Datasets:
ltg
/

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Norwegian
Libraries:
Datasets
pandas
License:
norec / README.md
erikve's picture
Update README.md
d6cb6b9 verified
|
raw
history blame
9.36 kB
---
language:
- 'no'
license: cc
size_categories:
- 10K<n<100K
pretty_name: NoReC
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
dataset_info:
language:
- 'no'
license: cc
size_categories:
- 10K<n<100K
pretty_name: NoReC
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
dataset_info:
features:
- name: id
dtype: string
- name: split
dtype: string
- name: rating
dtype: int64
- name: category
dtype: string
- name: day
dtype: int64
- name: month
dtype: int64
- name: year
dtype: int64
- name: excerpt
dtype: string
- name: language
dtype: string
- name: source
dtype: string
- name: authors
dtype: string
- name: title
dtype: string
- name: url
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 94334212
num_examples: 34749
- name: validation
num_bytes: 13597517
num_examples: 4348
- name: test
num_bytes: 13787751
num_examples: 4340
download_size: 77286913
dataset_size: 121719480
homepage: https://github.com/ltgoslo/norec
citation: |-
@InProceedings{VelOvrBer18,
author = {Erik Velldal and Lilja {\O}vrelid and
Eivind Alexander Bergem and Cathrine Stadsnes and
Samia Touileb and Fredrik J{\o}rgensen},
title = {{NoReC}: The {N}orwegian {R}eview {C}orpus},
booktitle = {Proceedings of the 11th edition of the
Language Resources and Evaluation Conference},
year = {2018},
address = {Miyazaki, Japan},
pages = {4186--4191}
}
}
task_categories:
- text-classification
---
# NoReC: The Norwegian Review Corpus
This is the official repository for the Norwegian Review Corpus (NoReC, ver. 2.1), created for the purpose of training and evaluating models for document-level sentiment analysis.
More than 43,000 full-text reviews have been collected from major Norwegian news sources and cover a range of different domains, including literature, movies, video games, restaurants, music and theater, in addition to product reviews across a range of categories. Each review is labeled with a manually assigned score of 1–6, as provided by the rating of the original author. The accompanying [paper](http://www.lrec-conf.org/proceedings/lrec2018/pdf/851.pdf) by Velldal et al. at LREC 2018 describes the initial (ver. 1) release of the data in more detail.
## Dataset details
- **The columns are:**
`id, split, rating, category, day, month, year, excerpt, language, source, authors, title, url, text` where basic usage has `text` as the input and `rating` as the output.
- **Curated by:** NoReC was created as part of the [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) project (Sentiment Analysis for Norwegian Text), coordinated by the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) (LTG) at the University of Oslo, in collaboration with the Norwegian Broadcasting Corporation (NRK), Schibsted Media Group and Aller Media.
- **Funded by:** The [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) project is funded by the [Research Council of Norway](https://www.forskningsradet.no/en/) (NFR grant number 270908).
- **Shared by:** The [SANT](https://www.mn.uio.no/ifi/english/research/projects/sant/) project (Sentiment Analysis for Norwegian Text) at the [Language Technology Group](https://www.mn.uio.no/ifi/english/research/groups/ltg/) (LTG) at the University of Oslo
- **Language(s) (NLP):** Norwegian Bokmål (nb) and Norwegian Nynorsk (nn))
- **License:** The data is distributed under a Creative Commons Attribution-NonCommercial licence (CC BY-NC 4.0), access the full license text here: https://creativecommons.org/licenses/by-nc/4.0/
The licence is motivated by the need to block the possibility of third parties redistributing the orignal reviews for commercial purposes.
Note that **machine learned models**, extracted **lexicons**, **embeddings**, and similar resources that are created on the basis of NoReC are not considered to contain the original data and so **can be freely used also for commercial purposes** despite the non-commercial condition.
- **Dataset Sources** This version of the corpus (v.2.1) comprises 43,436 review texts extracted from eight different news sources: Dagbladet, VG, Aftenposten, Bergens Tidende, Fædrelandsvennen, Stavanger Aftenblad, DinSide.no and P3.no.
- **Repository:** https://github.com/ltgoslo/norec
- **Paper :** [The accompanying paper by Velldal et al. at LREC 2018](http://www.lrec-conf.org/proceedings/lrec2018/pdf/851.pdf) describes the (initial release of the) data in more detail.
## Uses
The dataset is intended for document-level sentiment analysis, to learn to predict the `rating` from the `text`. The field `category` can be considered the "domain" of each text. By filtering in and out `category` values, one may inspect cross-domain performance of a model. The other fields contain metadata preserved from the original version of the dataset, and may be used for further filtering and analyses.
## Source Data
This _2nd release, v.2.1_ of the corpus comprises 43,436 review texts extracted from eight different news sources: Dagbladet (db), VG (vg), Aftenposten (ap), Bergens Tidende (bt), Fædrelandsvennen (fvn), Stavanger Aftenblad (sa), DinSide.no (dinside) and P3.no (p3).
In terms of publishing date the reviews mainly cover the time span 2003–2019, although it also includes a handful of reviews dating back as far as 1998.
# Some statistics
## Distribution over year and publication source
All splits combined
| year | ap | bt | db | dinside | fvn | p3 | sa | vg | Total |
|-------:|-----:|-----:|------------:|----------:|------:|-----:|-----:|-----:|--------:|
| 2003* | 0 | 4 | 0 | 143 | 0 | 25 | 0 | 286 | 458 |
| 2004 | 0 | 44 | 0 | 142 | 0 | 12 | 19 | 984 | 1201 |
| 2005 | 0 | 0 | 0 | 179 | 0 | 6 | 224 | 909 | 1318 |
| 2006 | 0 | 0 | 0 | 240 | 0 | 11 | 294 | 778 | 1323 |
| 2007 | 0 | 0 | 0 | 139 | 0 | 127 | 400 | 725 | 1391 |
| 2008 | 0 | 0 | 0 | 119 | 0 | 216 | 369 | 739 | 1443 |
| 2009 | 0 | 52 | 377 | 163 | 27 | 428 | 259 | 815 | 2121 |
| 2010 | 0 | 100 | 642 | 260 | 156 | 571 | 309 | 769 | 2807 |
| 2011 | 1 | 51 | 592 | 284 | 146 | 652 | 362 | 900 | 2988 |
| 2012 | 2 | 150 | 613 | 257 | 332 | 611 | 561 | 763 | 3289 |
| 2013 | 4 | 160 | 527 | 216 | 213 | 619 | 433 | 1058 | 3230 |
| 2014 | 39 | 291 | 501 | 236 | 357 | 546 | 387 | 1191 | 3548 |
| 2015 | 249 | 235 | 728 | 245 | 456 | 499 | 620 | 849 | 3881 |
| 2016 | 309 | 340 | 809 | 177 | 321 | 439 | 682 | 715 | 3792 |
| 2017 | 649 | 491 | 921 | 248 | 692 | 567 | 822 | 687 | 5077 |
| 2018 | 605 | 470 | 885 | 194 | 466 | 339 | 860 | 492 | 4311 |
| 2019 | 260 | 167 | 95 | 30 | 160 | 36 | 346 | 165 | 1259 |
`2003*`: Including the 31 documents 1998-2002
## Distribution over split and rating
| split | 1 | 2 | 3 | 4 | 5 | 6 | Total |
|:--------|----:|-----:|-----:|------:|------:|-----:|--------:|
| dev | 51 | 225 | 707 | 1409 | 1678 | 278 | 4348 |
| test | 27 | 242 | 706 | 1385 | 1714 | 266 | 4340 |
| train | 379 | 2287 | 6004 | 11304 | 12614 | 2161 | 34749 |
## Distribution over split and category
| split | games | literature | misc | music | products | restaurants | screen | sports | stage | Total |
|:--------|--------:|-------------:|-------:|--------:|-----------:|--------------:|---------:|---------:|--------:|--------:|
| dev | 179 | 539 | 28 | 1445 | 347 | 94 | 1569 | 15 | 132 | 4348 |
| test | 180 | 547 | 24 | 1444 | 345 | 98 | 1579 | 16 | 107 | 4340 |
| train | 1453 | 4337 | 156 | 11777 | 2771 | 745 | 12536 | 118 | 856 | 34749 |
## Citation
```
@InProceedings{VelOvrBer18,
author = {Erik Velldal and Lilja {\O}vrelid and Eivind Alexander Bergem and Cathrine Stadsnes and Samia Touileb and Fredrik J{\o}rgensen},
title = {{NoReC}: The {N}orwegian {R}eview {C}orpus},
booktitle = {Proceedings of the 11th edition of the
Language Resources and Evaluation Conference},
year = {2018},
address = {Miyazaki, Japan},
pages = {4186--4191}
}
```
## Dataset Card Authors
Vladislav Mikhailov and Erik Velldal
## Dataset Card Contact
[email protected] and [email protected]