, treat_as_undirected, source_node, is_sparse, "" if bool(is_sparse) else "-alpha=%s -beta=%s" % (alpha, beta), block_size, log_path) print('Evaluating BFS implemented on SEP-Graph for "%s" dataset' % data_dirname) # run the program status, output = getstatusoutput(cmd) if status != 0: print('Failed to run: "%s"' % cmd) exit(output) print("--------------")
33.953846
114
0.631174
793e952748361e48fd7753e76fbf3d8eec66ae09
222
py
Python
Python3/Lists/clear_pop_remove.py
norbertosanchezdichi/TIL
2e9719ddd288022f53b094a42679e849bdbcc625
[ "MIT" ]
null
null
null
Python3/Lists/clear_pop_remove.py
norbertosanchezdichi/TIL
2e9719ddd288022f53b094a42679e849bdbcc625
[ "MIT" ]
null
null
null
Python3/Lists/clear_pop_remove.py
norbertosanchezdichi/TIL
2e9719ddd288022f53b094a42679e849bdbcc625
[ "MIT" ]
null
null
null
list = [10, 'heh', 'i\'m a dude', 'he\'s a dude', 'she\'s a dude'] print(list) last_item = list.pop() print(list) print(f'Last item \'{last_item}\' has been popped.') list.remove(10) print(list) list.clear() print(list)
18.5
66
0.63964
793e95efedcc7167fea997037908a13906af2351
10,251
py
Python
BaseTools/Scripts/PackageDocumentTools/plugins/EdkPlugins/edk2/model/inf.py
KrzysztofKoch1/edk2
4d621893471c6299de06aeac56f4c6cddc5c9ebe
[ "BSD-2-Clause" ]
36
2017-03-09T08:14:35.000Z
2022-03-21T03:44:33.000Z
BaseTools/Scripts/PackageDocumentTools/plugins/EdkPlugins/edk2/model/inf.py
KrzysztofKoch1/edk2
4d621893471c6299de06aeac56f4c6cddc5c9ebe
[ "BSD-2-Clause" ]
5
2019-09-17T22:39:25.000Z
2021-04-22T01:44:17.000Z
BaseTools/Scripts/PackageDocumentTools/plugins/EdkPlugins/edk2/model/inf.py
KrzysztofKoch1/edk2
4d621893471c6299de06aeac56f4c6cddc5c9ebe
[ "BSD-2-Clause" ]
14
2019-08-05T00:28:56.000Z
2022-03-28T09:11:00.000Z
## @file # # Copyright (c) 2011 - 2018, Intel Corporation. All rights reserved.<BR> # # This program and the accompanying materials are licensed and made available # under the terms and conditions of the BSD License which accompanies this # distribution. The full text of the license may be found at # http://opensource.org/licenses/bsd-license.php # # THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. # import plugins.EdkPlugins.basemodel.ini as ini import re, os from plugins.EdkPlugins.basemodel.message import * class INFFile(ini.BaseINIFile): _libobjs = {} def GetSectionInstance(self, parent, name, isCombined=False): return INFSection(parent, name, isCombined) def GetProduceLibraryClass(self): obj = self.GetDefine("LIBRARY_CLASS") if obj is None: return None return obj.split('|')[0].strip() def GetSectionObjectsByName(self, name, arch=None): arr = [] sects = self.GetSectionByName(name) for sect in sects: # skip unmatched archtecture content if not sect.IsArchMatch(arch): continue for obj in sect.GetObjects(): arr.append(obj) return arr def GetSourceObjects(self, arch=None, tool=None): arr = [] sects = self.GetSectionByName('sources') for sect in sects: # skip unmatched archtecture content if not sect.IsArchMatch(arch): continue for obj in sect.GetObjects(): if not obj.IsMatchFamily(tool): continue arr.append(obj) return arr def Parse(self): if not ini.BaseINIFile.Parse(self): return False classname = self.GetProduceLibraryClass() if classname is not None: libobjdict = INFFile._libobjs if classname in libobjdict: if self not in libobjdict[classname]: libobjdict[classname].append(self) else: libobjdict[classname] = [self] return True def GetBaseName(self): return self.GetDefine("BASE_NAME").strip() def GetModuleRootPath(self): return os.path.dirname(self.GetFilename()) def Clear(self): classname = self.GetProduceLibraryClass() if classname is not None: libobjdict = INFFile._libobjs libobjdict[classname].remove(self) if len(libobjdict[classname]) == 0: del libobjdict[classname] ini.BaseINIFile.Clear(self) class INFSection(ini.BaseINISection): def GetSectionINIObject(self, parent): type = self.GetType() if type.lower() == 'libraryclasses': return INFLibraryClassObject(self) if type.lower() == 'sources': return INFSourceObject(self) if type.lower().find('pcd') != -1: return INFPcdObject(self) if type.lower() == 'packages': return INFDependentPackageObject(self) if type.lower() in ['guids', 'protocols', 'ppis']: return INFGuidObject(self) if type.lower() == 'defines': return INFDefineSectionObject(self) return INFSectionObject(self) def GetType(self): arr = self._name.split('.') return arr[0].strip() def GetArch(self): arr = self._name.split('.') if len(arr) == 1: return 'common' return arr[1] def IsArchMatch(self, arch): if arch is None or self.GetArch() == 'common': return True if self.GetArch().lower() != arch.lower(): return False return True class INFSectionObject(ini.BaseINISectionObject): def GetArch(self): return self.GetParent().GetArch() class INFDefineSectionObject(INFSectionObject): def __init__(self, parent): INFSectionObject.__init__(self, parent) self._key = None self._value = None def Parse(self): assert (self._start == self._end), 'The object in define section must be in single line' line = self.GetLineByOffset(self._start).strip() line = line.split('#')[0] arr = line.split('=') if len(arr) != 2: ErrorMsg('Invalid define section object', self.GetFilename(), self._start ) return False self._key = arr[0].strip() self._value = arr[1].strip() return True def GetKey(self): return self._key def GetValue(self): return self._value class INFLibraryClassObject(INFSectionObject): _objs = {} def __init__(self, parent): INFSectionObject.__init__(self, parent) self._classname = None def GetClass(self): return self._classname def Parse(self): self._classname = self.GetLineByOffset(self._start).split('#')[0].strip() objdict = INFLibraryClassObject._objs if self._classname in objdict: objdict[self._classname].append(self) else: objdict[self._classname] = [self] return True def Destroy(self): objdict = INFLibraryClassObject._objs objdict[self._classname].remove(self) if len(objdict[self._classname]) == 0: del objdict[self._classname] def GetName(self): return self._classname @staticmethod def GetObjectDict(): return INFLibraryClassObject._objs class INFDependentPackageObject(INFSectionObject): def GetPath(self): return self.GetLineByOffset(self._start).split('#')[0].strip() class INFSourceObject(INFSectionObject): _objs = {} def __init__(self, parent): INFSectionObject.__init__(self, parent) self.mSourcename = None self.mToolCode = None self.mFamily = None self.mTagName = None self.mFeaturePcd = None self.mFilename = None def GetSourcePath(self): return self.mSourcename def GetSourceFullPath(self): path = os.path.dirname(self.GetFilename()) path = os.path.join(path, self.GetSourcePath()) return os.path.normpath(path) def GetToolCode(self): return self.mToolCode def GetFamily(self): return self.mFamily def GetTagName(self): return self.mTagName def GetFeaturePcd(self): return self.mFeaturePcd def Parse(self): line = self.GetLineByOffset(self._start).strip().split('#')[0] arr = line.split('|') self.mSourcename = arr[0].strip() if len(arr) >= 2: self.mFamily = arr[1].strip() if len(arr) >= 3: self.mTagName = arr[2].strip() if len(arr) >= 4: self.mToolCode = arr[3].strip() if len(arr) >= 5: self.mFeaturePcd = arr[4].strip() self.mFilename = os.path.basename(self.GetSourceFullPath()) objdict = INFSourceObject._objs if self.mFilename not in objdict: objdict[self.mFilename] = [self] else: objdict[self.mFilename].append(self) return True def GetName(self): return self.mFilename def Destroy(self): objdict = INFSourceObject._objs objdict[self.mFilename].remove(self) if len(objdict[self.mFilename]) == 0: del objdict[self.mFilename] def IsMatchFamily(self, family): if family is None: return True if self.mFamily is not None: if family.strip().lower() == self.mFamily.lower(): return True else: return False else: fname = self.GetSourcePath() if fname.endswith('.S') and family.lower() != 'gcc': return False if fname.endswith('.s') and (self.GetArch().lower() != 'ipf' and self.GetArch().lower() != 'common'): return False if fname.lower().endswith('.asm') and (family.lower() != 'msft' and family.lower() != 'intel'): return False return True @staticmethod def GetObjectDict(): return INFSourceObject._objs class INFPcdObject(INFSectionObject): _objs = {} def __init__(self, parent): INFSectionObject.__init__(self, parent) self.mPcdType = None self.mDefaultValue = None self.mPcdName = None @staticmethod def GetObjectDict(): return INFPcdObject._objs def Parse(self): line = self.GetLineByOffset(self._start).strip().split('#')[0] arr = line.split('|') self.mPcdName = arr[0].strip() if len(arr) >= 2: self.mDefaultValue = arr[1].strip() objdict = INFPcdObject._objs if self.GetName() in objdict: if self not in objdict[self.GetName()]: objdict[self.GetName()].append(self) else: objdict[self.GetName()] = [self] return True def GetPcdName(self): return self.mPcdName def GetPcdType(self): return self.GetParent().GetType() def GetName(self): return self.mPcdName.split('.')[1] def Destroy(self): objdict = INFPcdObject._objs objdict[self.GetName()].remove(self) if len(objdict[self.GetName()]) == 0: del objdict[self.GetName()] class INFGuidObject(INFSectionObject): def __init__(self, parent): INFSectionObject.__init__(self, parent) self._name = None def Parse(self): line = self.GetLineByOffset(self._start).strip().split('#')[0].split("|")[0] self._name = line.strip() return True def GetName(self): return self._name
29.973684
114
0.571652
793e960d734dfd294165763109e5cc8dbd30b549
751
py
Python
actions/hallucinationScoutAction.py
SC2-ND-bot/The-PPPP-Bot
f1f4bda5f773347d9d997f4a84b4514a98932d55
[ "MIT" ]
null
null
null
actions/hallucinationScoutAction.py
SC2-ND-bot/The-PPPP-Bot
f1f4bda5f773347d9d997f4a84b4514a98932d55
[ "MIT" ]
null
null
null
actions/hallucinationScoutAction.py
SC2-ND-bot/The-PPPP-Bot
f1f4bda5f773347d9d997f4a84b4514a98932d55
[ "MIT" ]
null
null
null
from actions.action import Action class HallucinationScoutAction(Action): def __init__(self): super().__init__() self.cost = 2.0 self.scoutLocations = None self.effects["scouting"] = True def __repr__(self): return "Hallucination Action Class" def reset(self): self.scoutLocations = None def checkProceduralPrecondition(self, gameObject, agent): unit = agent.getUnit(gameObject) if not unit.is_hallucination: return False self.scoutLocations = [gameObject.enemy_start_locations[0]] return self.scoutLocations is not None def perform(self, gameObject, agent, firstAction): unit = agent.getUnit(gameObject) for index, location in enumerate(self.scoutLocations): gameObject.do(unit.move(location, index != 0))
24.225806
61
0.75233
793e9612e2aecad7fc00708c116f259334f1be4b
309
py
Python
rllib/offline/is_estimator.py
mgelbart/ray
4cec2286572e368a4bd64aae467751a384eff62d
[ "Apache-2.0" ]
1
2022-03-07T06:40:06.000Z
2022-03-07T06:40:06.000Z
rllib/offline/is_estimator.py
mgelbart/ray
4cec2286572e368a4bd64aae467751a384eff62d
[ "Apache-2.0" ]
73
2021-09-25T07:11:39.000Z
2022-03-26T07:10:59.000Z
rllib/offline/is_estimator.py
mgelbart/ray
4cec2286572e368a4bd64aae467751a384eff62d
[ "Apache-2.0" ]
1
2019-09-24T16:24:49.000Z
2019-09-24T16:24:49.000Z
from ray.rllib.offline.estimators.importance_sampling import ImportanceSampling from ray.rllib.utils.deprecation import Deprecated @Deprecated( new="ray.rllib.offline.estimators.importance_sampling::ImportanceSampling", error=False, ) class ImportanceSamplingEstimator(ImportanceSampling): pass
28.090909
79
0.825243
793e96a2ffcde6865164c93b510a37dff5314e65
6,680
py
Python
roadpin_backend/app/cron_data/cron_new_taipei_city.py
g0v/roadpin
c2919552dd3ce0e3614a35466bae6d6a740e9368
[ "CC-BY-3.0", "Apache-2.0" ]
5
2015-04-20T17:16:56.000Z
2018-12-25T11:14:22.000Z
roadpin_backend/app/cron_data/cron_new_taipei_city.py
g0v/roadpin
c2919552dd3ce0e3614a35466bae6d6a740e9368
[ "CC-BY-3.0", "Apache-2.0" ]
1
2016-06-20T02:55:27.000Z
2016-06-21T15:37:19.000Z
roadpin_backend/app/cron_data/cron_new_taipei_city.py
g0v/roadpin
c2919552dd3ce0e3614a35466bae6d6a740e9368
[ "CC-BY-3.0", "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from app.constants import S_OK, S_ERR import random import math import base64 import time import ujson as json from StringIO import StringIO from datetime import datetime import sys import argparse from lxml import html from twisted.internet import reactor from scrapy import log, signals from scrapy.crawler import Crawler from scrapy.settings import Settings from scrapy.xlib.pydispatch import dispatcher from app import cfg from app import util #from app.crawler.new_taipei_city.new_taipei_city.spiders.new_taipei_city_spider import NewTaipeiCitySpider from app.cron_data import cron_taipei_city from app.cron_data import process_data def cron_new_taipei_city(): while True: error_code = _cron_new_taipei_city() _sleep() pass ''' def _cron_new_taipei_city(): dispatcher.connect(stop_reactor, signal=signals.spider_closed) spider = NewTaipeiCitySpider() crawler = Crawler(Settings()) crawler.configure() crawler.crawl(spider) crawler.start() log.start() log.msg('Running reactor...') reactor.run() # the script will block here until the spider is closed log.msg('Reactor stopped.') ''' def _cron_new_taipei_city(): #params = _get_params() (error_code, results) = _crawl_data() return error_code def _get_params(): ''' 1. lookup the latest data in mongo. 2. return the latest params of data. ''' latest_dig = util.get_cache('cron_new_taipei_city_latest_dig') return {'latest_dig': latest_dig} def _crawl_data(): results = _crawl_dig() return (S_OK, results) def _crawl_dig(): the_url = 'http://61.60.124.185/tpctempdig/InfoAllList.asp' start_timestamp = 946684800 end_timestamp = util.get_timestamp() + 86400 * 366 start_datetime = util.timestamp_to_datetime(start_timestamp) end_datetime = util.timestamp_to_datetime(end_timestamp) params = { 'sortflag': '', 'sorttype': '', 'TargetLB': '', 'qry2': 1, 'startyear': start_datetime.year, 'startmonth': start_datetime.month, 'startday': start_datetime.day, 'endyear': end_datetime.year, 'endmonth': end_datetime.month, 'endday': end_datetime.day, } http_data = util.http_multipost({the_url: params}) #cfg.logger.debug('http_data: %s', http_data) (latest_timestamp, dig_data) = _parse_dig(http_data[the_url]) [_put_to_db(each_data) for each_data in dig_data] util.save_cache('cron_new_taipei_city_latest_dig', {'latest_timestamp': latest_timestamp}) def _parse_dig(http_data): #cfg.logger.debug('http_data_type: %s', http_data.__class__.__name__) http_data_ascii = http_data.encode('iso-8859-1') data_utf8 = util.big5_to_utf8(http_data_ascii) #cfg.logger.debug('data_utf8: %s', data_utf8) (latest_timestamp, data_list) = _parse_dig_data(data_utf8) return (latest_timestamp, data_list) def _parse_dig_data(data): cfg.logger.debug('data: %s', data) doc = html.parse(StringIO(data)) cfg.logger.debug('doc: %s', doc) elements = doc.xpath("//tr[@class='g3']") cfg.logger.debug('len(elements): %s elements: %s', len(elements), elements) results = [_parse_element(elem) for elem in elements] results = [result for result in results if result] latest_timestamp = 0 for result in results: start_timestamp = result.get('start_timestamp', 0) if start_timestamp > latest_timestamp: latest_timestamp = start_timestamp return (latest_timestamp, results) def _parse_element(elem): text = elem.text_content() #cfg.logger.debug('text: %s', text) return _parse_text(text) def _parse_text(text): cfg.logger.debug('text: %s', text) _columns = [ 'OK_UNITpro', 'IDpro', 'APP_NAMEpro', 'LOCATIONpro', 'CB_DATEpro', 'APPROVE_DATEpro'] f = StringIO(text) lines = f.readlines() lines = [line for line in lines if line.strip()] n_lines = len(lines) if n_lines != 6: cfg.logger.error('lines != 6: lines: %s', lines) return {} cfg.logger.debug('lines: %s', lines) result = {column: lines[idx].strip() for (idx, column) in enumerate(_columns) if column} if not result.get('OK_UNITpro', ''): result = {} if not result.get('CB_DATEpro', ''): result = {} cfg.logger.debug('result: %s', result) (start_timestamp, end_timestamp) = _parse_time_period(result) geo = _parse_geo(result) result['start_timestamp'] = start_timestamp result['end_timestamp'] = end_timestamp result['geo'] = geo return result def _put_to_db(data): category = 'new_taipei_city_dig_point' the_idx = data['IDpro'] start_timestamp = data.get('start_timestamp', 0) end_timestamp = data.get('end_timestamp', 0) geo = data.get('geo', {}) cfg.logger.debug('to process_data: the_idx: %s data: %s', the_idx, data) process_data('新北市', category, the_idx, start_timestamp, end_timestamp, geo, data) def _parse_time_period(data): time_period = data.get('CB_DATEpro', '~') return _parse_time_period_core(time_period) def _parse_time_period_core(time_period): time_period_split = time_period.split('~') if len(time_period_split) != 2: return (0, MAX_TIMESTAMP) start_date = time_period_split[0] end_date = time_period_split[1] start_timestamp = _parse_date(start_date) end_timestamp = _parse_date(end_date) if end_timestamp == 0: end_timestamp = MAX_TIMESTAMP return (start_timestamp, end_timestamp) def _parse_date(the_date): the_date_list = the_date.split('/') if len(the_date_list) != 3: return 0 the_year = util._int(the_date_list[0]) the_month = util._int(the_date_list[1]) the_day = util._int(the_date_list[2]) cfg.logger.debug('the_date: %s the_year: %s the_month: %s the_day: %s', the_date, the_year, the_month, the_day) the_datetime = datetime(the_year, the_month, the_day) the_timestamp = util.datetime_to_timestamp(the_datetime) return the_timestamp def _parse_geo(data): return {} def _sleep(): time_sleep = util._int(cfg.config.get('time_sleep', 86400)) cfg.logger.debug('to sleep: time_sleep: %s', time_sleep) time.sleep(time_sleep) def parse_args(): ''' ''' parser = argparse.ArgumentParser(description='roadpin_backend') parser.add_argument('-i', '--ini', type=str, required=True, help="ini filename") args = parser.parse_args() return (S_OK, args) if __name__ == '__main__': (error_code, args) = parse_args() cfg.init({"ini_filename": args.ini}) cron_new_taipei_city()
27.377049
115
0.688024
793e96c05ec2725f94d692e932e132dd7f3d02b7
1,902
py
Python
api_basebone/core/decorators.py
git-men/bsm-django
46d1fcbd8ca379d20a3396fd7ea529ccf998f59d
[ "MIT" ]
90
2020-12-07T04:49:43.000Z
2022-03-31T08:24:35.000Z
api_basebone/core/decorators.py
flyowl/lightning
946c98986c1c42bf8c28f203cdf8512262283c25
[ "MIT" ]
4
2021-01-11T16:10:55.000Z
2022-02-18T12:13:23.000Z
api_basebone/core/decorators.py
flyowl/lightning
946c98986c1c42bf8c28f203cdf8512262283c25
[ "MIT" ]
16
2020-12-07T12:32:05.000Z
2022-01-30T05:36:51.000Z
from functools import wraps from api_basebone.export.specs import FieldType BSM_BATCH_ACTION = 'bsm_action_map' BSM_CLIENT_BATCH_ACTION = 'bsm_client_action_map' BSM_ADMIN_COMPUTED_FIELDS_MAP = 'bsm_admin_computed_fields_map' def action(model, verbose_name='', manage=True): """ 管理端批量操作的连接器 可以把动作连接到对应的模型中去 Params: model class 模型类 verbose_name str 函数描述 manage bool 是否是针对管理端,客户端写 False """ def middle(func): @wraps(func) def wrapper(request, queryset): return func(request, queryset) if verbose_name: wrapper.short_description = verbose_name end_slug = BSM_BATCH_ACTION if manage else BSM_CLIENT_BATCH_ACTION bsm_action_map = getattr(model, end_slug, None) if bsm_action_map is None: setattr(model, end_slug, {}) action_map = getattr(model, end_slug) action_map[func.__name__.lower()] = wrapper return wrapper return middle def basebone_admin_property(model, display_name, field_type=None): """ 管理端计算属性字段,管理端配置时,输出对应的数据 FIXME: 暂时在 bsm admin 类中使用 Params: display str 字段的可读名称 field_type str 字段的类型 """ # 如果没有指定字段类型,则默认是字符串 if not field_type: field_type = FieldType.STRING def middle(func): @wraps(func) def wrapper(self, instance): return func(self, instance) name = func.__name__ computed_property = getattr(model, BSM_ADMIN_COMPUTED_FIELDS_MAP, None) if not isinstance(computed_property, dict): setattr(model, BSM_ADMIN_COMPUTED_FIELDS_MAP, {}) if name not in model.bsm_admin_computed_fields_map: model.bsm_admin_computed_fields_map[name] = { 'display_name': display_name, 'field_type': field_type, } return wrapper return middle
26.054795
79
0.654574
793e988b46aef7286ce6b56e7eba8e88be95400d
619
py
Python
effdet/data/parsers/parser_factory.py
SKA-INAF/efficientdet-pytorch
8967bab88288d11e5547a7efa391adc0c987be47
[ "Apache-2.0" ]
null
null
null
effdet/data/parsers/parser_factory.py
SKA-INAF/efficientdet-pytorch
8967bab88288d11e5547a7efa391adc0c987be47
[ "Apache-2.0" ]
null
null
null
effdet/data/parsers/parser_factory.py
SKA-INAF/efficientdet-pytorch
8967bab88288d11e5547a7efa391adc0c987be47
[ "Apache-2.0" ]
null
null
null
""" Parser factory Copyright 2020 Ross Wightman """ from .parser_coco import CocoParser from .parser_voc import VocParser from .parser_open_images import OpenImagesParser from .parser_radio_galaxy import RadioGalaxyParser def create_parser(name, **kwargs): if name == 'coco': parser = CocoParser(**kwargs) elif name == 'voc': parser = VocParser(**kwargs) elif name == 'openimages': parser = OpenImagesParser(**kwargs) elif name == 'radiogalaxy': parser = RadioGalaxyParser(**kwargs) else: assert False, f'Unknown dataset parser ({name})' return parser
26.913043
56
0.684976
793e98b3b0af2be75fe4928d6d5fc6fe72ffef4e
1,960
py
Python
tridentstream/services/config/configservice.py
tridentstream/mediaserver
5d47d766df2e8dca076e41348062567a569019fd
[ "MIT" ]
6
2020-01-03T14:50:09.000Z
2021-09-13T01:44:31.000Z
tridentstream/services/config/configservice.py
tidalstream/mediaserver
5d47d766df2e8dca076e41348062567a569019fd
[ "MIT" ]
null
null
null
tridentstream/services/config/configservice.py
tidalstream/mediaserver
5d47d766df2e8dca076e41348062567a569019fd
[ "MIT" ]
null
null
null
from unplugged import Schema from ...plugins import ConfigPlugin from .models import DefaultSetting, Setting class ConfigConfigPlugin(ConfigPlugin): plugin_name = "config" config_schema = Schema def __init__(self, config): super(ConfigConfigPlugin, self).__init__(config) self.schemas = {} def get_default_config(self, namespace, key): for default_type in self.default_types: try: return DefaultSetting.objects.get( default_type=default_type, namespace=namespace, key=key ).value except DefaultSetting.DoesNotExist: pass return None def get_user_config(self, user, namespace, key): try: return Setting.objects.get(user=user, namespace=namespace, key=key).value except Setting.DoesNotExist: return self.get_default_config(namespace, key) def set_default_config(self, default_type, namespace, key, value): try: s = DefaultSetting.objects.get( default_type=default_type, namespace=namespace, key=key ) except DefaultSetting.DoesNotExist: s = DefaultSetting(default_type=default_type, namespace=namespace, key=key) if value is None: s.delete() else: s.value = value s.save() def set_user_config(self, user, namespace, key, value): try: s = Setting.objects.get(user=user, namespace=namespace, key=key) except Setting.DoesNotExist: s = Setting(user=user, namespace=namespace, key=key) if value is None: s.delete() else: s.value = value s.save() def set_config_schema(self, namespace, key, schema): self.schemas[(namespace, key)] = schema def get_config_schema(self, namespace, key): return self.schemas.get((namespace, key))
31.111111
87
0.616837
793e9b1e0c97e3cd85ca94e6190e7809ee037606
684
py
Python
tf2-neural-style-transfer/settings.py
ganfanhang/DeepLearningExamples
1d940c60b2f45b925599cea81e97a40ae81c4d76
[ "Apache-2.0" ]
274
2020-01-28T08:12:55.000Z
2022-03-28T02:28:31.000Z
tf2-neural-style-transfer/settings.py
ronlado74/DeepLearningExamples
061c64abde7eb76ab7683616ebb9090814f13362
[ "Apache-2.0" ]
16
2020-03-23T04:01:37.000Z
2022-02-10T01:52:51.000Z
tf2-neural-style-transfer/settings.py
ronlado74/DeepLearningExamples
061c64abde7eb76ab7683616ebb9090814f13362
[ "Apache-2.0" ]
241
2020-02-03T03:17:42.000Z
2022-03-28T09:04:05.000Z
# -*- coding: utf-8 -*- # @File : settings.py # @Author : AaronJny # @Time : 2020/03/13 # @Desc : # 内容特征层及loss加权系数 CONTENT_LAYERS = {'block4_conv2': 0.5, 'block5_conv2': 0.5} # 风格特征层及loss加权系数 STYLE_LAYERS = {'block1_conv1': 0.2, 'block2_conv1': 0.2, 'block3_conv1': 0.2, 'block4_conv1': 0.2, 'block5_conv1': 0.2} # 内容图片路径 CONTENT_IMAGE_PATH = './images/content.jpg' # 风格图片路径 STYLE_IMAGE_PATH = './images/style.jpg' # 生成图片的保存目录 OUTPUT_DIR = './output' # 内容loss总加权系数 CONTENT_LOSS_FACTOR = 1 # 风格loss总加权系数 STYLE_LOSS_FACTOR = 100 # 图片宽度 WIDTH = 450 # 图片高度 HEIGHT = 300 # 训练epoch数 EPOCHS = 20 # 每个epoch训练多少次 STEPS_PER_EPOCH = 100 # 学习率 LEARNING_RATE = 0.03
19
99
0.671053
793e9b77aee1b283dcf82ea1e797a217923808a0
6,543
py
Python
sar/scripts/uav_sar_simulation.py
cpswarm/complex_behaviors
68f2a07180f6056f32c0ed16e9e21ac57794e2ed
[ "Apache-2.0" ]
4
2019-09-18T20:42:59.000Z
2021-02-17T04:50:28.000Z
sar/scripts/uav_sar_simulation.py
cpswarm/complex_behaviors
68f2a07180f6056f32c0ed16e9e21ac57794e2ed
[ "Apache-2.0" ]
null
null
null
sar/scripts/uav_sar_simulation.py
cpswarm/complex_behaviors
68f2a07180f6056f32c0ed16e9e21ac57794e2ed
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import sys import rospy import smach import smach_ros import mavros_msgs import std_srvs.srv from cpswarm_msgs.msg import * from swarmros.msg import * # define state Idle class Idle(smach.State): def __init__(self): smach.State.__init__(self, outcomes=['succeeded']) def execute(self, userdata): rospy.loginfo('Executing state Idle') rospy.sleep(10.0) return 'succeeded' def main(): rospy.init_node('state_machine_node') if not rospy.has_param('~altitude'): rospy.logerr('Altitude not specified, cannot perform simulation!') return # Create a TOP level SMACH state machine top_sm = smach.StateMachine(['succeeded', 'preempted', 'aborted']) # Open the container with top_sm: # ===================================== SarThreads ===================================== # Callback for custom outcomes from SarThreads def out_cb(outcome_map): if outcome_map['AbortEventMonitoring'] == 'invalid': rospy.loginfo('Returning missionAbort Event') return 'missionAbort' return 'aborted' # Create a Concurrence container sarthreads_concurrence = smach.Concurrence( outcomes=['missionAbort', 'aborted'], default_outcome='missionAbort', child_termination_cb=lambda so: True, outcome_cb=out_cb) # Open the container with sarthreads_concurrence: # ===================================== SarBehavior ===================================== # Create a State Machine container sarbehavior_sm = smach.StateMachine( outcomes=['succeeded', 'preempted', 'aborted']) # Open the container with sarbehavior_sm: # ADD Idle to SarBehavior # smach.StateMachine.add('Idle', Idle(), transitions={'succeeded':'Takeoff'}) # ADD Takeoff to SarBehavior # smach.StateMachine.add('Takeoff', smach_ros.SimpleActionState('cmd/takeoff', TakeoffAction, goal=TakeoffGoal(rospy.get_param('~altitude'))), transitions={'succeeded':'Coverage'}) # ADD Coverage to SarBehavior # smach.StateMachine.add('Coverage', smach_ros.SimpleActionState('uav_coverage', CoverageAction, goal=CoverageGoal(rospy.get_param('~altitude')), result_slots=['target_id', 'target_pose']), transitions={'succeeded':'Tracking'}, remapping={'target_id':'target_id', 'target_pose':'target_pose'}) # ===================================== SelectRoverThreads ===================================== # Callback for custom outcomes def selectrover_outcb(outcome_map): if outcome_map['LostEventMonitoring'] == 'invalid': rospy.loginfo('Returning target_lost Event') return 'target_lost' return outcome_map['TaskAllocation'] # Create a Concurrence container selectrover_concurrence = smach.Concurrence( input_keys=['target_id','target_pose'], outcomes=['succeeded', 'aborted', 'target_lost'], default_outcome='aborted', child_termination_cb=lambda so: True, outcome_cb=selectrover_outcb) # Open the container with selectrover_concurrence: # ADD TaskAllocation to SelectRoverThreads # smach.Concurrence.add('TaskAllocation', smach_ros.SimpleActionState('cmd/task_allocation_auction', TaskAllocationAction, goal_slots=['task_id', 'task_pose'], result_slots=['task_id', 'winner', 'task_pose']), remapping={'task_id':'target_id', 'task_pose':'target_pose'}) # ADD LostEventMonitoring to SelectRoverThreads # smach.Concurrence.add('LostEventMonitoring', smach_ros.MonitorState('target_lost', TargetPositionEvent, cond_cb=lambda ud, msg: False)) # ===================================== SelectRoverThreads END ===================================== # ADD SelectRoverThreads to SarBehavior # smach.StateMachine.add('SelectRover', selectrover_concurrence, transitions={'succeeded':'Tracking', 'aborted':'SelectRover', 'target_lost':'LocalCoverage'}) def tracking_goal_cb(userdata, goal): tracking_goal = TrackingGoal() tracking_goal.target = userdata.target tracking_goal.altitude = rospy.get_param('~altitude') return tracking_goal # ADD Tracking to SarBehavior # smach.StateMachine.add('Tracking', smach_ros.SimpleActionState('uav_tracking', TrackingAction, input_keys=['target'], goal_cb=tracking_goal_cb), transitions={'succeeded':'Coverage', 'aborted':'LocalCoverage'}, remapping={'target':'target_id'}) # ADD LocalCoverage to SarBehavior # smach.StateMachine.add('LocalCoverage', smach_ros.SimpleActionState('uav_local_coverage', CoverageAction, goal=CoverageGoal(rospy.get_param('~altitude')), result_slots=['target_id', 'target_pose']), transitions={'aborted':'Coverage', 'succeeded':'SelectRover'}, remapping={'target_id':'target_id', 'target_pose':'target_pose'}) # ===================================== SarBehavior END ===================================== # ADD SarBehavior to SarThreads # smach.Concurrence.add('SarBehavior', sarbehavior_sm) # ADD AbortEventMonitoring to SarThreads # smach.Concurrence.add('AbortEventMonitoring', smach_ros.MonitorState('bridge/events/mission_abort', SimpleEvent, cond_cb=lambda ud, msg: False)) # ===================================== SarThreads END ===================================== # ADD SarThreads to TOP state # smach.StateMachine.add('SarThreads', sarthreads_concurrence, transitions={'missionAbort':'MissionAbort'}) # ===================================== MissionAbort ===================================== # Create a State Machine container missionabort_sm = smach.StateMachine( outcomes=['succeeded', 'preempted', 'aborted']) # Open the container with missionabort_sm: # ADD Land to MissionAbort # smach.StateMachine.add('Land', smach_ros.ServiceState('cmd/land', std_srvs.srv.Empty), transitions={}) # ===================================== MissionAbort END ===================================== # ADD MissionAbort to TOP state # smach.StateMachine.add('MissionAbort', missionabort_sm, transitions={'succeeded':'SarThreads'}) # Create and start the introspection server (uncomment if needed) sis = smach_ros.IntrospectionServer('smach_server', top_sm, '/SM_TOP') sis.start() # Execute SMACH plan outcome = top_sm.execute() # Wait for ctrl-c to stop the application rospy.spin() sis.stop() if __name__ == '__main__': try: main() except rospy.ROSInterruptException: pass
32.231527
105
0.644811
793e9b9444545d79865f4e935068955867db83bc
1,367
py
Python
src/api-service/tests/test_task_config.py
tonybaloney/onefuzz
e0f2e9ed5aae006e0054387de7a0ff8c83c8f722
[ "MIT" ]
2,692
2020-09-15T17:54:21.000Z
2022-03-31T11:58:57.000Z
src/api-service/tests/test_task_config.py
tonybaloney/onefuzz
e0f2e9ed5aae006e0054387de7a0ff8c83c8f722
[ "MIT" ]
980
2020-09-18T18:23:01.000Z
2022-03-30T22:20:43.000Z
src/api-service/tests/test_task_config.py
nharper285/onefuzz
1de2cc841d6fc885f8bcb6d032bf5b96ddb52493
[ "MIT" ]
177
2020-09-16T00:10:56.000Z
2022-03-30T21:18:10.000Z
#!/usr/bin/env python # # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from typing import Tuple import pytest from __app__.onefuzzlib.tasks.config import is_valid_blob_name BlobNameTestCase = Tuple[str, bool] BLOB_NAME_TEST_CASES = [ # Valid ("fuzz.exe", True), ("bin/fuzz.exe", True), ("/".join("a" * 254), True), ("a" * 1024, True), # Invalid (absolute) ("/fuzz.exe", False), ("/bin/fuzz.exe", False), # Invalid (special dirs) ("./fuzz.exe", False), ("././fuzz.exe", False), ("./bin/fuzz.exe", False), ("./bin/./fuzz.exe", False), ("../fuzz.exe", False), ("../bin/fuzz.exe", False), (".././fuzz.exe", False), ("../bin/./fuzz.exe", False), # Out of Azure size bounds ("", False), (" ", False), ("/".join("a" * 255), False), ("a" * 1025, False), # Paths with invalid segments. ("a.", False), ("a..", False), ("a./b", False), ("a/b./c", False), ("a./", False), ("a../", False), ("a./b/", False), ("a/b./c/", False), ("a//", False), ] @pytest.mark.parametrize("blob_name_test_case", BLOB_NAME_TEST_CASES) def test_is_valid_blob_name(blob_name_test_case: BlobNameTestCase) -> None: blob_name, expected = blob_name_test_case is_valid = is_valid_blob_name(blob_name) assert is_valid == expected
23.568966
75
0.572056
793e9baebb5a0d66ce73900fcee710f26f661ad3
1,205
py
Python
python_code/vnev/Lib/site-packages/jdcloud_sdk/services/xdata/apis/ListInstanceInfoRequest.py
Ureimu/weather-robot
7634195af388538a566ccea9f8a8534c5fb0f4b6
[ "MIT" ]
14
2018-04-19T09:53:56.000Z
2022-01-27T06:05:48.000Z
python_code/vnev/Lib/site-packages/jdcloud_sdk/services/xdata/apis/ListInstanceInfoRequest.py
Ureimu/weather-robot
7634195af388538a566ccea9f8a8534c5fb0f4b6
[ "MIT" ]
15
2018-09-11T05:39:54.000Z
2021-07-02T12:38:02.000Z
python_code/vnev/Lib/site-packages/jdcloud_sdk/services/xdata/apis/ListInstanceInfoRequest.py
Ureimu/weather-robot
7634195af388538a566ccea9f8a8534c5fb0f4b6
[ "MIT" ]
33
2018-04-20T05:29:16.000Z
2022-02-17T09:10:05.000Z
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class ListInstanceInfoRequest(JDCloudRequest): """ 查询用户所属的实例信息 """ def __init__(self, parameters, header=None, version="v1"): super(ListInstanceInfoRequest, self).__init__( '/regions/{regionId}/dwInstance', 'GET', header, version) self.parameters = parameters class ListInstanceInfoParameters(object): def __init__(self, regionId, ): """ :param regionId: 地域ID """ self.regionId = regionId
28.690476
75
0.714523
793e9bb6c6e2f422d158d436958dc5110b478ebc
2,603
py
Python
code/data_clean.py
dongpengfei826153155/fiddler2jmeter
68fcbe197bf0414eff0525f52df056cc89884259
[ "Apache-2.0" ]
13
2020-09-04T06:45:29.000Z
2021-11-29T01:46:13.000Z
code/data_clean.py
dongpengfei826153155/fiddler2jmeter
68fcbe197bf0414eff0525f52df056cc89884259
[ "Apache-2.0" ]
null
null
null
code/data_clean.py
dongpengfei826153155/fiddler2jmeter
68fcbe197bf0414eff0525f52df056cc89884259
[ "Apache-2.0" ]
7
2020-09-06T04:26:34.000Z
2021-11-29T01:46:11.000Z
import re # 数据清洗处理 class DataClean: def __init__(self, jmeter_datas): self.jmeter_datas = jmeter_datas def select_jmeter_data(self, host_name=None, filter_url=None, distinct=False): ''' 数据清洗,得到想要的数据 :param host_name: HOST regexp匹配 :param filter_url: 需要去除的url eg:/(.*)\.(css|ico|jpg|png|gif|bmp|wav|js|jpe)(\?.*)?$ ----> 过滤css|ico|jpg|png|gif|bmp|wav|js|jpe :return: ''' select_jmeter_data = [] # print(self.jmeter_datas) for i, jmeter_data in enumerate(self.jmeter_datas): # host 包含在给的的hosts中且不为空,url正则匹配满足 try: if jmeter_data['server_name'] is not None \ and re.match(host_name, jmeter_data['server_name'], re.IGNORECASE) is not None \ and re.match(filter_url, jmeter_data['path'], re.IGNORECASE) is None: # 过滤重复的url请求 if distinct and len(select_jmeter_data) > 0: distinct_list = [f"{i['server_name']}{i['path']}" for i in select_jmeter_data] if f"{jmeter_data['server_name']}{jmeter_data['path']}" in distinct_list: # print(f"{jmeter_data['server_name']}{jmeter_data['path']}") continue select_jmeter_data.append(jmeter_data) except Exception as e: print('正则表达式存在问题:\nhostname: {} \nfilter_url: {}'.format(host_name, filter_url)) return select_jmeter_data def get_header_parameter(self, select_jmeter_data, host_name=None): ''' re.match(host_name, jmeter_data['server_name'], re.IGNORECASE) is not None 提取公共的header :param select_jmeter_data: 数据集合 :param host_name: 域名 :return: ''' # 获取一条数据进行交集计算 header_parameter = set() if host_name is not None: for i in range(len(select_jmeter_data) - 1): # print(select_jmeter_data[i]['Header'][0]) if re.match(host_name, select_jmeter_data[i]['Header'][0][1], re.IGNORECASE) is not None: header_parameter = set(select_jmeter_data[i]['Header']) break else: header_parameter = select_jmeter_data[0]['Header'] # header交集计算 for i in range(len(select_jmeter_data) - 1): if select_jmeter_data[i]['Header'] in [('Host', host_name)]: header_parameter = header_parameter & set(select_jmeter_data[i + 1]['Header']) return header_parameter
41.31746
107
0.573569
793e9bd27063a005f26670ee28f494df45b4513d
227
py
Python
tests/context.py
ezrasavard/compound
d32e8f3ebbc1fc0209e94810a48461097b04515e
[ "MIT" ]
1
2017-08-14T14:37:40.000Z
2017-08-14T14:37:40.000Z
tests/context.py
ezrasavard/compound
d32e8f3ebbc1fc0209e94810a48461097b04515e
[ "MIT" ]
null
null
null
tests/context.py
ezrasavard/compound
d32e8f3ebbc1fc0209e94810a48461097b04515e
[ "MIT" ]
null
null
null
import sys import os sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../compoundfin'))) import compoundfin
25.222222
74
0.709251
793e9bee8aedbc33e10729f3b21cb11aaa089df1
11,189
py
Python
clients/client/python/ory_client/model/project_slug.py
russelg/sdk
2515b35981784319bd7d58fcf0b5ab85b501b62f
[ "Apache-2.0" ]
null
null
null
clients/client/python/ory_client/model/project_slug.py
russelg/sdk
2515b35981784319bd7d58fcf0b5ab85b501b62f
[ "Apache-2.0" ]
null
null
null
clients/client/python/ory_client/model/project_slug.py
russelg/sdk
2515b35981784319bd7d58fcf0b5ab85b501b62f
[ "Apache-2.0" ]
null
null
null
""" Ory APIs Documentation for all public and administrative Ory APIs. Administrative APIs can only be accessed with a valid Personal Access Token. Public APIs are mostly used in browsers. # noqa: E501 The version of the OpenAPI document: v0.0.1-alpha.42 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from ory_client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from ory_client.exceptions import ApiAttributeError class ProjectSlug(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'slug': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'slug': 'slug', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """ProjectSlug - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) slug (str): The Project Slug. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """ProjectSlug - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) slug (str): The Project Slug. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
43.536965
194
0.57199
793e9d9ef264fbf24b869b02296d4aa621ab42f1
28,573
py
Python
alien4cloud-cloudify3-provider/src/test/resources/outputs/blueprints/openstack/tomcat/plugins/custom_wf_plugin/plugin/workflows.py
alien4cloud/alien4cloud-cloudify4-provider
97faee855255eb0c3ce25bb3075c29acd11a63c5
[ "Apache-2.0" ]
null
null
null
alien4cloud-cloudify3-provider/src/test/resources/outputs/blueprints/openstack/tomcat/plugins/custom_wf_plugin/plugin/workflows.py
alien4cloud/alien4cloud-cloudify4-provider
97faee855255eb0c3ce25bb3075c29acd11a63c5
[ "Apache-2.0" ]
3
2015-12-04T15:27:22.000Z
2016-04-08T11:32:43.000Z
alien4cloud-cloudify3-provider/src/test/resources/outputs/blueprints/openstack/tomcat/plugins/custom_wf_plugin/plugin/workflows.py
alien4cloud/alien4cloud-cloudify4-provider
97faee855255eb0c3ce25bb3075c29acd11a63c5
[ "Apache-2.0" ]
16
2015-01-29T10:05:09.000Z
2019-06-24T19:23:54.000Z
from cloudify.decorators import workflow from cloudify.workflows import ctx from cloudify.workflows import tasks as workflow_tasks from utils import set_state_task from utils import operation_task from utils import link_tasks from utils import CustomContext from utils import generate_native_node_workflows from utils import _get_all_nodes from utils import _get_all_nodes_instances from utils import _get_all_modified_node_instances from utils import is_host_node from workflow import WfStartEvent from workflow import build_pre_event # subworkflow 'install' for host 'Server' def install_host_server(ctx, graph, custom_context): custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Java') set_state_task(ctx, graph, 'Java', 'started', 'Java_started', custom_context) set_state_task(ctx, graph, 'Java', 'creating', 'Java_creating', custom_context) operation_task(ctx, graph, 'Tomcat', 'cloudify.interfaces.lifecycle.create', 'create_Tomcat', custom_context) set_state_task(ctx, graph, 'War', 'configured', 'War_configured', custom_context) set_state_task(ctx, graph, 'War', 'starting', 'War_starting', custom_context) set_state_task(ctx, graph, 'War', 'started', 'War_started', custom_context) set_state_task(ctx, graph, 'Java', 'created', 'Java_created', custom_context) set_state_task(ctx, graph, 'War', 'configuring', 'War_configuring', custom_context) set_state_task(ctx, graph, 'Tomcat', 'starting', 'Tomcat_starting', custom_context) operation_task(ctx, graph, 'War', 'cloudify.interfaces.lifecycle.configure', 'configure_War', custom_context) set_state_task(ctx, graph, 'Tomcat', 'creating', 'Tomcat_creating', custom_context) set_state_task(ctx, graph, 'Java', 'starting', 'Java_starting', custom_context) set_state_task(ctx, graph, 'Tomcat', 'created', 'Tomcat_created', custom_context) set_state_task(ctx, graph, 'War', 'created', 'War_created', custom_context) operation_task(ctx, graph, 'Java', 'cloudify.interfaces.lifecycle.start', 'start_Java', custom_context) set_state_task(ctx, graph, 'Tomcat', 'initial', 'Tomcat_initial', custom_context) set_state_task(ctx, graph, 'Tomcat', 'configuring', 'Tomcat_configuring', custom_context) set_state_task(ctx, graph, 'Tomcat', 'started', 'Tomcat_started', custom_context) operation_task(ctx, graph, 'Java', 'cloudify.interfaces.lifecycle.configure', 'configure_Java', custom_context) operation_task(ctx, graph, 'Java', 'cloudify.interfaces.lifecycle.create', 'create_Java', custom_context) custom_context.register_native_delegate_wf_step('Server', 'Server_install') set_state_task(ctx, graph, 'War', 'creating', 'War_creating', custom_context) operation_task(ctx, graph, 'War', 'cloudify.interfaces.lifecycle.start', 'start_War', custom_context) set_state_task(ctx, graph, 'Java', 'configured', 'Java_configured', custom_context) set_state_task(ctx, graph, 'Tomcat', 'configured', 'Tomcat_configured', custom_context) operation_task(ctx, graph, 'Tomcat', 'cloudify.interfaces.lifecycle.configure', 'configure_Tomcat', custom_context) set_state_task(ctx, graph, 'War', 'initial', 'War_initial', custom_context) operation_task(ctx, graph, 'Tomcat', 'cloudify.interfaces.lifecycle.start', 'start_Tomcat', custom_context) set_state_task(ctx, graph, 'Java', 'configuring', 'Java_configuring', custom_context) set_state_task(ctx, graph, 'Java', 'initial', 'Java_initial', custom_context) generate_native_node_workflows(ctx, graph, custom_context, 'install') link_tasks(graph, 'Tomcat_configuring', 'Java_started', custom_context) link_tasks(graph, 'create_Java', 'Java_creating', custom_context) link_tasks(graph, 'Tomcat_created', 'create_Tomcat', custom_context) link_tasks(graph, 'War_starting', 'War_configured', custom_context) link_tasks(graph, 'start_War', 'War_starting', custom_context) link_tasks(graph, 'Java_configuring', 'Java_created', custom_context) link_tasks(graph, 'configure_War', 'War_configuring', custom_context) link_tasks(graph, 'start_Tomcat', 'Tomcat_starting', custom_context) link_tasks(graph, 'War_configured', 'configure_War', custom_context) link_tasks(graph, 'create_Tomcat', 'Tomcat_creating', custom_context) link_tasks(graph, 'start_Java', 'Java_starting', custom_context) link_tasks(graph, 'Tomcat_configuring', 'Tomcat_created', custom_context) link_tasks(graph, 'Java_configuring', 'Tomcat_created', custom_context) link_tasks(graph, 'War_configuring', 'War_created', custom_context) link_tasks(graph, 'Java_started', 'start_Java', custom_context) link_tasks(graph, 'Tomcat_creating', 'Tomcat_initial', custom_context) link_tasks(graph, 'configure_Tomcat', 'Tomcat_configuring', custom_context) link_tasks(graph, 'War_initial', 'Tomcat_started', custom_context) link_tasks(graph, 'Java_configured', 'configure_Java', custom_context) link_tasks(graph, 'Java_created', 'create_Java', custom_context) link_tasks(graph, 'Tomcat_initial', 'Server_install', custom_context) link_tasks(graph, 'Java_initial', 'Server_install', custom_context) link_tasks(graph, 'War_created', 'War_creating', custom_context) link_tasks(graph, 'War_started', 'start_War', custom_context) link_tasks(graph, 'Java_starting', 'Java_configured', custom_context) link_tasks(graph, 'Tomcat_starting', 'Tomcat_configured', custom_context) link_tasks(graph, 'Tomcat_configured', 'configure_Tomcat', custom_context) link_tasks(graph, 'War_creating', 'War_initial', custom_context) link_tasks(graph, 'Tomcat_started', 'start_Tomcat', custom_context) link_tasks(graph, 'configure_Java', 'Java_configuring', custom_context) link_tasks(graph, 'Java_creating', 'Java_initial', custom_context) # subworkflow 'uninstall' for host 'Server' def uninstall_host_server(ctx, graph, custom_context): custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') set_state_task(ctx, graph, 'War', 'deleting', 'War_deleting', custom_context) set_state_task(ctx, graph, 'Java', 'stopping', 'Java_stopping', custom_context) set_state_task(ctx, graph, 'Tomcat', 'deleted', 'Tomcat_deleted', custom_context) set_state_task(ctx, graph, 'War', 'stopping', 'War_stopping', custom_context) operation_task(ctx, graph, 'Tomcat', 'cloudify.interfaces.lifecycle.stop', 'stop_Tomcat', custom_context) set_state_task(ctx, graph, 'Java', 'deleting', 'Java_deleting', custom_context) set_state_task(ctx, graph, 'Tomcat', 'stopped', 'Tomcat_stopped', custom_context) custom_context.register_native_delegate_wf_step('Server', 'Server_uninstall') set_state_task(ctx, graph, 'War', 'stopped', 'War_stopped', custom_context) set_state_task(ctx, graph, 'Tomcat', 'stopping', 'Tomcat_stopping', custom_context) set_state_task(ctx, graph, 'Tomcat', 'deleting', 'Tomcat_deleting', custom_context) set_state_task(ctx, graph, 'Java', 'stopped', 'Java_stopped', custom_context) set_state_task(ctx, graph, 'War', 'deleted', 'War_deleted', custom_context) set_state_task(ctx, graph, 'Java', 'deleted', 'Java_deleted', custom_context) generate_native_node_workflows(ctx, graph, custom_context, 'uninstall') link_tasks(graph, 'War_deleted', 'War_deleting', custom_context) link_tasks(graph, 'Java_stopped', 'Java_stopping', custom_context) link_tasks(graph, 'Server_uninstall', 'Tomcat_deleted', custom_context) link_tasks(graph, 'War_stopped', 'War_stopping', custom_context) link_tasks(graph, 'Tomcat_stopped', 'stop_Tomcat', custom_context) link_tasks(graph, 'Java_deleted', 'Java_deleting', custom_context) link_tasks(graph, 'Tomcat_deleting', 'Tomcat_stopped', custom_context) link_tasks(graph, 'War_deleting', 'War_stopped', custom_context) link_tasks(graph, 'stop_Tomcat', 'Tomcat_stopping', custom_context) link_tasks(graph, 'Tomcat_deleted', 'Tomcat_deleting', custom_context) link_tasks(graph, 'Java_deleting', 'Java_stopped', custom_context) link_tasks(graph, 'Tomcat_stopping', 'War_deleted', custom_context) link_tasks(graph, 'Server_uninstall', 'Java_deleted', custom_context) def install_host(ctx, graph, custom_context, compute): options = {} options['Server'] = install_host_server options[compute](ctx, graph, custom_context) def uninstall_host(ctx, graph, custom_context, compute): options = {} options['Server'] = uninstall_host_server options[compute](ctx, graph, custom_context) @workflow def a4c_install(**kwargs): graph = ctx.graph_mode() nodes = _get_all_nodes(ctx) instances = _get_all_nodes_instances(ctx) custom_context = CustomContext(ctx, instances, nodes) ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('install'))) _a4c_install(ctx, graph, custom_context) return graph.execute() @workflow def a4c_uninstall(**kwargs): graph = ctx.graph_mode() nodes = _get_all_nodes(ctx) instances = _get_all_nodes_instances(ctx) custom_context = CustomContext(ctx, instances, nodes) ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('uninstall'))) _a4c_uninstall(ctx, graph, custom_context) return graph.execute() def _a4c_install(ctx, graph, custom_context): # following code can be pasted in src/test/python/workflows/tasks.py for simulation custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Java') set_state_task(ctx, graph, 'Java', 'started', 'Java_started', custom_context) set_state_task(ctx, graph, 'Java', 'creating', 'Java_creating', custom_context) operation_task(ctx, graph, 'Tomcat', 'cloudify.interfaces.lifecycle.create', 'create_Tomcat', custom_context) set_state_task(ctx, graph, 'War', 'configured', 'War_configured', custom_context) set_state_task(ctx, graph, 'War', 'starting', 'War_starting', custom_context) set_state_task(ctx, graph, 'War', 'started', 'War_started', custom_context) set_state_task(ctx, graph, 'Java', 'created', 'Java_created', custom_context) set_state_task(ctx, graph, 'War', 'configuring', 'War_configuring', custom_context) set_state_task(ctx, graph, 'Tomcat', 'starting', 'Tomcat_starting', custom_context) operation_task(ctx, graph, 'War', 'cloudify.interfaces.lifecycle.configure', 'configure_War', custom_context) set_state_task(ctx, graph, 'Tomcat', 'creating', 'Tomcat_creating', custom_context) set_state_task(ctx, graph, 'Java', 'starting', 'Java_starting', custom_context) set_state_task(ctx, graph, 'Tomcat', 'created', 'Tomcat_created', custom_context) set_state_task(ctx, graph, 'War', 'created', 'War_created', custom_context) operation_task(ctx, graph, 'Java', 'cloudify.interfaces.lifecycle.start', 'start_Java', custom_context) set_state_task(ctx, graph, 'Tomcat', 'initial', 'Tomcat_initial', custom_context) set_state_task(ctx, graph, 'Tomcat', 'configuring', 'Tomcat_configuring', custom_context) set_state_task(ctx, graph, 'Tomcat', 'started', 'Tomcat_started', custom_context) custom_context.register_native_delegate_wf_step('NetPub', 'NetPub_install') operation_task(ctx, graph, 'Java', 'cloudify.interfaces.lifecycle.configure', 'configure_Java', custom_context) operation_task(ctx, graph, 'Java', 'cloudify.interfaces.lifecycle.create', 'create_Java', custom_context) custom_context.register_native_delegate_wf_step('Server', 'Server_install') set_state_task(ctx, graph, 'War', 'creating', 'War_creating', custom_context) operation_task(ctx, graph, 'War', 'cloudify.interfaces.lifecycle.start', 'start_War', custom_context) set_state_task(ctx, graph, 'Java', 'configured', 'Java_configured', custom_context) set_state_task(ctx, graph, 'Tomcat', 'configured', 'Tomcat_configured', custom_context) operation_task(ctx, graph, 'Tomcat', 'cloudify.interfaces.lifecycle.configure', 'configure_Tomcat', custom_context) set_state_task(ctx, graph, 'War', 'initial', 'War_initial', custom_context) operation_task(ctx, graph, 'Tomcat', 'cloudify.interfaces.lifecycle.start', 'start_Tomcat', custom_context) set_state_task(ctx, graph, 'Java', 'configuring', 'Java_configuring', custom_context) set_state_task(ctx, graph, 'Java', 'initial', 'Java_initial', custom_context) generate_native_node_workflows(ctx, graph, custom_context, 'install') link_tasks(graph, 'Java_started', 'start_Java', custom_context) link_tasks(graph, 'Java_creating', 'Java_initial', custom_context) link_tasks(graph, 'create_Tomcat', 'Tomcat_creating', custom_context) link_tasks(graph, 'War_configured', 'configure_War', custom_context) link_tasks(graph, 'War_starting', 'War_configured', custom_context) link_tasks(graph, 'War_started', 'start_War', custom_context) link_tasks(graph, 'Java_created', 'create_Java', custom_context) link_tasks(graph, 'War_configuring', 'War_created', custom_context) link_tasks(graph, 'Tomcat_starting', 'Tomcat_configured', custom_context) link_tasks(graph, 'configure_War', 'War_configuring', custom_context) link_tasks(graph, 'Tomcat_creating', 'Tomcat_initial', custom_context) link_tasks(graph, 'Java_starting', 'Java_configured', custom_context) link_tasks(graph, 'Tomcat_created', 'create_Tomcat', custom_context) link_tasks(graph, 'War_created', 'War_creating', custom_context) link_tasks(graph, 'start_Java', 'Java_starting', custom_context) link_tasks(graph, 'Tomcat_initial', 'Server_install', custom_context) link_tasks(graph, 'Tomcat_configuring', 'Java_started', custom_context) link_tasks(graph, 'Tomcat_configuring', 'Tomcat_created', custom_context) link_tasks(graph, 'Tomcat_started', 'start_Tomcat', custom_context) link_tasks(graph, 'configure_Java', 'Java_configuring', custom_context) link_tasks(graph, 'create_Java', 'Java_creating', custom_context) link_tasks(graph, 'War_creating', 'War_initial', custom_context) link_tasks(graph, 'start_War', 'War_starting', custom_context) link_tasks(graph, 'Java_configured', 'configure_Java', custom_context) link_tasks(graph, 'Tomcat_configured', 'configure_Tomcat', custom_context) link_tasks(graph, 'configure_Tomcat', 'Tomcat_configuring', custom_context) link_tasks(graph, 'War_initial', 'Tomcat_started', custom_context) link_tasks(graph, 'start_Tomcat', 'Tomcat_starting', custom_context) link_tasks(graph, 'Java_configuring', 'Tomcat_created', custom_context) link_tasks(graph, 'Java_configuring', 'Java_created', custom_context) link_tasks(graph, 'Java_initial', 'Server_install', custom_context) def _a4c_uninstall(ctx, graph, custom_context): # following code can be pasted in src/test/python/workflows/tasks.py for simulation custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Tomcat') custom_context.add_customized_wf_node('Java') custom_context.add_customized_wf_node('War') custom_context.add_customized_wf_node('Java') set_state_task(ctx, graph, 'War', 'deleting', 'War_deleting', custom_context) set_state_task(ctx, graph, 'Java', 'stopping', 'Java_stopping', custom_context) set_state_task(ctx, graph, 'Tomcat', 'deleted', 'Tomcat_deleted', custom_context) set_state_task(ctx, graph, 'War', 'stopping', 'War_stopping', custom_context) operation_task(ctx, graph, 'Tomcat', 'cloudify.interfaces.lifecycle.stop', 'stop_Tomcat', custom_context) custom_context.register_native_delegate_wf_step('NetPub', 'NetPub_uninstall') set_state_task(ctx, graph, 'Java', 'deleting', 'Java_deleting', custom_context) set_state_task(ctx, graph, 'Tomcat', 'stopped', 'Tomcat_stopped', custom_context) custom_context.register_native_delegate_wf_step('Server', 'Server_uninstall') set_state_task(ctx, graph, 'War', 'stopped', 'War_stopped', custom_context) set_state_task(ctx, graph, 'Tomcat', 'stopping', 'Tomcat_stopping', custom_context) set_state_task(ctx, graph, 'Tomcat', 'deleting', 'Tomcat_deleting', custom_context) set_state_task(ctx, graph, 'Java', 'stopped', 'Java_stopped', custom_context) set_state_task(ctx, graph, 'War', 'deleted', 'War_deleted', custom_context) set_state_task(ctx, graph, 'Java', 'deleted', 'Java_deleted', custom_context) generate_native_node_workflows(ctx, graph, custom_context, 'uninstall') link_tasks(graph, 'War_deleting', 'War_stopped', custom_context) link_tasks(graph, 'Tomcat_deleted', 'Tomcat_deleting', custom_context) link_tasks(graph, 'stop_Tomcat', 'Tomcat_stopping', custom_context) link_tasks(graph, 'Java_deleting', 'Java_stopped', custom_context) link_tasks(graph, 'Tomcat_stopped', 'stop_Tomcat', custom_context) link_tasks(graph, 'Server_uninstall', 'Tomcat_deleted', custom_context) link_tasks(graph, 'Server_uninstall', 'Java_deleted', custom_context) link_tasks(graph, 'War_stopped', 'War_stopping', custom_context) link_tasks(graph, 'Tomcat_stopping', 'War_deleted', custom_context) link_tasks(graph, 'Tomcat_deleting', 'Tomcat_stopped', custom_context) link_tasks(graph, 'Java_stopped', 'Java_stopping', custom_context) link_tasks(graph, 'War_deleted', 'War_deleting', custom_context) link_tasks(graph, 'Java_deleted', 'Java_deleting', custom_context) def _get_scaling_group_name_from_node_id(ctx, node_id): scaling_groups=ctx.deployment.scaling_groups for group_name, scaling_group in ctx.deployment.scaling_groups.iteritems(): for member in scaling_group['members']: if member == node_id: ctx.logger.info("Node {} found in scaling group {}".format(node_id, group_name)) return group_name return None @workflow def a4c_scale(ctx, node_id, delta, scale_compute, **kwargs): delta = int(delta) scalable_entity_name = _get_scaling_group_name_from_node_id(ctx, node_id) scaling_group = ctx.deployment.scaling_groups.get(scalable_entity_name) if scalable_entity_name: curr_num_instances = scaling_group['properties']['current_instances'] planned_num_instances = curr_num_instances + delta scale_id = scalable_entity_name else: scaled_node = ctx.get_node(scalable_entity_name) if not scaled_node: raise ValueError("Node {0} doesn't exist".format(scalable_entity_name)) if not is_host_node(scaled_node): raise ValueError("Node {0} is not a host. This workflow can only scale hosts".format(scalable_entity_name)) if delta == 0: ctx.logger.info('delta parameter is 0, so no scaling will take place.') return curr_num_instances = scaled_node.number_of_instances planned_num_instances = curr_num_instances + delta scale_id = scaled_node.id if planned_num_instances < 1: raise ValueError('Provided delta: {0} is illegal. current number of' 'instances of node/group {1} is {2}' .format(delta, scalable_entity_name, curr_num_instances)) modification = ctx.deployment.start_modification({ scale_id: { 'instances': planned_num_instances } }) ctx.logger.info('Deployment modification started. [modification_id={0} : {1}]'.format(modification.id, dir(modification))) try: if delta > 0: ctx.logger.info('Scaling host/group {0} adding {1} instances'.format(scalable_entity_name, delta)) added_and_related = _get_all_nodes(modification.added) added = _get_all_modified_node_instances(added_and_related, 'added') graph = ctx.graph_mode() ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('scale', 'install'))) custom_context = CustomContext(ctx, added, added_and_related) install_host(ctx, graph, custom_context, node_id) try: graph.execute() except: ctx.logger.error('Scale failed. Uninstalling node/group {0}'.format(scalable_entity_name)) graph = ctx.internal.task_graph for task in graph.tasks_iter(): graph.remove_task(task) try: custom_context = CustomContext(ctx, added, added_and_related) uninstall_host(ctx, graph, custom_context, scalable_entity_name) graph.execute() except: ctx.logger.error('Node {0} uninstallation following scale failure has failed'.format(scalable_entity_name)) raise else: ctx.logger.info('Unscaling host/group {0} removing {1} instances'.format(scalable_entity_name, delta)) removed_and_related = _get_all_nodes(modification.removed) removed = _get_all_modified_node_instances(removed_and_related, 'removed') graph = ctx.graph_mode() ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('scale', 'uninstall'))) custom_context = CustomContext(ctx, removed, removed_and_related) uninstall_host(ctx, graph, custom_context, node_id) try: graph.execute() except: ctx.logger.error('Unscale failed.') raise except: ctx.logger.warn('Rolling back deployment modification. [modification_id={0}]'.format(modification.id)) try: modification.rollback() except: ctx.logger.warn('Deployment modification rollback failed. The ' 'deployment model is most likely in some corrupted' ' state.' '[modification_id={0}]'.format(modification.id)) raise raise else: try: modification.finish() except: ctx.logger.warn('Deployment modification finish failed. The ' 'deployment model is most likely in some corrupted' ' state.' '[modification_id={0}]'.format(modification.id)) raise @workflow def a4c_heal( ctx, node_instance_id, diagnose_value='Not provided', **kwargs): """Reinstalls the whole subgraph of the system topology The subgraph consists of all the nodes that are hosted in the failing node's compute and the compute itself. Additionally it unlinks and establishes appropriate relationships :param ctx: cloudify context :param node_id: failing node's id :param diagnose_value: diagnosed reason of failure """ ctx.logger.info("Starting 'heal' workflow on {0}, Diagnosis: {1}" .format(node_instance_id, diagnose_value)) failing_node = ctx.get_node_instance(node_instance_id) host_instance_id = failing_node._node_instance.host_id failing_node_host = ctx.get_node_instance(host_instance_id) node_id = failing_node_host.node_id subgraph_node_instances = failing_node_host.get_contained_subgraph() added_and_related = _get_all_nodes(ctx) try: graph = ctx.graph_mode() ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('heal', 'uninstall'))) custom_context = CustomContext(ctx, subgraph_node_instances, added_and_related) uninstall_host(ctx, graph, custom_context, node_id) graph.execute() except: ctx.logger.error('Uninstall while healing failed.') graph = ctx.internal.task_graph for task in graph.tasks_iter(): graph.remove_task(task) ctx.internal.send_workflow_event(event_type='a4c_workflow_started', message=build_pre_event(WfStartEvent('heal', 'install'))) custom_context = CustomContext(ctx, subgraph_node_instances, added_and_related) install_host(ctx, graph, custom_context, node_id) graph.execute() #following code can be pasted in src/test/python/workflows/context.py for simulation #def _build_nodes(ctx): #types = [] #types.append('alien.nodes.Java') #types.append('tosca.nodes.SoftwareComponent') #types.append('tosca.nodes.Root') #node_Java = _build_node(ctx, 'Java', types, 1) #types = [] #types.append('alien.nodes.Tomcat') #types.append('tosca.nodes.WebServer') #types.append('tosca.nodes.SoftwareComponent') #types.append('tosca.nodes.Root') #node_Tomcat = _build_node(ctx, 'Tomcat', types, 1) #types = [] #types.append('alien.nodes.openstack.Compute') #types.append('tosca.nodes.Compute') #types.append('tosca.nodes.Root') #node_Server = _build_node(ctx, 'Server', types, 1) #types = [] #types.append('alien.nodes.War') #types.append('alien.nodes.LoadBalancedWebApplication') #types.append('tosca.nodes.Root') #node_War = _build_node(ctx, 'War', types, 1) #types = [] #types.append('alien.nodes.openstack.PublicNetwork') #types.append('alien.nodes.PublicNetwork') #types.append('tosca.nodes.Network') #types.append('tosca.nodes.Root') #node_NetPub = _build_node(ctx, 'NetPub', types, 1) #_add_relationship(node_Java, node_Server) #_add_relationship(node_Tomcat, node_Server) #_add_relationship(node_Tomcat, node_Java) #_add_relationship(node_Server, node_NetPub) #_add_relationship(node_War, node_Tomcat)
58.075203
127
0.73146
793e9da2fa742db3574445e0e028ad412928ff35
611
py
Python
ns/flow/flow.py
wsyCUHK/ns.py
44f9c627a9d3b9b31a0799b9a9cea50560eda8a1
[ "Apache-2.0" ]
3
2021-06-17T01:57:43.000Z
2021-12-16T11:53:31.000Z
ns/flow/flow.py
wsyCUHK/ns.py
44f9c627a9d3b9b31a0799b9a9cea50560eda8a1
[ "Apache-2.0" ]
null
null
null
ns/flow/flow.py
wsyCUHK/ns.py
44f9c627a9d3b9b31a0799b9a9cea50560eda8a1
[ "Apache-2.0" ]
null
null
null
class Flow: def __init__(self, fid, src, dst, size=None, start_time=None, finish_time=None, pkt_gen=None, pkt_sink=None) -> None: self.fid = fid self.src = src self.dst = dst self.size = size self.start_time = start_time self.finish_time = finish_time self.pkt_gen = pkt_gen self.pkt_sink = pkt_sink self.path = None def __repr__(self) -> str: return f"Flow {self.fid} on {self.path}"
25.458333
48
0.466448
793e9e17169f69013d2ece32d6c799ced555978c
590
py
Python
voxel_globe/websockets/migrations/0002_log_message_timestamp.py
ngageoint/voxel-globe
91f386de652b704942165889c10468b2c4cf4eec
[ "MIT" ]
28
2015-07-27T23:57:24.000Z
2020-04-05T15:10:52.000Z
voxel_globe/websockets/migrations/0002_log_message_timestamp.py
VisionSystemsInc/voxel_globe
6eb3fca5586726428e9d914f7b730ca164c64a52
[ "MIT" ]
50
2016-02-11T15:50:22.000Z
2016-10-27T22:38:27.000Z
voxel_globe/websockets/migrations/0002_log_message_timestamp.py
ngageoint/voxel-globe
91f386de652b704942165889c10468b2c4cf4eec
[ "MIT" ]
8
2015-07-27T19:22:03.000Z
2021-01-04T09:44:48.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import datetime from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('websockets', '0001_update_websocket_models'), ] operations = [ migrations.AddField( model_name='logmessagemodel', name='timestamp', field=models.DateTimeField(default=datetime.datetime(2016, 8, 16, 12, 54, 35, 276042, tzinfo=utc), auto_now_add=True), preserve_default=False, ), ]
25.652174
130
0.655932
793e9f5b22b07dba8a759e852f6676f028ee19ff
102
py
Python
src/app/config_default.py
cla7aye15I4nd/zhiyuan-salon-Q
3e7c91fc466f6aeef7950034d9ed84928e539cb9
[ "MIT" ]
2
2021-05-25T07:33:44.000Z
2021-05-25T07:35:11.000Z
src/app/config_default.py
cla7aye15I4nd/zhiyuan-salon-Q
3e7c91fc466f6aeef7950034d9ed84928e539cb9
[ "MIT" ]
null
null
null
src/app/config_default.py
cla7aye15I4nd/zhiyuan-salon-Q
3e7c91fc466f6aeef7950034d9ed84928e539cb9
[ "MIT" ]
null
null
null
SQLALCHEMY_TRACK_MODIFICATIONS = True SQLALCHEMY_DATABASE_URI = 'sqlite:///./user.db' SECRET_KEY = ''
25.5
47
0.77451
793e9f9916e17c1a9232f00431eaeb26731c1e0b
5,361
py
Python
tests/protocols/test_irc.py
spaceone/circuits
ed6d5464f1f83034109ed3d23d126c715450cfd2
[ "MIT" ]
null
null
null
tests/protocols/test_irc.py
spaceone/circuits
ed6d5464f1f83034109ed3d23d126c715450cfd2
[ "MIT" ]
null
null
null
tests/protocols/test_irc.py
spaceone/circuits
ed6d5464f1f83034109ed3d23d126c715450cfd2
[ "MIT" ]
null
null
null
#!/usr/bin/env python import pytest from pytest import fixture from circuits import Component, Event, handler from circuits.net.events import read, write from circuits.protocols.irc import ( AWAY, INVITE, IRC, JOIN, KICK, MODE, NAMES, NICK, NOTICE, PART, PASS, PONG, PRIVMSG, QUIT, TOPIC, USER, WHOIS, irc_color_to_ansi, joinprefix, parsemsg, parseprefix, strip, ) from circuits.six import b, u class App(Component): def init(self): IRC().register(self) self.data = [] self.events = [] @handler(False) def reset(self): self.data = [] self.events = [] @handler() def _on_event(self, event, *args, **kwargs): self.events.append(event) def request(self, message): self.fire(write(bytes(message))) def write(self, data): self.data.append(data) @fixture(scope="function") def app(request): app = App() while len(app): app.flush() return app def test_strip(): s = ":\x01\x02test\x02\x01" s = strip(s) assert s == "\x01\x02test\x02\x01" s = ":\x01\x02test\x02\x01" s = strip(s, color=True) assert s == "test" def test_joinprefix(): nick, ident, host = "test", "foo", "localhost" s = joinprefix(nick, ident, host) assert s == "test!foo@localhost" def test_parsemsg(): s = b(":foo!bar@localhost NICK foobar") source, command, args = parsemsg(s) assert source == (u("foo"), u("bar"), u("localhost")) assert command == "NICK" assert args == [u("foobar")] s = b("") source, command, args = parsemsg(s) assert source == (None, None, None) assert command is None assert args == [] def test_parseprefix(): s = "test!foo@localhost" nick, ident, host = parseprefix(s) assert nick == "test" assert ident == "foo" assert host == "localhost" s = "test" nick, ident, host = parseprefix(s) assert nick == "test" assert ident is None assert host is None @pytest.mark.parametrize("event,data", [ (PASS("secret"), b"PASS secret\r\n"), ( USER("foo", "localhost", "localhost", "Test Client"), b"USER foo localhost localhost :Test Client\r\n" ), (NICK("test"), b"NICK test\r\n"), (PONG("localhost"), b"PONG :localhost\r\n"), (QUIT(), b"QUIT Leaving\r\n"), (QUIT("Test"), b"QUIT Test\r\n"), (QUIT("Test Message"), b"QUIT :Test Message\r\n"), (JOIN("#test"), b"JOIN #test\r\n"), (JOIN("#test", "secret"), b"JOIN #test secret\r\n"), (PART("#test"), b"PART #test\r\n"), (PRIVMSG("test", "Hello"), b"PRIVMSG test Hello\r\n"), (PRIVMSG("test", "Hello World"), b"PRIVMSG test :Hello World\r\n"), (NOTICE("test", "Hello"), b"NOTICE test Hello\r\n"), (NOTICE("test", "Hello World"), b"NOTICE test :Hello World\r\n"), (KICK("#test", "test"), b"KICK #test test :\r\n"), (KICK("#test", "test", "Bye"), b"KICK #test test Bye\r\n"), (KICK("#test", "test", "Good Bye!"), b"KICK #test test :Good Bye!\r\n"), (TOPIC("#test", "Hello World!"), b"TOPIC #test :Hello World!\r\n"), (MODE("+i"), b"MODE +i\r\n"), (MODE("#test", "+o", "test"), b"MODE #test +o test\r\n"), (INVITE("test", "#test"), b"INVITE test #test\r\n"), (NAMES(), b"NAMES\r\n"), (NAMES("#test"), b"NAMES #test\r\n"), (AWAY("I am away."), b"AWAY :I am away.\r\n"), (WHOIS("somenick"), b"WHOIS :somenick\r\n"), ]) def test_commands(event, data): message = event.args[0] return bytes(message) == data @pytest.mark.parametrize("data,event", [ ( b":localhost NOTICE * :*** Looking up your hostname...\r\n", Event.create( "notice", (u("localhost"), None, None), u("*"), u("*** Looking up your hostname..."), ) ), ]) def test_responses(app, data, event): app.reset() app.fire(read(data)) while len(app): app.flush() e = app.events[-1] assert event.name == e.name assert event.args == e.args assert event.kwargs == e.kwargs @pytest.mark.parametrize('inp,out', [ ('hi \x02bold\x02 \x1ditalic\x1d \x1funderline\x1f \x1estrikethrough\x1e', 'hi \x02bold\x02 \x1b[03mitalic\x1b[23m \x1b[04munderline\x1b[24m \x1b[09mstrikethrough\x1b[29m'), ('\x0300white\x03 \x0301black\x03 \x0302blue\x03 \x0303green\x03 \x0304red\x03 ', '\x1b[37mwhite\x1b[39;49m \x1b[30mblack\x1b[39;49m \x1b[34mblue\x1b[39;49m \x1b[32mgreen\x1b[39;49m \x1b[31mred\x1b[39;49m '), ('\x0305brown\x03 \x0306magenta\x03 \x0307orange\x03 \x0308yellow\x03 ', '\x1b[36mbrown\x1b[39;49m \x1b[35mmagenta\x1b[39;49m \x1b[33morange\x1b[39;49m \x1b[93myellow\x1b[39;49m '), ('\x0309lightgreen\x03 \x0310cyan\x03 \x0311lightcyan\x03 \x0312lightblue\x03 ', '\x1b[92mlightgreen\x1b[39;49m \x1b[36mcyan\x1b[39;49m \x1b[96mlightcyan\x1b[39;49m \x1b[94mlightblue\x1b[39;49m '), ('\x0313pink\x03 \x0314grey\x03 \x0315lightgrey\x03', '\x1b[95mpink\x1b[39;49m \x1b[90mgrey\x1b[39;49m \x1b[37mlightgrey\x1b[39;49m'), ('\x0300white\x03 \x0301,01black\x03 \x0301,02blue\x03 \x0301,03green\x03 \x0301,04red\x03 ', '\x1b[37mwhite\x1b[39;49m \x1b[30;40mblack\x1b[39;49m \x1b[30;44mblue\x1b[39;49m \x1b[30;42mgreen\x1b[39;49m \x1b[30;41mred\x1b[39;49m '), ('\x0f', '\x1b[m'), ('\x0302blue', '\x1b[34mblue\x1b[m'), ]) def test_ansi_color(inp, out): assert irc_color_to_ansi(inp) == out
33.092593
236
0.611267
793ea103f6ede73dc586316a863d7fffd5fc6dff
134
py
Python
src/browserist/browser/scroll/to_top_of_page.py
jakob-bagterp/browserist
76bd916dd217b7da3759fd6ec3374191002dc091
[ "Apache-2.0" ]
2
2022-02-20T10:03:19.000Z
2022-03-22T11:17:10.000Z
src/browserist/browser/scroll/to_top_of_page.py
jakob-bagterp/browserist
76bd916dd217b7da3759fd6ec3374191002dc091
[ "Apache-2.0" ]
null
null
null
src/browserist/browser/scroll/to_top_of_page.py
jakob-bagterp/browserist
76bd916dd217b7da3759fd6ec3374191002dc091
[ "Apache-2.0" ]
null
null
null
from .to_position import scroll_to_position def scroll_to_top_of_page(driver: object) -> None: scroll_to_position(driver, 0, 0)
22.333333
50
0.783582
793ea113d6d4fd41b35d10c3564067d48b713dd1
1,891
py
Python
benchmark/startPyquil2707.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil2707.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startPyquil2707.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=4 # total number=43 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += CNOT(0,3) # number=10 prog += H(3) # number=40 prog += CZ(0,3) # number=41 prog += H(3) # number=42 prog += CNOT(0,3) # number=33 prog += X(3) # number=34 prog += CNOT(0,3) # number=35 prog += CNOT(0,3) # number=25 prog += CNOT(0,3) # number=12 prog += H(2) # number=30 prog += CZ(0,2) # number=31 prog += H(2) # number=32 prog += X(2) # number=21 prog += H(2) # number=36 prog += CZ(0,2) # number=37 prog += H(2) # number=38 prog += H(1) # number=2 prog += H(2) # number=3 prog += H(3) # number=4 prog += H(0) # number=5 prog += H(3) # number=16 prog += CZ(1,3) # number=17 prog += H(3) # number=18 prog += H(1) # number=6 prog += H(2) # number=7 prog += H(3) # number=8 prog += H(0) # number=9 prog += H(2) # number=39 prog += H(0) # number=26 prog += CZ(3,0) # number=27 prog += H(0) # number=28 prog += CNOT(3,0) # number=14 prog += Y(2) # number=29 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('4q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil2707.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
25.213333
64
0.56055
793ea1f806e761fd116844a9b2e81f1c386aa10b
4,700
py
Python
kgcnn/literature/GATv2.py
thegodone/gcnn_keras
2009b9ab9a07c1a369849478812fcc2cb9799945
[ "MIT" ]
null
null
null
kgcnn/literature/GATv2.py
thegodone/gcnn_keras
2009b9ab9a07c1a369849478812fcc2cb9799945
[ "MIT" ]
null
null
null
kgcnn/literature/GATv2.py
thegodone/gcnn_keras
2009b9ab9a07c1a369849478812fcc2cb9799945
[ "MIT" ]
null
null
null
import tensorflow as tf import tensorflow.keras as ks from kgcnn.layers.casting import ChangeTensorType from kgcnn.layers.conv.attention import AttentionHeadGATV2 from kgcnn.layers.keras import Concatenate, Dense, Average, Activation from kgcnn.layers.mlp import MLP from kgcnn.layers.pool.pooling import PoolingNodes from kgcnn.utils.models import generate_embedding, update_model_kwargs # Graph Attention Networks by Veličković et al. (2018) # https://arxiv.org/abs/1710.10903 # Improved by # How Attentive are Graph Attention Networks? # by Brody et al. (2021) model_default = {'name': "GATv2", 'inputs': [{'shape': (None,), 'name': "node_attributes", 'dtype': 'float32', 'ragged': True}, {'shape': (None,), 'name': "edge_attributes", 'dtype': 'float32', 'ragged': True}, {'shape': (None, 2), 'name': "edge_indices", 'dtype': 'int64', 'ragged': True}], 'input_embedding': {"node": {"input_dim": 95, "output_dim": 64}, "edge": {"input_dim": 5, "output_dim": 64}}, 'output_embedding': 'graph', 'output_mlp': {"use_bias": [True, True, False], "units": [25, 10, 1], "activation": ['relu', 'relu', 'sigmoid']}, 'attention_args': {"units": 32, "use_final_activation": False, "use_edge_features": True, "has_self_loops": True, "activation": "kgcnn>leaky_relu", "use_bias": True}, 'pooling_nodes_args': {'pooling_method': 'mean'}, 'depth': 3, 'attention_heads_num': 5, 'attention_heads_concat': False, 'verbose': 1 } @update_model_kwargs(model_default) def make_model(inputs=None, input_embedding=None, output_embedding=None, output_mlp=None, attention_args=None, pooling_nodes_args=None, depth=None, attention_heads_num=None, attention_heads_concat=None, **kwargs): """Make GATv2 graph network via functional API. Default parameters can be found in :obj:`model_default`. Args: inputs (list): List of dictionaries unpacked in :obj:`tf.keras.layers.Input`. Order must match model definition. input_embedding (dict): Dictionary of embedding arguments for nodes etc. unpacked in `Embedding` layers. output_embedding (str): Main embedding task for graph network. Either "node", ("edge") or "graph". output_mlp (dict): Dictionary of layer arguments unpacked in the final classification `MLP` layer block. Defines number of model outputs and activation. attention_args (dict): Dictionary of layer arguments unpacked in `AttentionHeadGATV2` layer. pooling_nodes_args (dict): Dictionary of layer arguments unpacked in `PoolingNodes` layer. depth (int): Number of graph embedding units or depth of the network. attention_heads_num (int): Number of attention heads to use. attention_heads_concat (bool): Whether to concat attention heads. Otherwise average heads. Returns: tf.keras.models.Model """ # Make input node_input = ks.layers.Input(**inputs[0]) edge_input = ks.layers.Input(**inputs[1]) edge_index_input = ks.layers.Input(**inputs[2]) # Embedding, if no feature dimension n = generate_embedding(node_input, inputs[0]['shape'], input_embedding['node']) ed = generate_embedding(edge_input, inputs[1]['shape'], input_embedding['edge']) edi = edge_index_input # Model nk = Dense(units=attention_args["units"], activation="linear")(n) for i in range(0, depth): heads = [AttentionHeadGATV2(**attention_args)([nk, ed, edi]) for _ in range(attention_heads_num)] if attention_heads_concat: nk = Concatenate(axis=-1)(heads) else: nk = Average()(heads) nk = Activation(activation=attention_args["activation"])(nk) n = nk # Output embedding choice if output_embedding == 'graph': out = PoolingNodes(**pooling_nodes_args)(n) out = MLP(**output_mlp)(out) main_output = ks.layers.Flatten()(out) # will be dense elif output_embedding == 'node': out = MLP(**output_mlp)(n) main_output = ChangeTensorType(input_tensor_type="ragged", output_tensor_type="tensor")(out) else: raise ValueError("Unsupported graph embedding for `GATv2`") # Define model output model = tf.keras.models.Model(inputs=[node_input, edge_input, edge_index_input], outputs=main_output) return model
47.959184
120
0.635532
793ea2cbdc428bd05e80cd8878ca62180763c3b3
1,676
py
Python
synergy/mx/tree_details.py
hwknsj/scheduler
6740331360f49083c208085fb5a60ce80ebf418b
[ "BSD-3-Clause" ]
null
null
null
synergy/mx/tree_details.py
hwknsj/scheduler
6740331360f49083c208085fb5a60ce80ebf418b
[ "BSD-3-Clause" ]
null
null
null
synergy/mx/tree_details.py
hwknsj/scheduler
6740331360f49083c208085fb5a60ce80ebf418b
[ "BSD-3-Clause" ]
null
null
null
__author__ = 'Bohdan Mushkevych' from werkzeug.utils import cached_property from synergy.mx.base_request_handler import BaseRequestHandler from synergy.mx.rest_model_factory import create_rest_timetable_tree, create_rest_managed_scheduler_entry class TreeDetails(BaseRequestHandler): def __init__(self, request, **values): super(TreeDetails, self).__init__(request, **values) def _get_tree_details(self, tree_name): tree_obj = self.scheduler.timetable.trees[tree_name] rest_tree = create_rest_timetable_tree(self.scheduler.timetable, tree_obj) for process_name in tree_obj.process_hierarchy: thread_handler = self.scheduler.managed_handlers[process_name] rest_process = create_rest_managed_scheduler_entry(thread_handler, self.scheduler.timetable, self.scheduler.gc) rest_tree.processes[process_name] = rest_process.document return rest_tree @cached_property def tree_details(self): tree_name = self.request.args.get('tree_name') if tree_name: return self._get_tree_details(tree_name).document else: return dict() # @cached_property def mx_page_trees(self, mx_page): """ return trees assigned to given MX Page """ resp = dict() for tree_name, tree in self.scheduler.timetable.trees.items(): if tree.mx_page == mx_page: rest_tree = self._get_tree_details(tree_name) resp[tree.tree_name] = rest_tree.document return resp
40.878049
105
0.655131
793ea2d497a8995a92e9bde98facf0a6c8112edd
4,257
py
Python
phaino/models/gaussian.py
vinicius-pirees/phaino
4aa720505fef55b416149df664c4a8787e1491e5
[ "MIT" ]
null
null
null
phaino/models/gaussian.py
vinicius-pirees/phaino
4aa720505fef55b416149df664c4a8787e1491e5
[ "MIT" ]
4
2020-09-26T01:13:19.000Z
2022-02-10T01:50:11.000Z
phaino/models/gaussian.py
vinicius-pirees/phaino
4aa720505fef55b416149df664c4a8787e1491e5
[ "MIT" ]
null
null
null
import os import numpy as np import scipy from numpy import inf from phaino.utils.spatio_temporal_gradient_features import process_frames from phaino.utils.commons import frame_to_gray, reduce_frame import pickle from datetime import datetime from phaino.config.config import PhainoConfiguration config = PhainoConfiguration() phaino_config = config.get_config() MODELS_DIR = phaino_config['models']['directory'] MODEL_DIR = os.path.join(os.path.join(MODELS_DIR, 'gaussian')) def measures(X): means = X.mean(axis=0) variances = np.mean((X - means) ** 2, axis=0 ) stds = np.sqrt(variances) return means, variances, stds def init_model_dir(model_dir): os.makedirs(model_dir, exist_ok=True) class Gaussian: def __init__(self): self.means = None self.variances = None self.stds = None self.model_dir = MODEL_DIR init_model_dir(MODEL_DIR) def update_model(self, X): self.means, self.variances, self.stds = measures(X) def get_measures(self): return self.means, self.variances, self.stds def evaluate(self, x): calc_gaussian = lambda x, mu, sigma: (1.0 / (sigma * np.sqrt(2 * np.pi))) * np.exp( -(x - mu)**2 / (2 * sigma**2) ) gaussian = calc_gaussian(x, self.means, self.stds) #return np.sum(np.log(gaussian)) # Test approach result = np.log(gaussian) result[result == -inf] = -10000000 result[result == inf] = 10000000 result = np.nan_to_num(result) return np.sum(result) def gaussian_model_frame(self, frame): frame = frame_to_gray(frame) reduced_frame = reduce_frame(frame) return reduced_frame def input_frames_transform(self, train_frames): input_frames = [] for frame in range(0,train_frames.shape[0]): input_frames.append(gaussian_model_frame(train_frames[frame])) return np.array(input_frames) def frame_predictions(self, test_video, pred_list, clip_size=5, threshold=0): frame_predicitions_dict = {} video_len = test_video.shape[0] eval_index = 0 cnt = 1 for frame_num in range(0,video_len): pred = pred_list[eval_index] if pred < threshold: detection = 1 else: detection = 0 frame_predicitions_dict[frame_num] = detection if cnt == clip_size: eval_index += 1 cnt = 0 cnt += 1 return frame_predicitions_dict def frame_predictions_show(self, test_video, frame_predictions_dict): pass def get_training_set(self, input_frames): return self.process_frames(input_frames) def use_last_model(self, path): model = self.load_model(path) self.means = model['means'] self.variances = model['variances'] self.stds = model['stds'] def fit(self, training_set): self.update_model(training_set) self.save_model(self.means, self.variances, self.stds) def get_last_model_path(self): model_list = os.listdir(self.model_dir) if len(model_list) == 0: print('No model yet') else: model_list.sort() last_model = model_list[-1] return os.path.join(self.model_dir,last_model) def new_model_path(self, name): return os.path.join(self.model_dir, name + '_' + datetime.now().strftime("%Y%m%d_%H%M%S")) def save_model(self, means, variances, stds): with open(self.new_model_path('gaussian'), 'wb') as handle: pickle.dump({'means': means, 'variances': variances, 'stds': stds}, handle, protocol=pickle.HIGHEST_PROTOCOL) def load_last_model(self): path = self.get_last_model_path() return self.load_model(path) def load_model(self, path): with open(path, 'rb') as handle: model = pickle.load(handle) self.means = model['means'] self.variances = model['variances'] self.stds = model['stds']
29.5625
123
0.606765
793ea35449988c46c2ba3832d970f1d6491e4913
1,274
py
Python
src/boost_histogram/_internal/traits.py
kgizdov/boost-histogram
a456b89c703a2e69b32ca7de23448a133d5c59a3
[ "BSD-3-Clause" ]
null
null
null
src/boost_histogram/_internal/traits.py
kgizdov/boost-histogram
a456b89c703a2e69b32ca7de23448a133d5c59a3
[ "BSD-3-Clause" ]
null
null
null
src/boost_histogram/_internal/traits.py
kgizdov/boost-histogram
a456b89c703a2e69b32ca7de23448a133d5c59a3
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # This is basically a dataclass from Python 3.7, with frozen=True from typing import Any _traits = ( "underflow", "overflow", "circular", "growth", "continuous", "ordered", ) # This can be converted to a immutable dataclass once Python < 3.7 is dropped. class Traits(object): __slots__ = _traits def __init__( self, underflow=False, overflow=False, circular=False, growth=False, continuous=False, ordered=False, ): # type: (bool, bool, bool, bool, bool, bool) -> None for name in _traits: setattr(self, name, locals()[name]) def __eq__(self, other): # type: (Any) -> bool return all(getattr(self, name) == getattr(other, name) for name in _traits) def __ne__(self, other): # type: (Any) -> bool return not self == other @property def discrete(self): # type: () -> bool "True if axis is not continuous" return not self.continuous # type: ignore def __repr__(self): # type: () -> str args = ("{}={}".format(name, getattr(self, name)) for name in _traits) return "{}({})".format(self.__class__.__name__, ", ".join(args))
24.037736
83
0.567504
793ea36c6eec604fe884e406cff74048c297eee7
1,092
py
Python
tests/tests_geomstats/test_errors.py
YannCabanes/geomstats
ce3f4bab6cd59c2f071371a46e336086771d0493
[ "MIT" ]
10
2018-01-28T17:16:44.000Z
2022-02-27T02:42:41.000Z
tests/tests_geomstats/test_errors.py
YannCabanes/geomstats
ce3f4bab6cd59c2f071371a46e336086771d0493
[ "MIT" ]
67
2018-01-05T17:15:32.000Z
2018-05-11T18:50:30.000Z
tests/tests_geomstats/test_errors.py
YannCabanes/geomstats
ce3f4bab6cd59c2f071371a46e336086771d0493
[ "MIT" ]
3
2021-11-12T23:57:46.000Z
2021-12-04T10:05:42.000Z
"""Unit tests for errors.""" import pytest import geomstats.backend as gs import geomstats.errors import geomstats.tests from geomstats.geometry.euclidean import Euclidean from geomstats.geometry.spd_matrices import SPDMatrices class TestBackends(geomstats.tests.TestCase): def test_check_belongs(self): euclidean = Euclidean(5) point = gs.array([1, 2]) with pytest.raises(RuntimeError): geomstats.errors.check_belongs(point, euclidean) @staticmethod def test_check_belongs_with_tol(): spd = SPDMatrices(5) point = spd.random_point() geomstats.errors.check_belongs(point, spd) def test_check_integer(self): a = -2 with pytest.raises(ValueError): geomstats.errors.check_integer(a, "a") def test_check_parameter_accepted_values(self): param = "lefttt" accepted_values = ["left", "right"] with pytest.raises(ValueError): geomstats.errors.check_parameter_accepted_values( param, "left_or_right", accepted_values )
27.3
61
0.675824
793ea3e9afbe9e94040e74850dbcb754760637f7
15,610
py
Python
motifx/motifx.py
EthanVn/MotifX
4258ac72823bdc335f4f3d01fd03c8dc495e14ec
[ "MIT" ]
1
2021-05-04T17:43:47.000Z
2021-05-04T17:43:47.000Z
motifx/motifx.py
EthanVn/MotifX
4258ac72823bdc335f4f3d01fd03c8dc495e14ec
[ "MIT" ]
null
null
null
motifx/motifx.py
EthanVn/MotifX
4258ac72823bdc335f4f3d01fd03c8dc495e14ec
[ "MIT" ]
null
null
null
from scipy.sparse import csr_matrix, csc_matrix, lil_matrix from .cache import Cache import numpy as np class MotifX(object): def __init__(self, matrix, reformat=True, dtype=np.int32): self.cache = Cache(matrix, reformat, dtype) def M1(self) -> (csr_matrix, dict): UT_csr: csr_matrix = self.cache.UT_csr U_U_csr: csr_matrix = self.cache.U_U_csr # C = (U * U) .* U'; C: csr_matrix = U_U_csr.multiply(UT_csr) # W = C + C'; return C + C.transpose() def M2(self) -> csr_matrix: B_csr: csr_matrix = self.cache.B_csr UT_csr: csr_matrix = self.cache.UT_csr B_U_csr: csr_matrix = self.cache.B_U_csr U_B_csr: csr_matrix = self.cache.U_B_csr U_U_csr: csr_matrix = self.cache.U_U_csr # C = (B * U) .* U' + (U * B) .* U' + (U * U) .* B; C: csr_matrix = B_U_csr.multiply(UT_csr) + U_B_csr.multiply(UT_csr) + U_U_csr.multiply(B_csr) # W = C + C'; return C + C.transpose() def M3(self) -> csr_matrix: B_csr: csr_matrix = self.cache.B_csr U_csr: csr_matrix = self.cache.U_csr B_B_csr: csr_matrix = self.cache.B_B_csr B_U_csr: csr_matrix = self.cache.B_U_csr U_B_csr: csr_matrix = self.cache.U_B_csr # C = (B * B) .* U + (B * U) .* B + (U * B) .* B; C: csr_matrix = B_B_csr.multiply(U_csr) + B_U_csr.multiply(B_csr) + U_B_csr.multiply(B_csr) # W = C+ C'; return C + C.transpose() def M4(self) -> csr_matrix: B_csr: csr_matrix = self.cache.B_csr B_B_csr: csr_matrix = self.cache.B_B_csr # W = (B * B) .* B; return B_B_csr.multiply(B_csr) def M5(self) -> csr_matrix: U_csr: csr_matrix = self.cache.U_csr U_U_csr: csr_matrix = self.cache.U_U_csr UT_U_csr: csr_matrix = self.cache.UT_U_csr U_UT_csr: csr_matrix = self.cache.U_UT_csr # T1 = (U * U ) .* U; T1: csr_matrix = U_U_csr.multiply(U_csr) # T2 = (U' * U ) .* U; T2: csr_matrix = UT_U_csr.multiply(U_csr) # T3 = (U * U') .* U; T3: csr_matrix = U_UT_csr.multiply(U_csr) # C = T1 + T2 + T3; C: csr_matrix = T1 + T2 + T3 # W = C + C'; return C + C.transpose() def M6(self) -> csr_matrix: B_csr: csr_matrix = self.cache.B_csr U_csr: csr_matrix = self.cache.U_csr U_B_csr: csr_matrix = self.cache.U_B_csr UT_U_csr: csr_matrix = self.cache.UT_U_csr # C1 = (U * B) .* U; C1: csr_matrix = U_B_csr.multiply(U_csr) # C1 = C1 + C1'; C1: csr_matrix = C1 + C1.transpose() # C2 = (U' * U) .* B; C2 = UT_U_csr.multiply(B_csr) # W = C1 + C2; return C1 + C2 def M7(self) -> csr_matrix: B_csr: csr_matrix = self.cache.B_csr UT_csr: csr_matrix = self.cache.UT_csr UT_B_csr: csr_matrix = self.cache.UT_B_csr U_UT_csr: csr_matrix = self.cache.U_UT_csr # C1 = (U' * B) .* U'; C1: csr_matrix = UT_B_csr.multiply(UT_csr) # C1 = C1 + C1'; C1 = C1 + C1.transpose() # C2 = (U * U') .* B; C2: csr_matrix = U_UT_csr.multiply(B_csr) # W = C1 + C2; return C1 + C2 def M8(self) -> csr_matrix: W_lst = {} dtype = self.cache.dtype shape = self.cache.shape A_dict: dict = self.cache.A_dict U_row_find: list = self.cache.U_row_find # W = zeros(size(G)); W: lil_matrix = lil_matrix(shape, dtype=dtype) # N = size(G, 1); # for i = 1:N for i in range(shape[0]): # J = find(U(i, :)); J = U_row_find[i][0] # for j1 = 1:length(J) for j1 in range(U_row_find[i][1]): # for j2 = (j1+1):length(J) for j2 in range(j1 + 1, U_row_find[i][1]): # k1 = J(j1); k1 = J[j1] # k2 = J(j2); k2 = J[j2] # if A(k1, k2) == 0 & & A(k2, k1) == 0 if not A_dict.get((k1, k2)) and not A_dict.get((k2, k1)): # W(i, k1) = W(i, k1) + 1; W_lst[(i, k1)] = W_lst.get((i, k1), 0) + 1 # W(i, k2) = W(i, k2) + 1; W_lst[(i, k2)] = W_lst.get((i, k2), 0) + 1 # W(k1, k2) = W(k1, k2) + 1; W_lst[(k1, k2)] = W_lst.get((k1, k2), 0) + 1 row, col, data = [], [], [] for (i, j), x in W_lst.items(): row.append(i) col.append(j) data.append(x) W._set_arrayXarray(np.array(row), np.array(col), np.array(data, dtype=dtype)) # W = sparse(W + W'); return W + W.transpose() def M9(self) -> csr_matrix: W_lst = {} dtype = self.cache.dtype shape = self.cache.shape A_dict: dict = self.cache.A_dict U_row_find: list = self.cache.U_row_find U_col_find: list = self.cache.U_col_find # W = zeros(size(G)); W: lil_matrix = lil_matrix(shape, dtype=dtype) # N = size(G, 1); # for i = 1:N for i in range(shape[0]): # J1 = find(U(i, :)); J1 = U_row_find[i][0] # J2 = find(U(:, i)); J2 = U_col_find[i][0] # for j1 = 1:length(J1) for j1 in range(U_row_find[i][1]): # for j2 = 1:length(J2) for j2 in range(U_col_find[i][1]): # k1 = J1(j1); k1 = J1[j1] # k2 = J2(j2); k2 = J2[j2] # if A(k1, k2) == 0 & & A(k2, k1) == 0 if not A_dict.get((k1, k2)) and not A_dict.get((k2, k1)): # W(i, k1) = W(i, k1) + 1; W_lst[(i, k1)] = W_lst.get((i, k1), 0) + 1 # W(i, k2) = W(i, k2) + 1; W_lst[(i, k2)] = W_lst.get((i, k2), 0) + 1 # W(k1, k2) = W(k1, k2) + 1; W_lst[(k1, k2)] = W_lst.get((k1, k2), 0) + 1 row, col, data = [], [], [] for (i, j), x in W_lst.items(): row.append(i) col.append(j) data.append(x) W._set_arrayXarray(np.array(row), np.array(col), np.array(data, dtype=dtype)) # W = sparse(W + W'); return W + W.transpose() def M10(self) -> csr_matrix: W_lst = {} dtype = self.cache.dtype shape = self.cache.shape A_dict: dict = self.cache.A_dict U_row_find_AT: list = self.cache.U_row_find_AT # W = zeros(size(G)); W: lil_matrix = lil_matrix(shape, dtype=dtype) # N = size(G, 1); # for i = 1:N for i in range(shape[0]): # J = find(U(i, :)); J = U_row_find_AT[i][0] # for j1 = 1:length(J) for j1 in range(U_row_find_AT[i][1]): # for j2 = (j1+1):length(J) for j2 in range(j1 + 1, U_row_find_AT[i][1]): # k1 = J(j1); k1 = J[j1] # k2 = J(j2); k2 = J[j2] # if A(k1, k2) == 0 && A(k2, k1) == 0 if not A_dict.get((k1, k2)) and not A_dict.get((k2, k1)): # W(i, k1) = W(i, k1) + 1; W_lst[(i, k1)] = W_lst.get((i, k1), 0) + 1 # W(i, k2) = W(i, k2) + 1; W_lst[(i, k2)] = W_lst.get((i, k2), 0) + 1 # W(k1, k2) = W(k1, k2) + 1; W_lst[(k1, k2)] = W_lst.get((k1, k2), 0) + 1 row, col, data = [], [], [] for (i, j), x in W_lst.items(): row.append(i) col.append(j) data.append(x) W._set_arrayXarray(np.array(row), np.array(col), np.array(data, dtype=dtype)) # W = sparse(W + W'); return W + W.transpose() def M11(self) -> csr_matrix: W_lst = {} dtype = self.cache.dtype shape = self.cache.shape A_dict: dict = self.cache.A_dict B_row_find: list = self.cache.B_row_find U_row_find: list = self.cache.U_row_find # W = zeros(size(G)); W: lil_matrix = lil_matrix(shape, dtype=dtype) # N = size(G, 1); # for i = 1:N for i in range(shape[0]): # J1 = find(B(i, :)); J1 = B_row_find[i][0] # J2 = find(U(i, :)); J2 = U_row_find[i][0] # for j1 = 1:length(J1) for j1 in range(B_row_find[i][1]): # for j2 = 1:length(J2) for j2 in range(U_row_find[i][1]): # k1 = J1(j1); k1 = J1[j1] # k2 = J2(j2); k2 = J2[j2] # if A(k1, k2) == 0 && A(k2, k1) == 0 if not A_dict.get((k1, k2)) and not A_dict.get((k2, k1)): # W(i, k1) = W(i, k1) + 1; W_lst[(i, k1)] = W_lst.get((i, k1), 0) + 1 # W(i, k2) = W(i, k2) + 1; W_lst[(i, k2)] = W_lst.get((i, k2), 0) + 1 # W(k1, k2) = W(k1, k2) + 1; W_lst[(k1, k2)] = W_lst.get((k1, k2), 0) + 1 row, col, data = [], [], [] for (i, j), x in W_lst.items(): row.append(i) col.append(j) data.append(x) W._set_arrayXarray(np.array(row), np.array(col), np.array(data, dtype=dtype)) # W = sparse(W + W'); return W + W.transpose() def M12(self) -> csr_matrix: W_lst = {} dtype = self.cache.dtype shape = self.cache.shape A_dict: dict = self.cache.A_dict B_row_find: list = self.cache.B_row_find U_row_find_AT: list = self.cache.U_row_find_AT # W = zeros(size(G)); W: lil_matrix = lil_matrix(shape, dtype=dtype) # N = size(G, 1); # for i = 1:N for i in range(shape[0]): # J1 = find(B(i, :)); J1 = B_row_find[i][0] # J2 = find(U(i, :)); J2 = U_row_find_AT[i][0] # for j1 = 1:length(J1) for j1 in range(B_row_find[i][1]): # for j2 = 1:length(J2) for j2 in range(U_row_find_AT[i][1]): # k1 = J1(j1); k1 = J1[j1] # k2 = J2(j2); k2 = J2[j2] # if A(k1, k2) == 0 && A(k2, k1) == 0 if not A_dict.get((k1, k2)) and not A_dict.get((k2, k1)): # W(i, k1) = W(i, k1) + 1; W_lst[(i, k1)] = W_lst.get((i, k1), 0) + 1 # W(i, k2) = W(i, k2) + 1; W_lst[(i, k2)] = W_lst.get((i, k2), 0) + 1 # W(k1, k2) = W(k1, k2) + 1; W_lst[(k1, k2)] = W_lst.get((k1, k2), 0) + 1 row, col, data = [], [], [] for (i, j), x in W_lst.items(): row.append(i) col.append(j) data.append(x) W._set_arrayXarray(np.array(row), np.array(col), np.array(data, dtype=dtype)) # W = sparse(W + W'); return W + W.transpose() def M13(self) -> csr_matrix: W_lst = {} dtype = self.cache.dtype shape = self.cache.shape A_dict: dict = self.cache.A_dict B_row_find: list = self.cache.B_row_find # W = zeros(size(G)); W: lil_matrix = lil_matrix(shape, dtype=dtype) # N = size(G, 1); # for i = 1:N for i in range(shape[0]): # J = find(B(i, :)); J = B_row_find[i][0] # for j1 = 1:length(J) for j1 in range(B_row_find[i][1]): # for j2 = (j1+1):length(J) for j2 in range(j1 + 1, B_row_find[i][1]): # k1 = J(j1); k1 = J[j1] # k2 = J(j2); k2 = J[j2] # if A(k1, k2) == 0 && A(k2, k1) == 0 if not A_dict.get((k1, k2)) and not A_dict.get((k2, k1)): # W(i, k1) = W(i, k1) + 1; W_lst[(i, k1)] = W_lst.get((i, k1), 0) + 1 # W(i, k2) = W(i, k2) + 1; W_lst[(i, k2)] = W_lst.get((i, k2), 0) + 1 # W(k1, k2) = W(k1, k2) + 1; W_lst[(k1, k2)] = W_lst.get((k1, k2), 0) + 1 row, col, data = [], [], [] for (i, j), x in W_lst.items(): row.append(i) col.append(j) data.append(x) W._set_arrayXarray(np.array(row), np.array(col), np.array(data, dtype=dtype)) # W = sparse(W + W'); return W + W.transpose() def Bifan(self) -> csr_matrix: W_lst = {} dtype = self.cache.dtype shape = self.cache.shape A_dict: dict = self.cache.A_dict U_row_find: list = self.cache.U_row_find # W = zeros(size(G)); W: lil_matrix = lil_matrix(shape, dtype=dtype) # NA = ~A & ~A'; # [ai, aj] = find(triu(NA, 1)); NA_dict, ai, aj = {}, [], [] for i in range(0, shape[0]): for j in range(i + 1, shape[0]): if not A_dict.get((i, j)) and not A_dict.get((j, i)): NA_dict[(i, j)] = 1 NA_dict[(j, i)] = 1 ai.append(i) aj.append(j) # for ind = 1:length(ai) for ind in range(len(ai)): # x = ai(ind); x = ai[ind] # y = aj(ind); y = aj[ind] # xout = find(U(x,:)); xout = U_row_find[x][0] # yout = find(U(y,:)); yout = U_row_find[y][0] # common = intersect(xout, yout); common: list = np.intersect1d(xout, yout).tolist() # nc = length(common) nc = len(common) # for i = 1:nc for i in range(nc): # for j = (i+1):nc for j in range(i + 1, nc): # w = common(i); w = common[i] # v = common(j); v = common[j] # if NA(w, v) == 1 if NA_dict.get((w, v)): # W(x, y) = W(x, y) + 1; W_lst[(x, y)] = W_lst.get((x, y), 0) + 1 # W(x, w) = W(x, w) + 1; W_lst[(x, w)] = W_lst.get((x, w), 0) + 1 # W(x, v) = W(x, v) + 1; W_lst[(x, v)] = W_lst.get((x, v), 0) + 1 # W(y, w) = W(y, w) + 1; W_lst[(y, w)] = W_lst.get((y, w), 0) + 1 # W(y, v) = W(y, v) + 1; W_lst[(y, v)] = W_lst.get((y, v), 0) + 1 # W(w, v) = W(w, v) + 1; W_lst[(w, v)] = W_lst.get((w, v), 0) + 1 row, col, data = [], [], [] for (i, j), x in W_lst.items(): row.append(i) col.append(j) data.append(x) W._set_arrayXarray(np.array(row), np.array(col), np.array(data, dtype=dtype)) # W = sparse(W + W'); return W + W.transpose() def Edge(self) -> csc_matrix: return self.cache.G_csr.copy()
39.821429
101
0.422165
793ea4815e32580a920ae62b55656db101afb927
2,565
py
Python
graph_plots/Data/data.py
DanShai/kivy-graph
6537901d521247a13e186aaa8ecbaffdffdaf7ea
[ "MIT" ]
3
2018-11-28T13:35:35.000Z
2021-09-12T15:54:28.000Z
graph_plots/Data/data.py
DanShai/kivy-graph
6537901d521247a13e186aaa8ecbaffdffdaf7ea
[ "MIT" ]
null
null
null
graph_plots/Data/data.py
DanShai/kivy-graph
6537901d521247a13e186aaa8ecbaffdffdaf7ea
[ "MIT" ]
1
2021-05-03T18:48:01.000Z
2021-05-03T18:48:01.000Z
''' @author: dan ''' from __future__ import division import numpy as np from random import randint from copy import deepcopy from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.preprocessing import MinMaxScaler class Adata(object): def make2DDatas(self): datasets = [make_moons(n_samples=100, noise=0.1, random_state=13), make_circles(n_samples=100, noise=0.1, factor=0.5, random_state=123), make_classification(n_features=3, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1)] X, Y = datasets[0] # moons or discs scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) return {"X": X, "Y": Y} def make3DDatas(self): # rng = np.random.RandomState(2) # xx += 2 * rng.uniform(size=xx.shape) # ln = (xx,yy) # datasets = [make_moons(n_samples=300, noise=0.3, random_state=0), # make_circles(n_samples=300,noise=0.2, factor=0.5, random_state=1), # ln] datasets = [make_moons(n_samples=100, noise=0.1, random_state=123), make_circles(n_samples=100, noise=0.1, factor=0.5, random_state=123), make_classification(n_features=3, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1)] X, Y = datasets[2] # moons or discs scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) return {"X": X, "Y": Y} def make1DDatas(self): #X = np.random.normal(size=100) #XX=np.arange(0, 105, 1) #XX = np.random.randint(low=-50, high=50, size=1000) X = np.linspace(-10., 11., num=100) Y = (X - 2) * np.cos(2 * X) #YY = XX**2 + XX - 1 # Make sure that it X is 2D #N = 1000 #s = 10 #XX = s*np.random.rand(N) #XX = np.sort(XX) #YY = np.sin(XX) + 0.1*np.random.randn(N) X = X[:, np.newaxis] return {"X": X, "Y": Y} def makeHistData(self): a = np.random.randint(0, size=20, high=10) Y, X = self.np_frequecy(a) ldatas = zip(X, Y) return ldatas def np_frequecy(self, dras): al = np.array(dras) al = al.ravel() al = np.sort(al, axis=None) mx = max(al) hist_bins = np.histogram(al, bins=np.linspace( 0, mx+1, num=(mx+2), dtype=np.int)) return hist_bins
32.468354
126
0.560234
793ea489f21d95b34570aed36b75cb5cc33c7755
2,072
py
Python
b2validators/document.py
math-s/b2bit-validators
35beb903eaf26524485a0b7ec9efc73c5f103fc5
[ "MIT" ]
null
null
null
b2validators/document.py
math-s/b2bit-validators
35beb903eaf26524485a0b7ec9efc73c5f103fc5
[ "MIT" ]
null
null
null
b2validators/document.py
math-s/b2bit-validators
35beb903eaf26524485a0b7ec9efc73c5f103fc5
[ "MIT" ]
null
null
null
import re from b2validators.exceptions import ValidationError def validate_cnpj(value): cnpj = re.sub("[^0-9]", "", value) if len(cnpj) < 14: raise ValidationError("O CNPJ precisa ter 14 dígitos.") expected_cnpj = [int(digit) for digit in cnpj[:12] if digit.isdigit()] cnpj_test = [int(digit) for digit in cnpj if digit.isdigit()] weights = [5, 4, 3, 2, 9, 8, 7, 6, 5, 4, 3, 2] result = [] for idx, w in enumerate(weights): x = w*expected_cnpj[idx] result.append(x) resul_sum = sum(result) remainder = resul_sum % 11 if remainder < 2: expected_cnpj.append(0) else: expected_cnpj.append(11 - remainder) weights = [6] + weights result = [] for idx, w in enumerate(weights): x = w*expected_cnpj[idx] result.append(x) resul_sum = sum(result) remainder = resul_sum % 11 if remainder < 2: expected_cnpj.append(0) else: expected_cnpj.append(11 - remainder) if cnpj_test != expected_cnpj: raise ValidationError("CNPJ inválido") return value def validate_cpf(value): cpf = re.sub("[^0-9]", "", value) if len(cpf) != 11: raise ValidationError("O CPF deve ter 11 dígitos.") expected_cpf = [int(digit) for digit in cpf][:9] cpf_test = [int(digit) for digit in cpf] weights = [10, 9, 8, 7, 6, 5, 4, 3, 2] result = [] for idx, w in enumerate(weights): x = w*expected_cpf[idx] result.append(x) resul_sum = sum(result) remainder = resul_sum % 11 if remainder < 2: expected_cpf.append(0) else: expected_cpf.append(11 - remainder) weights = [11] + weights result = [] for idx, w in enumerate(weights): x = w*expected_cpf[idx] result.append(x) resul_sum = sum(result) remainder = resul_sum % 11 if remainder < 2: expected_cpf.append(0) else: expected_cpf.append(11 - remainder) if cpf_test != expected_cpf: raise ValidationError("CPF inválido.") return value
26.909091
74
0.601834
793ea49f27f6fc24701cf4cb928bea13ae0cab0e
9,568
py
Python
Alignment/APEEstimation/test/testApeestimator_cfg.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
null
null
null
Alignment/APEEstimation/test/testApeestimator_cfg.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
null
null
null
Alignment/APEEstimation/test/testApeestimator_cfg.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
null
null
null
import os import FWCore.ParameterSet.Config as cms ## ## Setup command line options ## import FWCore.ParameterSet.VarParsing as VarParsing import sys options = VarParsing.VarParsing ('standard') options.register('sample', 'wlnu', VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.string, "Input sample") options.register('isTest', True, VarParsing.VarParsing.multiplicity.singleton, VarParsing.VarParsing.varType.bool, "Test run") # get and parse the command line arguments if( hasattr(sys, "argv") ): for args in sys.argv : arg = args.split(',') for val in arg: val = val.split('=') if(len(val)==2): setattr(options,val[0], val[1]) print "Input sample: ", options.sample print "Test run: ", options.isTest ## ## Process definition ## process = cms.Process("ApeEstimator") ## ## Message Logger ## process.load("FWCore.MessageService.MessageLogger_cfi") process.MessageLogger.categories.append('SectorBuilder') process.MessageLogger.categories.append('ResidualErrorBinning') process.MessageLogger.categories.append('HitSelector') process.MessageLogger.categories.append('CalculateAPE') process.MessageLogger.categories.append('ApeEstimator') #process.MessageLogger.categories.append('TrackRefitter') process.MessageLogger.categories.append('AlignmentTrackSelector') process.MessageLogger.cerr.INFO.limit = 0 process.MessageLogger.cerr.default.limit = -1 # Do not use =0, else all error messages (except those listed below) are supressed process.MessageLogger.cerr.SectorBuilder = cms.untracked.PSet(limit = cms.untracked.int32(-1)) process.MessageLogger.cerr.HitSelector = cms.untracked.PSet(limit = cms.untracked.int32(-1)) process.MessageLogger.cerr.CalculateAPE = cms.untracked.PSet(limit = cms.untracked.int32(-1)) process.MessageLogger.cerr.ApeEstimator = cms.untracked.PSet(limit = cms.untracked.int32(-1)) process.MessageLogger.cerr.AlignmentTrackSelector = cms.untracked.PSet(limit = cms.untracked.int32(-1)) process.MessageLogger.cerr.FwkReport.reportEvery = 1000 ## really show only every 1000th ## ## Process options ## process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True), ) ## ## Input sample definition ## isData1 = isData2 = False isData = False isQcd = isWlnu = isZmumu = isZtautau = isZmumu10 = isZmumu20 = False isMc = False if options.sample == 'data1': isData1 = True isData = True elif options.sample == 'data2': isData2 = True isData = True elif options.sample == 'qcd': isQcd = True isMc = True elif options.sample == 'wlnu': isWlnu = True isMc = True elif options.sample == 'zmumu': isZmumu = True isMc = True elif options.sample == 'ztautau': isZtautau = True isMc = True elif options.sample == 'zmumu10': isZmumu10 = True isMc = True elif options.sample == 'zmumu20': isZmumu20 = True isMc = True else: print 'ERROR --- incorrect data sammple: ', options.sample exit(8888) ## ## Input Files ## if isData1: process.load("Alignment.APEEstimation.samples.Data_TkAlMuonIsolated_Run2011A_May10ReReco_ApeSkim_cff") elif isData2: process.load("Alignment.APEEstimationsamples.Data_TkAlMuonIsolated_Run2011A_PromptV4_ApeSkim_cff") elif isQcd: process.load("Alignment.APEEstimation.samples.Mc_TkAlMuonIsolated_Summer11_qcd_ApeSkim_cff") elif isWlnu: process.load("Alignment.APEEstimation.samples.Mc_WJetsToLNu_74XTest_ApeSkim_cff") elif isZmumu10: process.load("Alignment.APEEstimation.samples.Mc_TkAlMuonIsolated_Summer11_zmumu10_ApeSkim_cff") elif isZmumu20: process.load("Alignment.APEEstimation.samples.Mc_TkAlMuonIsolated_Summer11_zmumu20_ApeSkim_cff") ## ## Number of Events (should be after input file) ## process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) if options.isTest: process.maxEvents.input = 10001 ## ## Check run and event numbers for Dublicates --- only for real data ## #process.source.duplicateCheckMode = cms.untracked.string("noDuplicateCheck") #process.source.duplicateCheckMode = cms.untracked.string("checkEachFile") process.source.duplicateCheckMode = cms.untracked.string("checkEachRealDataFile") #process.source.duplicateCheckMode = cms.untracked.string("checkAllFilesOpened") # default value ## ## Whole Refitter Sequence ## process.load("Alignment.APEEstimation.TrackRefitter_38T_cff") process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_condDBv2_cff') from Configuration.AlCa.GlobalTag_condDBv2 import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, 'auto:run2_design', '') ##### To be used when running on Phys14MC with a CMSSW version > 72X #process.GlobalTag.toGet = cms.VPSet( # cms.PSet( # record = cms.string("BeamSpotObjectsRcd"), # tag = cms.string("Realistic8TeVCollisions_START50_V13_v1_mc"), # connect = cms.untracked.string("frontier://FrontierProd/CMS_CONDITIONS"), # ) #) print "Using global tag "+process.GlobalTag.globaltag._value ## ## New pixel templates ## process.GlobalTag.toGet = cms.VPSet( cms.PSet( record = cms.string("SiPixelTemplateDBObjectRcd"), tag = cms.string("SiPixelTemplateDBObject_38T_v3_mc"), connect = cms.untracked.string("frontier://FrontierProd/CMS_CONDITIONS"), ) ) ## ## Alignment and APE ## import CalibTracker.Configuration.Common.PoolDBESSource_cfi ## Choose Alignment (w/o touching APE) if isMc: process.myTrackerAlignment = CalibTracker.Configuration.Common.PoolDBESSource_cfi.poolDBESSource.clone( connect = 'frontier://FrontierProd/CMS_CONDITIONS', # or your sqlite file toGet = [ cms.PSet( record = cms.string('TrackerAlignmentRcd'), tag = cms.string('TrackerIdealGeometry210_mc') # 'TrackerAlignment_2009_v2_offline' ), ], ) process.es_prefer_trackerAlignment = cms.ESPrefer("PoolDBESSource","myTrackerAlignment") process.es_prefer_trackerAlignment = cms.ESPrefer("PoolDBESSource","myTrackerAlignment") if isData: # Recent geometry process.myTrackerAlignment = CalibTracker.Configuration.Common.PoolDBESSource_cfi.poolDBESSource.clone( connect = 'frontier://FrontierProd/CMS_CONDITIONS', toGet = [ cms.PSet( record = cms.string('TrackerAlignmentRcd'), tag = cms.string('TrackerAlignment_GR10_v6_offline'), ), ], ) process.es_prefer_trackerAlignment = cms.ESPrefer("PoolDBESSource","myTrackerAlignment") # Kinks and bows process.myTrackerAlignmentKinksAndBows = CalibTracker.Configuration.Common.PoolDBESSource_cfi.poolDBESSource.clone( connect = 'frontier://FrontierProd/CMS_CONDITIONS', toGet = [ cms.PSet( record = cms.string('TrackerSurfaceDeformationRcd'), tag = cms.string('TrackerSurfaceDeformations_v1_offline'), ), ], ) process.es_prefer_trackerAlignmentKinksAndBows = cms.ESPrefer("PoolDBESSource","myTrackerAlignmentKinksAndBows") ## APE (set to zero) process.myTrackerAlignmentErr = CalibTracker.Configuration.Common.PoolDBESSource_cfi.poolDBESSource.clone( connect = 'frontier://FrontierProd/CMS_CONDITIONS', toGet = [ cms.PSet( record = cms.string('TrackerAlignmentErrorExtendedRcd'), tag = cms.string('TrackerIdealGeometryErrorsExtended210_mc') ), ], ) process.es_prefer_trackerAlignmentErr = cms.ESPrefer("PoolDBESSource","myTrackerAlignmentErr") ## ## Trigger Selection ## process.load("Alignment.APEEstimation.TriggerSelection_cff") ## ## ApeEstimator ## from Alignment.APEEstimation.ApeEstimator_cff import * process.ApeEstimator1 = ApeEstimator.clone( #~ tjTkAssociationMapTag = "TrackRefitterHighPurityForApeEstimator", tjTkAssociationMapTag = "TrackRefitterForApeEstimator", maxTracksPerEvent = 0, applyTrackCuts = False, Sectors = RecentSectors, analyzerMode = False, calculateApe = True ) process.ApeEstimator1.HitSelector.width = [] process.ApeEstimator1.HitSelector.maxIndex = [] process.ApeEstimator1.HitSelector.widthProj = [] process.ApeEstimator1.HitSelector.widthDiff = [] process.ApeEstimator1.HitSelector.edgeStrips = [] process.ApeEstimator1.HitSelector.sOverN = [] process.ApeEstimator1.HitSelector.maxCharge = [] process.ApeEstimator1.HitSelector.chargeOnEdges = [] process.ApeEstimator1.HitSelector.probX = [] process.ApeEstimator1.HitSelector.phiSensX = [] process.ApeEstimator1.HitSelector.phiSensY = [] process.ApeEstimator1.HitSelector.errXHit = [] process.ApeEstimator1.HitSelector.chargePixel = [] process.ApeEstimator1.HitSelector.widthX = [] process.ApeEstimator1.HitSelector.widthY = [] process.ApeEstimator1.HitSelector.logClusterProbability = [] process.ApeEstimator1.HitSelector.isOnEdge = [] process.ApeEstimator1.HitSelector.qBin = [] process.ApeEstimator2 = process.ApeEstimator1.clone( Sectors = ValidationSectors, analyzerMode = True, calculateApe = False, ) process.ApeEstimator3 = process.ApeEstimator2.clone( zoomHists = False, ) ## ## Output File Configuration ## outputName = os.environ['CMSSW_BASE'] + '/src/Alignment/APEEstimation/hists/' if options.isTest: outputName = outputName + 'test_' outputName = outputName + options.sample + '.root' process.TFileService = cms.Service("TFileService", fileName = cms.string(outputName), closeFileFast = cms.untracked.bool(True) ) ## ## Path ## process.p = cms.Path( process.TriggerSelectionSequence* process.RefitterHighPuritySequence* (process.ApeEstimator1+ process.ApeEstimator2+ process.ApeEstimator3 ) )
30.56869
134
0.749373
793ea5500fe5a11ec6ba119f9343eda150fb0c14
1,048
py
Python
Line.py
TheoXiong7/chessboard-processing
cce2b03700881c07787b0def9a23e8606325939c
[ "MIT" ]
null
null
null
Line.py
TheoXiong7/chessboard-processing
cce2b03700881c07787b0def9a23e8606325939c
[ "MIT" ]
null
null
null
Line.py
TheoXiong7/chessboard-processing
cce2b03700881c07787b0def9a23e8606325939c
[ "MIT" ]
null
null
null
import numpy as np class Line: def __init__(self,x1,x2,y1,y2): ''' Creates a Line object ''' # Endpoints self.x1 = x1 self.x2 = x2 self.y1 = y1 self.y2 = y2 # Change in x and y self.dx = self.x2 - self.x1 self.dy = self.y2 - self.y1 # Orientation if abs(self.dx) > abs(self.dy): self.orientation = 'horizontal' else: self.orientation = 'vertical' def find_intersection(self,other): ''' Finds intersection of this line and other. One line must be horizontal and the other must be vertical ''' # Determinant for finding points of intersection x = ((self.x1*self.y2 - self.y1*self.x2)*(other.x1-other.x2) - (self.x1-self.x2)*(other.x1*other.y2 - other.y1*other.x2))/ ((self.x1-self.x2)*(other.y1-other.y2) - (self.y1-self.y2)*(other.x1-other.x2)) y = ((self.x1*self.y2 - self.y1*self.x2)*(other.y1-other.y2) - (self.y1-self.y2)*(other.x1*other.y2 - other.y1*other.x2))/ ((self.x1-self.x2)*(other.y1-other.y2) - (self.y1-self.y2)*(other.x1-other.x2)) x = int(x) y = int(y) return x,y
24.372093
204
0.640267
793ea67ca80fd354ec4d3482a5408825a4ed8031
5,383
py
Python
build/PureCloudPlatformClientV2/models/bu_async_schedule_run_response.py
cjohnson-ctl/platform-client-sdk-python
38ce53bb8012b66e8a43cc8bd6ff00cf6cc99100
[ "MIT" ]
10
2019-02-22T00:27:08.000Z
2021-09-12T23:23:44.000Z
libs/PureCloudPlatformClientV2/models/bu_async_schedule_run_response.py
rocketbot-cl/genesysCloud
dd9d9b5ebb90a82bab98c0d88b9585c22c91f333
[ "MIT" ]
5
2018-06-07T08:32:00.000Z
2021-07-28T17:37:26.000Z
libs/PureCloudPlatformClientV2/models/bu_async_schedule_run_response.py
rocketbot-cl/genesysCloud
dd9d9b5ebb90a82bab98c0d88b9585c22c91f333
[ "MIT" ]
6
2020-04-09T17:43:07.000Z
2022-02-17T08:48:05.000Z
# coding: utf-8 """ Copyright 2016 SmartBear Software Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ref: https://github.com/swagger-api/swagger-codegen """ from pprint import pformat from six import iteritems import re import json from ..utils import sanitize_for_serialization class BuAsyncScheduleRunResponse(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self): """ BuAsyncScheduleRunResponse - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'status': 'str', 'operation_id': 'str', 'result': 'BuScheduleRun' } self.attribute_map = { 'status': 'status', 'operation_id': 'operationId', 'result': 'result' } self._status = None self._operation_id = None self._result = None @property def status(self): """ Gets the status of this BuAsyncScheduleRunResponse. The status of the operation :return: The status of this BuAsyncScheduleRunResponse. :rtype: str """ return self._status @status.setter def status(self, status): """ Sets the status of this BuAsyncScheduleRunResponse. The status of the operation :param status: The status of this BuAsyncScheduleRunResponse. :type: str """ allowed_values = ["Processing", "Complete", "Canceled", "Error"] if status.lower() not in map(str.lower, allowed_values): # print("Invalid value for status -> " + status) self._status = "outdated_sdk_version" else: self._status = status @property def operation_id(self): """ Gets the operation_id of this BuAsyncScheduleRunResponse. The ID for the operation :return: The operation_id of this BuAsyncScheduleRunResponse. :rtype: str """ return self._operation_id @operation_id.setter def operation_id(self, operation_id): """ Sets the operation_id of this BuAsyncScheduleRunResponse. The ID for the operation :param operation_id: The operation_id of this BuAsyncScheduleRunResponse. :type: str """ self._operation_id = operation_id @property def result(self): """ Gets the result of this BuAsyncScheduleRunResponse. The result of the operation. Null unless status == Complete :return: The result of this BuAsyncScheduleRunResponse. :rtype: BuScheduleRun """ return self._result @result.setter def result(self, result): """ Sets the result of this BuAsyncScheduleRunResponse. The result of the operation. Null unless status == Complete :param result: The result of this BuAsyncScheduleRunResponse. :type: BuScheduleRun """ self._result = result def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_json(self): """ Returns the model as raw JSON """ return json.dumps(sanitize_for_serialization(self.to_dict())) def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
28.786096
81
0.582761
793ea69aff6bb07f73aff3e7089f7cc2a617fa16
15,148
py
Python
salt/modules/ciscoconfparse_mod.py
markgras/salt
d66cd3c935533c63870b83228b978ce43e0ef70d
[ "Apache-2.0" ]
null
null
null
salt/modules/ciscoconfparse_mod.py
markgras/salt
d66cd3c935533c63870b83228b978ce43e0ef70d
[ "Apache-2.0" ]
1
2017-07-10T21:44:39.000Z
2017-07-10T21:44:39.000Z
salt/modules/ciscoconfparse_mod.py
markgras/salt
d66cd3c935533c63870b83228b978ce43e0ef70d
[ "Apache-2.0" ]
null
null
null
""" Execution module for `ciscoconfparse <http://www.pennington.net/py/ciscoconfparse/index.html>`_ .. versionadded:: 2019.2.0 This module can be used for basic configuration parsing, audit or validation for a variety of network platforms having Cisco IOS style configuration (one space indentation), including: Cisco IOS, Cisco Nexus, Cisco IOS-XR, Cisco IOS-XR, Cisco ASA, Arista EOS, Brocade, HP Switches, Dell PowerConnect Switches, or Extreme Networks devices. In newer versions, ``ciscoconfparse`` provides support for brace-delimited configuration style as well, for platforms such as: Juniper Junos, Palo Alto, or F5 Networks. See http://www.pennington.net/py/ciscoconfparse/index.html for further details. :depends: ciscoconfparse This module depends on the Python library with the same name, ``ciscoconfparse`` - to install execute: ``pip install ciscoconfparse``. """ from salt.exceptions import SaltException # Import Salt modules try: import ciscoconfparse HAS_CISCOCONFPARSE = True except ImportError: HAS_CISCOCONFPARSE = False # ------------------------------------------------------------------------------ # module properties # ------------------------------------------------------------------------------ __virtualname__ = "ciscoconfparse" # ------------------------------------------------------------------------------ # property functions # ------------------------------------------------------------------------------ def __virtual__(): if HAS_CISCOCONFPARSE: return HAS_CISCOCONFPARSE else: return (False, "Missing dependency ciscoconfparse") # ------------------------------------------------------------------------------ # helper functions -- will not be exported # ------------------------------------------------------------------------------ def _get_ccp(config=None, config_path=None, saltenv="base"): """ """ if config_path: config = __salt__["cp.get_file_str"](config_path, saltenv=saltenv) if config is False: raise SaltException("{} is not available".format(config_path)) if isinstance(config, str): config = config.splitlines() ccp = ciscoconfparse.CiscoConfParse(config) return ccp # ------------------------------------------------------------------------------ # callable functions # ------------------------------------------------------------------------------ def find_objects(config=None, config_path=None, regex=None, saltenv="base"): """ Return all the line objects that match the expression in the ``regex`` argument. .. warning:: This function is mostly valuable when invoked from other Salt components (i.e., execution modules, states, templates etc.). For CLI usage, please consider using :py:func:`ciscoconfparse.find_lines <salt.ciscoconfparse_mod.find_lines>` config The configuration sent as text. .. note:: This argument is ignored when ``config_path`` is specified. config_path The absolute or remote path to the file with the configuration to be parsed. This argument supports the usual Salt filesystem URIs, e.g., ``salt://``, ``https://``, ``ftp://``, ``s3://``, etc. regex The regular expression to match the lines against. saltenv: ``base`` Salt fileserver environment from which to retrieve the file. This argument is ignored when ``config_path`` is not a ``salt://`` URL. Usage example: .. code-block:: python objects = __salt__['ciscoconfparse.find_objects'](config_path='salt://path/to/config.txt', regex='Gigabit') for obj in objects: print(obj.text) """ ccp = _get_ccp(config=config, config_path=config_path, saltenv=saltenv) lines = ccp.find_objects(regex) return lines def find_lines(config=None, config_path=None, regex=None, saltenv="base"): """ Return all the lines (as text) that match the expression in the ``regex`` argument. config The configuration sent as text. .. note:: This argument is ignored when ``config_path`` is specified. config_path The absolute or remote path to the file with the configuration to be parsed. This argument supports the usual Salt filesystem URIs, e.g., ``salt://``, ``https://``, ``ftp://``, ``s3://``, etc. regex The regular expression to match the lines against. saltenv: ``base`` Salt fileserver environment from which to retrieve the file. This argument is ignored when ``config_path`` is not a ``salt://`` URL. CLI Example: .. code-block:: bash salt '*' ciscoconfparse.find_lines config_path=https://bit.ly/2mAdq7z regex='ip address' Output example: .. code-block:: text cisco-ios-router: - ip address dhcp - ip address 172.20.0.1 255.255.255.0 - no ip address """ lines = find_objects( config=config, config_path=config_path, regex=regex, saltenv=saltenv ) return [line.text for line in lines] def find_objects_w_child( config=None, config_path=None, parent_regex=None, child_regex=None, ignore_ws=False, saltenv="base", ): """ Parse through the children of all parent lines matching ``parent_regex``, and return a list of child objects, which matched the ``child_regex``. .. warning:: This function is mostly valuable when invoked from other Salt components (i.e., execution modules, states, templates etc.). For CLI usage, please consider using :py:func:`ciscoconfparse.find_lines_w_child <salt.ciscoconfparse_mod.find_lines_w_child>` config The configuration sent as text. .. note:: This argument is ignored when ``config_path`` is specified. config_path The absolute or remote path to the file with the configuration to be parsed. This argument supports the usual Salt filesystem URIs, e.g., ``salt://``, ``https://``, ``ftp://``, ``s3://``, etc. parent_regex The regular expression to match the parent lines against. child_regex The regular expression to match the child lines against. ignore_ws: ``False`` Whether to ignore the white spaces. saltenv: ``base`` Salt fileserver environment from which to retrieve the file. This argument is ignored when ``config_path`` is not a ``salt://`` URL. Usage example: .. code-block:: python objects = __salt__['ciscoconfparse.find_objects_w_child'](config_path='https://bit.ly/2mAdq7z', parent_regex='line con', child_regex='stopbits') for obj in objects: print(obj.text) """ ccp = _get_ccp(config=config, config_path=config_path, saltenv=saltenv) lines = ccp.find_objects_w_child(parent_regex, child_regex, ignore_ws=ignore_ws) return lines def find_lines_w_child( config=None, config_path=None, parent_regex=None, child_regex=None, ignore_ws=False, saltenv="base", ): r""" Return a list of parent lines (as text) matching the regular expression ``parent_regex`` that have children lines matching ``child_regex``. config The configuration sent as text. .. note:: This argument is ignored when ``config_path`` is specified. config_path The absolute or remote path to the file with the configuration to be parsed. This argument supports the usual Salt filesystem URIs, e.g., ``salt://``, ``https://``, ``ftp://``, ``s3://``, etc. parent_regex The regular expression to match the parent lines against. child_regex The regular expression to match the child lines against. ignore_ws: ``False`` Whether to ignore the white spaces. saltenv: ``base`` Salt fileserver environment from which to retrieve the file. This argument is ignored when ``config_path`` is not a ``salt://`` URL. CLI Example: .. code-block:: bash salt '*' ciscoconfparse.find_lines_w_child config_path=https://bit.ly/2mAdq7z parent_line='line con' child_line='stopbits' salt '*' ciscoconfparse.find_lines_w_child config_path=https://bit.ly/2uIRxau parent_regex='ge-(.*)' child_regex='unit \d+' """ lines = find_objects_w_child( config=config, config_path=config_path, parent_regex=parent_regex, child_regex=child_regex, ignore_ws=ignore_ws, saltenv=saltenv, ) return [line.text for line in lines] def find_objects_wo_child( config=None, config_path=None, parent_regex=None, child_regex=None, ignore_ws=False, saltenv="base", ): """ Return a list of parent ``ciscoconfparse.IOSCfgLine`` objects, which matched the ``parent_regex`` and whose children did *not* match ``child_regex``. Only the parent ``ciscoconfparse.IOSCfgLine`` objects will be returned. For simplicity, this method only finds oldest ancestors without immediate children that match. .. warning:: This function is mostly valuable when invoked from other Salt components (i.e., execution modules, states, templates etc.). For CLI usage, please consider using :py:func:`ciscoconfparse.find_lines_wo_child <salt.ciscoconfparse_mod.find_lines_wo_child>` config The configuration sent as text. .. note:: This argument is ignored when ``config_path`` is specified. config_path The absolute or remote path to the file with the configuration to be parsed. This argument supports the usual Salt filesystem URIs, e.g., ``salt://``, ``https://``, ``ftp://``, ``s3://``, etc. parent_regex The regular expression to match the parent lines against. child_regex The regular expression to match the child lines against. ignore_ws: ``False`` Whether to ignore the white spaces. saltenv: ``base`` Salt fileserver environment from which to retrieve the file. This argument is ignored when ``config_path`` is not a ``salt://`` URL. Usage example: .. code-block:: python objects = __salt__['ciscoconfparse.find_objects_wo_child'](config_path='https://bit.ly/2mAdq7z', parent_regex='line con', child_regex='stopbits') for obj in objects: print(obj.text) """ ccp = _get_ccp(config=config, config_path=config_path, saltenv=saltenv) lines = ccp.find_objects_wo_child(parent_regex, child_regex, ignore_ws=ignore_ws) return lines def find_lines_wo_child( config=None, config_path=None, parent_regex=None, child_regex=None, ignore_ws=False, saltenv="base", ): """ Return a list of parent ``ciscoconfparse.IOSCfgLine`` lines as text, which matched the ``parent_regex`` and whose children did *not* match ``child_regex``. Only the parent ``ciscoconfparse.IOSCfgLine`` text lines will be returned. For simplicity, this method only finds oldest ancestors without immediate children that match. config The configuration sent as text. .. note:: This argument is ignored when ``config_path`` is specified. config_path The absolute or remote path to the file with the configuration to be parsed. This argument supports the usual Salt filesystem URIs, e.g., ``salt://``, ``https://``, ``ftp://``, ``s3://``, etc. parent_regex The regular expression to match the parent lines against. child_regex The regular expression to match the child lines against. ignore_ws: ``False`` Whether to ignore the white spaces. saltenv: ``base`` Salt fileserver environment from which to retrieve the file. This argument is ignored when ``config_path`` is not a ``salt://`` URL. CLI Example: .. code-block:: bash salt '*' ciscoconfparse.find_lines_wo_child config_path=https://bit.ly/2mAdq7z parent_line='line con' child_line='stopbits' """ lines = find_objects_wo_child( config=config, config_path=config_path, parent_regex=parent_regex, child_regex=child_regex, ignore_ws=ignore_ws, saltenv=saltenv, ) return [line.text for line in lines] def filter_lines( config=None, config_path=None, parent_regex=None, child_regex=None, saltenv="base" ): """ Return a list of detailed matches, for the configuration blocks (parent-child relationship) whose parent respects the regular expressions configured via the ``parent_regex`` argument, and the child matches the ``child_regex`` regular expression. The result is a list of dictionaries with the following keys: - ``match``: a boolean value that tells whether ``child_regex`` matched any children lines. - ``parent``: the parent line (as text). - ``child``: the child line (as text). If no child line matched, this field will be ``None``. Note that the return list contains the elements that matched the parent condition, the ``parent_regex`` regular expression. Therefore, the ``parent`` field will always have a valid value, while ``match`` and ``child`` may default to ``False`` and ``None`` respectively when there is not child match. CLI Example: .. code-block:: bash salt '*' ciscoconfparse.filter_lines config_path=https://bit.ly/2mAdq7z parent_regex='Gigabit' child_regex='shutdown' Example output (for the example above): .. code-block:: python [ { 'parent': 'interface GigabitEthernet1', 'match': False, 'child': None }, { 'parent': 'interface GigabitEthernet2', 'match': True, 'child': ' shutdown' }, { 'parent': 'interface GigabitEthernet3', 'match': True, 'child': ' shutdown' } ] """ ret = [] ccp = _get_ccp(config=config, config_path=config_path, saltenv=saltenv) parent_lines = ccp.find_objects(parent_regex) for parent_line in parent_lines: child_lines = parent_line.re_search_children(child_regex) if child_lines: for child_line in child_lines: ret.append( { "match": True, "parent": parent_line.text, "child": child_line.text, } ) else: ret.append({"match": False, "parent": parent_line.text, "child": None}) return ret
33.365639
131
0.610378
793ea701b1fe2c5bdd74adb61e8865a1413a48f6
10,214
py
Python
src/reader/chemdner_corpus.py
admukhty/IHP
b812938582c77d7ab275f8ea04316a38b576323c
[ "MIT" ]
null
null
null
src/reader/chemdner_corpus.py
admukhty/IHP
b812938582c77d7ab275f8ea04316a38b576323c
[ "MIT" ]
null
null
null
src/reader/chemdner_corpus.py
admukhty/IHP
b812938582c77d7ab275f8ea04316a38b576323c
[ "MIT" ]
null
null
null
import codecs import time import sys import logging import argparse import pickle from operator import itemgetter from pycorenlp import StanfordCoreNLP import progressbar as pb from subprocess import check_output from text.corpus import Corpus from text.document import Document from config import config class ChemdnerCorpus(Corpus): """Chemdner corpus from BioCreative IV and V""" def __init__(self, corpusdir, **kwargs): super(ChemdnerCorpus, self).__init__(corpusdir, **kwargs) self.subtypes = ["IDENTIFIER", "MULTIPLE", "FAMILY", "FORMULA", "SYSTEMATIC", "ABBREVIATION", "TRIVIAL"] def load_corpus(self, corenlpserver, process=True): """Load the CHEMDNER corpus file on the dir element""" # open filename and parse lines total_lines = sum(1 for line in open(self.path)) widgets = [pb.Percentage(), ' ', pb.Bar(), ' ', pb.ETA(), ' ', pb.Timer()] pbar = pb.ProgressBar(widgets=widgets, maxval=total_lines).start() n_lines = 1 time_per_abs = [] with codecs.open(self.path, 'r', "utf-8") as inputfile: for line in inputfile: t = time.time() # each line is PMID title abs tsv = line.split('\t') doctext = tsv[2].strip().replace("<", "(").replace(">", ")") newdoc = Document(doctext, process=False, did=tsv[0], title=tsv[1].strip()) newdoc.sentence_tokenize("biomedical") if process: newdoc.process_document(corenlpserver, "biomedical") self.documents[newdoc.did] = newdoc n_lines += 1 abs_time = time.time() - t time_per_abs.append(abs_time) pbar.update(n_lines+1) pbar.finish() abs_avg = sum(time_per_abs)*1.0/len(time_per_abs) logging.info("average time per abstract: %ss" % abs_avg) def load_annotations(self, ann_dir, entitytype="chemical"): # total_lines = sum(1 for line in open(ann_dir)) # n_lines = 1 logging.info("loading annotations file...") with codecs.open(ann_dir, 'r', "utf-8") as inputfile: for line in inputfile: # logging.info("processing annotation %s/%s" % (n_lines, total_lines)) pmid, doct, start, end, text, chemt = line.strip().split('\t') #pmid = "PMID" + pmid if pmid in self.documents: if entitytype == "all" or entitytype == "chemical" or entitytype == chemt: self.documents[pmid].tag_chemdner_entity(int(start), int(end), chemt, text=text, doct=doct) else: logging.info("%s not found!" % pmid) def write_chemdner_files(results, models, goldset, ths, rules): """ results files for CHEMDNER CEMP and CPD tasks""" print("saving results to {}".format(results.path + ".tsv")) with codecs.open(results.path + ".tsv", 'w', 'utf-8') as outfile: cpdlines, max_entities = results.corpus.write_chemdner_results(models, outfile, ths, rules) cpdlines = sorted(cpdlines, key=itemgetter(2)) with open(results.path + "_cpd.tsv", "w") as cpdfile: for i, l in enumerate(cpdlines): if l[2] == 0: cpdfile.write("{}_{}\t0\t{}\t1\n".format(l[0], l[1], i+1)) else: cpdfile.write("{}_{}\t1\t{}\t{}\n".format(l[0], l[1], i+1, l[2]*1.0/max_entities)) def run_chemdner_evaluation(goldstd, results, format=""): """ Use the official BioCreative evaluation script (should be installed in the system) :param goldstd: Gold standard file path :param results: Results file path :param: format option :return: Output of the evaluation script """ cem_command = ["bc-evaluate", results, goldstd] if format != "": cem_command = cem_command[:1] + [format] + cem_command[1:] r = check_output(cem_command) return r def get_chemdner_gold_ann_set(goldann="CHEMDNER/CHEMDNER_TEST_ANNOTATION/chemdner_ann_test_13-09-13.txt"): """ Load the CHEMDNER annotations to a set :param goldann: Path to CHEMDNER annotation file :return: Set of gold standard annotations """ with codecs.open(goldann, 'r', 'utf-8') as goldfile: gold = goldfile.readlines() goldlist = [] for line in gold: #pmid, T/A, start, end x = line.strip().split('\t') goldlist.append((x[0], x[1] + ":" + x[2] + ":" + x[3], '1')) #print goldlist[0:2] goldset = set(goldlist) return goldset, None def main(): start_time = time.time() parser = argparse.ArgumentParser(description='') parser.add_argument("actions", default="classify", help="Actions to be performed.", choices=["load_corpus"]) parser.add_argument("--goldstd", default="", dest="goldstd", nargs="+", help="Gold standard to be used. Will override corpus, annotations", choices=config.paths.keys()) parser.add_argument("--submodels", default="", nargs='+', help="sub types of classifiers"), parser.add_argument("-i", "--input", dest="input", action="store", default='''Administration of a higher dose of indinavir should be \\ considered when coadministering with megestrol acetate.''', help="Text to classify.") parser.add_argument("--corpus", dest="corpus", nargs=2, default=["chemdner", "CHEMDNER/CHEMDNER_SAMPLE_JUNE25/chemdner_sample_abstracts.txt"], help="format path") parser.add_argument("--annotations", dest="annotations") parser.add_argument("--tag", dest="tag", default="0", help="Tag to identify the text.") parser.add_argument("--models", dest="models", help="model destination path, without extension") parser.add_argument("--entitytype", dest="etype", help="type of entities to be considered", default="all") parser.add_argument("--doctype", dest="doctype", help="type of document to be considered", default="all") parser.add_argument("--annotated", action="store_true", default=False, dest="annotated", help="True if the input has <entity> tags.") parser.add_argument("-o", "--output", "--format", dest="output", nargs=2, help="format path; output formats: xml, html, tsv, text, chemdner.") parser.add_argument("--crf", dest="crf", help="CRF implementation", default="stanford", choices=["stanford", "crfsuite"]) parser.add_argument("--log", action="store", dest="loglevel", default="WARNING", help="Log level") parser.add_argument("--kernel", action="store", dest="kernel", default="svmtk", help="Kernel for relation extraction") parser.add_argument("--pairtype1", action="store", dest="pairtype1") parser.add_argument("--pairtype2", action="store", dest="pairtype2") options = parser.parse_args() # set logger numeric_level = getattr(logging, options.loglevel.upper(), None) if not isinstance(numeric_level, int): raise ValueError('Invalid log level: %s' % options.loglevel) while len(logging.root.handlers) > 0: logging.root.removeHandler(logging.root.handlers[-1]) logging_format = '%(asctime)s %(levelname)s %(filename)s:%(lineno)s:%(funcName)s %(message)s' logging.basicConfig(level=numeric_level, format=logging_format) logging.getLogger().setLevel(numeric_level) logging.info("Processing action {0} on {1}".format(options.actions, options.goldstd)) # set configuration variables based on the goldstd option if the corpus has a gold standard, # or on corpus and annotation options # pre-processing options if options.actions == "load_corpus": if len(options.goldstd) > 1: print("load only one corpus each time") sys.exit() options.goldstd = options.goldstd[0] corpus_format = config.paths[options.goldstd]["format"] corpus_path = config.paths[options.goldstd]["text"] corpus_ann = config.paths[options.goldstd]["annotations"] corenlp_client = StanfordCoreNLP('http://localhost:9000') if corpus_format == "chemdner": corpus = ChemdnerCorpus(corpus_path) #corpus.save() if options.goldstd == "chemdner_traindev": # merge chemdner_train and chemdner_dev tpath = config.paths["chemdner_train"]["corpus"] tcorpus = pickle.load(open(tpath, 'rb')) dpath = config.paths["chemdner_dev"]["corpus"] dcorpus = pickle.load(open(dpath, 'rb')) corpus.documents.update(tcorpus.documents) corpus.documents.update(dcorpus.documents) elif options.goldstd == "cemp_test_divide": logging.info("loading corpus %s" % corpus_path) corpus.load_corpus(corenlp_client, process=False) docs = corpus.documents.keys() step = int(len(docs)/10) logging.info("step: {}".format(str(step))) for i in range(10): logging.info("processing cemp_test{}: {} - {}".format(str(i), int(step*i), int(step*i+step))) sub_corpus_path = config.paths["cemp_test" + str(i)]["corpus"] sub_corpus = ChemdnerCorpus(sub_corpus_path) sub_docs = docs[int(step*i):int(step*i+step)] for di, d in enumerate(sub_docs): logging.info("fold {}: processing {}/{}".format(i, di, step)) sub_corpus.documents[d] = corpus.documents[d] del corpus.documents[d] sub_corpus.documents[d].process_document(corenlp_client) sub_corpus.save() if __name__ == "__main__": main()
51.847716
123
0.593205
793ea7fe5fa58fc77b16c972f51062c8574a14db
8,272
py
Python
docs/conf.py
bwall/yara
43ffdcc226325e208d01172cd27870d3e046d79f
[ "Apache-2.0" ]
6
2019-09-02T14:21:04.000Z
2021-10-01T01:54:46.000Z
docs/conf.py
Neo23x0/yara
7cf4b24b052d9eede9b8288c0c250b58efaa13e1
[ "Apache-2.0" ]
null
null
null
docs/conf.py
Neo23x0/yara
7cf4b24b052d9eede9b8288c0c250b58efaa13e1
[ "Apache-2.0" ]
8
2016-02-07T08:11:18.000Z
2021-09-01T13:22:51.000Z
# -*- coding: utf-8 -*- # # yara documentation build configuration file, created by # sphinx-quickstart on Tue Jul 8 11:04:03 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'yara' copyright = u'2014-2015, Victor M. Alvarez' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '3.4' # The full version, including alpha/beta/rc tags. release = '3.4.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. try: import sphinx_rtd_theme html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] except: html_theme = "default" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'yaradoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'yara.tex', u'yara Documentation', u'Victor M. Alvarez', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'yara', u'yara Documentation', [u'Victor M. Alvarez'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'yara', u'yara Documentation', u'Victor M. Alvarez', 'yara', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
30.865672
79
0.717239
793ea81f14931c4897720d87aa1f572077adc71a
838
py
Python
tests/test_data.py
keggsmurph21/jam
1aee2c56961d58def4e1f24a3dea824ade04f02d
[ "MIT" ]
1
2020-10-16T03:31:25.000Z
2020-10-16T03:31:25.000Z
tests/test_data.py
keggsmurph21/jam
1aee2c56961d58def4e1f24a3dea824ade04f02d
[ "MIT" ]
null
null
null
tests/test_data.py
keggsmurph21/jam
1aee2c56961d58def4e1f24a3dea824ade04f02d
[ "MIT" ]
null
null
null
nested = { "json": ["rigid", "better for data interchange"], "toml": ["simple and readable", "easier to implement"], "yaml": ["slim and flexible", "better for configuration"], "object": { "key": "value", "array": [{"null_value": None}, {"boolean": True}, {"integer": 1}], }, "paragraph": "Blank lines denote\nparagraph breaks\n", "content": "Or we\ncan auto\nconvert line breaks\nto save space", } flatter = { "json": ["rigid", "better for data interchange"], "toml": ["simple and readable", "easier to implement"], "yaml": ["slim and flexible", "better for configuration"], "object": { "key": "value", "array": "omitted", }, "paragraph": "Blank lines denote\nparagraph breaks\n", "content": "Or we\ncan auto\nconvert line breaks\nto save space", }
34.916667
75
0.593079
793ea927834cdb96d321e16ae1409fa9b5ece1d3
5,536
py
Python
examples/examples.py
gjdv/DegiroAPI
578b97b1add42f6d5e031be8eb034314c51ec30f
[ "MIT" ]
null
null
null
examples/examples.py
gjdv/DegiroAPI
578b97b1add42f6d5e031be8eb034314c51ec30f
[ "MIT" ]
null
null
null
examples/examples.py
gjdv/DegiroAPI
578b97b1add42f6d5e031be8eb034314c51ec30f
[ "MIT" ]
1
2022-01-23T11:15:17.000Z
2022-01-23T11:15:17.000Z
import degiroapi from degiroapi.product import Product from degiroapi.order import Order from degiroapi.utils import pretty_json from datetime import datetime, timedelta # login degiro = degiroapi.DeGiro() degiro.login("username", "password") # login with 2fa otp = input("Input Google Authenticator password:") degiro.login("username", "password", oneTimePassword=otp.strip()) # logout degiro.logout() # print the current cash funds cashfunds = degiro.getdata(degiroapi.Data.Type.CASHFUNDS) for data in cashfunds: print(data) # print the current portfolio (True to filter Products with size 0, False to show all) portfolio = degiro.getdata(degiroapi.Data.Type.PORTFOLIO, True) for data in portfolio: print(data) # download portfolio as csv file csv_portfolio = degiro.download_csv('PORTFOLIO', datetime(2019, 1, 1), datetime.now()) with open('portfolio.csv', 'w') as file: file.write(csv_portfolio) # output one search result products = degiro.search_products('Pfizer') print(Product(products[0]).id) print(Product(products[0]).name) print(Product(products[0]).symbol) print(Product(products[0]).isin) print(Product(products[0]).currency) print(Product(products[0]).product_type) print(Product(products[0]).tradable) print(Product(products[0]).close_price) print(Product(products[0]).close_price_date) # output multiple search result products = degiro.search_products('Pfizer', 3) print(Product(products[0]).id) print(Product(products[1]).id) print(Product(products[2]).id) # printing info for a specified product ID: info = degiro.product_info(5322419) print(info["id"], info["name"], info["currency"], info["closePrice"]) # print transactions transactions = degiro.transactions(datetime(2019, 1, 1), datetime.now()) print(pretty_json(transactions)) # print order history (maximum timespan 90 days) orders = degiro.orders(datetime.now() - timedelta(days=90), datetime.now()) print(pretty_json(orders)) # printing order history (maximum timespan 90 days), with argument True return only open orders orders = degiro.orders(datetime.now() - timedelta(days=90), datetime.now(), True) print(pretty_json(orders)) # deleting an open order orders = degiro.orders(datetime.now() - timedelta(days=1), datetime.now(), True) degiro.delete_order(orders[0]['orderId']) degiro.delete_order("f278d56f-eaa0-4dc7-b067-45c6b4b3d74f") # getting realtime and historical data from a stock products = degiro.search_products('nrz') # Interval can be set to One_Day, One_Week, One_Month, Three_Months, Six_Months, One_Year, Three_Years, Five_Years, Max realprice = degiro.real_time_price(Product(products[0]).id, degiroapi.Interval.Type.One_Day) # reatime data print(realprice[0]['data']['lastPrice']) print(pretty_json(realprice[0]['data'])) # historical data print(realprice[1]['data']) # get s&p 500 stock list sp5symbols = [] products = degiro.get_stock_list(14, 846) for product in products: sp5symbols.append(Product(product).symbol) # get german30 stock list daxsymbols = [] products = degiro.get_stock_list(6, 906) for product in products: daxsymbols.append(Product(product).symbol) # placing an order(dependent on the order type) # set a limit order price to which the order gets executed # order type, product id, execution time type (either Order.Time.DAY for "valid on a daily basis", or Order.Time.GTC for unlimited, size, limit(the limit price) degiro.buyorder(Order.Type.LIMIT, Product(products[0]).id, Order.Time.GTC, 1, 30) # sets a limit order when the stoploss price is reached(not bought for more than the limit at the stop loss price) # order type, product id, execution time type (either Order.Time.DAY for "valid on a daily basis", or Order.Time.GTC for "unlimited"), size, limit(the limit price), stop_loss(stop loss price) degiro.buyorder(Order.Type.STOPLIMIT, Product(products[0]).id, Order.Time.GTC, 1, 38, 38) # order type, product id, execution time type (either Order.Time.DAY for "valid on a daily basis", or Order.Time.GTC for "unlimited"), size degiro.buyorder(Order.Type.MARKET, Product(products[0]).id, Order.Time.GTC, 1) # the stop loss price has to be higher than the current price, when current price reaches the stoploss price the order is placed # order type, product id, execution time type (either Order.Time.DAY for "valid on a daily basis", or Order.Time.GTC for "unlimited"), size, don't change none, stop_loss(stop loss price) degiro.buyorder(Order.Type.STOPLOSS, Product(products[0]).id, Order.Time.GTC, 1, None, 38) # selling a product # order type, product id, execution time type (either Order.Time.DAY for "valid on a daily basis", or Order.Time.GTC for unlimited, size, limit(the limit price) degiro.sellorder(Order.Type.LIMIT, Product(products[0]).id, Order.Time.GTC, 1, 40) # order type, product id, execution time type (either Order.Time.DAY for "valid on a daily basis", or Order.Time.GTC for "unlimited"), size, limit(the limit price), stop_loss(stop loss price) degiro.sellorder(Order.Type.STOPLIMIT, Product(products[0]).id, Order.Time.GTC, 1, 37, 38) # order type, product id, execution time type (either Order.Time.DAY for "valid on a daily basis", or Order.Time.GTC for "unlimited"), size degiro.sellorder(Order.Type.MARKET, Product(products[0]).id, Order.Time.GTC, 1) # order type, product id, execution time type (either Order.Time.DAY for "valid on a daily basis", or Order.Time.GTC for "unlimited"), size, don't change none, stop_loss(stop loss price) degiro.sellorder(Order.Type.STOPLOSS, Product(products[0]).id, Order.Time.GTC, 1, None, 38)
43.590551
191
0.758851
793ea9435bd170011bc32e6d01e7ada53f178603
2,593
py
Python
spider.py
trinathtiru/jaipal
232b7a6742b4ec695b1eda5aa6010b1d8fb274a8
[ "Apache-2.0" ]
null
null
null
spider.py
trinathtiru/jaipal
232b7a6742b4ec695b1eda5aa6010b1d8fb274a8
[ "Apache-2.0" ]
null
null
null
spider.py
trinathtiru/jaipal
232b7a6742b4ec695b1eda5aa6010b1d8fb274a8
[ "Apache-2.0" ]
null
null
null
from urllib.request import urlopen from link_finder import LinkFinder from domain import * from general import * class Spider: project_name = '' base_url = '' domain_name = '' queue_file = '' crawled_file = '' queue = set() crawled = set() def __init__(self, project_name, base_url, domain_name): Spider.project_name = project_name Spider.base_url = base_url Spider.domain_name = domain_name Spider.queue_file = Spider.project_name + '/queue.txt' Spider.crawled_file = Spider.project_name + '/crawled.txt' self.boot() self.crawl_page('First spider', Spider.base_url) # Creates directory and files for project on first run and starts the spider @staticmethod def boot(): create_project_dir(Spider.project_name) create_data_files(Spider.project_name, Spider.base_url) Spider.queue = file_to_set(Spider.queue_file) Spider.crawled = file_to_set(Spider.crawled_file) # Updates user display, fills queue and updates files @staticmethod def crawl_page(thread_name, page_url): if page_url not in Spider.crawled: print(thread_name + ' now crawling ' + page_url) print('Queue ' + str(len(Spider.queue)) + ' | Crawled ' + str(len(Spider.crawled))) Spider.add_links_to_queue(Spider.gather_links(page_url)) Spider.queue.remove(page_url) Spider.crawled.add(page_url) Spider.update_files() # Converts raw response data into readable information and checks for proper html formatting @staticmethod def gather_links(page_url): html_string = '' try: response = urlopen(page_url) if 'text/html' in response.getheader('Content-Type'): html_bytes = response.read() html_string = html_bytes.decode("utf-8") finder = LinkFinder(Spider.base_url, page_url) finder.feed(html_string) except Exception as e: print(str(e)) return set() return finder.page_links() # Saves queue data to project files @staticmethod def add_links_to_queue(links): for url in links: if (url in Spider.queue) or (url in Spider.crawled): continue if Spider.domain_name != get_domain_name(url): continue Spider.queue.add(url) @staticmethod def update_files(): set_to_file(Spider.queue, Spider.queue_file) set_to_file(Spider.crawled, Spider.crawled_file)
35.520548
96
0.639028
793ea9e4082cfdb90bd39771017d990592d4bcb9
4,916
py
Python
examples/app_based_example.py
dokime7/flask-cors
caa7ba1e0df3f65e254fe9e31121491ad0e93a60
[ "MIT" ]
null
null
null
examples/app_based_example.py
dokime7/flask-cors
caa7ba1e0df3f65e254fe9e31121491ad0e93a60
[ "MIT" ]
null
null
null
examples/app_based_example.py
dokime7/flask-cors
caa7ba1e0df3f65e254fe9e31121491ad0e93a60
[ "MIT" ]
null
null
null
""" Flask-Cors example =================== This is a tiny Flask Application demonstrating Flask-Cors, making it simple to add cross origin support to your flask app! :copyright: (c) 2016 by Cory Dolphin. :license: MIT/X11, see LICENSE for more details. """ from flask import Flask, jsonify import logging try: from flask_cors import CORS # The typical way to import flask-cors except ImportError: # Path hack allows examples to be run without installation. import os parentdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) os.sys.path.insert(0, parentdir) from flask_cors import CORS app = Flask('FlaskCorsAppBasedExample') logging.basicConfig(level=logging.INFO) # To enable logging for flask-cors, logging.getLogger('flask_cors').level = logging.DEBUG # One of the simplest configurations. Exposes all resources matching /api/* to # CORS and allows the Content-Type header, which is necessary to POST JSON # cross origin. CORS(app, resources=r'/api/*') @app.route("/") def helloWorld(): ''' Since the path '/' does not match the regular expression r'/api/*', this route does not have CORS headers set. ''' return ''' <html> <h1>Hello CORS!</h1> <h3> End to end editable example with jquery! </h3> <a class="jsbin-embed" href="http://jsbin.com/zazitas/embed?js,console">JS Bin on jsbin.com</a> <script src="//static.jsbin.com/js/embed.min.js?3.35.12"></script> </html> ''' @app.route("/api/v1/users/") def list_users(): ''' Since the path matches the regular expression r'/api/*', this resource automatically has CORS headers set. The expected result is as follows: $ curl --include -X GET http://127.0.0.1:5000/api/v1/users/ \ --header Origin:www.examplesite.com HTTP/1.0 200 OK Access-Control-Allow-Headers: Content-Type Access-Control-Allow-Origin: * Content-Length: 21 Content-Type: application/json Date: Sat, 09 Aug 2014 00:26:41 GMT Server: Werkzeug/0.9.4 Python/2.7.8 { "success": true } ''' return jsonify(user="joe") @app.route("/api/v1/users/create", methods=['POST']) def create_user(): ''' Since the path matches the regular expression r'/api/*', this resource automatically has CORS headers set. Browsers will first make a preflight request to verify that the resource allows cross-origin POSTs with a JSON Content-Type, which can be simulated as: $ curl --include -X OPTIONS http://127.0.0.1:5000/api/v1/users/create \ --header Access-Control-Request-Method:POST \ --header Access-Control-Request-Headers:Content-Type \ --header Origin:www.examplesite.com >> HTTP/1.0 200 OK Content-Type: text/html; charset=utf-8 Allow: POST, OPTIONS Access-Control-Allow-Origin: * Access-Control-Allow-Headers: Content-Type Access-Control-Allow-Methods: DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT Content-Length: 0 Server: Werkzeug/0.9.6 Python/2.7.9 Date: Sat, 31 Jan 2015 22:25:22 GMT $ curl --include -X POST http://127.0.0.1:5000/api/v1/users/create \ --header Content-Type:application/json \ --header Origin:www.examplesite.com >> HTTP/1.0 200 OK Content-Type: application/json Content-Length: 21 Access-Control-Allow-Origin: * Server: Werkzeug/0.9.6 Python/2.7.9 Date: Sat, 31 Jan 2015 22:25:04 GMT { "success": true } ''' return jsonify(success=True) @app.route("/api/exception") def get_exception(): ''' Since the path matches the regular expression r'/api/*', this resource automatically has CORS headers set. Browsers will first make a preflight request to verify that the resource allows cross-origin POSTs with a JSON Content-Type, which can be simulated as: $ curl --include -X OPTIONS http://127.0.0.1:5000/exception \ --header Access-Control-Request-Method:POST \ --header Access-Control-Request-Headers:Content-Type \ --header Origin:www.examplesite.com >> HTTP/1.0 200 OK Content-Type: text/html; charset=utf-8 Allow: POST, OPTIONS Access-Control-Allow-Origin: * Access-Control-Allow-Headers: Content-Type Access-Control-Allow-Methods: DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT Content-Length: 0 Server: Werkzeug/0.9.6 Python/2.7.9 Date: Sat, 31 Jan 2015 22:25:22 GMT ''' raise Exception("example") @app.errorhandler(500) def server_error(e): logging.exception('An error occurred during a request. %s', e) return "An internal error occured", 500 if __name__ == "__main__": app.run(debug=True)
32.556291
99
0.641985
793eaa435d535277f474f280ac2b7b63e68bfbc0
8,196
py
Python
homeassistant/components/zwave_js/entity.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
5
2020-12-15T04:09:01.000Z
2022-03-11T21:34:24.000Z
homeassistant/components/zwave_js/entity.py
basicpail/core
5cc54618c5af3f75c08314bf2375cc7ac40d2b7e
[ "Apache-2.0" ]
77
2020-07-16T16:43:09.000Z
2022-03-31T06:14:37.000Z
homeassistant/components/zwave_js/entity.py
Vaarlion/core
f3de8b9f28de01abf72c0f5bb0b457eb1841f201
[ "Apache-2.0" ]
11
2020-12-16T13:48:14.000Z
2022-02-01T00:28:05.000Z
"""Generic Z-Wave Entity Class.""" from __future__ import annotations import logging from zwave_js_server.client import Client as ZwaveClient from zwave_js_server.const import NodeStatus from zwave_js_server.model.value import Value as ZwaveValue, get_value_id from homeassistant.config_entries import ConfigEntry from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity import Entity from .const import DOMAIN from .discovery import ZwaveDiscoveryInfo from .helpers import get_device_id, get_unique_id LOGGER = logging.getLogger(__name__) EVENT_VALUE_UPDATED = "value updated" EVENT_DEAD = "dead" EVENT_ALIVE = "alive" class ZWaveBaseEntity(Entity): """Generic Entity Class for a Z-Wave Device.""" def __init__( self, config_entry: ConfigEntry, client: ZwaveClient, info: ZwaveDiscoveryInfo ) -> None: """Initialize a generic Z-Wave device entity.""" self.config_entry = config_entry self.client = client self.info = info # entities requiring additional values, can add extra ids to this list self.watched_value_ids = {self.info.primary_value.value_id} if self.info.additional_value_ids_to_watch: self.watched_value_ids = self.watched_value_ids.union( self.info.additional_value_ids_to_watch ) # Entity class attributes self._attr_name = self.generate_name() self._attr_unique_id = get_unique_id( self.client.driver.controller.home_id, self.info.primary_value.value_id ) self._attr_entity_registry_enabled_default = ( self.info.entity_registry_enabled_default ) self._attr_assumed_state = self.info.assumed_state # device is precreated in main handler self._attr_device_info = { "identifiers": {get_device_id(self.client, self.info.node)}, } @callback def on_value_update(self) -> None: """Call when one of the watched values change. To be overridden by platforms needing this event. """ async def async_poll_value(self, refresh_all_values: bool) -> None: """Poll a value.""" if not refresh_all_values: self.hass.async_create_task( self.info.node.async_poll_value(self.info.primary_value) ) LOGGER.info( ( "Refreshing primary value %s for %s, " "state update may be delayed for devices on battery" ), self.info.primary_value, self.entity_id, ) return for value_id in self.watched_value_ids: self.hass.async_create_task(self.info.node.async_poll_value(value_id)) LOGGER.info( ( "Refreshing values %s for %s, state update may be delayed for " "devices on battery" ), ", ".join(self.watched_value_ids), self.entity_id, ) async def async_added_to_hass(self) -> None: """Call when entity is added.""" # Add value_changed callbacks. self.async_on_remove( self.info.node.on(EVENT_VALUE_UPDATED, self._value_changed) ) for status_event in (EVENT_ALIVE, EVENT_DEAD): self.async_on_remove( self.info.node.on(status_event, self._node_status_alive_or_dead) ) self.async_on_remove( async_dispatcher_connect( self.hass, f"{DOMAIN}_{self.unique_id}_poll_value", self.async_poll_value, ) ) def generate_name( self, include_value_name: bool = False, alternate_value_name: str | None = None, additional_info: list[str] | None = None, name_suffix: str | None = None, ) -> str: """Generate entity name.""" if additional_info is None: additional_info = [] name: str = ( self.info.node.name or self.info.node.device_config.description or f"Node {self.info.node.node_id}" ) if name_suffix: name = f"{name} {name_suffix}" if include_value_name: value_name = ( alternate_value_name or self.info.primary_value.metadata.label or self.info.primary_value.property_key_name or self.info.primary_value.property_name ) name = f"{name}: {value_name}" for item in additional_info: if item: name += f" - {item}" # append endpoint if > 1 if self.info.primary_value.endpoint > 1: name += f" ({self.info.primary_value.endpoint})" return name @property def available(self) -> bool: """Return entity availability.""" return ( self.client.connected and bool(self.info.node.ready) and self.info.node.status != NodeStatus.DEAD ) @callback def _node_status_alive_or_dead(self, event_data: dict) -> None: """ Call when node status changes to alive or dead. Should not be overridden by subclasses. """ self.async_write_ha_state() @callback def _value_changed(self, event_data: dict) -> None: """Call when (one of) our watched values changes. Should not be overridden by subclasses. """ value_id = event_data["value"].value_id if value_id not in self.watched_value_ids: return value = self.info.node.values[value_id] LOGGER.debug( "[%s] Value %s/%s changed to: %s", self.entity_id, value.property_, value.property_key_name, value.value, ) self.on_value_update() self.async_write_ha_state() @callback def get_zwave_value( self, value_property: str | int, command_class: int | None = None, endpoint: int | None = None, value_property_key: int | None = None, add_to_watched_value_ids: bool = True, check_all_endpoints: bool = False, ) -> ZwaveValue | None: """Return specific ZwaveValue on this ZwaveNode.""" # use commandclass and endpoint from primary value if omitted return_value = None if command_class is None: command_class = self.info.primary_value.command_class if endpoint is None: endpoint = self.info.primary_value.endpoint # lookup value by value_id value_id = get_value_id( self.info.node, command_class, value_property, endpoint=endpoint, property_key=value_property_key, ) return_value = self.info.node.values.get(value_id) # If we haven't found a value and check_all_endpoints is True, we should # return the first value we can find on any other endpoint if return_value is None and check_all_endpoints: for endpoint_idx in self.info.node.endpoints: if endpoint_idx != self.info.primary_value.endpoint: value_id = get_value_id( self.info.node, command_class, value_property, endpoint=endpoint_idx, property_key=value_property_key, ) return_value = self.info.node.values.get(value_id) if return_value: break # add to watched_ids list so we will be triggered when the value updates if ( return_value and return_value.value_id not in self.watched_value_ids and add_to_watched_value_ids ): self.watched_value_ids.add(return_value.value_id) return return_value @property def should_poll(self) -> bool: """No polling needed.""" return False
33.453061
86
0.598829
793eaa6c3b9605410c7f4668cd9db5ac18caa17f
5,412
py
Python
pyqtgraph/graphicsItems/ArrowItem.py
StSav012/pyqtgraph
65e17c4e3707eb3bd4d91cdc13504d9b150f4360
[ "MIT" ]
1
2022-01-30T20:04:51.000Z
2022-01-30T20:04:51.000Z
pyqtgraph/graphicsItems/ArrowItem.py
StSav012/pyqtgraph
65e17c4e3707eb3bd4d91cdc13504d9b150f4360
[ "MIT" ]
null
null
null
pyqtgraph/graphicsItems/ArrowItem.py
StSav012/pyqtgraph
65e17c4e3707eb3bd4d91cdc13504d9b150f4360
[ "MIT" ]
null
null
null
from math import hypot from .. import functions as fn from ..Qt import QtGui, QtWidgets __all__ = ['ArrowItem'] class ArrowItem(QtWidgets.QGraphicsPathItem): """ For displaying scale-invariant arrows. For arrows pointing to a location on a curve, see CurveArrow """ def __init__(self, parent=None, **opts): """ Arrows can be initialized with any keyword arguments accepted by the setStyle() method. """ self.opts = {} QtWidgets.QGraphicsPathItem.__init__(self, parent) if 'size' in opts: opts['headLen'] = opts['size'] if 'width' in opts: opts['headWidth'] = opts['width'] pos = opts.pop('pos', (0, 0)) defaultOpts = { 'pxMode': True, 'angle': -150, ## If the angle is 0, the arrow points left 'headLen': 20, 'headWidth': None, 'tipAngle': 25, 'baseAngle': 0, 'tailLen': None, 'tailWidth': 3, 'pen': (200,200,200), 'brush': (50,50,200), } defaultOpts.update(opts) self.setStyle(**defaultOpts) # for backward compatibility self.setPos(*pos) def setStyle(self, **opts): """ Changes the appearance of the arrow. All arguments are optional: ====================== ================================================= **Keyword Arguments:** angle Orientation of the arrow in degrees. Default is 0; arrow pointing to the left. headLen Length of the arrow head, from tip to base. default=20 headWidth Width of the arrow head at its base. If headWidth is specified, it overrides tipAngle. tipAngle Angle of the tip of the arrow in degrees. Smaller values make a 'sharper' arrow. default=25 baseAngle Angle of the base of the arrow head. Default is 0, which means that the base of the arrow head is perpendicular to the arrow tail. tailLen Length of the arrow tail, measured from the base of the arrow head to the end of the tail. If this value is None, no tail will be drawn. default=None tailWidth Width of the tail. default=3 pen The pen used to draw the outline of the arrow. brush The brush used to fill the arrow. pxMode If True, then the arrow is drawn as a fixed size regardless of the scale of its parents (including the ViewBox zoom level). ====================== ================================================= """ arrowOpts = ['headLen', 'tipAngle', 'baseAngle', 'tailLen', 'tailWidth', 'headWidth'] allowedOpts = ['angle', 'pen', 'brush', 'pxMode'] + arrowOpts needUpdate = False for k,v in opts.items(): if k not in allowedOpts: raise KeyError('Invalid arrow style option "%s"' % k) if self.opts.get(k) != v: needUpdate = True self.opts[k] = v if not needUpdate: return opt = dict([(k,self.opts[k]) for k in arrowOpts if k in self.opts]) tr = QtGui.QTransform() tr.rotate(self.opts['angle']) self.path = tr.map(fn.makeArrowPath(**opt)) self.setPath(self.path) self.setPen(fn.mkPen(self.opts['pen'])) self.setBrush(fn.mkBrush(self.opts['brush'])) if self.opts['pxMode']: self.setFlags(self.flags() | self.GraphicsItemFlag.ItemIgnoresTransformations) else: self.setFlags(self.flags() & ~self.GraphicsItemFlag.ItemIgnoresTransformations) def paint(self, p, *args): p.setRenderHint(QtGui.QPainter.RenderHint.Antialiasing) super().paint(p, *args) #p.setPen(fn.mkPen('r')) #p.setBrush(fn.mkBrush(None)) #p.drawRect(self.boundingRect()) def shape(self): #if not self.opts['pxMode']: #return QtWidgets.QGraphicsPathItem.shape(self) return self.path ## dataBounds and pixelPadding methods are provided to ensure ViewBox can ## properly auto-range def dataBounds(self, ax, frac, orthoRange=None): pw = 0 pen = self.pen() if not pen.isCosmetic(): pw = pen.width() * 0.7072 if self.opts['pxMode']: return [0,0] else: br = self.boundingRect() if ax == 0: return [br.left()-pw, br.right()+pw] else: return [br.top()-pw, br.bottom()+pw] def pixelPadding(self): pad = 0 if self.opts['pxMode']: br = self.boundingRect() pad += hypot(br.width(), br.height()) pen = self.pen() if pen.isCosmetic(): pad += max(1, pen.width()) * 0.7072 return pad
36.567568
93
0.49612
793eaacc92317d3ab8302c3131c199248127e3c9
3,807
py
Python
desertbot/modules/utils/StringUtils.py
DesertBot/DesertBot
33b4fe03dae5ead23003e18b511179e0b03b061d
[ "MIT", "BSD-3-Clause" ]
7
2018-03-20T17:10:10.000Z
2021-11-17T18:58:04.000Z
desertbot/modules/utils/StringUtils.py
DesertBot/DesertBot
33b4fe03dae5ead23003e18b511179e0b03b061d
[ "MIT", "BSD-3-Clause" ]
109
2015-08-20T13:16:35.000Z
2022-01-21T19:40:35.000Z
desertbot/modules/utils/StringUtils.py
DesertBot/DesertBot
33b4fe03dae5ead23003e18b511179e0b03b061d
[ "MIT", "BSD-3-Clause" ]
7
2018-03-29T05:55:01.000Z
2021-02-05T19:19:39.000Z
import json import re from collections import OrderedDict from typing import List from pyxdameraulevenshtein import normalized_damerau_levenshtein_distance as ndld from twisted.plugin import IPlugin from zope.interface import implementer from desertbot.message import IRCMessage from desertbot.moduleinterface import IModule from desertbot.modules.commandinterface import BotCommand from desertbot.response import IRCResponse @implementer(IPlugin, IModule) class StringUtils(BotCommand): def triggers(self): return ["tojson", "fromjson", "prevmsg", "prev_or_args"] def actions(self): return super(StringUtils, self).actions() + [('closest-matches', 1, self.closestMatches), ('message-channel', 1, self._storeMessage), ('message-user', 1, self._storeMessage), ('action-channel', 1, self._storeMessage), ('action-user', 1, self._storeMessage)] def closestMatches(self, search: str, wordList: List[str], numMatches: int, threshold: float) -> List[str]: similarities = sorted([(ndld(search, word), word) for word in wordList]) closeMatches = [word for (diff, word) in similarities if diff <= threshold] topN = closeMatches[:numMatches] return topN def _tojson(self, message: IRCMessage): """converts input string to json-escaped string""" return IRCResponse(json.dumps(message.parameters), message.replyTo) def _fromjson(self, message: IRCMessage): """un-escapes json strings""" return IRCResponse(str(json.loads(message.parameters)), message.replyTo) def _storeMessage(self, message: IRCMessage): """stores the current message for _prevmsg to return later""" if message.command and message.command.lower() in self.bot.moduleHandler.mappedTriggers: # ignore bot commands return if 'tracking' in message.metadata: # ignore internal messages from alias processing if any(m in message.metadata['tracking'] for m in ['Sub', 'Chain', 'Alias']): return self.messages[message.replyTo] = message def _prevmsg(self, message: IRCMessage): """returns the previous message from the current channel""" if message.replyTo not in self.messages: return IRCResponse("No previous message stored for this channel yet", message.replyTo) msg = self.messages[message.replyTo] return IRCResponse(msg.messageString, message.replyTo) def _prev_or_args(self, message: IRCMessage): """returns the previous message from the current channel, or the command arguments if given""" if message.parameters: return IRCResponse(message.parameters, message.replyTo) else: return self._prevmsg(message) commands = OrderedDict([ ('tojson', _tojson), ('fromjson', _fromjson), ('prevmsg', _prevmsg), ('prev_or_args', _prev_or_args), ]) def execute(self, message: IRCMessage): command = message.command.lower() if command in self.commands: return self.commands[command](self, message) else: return IRCResponse(f'"{message.command}" is not a recognized StringUtils command', message.replyTo) def help(self, query): command = query[0].lower() if command in self.commands: doc = re.sub(r"\s+", " ", self.commands[command].__doc__) return f"{self.bot.commandChar}{command} - {doc}" def onLoad(self): self.messages = {} stringUtils = StringUtils()
39.65625
111
0.63357
793eac9111aa62412e756ed54e444241ef79474e
35,590
py
Python
mmdet/models/dense_heads/gfl_head_fixlastscale.py
wuguikel/DCFANet
3d6a7d767f89b7c95692d89bfb2951aeca2740f6
[ "Apache-2.0" ]
null
null
null
mmdet/models/dense_heads/gfl_head_fixlastscale.py
wuguikel/DCFANet
3d6a7d767f89b7c95692d89bfb2951aeca2740f6
[ "Apache-2.0" ]
null
null
null
mmdet/models/dense_heads/gfl_head_fixlastscale.py
wuguikel/DCFANet
3d6a7d767f89b7c95692d89bfb2951aeca2740f6
[ "Apache-2.0" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule, Scale, bias_init_with_prob, normal_init from mmcv.runner import force_fp32 from mmdet.core import (anchor_inside_flags, bbox2distance, bbox_overlaps, build_assigner, build_sampler, distance2bbox, images_to_levels, multi_apply, multiclass_nms, reduce_mean, unmap) from ..builder import HEADS, build_loss from .anchor_head import AnchorHead from .cross_head_modules import BasicCrossBlock, BasicTransBlock class Integral(nn.Module): """A fixed layer for calculating integral result from distribution. This layer calculates the target location by :math: `sum{P(y_i) * y_i}`, P(y_i) denotes the softmax vector that represents the discrete distribution y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max} Args: reg_max (int): The maximal value of the discrete set. Default: 16. You may want to reset it according to your new dataset or related settings. """ def __init__(self, reg_max=16): super(Integral, self).__init__() self.reg_max = reg_max self.register_buffer('project', torch.linspace(0, self.reg_max, self.reg_max + 1)) def forward(self, x): """Forward feature from the regression head to get integral result of bounding box location. Args: x (Tensor): Features of the regression head, shape (N, 4*(n+1)), n is self.reg_max. Returns: x (Tensor): Integral result of box locations, i.e., distance offsets from the box center in four directions, shape (N, 4). """ x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1) x = F.linear(x, self.project.type_as(x)).reshape(-1, 4) return x @HEADS.register_module() class GFLHead(AnchorHead): """Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection. GFL head structure is similar with ATSS, however GFL uses 1) joint representation for classification and localization quality, and 2) flexible General distribution for bounding box locations, which are supervised by Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively https://arxiv.org/abs/2006.04388 Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. stacked_convs (int): Number of conv layers in cls and reg tower. Default: 4. conv_cfg (dict): dictionary to construct and config conv layer. Default: None. norm_cfg (dict): dictionary to construct and config norm layer. Default: dict(type='GN', num_groups=32, requires_grad=True). loss_qfl (dict): Config of Quality Focal Loss (QFL). reg_max (int): Max value of integral set :math: `{0, ..., reg_max}` in QFL setting. Default: 16. Example: >>> self = GFLHead(11, 7) >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] >>> cls_quality_score, bbox_pred = self.forward(feats) >>> assert len(cls_quality_score) == len(self.scales) """ def __init__(self, num_classes, in_channels, stacked_convs=3, conv_cfg=None, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25), reg_max=16, none_DenseRes=False, none_Cross=False, **kwargs): self.stacked_convs = stacked_convs self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.reg_max = reg_max self.none_DenseRes = none_DenseRes self.none_Cross = none_Cross super(GFLHead, self).__init__(num_classes, in_channels, **kwargs) self.sampling = False if self.train_cfg: self.assigner = build_assigner(self.train_cfg.assigner) # SSD sampling=False so use PseudoSampler sampler_cfg = dict(type='PseudoSampler') self.sampler = build_sampler(sampler_cfg, context=self) if self.reg_max > 0: self.integral = Integral(self.reg_max) self.loss_dfl = build_loss(loss_dfl) def _init_layers(self): """Initialize layers of the head.""" # self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() self.cross_convs = nn.ModuleList() if not self.none_DenseRes: self.scalesX = nn.ModuleList() convlayers_scale = [0.8, 0.64, 0.51, 0.42, 0.38] convlayers_num = [2, 2, 2, 2, 2, 2] for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( BasicTransBlock( chn, self.feat_channels, convlayers_num[i], conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.reg_convs.append( BasicTransBlock( chn, self.feat_channels, convlayers_num[i], conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) if i>0: if not self.none_DenseRes: self.scalesX.append( Scale(convlayers_scale[i-1])) self.cross_convs.append( BasicCrossBlock( chn, self.feat_channels, noneCross=self.none_Cross, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) assert self.num_anchors == 1, 'anchor free version' self.gfl_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.gfl_reg = nn.Conv2d( self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1) # ========================================================== self.scales = nn.ModuleList( [Scale(1.0) for _ in self.anchor_generator.strides]) def init_weights(self): """Initialize weights of the head.""" for m in self.cls_convs: # normal_init(m.conv, std=0.01) m.init_weights() for m in self.reg_convs: # normal_init(m.conv, std=0.01) m.init_weights() for m in self.cross_convs: m.init_weights() bias_cls = bias_init_with_prob(0.01) normal_init(self.gfl_cls, std=0.01, bias=bias_cls) normal_init(self.gfl_reg, std=0.01) def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: Usually a tuple of classification scores and bbox prediction cls_scores (list[Tensor]): Classification and quality (IoU) joint scores for all scale levels, each is a 4D-tensor, the channel number is num_classes. bbox_preds (list[Tensor]): Box distribution logits for all scale levels, each is a 4D-tensor, the channel number is 4*(n+1), n is max value of integral set. """ return multi_apply(self.forward_single, feats, self.scales) def forward_single(self, x, scale): """Forward feature of a single scale level. Args: x (Tensor): Features of a single scale level. scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize the bbox prediction. Returns: tuple: cls_score (Tensor): Cls and quality joint scores for a single scale level the channel number is num_classes. bbox_pred (Tensor): Box distribution logits for a single scale level, the channel number is 4*(n+1), n is max value of integral set. """ # cls_feat = x # reg_feat = x # for cls_conv in self.cls_convs: # cls_feat = cls_conv(cls_feat) # for reg_conv in self.reg_convs: # reg_feat = reg_conv(reg_feat) # cls_score = self.gfl_cls(cls_feat) # # bbox_pred = scale(self.gfl_reg(reg_feat)).float() # bbox_pred_nonscale = self.gfl_reg(reg_feat) # bbox_pred = scale(bbox_pred_nonscale).float() cls_feat = x reg_feat = x if not self.none_DenseRes: cls_featX = torch.zeros_like(cls_feat) reg_featX = torch.zeros_like(reg_feat) for i in range(self.stacked_convs): if i>0: # cls_feat =cls_feat + cls_feat_pre # reg_feat =reg_feat + reg_feat_pre cls_feat, reg_feat = self.cross_convs[i-1](cls_feat, reg_feat) # cls_feat_pre = cls_feat # reg_feat_pre = reg_feat cls_feat = self.cls_convs[i](cls_feat) reg_feat = self.reg_convs[i](reg_feat) if not self.none_DenseRes: if i<self.stacked_convs-1: cls_featX += self.scalesX[i](cls_feat) reg_featX += self.scalesX[i](reg_feat) else: cls_featX += cls_feat reg_featX += reg_feat if self.none_DenseRes: cls_featX = cls_feat reg_featX = reg_feat cls_score = self.gfl_cls(cls_featX) bbox_pred = scale(self.gfl_reg(reg_featX)).float() return cls_score, bbox_pred #会进一步在 loss->loss_single 中处理 def anchor_center(self, anchors): """Get anchor centers from anchors. Args: anchors (Tensor): Anchor list with shape (N, 4), "xyxy" format. Returns: Tensor: Anchor centers with shape (N, 2), "xy" format. """ anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2 anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2 return torch.stack([anchors_cx, anchors_cy], dim=-1) def loss_single(self, anchors, cls_score, bbox_pred, labels, label_weights, bbox_targets, stride, num_total_samples): """Compute loss of a single scale level. Args: anchors (Tensor): Box reference for each scale level with shape (N, num_total_anchors, 4). cls_score (Tensor): Cls and quality joint scores for each scale level has shape (N, num_classes, H, W). bbox_pred (Tensor): Box distribution logits for each scale level with shape (N, 4*(n+1), H, W), n is max value of integral set. #张量的维度依次是: batch size, 4*(bb回归分组区间数,类似直方图bin + 1), 图像高, 图像宽 labels (Tensor): Labels of each anchors with shape (N, num_total_anchors). label_weights (Tensor): Label weights of each anchor with shape (N, num_total_anchors) bbox_targets (Tensor): BBox regression targets of each anchor wight shape (N, num_total_anchors, 4). stride (tuple): Stride in this scale level. num_total_samples (int): Number of positive samples that is reduced over all GPUs. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert stride[0] == stride[1], 'h stride is not equal to w stride!' anchors = anchors.reshape(-1, 4) cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4 * (self.reg_max + 1)) bbox_targets = bbox_targets.reshape(-1, 4) labels = labels.reshape(-1) label_weights = label_weights.reshape(-1) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes bg_class_ind = self.num_classes # 仅对正例计算bb reg损失 pos_inds = ((labels >= 0) & (labels < bg_class_ind)).nonzero().squeeze(1) score = label_weights.new_zeros(labels.shape) if len(pos_inds) > 0: pos_bbox_targets = bbox_targets[pos_inds] pos_bbox_pred = bbox_pred[pos_inds] pos_anchors = anchors[pos_inds] pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0] weight_targets = cls_score.detach().sigmoid() weight_targets = weight_targets.max(dim=1)[0][pos_inds] if self.reg_max > 0: pos_bbox_pred_corners = self.integral(pos_bbox_pred) else: pos_bbox_pred_corners = pos_bbox_pred # bb(r,l,t,b) <---> reg distance pos_decode_bbox_pred = distance2bbox(pos_anchor_centers, pos_bbox_pred_corners) pos_decode_bbox_targets = pos_bbox_targets / stride[0] score[pos_inds] = bbox_overlaps( pos_decode_bbox_pred.detach(), pos_decode_bbox_targets, is_aligned=True) if self.reg_max > 0: pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1) target_corners = bbox2distance(pos_anchor_centers, pos_decode_bbox_targets, self.reg_max).reshape(-1) # regression loss loss_bbox = self.loss_bbox( pos_decode_bbox_pred, pos_decode_bbox_targets, weight=weight_targets, avg_factor=1.0) # dfl loss if self.reg_max > 0: loss_dfl = self.loss_dfl( pred_corners, target_corners, weight=weight_targets[:, None].expand(-1, 4).reshape(-1), avg_factor=4.0) else: loss_dfl = bbox_pred.sum() * 0 else: loss_bbox = bbox_pred.sum() * 0 # loss_bbox2 = bbox_pred.sum() * 0 loss_dfl = bbox_pred.sum() * 0 weight_targets = torch.tensor(0).cuda() # weight_targets2 = torch.tensor(0).cuda() # cls (qfl) loss # loss_cls在config中的这段指定,继承了AnchorHead中的loss_cls的默认成员,并没在gfl中重写定义 # loss_cls=dict( # type='QualityFocalLoss', # use_sigmoid=False, # beta=2.0, # loss_weight=1.0), loss_cls = self.loss_cls( cls_score, (labels, score), weight=label_weights, avg_factor=num_total_samples) return loss_cls, loss_bbox, loss_dfl, weight_targets.sum() @force_fp32(apply_to=('cls_scores', 'bbox_preds')) def loss(self, cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute losses of the head. Args: cls_scores (list[Tensor]): Cls and quality scores for each scale level has shape (N, num_classes, H, W). bbox_preds (list[Tensor]): Box distribution logits for each scale level with shape (N, 4*(n+1), H, W), n is max value of integral set. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (list[Tensor] | None): specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] assert len(featmap_sizes) == self.anchor_generator.num_levels device = cls_scores[0].device # get_anchors()的实现在文件mmdet/models/dense_heads/anchor_head.py中 # 预计原理就是根据设置的长宽比列表和大小列表生成anchor, 但没有输入GT的valid_flag_list怎么计算? anchor_list, valid_flag_list = self.get_anchors( featmap_sizes, img_metas, device=device) label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 # get_targets()的实现在文件mmdet/models/dense_heads/anchor_head.py中 # 预计原理是根据GT选择有效的anchor # 关键在get_targets_single中sample实现 # assign和sample是在anchor target中的核心操作。 # assign一般基于IOU,mmdet中也有基于atss和基于point的等。 # sample一般为随机,也有ohem的,基于伪标签的。 cls_reg_targets = self.get_targets( anchor_list, valid_flag_list, gt_bboxes, img_metas, gt_bboxes_ignore_list=gt_bboxes_ignore, gt_labels_list=gt_labels, label_channels=label_channels) # 注意,如果整个batch都没有有效的anchor则直接返回 if cls_reg_targets is None: return None (anchor_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets num_total_samples = reduce_mean( torch.tensor(num_total_pos).cuda()).item() num_total_samples = max(num_total_samples, 1.0) losses_cls, losses_bbox, losses_dfl,\ avg_factor = multi_apply( self.loss_single, anchor_list, cls_scores, bbox_preds, labels_list, label_weights_list, bbox_targets_list, self.anchor_generator.strides, num_total_samples=num_total_samples) avg_factor = sum(avg_factor) avg_factor = reduce_mean(avg_factor).item() losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox)) if self.reg_max > 0: losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl)) # avg_factor2 = sum(avg_factor2) # avg_factor2 = reduce_mean(avg_factor2).item() # losses_bbox2 = list(map(lambda x: x / avg_factor2, losses_bbox2)) if self.reg_max > 0: return dict( loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl) else: return dict( loss_cls=losses_cls, loss_bbox=losses_bbox) def _get_bboxes_single(self, cls_scores, bbox_preds, mlvl_anchors, img_shape, scale_factor, cfg, rescale=False, with_nms=True): """Transform outputs for a single batch item into labeled boxes. Args: cls_scores (list[Tensor]): Box scores for a single scale level has shape (num_classes, H, W). bbox_preds (list[Tensor]): Box distribution logits for a single scale level with shape (4*(n+1), H, W), n is max value of integral set. mlvl_anchors (list[Tensor]): Box reference for a single scale level with shape (num_total_anchors, 4). img_shape (tuple[int]): Shape of the input image, (height, width, 3). scale_factor (ndarray): Scale factor of the image arange as (w_scale, h_scale, w_scale, h_scale). cfg (mmcv.Config | None): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before return boxes. Default: True. Returns: tuple(Tensor): det_bboxes (Tensor): Bbox predictions in shape (N, 5), where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. det_labels (Tensor): A (N,) tensor where each item is the predicted class label of the corresponding box. """ cfg = self.test_cfg if cfg is None else cfg assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors) mlvl_bboxes = [] mlvl_scores = [] for cls_score, bbox_pred, stride, anchors in zip( cls_scores, bbox_preds, self.anchor_generator.strides, mlvl_anchors): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] assert stride[0] == stride[1] scores = cls_score.permute(1, 2, 0).reshape( -1, self.cls_out_channels).sigmoid() bbox_pred = bbox_pred.permute(1, 2, 0) if self.reg_max > 0: bbox_pred = self.integral(bbox_pred) * stride[0] else: bbox_pred = bbox_pred.reshape(-1,4) * stride[0] nms_pre = cfg.get('nms_pre', -1) if nms_pre > 0 and scores.shape[0] > nms_pre: max_scores, _ = scores.max(dim=1) _, topk_inds = max_scores.topk(nms_pre) anchors = anchors[topk_inds, :] bbox_pred = bbox_pred[topk_inds, :] scores = scores[topk_inds, :] bboxes = distance2bbox( self.anchor_center(anchors), bbox_pred, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) # Add a dummy background class to the backend when using sigmoid # remind that we set FG labels to [0, num_class-1] since mmdet v2.0 # BG cat_id: num_class padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1) mlvl_scores = torch.cat([mlvl_scores, padding], dim=1) if with_nms: det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores, cfg.score_thr, cfg.nms, cfg.max_per_img) return det_bboxes, det_labels else: return mlvl_bboxes, mlvl_scores def get_bboxes(self, cls_scores, bbox_preds, img_metas, cfg=None, rescale=False, with_nms=True): """Transform network output for a batch into bbox predictions. Args: cls_scores (list[Tensor]): Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W) bbox_preds (list[Tensor]): Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W) img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. cfg (mmcv.Config | None): Test / postprocessing configuration, if None, test_cfg would be used rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before return boxes. Default: True. Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is an (n, 5) tensor, where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. The second item is a (n,) tensor where each item is the predicted class labelof the corresponding box. Example: >>> import mmcv >>> self = AnchorHead( >>> num_classes=9, >>> in_channels=1, >>> anchor_generator=dict( >>> type='AnchorGenerator', >>> scales=[8], >>> ratios=[0.5, 1.0, 2.0], >>> strides=[4,])) >>> img_metas = [{'img_shape': (32, 32, 3), 'scale_factor': 1}] >>> cfg = mmcv.Config(dict( >>> score_thr=0.00, >>> nms=dict(type='nms', iou_thr=1.0), >>> max_per_img=10)) >>> feat = torch.rand(1, 1, 3, 3) >>> cls_score, bbox_pred = self.forward_single(feat) >>> # note the input lists are over different levels, not images >>> cls_scores, bbox_preds = [cls_score], [bbox_pred] >>> result_list = self.get_bboxes(cls_scores, bbox_preds, >>> img_metas, cfg) >>> det_bboxes, det_labels = result_list[0] >>> assert len(result_list) == 1 >>> assert det_bboxes.shape[1] == 5 >>> assert len(det_bboxes) == len(det_labels) == cfg.max_per_img """ assert len(cls_scores) == len(bbox_preds) num_levels = len(cls_scores) device = cls_scores[0].device featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_anchors = self.anchor_generator.grid_anchors( featmap_sizes, device=device) result_list = [] for img_id in range(len(img_metas)): cls_score_list = [ cls_scores[i][img_id].detach() for i in range(num_levels) ] bbox_pred_list = [ bbox_preds[i][img_id].detach() for i in range(num_levels) ] img_shape = img_metas[img_id]['img_shape'] scale_factor = img_metas[img_id]['scale_factor'] if with_nms: # some heads don't support with_nms argument proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, mlvl_anchors, img_shape, scale_factor, cfg, rescale) else: proposals = self._get_bboxes_single(cls_score_list, bbox_pred_list, mlvl_anchors, img_shape, scale_factor, cfg, rescale, with_nms) result_list.append(proposals) return result_list def get_targets(self, anchor_list, valid_flag_list, gt_bboxes_list, img_metas, gt_bboxes_ignore_list=None, gt_labels_list=None, label_channels=1, unmap_outputs=True): """Get targets for GFL head. This method is almost the same as `AnchorHead.get_targets()`. Besides returning the targets as the parent method does, it also returns the anchors as the first element of the returned tuple. """ num_imgs = len(img_metas) assert len(anchor_list) == len(valid_flag_list) == num_imgs # anchor number of multi levels num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] num_level_anchors_list = [num_level_anchors] * num_imgs # concat all level anchors and flags to a single tensor for i in range(num_imgs): assert len(anchor_list[i]) == len(valid_flag_list[i]) anchor_list[i] = torch.cat(anchor_list[i]) valid_flag_list[i] = torch.cat(valid_flag_list[i]) # compute targets for each image if gt_bboxes_ignore_list is None: gt_bboxes_ignore_list = [None for _ in range(num_imgs)] if gt_labels_list is None: gt_labels_list = [None for _ in range(num_imgs)] (all_anchors, all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply( self._get_target_single, anchor_list, valid_flag_list, num_level_anchors_list, gt_bboxes_list, gt_bboxes_ignore_list, gt_labels_list, img_metas, label_channels=label_channels, unmap_outputs=unmap_outputs) # no valid anchors if any([labels is None for labels in all_labels]): return None # sampled anchors of all images num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list]) num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list]) # split targets to a list w.r.t. multiple levels anchors_list = images_to_levels(all_anchors, num_level_anchors) labels_list = images_to_levels(all_labels, num_level_anchors) label_weights_list = images_to_levels(all_label_weights, num_level_anchors) bbox_targets_list = images_to_levels(all_bbox_targets, num_level_anchors) bbox_weights_list = images_to_levels(all_bbox_weights, num_level_anchors) return (anchors_list, labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, num_total_pos, num_total_neg) def _get_target_single(self, flat_anchors, valid_flags, num_level_anchors, gt_bboxes, gt_bboxes_ignore, gt_labels, img_meta, label_channels=1, unmap_outputs=True): """Compute regression, classification targets for anchors in a single image. Args: flat_anchors (Tensor): Multi-level anchors of the image, which are concatenated into a single tensor of shape (num_anchors, 4) valid_flags (Tensor): Multi level valid flags of the image, which are concatenated into a single tensor of shape (num_anchors,). num_level_anchors Tensor): Number of anchors of each scale level. gt_bboxes (Tensor): Ground truth bboxes of the image, shape (num_gts, 4). gt_bboxes_ignore (Tensor): Ground truth bboxes to be ignored, shape (num_ignored_gts, 4). gt_labels (Tensor): Ground truth labels of each box, shape (num_gts,). img_meta (dict): Meta info of the image. label_channels (int): Channel of label. unmap_outputs (bool): Whether to map outputs back to the original set of anchors. Returns: tuple: N is the number of total anchors in the image. anchors (Tensor): All anchors in the image with shape (N, 4). labels (Tensor): Labels of all anchors in the image with shape (N,). label_weights (Tensor): Label weights of all anchor in the image with shape (N,). bbox_targets (Tensor): BBox targets of all anchors in the image with shape (N, 4). bbox_weights (Tensor): BBox weights of all anchors in the image with shape (N, 4). pos_inds (Tensor): Indices of postive anchor with shape (num_pos,). neg_inds (Tensor): Indices of negative anchor with shape (num_neg,). """ inside_flags = anchor_inside_flags(flat_anchors, valid_flags, img_meta['img_shape'][:2], self.train_cfg.allowed_border) if not inside_flags.any(): return (None, ) * 7 # assign gt and sample anchors anchors = flat_anchors[inside_flags, :] num_level_anchors_inside = self.get_num_level_anchors_inside( num_level_anchors, inside_flags) assign_result = self.assigner.assign(anchors, num_level_anchors_inside, gt_bboxes, gt_bboxes_ignore, gt_labels) sampling_result = self.sampler.sample(assign_result, anchors, gt_bboxes) num_valid_anchors = anchors.shape[0] bbox_targets = torch.zeros_like(anchors) bbox_weights = torch.zeros_like(anchors) labels = anchors.new_full((num_valid_anchors, ), self.num_classes, dtype=torch.long) label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float) pos_inds = sampling_result.pos_inds neg_inds = sampling_result.neg_inds if len(pos_inds) > 0: pos_bbox_targets = sampling_result.pos_gt_bboxes bbox_targets[pos_inds, :] = pos_bbox_targets bbox_weights[pos_inds, :] = 1.0 if gt_labels is None: # Only rpn gives gt_labels as None # Foreground is the first class labels[pos_inds] = 0 else: labels[pos_inds] = gt_labels[ sampling_result.pos_assigned_gt_inds] if self.train_cfg.pos_weight <= 0: label_weights[pos_inds] = 1.0 else: label_weights[pos_inds] = self.train_cfg.pos_weight if len(neg_inds) > 0: label_weights[neg_inds] = 1.0 # map up to original set of anchors if unmap_outputs: num_total_anchors = flat_anchors.size(0) anchors = unmap(anchors, num_total_anchors, inside_flags) labels = unmap( labels, num_total_anchors, inside_flags, fill=self.num_classes) label_weights = unmap(label_weights, num_total_anchors, inside_flags) bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) return (anchors, labels, label_weights, bbox_targets, bbox_weights, pos_inds, neg_inds) def get_num_level_anchors_inside(self, num_level_anchors, inside_flags): split_inside_flags = torch.split(inside_flags, num_level_anchors) num_level_anchors_inside = [ int(flags.sum()) for flags in split_inside_flags ] return num_level_anchors_inside
42.931242
80
0.558191
793eaecccff9f663269eef488d71f4b7da1b97ef
7,547
py
Python
builder/main.py
stanford-ssi/platform-atmelsam
d9fe6a3699c687e213e71bee91dd5f3836e79247
[ "Apache-2.0" ]
null
null
null
builder/main.py
stanford-ssi/platform-atmelsam
d9fe6a3699c687e213e71bee91dd5f3836e79247
[ "Apache-2.0" ]
null
null
null
builder/main.py
stanford-ssi/platform-atmelsam
d9fe6a3699c687e213e71bee91dd5f3836e79247
[ "Apache-2.0" ]
1
2022-01-15T13:19:10.000Z
2022-01-15T13:19:10.000Z
# Copyright 2014-present PlatformIO <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from os.path import basename, join from SCons.Script import (ARGUMENTS, COMMAND_LINE_TARGETS, AlwaysBuild, Builder, Default, DefaultEnvironment) from platformio.util import get_serialports def BeforeUpload(target, source, env): # pylint: disable=W0613,W0621 env.AutodetectUploadPort() upload_options = {} if "BOARD" in env: upload_options = env.BoardConfig().get("upload", {}) if not upload_options.get("disable_flushing", False): env.FlushSerialBuffer("$UPLOAD_PORT") before_ports = get_serialports() if upload_options.get("use_1200bps_touch", False): env.TouchSerialPort("$UPLOAD_PORT", 1200) if upload_options.get("wait_for_upload_port", False): env.Replace(UPLOAD_PORT=env.WaitForNewSerialPort(before_ports)) # use only port name for BOSSA if ("/" in env.subst("$UPLOAD_PORT") and env.subst("$UPLOAD_PROTOCOL") == "sam-ba"): env.Replace(UPLOAD_PORT=basename(env.subst("$UPLOAD_PORT"))) env = DefaultEnvironment() platform = env.PioPlatform() board = env.BoardConfig() upload_protocol = env.subst("$UPLOAD_PROTOCOL") build_mcu = env.get("BOARD_MCU", board.get("build.mcu", "")) env.Replace( AR="arm-none-eabi-ar", AS="arm-none-eabi-as", CC="arm-none-eabi-gcc", CXX="arm-none-eabi-g++", GDB="arm-none-eabi-gdb", OBJCOPY="arm-none-eabi-objcopy", RANLIB="arm-none-eabi-ranlib", SIZETOOL="arm-none-eabi-size", ARFLAGS=["rc"], SIZEPROGREGEXP=r"^(?:\.text|\.data|\.rodata|\.text.align|\.ARM.exidx)\s+(\d+).*", SIZEDATAREGEXP=r"^(?:\.data|\.bss|\.noinit)\s+(\d+).*", SIZECHECKCMD="$SIZETOOL -A -d $SOURCES", SIZEPRINTCMD='$SIZETOOL -B -d $SOURCES', PROGSUFFIX=".elf" ) # Allow user to override via pre:script if env.get("PROGNAME", "program") == "program": env.Replace(PROGNAME="firmware") env.Append( BUILDERS=dict( ElfToBin=Builder( action=env.VerboseAction(" ".join([ "$OBJCOPY", "-O", "binary", "$SOURCES", "$TARGET" ]), "Building $TARGET"), suffix=".bin" ), ElfToHex=Builder( action=env.VerboseAction(" ".join([ "$OBJCOPY", "-O", "ihex", "-R", ".eeprom", "$SOURCES", "$TARGET" ]), "Building $TARGET"), suffix=".hex" ) ) ) if not env.get("PIOFRAMEWORK"): env.SConscript("frameworks/_bare.py") # # Target: Build executable and linkable firmware # target_elf = None if "nobuild" in COMMAND_LINE_TARGETS: target_firm = join("$BUILD_DIR", "${PROGNAME}.%s" % ("hex" if upload_protocol == "stk500v2" else "bin")) else: target_elf = env.BuildProgram() if upload_protocol == "stk500v2": target_firm = env.ElfToHex( join("$BUILD_DIR", "${PROGNAME}"), target_elf) else: target_firm = env.ElfToBin( join("$BUILD_DIR", "${PROGNAME}"), target_elf) AlwaysBuild(env.Alias("nobuild", target_firm)) target_buildprog = env.Alias("buildprog", target_firm, target_firm) # # Target: Print binary size # target_size = env.Alias( "size", target_elf, env.VerboseAction("$SIZEPRINTCMD", "Calculating size $SOURCE")) AlwaysBuild(target_size) # # Target: Upload by default .bin file # debug_tools = board.get("debug.tools", {}) upload_actions = [] if upload_protocol.startswith("blackmagic"): env.Replace( UPLOADER="$GDB", UPLOADERFLAGS=[ "-nx", "--batch", "-ex", "target extended-remote $UPLOAD_PORT", "-ex", "monitor %s_scan" % ("jtag" if upload_protocol == "blackmagic-jtag" else "swdp"), "-ex", "attach 1", "-ex", "load", "-ex", "compare-sections", "-ex", "kill" ], UPLOADCMD="$UPLOADER $UPLOADERFLAGS $BUILD_DIR/${PROGNAME}.elf" ) upload_actions = [ env.VerboseAction(env.AutodetectUploadPort, "Looking for BlackMagic port..."), env.VerboseAction("$UPLOADCMD", "Uploading $SOURCE") ] elif upload_protocol == "sam-ba": env.Replace( UPLOADER="bossac", UPLOADERFLAGS=[ "--port", '"$UPLOAD_PORT"', "--erase", "--write", "--verify", "--reset" ], UPLOADCMD="$UPLOADER $UPLOADERFLAGS $SOURCES" ) if board.get("build.core") == "adafruit": env.Append( UPLOADERFLAGS=["-U", "--offset", board.get("upload.section_start")]) else: env.Append(UPLOADERFLAGS=[ "-U", "true" if env.BoardConfig().get("upload.native_usb", False) else "false" ]) if "sam3x8e" in build_mcu: env.Append(UPLOADERFLAGS=["--boot"]) if int(ARGUMENTS.get("PIOVERBOSE", 0)): env.Prepend(UPLOADERFLAGS=["--info", "--debug"]) upload_actions = [ env.VerboseAction(BeforeUpload, "Looking for upload port..."), env.VerboseAction("$UPLOADCMD", "Uploading $SOURCE") ] elif upload_protocol == "stk500v2": env.Replace( UPLOADER="avrdude", UPLOADERFLAGS=[ "-p", "atmega2560", # Arduino M0/Tian upload hook "-C", join( platform.get_package_dir("tool-avrdude") or "", "avrdude.conf"), "-c", "$UPLOAD_PROTOCOL", "-P", '"$UPLOAD_PORT"', "-b", "$UPLOAD_SPEED", "-u" ], UPLOADCMD="$UPLOADER $UPLOADERFLAGS -U flash:w:$SOURCES:i" ) if int(ARGUMENTS.get("PIOVERBOSE", 0)): env.Prepend(UPLOADERFLAGS=["-v"]) upload_actions = [ env.VerboseAction(BeforeUpload, "Looking for upload port..."), env.VerboseAction("$UPLOADCMD", "Uploading $SOURCE") ] elif upload_protocol in debug_tools: env.Replace( UPLOADER="openocd", UPLOADERFLAGS=debug_tools.get(upload_protocol).get("server").get( "arguments", []) + [ "-c", "program {{$SOURCE}} verify reset %s; shutdown" % board.get("upload.section_start", "") ], UPLOADCMD="$UPLOADER $UPLOADERFLAGS" ) env['UPLOADERFLAGS'] = [ f.replace("$PACKAGE_DIR", platform.get_package_dir("tool-openocd") or "") for f in env['UPLOADERFLAGS'] ] upload_actions = [env.VerboseAction("$UPLOADCMD", "Uploading $SOURCE")] # custom upload tool elif "UPLOADCMD" in env: upload_actions = [env.VerboseAction("$UPLOADCMD", "Uploading $SOURCE")] else: sys.stderr.write("Warning! Unknown upload protocol %s\n" % upload_protocol) AlwaysBuild(env.Alias("upload", target_firm, upload_actions)) # # Setup default targets # Default([target_buildprog, target_size])
30.309237
86
0.591891
793eaf12e8df5b69fbe0c625b09e8a6a110c4160
6,192
py
Python
pretrained-model/vocoder/universal-melgan/universal-melgan-1024.py
ishine/malaya-speech
fd34afc7107af1656dff4b3201fa51dda54fde18
[ "MIT" ]
111
2020-08-31T04:58:54.000Z
2022-03-29T15:44:18.000Z
pretrained-model/vocoder/universal-melgan/universal-melgan-1024.py
ishine/malaya-speech
fd34afc7107af1656dff4b3201fa51dda54fde18
[ "MIT" ]
14
2020-12-16T07:27:22.000Z
2022-03-15T17:39:01.000Z
pretrained-model/vocoder/universal-melgan/universal-melgan-1024.py
ishine/malaya-speech
fd34afc7107af1656dff4b3201fa51dda54fde18
[ "MIT" ]
29
2021-02-09T08:57:15.000Z
2022-03-12T14:09:19.000Z
import os os.environ['CUDA_VISIBLE_DEVICES'] = '1' import tensorflow as tf import numpy as np from glob import glob from itertools import cycle import malaya_speech import malaya_speech.train from malaya_speech.train.model import universal_melgan as melgan from malaya_speech.train.model import melgan as melgan_loss import malaya_speech.config from malaya_speech.train.loss import calculate_2d_loss, calculate_3d_loss import random mels = glob('output-universal/mels/*.npy') mels.extend(glob('speech-augmentation/mels/*.npy')) random.shuffle(mels) file_cycle = cycle(mels) def generate(batch_max_steps=8192, hop_size=256): while True: f = next(file_cycle) mel = np.load(f) audio = np.load(f.replace('mels', 'audios')) batch_max_frames = batch_max_steps // hop_size if len(audio) < len(mel) * hop_size: audio = np.pad(audio, [[0, len(mel) * hop_size - len(audio)]]) if len(mel) > batch_max_frames: interval_start = 0 interval_end = len(mel) - batch_max_frames start_frame = random.randint(interval_start, interval_end) start_step = start_frame * hop_size audio = audio[start_step: start_step + batch_max_steps] mel = mel[start_frame: start_frame + batch_max_frames, :] else: audio = np.pad(audio, [[0, batch_max_steps - len(audio)]]) mel = np.pad(mel, [[0, batch_max_frames - len(mel)], [0, 0]]) yield {'mel': mel, 'audio': audio} dataset = tf.data.Dataset.from_generator( generate, {'mel': tf.float32, 'audio': tf.float32}, output_shapes={ 'mel': tf.TensorShape([None, 80]), 'audio': tf.TensorShape([None]), }, ) dataset = dataset.shuffle(32) dataset = dataset.padded_batch( 32, padded_shapes={ 'audio': tf.TensorShape([None]), 'mel': tf.TensorShape([None, 80]), }, padding_values={ 'audio': tf.constant(0, dtype=tf.float32), 'mel': tf.constant(0, dtype=tf.float32), }, ) features = dataset.make_one_shot_iterator().get_next() melgan_config = malaya_speech.config.universal_melgan_config melgan_config['melgan_generator_params']['filters'] = 1024 generator = melgan.Generator( melgan.GeneratorConfig(**melgan_config['melgan_generator_params']), name='universalmelgan-generator', ) discriminator = melgan.MultiScaleDiscriminator( melgan.WaveFormDiscriminatorConfig( **melgan_config['melgan_waveform_discriminator_params'] ), melgan.STFTDiscriminatorConfig( **melgan_config['melgan_stft_discriminator_params'] ), name='universalmelgan-discriminator', ) mels_loss = melgan_loss.loss.TFMelSpectrogram() mse_loss = tf.keras.losses.MeanSquaredError() mae_loss = tf.keras.losses.MeanAbsoluteError() def compute_per_example_generator_losses(audios, outputs): y_hat = outputs p_hat = discriminator(y_hat) p = discriminator(tf.expand_dims(audios, 2)) adv_loss = 0.0 for i in range(len(p_hat)): adv_loss += mse_loss(tf.ones_like(p_hat[i][-1]), p_hat[i][-1]) adv_loss /= i + 1 fm_loss = 0.0 for i in range(len(p_hat)): for j in range(len(p_hat[i]) - 1): fm_loss += mae_loss(p[i][j], p_hat[i][j]) fm_loss /= (i + 1) * (j + 1) adv_loss += 10 * fm_loss per_example_losses = adv_loss a = calculate_2d_loss(audios, tf.squeeze(y_hat, -1), loss_fn=mels_loss) dict_metrics_losses = { 'adversarial_loss': adv_loss, 'fm_loss': fm_loss, 'gen_loss': adv_loss, 'mels_spectrogram_loss': tf.reduce_mean(a), } return per_example_losses, dict_metrics_losses def compute_per_example_discriminator_losses(audios, gen_outputs): y_hat = gen_outputs y = tf.expand_dims(audios, 2) p = discriminator(y) p_hat = discriminator(y_hat) real_loss = 0.0 fake_loss = 0.0 for i in range(len(p)): real_loss += mse_loss(tf.ones_like(p[i][-1]), p[i][-1]) fake_loss += mse_loss(tf.zeros_like(p_hat[i][-1]), p_hat[i][-1]) real_loss /= i + 1 fake_loss /= i + 1 dis_loss = real_loss + fake_loss per_example_losses = dis_loss dict_metrics_losses = { 'real_loss': real_loss, 'fake_loss': fake_loss, 'dis_loss': dis_loss, } return per_example_losses, dict_metrics_losses y_hat = generator(features['mel'], training=True) audios = features['audio'] per_example_losses, generator_losses = compute_per_example_generator_losses( audios, y_hat ) generator_loss = tf.reduce_mean(per_example_losses) y_hat = generator(features['mel'], training=True) audios = features['audio'] per_example_losses, discriminator_losses = compute_per_example_discriminator_losses( audios, y_hat ) discriminator_loss = tf.reduce_mean(per_example_losses) for k, v in generator_losses.items(): tf.summary.scalar(k, v) for k, v in discriminator_losses.items(): tf.summary.scalar(k, v) summaries = tf.summary.merge_all() t_vars = tf.trainable_variables() d_vars = [ var for var in t_vars if var.name.startswith('universalmelgan-discriminator') ] g_vars = [ var for var in t_vars if var.name.startswith('universalmelgan-generator') ] d_optimizer = tf.train.AdamOptimizer(0.0001, beta1=0.5, beta2=0.9).minimize( discriminator_loss, var_list=d_vars ) g_optimizer = tf.train.AdamOptimizer(0.0001, beta1=0.5, beta2=0.9).minimize( generator_loss, var_list=g_vars ) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() checkpoint = 5000 write_tensorboard = 100 epoch = 1_000_000 path = 'universal-melgan-1024' writer = tf.summary.FileWriter(f'./{path}') ckpt_path = tf.train.latest_checkpoint(path) if ckpt_path: saver.restore(sess, ckpt_path) for i in range(epoch): g_loss, _ = sess.run([generator_loss, g_optimizer]) d_loss, _ = sess.run([discriminator_loss, d_optimizer]) s = sess.run(summaries) writer.add_summary(s, i) if i % checkpoint == 0: saver.save(sess, f'{path}/model.ckpt', global_step=i) if i % write_tensorboard == 0: writer.add_summary(s, i) print(i, g_loss, d_loss)
28.534562
84
0.683463
793eafbf7cda80db650a33dde634dfb2104e463f
6,493
py
Python
Run.py
raghuslash/3D-BoundingBox
8969f18ab585af1e2da0e6deae0f1cc72ce289e1
[ "MIT" ]
287
2018-12-09T11:53:53.000Z
2022-03-24T12:12:07.000Z
Run.py
raghuslash/3D-BoundingBox
8969f18ab585af1e2da0e6deae0f1cc72ce289e1
[ "MIT" ]
23
2019-02-28T06:56:14.000Z
2022-03-04T23:15:54.000Z
Run.py
raghuslash/3D-BoundingBox
8969f18ab585af1e2da0e6deae0f1cc72ce289e1
[ "MIT" ]
69
2018-12-17T12:20:31.000Z
2022-03-23T08:50:05.000Z
""" Images must be in ./Kitti/testing/image_2/ and camera matricies in ./Kitti/testing/calib/ Uses YOLO to obtain 2D box, PyTorch to get 3D box, plots both SPACE bar for next image, any other key to exit """ from torch_lib.Dataset import * from library.Math import * from library.Plotting import * from torch_lib import Model, ClassAverages from yolo.yolo import cv_Yolo import os import time import numpy as np import cv2 import torch import torch.nn as nn from torch.autograd import Variable from torchvision.models import vgg import argparse def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser = argparse.ArgumentParser() parser.add_argument("--image-dir", default="eval/image_2/", help="Relative path to the directory containing images to detect. Default \ is eval/image_2/") # TODO: support multiple cal matrix input types parser.add_argument("--cal-dir", default="camera_cal/", help="Relative path to the directory containing camera calibration form KITTI. \ Default is camera_cal/") parser.add_argument("--video", action="store_true", help="Weather or not to advance frame-by-frame as fast as possible. \ By default, this will pull images from ./eval/video") parser.add_argument("--show-yolo", action="store_true", help="Show the 2D BoundingBox detecions on a separate image") parser.add_argument("--hide-debug", action="store_true", help="Supress the printing of each 3d location") def plot_regressed_3d_bbox(img, cam_to_img, box_2d, dimensions, alpha, theta_ray, img_2d=None): # the math! returns X, the corners used for constraint location, X = calc_location(dimensions, cam_to_img, box_2d, alpha, theta_ray) orient = alpha + theta_ray if img_2d is not None: plot_2d_box(img_2d, box_2d) plot_3d_box(img, cam_to_img, orient, dimensions, location) # 3d boxes return location def main(): FLAGS = parser.parse_args() # load torch weights_path = os.path.abspath(os.path.dirname(__file__)) + '/weights' model_lst = [x for x in sorted(os.listdir(weights_path)) if x.endswith('.pkl')] if len(model_lst) == 0: print('No previous model found, please train first!') exit() else: print('Using previous model %s'%model_lst[-1]) my_vgg = vgg.vgg19_bn(pretrained=True) # TODO: load bins from file or something model = Model.Model(features=my_vgg.features, bins=2).cuda() checkpoint = torch.load(weights_path + '/%s'%model_lst[-1]) model.load_state_dict(checkpoint['model_state_dict']) model.eval() # load yolo yolo_path = os.path.abspath(os.path.dirname(__file__)) + '/weights' yolo = cv_Yolo(yolo_path) averages = ClassAverages.ClassAverages() # TODO: clean up how this is done. flag? angle_bins = generate_bins(2) image_dir = FLAGS.image_dir cal_dir = FLAGS.cal_dir if FLAGS.video: if FLAGS.image_dir == "eval/image_2/" and FLAGS.cal_dir == "camera_cal/": image_dir = "eval/video/2011_09_26/image_2/" cal_dir = "eval/video/2011_09_26/" img_path = os.path.abspath(os.path.dirname(__file__)) + "/" + image_dir # using P_rect from global calibration file calib_path = os.path.abspath(os.path.dirname(__file__)) + "/" + cal_dir calib_file = calib_path + "calib_cam_to_cam.txt" # using P from each frame # calib_path = os.path.abspath(os.path.dirname(__file__)) + '/Kitti/testing/calib/' try: ids = [x.split('.')[0] for x in sorted(os.listdir(img_path))] except: print("\nError: no images in %s"%img_path) exit() for img_id in ids: start_time = time.time() img_file = img_path + img_id + ".png" # P for each frame # calib_file = calib_path + id + ".txt" truth_img = cv2.imread(img_file) img = np.copy(truth_img) yolo_img = np.copy(truth_img) detections = yolo.detect(yolo_img) for detection in detections: if not averages.recognized_class(detection.detected_class): continue # this is throwing when the 2d bbox is invalid # TODO: better check try: detectedObject = DetectedObject(img, detection.detected_class, detection.box_2d, calib_file) except: continue theta_ray = detectedObject.theta_ray input_img = detectedObject.img proj_matrix = detectedObject.proj_matrix box_2d = detection.box_2d detected_class = detection.detected_class input_tensor = torch.zeros([1,3,224,224]).cuda() input_tensor[0,:,:,:] = input_img [orient, conf, dim] = model(input_tensor) orient = orient.cpu().data.numpy()[0, :, :] conf = conf.cpu().data.numpy()[0, :] dim = dim.cpu().data.numpy()[0, :] dim += averages.get_item(detected_class) argmax = np.argmax(conf) orient = orient[argmax, :] cos = orient[0] sin = orient[1] alpha = np.arctan2(sin, cos) alpha += angle_bins[argmax] alpha -= np.pi if FLAGS.show_yolo: location = plot_regressed_3d_bbox(img, proj_matrix, box_2d, dim, alpha, theta_ray, truth_img) else: location = plot_regressed_3d_bbox(img, proj_matrix, box_2d, dim, alpha, theta_ray) if not FLAGS.hide_debug: print('Estimated pose: %s'%location) if FLAGS.show_yolo: numpy_vertical = np.concatenate((truth_img, img), axis=0) cv2.imshow('SPACE for next image, any other key to exit', numpy_vertical) else: cv2.imshow('3D detections', img) if not FLAGS.hide_debug: print("\n") print('Got %s poses in %.3f seconds'%(len(detections), time.time() - start_time)) print('-------------') if FLAGS.video: cv2.waitKey(1) else: if cv2.waitKey(0) != 32: # space bar exit() if __name__ == '__main__': main()
32.143564
109
0.6142
793eb07c8974fbede5a5ee2bf3c4b09557c72b7b
20,709
py
Python
azure-mgmt-compute/tests/test_mgmt_compute.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
null
null
null
azure-mgmt-compute/tests/test_mgmt_compute.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-11-29T14:46:42.000Z
2018-11-29T14:46:42.000Z
azure-mgmt-compute/tests/test_mgmt_compute.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-08-28T14:36:47.000Z
2018-08-28T14:36:47.000Z
# coding: utf-8 #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import unittest from collections import namedtuple import azure.mgmt.compute import azure.mgmt.network.models import azure.mgmt.storage.models from devtools_testutils import ( AzureMgmtTestCase, ResourceGroupPreparer, ) ComputeResourceNames = namedtuple( 'ComputeResourceNames', ['storage', 'vm' ,'network', 'nic', 'subnet'], ) class MgmtComputeTest(AzureMgmtTestCase): def setUp(self): super(MgmtComputeTest, self).setUp() self.compute_client = self.create_mgmt_client( azure.mgmt.compute.ComputeManagementClient ) self.linux_img_ref_id = "/" + self.compute_client.config.subscription_id + "/services/images/b4590d9e3ed742e4a1d46e5424aa335e__sles12-azure-guest-priority.x86-64-0.4.3-build1.1" self.windows_img_ref_id = "/" + self.compute_client.config.subscription_id + "/services/images/a699494373c04fc0bc8f2bb1389d6106__Windows-Server-2012-Datacenter-201503.01-en.us-127GB.vhd" if not self.is_playback(): self.storage_client = self.create_mgmt_client( azure.mgmt.storage.StorageManagementClient ) self.network_client = self.create_mgmt_client( azure.mgmt.network.NetworkManagementClient ) def get_resource_names(self, base): return ComputeResourceNames( self.get_resource_name(base + 'stor'), self.get_resource_name(base + 'vm'), self.get_resource_name(base + 'net'), self.get_resource_name(base + 'nic'), self.get_resource_name(base + 'sub'), ) def create_storage_account(self, group_name, location, storage_name): params_create = azure.mgmt.storage.models.StorageAccountCreateParameters( sku=azure.mgmt.storage.models.Sku(name=azure.mgmt.storage.models.SkuName.standard_lrs), kind=azure.mgmt.storage.models.Kind.storage, location=location ) result_create = self.storage_client.storage_accounts.create( group_name, storage_name, params_create, ) result_create.wait() def create_virtual_network(self, group_name, location, network_name, subnet_name): params_create = azure.mgmt.network.models.VirtualNetwork( location=location, address_space=azure.mgmt.network.models.AddressSpace( address_prefixes=[ '10.0.0.0/16', ], ), subnets=[ azure.mgmt.network.models.Subnet( name=subnet_name, address_prefix='10.0.0.0/24', ), ], ) azure_operation_poller = self.network_client.virtual_networks.create_or_update( group_name, network_name, params_create, ) result_create = azure_operation_poller.result() self.assertEqual(result_create.name, network_name) result_get = self.network_client.subnets.get( group_name, network_name, subnet_name, ) self.assertEqual(result_get.name, subnet_name) return result_get def create_network_interface(self, group_name, location, interface_name, subnet): config_name = 'pyarmconfig' params_create = azure.mgmt.network.models.NetworkInterface( location=location, ip_configurations=[ azure.mgmt.network.models.NetworkInterfaceIPConfiguration( name=config_name, # bug in Swagger azure.mgmt.network.models.enums.IPAllocationMethod.dynamic, private_ip_allocation_method="Dynamic", subnet=subnet, ), ], ) result_create = self.network_client.network_interfaces.create_or_update( group_name, interface_name, params_create, ) result_create = result_create.result() self.assertEqual(result_create.name, interface_name) return result_create.id def get_os_profile(self, group_name): virtual_machines_models = self.compute_client.virtual_machines.models return virtual_machines_models.OSProfile( admin_username='Foo12', admin_password='BaR@123' + group_name, computer_name='test', ) def get_hardware_profile(self): virtual_machines_models = self.compute_client.virtual_machines.models return virtual_machines_models.HardwareProfile( vm_size=virtual_machines_models.VirtualMachineSizeTypes.standard_a0 ) def get_storage_profile(self, os_vhd_uri): virtual_machines_models = self.compute_client.virtual_machines.models return virtual_machines_models.StorageProfile( os_disk=virtual_machines_models.OSDisk( caching=virtual_machines_models.CachingTypes.none, create_option=virtual_machines_models.DiskCreateOptionTypes.from_image, name='test', vhd=virtual_machines_models.VirtualHardDisk( uri=os_vhd_uri, ), ), ) def get_network_profile(self, network_interface_id): virtual_machines_models = self.compute_client.virtual_machines.models return virtual_machines_models.NetworkProfile( network_interfaces=[ virtual_machines_models.NetworkInterfaceReference( id=network_interface_id, ), ], ) def get_vhd_uri(self, storage_name, vhd_name): return 'https://{0}.blob.core.windows.net/vhds/{1}.vhd'.format( storage_name, vhd_name, ) @ResourceGroupPreparer() def test_virtual_machines_operations(self, resource_group, location): virtual_machines_models = self.compute_client.virtual_machines.models names = self.get_resource_names('pyvmir') os_vhd_uri = self.get_vhd_uri(names.storage, 'osdisk') if not self.is_playback(): self.create_storage_account(resource_group.name, location, names.storage) subnet = self.create_virtual_network(resource_group.name, location, names.network, names.subnet) nic_id = self.create_network_interface(resource_group.name, location, names.nic, subnet) else: nic_id = ("/subscriptions/00000000-0000-0000-0000-000000000000" "/resourceGroups/test_mgmt_compute_test_virtual_machines_operations122014cf" "/providers/Microsoft.Network/networkInterfaces/pyvmirnic122014cf") storage_profile = self.get_storage_profile(os_vhd_uri) storage_profile.image_reference = virtual_machines_models.ImageReference( publisher='Canonical', offer='UbuntuServer', sku='16.04.0-LTS', version='latest' ) params_create = virtual_machines_models.VirtualMachine( location=location, os_profile=self.get_os_profile(resource_group.name), hardware_profile=self.get_hardware_profile(), network_profile=self.get_network_profile(nic_id), storage_profile=storage_profile, ) # Create VM test result_create = self.compute_client.virtual_machines.create_or_update( resource_group.name, names.vm, params_create, ) vm_result = result_create.result() self.assertEqual(vm_result.name, names.vm) # Get by name result_get = self.compute_client.virtual_machines.get( resource_group.name, names.vm ) self.assertEqual(result_get.name, names.vm) self.assertIsNone(result_get.instance_view) # Get instanceView result_iv = self.compute_client.virtual_machines.get( resource_group.name, names.vm, expand=virtual_machines_models.InstanceViewTypes.instance_view ) self.assertTrue(result_iv.instance_view) # Deallocate async_vm_deallocate = self.compute_client.virtual_machines.deallocate(resource_group.name, names.vm) async_vm_deallocate.wait() # Start VM async_vm_start =self.compute_client.virtual_machines.start(resource_group.name, names.vm) async_vm_start.wait() # Restart VM async_vm_restart = self.compute_client.virtual_machines.restart(resource_group.name, names.vm) async_vm_restart.wait() # Stop VM async_vm_stop = self.compute_client.virtual_machines.power_off(resource_group.name, names.vm) async_vm_stop.wait() # List in resouce group vms_rg = list(self.compute_client.virtual_machines.list(resource_group.name)) self.assertEqual(len(vms_rg), 1) # Delete async_vm_delete = self.compute_client.virtual_machines.delete(resource_group.name, names.vm) async_vm_delete.wait() @ResourceGroupPreparer() def test_virtual_machine_capture(self, resource_group, location): virtual_machines_models = self.compute_client.virtual_machines.models names = self.get_resource_names('pyvmir') os_vhd_uri = self.get_vhd_uri(names.storage, 'osdisk') if not self.is_playback(): self.create_storage_account(resource_group.name, location, names.storage) subnet = self.create_virtual_network(resource_group.name, location, names.network, names.subnet) nic_id = self.create_network_interface(resource_group.name, location, names.nic, subnet) else: nic_id = ("/subscriptions/00000000-0000-0000-0000-000000000000" "/resourceGroups/test_mgmt_compute_test_virtual_machine_capturec0f9130c" "/providers/Microsoft.Network/networkInterfaces/pyvmirnicc0f9130c") storage_profile = self.get_storage_profile(os_vhd_uri) storage_profile.image_reference = virtual_machines_models.ImageReference( publisher='Canonical', offer='UbuntuServer', sku='16.04.0-LTS', version='latest' ) params_create = virtual_machines_models.VirtualMachine( location=location, os_profile=self.get_os_profile(resource_group.name), hardware_profile=self.get_hardware_profile(), network_profile=self.get_network_profile(nic_id), storage_profile=storage_profile, ) # Create VM test result_create = self.compute_client.virtual_machines.create_or_update( resource_group.name, names.vm, params_create, ) vm_result = result_create.result() self.assertEqual(vm_result.name, names.vm) # Deallocate async_vm_deallocate = self.compute_client.virtual_machines.deallocate(resource_group.name, names.vm) async_vm_deallocate.wait() # Generalize (possible because deallocated) self.compute_client.virtual_machines.generalize(resource_group.name, names.vm) # Capture VM (VM must be generalized before) async_capture = self.compute_client.virtual_machines.capture( resource_group.name, names.vm, { "vhd_prefix":"pslib", "destination_container_name":"dest", "overwrite_vhds": True } ) capture_result = async_capture.result() assert capture_result.content_version == "1.0.0.0" @ResourceGroupPreparer() def test_vm_extensions(self, resource_group, location): #WARNING: this test may take 40 mins to complete against live server virtual_machines_models = self.compute_client.virtual_machines.models names = self.get_resource_names('pyvmext') os_vhd_uri = self.get_vhd_uri(names.storage, 'osdisk') ext_name = names.vm + 'AccessAgent' if not self.is_playback(): self.create_storage_account(resource_group.name, location, names.storage) subnet = self.create_virtual_network(resource_group.name, location, names.network, names.subnet) nic_id = self.create_network_interface(resource_group.name, location, names.nic, subnet) else: nic_id = ("/subscriptions/00000000-0000-0000-0000-000000000000" "/resourceGroups/test_mgmt_compute_test_vm_extensions15a60f10" "/providers/Microsoft.Network/networkInterfaces/pyvmextnic15a60f10") storage_profile = self.get_storage_profile(os_vhd_uri) storage_profile.image_reference = virtual_machines_models.ImageReference( publisher='MicrosoftWindowsServer', offer='WindowsServer', sku='2016-Datacenter', version='latest' ) params_create = virtual_machines_models.VirtualMachine( location=location, os_profile=self.get_os_profile(resource_group.name), hardware_profile=self.get_hardware_profile(), network_profile=self.get_network_profile(nic_id), storage_profile=storage_profile, ) result_create = self.compute_client.virtual_machines.create_or_update( resource_group.name, names.vm, params_create, ) result_create.wait() params_create = virtual_machines_models.VirtualMachineExtension( location=location, publisher='Microsoft.Compute', virtual_machine_extension_type='VMAccessAgent', type_handler_version='2.0', auto_upgrade_minor_version=True, settings={}, protected_settings={}, ) result_create = self.compute_client.virtual_machine_extensions.create_or_update( resource_group.name, names.vm, ext_name, params_create, ) result_create.wait() result_get = self.compute_client.virtual_machine_extensions.get( resource_group.name, names.vm, ext_name, ) self.assertEqual(result_get.name, ext_name) result_delete = self.compute_client.virtual_machine_extensions.delete( resource_group.name, names.vm, ext_name, ) result_delete.wait() def test_vm_extension_images(self): result_list_pub = self.compute_client.virtual_machine_images.list_publishers( self.region, ) for res in result_list_pub: publisher_name = res.name result_list = self.compute_client.virtual_machine_extension_images.list_types( self.region, publisher_name, ) for res in result_list: type_name = res.name result_list_versions = self.compute_client.virtual_machine_extension_images.list_versions( self.region, publisher_name, type_name, ) for res in result_list_versions: version = res.name result_get = self.compute_client.virtual_machine_extension_images.get( self.region, publisher_name, type_name, version, ) return def test_vm_images(self): location = "westus" result_list_pub = self.compute_client.virtual_machine_images.list_publishers( location ) self.assertGreater(len(result_list_pub), 0) for res in result_list_pub: publisher_name = res.name result_list_offers = self.compute_client.virtual_machine_images.list_offers( location, publisher_name ) for res in result_list_offers: offer = res.name result_list_skus = self.compute_client.virtual_machine_images.list_skus( location, publisher_name, offer ) for res in result_list_skus: skus = res.name result_list = self.compute_client.virtual_machine_images.list( location, publisher_name, offer, skus ) for res in result_list: version = res.name result_get = self.compute_client.virtual_machine_images.get( location, publisher_name, offer, skus, version ) print('PUBLISHER: {0}, OFFER: {1}, SKUS: {2}, VERSION: {3}'.format( publisher_name, offer, skus, version, )) return @ResourceGroupPreparer() def test_availability_sets(self, resource_group, location): availability_sets_models = self.compute_client.availability_sets.models availability_set_name = self.get_resource_name('pyarmset') params_create = availability_sets_models.AvailabilitySet( location=location, platform_fault_domain_count=2, platform_update_domain_count=4, tags={ 'tag1': 'value1', }, ) result_create = self.compute_client.availability_sets.create_or_update( resource_group.name, availability_set_name, params_create, ) self.assertEqual(result_create.name, availability_set_name) result_get = self.compute_client.availability_sets.get( resource_group.name, availability_set_name, ) self.assertEqual(result_get.name, availability_set_name) self.assertEqual( result_get.platform_fault_domain_count, params_create.platform_fault_domain_count, ) self.assertEqual( result_get.platform_update_domain_count, params_create.platform_update_domain_count, ) result_list = self.compute_client.availability_sets.list( resource_group.name, ) result_list = list(result_list) result_list_sizes = self.compute_client.availability_sets.list_available_sizes( resource_group.name, availability_set_name, ) result_list_sizes = list(result_list_sizes) self.compute_client.availability_sets.delete( resource_group.name, availability_set_name, ) def test_usage(self): location = "westus" usages = list(self.compute_client.usage.list(location)) self.assertGreater(len(usages), 0) def test_vm_sizes(self): location = "westus" virtual_machine_sizes = list(self.compute_client.virtual_machine_sizes.list(location)) self.assertGreater(len(virtual_machine_sizes), 0) def test_run_command(self): # FIXME, test unfinished run_commands_models = self.compute_client.virtual_machines.models run_command_parameters = run_commands_models.RunCommandInput( command_id="RunShellScript", script=[ 'echo $1 $2' ], parameters=[ run_commands_models.RunCommandInputParameter(name="arg1", value="hello"), run_commands_models.RunCommandInputParameter(name="arg2", value="world"), ] ) run_command_parameters = { 'command_id': 'RunShellScript', 'script': [ 'echo $arg1' ], 'parameters': [ {'name':"arg1", 'value':"hello world"} ] } #------------------------------------------------------------------------------ if __name__ == '__main__': unittest.main()
37.790146
194
0.612874
793eb15e446e70f77a79cca2e5f6d20af52000ec
4,402
py
Python
src/train.py
ShahRutav/dmcontrol-generalization-benchmark
99365bd1d71581a67a9e7626c5ac676450c158a9
[ "MIT" ]
75
2020-11-30T07:59:09.000Z
2022-03-30T21:26:53.000Z
src/train.py
ShahRutav/dmcontrol-generalization-benchmark
99365bd1d71581a67a9e7626c5ac676450c158a9
[ "MIT" ]
12
2021-02-02T09:03:44.000Z
2022-03-29T19:17:39.000Z
src/train.py
ShahRutav/dmcontrol-generalization-benchmark
99365bd1d71581a67a9e7626c5ac676450c158a9
[ "MIT" ]
18
2020-12-04T03:48:34.000Z
2022-03-21T15:10:08.000Z
import torch import os import numpy as np import gym import utils import time from arguments import parse_args from env.wrappers import make_env from algorithms.factory import make_agent from logger import Logger from video import VideoRecorder def evaluate(env, agent, video, num_episodes, L, step, test_env=False): episode_rewards = [] for i in range(num_episodes): obs = env.reset() video.init(enabled=(i==0)) done = False episode_reward = 0 while not done: with utils.eval_mode(agent): action = agent.select_action(obs) obs, reward, done, _ = env.step(action) video.record(env) episode_reward += reward if L is not None: _test_env = '_test_env' if test_env else '' video.save(f'{step}{_test_env}.mp4') L.log(f'eval/episode_reward{_test_env}', episode_reward, step) episode_rewards.append(episode_reward) return np.mean(episode_rewards) def main(args): # Set seed utils.set_seed_everywhere(args.seed) # Initialize environments gym.logger.set_level(40) env = make_env( domain_name=args.domain_name, task_name=args.task_name, seed=args.seed, episode_length=args.episode_length, action_repeat=args.action_repeat, image_size=args.image_size, mode='train' ) test_env = make_env( domain_name=args.domain_name, task_name=args.task_name, seed=args.seed+42, episode_length=args.episode_length, action_repeat=args.action_repeat, image_size=args.image_size, mode=args.eval_mode, intensity=args.distracting_cs_intensity ) if args.eval_mode is not None else None # Create working directory work_dir = os.path.join(args.log_dir, args.domain_name+'_'+args.task_name, args.algorithm, str(args.seed)) print('Working directory:', work_dir) assert not os.path.exists(os.path.join(work_dir, 'train.log')), 'specified working directory already exists' utils.make_dir(work_dir) model_dir = utils.make_dir(os.path.join(work_dir, 'model')) video_dir = utils.make_dir(os.path.join(work_dir, 'video')) video = VideoRecorder(video_dir if args.save_video else None, height=448, width=448) utils.write_info(args, os.path.join(work_dir, 'info.log')) # Prepare agent assert torch.cuda.is_available(), 'must have cuda enabled' replay_buffer = utils.ReplayBuffer( obs_shape=env.observation_space.shape, action_shape=env.action_space.shape, capacity=args.train_steps, batch_size=args.batch_size ) cropped_obs_shape = (3*args.frame_stack, args.image_crop_size, args.image_crop_size) print('Observations:', env.observation_space.shape) print('Cropped observations:', cropped_obs_shape) agent = make_agent( obs_shape=cropped_obs_shape, action_shape=env.action_space.shape, args=args ) start_step, episode, episode_reward, done = 0, 0, 0, True L = Logger(work_dir) start_time = time.time() for step in range(start_step, args.train_steps+1): if done: if step > start_step: L.log('train/duration', time.time() - start_time, step) start_time = time.time() L.dump(step) # Evaluate agent periodically if step % args.eval_freq == 0: print('Evaluating:', work_dir) L.log('eval/episode', episode, step) evaluate(env, agent, video, args.eval_episodes, L, step) if test_env is not None: evaluate(test_env, agent, video, args.eval_episodes, L, step, test_env=True) L.dump(step) # Save agent periodically if step > start_step and step % args.save_freq == 0: torch.save(agent, os.path.join(model_dir, f'{step}.pt')) L.log('train/episode_reward', episode_reward, step) obs = env.reset() done = False episode_reward = 0 episode_step = 0 episode += 1 L.log('train/episode', episode, step) # Sample action for data collection if step < args.init_steps: action = env.action_space.sample() else: with utils.eval_mode(agent): action = agent.sample_action(obs) # Run training update if step >= args.init_steps: num_updates = args.init_steps if step == args.init_steps else 1 for _ in range(num_updates): agent.update(replay_buffer, L, step) # Take step next_obs, reward, done, _ = env.step(action) done_bool = 0 if episode_step + 1 == env._max_episode_steps else float(done) replay_buffer.add(obs, action, reward, next_obs, done_bool) episode_reward += reward obs = next_obs episode_step += 1 print('Completed training for', work_dir) if __name__ == '__main__': args = parse_args() main(args)
29.152318
109
0.732849
793eb251385fd93206d930f9b70651b5fe101398
2,384
py
Python
wenker/location_updater/states.py
CitizenScienceCenter/c3s_tools
36479905ffbeb2bdabbc2be145dfe4fe7258ef5d
[ "Apache-2.0" ]
null
null
null
wenker/location_updater/states.py
CitizenScienceCenter/c3s_tools
36479905ffbeb2bdabbc2be145dfe4fe7258ef5d
[ "Apache-2.0" ]
1
2022-03-22T22:11:21.000Z
2022-03-22T22:11:21.000Z
wenker/location_updater/states.py
CitizenScienceCenter/c3s_tools
36479905ffbeb2bdabbc2be145dfe4fe7258ef5d
[ "Apache-2.0" ]
null
null
null
import psycopg2 import csv, json BOGEN = '/home/encima/Nextcloud/Documents/uzh/wenkerdaten.csv' DB_STRING = 'postgresql://pybossa:testing@localhost:5430/cs' UPDATE_STRING = "UPDATE tasks SET info = info || '(%s)' WHERE id = %s;" UPDATE = "UPDATE tasks SET info = info || '{}' WHERE id = '{}';" SELECT_STRING = "SELECT * FROM tasks WHERE info ->> 'path'::text like '%{}%'::text" cantons = { 'BE': 'Bern', 'TG': 'Thurgau', 'LU': 'Luzern', 'SO': 'Solothurn', 'ZH': 'Zürich', 'UR': 'Uri', 'SZ': 'Schwyz', 'OW': 'Obwalden', 'NW': 'Nidwalden', 'GL': 'Glarus', 'ZG': 'Zug', 'FR': 'Fribought', 'BS': 'Basel-Stadt', 'BL': 'Basel-Landschaft', 'SH': 'Schaffhausen', 'AR': 'Appenzell Ausserhoden', 'AI': 'Appenzell Innerhoden', 'SG': 'St. Gallen', 'GR': 'Grisons', 'AG': 'Aargau', 'TI': 'Ticino', 'VD': 'Vaud', 'VS': 'Valais', 'NE': 'Neuchâtel', 'GE': 'Geneva', 'JU': 'Jura' } class LocationUpdate: def __init__(self): self.conn = psycopg2.connect(DB_STRING) def find(self, csv_file, place): for row in csv.reader(csv_file): # print(ascii(row[2]), ascii(place)) if ascii(place.lower()) in ascii(row[2].lower()): print(row[8]) def process(self): cursor = self.conn.cursor() cursor.execute("select id, info from tasks where info->>'SchoolState' = '';") res = cursor.fetchall() count = 1 with open(BOGEN) as sheets: wenker_map = [] states = [] places = [] for row in csv.reader(sheets): wenker_map.append({'state': row[8], 'place': row[2]}) states.append(row[8]) places.append(ascii(row[2].lower())) for r in res: place = ascii(r[1]['title'].lower()) if place in places: idx = places.index(place) if len(states[idx]) > 0: canton = cantons[states[idx]] info = { 'SchoolState': canton } # print(cursor.execute(UPDATE_STRING, (json.dumps(info), r[0]))) print(UPDATE.format((json.dumps(info)), r[0])) cursor.close() if __name__ == "__main__": i = LocationUpdate() i.process()
27.402299
85
0.50797
793eb2e88583657e20377067053657265a9b8905
103
py
Python
tests/test_basic.py
neozenith/invoke-databricks-wheel-tasks
4f13d00c826f5f46652443dbfd4d35c19b869503
[ "MIT" ]
null
null
null
tests/test_basic.py
neozenith/invoke-databricks-wheel-tasks
4f13d00c826f5f46652443dbfd4d35c19b869503
[ "MIT" ]
null
null
null
tests/test_basic.py
neozenith/invoke-databricks-wheel-tasks
4f13d00c826f5f46652443dbfd4d35c19b869503
[ "MIT" ]
null
null
null
def test_placholder(): """Placeholder test to pass CI until creating actual test suite.""" ...
25.75
71
0.669903
793eb361e30c185e1bf8333d5957c3f5bce04999
472
py
Python
python-ds-practice/14_compact/compact.py
MostFunGuy/SpringboardProjectsPublic
bbda3ba26ecf8a09e62df81583122cae83acc1e6
[ "MIT" ]
null
null
null
python-ds-practice/14_compact/compact.py
MostFunGuy/SpringboardProjectsPublic
bbda3ba26ecf8a09e62df81583122cae83acc1e6
[ "MIT" ]
null
null
null
python-ds-practice/14_compact/compact.py
MostFunGuy/SpringboardProjectsPublic
bbda3ba26ecf8a09e62df81583122cae83acc1e6
[ "MIT" ]
null
null
null
def compact(lst): """Return a copy of lst with non-true elements removed. >>> compact([0, 1, 2, '', [], False, (), None, 'All done']) [1, 2, 'All done'] """ return_list = [] for item in lst: if item: return_list.append(item) return return_list print(F"compact.py: compact([0, 1, 2, '', [], False, (), None, 'All done']) = [1, 2, 'All done'] = {compact([0, 1, 2, '', [], False, (), None, 'All done'])}")
27.764706
158
0.493644
793eb542cb6384a6e7a5f7bce47d5f6d0a0b9d97
1,757
py
Python
test/record/parser/test_response_whois_nic_ck_status_registered.py
huyphan/pyyawhois
77fb2f73a9c67989f1d41d98f37037406a69d136
[ "MIT" ]
null
null
null
test/record/parser/test_response_whois_nic_ck_status_registered.py
huyphan/pyyawhois
77fb2f73a9c67989f1d41d98f37037406a69d136
[ "MIT" ]
null
null
null
test/record/parser/test_response_whois_nic_ck_status_registered.py
huyphan/pyyawhois
77fb2f73a9c67989f1d41d98f37037406a69d136
[ "MIT" ]
null
null
null
# This file is autogenerated. Do not edit it manually. # If you want change the content of this file, edit # # spec/fixtures/responses/whois.nic.ck/status_registered # # and regenerate the tests with the following script # # $ scripts/generate_tests.py # from nose.tools import * from dateutil.parser import parse as time_parse import yawhois class TestWhoisNicCkStatusRegistered(object): def setUp(self): fixture_path = "spec/fixtures/responses/whois.nic.ck/status_registered.txt" host = "whois.nic.ck" part = yawhois.record.Part(open(fixture_path, "r").read(), host) self.record = yawhois.record.Record(None, [part]) def test_status(self): eq_(self.record.status, 'registered') def test_available(self): eq_(self.record.available, False) def test_nameservers(self): eq_(self.record.nameservers.__class__.__name__, 'list') eq_(len(self.record.nameservers), 2) eq_(self.record.nameservers[0].__class__.__name__, 'Nameserver') eq_(self.record.nameservers[0].name, "ns1.google.com") eq_(self.record.nameservers[1].__class__.__name__, 'Nameserver') eq_(self.record.nameservers[1].name, "ns2.google.com") def test_registered(self): eq_(self.record.registered, True) def test_created_on(self): assert_raises(yawhois.exceptions.AttributeNotSupported, self.record.created_on) def test_updated_on(self): eq_(self.record.updated_on.__class__.__name__, 'datetime') eq_(self.record.updated_on, time_parse('2011-10-04')) def test_expires_on(self): eq_(self.record.expires_on.__class__.__name__, 'datetime') eq_(self.record.expires_on, time_parse('2013-11-01'))
34.45098
87
0.695504
793eb54e2a86c814466b30183a60e9cd18f7e2c6
1,988
py
Python
python/40.combination-sum-ii.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
10
2019-09-15T00:23:57.000Z
2022-01-05T12:53:42.000Z
python/40.combination-sum-ii.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
3
2021-06-30T00:39:26.000Z
2021-08-01T07:13:59.000Z
python/40.combination-sum-ii.py
Zhenye-Na/leetcode
95196a45f5709ccf7b970ee5ac84a4bf8fe2301e
[ "MIT" ]
6
2020-02-08T02:55:22.000Z
2022-01-02T22:48:18.000Z
# # @lc app=leetcode id=40 lang=python3 # # [40] Combination Sum II # # https://leetcode.com/problems/combination-sum-ii/description/ # # algorithms # Medium (49.91%) # Likes: 2542 # Dislikes: 86 # Total Accepted: 392.7K # Total Submissions: 782K # Testcase Example: '[10,1,2,7,6,1,5]\n8' # # Given a collection of candidate numbers (candidates) and a target number # (target), find all unique combinations in candidates where the candidate # numbers sum to target. # # Each number in candidates may only be used once in the combination. # # Note: The solution set must not contain duplicate combinations. # # # Example 1: # # # Input: candidates = [10,1,2,7,6,1,5], target = 8 # Output: # [ # [1,1,6], # [1,2,5], # [1,7], # [2,6] # ] # # # Example 2: # # # Input: candidates = [2,5,2,1,2], target = 5 # Output: # [ # [1,2,2], # [5] # ] # # # # Constraints: # # # 1 <= candidates.length <= 100 # 1 <= candidates[i] <= 50 # 1 <= target <= 30 # # # # @lc code=start class Solution: def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]: if not candidates or len(candidates) == 0: return [] res = [] visited = [0 for _ in range(len(candidates))] candidates.sort() self._dfs(candidates, target, [], res, 0, visited) return res def _dfs(self, candidates, target, curr, res, start, visited): if target < 0: return if target == 0: res.append(curr[:]) return for i in range(start, len(candidates)): if i != start and candidates[i] == candidates[i - 1] and visited[i - 1] == 0: continue if candidates[i] > target: continue curr.append(candidates[i]) visited[i] = 1 self._dfs(candidates, target - candidates[i], curr, res, i + 1, visited) curr.pop() visited[i] = 0 # @lc code=end
20.926316
89
0.561871
793eb57377e9b4cf44881d9d01ed94107f7f710e
7,177
py
Python
code/ssw_composite_cmam_optimized2-wss_hotspots.py
kuchaale/grl_2020
ddeca6955e6435c38d18be6ebca874fa037142b3
[ "MIT" ]
null
null
null
code/ssw_composite_cmam_optimized2-wss_hotspots.py
kuchaale/grl_2020
ddeca6955e6435c38d18be6ebca874fa037142b3
[ "MIT" ]
null
null
null
code/ssw_composite_cmam_optimized2-wss_hotspots.py
kuchaale/grl_2020
ddeca6955e6435c38d18be6ebca874fa037142b3
[ "MIT" ]
null
null
null
import xarray as xr import sys import pandas as pd import glob from scipy import stats import xarray.ufuncs as xrf from itertools import product from cftime import DatetimeNoLeap #from dask.distributed import Client #client = Client(set_as_default = True) def open_date_file(file_path): df = pd.read_csv(file_path, index_col=0, parse_dates=True) df['BeginDate'] = df.BeginDate.apply(lambda t: pd.to_datetime(t, format='%Y-%m-%d')) return df def ttest_1samp(a, popmean, dim): """ This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent observations `a` is equal to the given population mean, `popmean` Inspired here: https://github.com/scipy/scipy/blob/v0.19.0/scipy/stats/stats.py#L3769-L3846 Parameters ---------- a : xarray sample observation popmean : float or array_like expected value in null hypothesis, if array_like than it must have the same shape as `a` excluding the axis dimension dim : string dimension along which to compute test Returns ------- mean : xarray averaged sample along which dimension t-test was computed pvalue : xarray two-tailed p-value """ n = a[dim].shape[0] df = n - 1 a_mean = a.mean(dim) d = a_mean - popmean v = a.var(dim, ddof=1) denom = xrf.sqrt(v / float(n)) t = d /denom prob = stats.distributions.t.sf(xrf.fabs(t), df) * 2 prob_xa = xr.DataArray(prob, coords=a_mean.coords, name = a_mean.name) return a_mean, prob_xa var = sys.argv[1] try: w_clim = sys.argv[2] w_clim = '_'+w_clim print('climatology wo SSW') except IndexError: w_clim = '' print('climatology w SSW') what = sys.argv[3] what_ls = ['anomalies', 'absolute', 'percentages'] if what not in what_ls: raise ValueError('could not find {0} within [{1},{2},{3}]'.format(what, *what_ls)) if var[:3].lower() in ['lwa']: lev_sys_fo = 'log_coord/' lev_sys_fi = '_logH' elif var.lower() == 'acceldivmrho': lev_sys_fo = '' lev_sys_fi = '_6hrPlev' else: lev_sys_fo = '' lev_sys_fi = '' if var in ['lwatend', 'TEM-res2', 'TEM-res', 'TEM-res3', 'TEM-res3-new','TEM-res2-new', 'sink']: zarr = True #hourly_index = pd.date_range('1979-01-01-06', '2010-12-31-18', freq='6H') else: zarr = False #hourly_index = pd.date_range('1979-01-01', '2010-12-31-18', freq='6H') signif = False DJF_bool = True cesta = '/mnt/4data/CMAM/0A.daily/' max_lag = 10 line_width = 5 ch_lev = 70 timescale = int(sys.argv[4]) type_ls = ['himalayas', 'westamer', 'eastasia'] if zarr: infiles = '{}{}{}_197901-201012.zarr'.format(cesta,var,lev_sys_fi) print(infiles) else: files_path = cesta+var+'/'+lev_sys_fo+var+'_*_CMAM_CMAM30-SD_r1i1p1_??????????-??????????.nc' print('opening '+files_path) infiles = sorted(glob.glob(files_path)) print(len(infiles)) def open_infile(infiles): if isinstance(infiles, str) & ('zarr' in infiles): ds = xr.open_zarr(infiles) else: ds = xr.open_mfdataset(infiles, concat_dim = 'time', parallel = True, combine='nested') return ds try: DJF_bool = sys.argv[5] print('{} only'.format(DJF_bool)) except IndexError: DJF_bool = '' with open_infile(infiles) as ds: #datetimeindex = ds.indexes['time'].to_datetimeindex() #ds['time'] = datetimeindex with xr.open_dataset( cesta+var+'/'+lev_sys_fo+var+'_climatology'+w_clim+'.nc') as clim: print('composites construction') if len(DJF_bool) > 0: w_clim += '_{}only'.format(DJF_bool) for di, ssw_type in enumerate(type_ls): print("".ljust(line_width) + ssw_type) df_dates = open_date_file('accelogw_{}_hotspot@{}hPa_{}dayts_indexes.csv'.format(ssw_type, ch_lev, timescale)) #sys.exit() xa_ls = [] pv_ls = [] for il, lag in enumerate(range(-max_lag,max_lag+1)): #print("".ljust(line_width*3)+str(lag)+' lag') dates = df_dates.set_index('BeginDate') dates = dates.index +pd.Timedelta(str(lag)+' days') #filter lags withi 29th February #dates = dates[dates.apply(lambda x: not (x.day in [29] and x.month in [2]))] dates = dates[~((dates.month == 2) & (dates.day == 29))] #filter dates shited to year out of range #dates = dates[dates.apply(lambda x: not (x.year in [1978,2011]))] dates = dates[(dates.year != 2011) & (dates.year != 1978)] if DJF_bool == 'DJF': dates = dates[(dates.month == 12) | (dates.month == 1) | (dates.month == 2)] elif DJF_bool == 'JF': dates = dates[(dates.month == 1) | (dates.month == 2)] elif DJF_bool == 'J': dates = dates[(dates.month == 1)] elif DJF_bool == 'F': dates = dates[(dates.month == 2)] elif DJF_bool == 'D': dates = dates[(dates.month == 12)] #choose all values within particular day #hourly_index_temp = hourly_index[hourly_index.floor('D').isin(dates)] hourly_index_temp = [DatetimeNoLeap(*x, hour) for x, hour in product(zip(dates.year, dates.month, dates.day), range(0,24,6))] if var in ['lwatend']: ds['time'] = xr.cftime_range('1979-01-01T06', '2010-12-31T18', freq='6H', calendar='noleap') #print(lag, dates.shape,) #print(hourly_index_temp) ds_sel = ds.sel(time = hourly_index_temp[:]) print(ds_sel[var].shape) if what == 'percentages': comp = (ds_sel[var].groupby('time.month') - clim[var]).groupby('time.month')/clim[var]*100. elif what == 'absolute': comp = ds_sel[var] elif what == 'anomalies': comp = ds_sel[var].groupby('time.month') - clim[var] if signif: comp_m, pvalues = ttest_1samp(comp, 0.0, dim = 'time') # calculates stat. signaficance using t-test pv_ls.append(pvalues) else: comp_m = comp.mean('time') xa_ls.append(comp_m) print("".ljust(line_width*2) + 'concatenation') xa_comp = xr.concat(xa_ls, dim = 'lag') xa_ls = [] xa_comp['lag'] = range(-max_lag, max_lag+1) outfile = "{}composites{}/{}{}_{}_comp_{}_{}days.nc".format(cesta, w_clim, var, lev_sys_fi, what, type_ls[di], timescale) print("".ljust(line_width*3) + outfile) xa_comp.to_netcdf(outfile) if signif: xa_pval = xr.concat(pv_ls, dim = 'lag') pv_ls = [] xa_pval['lag'] = range(-max_lag, max_lag+1) print("".ljust(line_width*2) + 'saving') xa_pval.to_netcdf(cesta+'composites'+w_clim+'/'+var+lev_sys_fi+'_pvalues_comp_'+type_ls[di]+'.nc') print('done')
36.065327
141
0.575031
793eb57e295884cb272e62a5347f077241a15dc1
3,096
py
Python
AOC2020/4/1.py
Fapannen/Advent-of-Code
6cdc4a4582d9e3a1761579f42abd01c7ecaf5561
[ "MIT" ]
null
null
null
AOC2020/4/1.py
Fapannen/Advent-of-Code
6cdc4a4582d9e3a1761579f42abd01c7ecaf5561
[ "MIT" ]
null
null
null
AOC2020/4/1.py
Fapannen/Advent-of-Code
6cdc4a4582d9e3a1761579f42abd01c7ecaf5561
[ "MIT" ]
null
null
null
with open("input.txt", 'r') as f: txt = f.read() passports = txt.split("\n\n") fix = [psp.replace("\n", " ") for psp in passports] fields = ['byr', 'iyr', 'eyr', 'hgt', 'hcl', 'ecl', 'pid'] count = 0 for passport in fix: found = True for field in fields: if field not in passport: found = False break if found: count += 1 print(count) with open("input.txt", 'r') as f: txt = f.read() passports = txt.split("\n\n") fix = [psp.replace("\n", " ") for psp in passports] fields = ['byr', 'iyr', 'eyr', 'hgt', 'hcl', 'ecl', 'pid'] count = 0 for passport in fix: foundf = True for field in fields: if field not in passport: foundf = False break if not foundf: continue parse = passport.split(" ") found = True for entry in parse: spl = entry.split(":") if len(spl) == 1: continue attribute = spl[0] value = spl[1] if attribute == "byr": if int(value) < 1920 or int(value) > 2002: found = False break elif attribute == "iyr": if int(value) < 2010 or int(value) > 2020: found = False break elif attribute == "eyr": if int(value) < 2020 or int(value) > 2030: found = False break elif attribute == "hgt": if value[-2:] == "cm": val = int(value[:-2]) if val < 150 or val > 193: found = False break elif value[-2:] == "in": val = int(value[:-2]) if val < 59 or val > 76: found = False break else: found = False break elif attribute == "hcl": if len(value) == 7 and value[0] == "#": for i in range(6): if not value[i+1].isalnum(): found = False break else: found = False break elif attribute == "ecl": if value not in ["amb", "blu", "brn", "gry", "grn", "hzl", "oth"]: found = False break elif attribute == "pid": if len(value) != 9: found = False break if found: print(attribute, " : ", value) if found: count += 1 print(count)
29.769231
83
0.350129
793eb59f6dc96e9aebbb64db0b122c35d5531a80
520
py
Python
examples/ex24_configuration.py
gramaziokohler/robotic_assembly_workshop
252d9750175061fd7d4746a4701afd42882773a5
[ "MIT" ]
19
2019-02-08T13:07:49.000Z
2020-12-21T12:41:51.000Z
examples/ex24_configuration.py
gramaziokohler/robotic_assembly_workshop
252d9750175061fd7d4746a4701afd42882773a5
[ "MIT" ]
11
2019-01-31T09:32:11.000Z
2020-11-06T14:12:21.000Z
examples/ex24_configuration.py
gramaziokohler/robotic_assembly_workshop
252d9750175061fd7d4746a4701afd42882773a5
[ "MIT" ]
8
2019-03-05T13:38:27.000Z
2021-04-13T07:01:52.000Z
from math import pi from compas.robots import Joint from compas_fab.robots import Configuration print(Joint.REVOLUTE) print(Joint.PRISMATIC) print(Joint.FIXED) values = [0] * 6 types = [Joint.REVOLUTE] * 6 config = Configuration(values, types) config = Configuration([pi / 2, 3., 0.1], [Joint.REVOLUTE, Joint.PRISMATIC, Joint.PLANAR]) config = Configuration.from_revolute_values([pi / 2, 0., 0., pi / 2, pi, 0]) config = Configuration.from_prismatic_and_revolute_values([8.312], [pi / 2, 0., 0., 0., 2 * pi, 0.8])
27.368421
101
0.715385
793eb6a72480a21ae64c4431aaac595eaf17e1e2
1,694
py
Python
Meetup.py
sureshmallakuntla/Project3
0f90f5beda9b06b49d6279c2093ef580ccdcc66b
[ "MIT" ]
null
null
null
Meetup.py
sureshmallakuntla/Project3
0f90f5beda9b06b49d6279c2093ef580ccdcc66b
[ "MIT" ]
null
null
null
Meetup.py
sureshmallakuntla/Project3
0f90f5beda9b06b49d6279c2093ef580ccdcc66b
[ "MIT" ]
null
null
null
from __future__ import print_function import json import sys from pyspark import SparkContext from pyspark.streaming import StreamingContext from pyspark.streaming.kafka import KafkaUtils f_count = 0; # Function to aggregate the city counts to the alreaddy existing value def city_count(newValue, oldValue): if oldValue is None: oldValue = 0 return sum(newValue)+oldValue if __name__ == "__main__": #Creaitng spark Context since we are submitting from the command line sc = SparkContext("local[2]",appName="MeetupStreaming") sc.setLogLevel("WARN") #Creating the streaming context ssc = StreamingContext(sc, 2) ssc.checkpoint("checkpoint") #Getting the zkQuorum port and topic value from command line zkQuorum, topic = sys.argv[1:] #Assigning the created stream to receive messages from kafka meetup sstream = KafkaUtils.createStream(ssc, zkQuorum, "1", {topic: 1}) rsvps = sstream.map(lambda x: x[1]) rsvps_json = rsvps.map(lambda x: json.loads(x.encode('ascii','ignore'))) #Filtering only the messages belong to the U.S. us_only = rsvps_json.filter(lambda x: x['group']['group_country']=='us') #Extracting the city name from messages. city_pair = us_only.map(lambda x: (x['group']['group_city'],1)) #Calling the function to get the city count city_count= city_pair.updateStateByKey(city_count) #Storing the output files in a local file system to get the visualization done. city_count.saveAsTextFiles('file:/home/cloudera/streamData/output') #rs.pprint() ssc.start() ssc.awaitTermination()
32.576923
84
0.689492
793eb6ecb03ece9a9076ec213e957a43184e68c6
63,690
py
Python
great_expectations/expectations/expectation.py
rishabh-bhargava/great_expectations
e3ce2d094536a2bc738f92e5686005390d694105
[ "Apache-2.0" ]
2
2022-01-28T15:51:32.000Z
2022-02-02T05:07:58.000Z
great_expectations/expectations/expectation.py
rishabh-bhargava/great_expectations
e3ce2d094536a2bc738f92e5686005390d694105
[ "Apache-2.0" ]
null
null
null
great_expectations/expectations/expectation.py
rishabh-bhargava/great_expectations
e3ce2d094536a2bc738f92e5686005390d694105
[ "Apache-2.0" ]
null
null
null
import logging import re import traceback from abc import ABC, ABCMeta, abstractmethod from collections import Counter from copy import deepcopy from inspect import isabstract from typing import Dict, List, Optional, Tuple import pandas as pd from great_expectations import __version__ as ge_version from great_expectations.core.batch import Batch from great_expectations.core.expectation_configuration import ( ExpectationConfiguration, parse_result_format, ) from great_expectations.core.expectation_validation_result import ( ExpectationValidationResult, ) from great_expectations.exceptions import ( GreatExpectationsError, InvalidExpectationConfigurationError, InvalidExpectationKwargsError, ) from great_expectations.expectations.registry import ( _registered_metrics, _registered_renderers, get_metric_kwargs, register_expectation, register_renderer, ) from great_expectations.expectations.util import legacy_method_parameters from great_expectations.self_check.util import ( evaluate_json_test_cfe, generate_expectation_tests, ) from great_expectations.validator.validator import Validator from ..core.util import convert_to_json_serializable, nested_update from ..execution_engine import ExecutionEngine, PandasExecutionEngine from ..render.renderer.renderer import renderer from ..render.types import ( CollapseContent, RenderedStringTemplateContent, RenderedTableContent, ) from ..render.util import num_to_str from ..util import is_parseable_date from ..validator.validation_graph import MetricConfiguration logger = logging.getLogger(__name__) p1 = re.compile(r"(.)([A-Z][a-z]+)") p2 = re.compile(r"([a-z0-9])([A-Z])") def camel_to_snake(name): name = p1.sub(r"\1_\2", name) return p2.sub(r"\1_\2", name).lower() class MetaExpectation(ABCMeta): """MetaExpectation registers Expectations as they are defined, adding them to the Expectation registry. Any class inheriting from Expectation will be registered based on the value of the "expectation_type" class attribute, or, if that is not set, by snake-casing the name of the class. """ def __new__(cls, clsname, bases, attrs): newclass = super().__new__(cls, clsname, bases, attrs) if not newclass.is_abstract(): newclass.expectation_type = camel_to_snake(clsname) register_expectation(newclass) newclass._register_renderer_functions() default_kwarg_values = dict() for base in reversed(bases): default_kwargs = getattr(base, "default_kwarg_values", dict()) default_kwarg_values = nested_update(default_kwarg_values, default_kwargs) newclass.default_kwarg_values = nested_update( default_kwarg_values, attrs.get("default_kwarg_values", dict()) ) return newclass class Expectation(metaclass=MetaExpectation): """Base class for all Expectations. Expectation classes *must* have the following attributes set: 1. `domain_keys`: a tuple of the *keys* used to determine the domain of the expectation 2. `success_keys`: a tuple of the *keys* used to determine the success of the expectation. In some cases, subclasses of Expectation (such as TableExpectation) can inherit these properties from their parent class. They *may* optionally override `runtime_keys` and `default_kwarg_values`, and may optionally set an explicit value for expectation_type. 1. runtime_keys lists the keys that can be used to control output but will not affect the actual success value of the expectation (such as result_format). 2. default_kwarg_values is a dictionary that will be used to fill unspecified kwargs from the Expectation Configuration. Expectation classes *must* implement the following: 1. `_validate` 2. `get_validation_dependencies` In some cases, subclasses of Expectation, such as ColumnMapExpectation will already have correct implementations that may simply be inherited. Additionally, they *may* provide implementations of: 1. `validate_configuration`, which should raise an error if the configuration will not be usable for the Expectation 2. Data Docs rendering methods decorated with the @renderer decorator. See the """ version = ge_version domain_keys = tuple() success_keys = tuple() runtime_keys = ( "include_config", "catch_exceptions", "result_format", ) default_kwarg_values = { "include_config": True, "catch_exceptions": False, "result_format": "BASIC", } legacy_method_parameters = legacy_method_parameters def __init__(self, configuration: Optional[ExpectationConfiguration] = None): if configuration is not None: self.validate_configuration(configuration) self._configuration = configuration @classmethod def is_abstract(cls): return isabstract(cls) @classmethod def _register_renderer_functions(cls): expectation_type = camel_to_snake(cls.__name__) for candidate_renderer_fn_name in dir(cls): attr_obj = getattr(cls, candidate_renderer_fn_name) if not hasattr(attr_obj, "_renderer_type"): continue register_renderer( object_name=expectation_type, parent_class=cls, renderer_fn=attr_obj ) @abstractmethod def _validate( self, configuration: ExpectationConfiguration, metrics: Dict, runtime_configuration: dict = None, execution_engine: ExecutionEngine = None, ): raise NotImplementedError @classmethod @renderer(renderer_type="renderer.prescriptive") def _prescriptive_renderer( cls, configuration=None, result=None, language=None, runtime_configuration=None, **kwargs, ): return [ RenderedStringTemplateContent( **{ "content_block_type": "string_template", "styling": {"parent": {"classes": ["alert", "alert-warning"]}}, "string_template": { "template": "$expectation_type(**$kwargs)", "params": { "expectation_type": configuration.expectation_type, "kwargs": configuration.kwargs, }, "styling": { "params": { "expectation_type": { "classes": ["badge", "badge-warning"], } } }, }, } ) ] @classmethod @renderer(renderer_type="renderer.diagnostic.status_icon") def _diagnostic_status_icon_renderer( cls, configuration=None, result=None, language=None, runtime_configuration=None, **kwargs, ): assert result, "Must provide a result object." if result.exception_info["raised_exception"]: return RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "$icon", "params": {"icon": "", "markdown_status_icon": "❗"}, "styling": { "params": { "icon": { "classes": [ "fas", "fa-exclamation-triangle", "text-warning", ], "tag": "i", } } }, }, } ) if result.success: return RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "$icon", "params": {"icon": "", "markdown_status_icon": "✅"}, "styling": { "params": { "icon": { "classes": [ "fas", "fa-check-circle", "text-success", ], "tag": "i", } } }, }, "styling": { "parent": { "classes": ["hide-succeeded-validation-target-child"] } }, } ) else: return RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": "$icon", "params": {"icon": "", "markdown_status_icon": "❌"}, "styling": { "params": { "icon": { "tag": "i", "classes": ["fas", "fa-times", "text-danger"], } } }, }, } ) @classmethod @renderer(renderer_type="renderer.diagnostic.unexpected_statement") def _diagnostic_unexpected_statement_renderer( cls, configuration=None, result=None, language=None, runtime_configuration=None, **kwargs, ): assert result, "Must provide a result object." success = result.success result_dict = result.result if result.exception_info["raised_exception"]: exception_message_template_str = ( "\n\n$expectation_type raised an exception:\n$exception_message" ) exception_message = RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": exception_message_template_str, "params": { "expectation_type": result.expectation_config.expectation_type, "exception_message": result.exception_info[ "exception_message" ], }, "tag": "strong", "styling": { "classes": ["text-danger"], "params": { "exception_message": {"tag": "code"}, "expectation_type": { "classes": ["badge", "badge-danger", "mb-2"] }, }, }, }, } ) exception_traceback_collapse = CollapseContent( **{ "collapse_toggle_link": "Show exception traceback...", "collapse": [ RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": result.exception_info[ "exception_traceback" ], "tag": "code", }, } ) ], } ) return [exception_message, exception_traceback_collapse] if success or not result_dict.get("unexpected_count"): return [] else: unexpected_count = num_to_str( result_dict["unexpected_count"], use_locale=True, precision=20 ) unexpected_percent = ( num_to_str(result_dict["unexpected_percent"], precision=4) + "%" ) element_count = num_to_str( result_dict["element_count"], use_locale=True, precision=20 ) template_str = ( "\n\n$unexpected_count unexpected values found. " "$unexpected_percent of $element_count total rows." ) return [ RenderedStringTemplateContent( **{ "content_block_type": "string_template", "string_template": { "template": template_str, "params": { "unexpected_count": unexpected_count, "unexpected_percent": unexpected_percent, "element_count": element_count, }, "tag": "strong", "styling": {"classes": ["text-danger"]}, }, } ) ] @classmethod @renderer(renderer_type="renderer.diagnostic.unexpected_table") def _diagnostic_unexpected_table_renderer( cls, configuration=None, result=None, language=None, runtime_configuration=None, **kwargs, ): try: result_dict = result.result except KeyError: return None if result_dict is None: return None if not result_dict.get("partial_unexpected_list") and not result_dict.get( "partial_unexpected_counts" ): return None table_rows = [] if result_dict.get("partial_unexpected_counts"): # We will check to see whether we have *all* of the unexpected values # accounted for in our count, and include counts if we do. If we do not, # we will use this as simply a better (non-repeating) source of # "sampled" unexpected values total_count = 0 for unexpected_count_dict in result_dict.get("partial_unexpected_counts"): value = unexpected_count_dict.get("value") count = unexpected_count_dict.get("count") total_count += count if value is not None and value != "": table_rows.append([value, count]) elif value == "": table_rows.append(["EMPTY", count]) else: table_rows.append(["null", count]) # Check to see if we have *all* of the unexpected values accounted for. If so, # we show counts. If not, we only show "sampled" unexpected values. if total_count == result_dict.get("unexpected_count"): header_row = ["Unexpected Value", "Count"] else: header_row = ["Sampled Unexpected Values"] table_rows = [[row[0]] for row in table_rows] else: header_row = ["Sampled Unexpected Values"] sampled_values_set = set() for unexpected_value in result_dict.get("partial_unexpected_list"): if unexpected_value: string_unexpected_value = str(unexpected_value) elif unexpected_value == "": string_unexpected_value = "EMPTY" else: string_unexpected_value = "null" if string_unexpected_value not in sampled_values_set: table_rows.append([unexpected_value]) sampled_values_set.add(string_unexpected_value) unexpected_table_content_block = RenderedTableContent( **{ "content_block_type": "table", "table": table_rows, "header_row": header_row, "styling": { "body": {"classes": ["table-bordered", "table-sm", "mt-3"]} }, } ) return unexpected_table_content_block @classmethod @renderer(renderer_type="renderer.diagnostic.observed_value") def _diagnostic_observed_value_renderer( cls, configuration=None, result=None, language=None, runtime_configuration=None, **kwargs, ): result_dict = result.result if result_dict is None: return "--" if result_dict.get("observed_value") is not None: observed_value = result_dict.get("observed_value") if isinstance(observed_value, (int, float)) and not isinstance( observed_value, bool ): return num_to_str(observed_value, precision=10, use_locale=True) return str(observed_value) elif result_dict.get("unexpected_percent") is not None: return ( num_to_str(result_dict.get("unexpected_percent"), precision=5) + "% unexpected" ) else: return "--" @classmethod def get_allowed_config_keys(cls): return cls.domain_keys + cls.success_keys + cls.runtime_keys def metrics_validate( self, metrics: Dict, configuration: Optional[ExpectationConfiguration] = None, runtime_configuration: dict = None, execution_engine: ExecutionEngine = None, ) -> "ExpectationValidationResult": if configuration is None: configuration = self.configuration provided_metrics = dict() requested_metrics = self.get_validation_dependencies( configuration, execution_engine=execution_engine, runtime_configuration=runtime_configuration, )["metrics"] for name, metric_edge_key in requested_metrics.items(): provided_metrics[name] = metrics[metric_edge_key.id] return self._build_evr( self._validate( configuration=configuration, metrics=provided_metrics, runtime_configuration=runtime_configuration, execution_engine=execution_engine, ), configuration, ) def _build_evr(self, raw_response, configuration): """_build_evr is a lightweight convenience wrapper handling cases where an Expectation implementor fails to return an EVR but returns the necessary components in a dictionary.""" if not isinstance(raw_response, ExpectationValidationResult): if isinstance(raw_response, dict): evr = ExpectationValidationResult(**raw_response) evr.expectation_config = configuration else: raise GreatExpectationsError("Unable to build EVR") else: evr = raw_response evr.expectation_config = configuration return evr def get_validation_dependencies( self, configuration: Optional[ExpectationConfiguration] = None, execution_engine: Optional[ExecutionEngine] = None, runtime_configuration: Optional[dict] = None, ): """Returns the result format and metrics required to validate this Expectation using the provided result format.""" return { "result_format": parse_result_format( self.get_runtime_kwargs( configuration=configuration, runtime_configuration=runtime_configuration, ).get("result_format") ), "metrics": dict(), } def get_domain_kwargs( self, configuration: Optional[ExpectationConfiguration] = None ): if not configuration: configuration = self.configuration domain_kwargs = { key: configuration.kwargs.get(key, self.default_kwarg_values.get(key)) for key in self.domain_keys } # Process evaluation parameter dependencies missing_kwargs = set(self.domain_keys) - set(domain_kwargs.keys()) if missing_kwargs: raise InvalidExpectationKwargsError( f"Missing domain kwargs: {list(missing_kwargs)}" ) return domain_kwargs def get_success_kwargs( self, configuration: Optional[ExpectationConfiguration] = None ): if not configuration: configuration = self.configuration domain_kwargs = self.get_domain_kwargs(configuration) success_kwargs = { key: configuration.kwargs.get(key, self.default_kwarg_values.get(key)) for key in self.success_keys } success_kwargs.update(domain_kwargs) return success_kwargs def get_runtime_kwargs( self, configuration: Optional[ExpectationConfiguration] = None, runtime_configuration: dict = None, ): if not configuration: configuration = self.configuration configuration = deepcopy(configuration) if runtime_configuration: configuration.kwargs.update(runtime_configuration) success_kwargs = self.get_success_kwargs(configuration) runtime_kwargs = { key: configuration.kwargs.get(key, self.default_kwarg_values.get(key)) for key in self.runtime_keys } runtime_kwargs.update(success_kwargs) runtime_kwargs["result_format"] = parse_result_format( runtime_kwargs["result_format"] ) return runtime_kwargs def validate_configuration(self, configuration: Optional[ExpectationConfiguration]): if configuration is None: configuration = self.configuration try: assert ( configuration.expectation_type == self.expectation_type ), f"expectation configuration type {configuration.expectation_type} does not match expectation type {self.expectation_type}" except AssertionError as e: raise InvalidExpectationConfigurationError(str(e)) return True def validate( self, validator: "Validator", configuration: Optional[ExpectationConfiguration] = None, evaluation_parameters=None, interactive_evaluation=True, data_context=None, runtime_configuration=None, ): if configuration is None: configuration = self.configuration configuration.process_evaluation_parameters( evaluation_parameters, interactive_evaluation, data_context ) evr = validator.graph_validate( configurations=[configuration], runtime_configuration=runtime_configuration, )[0] return evr @property def configuration(self): if self._configuration is None: raise InvalidExpectationConfigurationError( "cannot access configuration: expectation has not yet been configured" ) return self._configuration @classmethod def build_configuration(cls, *args, **kwargs): # Combine all arguments into a single new "all_args" dictionary to name positional parameters all_args = dict(zip(cls.validation_kwargs, args)) all_args.update(kwargs) # Unpack display parameters; remove them from all_args if appropriate if "include_config" in kwargs: include_config = kwargs["include_config"] del all_args["include_config"] else: include_config = cls.default_expectation_args["include_config"] if "catch_exceptions" in kwargs: catch_exceptions = kwargs["catch_exceptions"] del all_args["catch_exceptions"] else: catch_exceptions = cls.default_expectation_args["catch_exceptions"] if "result_format" in kwargs: result_format = kwargs["result_format"] else: result_format = cls.default_expectation_args["result_format"] # Extract the meta object for use as a top-level expectation_config holder if "meta" in kwargs: meta = kwargs["meta"] del all_args["meta"] else: meta = None # Construct the expectation_config object return ExpectationConfiguration( expectation_type=cls.expectation_type, kwargs=convert_to_json_serializable(deepcopy(all_args)), meta=meta, ) def run_diagnostics(self, pretty_print=True): """ Produce a diagnostic report about this expectation. The current uses for this method's output are using the JSON structure to populate the Public Expectation Gallery and enabling a fast devloop for developing new expectations where the contributors can quickly check the completeness of their expectations. The content of the report: * name and description * "library metadata", such as the GitHub usernames of the expectation's authors * the execution engines the expectation is implemented for * the implemented renderers * tests in "examples" member variable * the tests are executed against the execution engines for which the expectation is implemented and the output of the test runs is included in the report. At least one test case with include_in_gallery=True must be present in the examples to produce the metrics, renderers and execution engines parts of the report. This is due to a get_validation_dependencies requiring expectation_config as an argument. If errors are encountered in the process of running the diagnostics, they are assumed to be due to incompleteness of the Expectation's implementation (e.g., declaring a dependency on Metrics that do not exist). These errors are added under "errors" key in the report. :param pretty_print: TODO: this argument is not currently used. The intent is to return a well formatted and easily readable text instead of the dictionary when the argument is set to True :return: a dictionary view of the report """ camel_name = self.__class__.__name__ snake_name = camel_to_snake(self.__class__.__name__) docstring, short_description = self._get_docstring_and_short_description() library_metadata = self._get_library_metadata() report_obj = { "description": { "camel_name": camel_name, "snake_name": snake_name, "short_description": short_description, "docstring": docstring, }, "library_metadata": library_metadata, "renderers": {}, "examples": [], "metrics": [], "execution_engines": {}, "test_report": [], "diagnostics_report": [], } # Generate artifacts from an example case gallery_examples = self._get_examples() report_obj.update({"examples": gallery_examples}) if gallery_examples != []: example_data, example_test = self._choose_example(gallery_examples) # TODO: this should be creating a Batch using an engine test_batch = Batch(data=pd.DataFrame(example_data)) expectation_config = ExpectationConfiguration( **{"expectation_type": snake_name, "kwargs": example_test} ) validation_result = None try: validation_results = self._instantiate_example_validation_results( test_batch=test_batch, expectation_config=expectation_config, ) validation_result = validation_results[0] except ( GreatExpectationsError, AttributeError, ImportError, LookupError, ValueError, SyntaxError, ) as e: report_obj = self._add_error_to_diagnostics_report( report_obj, e, traceback.format_exc() ) if validation_result is not None: renderers = self._get_renderer_dict( expectation_name=snake_name, expectation_config=expectation_config, validation_result=validation_result, ) report_obj.update({"renderers": renderers}) upstream_metrics = None try: upstream_metrics = self._get_upstream_metrics(expectation_config) report_obj.update({"metrics": upstream_metrics}) except GreatExpectationsError as e: report_obj = self._add_error_to_diagnostics_report( report_obj, e, traceback.format_exc() ) execution_engines = None if upstream_metrics is not None: execution_engines = self._get_execution_engine_dict( upstream_metrics=upstream_metrics, ) report_obj.update({"execution_engines": execution_engines}) try: tests = self._get_examples(return_only_gallery_examples=False) if len(tests) > 0: if execution_engines is not None: test_results = self._get_test_results( snake_name, tests, execution_engines, ) report_obj.update({"test_report": test_results}) except Exception as e: report_obj = self._add_error_to_diagnostics_report( report_obj, e, traceback.format_exc() ) return report_obj def _add_error_to_diagnostics_report( self, report_obj: Dict, error: Exception, stack_trace: str ) -> Dict: error_entries = report_obj.get("diagnostics_report") if error_entries is None: error_entries = [] report_obj["diagnostics_report"] = error_entries error_entries.append( { "error_message": str(error), "stack_trace": stack_trace, } ) return report_obj def _get_examples(self, return_only_gallery_examples=True) -> List[Dict]: """ Get a list of examples from the object's `examples` member variable. :param return_only_gallery_examples: if True, include only test examples where `include_in_gallery` is true :return: list of examples or [], if no examples exist """ try: all_examples = self.examples except AttributeError: return [] included_examples = [] for example in all_examples: # print(example) included_tests = [] for test in example["tests"]: if ( test.get("include_in_gallery") == True or return_only_gallery_examples == False ): included_tests.append(test) if len(included_tests) > 0: copied_example = deepcopy(example) copied_example["tests"] = included_tests included_examples.append(copied_example) return included_examples def _get_docstring_and_short_description(self) -> Tuple[str, str]: if self.__doc__ is not None: docstring = self.__doc__ short_description = self.__doc__.split("\n")[0] else: docstring = "" short_description = "" return docstring, short_description def _choose_example(self, examples): example = examples[0] example_data = example["data"] example_test = example["tests"][0]["in"] return example_data, example_test def _instantiate_example_validation_results( self, test_batch: Batch, expectation_config: ExpectationConfiguration, ) -> List[ExpectationValidationResult]: validation_results = Validator( execution_engine=PandasExecutionEngine(), batches=[test_batch] ).graph_validate(configurations=[expectation_config]) return validation_results def _get_supported_renderers(self, snake_name: str) -> List[str]: supported_renderers = list(_registered_renderers[snake_name].keys()) supported_renderers.sort() return supported_renderers def _get_test_results( self, snake_name, examples, execution_engines, ): test_results = [] exp_tests = generate_expectation_tests( snake_name, examples, expectation_execution_engines_dict=execution_engines, ) for exp_test in exp_tests: try: evaluate_json_test_cfe( validator=exp_test["validator_with_data"], expectation_type=exp_test["expectation_type"], test=exp_test["test"], ) test_results.append( { "test title": exp_test["test"]["title"], "backend": exp_test["backend"], "test_passed": "true", } ) except Exception as e: test_results.append( { "test title": exp_test["test"]["title"], "backend": exp_test["backend"], "test_passed": "false", "error_message": str(e), "stack_trace": traceback.format_exc(), } ) return test_results from great_expectations.render.types import RenderedStringTemplateContent # NOTE: Abe 20201228: This method probably belong elsewhere. Putting it here for now. def _get_rendered_result_as_string(self, rendered_result): if type(rendered_result) == str: return rendered_result elif type(rendered_result) == list: sub_result_list = [] for sub_result in rendered_result: sub_result_list.append(self._get_rendered_result_as_string(sub_result)) return "\n".join(sub_result_list) elif type(rendered_result) == RenderedStringTemplateContent: return rendered_result.__str__() else: pass # print(type(rendered_result)) def _get_renderer_dict( self, expectation_name: str, expectation_config: ExpectationConfiguration, validation_result: ExpectationValidationResult, standard_renderers=[ "renderer.answer", "renderer.diagnostic.unexpected_statement", "renderer.diagnostic.observed_value", "renderer.diagnostic.status_icon", "renderer.diagnostic.unexpected_table", "renderer.prescriptive", "renderer.question", ], ) -> Dict[str, str]: supported_renderers = self._get_supported_renderers(expectation_name) standard_renderer_dict = {} for renderer_name in standard_renderers: if renderer_name in supported_renderers: _, renderer = _registered_renderers[expectation_name][renderer_name] rendered_result = renderer( configuration=expectation_config, result=validation_result, ) standard_renderer_dict[ renderer_name ] = self._get_rendered_result_as_string(rendered_result) else: standard_renderer_dict[renderer_name] = None return { "standard": standard_renderer_dict, "custom": [], } def _get_execution_engine_dict( self, upstream_metrics, ) -> Dict: expectation_engines = {} for provider in [ "PandasExecutionEngine", "SqlAlchemyExecutionEngine", "SparkDFExecutionEngine", ]: all_true = True for metric in upstream_metrics: if not provider in _registered_metrics[metric]["providers"]: all_true = False break expectation_engines[provider] = all_true return expectation_engines def _get_upstream_metrics(self, expectation_config) -> List[str]: # NOTE: Abe 20210102: Strictly speaking, identifying upstream metrics shouldn't need to rely on an expectation config. # There's probably some part of get_validation_dependencies that can be factored out to remove the dependency. validation_dependencies = self.get_validation_dependencies( configuration=expectation_config ) return list(validation_dependencies["metrics"].keys()) def _get_library_metadata(self): library_metadata = { "maturity": None, "package": None, "tags": [], "contributors": [], } if hasattr(self, "library_metadata"): library_metadata.update(self.library_metadata) return library_metadata class TableExpectation(Expectation, ABC): domain_keys = ( "batch_id", "table", "row_condition", "condition_parser", ) metric_dependencies = tuple() def get_validation_dependencies( self, configuration: Optional[ExpectationConfiguration] = None, execution_engine: Optional[ExecutionEngine] = None, runtime_configuration: Optional[dict] = None, ): dependencies = super().get_validation_dependencies( configuration, execution_engine, runtime_configuration ) for metric_name in self.metric_dependencies: metric_kwargs = get_metric_kwargs( metric_name=metric_name, configuration=configuration, runtime_configuration=runtime_configuration, ) dependencies["metrics"][metric_name] = MetricConfiguration( metric_name=metric_name, metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) return dependencies def validate_metric_value_between_configuration( self, configuration: Optional[ExpectationConfiguration] ): # Validating that Minimum and Maximum values are of the proper format and type min_val = None max_val = None parse_strings_as_datetimes = None if "min_value" in configuration.kwargs: min_val = configuration.kwargs["min_value"] if "max_value" in configuration.kwargs: max_val = configuration.kwargs["max_value"] if "parse_strings_as_datetimes" in configuration.kwargs: parse_strings_as_datetimes = configuration.kwargs[ "parse_strings_as_datetimes" ] try: # Ensuring Proper interval has been provided if parse_strings_as_datetimes: assert min_val is None or is_parseable_date( min_val ), "Provided min threshold must be a dateutil-parseable date" assert ( max_val is None or is_parseable_date(max_val), ), "Provided max threshold must be a dateutil-parseable date" else: assert min_val is None or isinstance( min_val, (float, int, dict) ), "Provided min threshold must be a number" if isinstance(min_val, dict): assert ( "$PARAMETER" in min_val ), 'Evaluation Parameter dict for min_value kwarg must have "$PARAMETER" key' assert max_val is None or isinstance( max_val, (float, int, dict) ), "Provided max threshold must be a number" if isinstance(max_val, dict): assert "$PARAMETER" in max_val, ( "Evaluation Parameter dict for max_value " "kwarg " 'must have "$PARAMETER" key' ) except AssertionError as e: raise InvalidExpectationConfigurationError(str(e)) if min_val is not None and max_val is not None and min_val > max_val: raise InvalidExpectationConfigurationError( "Minimum Threshold cannot be larger than Maximum Threshold" ) return True def _validate_metric_value_between( self, metric_name, configuration: ExpectationConfiguration, metrics: Dict, runtime_configuration: dict = None, execution_engine: ExecutionEngine = None, ): metric_value = metrics.get(metric_name) # Obtaining components needed for validation min_value = self.get_success_kwargs(configuration).get("min_value") strict_min = self.get_success_kwargs(configuration).get("strict_min") max_value = self.get_success_kwargs(configuration).get("max_value") strict_max = self.get_success_kwargs(configuration).get("strict_max") if metric_value is None: return {"success": False, "result": {"observed_value": metric_value}} # Checking if mean lies between thresholds if min_value is not None: if strict_min: above_min = metric_value > min_value else: above_min = metric_value >= min_value else: above_min = True if max_value is not None: if strict_max: below_max = metric_value < max_value else: below_max = metric_value <= max_value else: below_max = True success = above_min and below_max return {"success": success, "result": {"observed_value": metric_value}} class ColumnExpectation(TableExpectation, ABC): domain_keys = ("batch_id", "table", "column", "row_condition", "condition_parser") def validate_configuration(self, configuration: Optional[ExpectationConfiguration]): # Ensuring basic configuration parameters are properly set try: assert ( "column" in configuration.kwargs ), "'column' parameter is required for column expectations" except AssertionError as e: raise InvalidExpectationConfigurationError(str(e)) return True class ColumnMapExpectation(TableExpectation, ABC): map_metric = None domain_keys = ("batch_id", "table", "column", "row_condition", "condition_parser") success_keys = ("mostly",) default_kwarg_values = { "row_condition": None, "condition_parser": None, # we expect this to be explicitly set whenever a row_condition is passed "mostly": 1, "result_format": "BASIC", "include_config": True, "catch_exceptions": True, } @classmethod def is_abstract(cls): return cls.map_metric is None or super().is_abstract() def validate_configuration(self, configuration: Optional[ExpectationConfiguration]): if not super().validate_configuration(configuration): return False try: assert ( "column" in configuration.kwargs ), "'column' parameter is required for column map expectations" if "mostly" in configuration.kwargs: mostly = configuration.kwargs["mostly"] assert isinstance( mostly, (int, float) ), "'mostly' parameter must be an integer or float" assert 0 <= mostly <= 1, "'mostly' parameter must be between 0 and 1" except AssertionError as e: raise InvalidExpectationConfigurationError(str(e)) return True def get_validation_dependencies( self, configuration: Optional[ExpectationConfiguration] = None, execution_engine: Optional[ExecutionEngine] = None, runtime_configuration: Optional[dict] = None, ): dependencies = super().get_validation_dependencies( configuration, execution_engine, runtime_configuration ) assert isinstance( self.map_metric, str ), "ColumnMapExpectation must override get_validation_dependencies or declare exactly one map_metric" assert ( self.metric_dependencies == tuple() ), "ColumnMapExpectation must be configured using map_metric, and cannot have metric_dependencies declared." # convenient name for updates metric_dependencies = dependencies["metrics"] metric_kwargs = get_metric_kwargs( metric_name="column_values.nonnull.unexpected_count", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies[ "column_values.nonnull.unexpected_count" ] = MetricConfiguration( "column_values.nonnull.unexpected_count", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) metric_kwargs = get_metric_kwargs( metric_name=self.map_metric + ".unexpected_count", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies[ self.map_metric + ".unexpected_count" ] = MetricConfiguration( self.map_metric + ".unexpected_count", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) result_format_str = dependencies["result_format"].get("result_format") metric_kwargs = get_metric_kwargs( metric_name="table.row_count", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies["table.row_count"] = MetricConfiguration( metric_name="table.row_count", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) if result_format_str == "BOOLEAN_ONLY": return dependencies metric_kwargs = get_metric_kwargs( self.map_metric + ".unexpected_values", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies[ self.map_metric + ".unexpected_values" ] = MetricConfiguration( metric_name=self.map_metric + ".unexpected_values", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) if result_format_str in ["BASIC", "SUMMARY"]: return dependencies metric_kwargs = get_metric_kwargs( self.map_metric + ".unexpected_rows", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies[self.map_metric + ".unexpected_rows"] = MetricConfiguration( metric_name=self.map_metric + ".unexpected_rows", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) if isinstance(execution_engine, PandasExecutionEngine): metric_kwargs = get_metric_kwargs( self.map_metric + ".unexpected_index_list", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies[ self.map_metric + ".unexpected_index_list" ] = MetricConfiguration( metric_name=self.map_metric + ".unexpected_index_list", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) return dependencies def _validate( self, configuration: ExpectationConfiguration, metrics: Dict, runtime_configuration: dict = None, execution_engine: ExecutionEngine = None, ): if runtime_configuration: result_format = runtime_configuration.get( "result_format", configuration.kwargs.get( "result_format", self.default_kwarg_values.get("result_format") ), ) else: result_format = configuration.kwargs.get( "result_format", self.default_kwarg_values.get("result_format") ) mostly = self.get_success_kwargs().get( "mostly", self.default_kwarg_values.get("mostly") ) total_count = metrics.get("table.row_count") null_count = metrics.get("column_values.nonnull.unexpected_count") unexpected_count = metrics.get(self.map_metric + ".unexpected_count") success = None if total_count is None or null_count is None: # Vacuously true success = True elif (total_count - null_count) != 0: success_ratio = (total_count - unexpected_count - null_count) / ( total_count - null_count ) success = success_ratio >= mostly elif total_count == 0 or (total_count - null_count) == 0: success = True try: nonnull_count = metrics.get("table.row_count") - metrics.get( "column_values.nonnull.unexpected_count" ) except TypeError: nonnull_count = None return _format_map_output( result_format=parse_result_format(result_format), success=success, element_count=metrics.get("table.row_count"), nonnull_count=nonnull_count, unexpected_count=metrics.get(self.map_metric + ".unexpected_count"), unexpected_list=metrics.get(self.map_metric + ".unexpected_values"), unexpected_index_list=metrics.get( self.map_metric + ".unexpected_index_list" ), ) class ColumnPairMapExpectation(TableExpectation, ABC): map_metric = None domain_keys = ( "batch_id", "table", "column_A", "column_B", "row_condition", "condition_parser", ) success_keys = ("mostly",) default_kwarg_values = { "row_condition": None, "condition_parser": None, # we expect this to be explicitly set whenever a row_condition is passed "mostly": 1, "result_format": "BASIC", "include_config": True, "catch_exceptions": True, } @classmethod def is_abstract(cls): return cls.map_metric is None or super().is_abstract() def validate_configuration(self, configuration: Optional[ExpectationConfiguration]): if not super().validate_configuration(configuration): return False try: assert ( "column_A" in configuration.kwargs ), "'column_A' parameter is required for column pair map expectations" assert ( "column_B" in configuration.kwargs ), "'column_B' parameter is required for column pair map expectations" if "mostly" in configuration.kwargs: mostly = configuration.kwargs["mostly"] assert isinstance( mostly, (int, float) ), "'mostly' parameter must be an integer or float" assert 0 <= mostly <= 1, "'mostly' parameter must be between 0 and 1" except AssertionError as e: raise InvalidExpectationConfigurationError(str(e)) return True def get_validation_dependencies( self, configuration: Optional[ExpectationConfiguration] = None, execution_engine: Optional[ExecutionEngine] = None, runtime_configuration: Optional[dict] = None, ): dependencies = super().get_validation_dependencies( configuration, execution_engine, runtime_configuration ) assert isinstance( self.map_metric, str ), "ColumnPairMapExpectation must override get_validation_dependencies or declare exactly one map_metric" assert ( self.metric_dependencies == tuple() ), "ColumnPairMapExpectation must be configured using map_metric, and cannot have metric_dependencies declared." # convenient name for updates metric_dependencies = dependencies["metrics"] metric_kwargs = get_metric_kwargs( metric_name="column_values.nonnull.unexpected_count", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies[ "column_values.nonnull.unexpected_count" ] = MetricConfiguration( "column_values.nonnull.unexpected_count", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) metric_kwargs = get_metric_kwargs( metric_name=self.map_metric + ".unexpected_count", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies[ self.map_metric + ".unexpected_count" ] = MetricConfiguration( self.map_metric + ".unexpected_count", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) result_format_str = dependencies["result_format"].get("result_format") if result_format_str == "BOOLEAN_ONLY": return dependencies metric_kwargs = get_metric_kwargs( metric_name="table.row_count", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies["table.row_count"] = MetricConfiguration( metric_name="table.row_count", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) metric_kwargs = get_metric_kwargs( self.map_metric + ".unexpected_values", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies[ self.map_metric + ".unexpected_values" ] = MetricConfiguration( metric_name=self.map_metric + ".unexpected_values", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) if result_format_str in ["BASIC", "SUMMARY"]: return dependencies metric_kwargs = get_metric_kwargs( self.map_metric + ".unexpected_rows", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies[self.map_metric + ".unexpected_rows"] = MetricConfiguration( metric_name=self.map_metric + ".unexpected_rows", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) if isinstance(execution_engine, PandasExecutionEngine): metric_kwargs = get_metric_kwargs( self.map_metric + ".unexpected_index_list", configuration=configuration, runtime_configuration=runtime_configuration, ) metric_dependencies[ self.map_metric + ".unexpected_index_list" ] = MetricConfiguration( metric_name=self.map_metric + ".unexpected_index_list", metric_domain_kwargs=metric_kwargs["metric_domain_kwargs"], metric_value_kwargs=metric_kwargs["metric_value_kwargs"], ) return dependencies def _validate( self, configuration: ExpectationConfiguration, metrics: Dict, runtime_configuration: dict = None, execution_engine: ExecutionEngine = None, ): if runtime_configuration: result_format = runtime_configuration.get( "result_format", configuration.kwargs.get( "result_format", self.default_kwarg_values.get("result_format") ), ) else: result_format = configuration.kwargs.get( "result_format", self.default_kwarg_values.get("result_format") ) mostly = self.get_success_kwargs().get( "mostly", self.default_kwarg_values.get("mostly") ) total_count = metrics.get("table.row_count") null_count = metrics.get("column_values.nonnull.unexpected_count") unexpected_count = metrics.get(self.map_metric + ".unexpected_count") success = None if total_count is None or null_count is None: # Vacuously true success = True elif (total_count - null_count) != 0: success_ratio = (total_count - unexpected_count - null_count) / ( total_count - null_count ) success = success_ratio >= mostly elif total_count == 0 or (total_count - null_count) == 0: success = True try: nonnull_count = metrics.get("table.row_count") - metrics.get( "column_values.nonnull.unexpected_count" ) except TypeError: nonnull_count = None return _format_map_output( result_format=parse_result_format(result_format), success=success, element_count=metrics.get("table.row_count"), nonnull_count=nonnull_count, unexpected_count=metrics.get(self.map_metric + ".unexpected_count"), unexpected_list=metrics.get(self.map_metric + ".unexpected_values"), unexpected_index_list=metrics.get( self.map_metric + ".unexpected_index_list" ), ) def _format_map_output( result_format, success, element_count, nonnull_count, unexpected_count, unexpected_list, unexpected_index_list, ): """Helper function to construct expectation result objects for map_expectations (such as column_map_expectation and file_lines_map_expectation). Expectations support four result_formats: BOOLEAN_ONLY, BASIC, SUMMARY, and COMPLETE. In each case, the object returned has a different set of populated fields. See :ref:`result_format` for more information. This function handles the logic for mapping those fields for column_map_expectations. """ # NB: unexpected_count parameter is explicit some implementing classes may limit the length of unexpected_list # Incrementally add to result and return when all values for the specified level are present return_obj = {"success": success} if result_format["result_format"] == "BOOLEAN_ONLY": return return_obj skip_missing = False if nonnull_count is None: missing_count = None skip_missing: bool = True else: missing_count = element_count - nonnull_count if element_count > 0: unexpected_percent_total = unexpected_count / element_count * 100 if not skip_missing: missing_percent = missing_count / element_count * 100 if nonnull_count > 0: unexpected_percent_nonmissing = unexpected_count / nonnull_count * 100 else: unexpected_percent_nonmissing = None else: unexpected_percent_nonmissing = unexpected_percent_total else: missing_percent = None unexpected_percent_total = None unexpected_percent_nonmissing = None return_obj["result"] = { "element_count": element_count, "unexpected_count": unexpected_count, "unexpected_percent": unexpected_percent_nonmissing, "partial_unexpected_list": unexpected_list[ : result_format["partial_unexpected_count"] ], } if not skip_missing: return_obj["result"]["missing_count"] = missing_count return_obj["result"]["missing_percent"] = missing_percent return_obj["result"]["unexpected_percent_total"] = unexpected_percent_total return_obj["result"][ "unexpected_percent_nonmissing" ] = unexpected_percent_nonmissing if result_format["result_format"] == "BASIC": return return_obj # Try to return the most common values, if possible. if 0 < result_format.get("partial_unexpected_count"): try: partial_unexpected_counts = [ {"value": key, "count": value} for key, value in sorted( Counter(unexpected_list).most_common( result_format["partial_unexpected_count"] ), key=lambda x: (-x[1], x[0]), ) ] except TypeError: partial_unexpected_counts = [ "partial_exception_counts requires a hashable type" ] finally: return_obj["result"].update( { "partial_unexpected_index_list": unexpected_index_list[ : result_format["partial_unexpected_count"] ] if unexpected_index_list is not None else None, "partial_unexpected_counts": partial_unexpected_counts, } ) if result_format["result_format"] == "SUMMARY": return return_obj return_obj["result"].update( { "unexpected_list": unexpected_list, "unexpected_index_list": unexpected_index_list, } ) if result_format["result_format"] == "COMPLETE": return return_obj raise ValueError("Unknown result_format {}.".format(result_format["result_format"]))
37.708703
137
0.58959
793eb739df12fa7a3dcb33f038bbffa2f3f10bde
1,149
py
Python
min_coin2.py
zmiddle/Coin_Change.py
5dd14d6ab2a9310d30ea6a004dd652e0c25f5127
[ "MIT" ]
null
null
null
min_coin2.py
zmiddle/Coin_Change.py
5dd14d6ab2a9310d30ea6a004dd652e0c25f5127
[ "MIT" ]
null
null
null
min_coin2.py
zmiddle/Coin_Change.py
5dd14d6ab2a9310d30ea6a004dd652e0c25f5127
[ "MIT" ]
null
null
null
#2. Given a value and a set of coins, return the optimal count of coins to achieve the value. # Example: Can you rewrite this so that it will work when you're machine has run out of nickels? # (and minimize the number of coins given [a reasonable amount]) def min_coin2(cents): try: cents == int(cents) except ValueError: return "Not an integer!" else: if cents < 1: return 0 coins = [25, 10, 5, 1] q = True d = True n = False p = True supply = [q,d,n,p] i = 0 num_coins = 0 while cents >= 1: #This can be simplified ''' if supply[i] == False: i += 1 elif cents < coins[i]: i += 1 ''' if (supply[i] == False) or cents < coins[i] : i += 1 elif (supply[i] == True) & (cents >= coins[i]): cents -= coins[i] num_coins += 1 return num_coins print (min_coin2(31)) print (min_coin2(70)) print (min_coin2('hi'))
27.357143
96
0.466493
793eb83464ec233e8c1df61541772c3de5a7e935
3,003
py
Python
Queue/DesignCircularQueue.py
karan2808/Python-Data-Structures-and-Algorithms
a4b39ddf7297541d90dc4efcaab883f928281abd
[ "MIT" ]
2
2021-01-31T03:42:01.000Z
2021-01-31T03:43:08.000Z
Queue/DesignCircularQueue.py
karan2808/Python-Data-Structures-and-Algorithms
a4b39ddf7297541d90dc4efcaab883f928281abd
[ "MIT" ]
null
null
null
Queue/DesignCircularQueue.py
karan2808/Python-Data-Structures-and-Algorithms
a4b39ddf7297541d90dc4efcaab883f928281abd
[ "MIT" ]
1
2021-01-31T03:42:02.000Z
2021-01-31T03:42:02.000Z
class MyCircularQueue: def __init__(self, k: int): self.q = [None] * k self.front_idx = -1 self.back_idx = -1 self.capacity = k def display_elements(self): print("The elements in the Queue are ") print_str = "" # add the elements to the print string for i in range(self.capacity): print_str += str(self.q[i]) + " " print(print_str) def enQueue(self, value: int) -> bool: # if the queue is full return false if self.isFull(): print("The queue is full..") return False # if the front index is negative, update its value to 0 if self.front_idx == -1: self.front_idx = 0 # increment the back index self.back_idx = (self.back_idx + 1) % self.capacity # update the queue value self.q[self.back_idx] = value return True def deQueue(self) -> bool: # if the queue is empty return false if self.front_idx == -1: print("The queue is empty..") return False self.q[self.front_idx] = None # if the front and back indices are the same reset the queue indices if self.front_idx == self.back_idx: self.front_idx = -1 self.back_idx = -1 else: # increment the front idx self.front_idx = (self.front_idx + 1) % self.capacity return True def Front(self) -> int: # if the front idx is -1 return -1 else the front value return -1 if self.front_idx == -1 else self.q[self.front_idx] def Rear(self) -> int: # if the rear idx is -1 return -1 else the back value return -1 if self.back_idx == -1 else self.q[self.back_idx] # check if queue is empty def isEmpty(self) -> bool: return self.front_idx == -1 # check if queue is full def isFull(self) -> bool: return (self.back_idx + 1) % self.capacity == self.front_idx def main(): Queue = MyCircularQueue(10) Queue.enQueue(20) Queue.enQueue(10) Queue.display_elements() Queue.deQueue() Queue.enQueue(20) Queue.enQueue(10) Queue.enQueue(20) Queue.enQueue(10) Queue.enQueue(20) Queue.enQueue(10) Queue.enQueue(20) Queue.enQueue(10) Queue.enQueue(20) Queue.enQueue(10) Queue.enQueue(20) Queue.enQueue(10) Queue.enQueue(20) Queue.enQueue(10) Queue.display_elements() print("The front element of the queue is " + str(Queue.Front())) print("The rear element of the queue is " + str(Queue.Rear())) Queue.deQueue() Queue.deQueue() Queue.deQueue() Queue.deQueue() Queue.deQueue() Queue.deQueue() Queue.deQueue() Queue.deQueue() Queue.deQueue() print("The front element of the queue is " + str(Queue.Front())) print("The rear element of the queue is " + str(Queue.Rear())) Queue.display_elements() if __name__ == "__main__": main()
30.333333
76
0.590077
793eb870bf620d1046e4865ddf3c8b3e73e00a81
13,502
py
Python
neutron/services/firewall/fwaas_plugin.py
SnabbCo/neutron
a657c06d10f2171149c6b1863df36522bdc11cd7
[ "Apache-2.0" ]
1
2016-04-19T08:20:19.000Z
2016-04-19T08:20:19.000Z
neutron/services/firewall/fwaas_plugin.py
SnabbCo/neutron
a657c06d10f2171149c6b1863df36522bdc11cd7
[ "Apache-2.0" ]
null
null
null
neutron/services/firewall/fwaas_plugin.py
SnabbCo/neutron
a657c06d10f2171149c6b1863df36522bdc11cd7
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright 2013 Big Switch Networks, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # @author: Sumit Naiksatam, [email protected], Big Switch Networks, Inc. from oslo.config import cfg from neutron.common import exceptions as n_exception from neutron.common import rpc as q_rpc from neutron.common import topics from neutron import context as neutron_context from neutron.db import api as qdbapi from neutron.db.firewall import firewall_db from neutron.extensions import firewall as fw_ext from neutron.openstack.common import log as logging from neutron.openstack.common import rpc from neutron.openstack.common.rpc import proxy from neutron.plugins.common import constants as const LOG = logging.getLogger(__name__) class FirewallCallbacks(object): RPC_API_VERSION = '1.0' def __init__(self, plugin): self.plugin = plugin def create_rpc_dispatcher(self): return q_rpc.PluginRpcDispatcher([self]) def set_firewall_status(self, context, firewall_id, status, **kwargs): """Agent uses this to set a firewall's status.""" LOG.debug(_("set_firewall_status() called")) with context.session.begin(subtransactions=True): fw_db = self.plugin._get_firewall(context, firewall_id) #TODO(xuhanp): Remove INACTIVE status and use DOWN to # be consistent with other network resources if status in (const.ACTIVE, const.INACTIVE, const.DOWN): fw_db.status = status return True else: fw_db.status = const.ERROR return False def firewall_deleted(self, context, firewall_id, **kwargs): """Agent uses this to indicate firewall is deleted.""" LOG.debug(_("firewall_deleted() called")) with context.session.begin(subtransactions=True): fw_db = self.plugin._get_firewall(context, firewall_id) if fw_db.status == const.PENDING_DELETE: self.plugin.delete_db_firewall_object(context, firewall_id) return True else: fw_db.status = const.ERROR LOG.warn(_('Firewall %s unexpectedly deleted by agent.'), firewall_id) return False def get_firewalls_for_tenant(self, context, **kwargs): """Agent uses this to get all firewalls and rules for a tenant.""" LOG.debug(_("get_firewalls_for_tenant() called")) fw_list = [ self.plugin._make_firewall_dict_with_rules(context, fw['id']) for fw in self.plugin.get_firewalls(context) ] return fw_list def get_firewalls_for_tenant_without_rules(self, context, **kwargs): """Agent uses this to get all firewalls for a tenant.""" LOG.debug(_("get_firewalls_for_tenant_without_rules() called")) fw_list = [fw for fw in self.plugin.get_firewalls(context)] return fw_list def get_tenants_with_firewalls(self, context, **kwargs): """Agent uses this to get all tenants that have firewalls.""" LOG.debug(_("get_tenants_with_firewalls() called")) ctx = neutron_context.get_admin_context() fw_list = self.plugin.get_firewalls(ctx) fw_tenant_list = list(set(fw['tenant_id'] for fw in fw_list)) return fw_tenant_list class FirewallAgentApi(proxy.RpcProxy): """Plugin side of plugin to agent RPC API.""" API_VERSION = '1.0' def __init__(self, topic, host): super(FirewallAgentApi, self).__init__(topic, self.API_VERSION) self.host = host def create_firewall(self, context, firewall): return self.fanout_cast( context, self.make_msg('create_firewall', firewall=firewall, host=self.host), topic=self.topic ) def update_firewall(self, context, firewall): return self.fanout_cast( context, self.make_msg('update_firewall', firewall=firewall, host=self.host), topic=self.topic ) def delete_firewall(self, context, firewall): return self.fanout_cast( context, self.make_msg('delete_firewall', firewall=firewall, host=self.host), topic=self.topic ) class FirewallCountExceeded(n_exception.Conflict): """Reference implementation specific exception for firewall count. Only one firewall is supported per tenant. When a second firewall is tried to be created, this exception will be raised. """ message = _("Exceeded allowed count of firewalls for tenant " "%(tenant_id)s. Only one firewall is supported per tenant.") class FirewallPlugin(firewall_db.Firewall_db_mixin): """Implementation of the Neutron Firewall Service Plugin. This class manages the workflow of FWaaS request/response. Most DB related works are implemented in class firewall_db.Firewall_db_mixin. """ supported_extension_aliases = ["fwaas"] def __init__(self): """Do the initialization for the firewall service plugin here.""" qdbapi.register_models() self.callbacks = FirewallCallbacks(self) self.conn = rpc.create_connection(new=True) self.conn.create_consumer( topics.FIREWALL_PLUGIN, self.callbacks.create_rpc_dispatcher(), fanout=False) self.conn.consume_in_thread() self.agent_rpc = FirewallAgentApi( topics.L3_AGENT, cfg.CONF.host ) def _make_firewall_dict_with_rules(self, context, firewall_id): firewall = self.get_firewall(context, firewall_id) fw_policy_id = firewall['firewall_policy_id'] if fw_policy_id: fw_policy = self.get_firewall_policy(context, fw_policy_id) fw_rules_list = [self.get_firewall_rule( context, rule_id) for rule_id in fw_policy['firewall_rules']] firewall['firewall_rule_list'] = fw_rules_list else: firewall['firewall_rule_list'] = [] # FIXME(Sumit): If the size of the firewall object we are creating # here exceeds the largest message size supported by rabbit/qpid # then we will have a problem. return firewall def _rpc_update_firewall(self, context, firewall_id): status_update = {"firewall": {"status": const.PENDING_UPDATE}} fw = super(FirewallPlugin, self).update_firewall(context, firewall_id, status_update) if fw: fw_with_rules = ( self._make_firewall_dict_with_rules(context, firewall_id)) self.agent_rpc.update_firewall(context, fw_with_rules) def _rpc_update_firewall_policy(self, context, firewall_policy_id): firewall_policy = self.get_firewall_policy(context, firewall_policy_id) if firewall_policy: for firewall_id in firewall_policy['firewall_list']: self._rpc_update_firewall(context, firewall_id) def _ensure_update_firewall(self, context, firewall_id): fwall = self.get_firewall(context, firewall_id) if fwall['status'] in [const.PENDING_CREATE, const.PENDING_UPDATE, const.PENDING_DELETE]: raise fw_ext.FirewallInPendingState(firewall_id=firewall_id, pending_state=fwall['status']) def _ensure_update_firewall_policy(self, context, firewall_policy_id): firewall_policy = self.get_firewall_policy(context, firewall_policy_id) if firewall_policy and 'firewall_list' in firewall_policy: for firewall_id in firewall_policy['firewall_list']: self._ensure_update_firewall(context, firewall_id) def _ensure_update_or_delete_firewall_rule(self, context, firewall_rule_id): fw_rule = self.get_firewall_rule(context, firewall_rule_id) if 'firewall_policy_id' in fw_rule and fw_rule['firewall_policy_id']: self._ensure_update_firewall_policy(context, fw_rule['firewall_policy_id']) def create_firewall(self, context, firewall): LOG.debug(_("create_firewall() called")) tenant_id = self._get_tenant_id_for_create(context, firewall['firewall']) fw_count = self.get_firewalls_count(context, filters={'tenant_id': [tenant_id]}) if fw_count: raise FirewallCountExceeded(tenant_id=tenant_id) firewall['firewall']['status'] = const.PENDING_CREATE fw = super(FirewallPlugin, self).create_firewall(context, firewall) fw_with_rules = ( self._make_firewall_dict_with_rules(context, fw['id'])) self.agent_rpc.create_firewall(context, fw_with_rules) return fw def update_firewall(self, context, id, firewall): LOG.debug(_("update_firewall() called")) self._ensure_update_firewall(context, id) firewall['firewall']['status'] = const.PENDING_UPDATE fw = super(FirewallPlugin, self).update_firewall(context, id, firewall) fw_with_rules = ( self._make_firewall_dict_with_rules(context, fw['id'])) self.agent_rpc.update_firewall(context, fw_with_rules) return fw def delete_db_firewall_object(self, context, id): firewall = self.get_firewall(context, id) if firewall['status'] in [const.PENDING_DELETE]: super(FirewallPlugin, self).delete_firewall(context, id) def delete_firewall(self, context, id): LOG.debug(_("delete_firewall() called")) status_update = {"firewall": {"status": const.PENDING_DELETE}} fw = super(FirewallPlugin, self).update_firewall(context, id, status_update) fw_with_rules = ( self._make_firewall_dict_with_rules(context, fw['id'])) self.agent_rpc.delete_firewall(context, fw_with_rules) def update_firewall_policy(self, context, id, firewall_policy): LOG.debug(_("update_firewall_policy() called")) self._ensure_update_firewall_policy(context, id) fwp = super(FirewallPlugin, self).update_firewall_policy(context, id, firewall_policy) self._rpc_update_firewall_policy(context, id) return fwp def update_firewall_rule(self, context, id, firewall_rule): LOG.debug(_("update_firewall_rule() called")) self._ensure_update_or_delete_firewall_rule(context, id) fwr = super(FirewallPlugin, self).update_firewall_rule(context, id, firewall_rule) firewall_policy_id = fwr['firewall_policy_id'] if firewall_policy_id: self._rpc_update_firewall_policy(context, firewall_policy_id) return fwr def delete_firewall_rule(self, context, id): LOG.debug(_("delete_firewall_rule() called")) self._ensure_update_or_delete_firewall_rule(context, id) fwr = self.get_firewall_rule(context, id) firewall_policy_id = fwr['firewall_policy_id'] super(FirewallPlugin, self).delete_firewall_rule(context, id) # At this point we have already deleted the rule in the DB, # however it's still not deleted on the backend firewall. # Until it gets deleted on the backend we will be setting # the firewall in PENDING_UPDATE state. The backend firewall # implementation is responsible for setting the appropriate # configuration (e.g. do not allow any traffic) until the rule # is deleted. Once the rule is deleted, the backend should put # the firewall back in ACTIVE state. While the firewall is in # PENDING_UPDATE state, the firewall behavior might differ based # on the backend implementation. if firewall_policy_id: self._rpc_update_firewall_policy(context, firewall_policy_id) def insert_rule(self, context, id, rule_info): LOG.debug(_("insert_rule() called")) self._ensure_update_firewall_policy(context, id) fwp = super(FirewallPlugin, self).insert_rule(context, id, rule_info) self._rpc_update_firewall_policy(context, id) return fwp def remove_rule(self, context, id, rule_info): LOG.debug(_("remove_rule() called")) self._ensure_update_firewall_policy(context, id) fwp = super(FirewallPlugin, self).remove_rule(context, id, rule_info) self._rpc_update_firewall_policy(context, id) return fwp
42.863492
79
0.654273
793eb87b822a1075998491a87eecd690fa751f43
5,280
py
Python
Script_PLSDA_RF_SVM.py
Gustoaxel/Statistical-autoencoder
f3328f9c2a45ef0f7fe4adf98af4a64d02d34afc
[ "MIT" ]
1
2021-06-22T13:28:06.000Z
2021-06-22T13:28:06.000Z
Script_PLSDA_RF_SVM.py
Gustoaxel/Statistical-autoencoder
f3328f9c2a45ef0f7fe4adf98af4a64d02d34afc
[ "MIT" ]
null
null
null
Script_PLSDA_RF_SVM.py
Gustoaxel/Statistical-autoencoder
f3328f9c2a45ef0f7fe4adf98af4a64d02d34afc
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Copyright I3S CNRS UCA This code is an implementation of the other methods used for comparison in the article : An efficient diagnostic that uses the latent space of a Non-Parametric Supervised Autoencoder for metabolomic datasets of clinical studies. Parameters : - Seed (line 42) - Database (line 41) - Scaling(line 56) - Algorithme to compare (line 43) - Features extraction (line 45) Results : - Accuracy (accTestCompare_final) - Top features (df_featureList_final) - Metrics (aucTestCompare_final) """ import sys if '../functions/' not in sys.path: sys.path.append('../functions/') import functions.functions_compare as ff import numpy as np import pandas as pd from sklearn.preprocessing import scale as scale from sklearn.cross_decomposition import PLSRegression import matplotlib.pyplot as plt from random import randrange import random if __name__ == '__main__': # Set params : filename = 'LUNG.csv' Seed = [6, 7] alglist = ['plsda', 'RF' ] # Other ML algorithm to compare # alglist = ['plsda', 'RF', 'svm' ] # SVM could be slow doTopgenes = True # Features selection # Load data X, Yr, nbr_clusters, feature_names = ff.readData(filename) # Data Preprocessiong #X=normalize(X,norm='l1',axis=1) X=np.log(abs(X+1)) X=X-np.mean(X,axis=0) X=scale(X,axis=0) #X=scale(X,axis=1) X=X/ff.normest(X) ######## Main ####### print("Starts trainning") for i in Seed: # Processing print("------ Seed {} ------".format(i)) accTestCompare,df_timeElapsed, aucTestCompare =\ ff.basic_run_other( X,Yr,nbr_clusters,alglist, genenames=None, clusternames=None, nfold=4, rng=6, outputPath='../results_compare/') if doTopgenes : df_featureList = ff.rankFeatures(X,Yr,alglist,feature_names) if i == Seed[0] : accTestCompare_final = accTestCompare.iloc[:4, :] aucTestCompare_final = aucTestCompare.iloc[:4, :] if doTopgenes: df_featureList_final = df_featureList else : accTestCompare_final= pd.concat([accTestCompare_final , accTestCompare.iloc[:4, :]]) aucTestCompare_final= pd.concat([aucTestCompare_final , aucTestCompare.iloc[:4, :]]) if doTopgenes: for met in range(len(df_featureList_final)): df_featureList_final[met] = df_featureList_final[met].join(df_featureList[met]["weights"], rsuffix=" {}".format(i)) mean = pd.DataFrame(accTestCompare_final.mean(axis = 0)) if doTopgenes: for met in range(len(df_featureList_final)) : mean_met = pd.DataFrame(df_featureList_final[met].iloc[:,1:].mean(axis = 1)) std_met = pd.DataFrame(df_featureList_final[met].iloc[:,1:].std(axis = 1)) mean_met.columns= ["Mean"] df_featureList_final[met] = df_featureList_final[met].join(mean_met) std_met.columns= ["Std"] df_featureList_final[met] = df_featureList_final[met].join(std_met) std = pd.DataFrame(accTestCompare_final.std(axis = 0)) mean.columns= ["Mean"] accTestCompare_final = accTestCompare_final.T.join(mean).T std.columns= ["Std"] accTestCompare_final = accTestCompare_final.T.join(std).T mean = pd.DataFrame(aucTestCompare_final.mean(axis = 0)) std = pd.DataFrame(aucTestCompare_final.std(axis = 0)) mean.columns= ["Mean"] aucTestCompare_final = aucTestCompare_final.T.join(mean).T std.columns= ["Std"] aucTestCompare_final = aucTestCompare_final.T.join(std).T color = ['#1F77B4', '#FF7F0E', '#2CA02C', '#D62728', '#9467BD','#8C564B', '#E377C2', '#BCBD22', '#17BECF', '#40004B','#762A83',\ '#9970AB', '#C2A5CF', '#E7D4E8', '#F7F7F7','#D9F0D3', '#A6DBA0', '#5AAE61', '#1B7837', '#00441B','#8DD3C7', '#FFFFB3',\ '#BEBADA', '#FB8072', '#80B1D3','#FDB462', '#B3DE69', '#FCCDE5', '#D9D9D9', '#BC80BD','#CCEBC5', '#FFED6F'] random.seed(Seed[0]) lab = np.unique(Yr) index = [[] for l in lab ] test_index = [] train_index = [] for i in range(len(Yr)) : for l in lab : if l == Yr[i] : index[l-1].append(i) for l in index : test_index.append( l.pop(randrange(len(l)))) train_index += l print(" test index = ", test_index) X_train, X_test = X[train_index], X[test_index] y_train, y_test = Yr[train_index], Yr[test_index] clf = PLSRegression(n_components=4,scale=False) model = clf.fit(X_train,y_train.ravel()) col = [color[i] for i in y_train ] plt.figure() plt.scatter(model.x_scores_[:,0], model.x_scores_[:,1], c=col ) plt.xlabel("Component 1") plt.ylabel("Component 2") plt.title("Score plot PLSDA on BRAIN") testm = model.transform(X_test) col = [color[i+4] for i in y_test ] plt.scatter(testm[:,0], testm[:,1], c=col , s=120, marker='s') plt.show()
33.417722
135
0.598295
793eb8baf4bf182cd10adb297506a7f2e49242ca
4,070
py
Python
sdk/python/kulado_azure/apimanagement/product_policy.py
kulado/kulado-azure
f3a408fa0405fe6ae93e0049b2ae0f0e266f1cf6
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/kulado_azure/apimanagement/product_policy.py
kulado/kulado-azure
f3a408fa0405fe6ae93e0049b2ae0f0e266f1cf6
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/kulado_azure/apimanagement/product_policy.py
kulado/kulado-azure
f3a408fa0405fe6ae93e0049b2ae0f0e266f1cf6
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Kulado Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import kulado import kulado.runtime from .. import utilities, tables class ProductPolicy(kulado.CustomResource): api_management_name: kulado.Output[str] """ The name of the API Management Service. Changing this forces a new resource to be created. """ product_id: kulado.Output[str] """ The ID of the API Management Product within the API Management Service. Changing this forces a new resource to be created. """ resource_group_name: kulado.Output[str] """ The name of the Resource Group in which the API Management Service exists. Changing this forces a new resource to be created. """ xml_content: kulado.Output[str] """ The XML Content for this Policy. """ xml_link: kulado.Output[str] """ A link to a Policy XML Document, which must be publicly available. """ def __init__(__self__, resource_name, opts=None, api_management_name=None, product_id=None, resource_group_name=None, xml_content=None, xml_link=None, __name__=None, __opts__=None): """ Manages an API Management Product Policy :param str resource_name: The name of the resource. :param kulado.ResourceOptions opts: Options for the resource. :param kulado.Input[str] api_management_name: The name of the API Management Service. Changing this forces a new resource to be created. :param kulado.Input[str] product_id: The ID of the API Management Product within the API Management Service. Changing this forces a new resource to be created. :param kulado.Input[str] resource_group_name: The name of the Resource Group in which the API Management Service exists. Changing this forces a new resource to be created. :param kulado.Input[str] xml_content: The XML Content for this Policy. :param kulado.Input[str] xml_link: A link to a Policy XML Document, which must be publicly available. > This content is derived from https://github.com/terraform-providers/terraform-provider-azurerm/blob/master/website/docs/r/api_management_product_policy.html.markdown. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if not resource_name: raise TypeError('Missing resource name argument (for URN creation)') if not isinstance(resource_name, str): raise TypeError('Expected resource name to be a string') if opts and not isinstance(opts, kulado.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') __props__ = dict() if api_management_name is None: raise TypeError("Missing required property 'api_management_name'") __props__['api_management_name'] = api_management_name if product_id is None: raise TypeError("Missing required property 'product_id'") __props__['product_id'] = product_id if resource_group_name is None: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['xml_content'] = xml_content __props__['xml_link'] = xml_link super(ProductPolicy, __self__).__init__( 'azure:apimanagement/productPolicy:ProductPolicy', resource_name, __props__, opts) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
45.222222
185
0.700246
793eb917b99db1a86686b1a2c599c0d20566212a
2,837
py
Python
zenodo_uploader.py
JunAishima/conda-pack-template
d40390606ed3af80c1fc3d731124728431a25788
[ "BSD-3-Clause" ]
null
null
null
zenodo_uploader.py
JunAishima/conda-pack-template
d40390606ed3af80c1fc3d731124728431a25788
[ "BSD-3-Clause" ]
null
null
null
zenodo_uploader.py
JunAishima/conda-pack-template
d40390606ed3af80c1fc3d731124728431a25788
[ "BSD-3-Clause" ]
null
null
null
import os import argparse import requests import yaml import json def upload_to_zenodo( file_name_to_upload, config_file, zenodo_server="https://sandbox.zenodo.org/api/deposit/depositions", ): filename = os.path.abspath(file_name_to_upload) if not os.path.isfile(filename): raise FileNotFoundError( f"The file, specified for uploading does not exist: {filename}" ) config_name = os.path.abspath(config_file) if not os.path.isfile(config_name): raise FileNotFoundError( f"The file with metadata, specified for uploading does not exist: {config_name}" ) headers = {"Content-Type": "application/json"} params = {"access_token": os.getenv("ZENODO_ACCESS_TOKEN", "")} r = requests.post( zenodo_server, params=params, json={}, headers=headers, ) if r.status_code != 201: raise RuntimeError(f"The status code for the request is {r.status_code}.\nMessage: {r.text}") return_json = r.json() deposition_id = return_json["id"] bucket_url = return_json["links"]["bucket"] filebase = os.path.basename(file_name_to_upload) file_url = return_json["links"]["html"].replace('deposit', 'record') print(f"Uploading {filename} to Zenodo. This may take some time...") with open(filename, "rb") as fp: r = requests.put(f"{bucket_url}/{filebase}", data=fp, params=params) if r.status_code != 200: raise RuntimeError(f"The status code for the request is {r.status_code}.\nMessage: {r.text}") print(f"\nFile Uploaded successfully!\nFile link: {file_url}") print(f"Uploading metadata for {filename} ...") with open(config_file) as fp: data = yaml.safe_load(fp) r = requests.put( f"{zenodo_server}/{deposition_id}", params=params, data=json.dumps(data["zenodo_metadata"]), headers=headers, ) if r.status_code != 200: raise RuntimeError(f"The status code for the request is {r.status_code}.\nMessage: {r.text}") print(f"Publishing {filebase}...") r = requests.post(f"{zenodo_server}/{deposition_id}/actions/publish", params=params) if r.status_code != 202: raise RuntimeError(f"The status code for the request is {r.status_code}.\nMessage: {r.text}") if __name__ == "__main__": parser = argparse.ArgumentParser(description=("Upload files to Zenodo.")) parser.add_argument( "-f", "--file", dest="file_name_to_upload", help="path to the file to be uploaded", ) parser.add_argument( "-c", "--config-file", dest="config_file", help="config file with metadata information" ) args = parser.parse_args() upload_to_zenodo(args.file_name_to_upload, args.config_file)
34.597561
105
0.645753
793eb937d5e94b56a88d5977fb15c0e113593dc4
382
py
Python
markdownme/fields.py
cbidici/cbsite
594e327ad0c0bfa5015461eb243176c3aec7b68d
[ "MIT" ]
null
null
null
markdownme/fields.py
cbidici/cbsite
594e327ad0c0bfa5015461eb243176c3aec7b68d
[ "MIT" ]
1
2020-05-10T14:45:22.000Z
2020-05-10T15:06:50.000Z
markdownme/fields.py
cbidici/cbsite
594e327ad0c0bfa5015461eb243176c3aec7b68d
[ "MIT" ]
null
null
null
from django.db.models import TextField from django.forms import fields from .widgets import MarkdownWidget class MarkdownField(TextField): def __init__(self, rows=64, **kwargs): super().__init__(**kwargs) self.rows = rows def formfield(self, **kwargs): kwargs['widget'] = MarkdownWidget(rows=self.rows) return super().formfield(**kwargs)
25.466667
57
0.685864
793eb9489d4faf2a9b1b5a1d28ee724f8b239c78
5,294
py
Python
plugins/modules/cp4s/cp4s_delete_case.py
IBM/cp4s-ansible-collection
c80a9f6869cd2f141befb744a516568cf9fb5b61
[ "MIT" ]
null
null
null
plugins/modules/cp4s/cp4s_delete_case.py
IBM/cp4s-ansible-collection
c80a9f6869cd2f141befb744a516568cf9fb5b61
[ "MIT" ]
3
2021-02-17T15:23:32.000Z
2021-02-22T13:40:38.000Z
plugins/modules/cp4s/cp4s_delete_case.py
IBM/cp4s-ansible-collection
c80a9f6869cd2f141befb744a516568cf9fb5b61
[ "MIT" ]
1
2021-01-29T21:43:08.000Z
2021-01-29T21:43:08.000Z
# Copyright: (c) 2021, Dara Meaney # The MIT License #   # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from __future__ import (absolute_import, division, print_function) from ansible.module_utils.basic import AnsibleModule __metaclass__ = type DOCUMENTATION = r''' --- module: cp4s_delete_case short_description: A Module used to delete a case # If this is part of a collection, you need to use semantic versioning, # i.e. the version is of the form "2.5.0" and not "2.4". version_added: "1.0.0" author: - Dara Meaney ''' def run_module(): # define available arguments/parameters a user can pass to the module # ansible module_args cannot accept a dict for custom modules so use a json str for input module_args = dict( incidentId=dict(type='str', required=True) ) # seed the result dict in the object # we primarily care about changed and state # changed is if this module effectively modified the target # state will include any data that you want your module to pass back # for consumption, for example, in a subsequent task result = dict( changed=False, response='' ) # the AnsibleModule object will be our abstraction working with Ansible # this includes instantiation, a couple of common attr would be the # args/params passed to the execution, as well as if the module # supports check mode module = AnsibleModule( argument_spec=module_args, supports_check_mode=True ) # if the user is working with this module in only check mode we do not # want to make any changes to the environment, just return the current # state with no modifications if module.check_mode: module.exit_json(**result) # during the execution of the module, if there is an exception or a # conditional state that effectively causes a failure, run # AnsibleModule.fail_json() to pass in the message and the result if module.params['incidentId'] == 'fail me': module.fail_json(msg='You requested this to fail', **result) # TODO: Review if we can make the exception less bare, or if we can use a conditional for the changed property instead try: # Try to make the API call incident = delete_case(incident_id=module.params.get( 'incidentId', {})) result.update({"case": incident}) except Exception as e: # we need to except in order to do else; use bare except and just raise the exception as normal # raise # raises the exact error that would have otherwise been raised. module.fail_json(msg=u'An exception occurred when deleting the case: {}'.format(e), **result) else: # if no expections are raised we can assume the API call is successful and has changed state result['changed'] = True # in the event of a successful module execution, you will want to # simple AnsibleModule.exit_json(), passing the key/value results module.exit_json(**result) def delete_case(incident_id: str): """delete_cases is a helper function which will get a handle on an instance of the REST API client. :param incident_id: The incident/case id used when making the request :type incident_id: str """ client = create_authenticated_client() return client.delete("/incidents/{}".format(incident_id)) def create_authenticated_client(): """create_authenticated_client uses the resilient package to gather values from a standard app.config file; the configuration file used for an Integration Server or App Host App. This means all credentials needed to run this module can be kept separate and we can also avoid var prompts. Note: If your running this module on a host other than localhost, that host needs to have an app.config file or you need to copy one over. :return: An authenticated rest client to CP4S or Resilient :rtype: SimpleClient """ import resilient # Create Resilient API Client resilient_parser = resilient.ArgumentParser( config_file=resilient.get_config_file()) resilient_opts = resilient_parser.parse_known_args() # Instantiate a client using the gathered opts return resilient.get_client(resilient_opts[0]) def main(): run_module() if __name__ == '__main__': main()
43.752066
462
0.729316
793eb964e0d3b2f7d10e7ed423165598b7541e4d
4,691
py
Python
goalsettrack/goalsettrack/settings.py
ingsoft-famaf/the-late-ones
4641413890ae3713d415afca1d42462cc07405bf
[ "MIT" ]
null
null
null
goalsettrack/goalsettrack/settings.py
ingsoft-famaf/the-late-ones
4641413890ae3713d415afca1d42462cc07405bf
[ "MIT" ]
null
null
null
goalsettrack/goalsettrack/settings.py
ingsoft-famaf/the-late-ones
4641413890ae3713d415afca1d42462cc07405bf
[ "MIT" ]
null
null
null
""" Django settings for goalsettrack project. Generated by 'django-admin startproject' using Django 1.10.2. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'x4czc95g)epvvp54y@!vil$=_)a&+9$tcy5m68f1t=wv=j$$qm' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # los sig dos campos para envio de mails #EMAIL_BACKEND = "sgbackend.SendGridBackend" #SENDGRID_API_KEY = "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" EMAIL_HOST = "smtp.sendgrid.net" EMAIL_HOST_USER = "apikey" EMAIL_HOST_PASSWORD = "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" EMAIL_PORT = 587 # Application definition INSTALLED_APPS = [ 'archivoadjunto.apps.ArchivoadjuntoConfig', 'recordatorio.apps.RecordatorioConfig', 'categoria.apps.CategoriaConfig', 'comentario.apps.ComentarioConfig', 'usuario.apps.UsuarioConfig', 'meta.apps.MetaConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'widget_tweaks', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'goalsettrack.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ 'templates', os.path.join(BASE_DIR, "../templates/"), os.path.join(BASE_DIR, "./templates/"), os.path.join( os.path.join(BASE_DIR, 'templates'), 'archivoadjunto'), os.path.join(os.path.join(BASE_DIR, 'templates'), 'categoria'), os.path.join(os.path.join(BASE_DIR, 'templates'), 'comentario'), os.path.join(os.path.join(BASE_DIR, 'templates'), 'meta'), os.path.join(os.path.join(BASE_DIR, 'templates'), 'usuario'), os.path.join(os.path.join(BASE_DIR, 'templates'), 'recordatorio'), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'goalsettrack.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'es-AR' TIME_ZONE = 'America/Argentina/Cordoba' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_ROOT = 'staticfiles' STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR, 'templates'), os.path.join(BASE_DIR, 'templates'), os.path.join(os.path.join(BASE_DIR, 'templates'), 'meta'), os.path.join(BASE_DIR, 'templates'), os.path.join(os.path.join(BASE_DIR, 'templates'), 'recordatorio'), )
30.461039
107
0.690471
793eba7fa4539fe09f3ac5ceace84011ad6a730a
1,389
py
Python
msrest/version.py
bgklein/msrest-for-python
d5103970de1ec7f56375ae4da1b5738a71196c3f
[ "MIT" ]
null
null
null
msrest/version.py
bgklein/msrest-for-python
d5103970de1ec7f56375ae4da1b5738a71196c3f
[ "MIT" ]
null
null
null
msrest/version.py
bgklein/msrest-for-python
d5103970de1ec7f56375ae4da1b5738a71196c3f
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------- # # Copyright (c) Microsoft Corporation. All rights reserved. # # The MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the ""Software""), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # # -------------------------------------------------------------------------- #: version of this package. Use msrest.__version__ instead msrest_version = "0.6.6"
47.896552
78
0.686105
793eba9b80ffa0c3e142db14dc245c198d8aabcf
961
py
Python
marqeta/response_models/identification_response_model.py
marqeta/marqeta-python
66fa690eb910825c510a391720b0fe717fac0234
[ "MIT" ]
21
2019-04-12T09:02:17.000Z
2022-02-18T11:39:06.000Z
marqeta/response_models/identification_response_model.py
marqeta/marqeta-python
66fa690eb910825c510a391720b0fe717fac0234
[ "MIT" ]
1
2020-07-22T21:27:40.000Z
2020-07-23T17:38:43.000Z
marqeta/response_models/identification_response_model.py
marqeta/marqeta-python
66fa690eb910825c510a391720b0fe717fac0234
[ "MIT" ]
10
2019-05-08T14:20:37.000Z
2021-09-20T18:09:26.000Z
from datetime import datetime, date from marqeta.response_models import datetime_object import json import re class IdentificationResponseModel(object): def __init__(self, json_response): self.json_response = json_response def __str__(self): return json.dumps(self.json_response, default=self.json_serial) @staticmethod def json_serial(o): if isinstance(o, datetime) or isinstance(o, date): return o.__str__() @property def type(self): return self.json_response.get('type', None) @property def value(self): return self.json_response.get('value', None) @property def expiration_date(self): if 'expiration_date' in self.json_response: return datetime_object('expiration_date', self.json_response) def __repr__(self): return '<Marqeta.response_models.identification_response_model.IdentificationResponseModel>' + self.__str__()
25.972973
118
0.702393