prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# Copyright (C) 2021, <NAME>, <NAME> <<EMAIL>> # # License: MIT (see COPYING file) import warnings import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler # __all__ = ['CytOpT'] from CytOpT.descentAscent import cytoptDesasc from CytOpT.minmaxSwapping import cytoptMinmax from CytOpT.plots import resultPlot, BlandAltman def stopRunning(): warnings.warn("deprecated", DeprecationWarning) def getLengthUniqueNumbers(values): list_of_unique_value = [] unique_values = set(values) for number in unique_values: list_of_unique_value.append(number) return {'list_of_unique_value': list_of_unique_value, 'length': len(list_of_unique_value)} # CytOpT def CytOpT(xSource, xTarget, labSource, labTarget=None, thetaTrue=None, method=None, eps=1e-04, nIter=4000, power=0.99, stepGrad=10, step=5, lbd=1e-04, nItGrad=10000, nItSto=10, cont=True, monitoring=False, minMaxScaler=True, thresholding=True): """ CytOpT algorithm. This methods is designed to estimate the proportions of cells in an unclassified Cytometry data set denoted xTarget. CytOpT is a supervised method that levarge the classification denoted labSource associated to the flow cytometry data set xSource. The estimation relies on the resolution of an optimization problem. two procedures are provided "minmax" and "desasc". We recommend to use the default method that is ``minmax``. :param xSource: np.array of shape (n_samples_source, n_biomarkers). The source cytometry data set. A cytometry dataframe. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The classification of this Cytometry data set must be provided with the labSource parameters. :param xTarget: np.array of shape (n_samples_target, n_biomarkers). The target cytometry data set. A cytometry dataframe. The columns correspond to the different biological markers tracked. One line corresponds to the cytometry measurements performed on one cell. The CytOpT algorithm targets the cell type proportion in this Cytometry data set :param labSource: np.array of shape (n_samples_source,). The classification of the source data set. :param labTarget: np.array of shape (n_samples_target,), ``default=None``. The classification of the target data set. :param thetaTrue: np.array of shape (K,), ``default=None``. This array stores the true proportions of the K type of cells estimated in the target data set. This parameter is required if the user enables the monitoring option. :param method: {"minmax", "desasc", "both"}, ``default="minmax"``. Method chosen to to solve the optimization problem involved in CytOpT. It is advised to rely on the default choice that is "minmax". :param eps: float, ``default=0.0001``. Regularization parameter of the Wasserstein distance. This parameter must be positive. :param nIter: int, ``default=10000``. Number of iterations of the stochastic gradient ascent for the Minmax swapping optimization method. :param power: float, ``default=0.99``. Decreasing rate for the step-size policy of the stochastic gradient ascent for the Minmax swapping optimization method. The step-size decreases at a rate of 1/n^power. :param stepGrad: float, ``default=10``. Constant step_size policy for the gradient descent of the descent-ascent optimization strategy. :param step: float, ``default=5``. Multiplication factor of the stochastic gradient ascent step-size policy for the minmax optimization method. :param lbd: float, ``default=0.0001``. Additionnal regularization parameter of the Minmax swapping optimization method. This parameter lbd should be greater or equal to eps. :param nItGrad: int, ``default=10000``. Number of iterations of the outer loop of the descent-ascent optimization method. This loop corresponds to the descent part of descent-ascent strategy. :param nItSto: int, ``default = 10``. Number of iterations of the inner loop of the descent-ascent optimization method. This loop corresponds to the stochastic ascent part of this optimization procedure. :param cont: bool, ``default=True``. When set to true, the progress is displayed. :param monitoring: bool, ``default=False``. When set to true, the evolution of the Kullback-Leibler between the estimated proportions and the benchmark proportions is tracked and stored. :param minMaxScaler: bool, ``default = True``. When set to True, the source and target data sets are scaled in [0,1]^d, where d is the number of biomarkers monitored. :param thresholding: bool, ``default = True``. When set to True, all the coefficients of the source and target data sets are replaced by their positive part. This preprocessing is relevant for Cytometry Data as the signal acquisition of the cytometer can induce convtrived negative values. :return: - hat_theta : np.array of shape (K,), where K is the number of different type of cell populations in the source data set. - KL_monitoring: np.array of shape (n_out, ) or (nIter,) depending on the choice of the optimization method. This array stores the evolution of the Kullback-Leibler divergence between the estimate and benchmark proportions, if monitoring==True. Reference: <NAME>, <NAME>,and <NAME> CytOpT: Optimal Transport with Domain Adaptation for Interpreting Flow Cytometry data, arXiv:2006.09003 [stat.AP]. """ if method is None: method = ["minmax", "desasc", "both"] if isinstance(method, list): method = method[0] if method not in ["minmax", "desasc", "both"]: warnings.warn('"choose method in list : \"minmax or","desasc or", "both\""') method = "minmax" if thetaTrue is None: if labTarget is None and labSource is None: with warnings.catch_warnings(): warnings.simplefilter("labTarget and theta can not be null at the same time\n" "Initialize at least one of the two parameters") stopRunning() elif labTarget is not None: labTargetInfo = getLengthUniqueNumbers(labTarget) thetaTrue = np.zeros(labTargetInfo['length']) for index in range(labTargetInfo['length']): thetaTrue[index] = sum(labTarget == index + 1) / len(labTarget) else: labSourceInfo = getLengthUniqueNumbers(labSource) thetaTrue = np.zeros(labSourceInfo['length']) for index in range(labSourceInfo['length']): thetaTrue[index] = sum(labSource == index + 1) / len(labSource) if xSource is None or xTarget is None: with warnings.catch_warnings(): warnings.simplefilter("xSource and xTarget can not be null\n" "Initialize at two parameters") stopRunning() else: xSource = np.asarray(xSource) xTarget = np.asarray(xTarget) h_res = {} monitoring_res = {} h_res["GoldStandard"] = thetaTrue if method in ["minmax", "both"]: results = cytoptMinmax(xSource, xTarget, labSource, eps=eps, lbd=lbd, nIter=nIter, step=step, cont=cont, power=power, thetaTrue=thetaTrue, monitoring=monitoring, thresholding=thresholding, minMaxScaler=minMaxScaler) h_res['minmax'] = results[0] if monitoring: monitoring_res["minmax"] = results[1][:min(nIter, nItGrad)] if method in ["desasc", "both"]: results = cytoptDesasc(xSource, xTarget, labSource, eps=eps, nItGrad=nItGrad, nItSto=nItSto, stepGrad=stepGrad, cont=cont, thetaTrue=thetaTrue, monitoring=monitoring, thresholding=thresholding, minMaxScaler=minMaxScaler) h_res['desasc'] = results[0] if monitoring: monitoring_res["desasc"] = results[1][:min(nIter, nItGrad)] if monitoring: return {"proportions":
pd.DataFrame(h_res)
pandas.DataFrame
#!/usr/bin/env python import pandas as pd import numpy as np import math import sys import os import argparse import warnings import pysam import collections import multiprocessing def parseargs(): parser=argparse.ArgumentParser(description="Calculate coverage/fragment coverage of assemblies") parser.add_argument('--bam',help='index bam file for alignment') parser.add_argument('--output',help='output directory for MetaREA results') parser.add_argument("--mlen",type=int, default=5000,help='minimum contig length') args=parser.parse_args() return args def fragment_distribution(args,samfile): all_reads=samfile.fetch() references=samfile.references lengths=samfile.lengths size_freq=collections.defaultdict(int) pool={} contig_pool={} discordant_pool={} for ref,lens in zip(references,lengths): if lens < args.mlen: continue contig_pool[ref]=[] discordant_pool[ref]=[] for read in all_reads: contig = samfile.get_reference_name(read.tid) if contig not in contig_pool: continue if read.rnext == read.tid: if read.qname in pool and pool[read.qname][0] == read.tid: mate_read = pool[read.qname] size=abs(max(mate_read[1] + mate_read[2] - read.pos, read.pos+read.rlen-mate_read[1])) size_freq[size]+=1 contig_pool[contig].append([min(mate_read[1],read.pos),size]) else: pool[read.qname] = (read.tid,read.pos,read.rlen) else: contig1=samfile.get_reference_name(read.tid) contig2=samfile.get_reference_name(read.rnext) discordant_pool[contig1].append([read.pos,contig2]) return size_freq, contig_pool, discordant_pool def FragMAD(freq): """ calculate median and median absolute deviation fragment size distribution """ all_size=[] for key,value in freq.items(): all_size.extend([key]*int(value)) median_size = np.median(all_size) residuals = abs(np.array(all_size)-median_size) mad_size = 1.4826*np.median(residuals) return median_size,mad_size def discordant_loc_count(args,discordant_pool): """ Read pairs with mates mapped to different contigs """ discs={"contig":[],"start_pos":[],"discordant_loc_count":[]} for key,value in discordant_pool.items(): if len(discordant_pool[key]) == 0: continue subdata = pd.DataFrame(value) subdata['start_pos']=[math.floor((x-300)/100)*100+300 for x in subdata[0]] subdata=subdata.loc[subdata['start_pos']>=300,] if subdata.shape[0]==0: continue subdata['count']=1 grouped=subdata.groupby(['start_pos']) data=pd.DataFrame(grouped[1].value_counts()) data['start_pos'] = [x[0] for x in data.index] data['target'] = [x[1] for x in data.index] data.index=range(data.shape[0]) grouped=data.groupby(['start_pos']) data=pd.DataFrame(grouped[1].max()) positions=list(data.index) discs["contig"].extend([key]*len(positions)) discs["start_pos"].extend(positions) discs["discordant_loc_count"].extend(list(data[1])) data=pd.DataFrame(discs) os.makedirs(os.path.join(args.output, "temp/read_feature/"), exist_ok=True) data.to_csv(os.path.join(args.output, "temp/read_feature/discordant_loc_feature.txt"), sep='\t') def discordant_size_count(args,contig_frag,mu,dev): """ Read pairs with mates too for or too close to each other """ discs={"contig":[],"start_pos":[],"discordant_size_count":[]} for key,value in contig_frag.items(): if len(contig_frag[key])==0: continue subdata =
pd.DataFrame(value)
pandas.DataFrame
import unittest import pandas as pd import numpy as np from scipy.sparse.csr import csr_matrix from string_grouper.string_grouper import DEFAULT_MIN_SIMILARITY, \ DEFAULT_REGEX, DEFAULT_NGRAM_SIZE, DEFAULT_N_PROCESSES, DEFAULT_IGNORE_CASE, \ StringGrouperConfig, StringGrouper, StringGrouperNotFitException, \ match_most_similar, group_similar_strings, match_strings, \ compute_pairwise_similarities from unittest.mock import patch, Mock def mock_symmetrize_matrix(x: csr_matrix) -> csr_matrix: return x class SimpleExample(object): def __init__(self): self.customers_df = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address4', '', 'Description4', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address5', 'Tel5', 'Description5', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.customers_df2 = pd.DataFrame( [ ('BB016741P', 'Mega Enterprises Corporation', 'Address0', 'Tel0', 'Description0', 0.2), ('CC082744L', 'Hyper Startup Incorporated', '', 'Tel1', '', 0.5), ('AA098762D', 'Hyper Startup Inc.', 'Address2', 'Tel2', 'Description2', 0.3), ('BB099931J', 'Hyper-Startup Inc.', 'Address3', 'Tel3', 'Description3', 0.1), ('DD012339M', 'HyperStartup Inc.', 'Address4', 'Tel4', 'Description4', 0.1), ('HH072982K', 'Hyper Hyper Inc.', 'Address5', '', 'Description5', 0.9), ('EE059082Q', 'Mega Enterprises Corp.', 'Address6', 'Tel6', 'Description6', 1.0) ], columns=('Customer ID', 'Customer Name', 'Address', 'Tel', 'Description', 'weight') ) self.a_few_strings = pd.Series(['BB016741P', 'BB082744L', 'BB098762D', 'BB099931J', 'BB072982K', 'BB059082Q']) self.one_string = pd.Series(['BB0']) self.two_strings = pd.Series(['Hyper', 'Hyp']) self.whatever_series_1 = pd.Series(['whatever']) self.expected_result_with_zeroes = pd.DataFrame( [ (1, 'Hyper Startup Incorporated', 0.08170638, 'whatever', 0), (0, 'Mega Enterprises Corporation', 0., 'whatever', 0), (2, 'Hyper Startup Inc.', 0., 'whatever', 0), (3, 'Hyper-Startup Inc.', 0., 'whatever', 0), (4, 'Hyper Hyper Inc.', 0., 'whatever', 0), (5, 'Mega Enterprises Corp.', 0., 'whatever', 0) ], columns=['left_index', 'left_Customer Name', 'similarity', 'right_side', 'right_index'] ) self.expected_result_centroid = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Startup Inc.', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) self.expected_result_centroid_with_index_col = pd.DataFrame( [ (0, 'Mega Enterprises Corporation'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (2, 'Hyper Startup Inc.'), (4, 'Hyper Hyper Inc.'), (0, 'Mega Enterprises Corporation') ], columns=['group_rep_index', 'group_rep_Customer Name'] ) self.expected_result_first = pd.Series( [ 'Mega Enterprises Corporation', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Startup Incorporated', 'Hyper Hyper Inc.', 'Mega Enterprises Corporation' ], name='group_rep_Customer Name' ) class StringGrouperConfigTest(unittest.TestCase): def test_config_defaults(self): """Empty initialisation should set default values""" config = StringGrouperConfig() self.assertEqual(config.min_similarity, DEFAULT_MIN_SIMILARITY) self.assertEqual(config.max_n_matches, None) self.assertEqual(config.regex, DEFAULT_REGEX) self.assertEqual(config.ngram_size, DEFAULT_NGRAM_SIZE) self.assertEqual(config.number_of_processes, DEFAULT_N_PROCESSES) self.assertEqual(config.ignore_case, DEFAULT_IGNORE_CASE) def test_config_immutable(self): """Configurations should be immutable""" config = StringGrouperConfig() with self.assertRaises(Exception) as _: config.min_similarity = 0.1 def test_config_non_default_values(self): """Configurations should be immutable""" config = StringGrouperConfig(min_similarity=0.1, max_n_matches=100, number_of_processes=1) self.assertEqual(0.1, config.min_similarity) self.assertEqual(100, config.max_n_matches) self.assertEqual(1, config.number_of_processes) class StringGrouperTest(unittest.TestCase): def test_auto_blocking_single_DataFrame(self): """tests whether automatic blocking yields consistent results""" # This function will force an OverflowError to occur when # the input Series have a combined length above a given number: # OverflowThreshold. This will in turn trigger automatic splitting # of the Series/matrices into smaller blocks when n_blocks = None sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] # first do manual blocking sg = StringGrouper(df1, min_similarity=0.1) pd.testing.assert_series_equal(sg.master, df1) self.assertEqual(sg.duplicates, None) matches = fix_row_order(sg.match_strings(df1, n_blocks=(1, 1))) self.assertEqual(sg._config.n_blocks, (1, 1)) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def do_test_with(OverflowThreshold): nonlocal sg # allows reference to sg, as sg will be modified below # Now let us mock sg._build_matches: sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() matches_auto = fix_row_order(sg.match_strings(df1, n_blocks=None)) pd.testing.assert_series_equal(sg.master, df1) pd.testing.assert_frame_equal(matches, matches_auto) self.assertEqual(sg._config.n_blocks, None) # Note that _build_matches is called more than once if and only if # a split occurred (that is, there was more than one pair of # matrix-blocks multiplied) if len(sg._left_Series) + len(sg._right_Series) > \ OverflowThreshold: # Assert that split occurred: self.assertGreater(sg._build_matches.call_count, 1) else: # Assert that split did not occur: self.assertEqual(sg._build_matches.call_count, 1) # now test auto blocking by forcing an OverflowError when the # combined Series' lengths is greater than 10, 5, 3, 2 do_test_with(OverflowThreshold=100) # does not trigger auto blocking do_test_with(OverflowThreshold=10) do_test_with(OverflowThreshold=5) do_test_with(OverflowThreshold=3) do_test_with(OverflowThreshold=2) def test_n_blocks_single_DataFrame(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] matches11 = fix_row_order(match_strings(df1, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) # Create a custom wrapper for this StringGrouper instance's # _build_matches() method which will later be used to # mock _build_matches(). # Note that we have to define the wrapper here because # _build_matches() is a non-static function of StringGrouper # and needs access to the specific StringGrouper instance sg # created here. sg = StringGrouper(df1, min_similarity=0.1) def mock_build_matches(OverflowThreshold, real_build_matches=sg._build_matches): def wrapper(left_matrix, right_matrix, nnz_rows=None, sort=True): if (left_matrix.shape[0] + right_matrix.shape[0]) > \ OverflowThreshold: raise OverflowError return real_build_matches(left_matrix, right_matrix, nnz_rows, sort) return wrapper def test_overflow_error_with(OverflowThreshold, n_blocks): nonlocal sg sg._build_matches = Mock(side_effect=mock_build_matches(OverflowThreshold)) sg.clear_data() max_left_block_size = (len(df1)//n_blocks[0] + (1 if len(df1) % n_blocks[0] > 0 else 0)) max_right_block_size = (len(df1)//n_blocks[1] + (1 if len(df1) % n_blocks[1] > 0 else 0)) if (max_left_block_size + max_right_block_size) > OverflowThreshold: with self.assertRaises(Exception): _ = sg.match_strings(df1, n_blocks=n_blocks) else: matches_manual = fix_row_order(sg.match_strings(df1, n_blocks=n_blocks)) pd.testing.assert_frame_equal(matches11, matches_manual) test_overflow_error_with(OverflowThreshold=100, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(2, 1)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(1, 2)) test_overflow_error_with(OverflowThreshold=10, n_blocks=(4, 4)) def test_n_blocks_both_DataFrames(self): """tests whether manual blocking yields consistent results""" sort_cols = ['right_index', 'left_index'] def fix_row_order(df): return df.sort_values(sort_cols).reset_index(drop=True) simple_example = SimpleExample() df1 = simple_example.customers_df['Customer Name'] df2 = simple_example.customers_df2['Customer Name'] matches11 = fix_row_order(match_strings(df1, df2, min_similarity=0.1)) matches12 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches12) matches13 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 3), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches13) matches14 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 4), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches14) matches15 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 5), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches15) matches16 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 6), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches16) matches17 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 7), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches17) matches18 = fix_row_order( match_strings(df1, df2, n_blocks=(1, 8), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches18) matches21 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 1), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches21) matches22 = fix_row_order( match_strings(df1, df2, n_blocks=(2, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches22) matches32 = fix_row_order( match_strings(df1, df2, n_blocks=(3, 2), min_similarity=0.1)) pd.testing.assert_frame_equal(matches11, matches32) def test_n_blocks_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=2) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(0, 2)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2.5)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, 2, 3)) with self.assertRaises(Exception): _ = match_strings(df1, n_blocks=(1, )) def test_tfidf_dtype_bad_option_value(self): """Tests that bad option values for n_blocks are caught""" simple_example = SimpleExample() df1 = simple_example.customers_df2['<NAME>'] with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=None) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype=0) with self.assertRaises(Exception): _ = match_strings(df1, tfidf_matrix_dtype='whatever') def test_compute_pairwise_similarities(self): """tests the high-level function compute_pairwise_similarities""" simple_example = SimpleExample() df1 = simple_example.customers_df['<NAME>'] df2 = simple_example.expected_result_centroid similarities = compute_pairwise_similarities(df1, df2) expected_result = pd.Series( [ 1.0, 0.6336195351561589, 1.0000000000000004, 1.0000000000000004, 1.0, 0.826462625999832 ], name='similarity' ) expected_result = expected_result.astype(np.float32) pd.testing.assert_series_equal(expected_result, similarities) sg = StringGrouper(df1, df2) similarities = sg.compute_pairwise_similarities(df1, df2)
pd.testing.assert_series_equal(expected_result, similarities)
pandas.testing.assert_series_equal
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import unittest.mock import pytest import shutil import tempfile import os import datetime from smexperiments import api_types, tracker, trial_component, _utils, _environment import pandas as pd @pytest.fixture def boto3_session(): mocked = unittest.mock.Mock() mocked.client.return_value.get_caller_identity.return_value = {"Account": unittest.mock.Mock()} return mocked @pytest.fixture def tempdir(): dir = tempfile.mkdtemp() yield dir shutil.rmtree(dir) @pytest.fixture def metrics_dir(tempdir): saved = os.environ.get("SAGEMAKER_METRICS_DIRECTORY") os.environ["SAGEMAKER_METRICS_DIRECTORY"] = tempdir yield os.environ del os.environ["SAGEMAKER_METRICS_DIRECTORY"] if saved: os.environ["SAGEMAKER_METRICS_DIRECTORY"] = saved @pytest.fixture def sagemaker_boto_client(boto3_session): return boto3_session.client("sagemaker") @pytest.fixture def source_arn(): return "source_arn" @pytest.fixture def environ(source_arn): contains = _utils.TRAINING_JOB_ARN_ENV in os.environ original_value = os.environ.get(_utils.TRAINING_JOB_ARN_ENV) os.environ[_utils.TRAINING_JOB_ARN_ENV] = source_arn yield if contains: os.environ[_utils.TRAINING_JOB_ARN_ENV] = original_value else: del os.environ[_utils.TRAINING_JOB_ARN_ENV] @unittest.mock.patch("smexperiments._environment.TrialComponentEnvironment") def test_load_in_sagemaker_training_job(mocked_tce, sagemaker_boto_client): trial_component_obj = trial_component.TrialComponent( trial_component_name="foo-bar", sagemaker_boto_client=sagemaker_boto_client ) rv = unittest.mock.Mock() rv.source_arn = "arn:1234" rv.environment_type = _environment.EnvironmentType.SageMakerTrainingJob rv.get_trial_component.return_value = trial_component_obj mocked_tce.load.return_value = rv tracker_obj = tracker.Tracker.load(sagemaker_boto_client=sagemaker_boto_client) assert tracker_obj._in_sagemaker_job assert tracker_obj._metrics_writer assert tracker_obj.trial_component == trial_component_obj @unittest.mock.patch("smexperiments._environment.TrialComponentEnvironment") def test_load_in_sagemaker_processing_job(mocked_tce, sagemaker_boto_client): trial_component_obj = trial_component.TrialComponent( trial_component_name="foo-bar", sagemaker_boto_client=sagemaker_boto_client ) rv = unittest.mock.Mock() rv.source_arn = "arn:1234" rv.environment_type = _environment.EnvironmentType.SageMakerProcessingJob rv.get_trial_component.return_value = trial_component_obj mocked_tce.load.return_value = rv tracker_obj = tracker.Tracker.load(sagemaker_boto_client=sagemaker_boto_client) assert tracker_obj._in_sagemaker_job assert tracker_obj._metrics_writer is None assert tracker_obj.trial_component == trial_component_obj def test_load_in_sagemaker_job_no_resolved_tc(sagemaker_boto_client): with pytest.raises(ValueError): tracker.Tracker.load(sagemaker_boto_client=sagemaker_boto_client) def test_load(boto3_session, sagemaker_boto_client): trial_component_name = "foo-trial-component" sagemaker_boto_client.describe_trial_component.return_value = {"TrialComponentName": trial_component_name} assert ( trial_component_name == tracker.Tracker.load( trial_component_name=trial_component_name, sagemaker_boto_client=sagemaker_boto_client ).trial_component.trial_component_name ) def test_load_by_training_job_name(boto3_session, sagemaker_boto_client): training_job_name = "foo-training-job" trial_component_name = training_job_name + "-aws-training-job" sagemaker_boto_client.describe_trial_component.return_value = {"TrialComponentName": trial_component_name} assert ( trial_component_name == tracker.Tracker.load( training_job_name=training_job_name, sagemaker_boto_client=sagemaker_boto_client ).trial_component.trial_component_name ) def test_load_by_processing_job_name(boto3_session, sagemaker_boto_client): processing_job_name = "foo-processing-job" trial_component_name = processing_job_name + "-aws-processing-job" sagemaker_boto_client.describe_trial_component.return_value = {"TrialComponentName": trial_component_name} assert ( trial_component_name == tracker.Tracker.load( processing_job_name=processing_job_name, sagemaker_boto_client=sagemaker_boto_client ).trial_component.trial_component_name ) def test_create(boto3_session, sagemaker_boto_client): trial_component_name = "foo-trial-component" trial_component_display_name = "foo-trial-component-display-name" sagemaker_boto_client.create_trial_component.return_value = {"TrialComponentName": trial_component_name} tracker_created = tracker.Tracker.create( display_name=trial_component_display_name, sagemaker_boto_client=sagemaker_boto_client ) assert trial_component_name == tracker_created.trial_component.trial_component_name assert tracker_created._metrics_writer is None @pytest.fixture def trial_component_obj(sagemaker_boto_client): return trial_component.TrialComponent(sagemaker_boto_client) @pytest.fixture def under_test(trial_component_obj): return tracker.Tracker(trial_component_obj, unittest.mock.Mock(), unittest.mock.Mock(), unittest.mock.Mock()) def test_log_parameter(under_test): under_test.log_parameter("foo", "bar") assert under_test.trial_component.parameters["foo"] == "bar" under_test.log_parameter("whizz", 1) assert under_test.trial_component.parameters["whizz"] == 1 def test_enter(under_test): under_test.__enter__() assert isinstance(under_test.trial_component.start_time, datetime.datetime) assert under_test.trial_component.status.primary_status == "InProgress" def test_cm(sagemaker_boto_client, under_test): sagemaker_boto_client.update_trial_component.return_value = {} with under_test: pass assert under_test.trial_component.status.primary_status == "Completed" assert isinstance(under_test.trial_component.end_time, datetime.datetime) def test_cm_fail(sagemaker_boto_client, under_test): sagemaker_boto_client.update_trial_component.return_value = {} try: with under_test: raise ValueError("Foo") except ValueError: pass assert under_test.trial_component.status.primary_status == "Failed" assert under_test.trial_component.status.message assert isinstance(under_test.trial_component.end_time, datetime.datetime) def test_enter_sagemaker_job(sagemaker_boto_client, under_test): sagemaker_boto_client.update_trial_component.return_value = {} under_test._in_sagemaker_job = True with under_test: pass assert under_test.trial_component.start_time is None assert under_test.trial_component.end_time is None assert under_test.trial_component.status is None def test_log_parameters(under_test): under_test.log_parameters({"a": "b", "c": "d", "e": 5}) assert under_test.trial_component.parameters == {"a": "b", "c": "d", "e": 5} def test_log_input(under_test): under_test.log_input("foo", "baz", "text/text") assert under_test.trial_component.input_artifacts == { "foo": api_types.TrialComponentArtifact(value="baz", media_type="text/text") } def test_log_output(under_test): under_test.log_output("foo", "baz", "text/text") assert under_test.trial_component.output_artifacts == { "foo": api_types.TrialComponentArtifact(value="baz", media_type="text/text") } def test_log_metric(under_test): now = datetime.datetime.now() under_test.log_metric("foo", 1.0, 1, now) under_test._metrics_writer.log_metric.assert_called_with("foo", 1.0, 1, now) def test_log_metric_attribute_error(under_test): now = datetime.datetime.now() exception = AttributeError under_test._metrics_writer.log_metric.side_effect = exception with pytest.raises(AttributeError): under_test.log_metric("foo", 1.0, 1, now) def test_log_metric_attribute_error_warned(under_test): now = datetime.datetime.now() under_test._metrics_writer = None under_test._warned_on_metrics = None under_test.log_metric("foo", 1.0, 1, now) assert under_test._warned_on_metrics == True def test_log_output_artifact(under_test): under_test._artifact_uploader.upload_artifact.return_value = ("s3uri_value", "etag_value") under_test.log_output_artifact("foo.txt", "name", "whizz/bang") under_test._artifact_uploader.upload_artifact.assert_called_with("foo.txt") assert "whizz/bang" == under_test.trial_component.output_artifacts["name"].media_type under_test.log_output_artifact("foo.txt") under_test._artifact_uploader.upload_artifact.assert_called_with("foo.txt") under_test._lineage_artifact_tracker.add_output_artifact.assert_called_with( "foo.txt", "s3uri_value", "etag_value", "text/plain" ) assert "foo.txt" in under_test.trial_component.output_artifacts assert "text/plain" == under_test.trial_component.output_artifacts["foo.txt"].media_type def test_log_input_artifact(under_test): under_test._artifact_uploader.upload_artifact.return_value = ("s3uri_value", "etag_value") under_test.log_input_artifact("foo.txt", "name", "whizz/bang") under_test._artifact_uploader.upload_artifact.assert_called_with("foo.txt") assert "whizz/bang" == under_test.trial_component.input_artifacts["name"].media_type under_test.log_input_artifact("foo.txt") under_test._artifact_uploader.upload_artifact.assert_called_with("foo.txt") under_test._lineage_artifact_tracker.add_input_artifact.assert_called_with( "foo.txt", "s3uri_value", "etag_value", "text/plain" ) assert "foo.txt" in under_test.trial_component.input_artifacts assert "text/plain" == under_test.trial_component.input_artifacts["foo.txt"].media_type def test_log_inputs_error(under_test): for index in range(0, 30): file_path = "foo" + str(index) + ".txt" under_test.trial_component.input_artifacts[file_path] = { "foo": api_types.TrialComponentArtifact(value="baz" + str(index), media_type="text/text") } with pytest.raises(ValueError): under_test.log_input("foo.txt", "name", "whizz/bang") def test_log_outputs(under_test): for index in range(0, 30): file_path = "foo" + str(index) + ".txt" under_test.trial_component.output_artifacts[file_path] = { "foo": api_types.TrialComponentArtifact(value="baz" + str(index), media_type="text/text") } with pytest.raises(ValueError): under_test.log_output("foo.txt", "name", "whizz/bang") def test_log_multiple_input_artifact(under_test): for index in range(0, 30): file_path = "foo" + str(index) + ".txt" under_test._artifact_uploader.upload_artifact.return_value = ( "s3uri_value" + str(index), "etag_value" + str(index), ) under_test.log_input_artifact(file_path, "name" + str(index), "whizz/bang" + str(index)) under_test._artifact_uploader.upload_artifact.assert_called_with(file_path) under_test._artifact_uploader.upload_artifact.return_value = ("s3uri_value", "etag_value") with pytest.raises(ValueError): under_test.log_input_artifact("foo.txt", "name", "whizz/bang") def test_log_multiple_output_artifact(under_test): for index in range(0, 30): file_path = "foo" + str(index) + ".txt" under_test._artifact_uploader.upload_artifact.return_value = ( "s3uri_value" + str(index), "etag_value" + str(index), ) under_test.log_output_artifact(file_path, "name" + str(index), "whizz/bang" + str(index)) under_test._artifact_uploader.upload_artifact.assert_called_with(file_path) under_test._artifact_uploader.upload_artifact.return_value = ("s3uri_value", "etag_value") with pytest.raises(ValueError): under_test.log_output_artifact("foo.txt", "name", "whizz/bang") def test_log_pr_curve(under_test): y_true = [0, 0, 1, 1] y_scores = [0.1, 0.4, 0.35, 0.8] no_skill = 0.1 under_test._artifact_uploader.upload_object_artifact.return_value = ("s3uri_value", "etag_value") under_test.log_precision_recall(y_true, y_scores, title="TestPRCurve", no_skill=no_skill) expected_data = { "type": "PrecisionRecallCurve", "version": 0, "title": "TestPRCurve", "precision": [0.6666666666666666, 0.5, 1.0, 1.0], "recall": [1.0, 0.5, 0.5, 0.0], "averagePrecisionScore": 0.8333333333333333, "noSkill": 0.1, } under_test._artifact_uploader.upload_object_artifact.assert_called_with( "TestPRCurve", expected_data, file_extension="json" ) under_test._lineage_artifact_tracker.add_input_artifact( "TestPRCurve", "s3uri_value", "etag_value", "PrecisionRecallCurve" ) def test_log_confusion_matrix(under_test): y_true = [2, 0, 2, 2, 0, 1] y_pred = [0, 0, 2, 2, 0, 2] under_test._artifact_uploader.upload_object_artifact.return_value = ("s3uri_value", "etag_value") under_test.log_confusion_matrix(y_true, y_pred, title="TestConfusionMatrix") expected_data = { "type": "ConfusionMatrix", "version": 0, "title": "TestConfusionMatrix", "confusionMatrix": [[2, 0, 0], [0, 0, 1], [1, 0, 2]], } under_test._artifact_uploader.upload_object_artifact.assert_called_with( "TestConfusionMatrix", expected_data, file_extension="json" ) under_test._lineage_artifact_tracker.add_input_artifact( "TestConfusionMatrix", "s3uri_value", "etag_value", "ConfusionMatrix" ) def test_resolve_artifact_name(): file_names = { "a": "a", "a.txt": "a.txt", "b.": "b.", ".c": ".c", "/x/a/a.txt": "a.txt", "/a/b/c.": "c.", "./.a": ".a", "../b.txt": "b.txt", "~/a.txt": "a.txt", "c/d.txt": "d.txt", } for file_name, artifact_name in file_names.items(): assert artifact_name == tracker._resolve_artifact_name(file_name) @pytest.fixture def artifact_uploader(boto3_session): return tracker._ArtifactUploader("trial_component_name", "artifact_bucket", "artifact_prefix", boto3_session) def test_artifact_uploader_init(artifact_uploader): assert "trial_component_name" == artifact_uploader.trial_component_name assert "artifact_bucket" == artifact_uploader.artifact_bucket assert "artifact_prefix" == artifact_uploader.artifact_prefix def test_artifact_uploader_upload_artifact_file_not_exists(tempdir, artifact_uploader): not_exist_file = os.path.join(tempdir, "not.exists") with pytest.raises(ValueError): artifact_uploader.upload_artifact(not_exist_file) def test_artifact_uploader_s3(tempdir, artifact_uploader): path = os.path.join(tempdir, "exists") with open(path, "a") as f: f.write("boo") name = tracker._resolve_artifact_name(path) artifact_uploader.s3_client.head_object.return_value = {"ETag": "etag_value"} s3_uri, etag = artifact_uploader.upload_artifact(path) expected_key = "{}/{}/{}".format(artifact_uploader.artifact_prefix, artifact_uploader.trial_component_name, name) artifact_uploader.s3_client.upload_file.assert_called_with(path, artifact_uploader.artifact_bucket, expected_key) expected_uri = "s3://{}/{}".format(artifact_uploader.artifact_bucket, expected_key) assert expected_uri == s3_uri def test_guess_media_type(): assert "text/plain" == tracker._guess_media_type("foo.txt") @pytest.fixture def lineage_artifact_tracker(sagemaker_boto_client): return tracker._LineageArtifactTracker("test_trial_component_arn", sagemaker_boto_client) def test_lineage_artifact_tracker(lineage_artifact_tracker, sagemaker_boto_client): lineage_artifact_tracker.add_input_artifact("input_name", "input_source_uri", "input_etag", "text/plain") lineage_artifact_tracker.add_output_artifact("output_name", "output_source_uri", "output_etag", "text/plain") sagemaker_boto_client.create_artifact.side_effect = [ {"ArtifactArn": "created_arn_1"}, {"ArtifactArn": "created_arn_2"}, ] lineage_artifact_tracker.save() expected_calls = [ unittest.mock.call( ArtifactName="input_name", ArtifactType="text/plain", Source={ "SourceUri": "input_source_uri", "SourceTypes": [{"SourceIdType": "S3ETag", "Value": "input_etag"}], }, ), unittest.mock.call( ArtifactName="output_name", ArtifactType="text/plain", Source={ "SourceUri": "output_source_uri", "SourceTypes": [{"SourceIdType": "S3ETag", "Value": "output_etag"}], }, ), ] assert expected_calls == sagemaker_boto_client.create_artifact.mock_calls expected_calls = [ unittest.mock.call( SourceArn="created_arn_1", DestinationArn="test_trial_component_arn", AssociationType="ContributedTo" ), unittest.mock.call( SourceArn="test_trial_component_arn", DestinationArn="created_arn_2", AssociationType="Produced" ), ] assert expected_calls == sagemaker_boto_client.add_association.mock_calls def test_convert_dict_to_fields(): values = {"x": [1, 2, 3], "y": [4, 5, 6]} fields = tracker._ArtifactConverter.convert_dict_to_fields(values) expected_fields = [ {"name": "x", "type": "string"}, {"name": "y", "type": "string"}, ] assert expected_fields == fields def test_convert_data_frame_to_values(): df = pd.DataFrame({"col1": [1, 2], "col2": [0.5, 0.75]}) values = tracker._ArtifactConverter.convert_data_frame_to_values(df) expected_values = {"col1": [1, 2], "col2": [0.5, 0.75]} assert expected_values == values def test_convert_data_frame_to_fields(): df =
pd.DataFrame({"col1": [1, 2], "col2": [0.5, 0.75]})
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999])
tm.assert_frame_equal(result1, good_compare)
pandas.util.testing.assert_frame_equal
# ***************************************************************************** # Copyright (c) 2019-2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import itertools import os import platform import string import unittest from copy import deepcopy from itertools import product import numpy as np import pandas as pd from numba.core.errors import TypingError from sdc.hiframes.rolling import supported_rolling_funcs from sdc.tests.test_base import TestCase from sdc.tests.test_series import gen_frand_array from sdc.tests.test_utils import (count_array_REPs, count_parfor_REPs, skip_numba_jit, skip_sdc_jit, test_global_input_data_float64) LONG_TEST = (int(os.environ['SDC_LONG_ROLLING_TEST']) != 0 if 'SDC_LONG_ROLLING_TEST' in os.environ else False) test_funcs = ('mean', 'max',) if LONG_TEST: # all functions except apply, cov, corr test_funcs = supported_rolling_funcs[:-3] def rolling_std_usecase(obj, window, min_periods, ddof): return obj.rolling(window, min_periods).std(ddof) def rolling_var_usecase(obj, window, min_periods, ddof): return obj.rolling(window, min_periods).var(ddof) class TestRolling(TestCase): @skip_numba_jit def test_series_rolling1(self): def test_impl(S): return S.rolling(3).sum() hpat_func = self.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @skip_numba_jit def test_fixed1(self): # test sequentially with manually created dfs wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(df, w, c):\n return df.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for args in itertools.product(wins, centers): df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) df = pd.DataFrame({'B': [0, 1, 2, -2, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) @skip_numba_jit def test_fixed2(self): # test sequentially with generated dfs sizes = (121,) wins = (3,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(df, w, c):\n return df.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n, w, c in itertools.product(sizes, wins, centers): df = pd.DataFrame({'B': np.arange(n)}) pd.testing.assert_frame_equal(hpat_func(df, w, c), test_impl(df, w, c)) @skip_numba_jit def test_fixed_apply1(self): # test sequentially with manually created dfs def test_impl(df, w, c): return df.rolling(w, center=c).apply(lambda a: a.sum()) hpat_func = self.jit(test_impl) wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for args in itertools.product(wins, centers): df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) df = pd.DataFrame({'B': [0, 1, 2, -2, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) @skip_numba_jit def test_fixed_apply2(self): # test sequentially with generated dfs def test_impl(df, w, c): return df.rolling(w, center=c).apply(lambda a: a.sum()) hpat_func = self.jit(test_impl) sizes = (121,) wins = (3,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 3, 5) centers = (False, True) for n, w, c in itertools.product(sizes, wins, centers): df = pd.DataFrame({'B': np.arange(n)}) pd.testing.assert_frame_equal(hpat_func(df, w, c), test_impl(df, w, c)) @skip_numba_jit def test_fixed_parallel1(self): def test_impl(n, w, center): df = pd.DataFrame({'B': np.arange(n)}) R = df.rolling(w, center=center).sum() return R.B.sum() hpat_func = self.jit(test_impl) sizes = (121,) wins = (5,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 4, 5, 10, 11) centers = (False, True) for args in itertools.product(sizes, wins, centers): self.assertEqual(hpat_func(*args), test_impl(*args), "rolling fixed window with {}".format(args)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit def test_fixed_parallel_apply1(self): def test_impl(n, w, center): df = pd.DataFrame({'B': np.arange(n)}) R = df.rolling(w, center=center).apply(lambda a: a.sum()) return R.B.sum() hpat_func = self.jit(test_impl) sizes = (121,) wins = (5,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 4, 5, 10, 11) centers = (False, True) for args in itertools.product(sizes, wins, centers): self.assertEqual(hpat_func(*args), test_impl(*args), "rolling fixed window with {}".format(args)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit def test_variable1(self): # test sequentially with manually created dfs df1 = pd.DataFrame({'B': [0, 1, 2, np.nan, 4], 'time': [pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:05'), pd.Timestamp('20130101 09:00:06')]}) df2 = pd.DataFrame({'B': [0, 1, 2, -2, 4], 'time': [pd.Timestamp('20130101 09:00:01'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:04'), pd.Timestamp('20130101 09:00:09')]}) wins = ('2s',) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # all functions except apply for w, func_name in itertools.product(wins, test_funcs): func_text = "def test_impl(df):\n return df.rolling('{}', on='time').{}()\n".format(w, func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) # XXX: skipping min/max for this test since the behavior of Pandas # is inconsistent: it assigns NaN to last output instead of 4! if func_name not in ('min', 'max'): pd.testing.assert_frame_equal(hpat_func(df1), test_impl(df1)) pd.testing.assert_frame_equal(hpat_func(df2), test_impl(df2)) @skip_numba_jit def test_variable2(self): # test sequentially with generated dfs wins = ('2s',) sizes = (121,) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') sizes = (1, 2, 10, 11, 121, 1000) # all functions except apply for w, func_name in itertools.product(wins, test_funcs): func_text = "def test_impl(df):\n return df.rolling('{}', on='time').{}()\n".format(w, func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n in sizes: time = pd.date_range(start='1/1/2018', periods=n, freq='s') df = pd.DataFrame({'B': np.arange(n), 'time': time}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) @skip_numba_jit def test_variable_apply1(self): # test sequentially with manually created dfs df1 = pd.DataFrame({'B': [0, 1, 2, np.nan, 4], 'time': [pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:05'), pd.Timestamp('20130101 09:00:06')]}) df2 = pd.DataFrame({'B': [0, 1, 2, -2, 4], 'time': [pd.Timestamp('20130101 09:00:01'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:04'), pd.Timestamp('20130101 09:00:09')]}) wins = ('2s',) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # all functions except apply for w in wins: func_text = "def test_impl(df):\n return df.rolling('{}', on='time').apply(lambda a: a.sum())\n".format(w) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) pd.testing.assert_frame_equal(hpat_func(df1), test_impl(df1)) pd.testing.assert_frame_equal(hpat_func(df2), test_impl(df2)) @skip_numba_jit def test_variable_apply2(self): # test sequentially with generated dfs wins = ('2s',) sizes = (121,) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # TODO: this crashes on Travis (3 process config) with size 1 sizes = (2, 10, 11, 121, 1000) # all functions except apply for w in wins: func_text = "def test_impl(df):\n return df.rolling('{}', on='time').apply(lambda a: a.sum())\n".format(w) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n in sizes: time = pd.date_range(start='1/1/2018', periods=n, freq='s') df = pd.DataFrame({'B': np.arange(n), 'time': time}) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) @skip_numba_jit @unittest.skipIf(platform.system() == 'Windows', "ValueError: time must be monotonic") def test_variable_parallel1(self): wins = ('2s',) sizes = (121,) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # XXX: Pandas returns time = [np.nan] for size==1 for some reason sizes = (2, 10, 11, 121, 1000) # all functions except apply for w, func_name in itertools.product(wins, test_funcs): func_text = "def test_impl(n):\n" func_text += " df = pd.DataFrame({'B': np.arange(n), 'time': " func_text += " pd.DatetimeIndex(np.arange(n) * 1000000000)})\n" func_text += " res = df.rolling('{}', on='time').{}()\n".format(w, func_name) func_text += " return res.B.sum()\n" loc_vars = {} exec(func_text, {'pd': pd, 'np': np}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n in sizes: np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit @unittest.skipIf(platform.system() == 'Windows', "ValueError: time must be monotonic") def test_variable_apply_parallel1(self): wins = ('2s',) sizes = (121,) if LONG_TEST: wins = ('1s', '2s', '3s', '4s') # XXX: Pandas returns time = [np.nan] for size==1 for some reason sizes = (2, 10, 11, 121, 1000) # all functions except apply for w in wins: func_text = "def test_impl(n):\n" func_text += " df = pd.DataFrame({'B': np.arange(n), 'time': " func_text += " pd.DatetimeIndex(np.arange(n) * 1000000000)})\n" func_text += " res = df.rolling('{}', on='time').apply(lambda a: a.sum())\n".format(w) func_text += " return res.B.sum()\n" loc_vars = {} exec(func_text, {'pd': pd, 'np': np}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n in sizes: np.testing.assert_almost_equal(hpat_func(n), test_impl(n)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit def test_series_fixed1(self): # test series rolling functions # all functions except apply S1 = pd.Series([0, 1, 2, np.nan, 4]) S2 = pd.Series([0, 1, 2, -2, 4]) wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(S, w, c):\n return S.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for args in itertools.product(wins, centers): pd.testing.assert_series_equal(hpat_func(S1, *args), test_impl(S1, *args)) pd.testing.assert_series_equal(hpat_func(S2, *args), test_impl(S2, *args)) # test apply def apply_test_impl(S, w, c): return S.rolling(w, center=c).apply(lambda a: a.sum()) hpat_func = self.jit(apply_test_impl) for args in itertools.product(wins, centers): pd.testing.assert_series_equal(hpat_func(S1, *args), apply_test_impl(S1, *args)) pd.testing.assert_series_equal(hpat_func(S2, *args), apply_test_impl(S2, *args)) @skip_numba_jit def test_series_cov1(self): # test series rolling functions # all functions except apply S1 = pd.Series([0, 1, 2, np.nan, 4]) S2 = pd.Series([0, 1, 2, -2, 4]) wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) def test_impl(S, S2, w, c): return S.rolling(w, center=c).cov(S2) hpat_func = self.jit(test_impl) for args in itertools.product([S1, S2], [S1, S2], wins, centers): pd.testing.assert_series_equal(hpat_func(*args), test_impl(*args)) pd.testing.assert_series_equal(hpat_func(*args), test_impl(*args)) def test_impl2(S, S2, w, c): return S.rolling(w, center=c).corr(S2) hpat_func = self.jit(test_impl2) for args in itertools.product([S1, S2], [S1, S2], wins, centers): pd.testing.assert_series_equal(hpat_func(*args), test_impl2(*args)) pd.testing.assert_series_equal(hpat_func(*args), test_impl2(*args)) @skip_numba_jit def test_df_cov1(self): # test series rolling functions # all functions except apply df1 = pd.DataFrame({'A': [0, 1, 2, np.nan, 4], 'B': np.ones(5)}) df2 = pd.DataFrame({'A': [0, 1, 2, -2, 4], 'C': np.ones(5)}) wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) def test_impl(df, df2, w, c): return df.rolling(w, center=c).cov(df2) hpat_func = self.jit(test_impl) for args in itertools.product([df1, df2], [df1, df2], wins, centers): pd.testing.assert_frame_equal(hpat_func(*args), test_impl(*args)) pd.testing.assert_frame_equal(hpat_func(*args), test_impl(*args)) def test_impl2(df, df2, w, c): return df.rolling(w, center=c).corr(df2) hpat_func = self.jit(test_impl2) for args in itertools.product([df1, df2], [df1, df2], wins, centers): pd.testing.assert_frame_equal(hpat_func(*args), test_impl2(*args)) pd.testing.assert_frame_equal(hpat_func(*args), test_impl2(*args)) def _get_assert_equal(self, obj): if isinstance(obj, pd.Series): return pd.testing.assert_series_equal elif isinstance(obj, pd.DataFrame): return pd.testing.assert_frame_equal elif isinstance(obj, np.ndarray): return np.testing.assert_array_equal return self.assertEqual def _test_rolling_unsupported_values(self, obj): def test_impl(obj, window, min_periods, center, win_type, on, axis, closed): return obj.rolling(window, min_periods, center, win_type, on, axis, closed).min() hpat_func = self.jit(test_impl) with self.assertRaises(ValueError) as raises: hpat_func(obj, -1, None, False, None, None, 0, None) self.assertIn('window must be non-negative', str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, -1, False, None, None, 0, None) self.assertIn('min_periods must be >= 0', str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, 2, False, None, None, 0, None) self.assertIn('min_periods must be <= window', str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, 2, False, None, None, 0, None) self.assertIn('min_periods must be <= window', str(raises.exception)) msg_tmpl = 'Method rolling(). The object {}\n expected: {}' with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, None, True, None, None, 0, None) msg = msg_tmpl.format('center', 'False') self.assertIn(msg, str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, None, False, 'None', None, 0, None) msg = msg_tmpl.format('win_type', 'None') self.assertIn(msg, str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, None, False, None, 'None', 0, None) msg = msg_tmpl.format('on', 'None') self.assertIn(msg, str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, None, False, None, None, 1, None) msg = msg_tmpl.format('axis', '0') self.assertIn(msg, str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 1, None, False, None, None, 0, 'None') msg = msg_tmpl.format('closed', 'None') self.assertIn(msg, str(raises.exception)) def _test_rolling_unsupported_types(self, obj): def test_impl(obj, window, min_periods, center, win_type, on, axis, closed): return obj.rolling(window, min_periods, center, win_type, on, axis, closed).min() hpat_func = self.jit(test_impl) msg_tmpl = 'Method rolling(). The object {}\n given: {}\n expected: {}' with self.assertRaises(TypingError) as raises: hpat_func(obj, '1', None, False, None, None, 0, None) msg = msg_tmpl.format('window', 'unicode_type', 'int') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, '1', False, None, None, 0, None) msg = msg_tmpl.format('min_periods', 'unicode_type', 'None, int') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, None, 0, None, None, 0, None) msg = msg_tmpl.format('center', 'int64', 'bool') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, None, False, -1, None, 0, None) msg = msg_tmpl.format('win_type', 'int64', 'str') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, None, False, None, -1, 0, None) msg = msg_tmpl.format('on', 'int64', 'str') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, None, False, None, None, None, None) msg = msg_tmpl.format('axis', 'none', 'int, str') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, None, False, None, None, 0, -1) msg = msg_tmpl.format('closed', 'int64', 'str') self.assertIn(msg, str(raises.exception)) def _test_rolling_apply_mean(self, obj): def test_impl(obj, window, min_periods): def func(x): if len(x) == 0: return np.nan return x.mean() return obj.rolling(window, min_periods).apply(func) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window + 1, 2): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_apply_unsupported_types(self, obj): def test_impl(obj, raw): def func(x): if len(x) == 0: return np.nan return np.median(x) return obj.rolling(3).apply(func, raw=raw) hpat_func = self.jit(test_impl) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1) msg = 'Method rolling.apply(). The object raw\n given: int64\n expected: bool' self.assertIn(msg, str(raises.exception)) def _test_rolling_apply_args(self, obj): def test_impl(obj, window, min_periods, q): def func(x, q): if len(x) == 0: return np.nan return np.quantile(x, q) return obj.rolling(window, min_periods).apply(func, raw=None, args=(q,)) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window + 1, 2): for q in [0.25, 0.5, 0.75]: with self.subTest(obj=obj, window=window, min_periods=min_periods, q=q): jit_result = hpat_func(obj, window, min_periods, q) ref_result = test_impl(obj, window, min_periods, q) assert_equal(jit_result, ref_result) def _test_rolling_corr(self, obj, other): def test_impl(obj, window, min_periods, other): return obj.rolling(window, min_periods).corr(other) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window, 2): with self.subTest(obj=obj, other=other, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods, other) ref_result = test_impl(obj, window, min_periods, other) assert_equal(jit_result, ref_result) def _test_rolling_corr_with_no_other(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).corr(pairwise=False) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window, 2): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_corr_unsupported_types(self, obj): def test_impl(obj, pairwise): return obj.rolling(3, 3).corr(pairwise=pairwise) hpat_func = self.jit(test_impl) with self.assertRaises(TypingError) as raises: hpat_func(obj, 1) msg = 'Method rolling.corr(). The object pairwise\n given: int64\n expected: bool' self.assertIn(msg, str(raises.exception)) def _test_rolling_count(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).count() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window + 1, 2): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_cov(self, obj, other): def test_impl(obj, window, min_periods, other, ddof): return obj.rolling(window, min_periods).cov(other, ddof=ddof) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods, ddof in product(range(0, window, 2), [0, 1]): with self.subTest(obj=obj, other=other, window=window, min_periods=min_periods, ddof=ddof): jit_result = hpat_func(obj, window, min_periods, other, ddof) ref_result = test_impl(obj, window, min_periods, other, ddof) assert_equal(jit_result, ref_result) def _test_rolling_cov_with_no_other(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).cov(pairwise=False) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window, 2): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_cov_unsupported_types(self, obj): def test_impl(obj, pairwise, ddof): return obj.rolling(3, 3).cov(pairwise=pairwise, ddof=ddof) hpat_func = self.jit(test_impl) msg_tmpl = 'Method rolling.cov(). The object {}\n given: {}\n expected: {}' with self.assertRaises(TypingError) as raises: hpat_func(obj, 1, 1) msg = msg_tmpl.format('pairwise', 'int64', 'bool') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, None, '1') msg = msg_tmpl.format('ddof', 'unicode_type', 'int') self.assertIn(msg, str(raises.exception)) def _test_rolling_kurt(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).kurt() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(4, len(obj) + 1): for min_periods in range(window + 1): with self.subTest(obj=obj, window=window, min_periods=min_periods): ref_result = test_impl(obj, window, min_periods) jit_result = hpat_func(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_max(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).max() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) # python implementation crashes if window = 0, jit works correctly for window in range(1, len(obj) + 2): for min_periods in range(window + 1): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_mean(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).mean() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(len(obj) + 2): for min_periods in range(window): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_median(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).median() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods in range(0, window + 1, 2): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_min(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).min() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) # python implementation crashes if window = 0, jit works correctly for window in range(1, len(obj) + 2): for min_periods in range(window + 1): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_quantile(self, obj): def test_impl(obj, window, min_periods, quantile): return obj.rolling(window, min_periods).quantile(quantile) hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) quantiles = [0, 0.25, 0.5, 0.75, 1] for window in range(0, len(obj) + 3, 2): for min_periods, q in product(range(0, window, 2), quantiles): with self.subTest(obj=obj, window=window, min_periods=min_periods, quantiles=q): jit_result = hpat_func(obj, window, min_periods, q) ref_result = test_impl(obj, window, min_periods, q) assert_equal(jit_result, ref_result) def _test_rolling_quantile_exception_unsupported_types(self, obj): def test_impl(obj, quantile, interpolation): return obj.rolling(3, 2).quantile(quantile, interpolation) hpat_func = self.jit(test_impl) msg_tmpl = 'Method rolling.quantile(). The object {}\n given: {}\n expected: {}' with self.assertRaises(TypingError) as raises: hpat_func(obj, '0.5', 'linear') msg = msg_tmpl.format('quantile', 'unicode_type', 'float') self.assertIn(msg, str(raises.exception)) with self.assertRaises(TypingError) as raises: hpat_func(obj, 0.5, None) msg = msg_tmpl.format('interpolation', 'none', 'str') self.assertIn(msg, str(raises.exception)) def _test_rolling_quantile_exception_unsupported_values(self, obj): def test_impl(obj, quantile, interpolation): return obj.rolling(3, 2).quantile(quantile, interpolation) hpat_func = self.jit(test_impl) with self.assertRaises(ValueError) as raises: hpat_func(obj, 2, 'linear') self.assertIn('quantile value not in [0, 1]', str(raises.exception)) with self.assertRaises(ValueError) as raises: hpat_func(obj, 0.5, 'lower') self.assertIn('interpolation value not "linear"', str(raises.exception)) def _test_rolling_skew(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).skew() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(3, len(obj) + 1): for min_periods in range(window + 1): with self.subTest(obj=obj, window=window, min_periods=min_periods): ref_result = test_impl(obj, window, min_periods) jit_result = hpat_func(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_std(self, obj): test_impl = rolling_std_usecase hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods, ddof in product(range(0, window, 2), [0, 1]): with self.subTest(obj=obj, window=window, min_periods=min_periods, ddof=ddof): jit_result = hpat_func(obj, window, min_periods, ddof) ref_result = test_impl(obj, window, min_periods, ddof) assert_equal(jit_result, ref_result) def _test_rolling_std_exception_unsupported_ddof(self, obj): test_impl = rolling_std_usecase hpat_func = self.jit(test_impl) window, min_periods, invalid_ddof = 3, 2, '1' with self.assertRaises(TypingError) as raises: hpat_func(obj, window, min_periods, invalid_ddof) msg = 'Method rolling.std(). The object ddof\n given: unicode_type\n expected: int' self.assertIn(msg, str(raises.exception)) def _test_rolling_sum(self, obj): def test_impl(obj, window, min_periods): return obj.rolling(window, min_periods).sum() hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(len(obj) + 2): for min_periods in range(window): with self.subTest(obj=obj, window=window, min_periods=min_periods): jit_result = hpat_func(obj, window, min_periods) ref_result = test_impl(obj, window, min_periods) assert_equal(jit_result, ref_result) def _test_rolling_var(self, obj): test_impl = rolling_var_usecase hpat_func = self.jit(test_impl) assert_equal = self._get_assert_equal(obj) for window in range(0, len(obj) + 3, 2): for min_periods, ddof in product(range(0, window, 2), [0, 1]): with self.subTest(obj=obj, window=window, min_periods=min_periods, ddof=ddof): jit_result = hpat_func(obj, window, min_periods, ddof) ref_result = test_impl(obj, window, min_periods, ddof) assert_equal(jit_result, ref_result) def _test_rolling_var_exception_unsupported_ddof(self, obj): test_impl = rolling_var_usecase hpat_func = self.jit(test_impl) window, min_periods, invalid_ddof = 3, 2, '1' with self.assertRaises(TypingError) as raises: hpat_func(obj, window, min_periods, invalid_ddof) msg = 'Method rolling.var(). The object ddof\n given: unicode_type\n expected: int' self.assertIn(msg, str(raises.exception)) @skip_sdc_jit('DataFrame.rolling.min() unsupported exceptions') def test_df_rolling_unsupported_values(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_unsupported_values(df) @skip_sdc_jit('DataFrame.rolling.min() unsupported exceptions') def test_df_rolling_unsupported_types(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_unsupported_types(df) @skip_sdc_jit('DataFrame.rolling.apply() unsupported') def test_df_rolling_apply_mean(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_apply_mean(df) @skip_sdc_jit('DataFrame.rolling.apply() unsupported exceptions') def test_df_rolling_apply_unsupported_types(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_apply_unsupported_types(df) @unittest.skip('DataFrame.rolling.apply() unsupported args') def test_df_rolling_apply_args(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_apply_args(df) @skip_sdc_jit('DataFrame.rolling.corr() unsupported') def test_df_rolling_corr(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) for d in all_data: other = pd.Series(d) self._test_rolling_corr(df, other) other_all_data = deepcopy(all_data) + [list(range(10))[::-1]] other_all_data[1] = [-1., 1., 0., -0.1, 0.1, 0.] other_length = min(len(d) for d in other_all_data) other_data = {n: d[:other_length] for n, d in zip(string.ascii_uppercase, other_all_data)} other = pd.DataFrame(other_data) self._test_rolling_corr(df, other) @skip_sdc_jit('DataFrame.rolling.corr() unsupported') def test_df_rolling_corr_no_other(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_corr_with_no_other(df) @skip_sdc_jit('DataFrame.rolling.corr() unsupported exceptions') def test_df_rolling_corr_unsupported_types(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_corr_unsupported_types(df) @skip_sdc_jit('DataFrame.rolling.corr() unsupported exceptions') def test_df_rolling_corr_unsupported_values(self): def test_impl(df, other, pairwise): return df.rolling(3, 3).corr(other=other, pairwise=pairwise) hpat_func = self.jit(test_impl) msg_tmpl = 'Method rolling.corr(). The object pairwise\n expected: {}' df = pd.DataFrame({'A': [1., -1., 0., 0.1, -0.1], 'B': [-1., 1., 0., -0.1, 0.1]}) for pairwise in [None, True]: with self.assertRaises(ValueError) as raises: hpat_func(df, None, pairwise) self.assertIn(msg_tmpl.format('False'), str(raises.exception)) other = pd.DataFrame({'A': [-1., 1., 0., -0.1, 0.1], 'C': [1., -1., 0., 0.1, -0.1]}) with self.assertRaises(ValueError) as raises: hpat_func(df, other, True) self.assertIn(msg_tmpl.format('False, None'), str(raises.exception)) @skip_sdc_jit('DataFrame.rolling.count() unsupported') def test_df_rolling_count(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_count(df) @skip_sdc_jit('DataFrame.rolling.cov() unsupported') def test_df_rolling_cov(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) for d in all_data: other = pd.Series(d) self._test_rolling_cov(df, other) other_all_data = deepcopy(all_data) + [list(range(10))[::-1]] other_all_data[1] = [-1., 1., 0., -0.1, 0.1] other_length = min(len(d) for d in other_all_data) other_data = {n: d[:other_length] for n, d in zip(string.ascii_uppercase, other_all_data)} other = pd.DataFrame(other_data) self._test_rolling_cov(df, other) @skip_sdc_jit('DataFrame.rolling.cov() unsupported') def test_df_rolling_cov_no_other(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_cov_with_no_other(df) @skip_sdc_jit('DataFrame.rolling.cov() unsupported exceptions') def test_df_rolling_cov_unsupported_types(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_cov_unsupported_types(df) @skip_sdc_jit('DataFrame.rolling.cov() unsupported exceptions') def test_df_rolling_cov_unsupported_values(self): def test_impl(df, other, pairwise): return df.rolling(3, 3).cov(other=other, pairwise=pairwise) hpat_func = self.jit(test_impl) msg_tmpl = 'Method rolling.cov(). The object pairwise\n expected: {}' df = pd.DataFrame({'A': [1., -1., 0., 0.1, -0.1], 'B': [-1., 1., 0., -0.1, 0.1]}) for pairwise in [None, True]: with self.assertRaises(ValueError) as raises: hpat_func(df, None, pairwise) self.assertIn(msg_tmpl.format('False'), str(raises.exception)) other = pd.DataFrame({'A': [-1., 1., 0., -0.1, 0.1], 'C': [1., -1., 0., 0.1, -0.1]}) with self.assertRaises(ValueError) as raises: hpat_func(df, other, True) self.assertIn(msg_tmpl.format('False, None'), str(raises.exception)) @skip_sdc_jit('Series.rolling.cov() unsupported Series index') @unittest.expectedFailure def test_df_rolling_cov_issue_floating_point_rounding(self): """ Cover issue of different float rounding in Python and SDC/Numba: s = np.Series([1., -1., 0., 0.1, -0.1]) s.rolling(2, 0).mean() Python: SDC/Numba: 0 1.000000e+00 0 1.00 1 0.000000e+00 1 0.00 2 -5.000000e-01 2 -0.50 3 5.000000e-02 3 0.05 4 -1.387779e-17 4 0.00 dtype: float64 dtype: float64 BTW: cov uses mean inside itself """ def test_impl(df, window, min_periods, other, ddof): return df.rolling(window, min_periods).cov(other, ddof=ddof) hpat_func = self.jit(test_impl) df = pd.DataFrame({'A': [1., -1., 0., 0.1, -0.1]}) other = pd.DataFrame({'A': [-1., 1., 0., -0.1, 0.1, 0.]}) jit_result = hpat_func(df, 2, 0, other, 1) ref_result = test_impl(df, 2, 0, other, 1) pd.testing.assert_frame_equal(jit_result, ref_result) @skip_sdc_jit('DataFrame.rolling.kurt() unsupported') def test_df_rolling_kurt(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_kurt(df) @skip_sdc_jit('DataFrame.rolling.max() unsupported') def test_df_rolling_max(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_max(df) @skip_sdc_jit('DataFrame.rolling.mean() unsupported') def test_df_rolling_mean(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_mean(df) @skip_sdc_jit('DataFrame.rolling.median() unsupported') def test_df_rolling_median(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_median(df) @skip_sdc_jit('DataFrame.rolling.min() unsupported') def test_df_rolling_min(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_min(df) @unittest.expectedFailure @unittest.skipIf(platform.system() == 'Darwin', 'Segmentation fault on Mac') @skip_sdc_jit('DataFrame.rolling.min() unsupported') def test_df_rolling_min_exception_many_columns(self): def test_impl(df): return df.rolling(3).min() hpat_func = self.jit(test_impl) # more than 19 columns raise SystemError: CPUDispatcher() returned a result with an error set all_data = test_global_input_data_float64 * 5 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) pd.testing.assert_frame_equal(hpat_func(df), test_impl(df)) @skip_sdc_jit('DataFrame.rolling.quantile() unsupported') def test_df_rolling_quantile(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_quantile(df) @skip_sdc_jit('DataFrame.rolling.quantile() unsupported exceptions') def test_df_rolling_quantile_exception_unsupported_types(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_quantile_exception_unsupported_types(df) @skip_sdc_jit('DataFrame.rolling.quantile() unsupported exceptions') def test_df_rolling_quantile_exception_unsupported_values(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_quantile_exception_unsupported_values(df) @skip_sdc_jit('DataFrame.rolling.skew() unsupported') def test_df_rolling_skew(self): all_data = test_global_input_data_float64 length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_skew(df) @skip_sdc_jit('DataFrame.rolling.std() unsupported') def test_df_rolling_std(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_std(df) @skip_sdc_jit('DataFrame.rolling.std() unsupported exceptions') def test_df_rolling_std_exception_unsupported_ddof(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_std_exception_unsupported_ddof(df) @skip_sdc_jit('DataFrame.rolling.sum() unsupported') def test_df_rolling_sum(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_sum(df) @skip_sdc_jit('DataFrame.rolling.var() unsupported') def test_df_rolling_var(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_var(df) @skip_sdc_jit('DataFrame.rolling.var() unsupported exceptions') def test_df_rolling_var_exception_unsupported_ddof(self): all_data = [[1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1]] length = min(len(d) for d in all_data) data = {n: d[:length] for n, d in zip(string.ascii_uppercase, all_data)} df = pd.DataFrame(data) self._test_rolling_var_exception_unsupported_ddof(df) @skip_sdc_jit('Series.rolling.min() unsupported exceptions') def test_series_rolling_unsupported_values(self): series = pd.Series(test_global_input_data_float64[0]) self._test_rolling_unsupported_values(series) @skip_sdc_jit('Series.rolling.min() unsupported exceptions') def test_series_rolling_unsupported_types(self): series = pd.Series(test_global_input_data_float64[0]) self._test_rolling_unsupported_types(series) @skip_sdc_jit('Series.rolling.apply() unsupported Series index') def test_series_rolling_apply_mean(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_apply_mean(series) @skip_sdc_jit('Series.rolling.apply() unsupported exceptions') def test_series_rolling_apply_unsupported_types(self): series = pd.Series([1., -1., 0., 0.1, -0.1]) self._test_rolling_apply_unsupported_types(series) @unittest.skip('Series.rolling.apply() unsupported args') def test_series_rolling_apply_args(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_apply_args(series) @skip_sdc_jit('Series.rolling.corr() unsupported Series index') def test_series_rolling_corr(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [-1., 1., 0., -0.1, 0.1, 0.], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] for main_data, other_data in product(all_data, all_data): series = pd.Series(main_data) other = pd.Series(other_data) self._test_rolling_corr(series, other) @skip_sdc_jit('Series.rolling.corr() unsupported Series index') def test_series_rolling_corr_diff_length(self): def test_impl(series, window, other): return series.rolling(window).corr(other) hpat_func = self.jit(test_impl) series = pd.Series([1., -1., 0., 0.1, -0.1]) other = pd.Series(gen_frand_array(40)) window = 5 jit_result = hpat_func(series, window, other) ref_result = test_impl(series, window, other) pd.testing.assert_series_equal(jit_result, ref_result) @skip_sdc_jit('Series.rolling.corr() unsupported Series index') def test_series_rolling_corr_with_no_other(self): all_data = [ list(range(10)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] for data in all_data: series = pd.Series(data) self._test_rolling_corr_with_no_other(series) @skip_sdc_jit('Series.rolling.corr() unsupported exceptions') def test_series_rolling_corr_unsupported_types(self): series = pd.Series([1., -1., 0., 0.1, -0.1]) self._test_rolling_corr_unsupported_types(series) @skip_sdc_jit('Series.rolling.corr() unsupported Series index') @unittest.expectedFailure # https://jira.devtools.intel.com/browse/SAT-2377 def test_series_rolling_corr_index(self): def test_impl(S1, S2): return S1.rolling(window=3).corr(S2) hpat_func = self.jit(test_impl) n = 11 np.random.seed(0) index_values = np.arange(n) np.random.shuffle(index_values) S1 = pd.Series(np.arange(n), index=index_values, name='A') np.random.shuffle(index_values) S2 = pd.Series(2 * np.arange(n) - 5, index=index_values, name='B') result = hpat_func(S1, S2) result_ref = test_impl(S1, S2) pd.testing.assert_series_equal(result, result_ref) @skip_sdc_jit('Series.rolling.count() unsupported Series index') def test_series_rolling_count(self): all_data = test_global_input_data_float64 indices = [list(range(len(data)))[::-1] for data in all_data] for data, index in zip(all_data, indices): series = pd.Series(data, index, name='A') self._test_rolling_count(series) @skip_sdc_jit('Series.rolling.cov() unsupported Series index') def test_series_rolling_cov(self): all_data = [ list(range(5)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] for main_data, other_data in product(all_data, all_data): series = pd.Series(main_data) other = pd.Series(other_data) self._test_rolling_cov(series, other) @skip_sdc_jit('Series.rolling.cov() unsupported Series index') def test_series_rolling_cov_diff_length(self): def test_impl(series, window, other): return series.rolling(window).cov(other) hpat_func = self.jit(test_impl) series = pd.Series([1., -1., 0., 0.1, -0.1]) other = pd.Series(gen_frand_array(40)) window = 5 jit_result = hpat_func(series, window, other) ref_result = test_impl(series, window, other) pd.testing.assert_series_equal(jit_result, ref_result) @skip_sdc_jit('Series.rolling.cov() unsupported Series index') def test_series_rolling_cov_no_other(self): all_data = [ list(range(5)), [1., -1., 0., 0.1, -0.1], [1., np.inf, np.inf, -1., 0., np.inf, np.NINF, np.NINF], [np.nan, np.inf, np.inf, np.nan, np.nan, np.nan, np.NINF, np.NZERO] ] for data in all_data: series =
pd.Series(data)
pandas.Series
#!/usr/bin/env python3 import RPi.GPIO as GPIO import time import threading import logging import pandas as pd import numpy as np from tzlocal import get_localzone from flask import Flask, render_template, url_for, request logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(threadName)s - %(name)s - %(levelname)s - %(message)s') GPIO.setmode(GPIO.BCM) logger = logging.getLogger(__name__) from rpiweather import temphumid from rpiweather import temppressure from rpiweather import data from rpiweather import outside_weather from rpiweather import dust temppressure.start_recording() temphumid.start_recording() outside_weather.start_recording() dust.start_recording() app = Flask("rpiweather") def format_timestamps(series): local_tz = get_localzone() return list( str(dt.tz_localize("UTC").tz_convert(local_tz)) for dt in series ) @app.route("/") def index(): lookbehind = int(request.args.get('lookbehind', 24)) bigarray = data.get_recent_datapoints(lookbehind) logger.info("Total datapoint count: %d" % len(bigarray)) df =
pd.DataFrame(bigarray, columns=['time', 'type', 'value'])
pandas.DataFrame
############################################################################################ #Copyright 2021 Google LLC #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. ############################################################################################ import pdb from sklearn.metrics import balanced_accuracy_score, classification_report from sklearn.metrics import confusion_matrix, roc_auc_score, accuracy_score from sklearn.metrics import roc_auc_score, mean_squared_error, mean_absolute_error from collections import defaultdict import pandas as pd import numpy as np pd.set_option('display.max_columns',500) import matplotlib.pyplot as plt import copy import warnings warnings.filterwarnings(action='ignore') import functools # Make numpy values easier to read. np.set_printoptions(precision=3, suppress=True) ################################################################################ import tensorflow as tf np.random.seed(42) tf.random.set_seed(42) from tensorflow.keras import layers from tensorflow import keras from tensorflow.keras.layers.experimental.preprocessing import Normalization, StringLookup from tensorflow.keras.layers.experimental.preprocessing import IntegerLookup, CategoryEncoding from tensorflow.keras.layers.experimental.preprocessing import TextVectorization from tensorflow.keras.optimizers import SGD, Adam, RMSprop from tensorflow.keras import layers from tensorflow.keras import optimizers from tensorflow.keras.models import Model, load_model from tensorflow.keras import callbacks from tensorflow.keras import backend as K from tensorflow.keras import utils from tensorflow.keras.layers import BatchNormalization from tensorflow.keras.optimizers import SGD from tensorflow.keras import regularizers from tensorflow.keras import layers from tensorflow.keras.models import Model, load_model ################################################################################ from deep_autoviml.modeling.one_cycle import OneCycleScheduler ##### Suppress all TF2 and TF1.x warnings ################### tf2logger = tf.get_logger() tf2logger.warning('Silencing TF2.x warnings') tf2logger.root.removeHandler(tf2logger.root.handlers) tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) ################################################################################ import os def check_if_GPU_exists(verbose=0): GPU_exists = False gpus = tf.config.list_physical_devices('GPU') logical_gpus = tf.config.list_logical_devices('GPU') tpus = tf.config.list_logical_devices('TPU') #### In some cases like Kaggle kernels, the GPU is not enabled. Hence this check. if logical_gpus: # Restrict TensorFlow to only use the first GPU if verbose: print("GPUs found in this device...: ") print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU") if len(logical_gpus) > 1: device = "gpus" else: device = "gpu" try: tf.config.experimental.set_visible_devices(gpus[0], 'GPU') except RuntimeError as e: # Visible devices must be set before GPUs have been initialized print(e) try: # Currently, memory growth needs to be the same across GPUs for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e) elif tpus: device = "tpu" print("GPUs found in this device...: ") if verbose: print("Listing all TPU devices: ") for tpu in tpus: print(tpu) else: print('Only CPU found on this device') device = "cpu" #### Set Strategy ########## if device == "tpu": try: resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') tf.config.experimental_connect_to_cluster(resolver) # This is the TPU initialization code that has to be at the beginning. tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) if verbose: print('Setting TPU strategy using %d devices' %strategy.num_replicas_in_sync) except: if verbose: print('Setting TPU strategy using Colab...') resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR']) tf.config.experimental_connect_to_cluster(resolver) # This is the TPU initialization code that has to be at the beginning. tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) elif device == "gpu": strategy = tf.distribute.MirroredStrategy() if verbose: print('Setting Mirrored GPU strategy using %d devices' %strategy.num_replicas_in_sync) elif device == "gpus": strategy = tf.distribute.MultiWorkerMirroredStrategy() if verbose: print('Setting Multiworker GPU strategy using %d devices' %strategy.num_replicas_in_sync) else: strategy = tf.distribute.OneDeviceStrategy(device='/device:CPU:0') if verbose: print('Setting CPU strategy using %d devices' %strategy.num_replicas_in_sync) return strategy ###################################################################################### def print_one_row_from_tf_dataset(test_ds): """ No matter how big a dataset or batch size, this handy function will print the first row. This way you can test what's in each row of a tensorflow dataset that you sent in as input You need to provide at least one column in the dataset for it to check if it should print it. Inputs: ------- test_ds: tf.data.DataSet - this must be batched and num_epochs must be an integer. - otherwise it won't print! """ try: if isinstance(test_ds, tuple): dict_row = list(test_ds.as_numpy_iterator())[0] else: dict_row = test_ds print("Printing one batch from the dataset:") preds = list(dict_row.element_spec[0].keys()) if dict_row.element_spec[0][preds[0]].shape[0] is None or isinstance( dict_row.element_spec[0][preds[0]].shape[0], int): for batch, head in dict_row.take(1): for labels, value in batch.items(): print("{:40s}: {}".format(labels, value.numpy()[:4])) except: print(' Error printing. Continuing...') ######################################################################################### def print_one_row_from_tf_label(test_label): """ No matter how big a dataset or batch size, this handy function will print the first row. This way you can test what's in each row of a tensorflow dataset that you sent in as input You need to provide at least one column in the dataset for it to check if it should print it. Inputs: ------- test_label: tf.data.DataSet - this must be batched and num_epochs must be an integer. - otherwise it won't print! """ if isinstance(test_label, tuple): dict_row = list(test_label.as_numpy_iterator())[0] else: dict_row = test_label preds = list(dict_row.element_spec[0].keys()) try: ### This is for multilabel problems only #### if len(dict_row.element_spec[1]) >= 1: labels = list(dict_row.element_spec[1].keys()) for feats, labs in dict_row.take(1): for each_label in labels: print(' label = %s, samples: %s' %(each_label, labs[each_label])) except: ### This is for single problems only #### if dict_row.element_spec[0][preds[0]].shape[0] is None or isinstance( dict_row.element_spec[0][preds[0]].shape[0], int): for feats, labs in dict_row.take(1): print(" samples from label: %s" %(labs.numpy().tolist()[:10])) ########################################################################################## from sklearn.base import TransformerMixin from collections import defaultdict import pandas as pd import numpy as np class My_LabelEncoder(TransformerMixin): """ ################################################################################################ ###### This Label Encoder class works just like sklearn's Label Encoder! ##################### ##### You can label encode any column in a data frame using this new class. But unlike sklearn, the beauty of this function is that it can take care of NaN's and unknown (future) values. It uses the same fit() and fit_transform() methods of sklearn's LabelEncoder class. ################################################################################################ Usage: MLB = My_LabelEncoder() train[column] = MLB.fit_transform(train[column]) test[column] = MLB.transform(test[column]) """ def __init__(self): self.transformer = defaultdict(str) self.inverse_transformer = defaultdict(str) def fit(self,testx): if isinstance(testx, pd.Series): pass elif isinstance(testx, np.ndarray): testx = pd.Series(testx) else: return testx outs = np.unique(testx.factorize()[0]) ins = np.unique(testx.factorize()[1]).tolist() if -1 in outs: ins.insert(0,np.nan) self.transformer = dict(zip(ins,outs.tolist())) self.inverse_transformer = dict(zip(outs.tolist(),ins)) return self def transform(self, testx): if isinstance(testx, pd.Series): pass elif isinstance(testx, np.ndarray): testx = pd.Series(testx) else: return testx ins = np.unique(testx.factorize()[1]).tolist() missing = [x for x in ins if x not in self.transformer.keys()] if len(missing) > 0: for each_missing in missing: max_val = np.max(list(self.transformer.values())) + 1 self.transformer[each_missing] = max_val self.inverse_transformer[max_val] = each_missing ### now convert the input to transformer dictionary values outs = testx.map(self.transformer).values return outs def inverse_transform(self, testx): ### now convert the input to transformer dictionary values if isinstance(testx, pd.Series): outs = testx.map(self.inverse_transformer).values elif isinstance(testx, np.ndarray): outs = pd.Series(testx).map(self.inverse_transformer).values else: outs = testx[:] return outs ################################################################################# import matplotlib.patches as mpatches import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score, balanced_accuracy_score ################################################################################# def plot_history(history, metric, targets): if isinstance(targets, str): #### This is for single label problems fig = plt.figure(figsize=(15,6)) #### first metric is always the loss - just plot it! hist =
pd.DataFrame(history.history)
pandas.DataFrame
#! /usr/bin/env python """Check design.""" import os import sys import luigi import shutil from luigi import LocalTarget from luigi.util import inherits, requires import pandas as pd import gffutils import glob DIR = os.path.dirname(os.path.realpath(__file__)) script_dir = os.path.abspath(os.path.join(DIR, "../../scripts")) os.environ["PATH"] += ":" + script_dir sys.path.insert(0, script_dir) import logging import json from Bio.Seq import Seq from Bio.Alphabet import generic_dna import re from functools import reduce from piret.miscs import RefFile class conversions(luigi.Task): """Convert gene count, RPKM, fold change table to GeneID or locus tag and also to ones that have EC# or KO# when available.""" gff_file = luigi.Parameter() gene_count_table = luigi.Parameter() gene_RPKM_table = luigi.Parameter() gene_CPM_table = luigi.Parameter() gene_fc_table = luigi.Parameter() def output(self): """Expected output of DGE using edgeR.""" edger_dir = os.path.join(self.workdir, "edgeR", self.kingdom) out_filepath = os.path.join(edger_dir, "summary_updown.csv") return LocalTarget(out_filepath) def run(self): """Run edgeR.""" fcount_dir = os.path.join(self.workdir, "featureCounts", self.kingdom) edger_dir = os.path.join(self.workdir, "edgeR", self.kingdom) if not os.path.exists(edger_dir): os.makedirs(edger_dir) for file in os.listdir(fcount_dir): if file.endswith("tsv"): name = file.split("_")[-2] edger_list = ["-r", os.path.join(fcount_dir, file), "-e", self.exp_design, "-p", self.p_value, "-n", name, "-o", edger_dir] # TODO: get the output that has locus tag edger_cmd = EdgeR[edger_list] logger = logging.getLogger('luigi-interface') logger.info(edger_cmd) edger_cmd() if file == "gene_count.tsv": # TODO:convert the first column to locus tag if self.pathway is True: path_list = ["-d", edger_dir, "-m", "edgeR", "-c", self.org_code] # get pathway information path_cmd = plot_pathway[path_list] logger.info(path_cmd) path_cmd() if self.GAGE is True: gage_list = ["-d", edger_dir, "-m", "edgeR", "-c", self.org_code] gage_cmd = gage_analysis[gage_list] logger.info(gage_cmd) gage_cmd() self.summ_summ() class conver2json(luigi.Task): """ Summarizes and converts all the results to one big JSON file.""" gff_file = luigi.Parameter() fasta_file = luigi.Parameter() pathway = luigi.BoolParameter() kingdom = luigi.Parameter() workdir = luigi.Parameter() method = luigi.ListParameter() NovelRegions = luigi.BoolParameter() def requires(self): flist = [] if "edgeR" in self.method: cpm_file = os.path.join(self.workdir, "processes", "edgeR", self.kingdom, "gene", "gene" + "_count_CPM.csv") flist.append(cpm_file) elif "DESeq2" in self.method: fpm_file = os.path.join(self.workdir, "processes", "DESeq2", self.kingdom, "gene", "gene" + "_count_FPKM.csv") flist.append(fpm_file) return [RefFile(f) for f in flist] def output(self): """Expected output JSON.""" if self.kingdom == "prokarya": jfile = os.path.join(self.workdir, "prokarya_out.json") return LocalTarget(jfile) elif self.kingdom == "eukarya": jfile = os.path.join(self.workdir, "eukarya_out.json") return LocalTarget(jfile) def run(self): """ Create JSON files.""" if self.kingdom == "prokarya": jfile = os.path.join(self.workdir, "prokarya_out.json") elif self.kingdom == "eukarya": jfile = os.path.join(self.workdir, "eukarya_out.json") self.gff2json(jfile) def gff2json(self, out_json): """A function that converts a gff file to JSON file.""" # read in the gff file to a database if os.path.exists(os.path.join(self.workdir, "processes", "databases")) is False: os.makedirs(os.path.join(self.workdir, "processes", "databases")) db_out = os.path.join(self.workdir, "processes", "databases", self.kingdom, "piret.db") if os.path.exists(db_out) is False: # create db if not already present db = gffutils.create_db(self.gff_file, dbfn=db_out, force=True, keep_order=True, merge_strategy="create_unique") else: # read db if its already present db = gffutils.FeatureDB(db_out, keep_order=True) if "edgeR" in self.method: edger_summ_cds = self.pm_summary("CDS", "edgeR") edger_summ_genes = self.pm_summary("gene", "edgeR") dge_edger_cds = self.dge_summary("CDS", "edgeR") dge_edger_gene = self.dge_summary("gene", "edgeR") else: edger_summ_cds = ({}, {}) edger_summ_genes = ({}, {}) dge_edger_cds = {} dge_edger_gene = {} if "DESeq2" in self.method: deseq_summ_cds = self.pm_summary("CDS", "DESeq2") deseq_summ_genes = self.pm_summary("gene", "DESeq2") dge_deseq_cds = self.dge_summary("CDS", "DESeq2") dge_deseq_gene = self.dge_summary("gene", "DESeq2") else: deseq_summ_cds = ({}, {}) deseq_summ_genes = ({}, {}) dge_deseq_cds = {} dge_deseq_gene = {} if "ballgown" in self.method: ballgown_gene_pm = self.pm_summary_ballgown() else: ballgown_gene_pm = {} stringtie_tpms = self.stringtie_tpm() read_summ_cds = self.read_summary("CDS") read_summ_gene = self.read_summary("gene") read_summ_rRNA = self.read_summary("rRNA") read_summ_tRNA = self.read_summary("tRNA") read_summ_exon = self.read_summary("exon") if self.NovelRegions is True: read_summ_NovelRegion = self.read_summary("NovelRegion") emaps = self.get_emapper() with open(out_json, "w") as json_file: json_list = [] for feat_obj in db.all_features(): feat_dic = {} # an empty dictionary to append features feat_dic['seqid'] = feat_obj.seqid feat_dic['id'] = feat_obj.id feat_dic['source'] = feat_obj.source feat_type = feat_obj.featuretype feat_dic['featuretype'] = feat_type feat_dic['start'] = feat_obj.start feat_dic['end'] = feat_obj.end feat_dic["length"] = abs(feat_obj.end - feat_obj.start) + 1 feat_dic['strand'] = feat_obj.strand feat_dic['frame'] = feat_obj.frame try: feat_dic['locus_tag'] = feat_obj.attributes['locus_tag'][0] except KeyError: pass try: feat_dic['Note'] = feat_obj.attributes['Note'] except KeyError: pass feat_dic['extra'] = feat_obj.extra if feat_type != "region": try: nt_seqs = feat_obj.sequence(self.fasta_file) nt_obj = Seq(nt_seqs, generic_dna) feat_dic['nt_seq'] = nt_seqs except KeyError: pass # ============================================================================# if feat_type == "CDS": # translate the CDS feat_dic['aa_seqs'] = self.translate(nt_obj, "CDS") # assign FPKMs and FPMs self.assign_scores(feat_dic=feat_dic, edger_sdic=edger_summ_cds, deseq_sdic=deseq_summ_cds, feat_id=feat_obj.id) # assign read numbers try: feat_dic["read_count"] = read_summ_cds[feat_obj.id] except KeyError: feat_dic["read_count"] = None # assign dge information self.assign_dges(feat_type="CDS", feat_dic=feat_dic, feat_id=feat_obj.id, method="edgeR", dge_dict=dge_edger_cds) self.assign_dges(feat_type="CDS", feat_dic=feat_dic, feat_id=feat_obj.id, method="DESeq2", dge_dict=dge_deseq_cds) # assign EC#s, KOs, etc. try: feat_dic["emapper"] = emaps[feat_obj.id] except KeyError: feat_dic["emapper"] = None # ============================================================================# elif feat_type == "NovelRegion": try: feat_dic["read_count"] = read_summ_NovelRegion[feat_obj.id] except KeyError: feat_dic["read_count"] = None # ============================================================================# elif feat_type == 'rRNA': try: feat_dic["read_count"] = read_summ_rRNA[feat_obj.id] except KeyError: feat_dic["read_count"] = None # ============================================================================# elif feat_type == 'tRNA': try: feat_dic["read_count"] = read_summ_tRNA[feat_obj.id] except KeyError: feat_dic["read_count"] = None # ============================================================================# elif feat_type == 'exon': try: feat_dic["read_count"] = read_summ_exon[feat_obj.id] except KeyError: feat_dic["read_count"] = None # ============================================================================# elif feat_type == "gene": # assign scores self.assign_scores(feat_dic=feat_dic, edger_sdic=edger_summ_genes, deseq_sdic=deseq_summ_genes, feat_id=feat_obj.id) # assign read numbers try: feat_dic["read_count"] = read_summ_gene[feat_obj.id] except KeyError: feat_dic["read_count"] = None # assign ballgown info try: feat_dic["ballgown_values"] = ballgown_gene_pm[feat_obj.id] except KeyError: feat_dic["ballgown_values"] = None # assign stringtie try: feat_dic["stringtie_values"] = stringtie_tpms[feat_obj.id] except KeyError: feat_dic["stringtie_values"] = None # assign dge information self.assign_dges(feat_type="gene", feat_dic=feat_dic, feat_id=feat_obj.id, method="edgeR", dge_dict=dge_edger_gene) self.assign_dges(feat_type="gene", feat_dic=feat_dic, feat_id=feat_obj.id, method="DESeq2", dge_dict=dge_deseq_gene) else: pass # just to make sure that keys are strings, else json dump fails feat_dic_str = {} for key, value in feat_dic.items(): feat_dic_str[str(key)] = value json_list.append(feat_dic_str) json.dump(json_list, json_file, indent=4) # meta_list = ["seqid", "id", "source", "featuretype", "start", # "end", "length", "strand", "frame", "locus_tag", # "extra"] # df = pd.io.json.json_normalize(json_list, errors="ignore") def assign_scores(self, feat_dic, edger_sdic, deseq_sdic, feat_id): """Assign scores from edger and deseq to summary dic.""" try: feat_dic["edger_cpm"] = edger_sdic[0][feat_id] except KeyError: feat_dic["edger_cpm"] = None try: feat_dic["deseq_fpm"] = deseq_sdic[0][feat_id] except KeyError: feat_dic["deseq_fpm"] = None try: feat_dic["edger_rpkm"] = edger_sdic[1][feat_id] except KeyError: feat_dic["edger_rpkm"] = None try: feat_dic["deseq_fpkm"] = deseq_sdic[1][feat_id] except KeyError: feat_dic["deseq_fpkm"] = None def get_emapper(self): """get emapper result as a dataframe.""" emapper_files = os.path.join(self.workdir, "processes", "emapper", self.kingdom, "emapper.emapper.annotations") if os.path.exists(emapper_files) is True: emap = pd.read_csv(emapper_files, sep='\t', skiprows=[0,1,2], skipinitialspace=True, skipfooter=3, header=None, engine='python') emap1 = emap.reset_index() emap1.columns = emap1.iloc[0] emap2 = emap1.drop(0).drop([0], axis=1).set_index('#query_name').to_dict(orient="index") return emap2 else: return None def read_summary(self, feat_type): """Get read values as a dictionary.""" read_file = os.path.join(self.workdir, "processes", "featureCounts", self.kingdom, feat_type + "_count_sorted.csv") if os.path.exists(read_file) is True: read_data = pd.read_csv(read_file, sep=",", index_col="Geneid") read_dict = read_data.drop(["Unnamed: 0", "Chr", "Start", "End", "Strand", "Length"], axis=1).to_dict(orient="index") else: read_dict = {} for feat, count_dic in read_dict.items(): int_read = {} feat_read = {} for samp, count in count_dic.items(): int_read[samp] = int(count) feat_read[feat] = int_read # print(feat_read) read_dict.update(feat_read) # print(read_dict) return read_dict def dge_summary(self, feat_type, method): """summarize SGE results from edgeR of DESeq2""" dge_dir = os.path.join(self.workdir, "processes", method, self.kingdom, feat_type) dge_files = [f for f in glob.glob(dge_dir + "**/*et.csv", recursive=True)] dge_dicts = {} for file in dge_files: dge_df =
pd.read_csv(file, sep=",", index_col=0)
pandas.read_csv
#For the computation of average temperatures using GHCN data import ulmo, pandas as pd, matplotlib.pyplot as plt, numpy as np, csv, pickle #Grab weather stations that meet criteria (from previous work) and assign lists st = ulmo.ncdc.ghcn_daily.get_stations(country ='US',elements=['TMAX'],end_year=1950, as_dataframe = True) ids = pd.read_csv('IDfile.csv') idnames = [ids.id[x] for x in range(0, len(ids))] Longitude= [] Latitude = [] ID = [] Elev = [] Name = [] Tmaxavgresult = [] Tminavgresult = [] Tmaxavg = [] Tminavg = [] Tmaxstd = [] Tminstd = [] Tmaxz = [] Tminz = [] Tmaxanom = [] Tminanom = [] maxset = [] minset = [] # # #begin loop to isolate values of interest # #test loop to verify if works #rando = np.random.random_integers(len(idnames), size = (10,)) #for x in rando: for q in range(0,len(ids)-1): # Grab data and transform to K a = st.id[idnames[q]] data = ulmo.ncdc.ghcn_daily.get_data(a, as_dataframe=True) tmax = data['TMAX'].copy() tmin = data['TMIN'].copy() tmax.value = (tmax.value/10.0) + 273.15 tmin.value = (tmin.value/10.0) + 273.15 # Name and save parameters b = st.longitude[idnames[q]] c = st.latitude[idnames[q]] d = st.elevation[idnames[q]] e = st.name[idnames[q]] #average only data on a monthly basis and generate x and y coordinates for the years in which El Nino data exists (probably a way more efficient way to do this) filedatasmax = [] filedatasmin = [] for y in range(1951,2016): filedatamax = {} filedatamin = {} datejan = ''.join([str(y),"-01"]) datefeb = ''.join([str(y),"-02"]) datemar = ''.join([str(y),"-03"]) dateapr = ''.join([str(y),"-04"]) datemay = ''.join([str(y),"-05"]) datejun = ''.join([str(y),"-06"]) datejul = ''.join([str(y),"-07"]) dateaug = ''.join([str(y),"-08"]) datesep = ''.join([str(y),"-09"]) dateoct = ''.join([str(y),"-10"]) datenov = ''.join([str(y),"-11"]) datedec = ''.join([str(y),"-12"]) nanmaxjan = tmax['value'][datejan] nanminjan = tmin['value'][datejan] nanmaxfeb = tmax['value'][datefeb] nanminfeb = tmin['value'][datefeb] nanmaxmar = tmax['value'][datemar] nanminmar = tmin['value'][datemar] nanmaxapr = tmax['value'][dateapr] nanminapr = tmin['value'][dateapr] nanmaxmay = tmax['value'][datemay] nanminmay = tmin['value'][datemay] nanmaxjun = tmax['value'][datejun] nanminjun = tmin['value'][datejun] nanmaxjul = tmax['value'][datejul] nanminjul = tmin['value'][datejul] nanmaxaug = tmax['value'][dateaug] nanminaug = tmin['value'][dateaug] nanmaxsep = tmax['value'][datesep] nanminsep = tmin['value'][datesep] nanmaxoct = tmax['value'][dateoct] nanminoct = tmin['value'][dateoct] nanmaxnov = tmax['value'][datenov] nanminnov = tmin['value'][datenov] nanmaxdec = tmax['value'][datedec] nanmindec = tmin['value'][datedec] #We now concatenate everything filedatamax = [y, nanmaxjan[~pd.isnull(nanmaxjan)].mean(), nanmaxfeb[~pd.isnull(nanmaxfeb)].mean(),nanmaxmar[~pd.isnull(nanmaxmar)].mean(),nanmaxapr[~pd.isnull(nanmaxapr)].mean(),nanmaxmay[~pd.isnull(nanmaxmay)].mean(),nanmaxjun[~
pd.isnull(nanmaxjun)
pandas.isnull
import pandas as pd import sys import matplotlib.pyplot as plt from pandas_profiling import ProfileReport sys.path.append("../") import xfinai_config def load_data_raw(future_index): df_raw =
pd.read_pickle(f'{xfinai_config.raw_data_path}/{future_index}_{xfinai_config.time_freq}.pkl')
pandas.read_pickle
import pandas as pd from argparse import ArgumentParser from pathlib import Path from .logger import logger import sqlite3 import random import csv import json from tqdm import tqdm DATA_DIR = Path('data') FOLD = 5 NELA_DIR = DATA_DIR / 'NELA' Path(NELA_DIR).mkdir(parents=True, exist_ok=True) NELA_FNAME = '{mode}_{fold}.tsv' RESAMPLE_LIMIT = 100 def read_constraint_splits(): train_fpath = DATA_DIR / 'train.tsv' val_fpath = DATA_DIR / 'val.tsv' test_fpath = DATA_DIR / 'test.tsv' train = pd.read_csv(train_fpath, quoting=csv.QUOTE_NONE, error_bad_lines=False, sep='\t') val = pd.read_csv(val_fpath, quoting=csv.QUOTE_NONE, error_bad_lines=False, sep='\t') test = pd.read_csv(test_fpath, quoting=csv.QUOTE_NONE, error_bad_lines=False, sep='\t') return { 'train': train, 'val': val, 'test': test } def normalize(domain): domain = domain.strip() domain = domain.replace(' ', '') domain = domain.lower() return domain def read_simplewiki(path: str): wiki = pd.read_csv(path, sep='\t')[['title', 'text']] title = wiki.title.map(lambda x: normalize(x)).to_list() text = wiki.text.map(lambda x: x.lower()).to_list() return dict(zip(title, text)) def normalize_source(source: str): source = source.lower() source = source.strip() source = source.replace(" ", "") return source def read_nela_assessments(nela_2019_path): nela_2019_dir = Path(nela_2019_path) labels_path = nela_2019_dir / 'labels.csv' labels = pd.read_csv(labels_path) reliable_sources = labels[labels['aggregated_label'] == 0.0]['source'].unique() reliable_sources =
pd.DataFrame(reliable_sources, columns=['source'])
pandas.DataFrame
import pandas import matplotlib.pyplot as plt import pickle import numpy as np import warnings warnings.filterwarnings("ignore") from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.linear_model import Ridge, Lasso from sklearn.ensemble import RandomForestRegressor class MovingTimeRegression: def __init__(self, cleanedRoute, modelsRoute, scalerRoute, paramsRoute, cleanedFileName): # define data routes and csv names! self.cleanedRoute = cleanedRoute self.modelsRoute = modelsRoute self.scalerRoute = scalerRoute self.paramsRoute = paramsRoute self.dataset = pandas.read_csv(cleanedRoute+cleanedFileName, sep="|") self.allTrainX = None self.allTestX = None self.allTrainy = None self.allTesty = None self.reducedTrainX = None self.reducedTestX = None self.reducedTrainy = None self.reducedTesty = None self.baseTrainX = None self.baseTestX = None self.baseTrainy = None self.baseTesty = None self.allRidgeModel = None self.reducedRidgeModel = None self.baseRidgeModel = None self.allLassoModel = None self.reducedLassoModel = None self.baseLassoModel = None self.allRandomForestModel = None self.reducedRandomForestModel = None self.baseRandomForestModel = None self.allStandardScaler = None self.reducedStandardScaler = None self.baseStandardScaler = None self.CatCols8 = ['#003f5c', '#2f4b7c', '#665191', '#a05195', '#d45087', '#f95d6a', '#ff7c43', '#ffa600'] self.CatCols5 = ['#003f5c', '#3d61f4', '#bc5090', '#ff6361', '#ffa600'] self.CatCols3 = ['#003f5c', '#bc5090', '#ffa600'] print('call .dataset to see the cleaned dataset') def prepareData(self): # all data X = self.dataset.copy() Y = X['moving_time'].copy() X.drop(columns=['moving_time', 'elapsed_time', 'average_speed'], inplace=True) names = X.columns self.allStandardScaler = StandardScaler() scaledX = self.allStandardScaler.fit_transform(X) scaledX = pandas.DataFrame(scaledX, columns=names) self.allTrainX, self.allTestX, self.allTrainy, self.allTesty = train_test_split(scaledX, Y, random_state=42) # reduced data X = self.dataset[['age_0.0', 'age_1.0', 'age_2.0', 'distance', 'elev_high', 'elev_low', 'hashed_id', 'total_elevation_gain', 'trainer_onehot', 'workout_type_11.0', 'workout_type_10.0', 'workout_type_12.0']].copy() Y = self.dataset['moving_time'].copy() names = X.columns self.reducedStandardScaler = StandardScaler() scaledX = self.reducedStandardScaler.fit_transform(X) scaledX = pandas.DataFrame(scaledX, columns=names) self.reducedTrainX, self.reducedTestX, self.reducedTrainy, self.reducedTesty = train_test_split(scaledX, Y, random_state=42) # base data X = self.dataset[['distance', 'elev_high', 'elev_low', 'total_elevation_gain', 'trainer_onehot']].copy() Y = self.dataset['moving_time'].copy() names = X.columns self.baseStandardScaler = StandardScaler() scaledX = self.baseStandardScaler.fit_transform(X) scaledX = pandas.DataFrame(scaledX, columns=names) self.baseTrainX, self.baseTestX, self.baseTrainy, self.baseTesty = train_test_split(scaledX, Y, random_state=42) # TODO: print info about the 3 dataset and the train-test pars def trainModels(self, verbose=False, writeToFile=False): # fitting models on all data print('-- Fitting models on all data -- ') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.allTrainX, self.allTestX, self.allTrainy, self.allTesty) self.allRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.allRidgeModel.fit(self.allTrainX, self.allTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.allTrainX, self.allTestX, self.allTrainy, self.allTesty) self.allLassoModel = Lasso(alpha=lassoParams['alpha']) self.allLassoModel.fit(self.allTrainX, self.allTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') # TODO: calc best params for Random Forest if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute+'moving_time_all_random_forest_params.p', 'rb')) self.allRandomForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf'] ) self.allRandomForestModel.fit(self.allTrainX, self.allTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on allTesty data: ') print(' - Ridge: '+str(self.allRidgeModel.score(self.allTestX, self.allTesty))) print(' - Lasso: '+str(self.allLassoModel.score(self.allTestX, self.allTesty))) print(' - RandomForest: '+str(self.allRandomForestModel.score(self.allTestX, self.allTesty))) print('') # fitting models on reduced data print('-- Fitting models on reduced data --') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.reducedTrainX, self.reducedTestX, self.reducedTrainy, self.reducedTesty) self.reducedRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.reducedRidgeModel.fit(self.reducedTrainX, self.reducedTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.reducedTrainX, self.reducedTestX, self.reducedTrainy, self.reducedTesty) self.reducedLassoModel = Lasso(alpha=lassoParams['alpha']) self.reducedLassoModel.fit(self.reducedTrainX, self.reducedTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') # TODO: calc best params for Random Forest if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'moving_time_reduced_random_forest_params.p', 'rb')) self.reducedRandomForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.reducedRandomForestModel.fit(self.reducedTrainX, self.reducedTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on reudcedTesty data: ') print(' - Ridge: ' + str(self.reducedRidgeModel.score(self.reducedTestX, self.reducedTesty))) print(' - Lasso: ' + str(self.reducedLassoModel.score(self.reducedTestX, self.reducedTesty))) print(' - RandomForest: ' + str(self.reducedRandomForestModel.score(self.reducedTestX, self.reducedTesty))) print('') # fitting models on base data print('-- Fitting models on base data --') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.baseTrainX, self.baseTestX, self.baseTrainy, self.baseTesty) self.baseRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.baseRidgeModel.fit(self.baseTrainX, self.baseTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.baseTrainX, self.baseTestX, self.baseTrainy, self.baseTesty) self.baseLassoModel = Lasso(alpha=lassoParams['alpha']) self.baseLassoModel.fit(self.baseTrainX, self.baseTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'moving_time_base_random_forest_params.p', 'rb')) self.baseRandomForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.baseRandomForestModel.fit(self.baseTrainX, self.baseTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on baseTesty data: ') print(' - Ridge: ' + str(self.baseRidgeModel.score(self.baseTestX, self.baseTesty))) print(' - Lasso: ' + str(self.baseLassoModel.score(self.baseTestX, self.baseTesty))) print(' - RandomForest: ' + str(self.baseRandomForestModel.score(self.baseTestX, self.baseTesty))) print('') if writeToFile: writeRegressionModels(self.allRidgeModel, self.allLassoModel, self.allRandomForestModel, 'all', 'moving', self.modelsRoute) writeRegressionModels(self.reducedRidgeModel, self.reducedLassoModel, self.reducedRandomForestModel, 'reduced', 'moving', self.modelsRoute) writeRegressionModels(self.baseRidgeModel, self.baseLassoModel, self.baseRandomForestModel, 'base', 'moving', self.modelsRoute) writeScalerModel(self.allStandardScaler, 'all', 'moving', self.scalerRoute) writeScalerModel(self.reducedStandardScaler, 'reduced', 'moving', self.scalerRoute) writeScalerModel(self.baseStandardScaler, 'base', 'moving', self.scalerRoute) print('Get predictions: ') print(' - based on all data: call getPredictionWithAllModels(list) func., where list has 27 elements ') print(' - based on reduced data: call getPredictionWithReducedModels(list) func., where list has 9 elements ') print(' - based on all data: call getPredictionWithBaseModels(list) func., where list has 5 elements ') def calulateBestParamsForRandomForest(self): print('Warning: this function will take several hours: the results already available in the ./results/params folder') print('Consider interrupting the kernel') GridSearchForRandomForest(pandas.concat([self.allTrainX, self.allTestX]), pandas.concat([self.allTrainy, self.allTesty]), 'moving', 'all') GridSearchForRandomForest(pandas.concat([self.reducedTrainX, self.reducedTestX]), pandas.concat([self.reducedTrainy, self.reducedTesty]), 'moving', 'reduced') GridSearchForRandomForest(pandas.concat([self.baseTrainX, self.baseTestX]), pandas.concat([self.baseTrainy, self.baseTesty]), 'moving', 'base') def getPredictionWithAllModels(self, X): if len(X) != 26: print('Shape mismatch: X should contains 26 values like the allTrainX dataset') return #X.append(0.0) scaled = self.allStandardScaler.transform(np.reshape(X, (1,-1))) # TODO: scale X before calling predict func ridgeResult = self.allRidgeModel.predict(scaled) lassoResult = self.allLassoModel.predict(scaled) forestResult = self.allRandomForestModel.predict(scaled) print(' - ridge: '+ str(ridgeResult)) print(' - lasso: '+ str(lassoResult)) print(' - random forest: '+ str(forestResult)) # TODO: create graph def getPredictionWithReducedModels(self, X): if len(X) != 9: print('Shape mismatch: X should contains 9 values like the reducedTrainX dataset') return # TODO: scale X before calling predict func scaled = self.reducedStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.reducedRidgeModel.predict(scaled) lassoResult = self.reducedLassoModel.predict(scaled) forestResult = self.reducedRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) print(' - random forest: ' + str(forestResult)) # TODO: create graph def getPredictionWithBaseModels(self, X): if len(X) != 5: print('Shape mismatch: X should contains 5 values like the baseTrainX dataset') return # TODO: scale X before calling predict func scaled = self.baseStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.baseRidgeModel.predict(scaled) lassoResult = self.baseLassoModel.predict(scaled) forestResult = self.baseRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) print(' - random forest: ' + str(forestResult)) # TODO: create graph def loadTrainedModelsAndScalers(self): self.loadRegressionModels() self.loadScalers() print('Regression models and scalers are loaded') print('Use the following functions to get predictions:') print(' - getPredictionWithAllModels') print(' - getPredictionWithReducedModels') print(' - getPredictionWithBaseModels') def loadRegressionModels(self): # loading models based on all dataset self.allRidgeModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'all' + '_' + 'ridge.p', 'rb')) self.allLassoModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'all' + '_' + 'lasso.p', 'rb')) self.allRandomForestModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'all' + '_' + 'random_forest.p', 'rb')) # loading models based on reduced dataset self.reducedRidgeModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'reduced' + '_' + 'ridge.p', 'rb')) self.reducedLassoModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'reduced' + '_' + 'lasso.p', 'rb')) self.reducedRandomForestModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'reduced' + '_' + 'random_forest.p', 'rb')) # loading models based on base dataset self.baseRidgeModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'base' + '_' + 'ridge.p', 'rb')) self.baseLassoModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'base' + '_' + 'lasso.p', 'rb')) self.baseRandomForestModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'base' + '_' + 'random_forest.p', 'rb')) def loadScalers(self): # load fitted scaler models self.allStandardScaler = pickle.load(open(self.scalerRoute + 'moving_time_all_scaler.p', 'rb')) self.reducedStandardScaler = pickle.load(open(self.scalerRoute + 'moving_time_reduced_scaler.p', 'rb')) self.baseStandardScaler = pickle.load(open(self.scalerRoute + 'moving_time_base_scaler.p', 'rb')) def mps_to_kmph(self, m_per_s): return m_per_s * 3.6 def kmph_to_mps(self, km_h): return km_h / 3.6 ## END OF MOVING TIME CLASS ## ELAPSED TIME class ElapsedTimeRegression(): def __init__(self, cleanedRoute, modelsRoute, scalerRoute, paramsRoute, cleanedFileName): # define data routes and csv names! self.cleanedRoute = cleanedRoute self.modelsRoute = modelsRoute self.scalerRoute = scalerRoute self.paramsRoute = paramsRoute self.dataset = pandas.read_csv(cleanedRoute + cleanedFileName, sep="|") # all data self.allTrainX = None self.allTestX = None self.allTrainy = None self.allTesty = None # reduced data self.reducedTrainX = None self.reducedTestX = None self.reducedTrainy = None self.reducedTesty = None # age group null data self.ageNullTrainX = None self.ageNullTestX = None self.ageNullTrainy = None self.ageNullTesty = None # age group one data self.ageOneTrainX = None self.ageOneTestX = None self.ageOneTrainy = None self.ageOneTesty = None # age group two data self.ageTwoTrainX = None self.ageTwoTestX = None self.ageTwoTrainy = None self.ageTwoTesty = None # distance small data self.distanceSmallTrainX = None self.distanceSmallTestX = None self.distanceSmallTrainy = None self.distanceSmallTesty = None # distance big data self.distanceBigTrainX = None self.distanceBigTestX = None self.distanceBigTrainy = None self.distanceBigTesty = None # user data self.userTrainX = None self.userTestX = None self.userTrainy = None self.userTesty = None # regression model initialization # ridge self.allRidgeModel = None self.reducedRidgeModel = None self.ageNullRidgeModel = None self.ageOneRidgeModel = None self.ageTwoRidgeModel = None self.distanceSmallRidgeModel = None self.distanceBigRidgeModel = None self.userRidgeModel = None # lasso self.allLassoModel = None self.reducedLassoModel = None self.ageNullLassoModel = None self.ageOneLassoModel = None self.ageTwoLassoModel = None self.distanceSmallLassoModel = None self.distanceBigLassoModel = None self.userLassoModel = None # random forest self.allForestModel = None self.reducedForestModel = None self.ageNullForestModel = None self.ageOneForestModel = None self.ageTwoForestModel = None self.distanceSmallForestModel = None self.distanceBigForestModel = None self.userForestModel = None self.allStandardScaler = None self.reducedStandardScaler = None self.ageNullStandardScaler = None self.ageOneStandardScaler = None self.ageTwoStandardScaler = None self.distanceSmallStandardScaler = None self.distanceBigStandardScaler = None self.userStandardScaler = None self.CatCols8 = ['#003f5c', '#2f4b7c', '#665191', '#a05195', '#d45087', '#f95d6a', '#ff7c43', '#ffa600'] self.CatCols5 = ['#003f5c', '#3d61f4', '#bc5090', '#ff6361', '#ffa600'] self.CatCols3 = ['#003f5c', '#bc5090', '#ffa600'] print('call .dataset to see the cleaned dataset') def prepareData(self): # all data X = self.dataset.copy() Y = X['elapsed_time'].copy() X.drop(columns=['elapsed_time', 'average_speed'], inplace=True) names = X.columns self.allStandardScaler = StandardScaler() scaledX = self.allStandardScaler.fit_transform(X) scaledX = pandas.DataFrame(scaledX, columns=names) self.allTrainX, self.allTestX, self.allTrainy, self.allTesty = train_test_split(scaledX, Y, random_state=42) # reduced data X = self.dataset[['age_0.0', 'age_1.0', 'age_2.0', 'distance', 'elev_high', 'elev_low', 'hashed_id', 'total_elevation_gain', 'moving_time', 'trainer_onehot', 'workout_type_11.0', 'workout_type_10.0', 'workout_type_12.0']].copy() Y = self.dataset['elapsed_time'].copy() names = X.columns self.reducedStandardScaler = StandardScaler() scaledX = self.reducedStandardScaler.fit_transform(X) scaledX = pandas.DataFrame(scaledX, columns=names) self.reducedTrainX, self.reducedTestX, self.reducedTrainy, self.reducedTesty = train_test_split(scaledX, Y, random_state=42) # age group: null data ageNull = self.dataset[self.dataset['age_0.0'] == 1].copy() Y = ageNull['elapsed_time'].copy() ageNull.drop(columns=['age_0.0', 'age_1.0', 'age_2.0', 'elapsed_time', 'average_speed'], inplace=True) names = ageNull.columns self.ageNullStandardScaler = StandardScaler() scaledX = self.ageNullStandardScaler.fit_transform(ageNull) scaledX = pandas.DataFrame(scaledX, columns=names) self.ageNullTrainX, self.ageNullTestX, self.ageNullTrainy, self.ageNullTesty = train_test_split(scaledX, Y, random_state=42) # age group: one data ageOne = self.dataset[self.dataset['age_1.0'] == 1].copy() Y = ageOne['elapsed_time'].copy() ageOne.drop(columns=['age_0.0', 'age_1.0', 'age_2.0', 'elapsed_time', 'average_speed'], inplace=True) names = ageOne.columns self.ageOneStandardScaler = StandardScaler() scaledX = self.ageNullStandardScaler.fit_transform(ageOne) scaledX = pandas.DataFrame(scaledX, columns=names) self.ageOneTrainX, self.ageOneTestX, self.ageOneTrainy, self.ageOneTesty = train_test_split(scaledX, Y, random_state=42) # age group: two data ageTwo = self.dataset[self.dataset['age_2.0'] == 1].copy() Y = ageTwo['elapsed_time'].copy() ageTwo.drop(columns=['age_0.0', 'age_1.0', 'age_2.0', 'elapsed_time', 'average_speed'], inplace=True) names = ageTwo.columns self.ageTwoStandardScaler = StandardScaler() scaledX = self.ageTwoStandardScaler.fit_transform(ageTwo) scaledX = pandas.DataFrame(scaledX, columns=names) self.ageTwoTrainX, self.ageTwoTestX, self.ageTwoTrainy, self.ageTwoTesty = train_test_split(scaledX, Y, random_state=42) # distance small data distanceSmall = self.dataset[self.dataset['distance'] < 50000].copy() Y = distanceSmall['elapsed_time'].copy() distanceSmall.drop(columns=['elapsed_time', 'average_speed'], inplace=True) distanceSmall.reset_index(drop=True, inplace=True) names = distanceSmall.columns self.distanceSmallStandardScaler = StandardScaler() scaledX = self.distanceSmallStandardScaler.fit_transform(distanceSmall) scaledX = pandas.DataFrame(scaledX, columns=names) self.distanceSmallTrainX, self.distanceSmallTestX, self.distanceSmallTrainy, self.distanceSmallTesty = train_test_split(scaledX, Y, random_state=42) # distance big data distanceBig = self.dataset[self.dataset['distance'] >= 50000].copy() Y = distanceBig['elapsed_time'].copy() distanceBig.drop(columns=['elapsed_time', 'average_speed'], inplace=True) distanceBig.reset_index(drop=True, inplace=True) names = distanceBig.columns self.distanceBigStandardScaler = StandardScaler() scaledX = self.distanceBigStandardScaler.fit_transform(distanceBig) scaledX = pandas.DataFrame(scaledX, columns=names) self.distanceBigTrainX, self.distanceBigTestX, self.distanceBigTrainy, self.distanceBigTesty = train_test_split( scaledX, Y, random_state=42) # user with the most activities userData = self.dataset[self.dataset['hashed_id'] == self.dataset['hashed_id'].value_counts().idxmax()] Y = userData['elapsed_time'].copy() userData.drop(columns=['age_0.0', 'age_1.0', 'age_2.0', 'elapsed_time', 'average_speed'], inplace=True) names = userData.columns self.userStandardScaler = StandardScaler() scaledX = self.userStandardScaler.fit_transform(userData) scaledX = pandas.DataFrame(scaledX, columns=names) self.userTrainX, self.userTestX, self.userTrainy, self.userTesty = train_test_split(scaledX, Y, random_state=42) # TODO: user based dataset # TODO: print info about the 3 dataset and the train-test pars def trainModels(self, verbose=False, writeToFile=False): # fitting models on all data print('-- Fitting models on all data -- ') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.allTrainX, self.allTestX, self.allTrainy, self.allTesty) self.allRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.allRidgeModel.fit(self.allTrainX, self.allTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.allTrainX, self.allTestX, self.allTrainy, self.allTesty) self.allLassoModel = Lasso(alpha=lassoParams['alpha']) self.allLassoModel.fit(self.allTrainX, self.allTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'elapsed_time_all_random_forest_params.p', 'rb')) self.allForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.allForestModel.fit(self.allTrainX, self.allTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on allTesty data: ') print(' - Ridge: ' + str(self.allRidgeModel.score(self.allTestX, self.allTesty))) print(' - Lasso: ' + str(self.allLassoModel.score(self.allTestX, self.allTesty))) print(' - Random Forest: ' + str(self.allForestModel.score(self.allTestX, self.allTesty))) print('') # fitting models on reduced data print('-- Fitting models on reduced data --') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.reducedTrainX, self.reducedTestX, self.reducedTrainy, self.reducedTesty) self.reducedRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.reducedRidgeModel.fit(self.reducedTrainX, self.reducedTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.reducedTrainX, self.reducedTestX, self.reducedTrainy, self.reducedTesty) self.reducedLassoModel = Lasso(alpha=lassoParams['alpha']) self.reducedLassoModel.fit(self.reducedTrainX, self.reducedTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'elapsed_time_reduced_random_forest_params.p', 'rb')) self.reducedForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.reducedForestModel.fit(self.reducedTrainX, self.reducedTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on reducedTesty data: ') print(' - Ridge: ' + str(self.reducedRidgeModel.score(self.reducedTestX, self.reducedTesty))) print(' - Lasso: ' + str(self.reducedLassoModel.score(self.reducedTestX, self.reducedTesty))) print(' - Random Forest: ' + str(self.reducedForestModel.score(self.reducedTestX, self.reducedTesty))) print('') # fitting models on age group NULL data print('-- Fitting models on age group null data --') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.ageNullTrainX, self.ageNullTestX, self.ageNullTrainy, self.ageNullTesty) self.ageNullRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.ageNullRidgeModel.fit(self.ageNullTrainX, self.ageNullTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.ageNullTrainX, self.ageNullTestX, self.ageNullTrainy, self.ageNullTesty) self.ageNullLassoModel = Lasso(alpha=lassoParams['alpha']) self.ageNullLassoModel.fit(self.ageNullTrainX, self.ageNullTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'elapsed_time_age_null_random_forest_params.p', 'rb')) self.ageNullForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.ageNullForestModel.fit(self.ageNullTrainX, self.ageNullTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on age group null data: ') print(' - Ridge: ' + str(self.ageNullRidgeModel.score(self.ageNullTestX, self.ageNullTesty))) print(' - Lasso: ' + str(self.ageNullLassoModel.score(self.ageNullTestX, self.ageNullTesty))) print(' - Random Forest: ' + str(self.ageNullForestModel.score(self.ageNullTestX, self.ageNullTesty))) print('') # fitting models on age group ONE data print('-- Fitting models on age group one data --') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.ageOneTrainX, self.ageOneTestX, self.ageOneTrainy, self.ageOneTesty) self.ageOneRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.ageOneRidgeModel.fit(self.ageOneTrainX, self.ageOneTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.ageOneTrainX, self.ageOneTestX, self.ageOneTrainy, self.ageOneTesty) self.ageOneLassoModel = Lasso(alpha=lassoParams['alpha']) self.ageOneLassoModel.fit(self.ageOneTrainX, self.ageOneTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'elapsed_time_age_one_random_forest_params.p', 'rb')) self.ageOneForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.ageOneForestModel.fit(self.ageOneTrainX, self.ageOneTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on age group one data: ') print(' - Ridge: ' + str(self.ageOneRidgeModel.score(self.ageOneTestX, self.ageOneTesty))) print(' - Lasso: ' + str(self.ageOneLassoModel.score(self.ageOneTestX, self.ageOneTesty))) print(' - Random Forest: ' + str(self.ageOneLassoModel.score(self.ageOneTestX, self.ageOneTesty))) print('') # fitting models on age group TWO data print('-- Fitting models on age group two data --') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.ageTwoTrainX, self.ageTwoTestX, self.ageTwoTrainy, self.ageTwoTesty) self.ageTwoRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.ageTwoRidgeModel.fit(self.ageTwoTrainX, self.ageTwoTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.ageTwoTrainX, self.ageTwoTestX, self.ageTwoTrainy, self.ageTwoTesty) self.ageTwoLassoModel = Lasso(alpha=lassoParams['alpha']) self.ageTwoLassoModel.fit(self.ageTwoTrainX, self.ageTwoTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'elapsed_time_age_two_random_forest_params.p', 'rb')) self.ageTwoForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.ageTwoForestModel.fit(self.ageTwoTrainX, self.ageTwoTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on age group two data: ') print(' - Ridge: ' + str(self.ageTwoRidgeModel.score(self.ageTwoTestX, self.ageTwoTesty))) print(' - Lasso: ' + str(self.ageTwoLassoModel.score(self.ageTwoTestX, self.ageTwoTesty))) print(' - Random Forest: ' + str(self.ageTwoForestModel.score(self.ageTwoTestX, self.ageTwoTesty))) print('') # fitting models on distance small data print('-- Fitting models on distance small data --') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.distanceSmallTrainX, self.distanceSmallTestX, self.distanceSmallTrainy, self.distanceSmallTesty) self.distanceSmallRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.distanceSmallRidgeModel.fit(self.distanceSmallTrainX, self.distanceSmallTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.distanceSmallTrainX, self.distanceSmallTestX, self.distanceSmallTrainy, self.distanceSmallTesty) self.distanceSmallLassoModel = Lasso(alpha=lassoParams['alpha']) self.distanceSmallLassoModel.fit(self.distanceSmallTrainX, self.distanceSmallTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'elapsed_time_distance_small_random_forest_params.p', 'rb')) self.distanceSmallForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.distanceSmallForestModel.fit(self.distanceSmallTrainX, self.distanceSmallTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on distanceSmall data: ') print(' - Ridge: ' + str(self.distanceSmallRidgeModel.score(self.distanceSmallTestX, self.distanceSmallTesty))) print(' - Lasso: ' + str(self.distanceSmallLassoModel.score(self.distanceSmallTestX, self.distanceSmallTesty))) print(' - Random Forest: ' + str(self.distanceSmallForestModel.score(self.distanceSmallTestX, self.distanceSmallTesty))) print('') # fitting models on distance big data print('-- Fitting models on distance big data --') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.distanceBigTrainX, self.distanceBigTestX, self.distanceBigTrainy, self.distanceBigTesty) self.distanceBigRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.distanceBigRidgeModel.fit(self.distanceBigTrainX, self.distanceBigTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.distanceBigTrainX, self.distanceBigTestX, self.distanceBigTrainy, self.distanceBigTesty) self.distanceBigLassoModel = Lasso(alpha=lassoParams['alpha']) self.distanceBigLassoModel.fit(self.distanceBigTrainX, self.distanceBigTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'elapsed_time_distance_big_random_forest_params.p', 'rb')) self.distanceBigForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.distanceBigForestModel.fit(self.distanceBigTrainX, self.distanceBigTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on distanceBig data: ') print(' - Ridge: ' + str(self.distanceBigRidgeModel.score(self.distanceBigTestX, self.distanceBigTesty))) print(' - Lasso: ' + str(self.distanceBigLassoModel.score(self.distanceBigTestX, self.distanceBigTesty))) print(' - Random Forest: ' + str(self.distanceBigForestModel.score(self.distanceBigTestX, self.distanceBigTesty))) print('') # fitting models on user data print('-- Fitting models on user data (with the most activities -'+str(len(self.userTestX) + len(self.userTrainX))+') --') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.userTrainX, self.userTestX, self.userTrainy, self.userTesty) self.userRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.userRidgeModel.fit(self.userTrainX, self.userTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.userTrainX, self.userTestX, self.userTrainy, self.userTesty) self.userLassoModel = Lasso(alpha=lassoParams['alpha']) self.userLassoModel.fit(self.userTrainX, self.userTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'elapsed_time_user_random_forest_params.p', 'rb')) self.userForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.userForestModel.fit(self.userTrainX, self.userTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on user data: ') print(' - Ridge: ' + str(self.userRidgeModel.score(self.userTestX, self.userTesty))) print(' - Lasso: ' + str(self.userLassoModel.score(self.userTestX, self.userTesty))) print(' - Random Forest: ' + str(self.userForestModel.score(self.userTestX, self.userTesty))) print('') # write models and scalers to pickle file if writeToFile: # write regression models writeRegressionModels(self.allRidgeModel, self.allLassoModel, None, 'all', 'elapsed', self.modelsRoute, hasRandomForest=False) writeRegressionModels(self.reducedRidgeModel, self.reducedLassoModel, None, 'reduced', 'elapsed', self.modelsRoute, hasRandomForest=False) writeRegressionModels(self.ageNullRidgeModel, self.ageNullLassoModel, None, 'ageNull', 'elapsed', self.modelsRoute, hasRandomForest=False) writeRegressionModels(self.ageOneRidgeModel, self.ageOneLassoModel, None, 'ageOne', 'elapsed', self.modelsRoute, hasRandomForest=False) writeRegressionModels(self.ageTwoRidgeModel, self.ageTwoLassoModel, None, 'ageTwo', 'elapsed', self.modelsRoute, hasRandomForest=False) writeRegressionModels(self.distanceSmallRidgeModel, self.distanceSmallLassoModel, None, 'distanceSmall', 'elapsed', self.modelsRoute, hasRandomForest=False) writeRegressionModels(self.distanceBigRidgeModel, self.distanceBigLassoModel, None, 'distanceBig', 'elapsed', self.modelsRoute, hasRandomForest=False) writeRegressionModels(self.userRidgeModel, self.userLassoModel, None, 'user', 'elapsed', self.modelsRoute, hasRandomForest=False) # write scalers writeScalerModel(self.allStandardScaler, 'all', 'elapsed', self.scalerRoute) writeScalerModel(self.reducedStandardScaler, 'reduced', 'elapsed', self.scalerRoute) writeScalerModel(self.ageNullStandardScaler, 'ageNull', 'elapsed', self.scalerRoute) writeScalerModel(self.ageOneStandardScaler, 'ageOne', 'elapsed', self.scalerRoute) writeScalerModel(self.ageTwoStandardScaler, 'ageTwo', 'elapsed', self.scalerRoute) writeScalerModel(self.distanceSmallStandardScaler, 'distanceSmall', 'elapsed', self.scalerRoute) writeScalerModel(self.distanceBigStandardScaler, 'distanceBig', 'elapsed', self.scalerRoute) writeScalerModel(self.userStandardScaler, 'user', 'elapsed', self.scalerRoute) print('Get predictions: ') print(' - based on all data: call getPredictionWithAllModels(list) func., where list has 27 elements ') print(' - based on reduced data: call getPredictionWithReducedModels(list) func., where list has 9 elements ') # print(' - based on base data: call getPredictionWithBaseModels(list) func., where list has 5 elements ') def getPredictionWithAllModels(self, X): if len(X) != 27: print('Shape mismatch: X should contains 27 values like the allTrainX dataset') return scaled = self.allStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.allRidgeModel.predict(scaled) lassoResult = self.allLassoModel.predict(scaled) #forestResult = self.baseRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) #print(' - random forest: ' + str(forestResult)) # TODO: create graph def getPredictionWithReducedModels(self, X): if len(X) != 10: print('Shape mismatch: X should contains 10 values like the reducedTrainX dataset') return scaled = self.reducedStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.reducedRidgeModel.predict(scaled) lassoResult = self.reducedLassoModel.predict(scaled) # forestResult = self.baseRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) # print(' - random forest: ' + str(forestResult)) # TODO: create graph def getPredictionWithAgeNullModels(self, X): if len(X) != 24: print('Shape mismatch: X should contains 24 values like the ageNullTrainX dataset') return scaled = self.ageNullStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.ageNullRidgeModel.predict(scaled) lassoResult = self.ageNullLassoModel.predict(scaled) # forestResult = self.baseRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) # print(' - random forest: ' + str(forestResult)) # TODO: create graph def getPredictionWithAgeOneModels(self, X): if len(X) != 24: print('Shape mismatch: X should contains 24 values like the ageOneTrainX dataset') return # TODO: scale X before calling predict func scaled = self.ageOneStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.ageOneRidgeModel.predict(scaled) lassoResult = self.ageOneLassoModel.predict(scaled) # forestResult = self.ageOneRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) # print(' - random forest: ' + str(forestResult)) # TODO: create graph def getPredictionWithAgeTwoModels(self, X): if len(X) != 24: print('Shape mismatch: X should contains 24 values like the ageTwoTrainX dataset') return # TODO: scale X before calling predict func scaled = self.ageTwoStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.ageTwoRidgeModel.predict(scaled) lassoResult = self.ageTwoLassoModel.predict(scaled) # forestResult = self.baseRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) # print(' - random forest: ' + str(forestResult)) # TODO: create graph def getPredictionWithDistanceSmallModels(self, X): if len(X) != 27: print('Shape mismatch: X should contains 27 values like the distanceSmallTrainX dataset') return # TODO: scale X before calling predict func scaled = self.distanceSmallStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.distanceSmallRidgeModel.predict(scaled) lassoResult = self.distanceSmallLassoModel.predict(scaled) # forestResult = self.baseRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) # print(' - random forest: ' + str(forestResult)) # TODO: create graph def getPredictionWithDistanceBigModels(self, X): if len(X) != 27: print('Shape mismatch: X should contains 27 values like the distanceBigTrainX dataset') return scaled = self.distanceBigStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.distanceBigRidgeModel.predict(scaled) lassoResult = self.distanceBigLassoModel.predict(scaled) # forestResult = self.baseRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) # print(' - random forest: ' + str(forestResult)) # TODO: create graph def getPredictionWithUserModels(self, X): if len(X) != 24: print('Shape mismatch: X should contains 24 values like the userTrainX dataset') return scaled = self.userStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.userRidgeModel.predict(scaled) lassoResult = self.userLassoModel.predict(scaled) # forestResult = self.baseRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) # print(' - random forest: ' + str(forestResult)) # TODO: create graph def calulateBestParamsForRandomForest(self): print('Warning: this function will take several hours: the results already available in the ./data/results/params folder') print('Consider interrupting the kernel') GridSearchForRandomForest(pandas.concat([self.allTrainX, self.allTestX]), pandas.concat([self.allTrainy, self.allTesty]), 'elapsed', 'all') GridSearchForRandomForest(pandas.concat([self.reducedTrainX, self.reducedTestX]), pandas.concat([self.reducedTrainy, self.reducedTesty]), 'elapsed', 'reduced') GridSearchForRandomForest(pandas.concat([self.ageNullTrainX, self.ageNullTestX]), pandas.concat([self.ageNullTrainy, self.ageNullTesty]), 'elapsed', 'age_null') GridSearchForRandomForest(pandas.concat([self.ageOneTrainX, self.ageOneTestX]), pandas.concat([self.ageOneTrainy, self.ageOneTesty]), 'elapsed', 'age_one') GridSearchForRandomForest(
pandas.concat([self.ageTwoTrainX, self.ageTwoTestX])
pandas.concat
import pprint import requests import pickle import pandas as pd import spacy from sklearn.neighbors import NearestNeighbors from tqdm import tqdm from sklearn.cluster import DBSCAN from sklearn.datasets.samples_generator import make_blobs import numpy as np from matplotlib import pyplot as plt import seaborn as sns sns.set() def show_blobs(): X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) plt.scatter(X[:, 0], X[:, 1]) def load_web(): secret = 'xxx' url = 'https://newsapi.org/v2/everything?' parameters = { 'q': 'big data', # query phrase 'pageSize': 20, # maximum is 100 'apiKey': secret # your own API key } # Make the request response = requests.get(url, params=parameters) # Convert the response to JSON format and pretty print it data = response.json() with open('output.pickle', 'wb') as w: pickle.dump(data, w) def load_file(): with open('output.pickle', 'rb') as r: articles = pickle.load(r) return articles def make_df(): titles = [] dates = [] descriptions = [] for line in load_file()['articles']: titles.append(line['title']) dates.append(line['publishedAt']) descriptions.append(line['description']) # print({'titles':titles,'desc':descriptions, 'dates':dates}) df =
pd.DataFrame(data={'titles': titles, 'desc': descriptions, 'dates': dates})
pandas.DataFrame
import numpy as np import pandas as pd from pytest import test_comparer_df from popmon.analysis.apply_func import ApplyFunc, apply_func, apply_func_array from popmon.analysis.functions import pull from popmon.analysis.profiling.pull_calculator import ( ExpandingPullCalculator, ReferencePullCalculator, RefMedianMadPullCalculator, RollingPullCalculator, ) from popmon.base import Pipeline def get_test_data(): df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 import pandas as pd def main(): excel_file = 'movies.xls' movies0 = pd.read_excel(excel_file, sheet_name=0, index_col=0) movies1 = pd.read_excel(excel_file, sheet_name=1, index_col=0) movies2 =
pd.read_excel(excel_file, sheet_name=2, index_col=0)
pandas.read_excel
# https://github.com/chrisconlan/algorithmic-trading-with-python/blob/master/src/pypm/metrics.py import pandas as pd import numpy as np import numpy_financial as npf from sklearn.linear_model import LinearRegression from scipy.stats import norm from scipy.optimize import root_scalar import warnings import datetime import matplotlib.pyplot as plt # https://stackoverflow.com/questions/16004076/python-importing-a-module-that-imports-a-module from . import dates as dt def compute_irr(T=10, S0=1000, monthly_s=100, F=20000, verbose=False): """ compute required IRR to match investment expectation :param T: int or float, in 1/12 of month (es 10.5 for 10y6m). Time period in year :param S0: initial invested amount :param monthly_s: monthly investment :param F: final amount :return: required IRR to meet investment expectation """ # number of periods M = 12 # frequency, monthly n_periods = round(T * M) - 1 IRR = npf.irr([-(S0 + monthly_s), *[-monthly_s for _ in range(n_periods - 1)], F]) IRR_yearly = (1 + IRR) ** M - 1 if verbose: print(f"Total investment: {S0 + n_periods * monthly_s:,.2f}, " f"required annual rate of return to get {F:,.2f}: {IRR_yearly:.2%}") return IRR_yearly def rebase_ts(prices, V0=100): """ rebases prices time series to V0 :param prices: pd.Series or pd.DataFrame :param V0: rebase to level V0 """ if not isinstance(prices, (pd.Series, pd.DataFrame)): raise TypeError("`prices` must be either pd.Series or pd.DataFrame") if isinstance(prices, pd.Series): if np.isnan(prices.iloc[0]): # se la prima osservazione è NaN ts = prices.dropna() else: ts = prices ts_rebased = ts / ts.iloc[0] * V0 else: # case 2: isinstance(prices, pd.DataFrame) if any(prices.iloc[0].isna()): # se vi è almeno un NaN nella prima osservazione delle serie storiche ts_rebased = list() for col in prices.columns: ts = prices[col].dropna() ts_rebased.append(ts / ts.iloc[0] * V0) ts_rebased = pd.concat(ts_rebased, axis=1) else: ts_rebased = prices / prices.iloc[0] * V0 # nel caso in cui ci siano NaN, la serie storica in output potrebbe avere un indice diverso rispetto a prices ts_rebased = ts_rebased.reindex(prices.index) return ts_rebased def yield_to_ts(yields, V0=100): """ Computes timeseries starting from yield values. Uses ACT/360. :param yields: :param V0: :return: """ elapsed_days = yields.index.to_series().diff().dt.days.fillna(0) returns = (1 + yields / 100).pow(elapsed_days / 360, axis=0) - 1 ts = compute_ts(returns, V0=V0) return ts def compute_returns(prices, method="simple"): """ compute simple or log returns given a pd.Series or a pd.Dataframe compute returns of `price_series`. :param prices: pd.Series or pd.DataFrame :param method: "simple" or "log" """ if method == "simple": ret_fun = lambda x: x / x.shift(1, fill_value=x[0]) - 1 elif method == "log": ret_fun = lambda x: np.log(x / x.shift(1, fill_value=x[0])) else: raise ValueError("`method` must be either 'simple' or 'log'") if isinstance(prices, pd.Series): returns = ret_fun(prices) elif isinstance(prices, pd.DataFrame): returns = prices.apply(ret_fun, axis=0) else: raise TypeError("prices must be either pd.Series or pd.DataFrame") return returns def compute_ts(returns, method="simple", V0=100): """ compute time series given a pd.Series or a pd.Dataframe containing returns (simple or log) compute prices time series of `returns`. NB: first row of `returns` is assumed to be 0. :param returns: pd.Series or pd.DataFrame :param method: "simple" or "log" :param V0: int, starting value :return: prices time series """ if method == "simple": ts_fun = lambda x: V0 * np.cumprod(1 + x) elif method == "log": ts_fun = lambda x: V0 * np.exp(np.cumsum(returns)) else: raise ValueError("`method` must be either 'simple' or 'log'") if isinstance(returns, pd.Series): prices = ts_fun(returns) elif isinstance(returns, pd.DataFrame): prices = returns.apply(ts_fun, axis=0) else: raise TypeError("`prices` must be either pd.Series or pd.DataFrame") return prices def change_freq_ts(prices, freq="monthly"): """ subsets of prices timeseries with desired frequency :param prices: pd.Series or pd.DataFrame :param freq: str: weekly, monthly, yearly (or: w, m, y) :return: subset of prices with end of week/month/year obs """ if not isinstance(prices, (pd.Series, pd.DataFrame)): raise TypeError("`prices` must be either pd.Series or pd.DataFrame") if not isinstance(prices.index, pd.core.indexes.datetimes.DatetimeIndex): raise TypeError("`prices.index` must contains dates") if isinstance(freq, str): freq = freq.lower() if freq not in ["weekly", "w", "monthly", "m", "yearly", "y"]: raise ValueError("`freq` can be: 'weekly', 'monthly', 'yearly' (or 'w', 'm', 'y')") else: raise TypeError("`freq` must be str") if freq in ["weekly", "w"]: idx = dt.get_end_of_weeks(dates=prices.index) elif freq in ["monthly", "m"]: idx = dt.get_end_of_months(dates=prices.index) elif freq in ["yearly", "y"]: idx = dt.get_end_of_years(dates=prices.index) # subset prices prices = prices.loc[idx] return prices def bootstrap_ts(ret, samples, index_dates=None): """ :param ret: pd.Series containing returns :param samples: int, tuple or np.array. if 2d np.array, then each col contains different bootstrap. if 1d np.array, then single bootstrap. if int, then perform bootstrap of lenght samples. if tuple of lenght 2, then use it as the size of np.random.choice :param index_dates: None or list/pd.Index of dates of length the number of extractions in each bootstrap :return: pd.Series or pd.DataFrame with bootstrapped returns. pd.DataFrame if samples is 2d np.array """ assert isinstance(ret, pd.Series) if isinstance(samples, np.ndarray): if samples.ndim == 1: # 1d array sim_ret = ret.iloc[samples].reset_index(drop=True) else: # 2d array sim_ret = [] for i in range(samples.shape[1]): sim_ret_i = ret.iloc[samples[:, i]].reset_index(drop=True) sim_ret.append(sim_ret_i) sim_ret = pd.concat(sim_ret, axis=1) elif isinstance(samples, (int, float)): samples = np.random.choice(range(len(ret)), size=samples) return bootstrap_ts(ret, samples=samples, index_dates=index_dates) elif isinstance(samples, tuple): # nel caso in cui venga passata una tupla più lunga di due, prendi solo i primi due elementi samples = np.random.choice(range(len(ret)), size=samples[:2]) return bootstrap_ts(ret, samples=samples, index_dates=index_dates) else: raise Exception(f"samples must be int, tuple or np.array") # add zeros as first obs to compute prices time series easily later if isinstance(sim_ret, pd.Series): sim_ret = pd.concat([pd.Series(0), sim_ret]) elif isinstance(sim_ret, pd.DataFrame): sim_ret = pd.concat([pd.DataFrame(0, index=[0], columns=sim_ret.columns), sim_ret], axis=0) else: print("something went wrong") if index_dates is not None: if isinstance(index_dates, (list, pd.DatetimeIndex)): if len(index_dates) == len(sim_ret): sim_ret.index = index_dates else: print(f"`index_dates` must be of lenght {len(sim_ret)}") print(f"Dates not added as index") else: print(f"`index_dates` must be `list` or `pd.DatetimeIndex`, got {type(index_dates)} instead") print(f"Dates not added as index") return sim_ret def bootstrap_plot(ret, T=30, I=500, init_investm=1000, monthly_investm=None, oneoff_investm=None, seed=None): """ :param ret: pd.Series with returns :param T: years to simulate :param I: number of simulations :param init_investm: int, initial investment :param monthly_investm: int, monthly investment :param oneoff_investm: int, one-off investment :return: plot """ assert isinstance(ret, pd.Series), "ret must be pd.Series" assert isinstance(init_investm, (int, float)), "init_investm must be int" if seed is not None: np.random.seed(seed) # number of periods in each year M = 12 # dates to simulate sim_dates = pd.bdate_range(ret.index.max(), "2100-12-31", freq="M") # select only the needed simulation dates sim_dates = sim_dates[:(T * M)] # sample length K = len(sim_dates) - 1 # bootstrap ret_bs = bootstrap_ts(ret, samples=(K, I), index_dates=sim_dates) # compute time-series from bootstrapped returns ts_bs = compute_ts(ret_bs, V0=init_investm) # compute mean mean_ts = ts_bs.mean(axis=1) # compute std std_ts = ts_bs.std(axis=1) cagr = compute_cagr(mean_ts) all_period_ret = compute_allperiod_returns(mean_ts) tot_investm = init_investm final_value = mean_ts.iloc[-1] if oneoff_investm is not None: # oneoff_ts_bs = compute_ts(ret_bs, V0=oneoff_investm) # mean_oneoff = oneoff_ts_bs.mean(axis=1) # mean_oneoff = rebase_ts(mean_ts, V0=oneoff_investm) oneoff_ts = rebase_ts(ts_bs, V0=oneoff_investm) oneoff_ts = ts_bs.add(oneoff_ts, fill_value=0) mean_oneoff = oneoff_ts.mean(axis=1) std_oneoff = oneoff_ts.std(axis=1) cagr = compute_cagr(mean_oneoff) all_period_ret = compute_allperiod_returns(mean_oneoff) tot_investm += oneoff_investm final_value = mean_oneoff.iloc[-1] if monthly_investm is not None: for dd in sim_dates[:-1]: # non considerare l'ultima data # m_ts_bs = compute_ts(ret_bs.loc[ret_bs.index >= dd], V0=monthly_investm) # mean_tmp = rebase_ts(mean_ts.loc[mean_ts.index >= dd], V0=monthly_investm) mean_tmp = rebase_ts(ts_bs.loc[mean_ts.index >= dd], V0=monthly_investm) try: monthly_ts = monthly_ts.add(mean_tmp, fill_value=0) except: monthly_ts = mean_tmp.copy() # mean_monthly = monthly_ts.mean(axis=1) monthly_ts = ts_bs.add(monthly_ts, fill_value=0) std_monthly = monthly_ts.std(axis=1) mean_monthly = monthly_ts.mean(axis=1) # per il calcolo del CAGR bisogna tenere in considerazione tutti gli investimenti final_value = mean_monthly.iloc[-1] cagr = compute_irr(T=T, S0=tot_investm, monthly_s=monthly_investm, F=final_value) # cagr = compute_cagr(mean_monthly) all_period_ret = (1 + cagr) ** T - 1 tot_investm += monthly_investm * (len(sim_dates) - 1) # plot fig, ax = plt.subplots() ax.plot(mean_ts.index, mean_ts, label=f"Investment: {init_investm:,.0f}") if oneoff_investm is not None: ax.plot(mean_oneoff.index, mean_oneoff, "r", label=f"Adding one-off investment: {oneoff_investm:,.0f}") ax.fill_between(mean_oneoff.index, mean_oneoff - .2 * std_oneoff, mean_oneoff + .2 * std_oneoff, alpha=.5) ax.fill_between(mean_oneoff.index, mean_oneoff - .5 * std_oneoff, mean_oneoff + .5 * std_oneoff, alpha=.3) ax.fill_between(mean_oneoff.index, mean_oneoff - std_oneoff, mean_oneoff + std_oneoff, alpha=.1) elif monthly_investm is not None: ax.plot(mean_monthly.index, mean_monthly, "r", label=f"With monthly investment: {monthly_investm:,.0f}") ax.fill_between(mean_monthly.index, mean_monthly - .2 * std_monthly, mean_monthly + .2 * std_monthly, alpha=.5) ax.fill_between(mean_monthly.index, mean_monthly - .5 * std_monthly, mean_monthly + .5 * std_monthly, alpha=.3) ax.fill_between(mean_monthly.index, mean_monthly - std_monthly, mean_monthly + std_monthly, alpha=.1) else: ax.fill_between(mean_ts.index, mean_ts - 0.2 * std_ts, mean_ts + 0.2 * std_ts, alpha=0.5) ax.fill_between(mean_ts.index, mean_ts - 0.5 * std_ts, mean_ts + 0.5 * std_ts, alpha=0.3) ax.fill_between(mean_ts.index, mean_ts - std_ts, mean_ts + std_ts, alpha=0.1) plt.title(f"{ret.name} {T} years Projection.\n" f"CAGR: {cagr:.2%}, overall return: {all_period_ret:.2%}.\n" f"Total investment: {tot_investm:,.0f}, Final value: {final_value:,.0f}") ax.legend() return fig def compute_excess_return(ts, bmk_ts): """ compute excess return. ts and bmk_ts should have the same dates, otherwise inner join :param ts: pd.Series or pd.DataFrame containing returns (portfolio or generic stock) :param bmk_ts: pd.Series containg benchmark returns :return pd.Series with excess return """ if not isinstance(ts, (pd.Series, pd.DataFrame)): print("`ts` must be pd.Series or pd.DataFrame") return if not isinstance(bmk_ts, pd.Series): print("`bmk_ts` must be pd.Series") return if isinstance(ts, pd.Series): excess_return = ts.subtract(bmk_ts.loc[ts.index]) elif isinstance(ts, pd.DataFrame): excess_return = ts.apply(lambda x: x.subtract(bmk_ts.loc[ts.index]), axis=0) excess_return = excess_return.dropna() return excess_return def compute_tracking_error_vol(ts, bmk_ts): """ compute tracking error volatility wrt a benchmark timeseries input MUST be returns time-series :param ts: pd.Series or pd.DataFrame (returns) :param bmk_ts: pd.Series or pd.DataFrame with benchmark(s) returns """ if not isinstance(ts, (pd.Series, pd.DataFrame)): print("`ts` must be pd.Series or pd.DataFrame") return if not isinstance(bmk_ts, (pd.Series, pd.DataFrame)): print("`bmk_ts` must be pd.Series or pd.DataFrame") return if isinstance(bmk_ts, pd.Series): excess_return = compute_excess_return(ts=ts, bmk_ts=bmk_ts) tev = compute_annualized_volatility(excess_return) if isinstance(ts, pd.DataFrame): tev.name = "tev" elif isinstance(bmk_ts, pd.DataFrame): tev = list() for i in range(len(bmk_ts.columns)): excess_return = compute_excess_return(ts=ts, bmk_ts=bmk_ts[bmk_ts.columns[i]]) pair_tev = compute_annualized_volatility(excess_return) pair_tev.name = bmk_ts.columns[i] tev.append(pair_tev) tev = pd.concat(tev, axis=1) return tev def get_years_past(series): """ Calculate the years past according to the index of the series for use with functions that require annualization """ start_date = series.index[0] end_date = series.index[-1] return ((end_date - start_date).days + 1) / 365.25 def compute_cagr(prices): """ Calculate compounded annual growth rate :param prices: pd.Series or pd.DataFrame containing prices """ assert isinstance(prices, (pd.Series, pd.DataFrame)) start_price = prices.iloc[0] end_price = prices.iloc[-1] value_factor = end_price / start_price year_past = get_years_past(prices) return (value_factor ** (1 / year_past)) - 1 def compute_active_return(prices, bmk_prices): """ active return = (cagr(prices) - cagr(bmk_prices)) :param prices: :param bmk_prices: :return: """ # mantieni solo le date in comune common_dates = set(prices.index).intersection(set(bmk_prices.index)) # cagr ptf_cagr = compute_cagr(prices[prices.index.isin(common_dates)]) bmk_cagr = compute_cagr(bmk_prices[bmk_prices.index.isin(common_dates)]) if isinstance(bmk_prices, pd.DataFrame): output = pd.DataFrame(np.zeros((len(ptf_cagr), len(bmk_prices.columns))), index=ptf_cagr.index, columns=bmk_prices.columns) for col in bmk_prices.columns: output[col] = ptf_cagr - bmk_cagr[col] else: output = ptf_cagr - bmk_cagr return output def compute_allperiod_returns(ts, method="simple"): """ Compute NON-annualized return between first and last available obs :param ts: pd.Series or pd.DataFrame containing prices timeseries :param method: str, "simple" or "log" :return: """ assert isinstance(ts, (pd.Series, pd.DataFrame)) if method == "simple": return ts.iloc[-1] / ts.iloc[0] - 1 elif method == "log": return np.log(ts.iloc[-1] / ts.iloc[0]) else: raise ValueError("method should be either simple or log") def compute_annualized_volatility(returns): """ Calculates annualized volatility for a date-indexed return series. Works for any interval of date-indexed prices and returns. """ years_past = get_years_past(returns) entries_per_year = returns.shape[0] / years_past return returns.std() * np.sqrt(entries_per_year) def compute_rolling_volatility(returns, window=252): """ Wrapper for compute_annualized_volatility. it computes rolling annualized volatility :param returns: :param window: :return: """ roll_vol = returns.rolling(window=window).apply(lambda x: compute_annualized_volatility(x)) return roll_vol def compute_sharpe_ratio(returns, benchmark_rate=0): """ Calculates the sharpe ratio given a price series. Defaults to benchmark_rate of zero. """ prices = compute_ts(returns) cagr = compute_cagr(prices) # returns = compute_returns(prices) volatility = compute_annualized_volatility(returns) return (cagr - benchmark_rate) / volatility def compute_information_ratio(returns, bmk_returns): """ Compute the Information ratio wrt a benchmark IR = (ptf_returns - bmk_returns) / tracking_error_vol :param returns: portfolio returns. pd.Series or pd.DataFrame :param bmk_returns: benchmark returns. pd.Series or pd.DataFrame :return: """ prices = compute_ts(returns) bmk_prices = compute_ts(bmk_returns) # compute active return active_ret = compute_active_return(prices, bmk_prices) # compute TEV tev = compute_tracking_error_vol(returns, bmk_returns) return active_ret / tev def compute_rolling_sharpe_ratio(prices, window=20, method="simple"): """ Compute an *approximation* of the sharpe ratio on a rolling basis. Intended for use as a preference value. """ rolling_return_series = compute_returns(prices, method=method).rolling(window) return rolling_return_series.mean() / rolling_return_series.std() def compute_beta(ret, bmk_ret, use_linear_reg=False): """ Computes single-regression beta. ret = alpha + beta * bmk_ret If ret is pd.Series or pd.DataFrame with 1 column: If bmk_ret is pd.Series or pd.DataFrame with 1 column: output: scalar Elif bmk_ret is pd.DataFrame with >1 column: output: pd.DataFrame with 1 row (ret.name) and len(bmk_ret.columns) cols Elif ret is pd.DataFrame with >1 columns: If bmk_ret is pd.Series or pd.DataFrame with 1 column: output: pd.DataFrame with 1 col (bmk_ret.name) and len(ret.columns) rows Elif bmk_ret is pd.DataFrame with >1 column: output: pd.DataFrame with len(ret.columns) rows and len(bmk_ret.columns) cols https://corporatefinanceinstitute.com/resources/knowledge/finance/beta-coefficient/ :param ret: stock/portfolio returns. works with multiple timeseries as well :param bmk_ret: benchmark returns. works with multiple benckmarks :param use_linear_reg: boolean -> compute beta using linear regression? :return: """ if not isinstance(ret, (pd.Series, pd.DataFrame)): raise TypeError("`ret` must be pd.Series or pd.DataFrame containing returns") if not isinstance(bmk_ret, (pd.Series, pd.DataFrame)): raise TypeError("`bmk_ret` must be pd.Series or pd.DataFrame containing benchmark returns") if isinstance(ret, pd.Series): ret = ret.to_frame(ret.name) if isinstance(bmk_ret, pd.Series): bmk_series = True bmk_ret = bmk_ret.to_frame(bmk_ret.name) else: bmk_series = False # bisogna fare in modo che le date (.index) coincidano if len(set(ret.index).symmetric_difference(bmk_ret.index)): # merge per allineare le date tmp = pd.concat([ret, bmk_ret], axis=1) # inserisci zero al posto degli NA # tmp = tmp.fillna(0) # rimuovi gli NA tmp = tmp.dropna() ret = tmp[ret.columns] bmk_ret = tmp[bmk_ret.columns] # inizializza un pd.DataFrame dove verranno salvati i beta beta = np.zeros((len(ret.columns), len(bmk_ret.columns))) beta = pd.DataFrame(beta, index=ret.columns, columns=bmk_ret.columns) if use_linear_reg: # use linear regression to compute beta m = LinearRegression(fit_intercept=True) for icol in range(len(ret.columns)): for jcol in range(len(bmk_ret.columns)): # reg: ret = alpha + beta * bmk_ret # bmk_ret è il ritorno del mercato nel CAPM m.fit(bmk_ret.iloc[:, [jcol]], ret.iloc[:, [icol]]) beta.iloc[icol, jcol] = m.coef_[0][0] else: # use variance - covariance # variance and covariance for jcol in bmk_ret.columns: # serve lavorare su un unico pd.DataFrame tmp = pd.concat([ret, bmk_ret[[jcol]]], axis=1) # inserisci zero al posto degli NA # tmp = tmp.fillna(0) # rimuovi gli NA tmp = tmp.dropna() # calcola beta m = np.cov(tmp, rowvar=False) variance = m[(m.shape[0] - 1), (m.shape[1] - 1)] # non considerare la covarianza con il benchmark covariance = m[:-1, (m.shape[1] - 1)] # salva beta beta[jcol] = covariance / variance if bmk_series: # output pd.Series, not pd.DataFrame beta = beta[bmk_ret.columns[0]] if sum(beta.shape) == 1: # ritorna scalare beta = beta[0] elif sum(beta.shape) == 2 and not bmk_series: # ritorna scalare beta = beta.iloc[0, 0] return beta def compute_multiple_beta(y, xs): """ Computes multiple linear regression y = a + b_1 * xs_1 + b_2 * xs_2 + .. + b_n * xs_n :param y: stock/portfolio returns. must be pd.Series or pd.DataFrame with one column :param xs: benchmark returns. must be pd.Series or pd.DataFrame :return: """ if not isinstance(y, (pd.Series, pd.DataFrame)): raise TypeError("`y` must be pd.Series or pd.DataFrame containing independent variable returns") if not isinstance(xs, (pd.Series, pd.DataFrame)): raise TypeError("`xs` must be pd.Series or pd.DataFrame containing dependent variables returns") if isinstance(y, pd.Series): y = y.to_frame(y.name) elif isinstance(y, pd.DataFrame): if y.shape[1] > 1: print("`y` must contains only one column. subsetting `y` to obtain a 1col df") if isinstance(xs, pd.Series): xs = xs.to_frame(xs.name) # bisogna fare in modo che le date (.index) coincidano if len(set(y.index).symmetric_difference(xs.index)): # merge per allineare le date tmp = pd.concat([y, xs], axis=1) # inserisci zero al posto degli NA tmp = tmp.fillna(0) y = tmp[y.columns] xs = tmp[xs.columns] # inizializza un pd.DataFrame dove verranno salvati i beta beta = np.zeros((len(xs.columns), len(y.columns))) beta = pd.DataFrame(beta, index=xs.columns, columns=y.columns) # multiple regression m = LinearRegression(fit_intercept=True) m.fit(xs, y) beta[y.columns[0]] = m.coef_.transpose() return beta def compute_rolling_beta(ret, bmk_ret, window=252): """ Computes single-regression beta over a rolling window. ret = alpha + beta * bmk_ret Works with: (ret is pd.Series or 1 col pd.DataFrame) and (bmk_ret is pd.Series or 1 col pd.DataFrame) ret is pd.DataFrame and (bmk_ret is pd.Series or 1 col pd.DataFrame) (ret is pd.Series or 1 col pd.DataFrame) and bmk_ret is pd.DataFrame https://corporatefinanceinstitute.com/resources/knowledge/finance/beta-coefficient/ :param ret: stock/portfolio returns. works with multiple timeseries as well :param bmk_ret: benchmark returns. works with multiple benckmarks :param window: int, lenght of rolling window :return: """ if not isinstance(ret, (pd.Series, pd.DataFrame)): raise TypeError("`ret` must be pd.Series or pd.DataFrame containing returns") if not isinstance(bmk_ret, (pd.Series, pd.DataFrame)): raise TypeError("`bmk_ret` must be pd.Series or pd.DataFrame containing benchmark returns") if isinstance(ret, pd.DataFrame) and isinstance(bmk_ret, pd.DataFrame): if len(ret.columns) > 1 and len(bmk_ret.columns) > 1: raise NotImplementedError("Function cannot process results with `ret` and `bmk_ret` with >1 cols each") # inizializza beta come lista beta = list() for i in range(window, ret.shape[0]): y = ret.iloc[(i - window):i] x = bmk_ret.iloc[(i - window):i] b = compute_beta(y, x) if isinstance(b, float): # case y is pd.Series and x is pd.Series b = pd.Series(b, index=[y.index.max()]) elif isinstance(b, pd.Series): # case y is pd.DataFrame and x is pd.Series b = b.to_frame().transpose() b.index = [y.index.max()] elif isinstance(b, pd.DataFrame): # case y is pd.Series and x is pd.Dataframe b.index = [y.index.max()] beta.append(b) beta = pd.concat(beta, axis=0) return beta def compute_annualized_downside_deviation(returns, benchmark_rate=0): """ Calculates the downside deviation for use in the sortino ratio. Benchmark rate is assumed to be annualized. It will be adjusted according to the number of periods per year seen in the data. """ # For both de-annualizing the benchmark rate and annualizing result years_past = get_years_past(returns) entries_per_year = returns.shape[0] / years_past adjusted_benchmark_rate = ((1 + benchmark_rate) ** (1 / entries_per_year)) - 1 downside_series = adjusted_benchmark_rate - returns downside_sum_of_squares = (downside_series[downside_series > 0] ** 2).sum() denominator = returns.shape[0] - 1 downside_deviation = np.sqrt(downside_sum_of_squares / denominator) return downside_deviation * np.sqrt(entries_per_year) def compute_sortino_ratio(prices, benchmark_rate=0): """ Calculates the sortino ratio. """ cagr = compute_cagr(prices) return_series = compute_returns(prices) downside_deviation = compute_annualized_downside_deviation(return_series) return (cagr - benchmark_rate) / downside_deviation def compute_jensens_alpha(returns, benchmark_return_series): """ Calculates jensens alpha. Prefers input series have the same index. Handles NAs. :param returns: pd.Series :param benchmark_return_series: pd.Series with benchmark return """ if isinstance(returns, pd.DataFrame): warnings.warn("returns must be pd.Series, taking the first column: {}".format(returns.columns[0])) returns = returns[returns.columns[0]] # Join series along date index and purge NAs df = pd.concat([returns, benchmark_return_series], sort=True, axis=1) df = df.dropna() # Get the appropriate data structure for scikit learn clean_returns = df[df.columns.values[0]] clean_benchmarks = pd.DataFrame(df[df.columns.values[1]]) # Fit a linear regression and return the alpha regression = LinearRegression().fit(clean_benchmarks, y=clean_returns) return regression.intercept_ def compute_drawdown_series(prices, method="simple"): """ Returns the drawdown series """ if method == "simple": evaluator = lambda price, peak: (price / peak) - 1 elif method == "log": evaluator = lambda price, peak: np.log(prices) - np.log(peak) else: ValueError("method should be either simple or log") return evaluator(prices, prices.cummax()) def compute_max_drawdown(prices, method="simple"): """ Simply returns the max drawdown as a float """ return compute_drawdown_series(prices, method=method).min() def compute_calmar_ratio(prices, years_past=None, method="simple"): """ Return the percent max drawdown ratio over the past n years, otherwise known as the Calmar Ratio (3yr) """ if isinstance(years_past, int): # Filter series on past three years last_date = prices.index[-1] n_years_ago = last_date - pd.Timedelta(days=years_past * 365.25) prices = prices[prices.index > n_years_ago] # Compute annualized percent max drawdown ratio percent_drawdown = -compute_max_drawdown(prices, method=method) cagr = compute_cagr(prices) return cagr / percent_drawdown def compute_parametric_var(returns, conf_lvl=.95): """ :param returns pd.Series or pd.DataFrame :param conf_lvl: float, confidence level ref: https://blog.quantinsti.com/calculating-value-at-risk-in-excel-python/ """ mu = np.mean(returns) sigma = np.std(returns) # Percent Point Function VaR = norm.ppf(1 - conf_lvl, mu, sigma) if isinstance(returns, pd.DataFrame): VaR = pd.Series(VaR, index=returns.columns, name="Parametric VaR") return VaR def compute_historical_var(returns, conf_lvl=.95): """ :param returns pd.Series or pd.DataFrame :param conf_lvl: float, confidence level ref: https://blog.quantinsti.com/calculating-value-at-risk-in-excel-python/ """ VaR = returns.quantile(1 - conf_lvl) if isinstance(returns, pd.DataFrame): VaR.name = "Historical VaR" return VaR def compute_corr(ts, df=None): """ computes correlation over all given period if `ts` is pd.Series, then it computes `ts` vs all `df` cols if `ts` is pd.DataFrame and `df` is None, then it computes all pairwise corr between `ts` cols if `ts` is pd.DataFrame and `df` is pd.Series, then it computes all `ts` vs `df` :param ts: pd.Series or pd.DataFrame if pd.Series, then `df` is mandatory and must be pd.Series or pd.DataFrame if pd.DataFrame and `df` is not given, then all pairwise correlations are computed if pd.DataFrame and `df` is pd.Series, then all correlation btw `ts` and `df` are computed :param df: None or pd.Series, pd.DataFrame """ if isinstance(ts, pd.Series) and df is None: print("please provide argument `df` (can't be None if `ts` is pd.Series)") return if isinstance(ts, pd.Series): if isinstance(df, pd.Series): # output: float corr = ts.corr(df) # corr.columns = [ts.name + "-" + df.name] elif isinstance(df, pd.DataFrame): # output: pd.Series corr = df.apply(lambda x: x.corr(ts), axis=0).reset_index(name="corr") # corr.columns = [ts.name + "-" + col for col in corr.columns] if isinstance(ts, pd.DataFrame): if df is None: corr = pd.DataFrame(0, index=ts.columns, columns=ts.columns) for i in range(len(ts.columns)): for j in range(i, len(ts.columns)): corr.iloc[i, j] = ts[ts.columns[i]].corr(ts[ts.columns[j]]) # it's the same corr.iloc[j, i] = corr.iloc[i, j] elif isinstance(df, pd.Series): corr = ts.apply(lambda x: x.corr(df), axis=0) corr.name = "corr" elif isinstance(df, pd.DataFrame): corr = list() for i in range(len(df.columns)): pair_corr = ts.apply(lambda x: x.corr(df[df.columns[i]]), axis=0) # .reset_index(name=df.columns[i]) pair_corr.name = df.columns[i] corr.append(pair_corr) corr = pd.concat(corr, axis=1) return corr def compute_rolling_corr(ts, df=None, window=252): """ compute rolling correlations. if `ts` is pd.Series, then it computes `ts` vs all `df` cols if `ts` is pd.DataFrame and `df` is None, then it computes all pairwise corr between `ts` cols if `ts` is pd.DataFrame and `df` is pd.Series, then it computes all `ts` vs `df` :param ts: pd.Series or pd.DataFrame if pd.Series, then `df` is mandatory and must be pd.Series or pd.DataFrame if pd.DataFrame and `df` is not given, then all pairwise correlations are computed if pd.DataFrame and `df` is pd.Series, then all correlation btw `ts` and `df` are computed :param df: None or pd.Series, pd.DataFrame :param window: int, rolling window """ if isinstance(ts, pd.Series) and df is None: raise TypeError("please provide argument `df` (can't be None if `ts` is pd.Series)") if isinstance(ts, pd.DataFrame) and len(ts.columns) == 1: # if ts is pd.DataFrame with 1 col, convert to pd.Series ts = ts[ts.columns[0]] if isinstance(df, pd.DataFrame) and len(df.columns) == 1: # if df is pd.DataFrame with 1 col, convert to pd.Series df = df[df.columns[0]] if isinstance(ts, pd.Series): if isinstance(df, pd.Series): corr = ts.rolling(window).corr(df).to_frame() corr.columns = [ts.name + "-" + df.name] elif isinstance(df, pd.DataFrame): corr = df.rolling(window).apply(lambda x: x.corr(ts)) corr.columns = [ts.name + "-" + col for col in corr.columns] if isinstance(ts, pd.DataFrame): if df is None: corr = list() for i in range(len(ts.columns) - 1): for j in range(i + 1, len(ts.columns)): pair_corr = ts[ts.columns[i]].rolling(window).corr(ts[ts.columns[j]]).to_frame() pair_corr.columns = [ts.columns[i] + "-" + ts.columns[j]] corr.append(pair_corr) corr = pd.concat(corr, axis=1) elif isinstance(df, pd.Series): corr = list() for i in range(len(ts.columns)): pair_corr = ts[ts.columns[i]].rolling(window).corr(df).to_frame() pair_corr.columns = [ts.columns[i] + "-" + df.name] corr.append(pair_corr) corr = pd.concat(corr, axis=1) corr = corr.dropna() return corr def compute_summary_statistics(ts, return_annualized=True): """ Computes statistics (annualised return and annualised std) for various time-frame Time-frames are: YTD, 1m, 3m, 6m, 1y, 2y, 3y, 5y, ALL :param ts: pd.DataFrame with prices time series :param return_annualized: boolean, if True return annualized returns, otherwise periodic returns :return: pd.DataFrame(s) with summary statistics with column if ts is pd.DataFrame: | ShareClassISIN | metric | interval | value | if ts is pd.Series: | metric | interval | value | """ assert(isinstance(ts, (pd.Series, pd.DataFrame))) # quanti anni è lunga la serie storica? in base a questo capiamo fino a che periodo possiamo calcolare n_years = get_years_past(ts) # calcola ritorni sui vari time-frame. last_date = ts.index.to_list()[-1] ytd_date = last_date + pd.tseries.offsets.YearEnd(-1) one_mo_date = last_date + pd.tseries.offsets.DateOffset(months=-1) three_mo_date = last_date + pd.tseries.offsets.DateOffset(months=-3) six_mo_date = last_date + pd.tseries.offsets.DateOffset(months=-6) one_ye_date = last_date + pd.tseries.offsets.DateOffset(years=-1) two_ye_date = last_date + pd.tseries.offsets.DateOffset(years=-2) three_ye_date = last_date + pd.tseries.offsets.DateOffset(years=-3) five_ye_date = last_date + pd.tseries.offsets.DateOffset(years=-5) ret = compute_returns(ts) if return_annualized: return_function = compute_cagr ret_type = "Annualized Return" else: return_function = compute_allperiod_returns ret_type = "Return" if isinstance(ts, pd.Series): statistics = [ [ret_type, "YTD", return_function(ts.loc[ytd_date:])], [ret_type, "1 Month", return_function(ts.loc[one_mo_date:])], [ret_type, "3 Months", return_function(ts.loc[three_mo_date:])], [ret_type, "6 Months", return_function(ts.loc[six_mo_date:])], [ret_type, "1 Year", return_function(ts.loc[one_ye_date:])], [ret_type, "2 Years", return_function(ts.loc[two_ye_date:])], [ret_type, "3 Years", return_function(ts.loc[three_ye_date:])], [ret_type, "5 Years", return_function(ts.loc[five_ye_date:])], [ret_type, "All Period", return_function(ts)], ["Standard Deviation", "YTD", compute_annualized_volatility(ret.loc[ytd_date:])], ["Standard Deviation", "1 Month", compute_annualized_volatility(ret.loc[one_mo_date:])], ["Standard Deviation", "3 Months", compute_annualized_volatility(ret.loc[three_mo_date:])], ["Standard Deviation", "6 Months", compute_annualized_volatility(ret.loc[six_mo_date:])], ["Standard Deviation", "1 Year", compute_annualized_volatility(ret.loc[one_ye_date:])], ["Standard Deviation", "2 Years", compute_annualized_volatility(ret.loc[two_ye_date:])], ["Standard Deviation", "3 Years", compute_annualized_volatility(ret.loc[three_ye_date:])], ["Standard Deviation", "5 Years", compute_annualized_volatility(ret.loc[five_ye_date:])], ["Standard Deviation", "All Period", compute_annualized_volatility(ret)] ] # crea pd.DataFrame() statistics = pd.DataFrame(statistics, columns=["metric", "interval", "value"]) else: # ts è pd.DataFrame() statistics = pd.concat([ pd.DataFrame({"metric": ret_type, "interval": "YTD", "value": return_function(ts.loc[ytd_date:])}), pd.DataFrame({"metric": ret_type, "interval": "1 Month", "value": return_function(ts.loc[one_mo_date:])}), pd.DataFrame({"metric": ret_type, "interval": "3 Months", "value": return_function(ts.loc[three_mo_date:])}), pd.DataFrame({"metric": ret_type, "interval": "6 Months", "value": return_function(ts.loc[six_mo_date:])}), pd.DataFrame({"metric": ret_type, "interval": "1 Year", "value": return_function(ts.loc[one_ye_date:])}), pd.DataFrame({"metric": ret_type, "interval": "2 Years", "value": return_function(ts.loc[two_ye_date:])}), pd.DataFrame({"metric": ret_type, "interval": "3 Years", "value": return_function(ts.loc[three_ye_date:])}), pd.DataFrame({"metric": ret_type, "interval": "5 Years", "value": return_function(ts.loc[five_ye_date:])}), pd.DataFrame({"metric": ret_type, "interval": "All Period", "value": return_function(ts)}), pd.DataFrame({"metric": "Standard Deviation", "interval": "YTD", "value": compute_annualized_volatility(ret.loc[ytd_date:])}), pd.DataFrame({"metric": "Standard Deviation", "interval": "1 Month", "value": compute_annualized_volatility(ret.loc[one_mo_date:])}), pd.DataFrame({"metric": "Standard Deviation", "interval": "3 Months", "value": compute_annualized_volatility(ret.loc[three_mo_date:])}), pd.DataFrame({"metric": "Standard Deviation", "interval": "6 Months", "value": compute_annualized_volatility(ret.loc[six_mo_date:])}), pd.DataFrame({"metric": "Standard Deviation", "interval": "1 Year", "value": compute_annualized_volatility(ret.loc[one_ye_date:])}), pd.DataFrame({"metric": "Standard Deviation", "interval": "2 Years", "value": compute_annualized_volatility(ret.loc[two_ye_date:])}), pd.DataFrame({"metric": "Standard Deviation", "interval": "3 Years", "value": compute_annualized_volatility(ret.loc[three_ye_date:])}), pd.DataFrame({"metric": "Standard Deviation", "interval": "5 Years", "value": compute_annualized_volatility(ret.loc[five_ye_date:])}), pd.DataFrame({"metric": "Standard Deviation", "interval": "All Period", "value": compute_annualized_volatility(ret)}) ]) statistics = statistics.reset_index() return statistics def compute_turnover(hldg, index="Date", columns="ISIN", values="w_rebase"): """ NB: per il turnover preciso, usare Portfolio().portfolio_returns(verbose=True). quella funzione calcola il turnover usando i pesi end of period. Se si vuole calcolare il turnover di indici o ptf per cui si hanno solo i pesi puntuali alle rebalancing, ma non i prezzi per poter calcolare i pesi end of period, allora usare questa funzione. è un'approssimazione molto fedele. :param hldg: pd.DataFrame with holdings over time :param index: column with dates. if pd.DF is indexed by Dates, then use index=True :param columns: column with instruments identifier (es: "ISIN", "Ticker") :param values: column with weights :return: portfolio turnover over time """ if index is True: # https://docs.quantifiedcode.com/python-anti-patterns/readability/comparison_to_true.html # Dates are in hdlg.index hldg = hldg.reset_index() index = "index" if not all([x in hldg.columns for x in [index, columns, values]]): raise IndexError(f"hldg must contains columns: {index}, {columns}, {values}") # pivot per calcolare più velocemente il turnover hh = hldg.pivot(index=index, columns=columns, values=values) hh = hh.fillna(0) turnover_i = list() for i in range(len(hh)): if i == 0: continue # secondo la definizione di cui sopra, il massimo turnover è 2. se modifichiamo l'allocazione dell'intero # ptf vogliamo turnover=1 # turnover_i.append(np.sum(np.abs(hh.iloc[i] - hh.iloc[i - 1])) / 2) turnover_i.append(np.sum(np.abs(hh.iloc[i] - hh.iloc[i - 1]))) turnover = pd.Series(turnover_i, index=hh.index[1:]) return turnover # PRINT NICE STATISTICS def print_stats(ts, line_length=50): """ given pd.Series or pd.DataFrame of time-series (prices), prints statistics :param ts: ts.index must contain dates :param line_length: int, lenght of line print :return: """ if isinstance(ts, pd.Series): is_series = True elif isinstance(ts, pd.DataFrame): is_series = False else: raise TypeError(f"ts must be pd.Series, pd.DataFrame.") # compute returns ret = compute_returns(ts) def _nice(line, length=50): # print nice line given lenght. assert isinstance(line, str) if line[:2] != "# ": line = "# " + line print(f"{line}{' ' * max(0, (length - len(line) - 2))} #") print("#" * line_length) if is_series: _nice(f"Timeseries: {ts.name}", line_length) else: _nice(f"Timeseries: {', '.join(ts.columns)}", line_length) _nice(f"# Period: {ts.index.min().strftime('%Y-%m-%d')} - {ts.index.max().strftime('%Y-%m-%d')}", line_length) print("#" * line_length) if is_series: _nice(f"CAGR: {compute_cagr(ts):.2%}", line_length) _nice(f"All period return: {compute_allperiod_returns(ts):.2%}", line_length) _nice(f"Volatility: {compute_annualized_volatility(ret):.2%}", line_length) _nice(f"Sharpe Ratio: {compute_sharpe_ratio(ret):.2}", line_length) _nice(f"Sortino Ratio: {compute_sortino_ratio(ts):.2}", line_length) _nice(f"Calmar Ratio: {compute_calmar_ratio(ts):.2}", line_length) _nice(f"Max Drawdown: {compute_max_drawdown(ts):.2%}", line_length) _nice(f"Parametric 95% VaR: {compute_parametric_var(ret):.2%}", line_length) _nice(f"Historical 95% VaR: {compute_historical_var(ret):.2%}", line_length) print("#" * line_length) else: _nice(f"That's all for now folks") print("#" * line_length) # REPLICA def compute_replica_groupby(holdings, groupby=["country", "sector"], overall_coverage=.85, groupby_coverage=None, threshold=.02, rebase=1, minw=0, maxw=1, id_col="isin", w_col="w", keep_all_cols=True): """ Compute replica of a portfolio (could be index), grouping on key specified by `groupby` :param holdings: pd.DataFrame with components for a single date :param groupby: key for the index replication. must be cols of holdings. str or list of str :param overall_coverage: percentage of index covering. float :param groupby_coverage: None or float. if float, then also check for coverage inside groupby. Makes sense to be used if index is weighted by marketcap :param threshold: minimum weight a groupby cell must have in order to get more than 1 stock. float :param rebase: int/float or None. if None, do not rebase. if not None, rebase to value of rebase :param minw: float, minimum weight :param maxw: float, maximum weight :param id_col: str, column of holdings. col of the identifier :param w_col: str, column of holdings. col of the weights :param keep_all_cols: boolean, if True keep all columns from initial holdings :return replica portfolio """ # check if inputs are of the correct type if not isinstance(holdings, pd.DataFrame): raise TypeError("holdings must be pd.DataFrame") if not isinstance(groupby, (str, list)): raise TypeError("groupby must be str or list of str") if isinstance(groupby, list): if not all(isinstance(item, str) for item in groupby): raise TypeError("all elements of groupby must be str") else: groupby = [groupby] if not isinstance(overall_coverage, (int, float)): raise TypeError("overall_coverage must be a float") if groupby_coverage is not None: if not isinstance(groupby_coverage, float): raise TypeError("groupby_coverage must be None or float") if not isinstance(threshold, (int, float)): raise TypeError("threshold must be a float") if rebase is not None: if not isinstance(rebase, (int, float)): raise TypeError("groupby_coverage must be None or int/float") assert isinstance(minw, (int, float)), "`minw` must be float" assert isinstance(maxw, (int, float)), "`maxw` must be float" if (minw < 0) | (minw >= 1): raise ValueError("`minw` in [0, 1) required") if (maxw <= 0) | (maxw > 1): raise ValueError("`maxw` in (0, 1] required") if not isinstance(id_col, (str, list)): raise TypeError("id_col must be str or list of str") if isinstance(id_col, list): if not all(isinstance(item, str) for item in id_col): raise TypeError("all elements of id_col must be str") else: id_col = [id_col] if not isinstance(w_col, str): raise TypeError("w_col must be str") if not isinstance(keep_all_cols, bool): raise TypeError("keep_all_cols must be boolean") # check if all needed columns are in holdings required_cols = [*id_col, w_col, *groupby] if not set(required_cols).issubset(set(holdings.columns)): raise Exception(f"components must have columns: {id_col}, {w_col}, {groupby}") def cut_coverage(df, col, lvl): """ :param df: pd.DataFrame with col in df.columns :param col: str, df's column of floats :param lvl: float, threshold where to cut """ x = df[col].values # https://stackoverflow.com/questions/2361426/get-the-first-item-from-an-iterable-that-matches-a-condition cut_idx = next((i for i, y in enumerate(x) if y > lvl), 1) return df.iloc[:cut_idx] if rebase is not None: # rebase weights holdings[w_col] = holdings[w_col] / holdings[w_col].sum() * rebase if keep_all_cols: # mantieni da parte le colonne non necessarie, fai il merge in fondo other_cols = list(set(holdings.columns).difference(required_cols)) other_cols = [*other_cols, *id_col] if len(other_cols) > 1: df_other_cols = holdings[other_cols] # select only needed columns hldg = holdings[required_cols] stat = hldg.groupby(groupby).sum() # sort descending by weight stat = stat.sort_values(by=[w_col], ascending=False) # compute cumulative sum stat["cumulative_sum"] = stat[w_col].cumsum() stat = stat.reset_index() # select groupby cells up to `overall_coverage` cells = cut_coverage(stat, col="cumulative_sum", lvl=overall_coverage) cells = cells.copy() print(f"Selecting first {len(cells)} out of {len(stat)} combinations of {groupby}") # rebase weight to 1 on selected cells cells["w_rebase"] = cells[w_col] / cells[w_col].sum() # assegna il numero di titoli da scegliere all'interno di ogni combinazione groupby cells["n_stocks"] = np.ceil(cells["w_rebase"] / threshold) if groupby_coverage is None: # first method # gli n assegnati NON vengono modificati # vengono scelte le prime n stock per weight in ogni combinazione groupby # attacca a `hldg` le informazioni sulla numerosità delle coppie sector/country hldg = pd.merge(hldg, cells[[*groupby, "n_stocks"]], how="left", on=groupby) # sort by groupby and weight, ascending order for groupby and descending for weight hldg = hldg.sort_values([*groupby, w_col], ascending=[*[True] * len(groupby), False]) # NA sono le celle non scelte replica = hldg.dropna() # select first n_stock for each cells # select first x.shape[0] if n_stock > x.shape[0] replica = replica.groupby(groupby).apply(lambda x: x.iloc[:min(int(x["n_stocks"].unique()), x.shape[0])]) replica = replica.reset_index(drop=True) else: # second method # es: per sector == 'a' & country == 'A' ho n = 2, e le seguenti stock: # | ticker | w | # | aa | .15 | # | bb | .12 | # | cc | .10 | # | dd | .09 | # | ee | .08 | # con METODO 1 verrebbero scelte le stock `aa` e `bb`, poiché le prime 2 (n = 2) # per marketcap # con METOOD 2 vengono scelte le stock `aa`, `bb` e `cc` per rispettare la # `copertura_groupby` = .7 # tot_w = .15 + .12 + .1 + .09 + .08 = .54 # tot_w * copertura_groupby = .378 <-- quando la cumulata dei pesi raggiunge .378 TAGLIA ! # cumsum(w) = .15, .27, .37, .46, .54 # tagliamo al terzo elemento, per cui la `cumsum` raggiunge il massimo valore # che è minore di .378 # coppie groupby da cui devo pescare k stocks s.t. venga replicato almeno # copertura_groupby% della capitalizzazione della coppia cells_k = cells.loc[cells["n_stocks"] > 1] hldg_k = pd.merge(hldg, cells_k[groupby], how="inner", on=groupby) # sort by groupby and weight, ascending order for groupby and descending for weight hldg_k = hldg_k.sort_values([*groupby, w_col], ascending=[*[True] * len(groupby), False]) # calcola il peso cumulato delle combinazioni groupby hldg_k["cumulative_sum"] = \ hldg_k.groupby(groupby).apply(lambda x: x[w_col].cumsum() / x[w_col].sum()).values # prendi le prime k stocks s.t. vi è una copertura almeno del copertura_groupby% replica = hldg_k.groupby(groupby).apply(lambda x: cut_coverage(x, col="cumulative_sum", lvl=groupby_coverage)) replica = replica.reset_index(drop=True) del replica["cumulative_sum"] # combinazioni groupby da cui devo pescare solo 1 stock cells_k = cells.loc[cells["n_stocks"] == 1] if len(cells_k): hldg_k = pd.merge(hldg, cells_k[groupby], how="inner", on=groupby) # sort by groupby and weight, ascending order for groupby and descending for weight hldg_k = hldg_k.sort_values([*groupby, w_col], ascending=[*[True] * len(groupby), False]) # prendi le prime stocks in ogni combinazione ed aggiungile a ptf replica = replica.append( hldg_k.groupby(groupby).apply(lambda x: x.iloc[0]).reset_index(drop=True) ) print(f"Selected {replica.shape[0]} stocks out of {holdings.shape[0]}") # set replica weights # aggiungi colonna contente il peso di ogni combinazione groupby replica =
pd.merge(replica, cells[[*groupby, "w_rebase"]], how="left", on=groupby)
pandas.merge
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import re import pandas as pd def get_date_etf_list_from_data(directory='data'): """ Returns list of dates and etfs based on files in the given directory Parameters ---------- directory : str, optional Directory where CSV files are stored. The default is 'data'. Returns ------- dates : list of str Strings of dates found in files. Format YYYY-MM-DD. etfs : list of str Strings of ETF ticker symbols. """ files = os.listdir(directory) files = [f.split('.csv')[0] for f in files if '.csv' in f] dates = set() etfs = set() ba_data_name = re.compile('[0-9]{4}\-[0-9]{2}\-[0-9]{2}_[A-Z]{2,6}') for f in files: if ba_data_name.match(f): date, etf = f.split('_') dates.add(date) etfs.add(etf) return dates, etfs def create_and_save_quoated_spread_data(directory='data', sample_frequency=60, ignore_errors=1): """ Convert quoted spreads from various CSV files of various days' and ETFs' data to one data frame. Parameters ---------- directory : str, optional Folder containing data to be read. The default is 'data'. sample_frequency : int, optional Number of seconds of each data lump. The default is 60. ignore_errors : int, optional Level of ignoring errors in file reading: 0 = raise exceptions 1 = catch and print unavailable files 2 = catch and pass Returns ------- quoted_spread : pd.DataFrame If an exeption occurs, returns data frame of quoted spread data. If no exception, returns None. """ dates, etfs = get_date_etf_list_from_data(directory) mi = pd.MultiIndex.from_product([dates, etfs], names=['dates','etf']) quoted_spread = pd.DataFrame(columns=mi) for index, date in enumerate(dates): for etf in etfs: try: df = pd.read_csv(os.path.join(directory, '{}_{}.csv'.format(date, etf)), index_col=0) except FileNotFoundError as e: if ignore_errors == 0: raise e elif ignore_errors == 1: print("Failed to find file for {} on {}".format(etf, date)) elif ignore_errors == 2: pass else: raise AttributeError("ignore_errors must be 0, 1, 2. Given {}".format(ignore_errors)) quoted_spread[(date, etf)] = df['relative spread'] if index%10 == 0: print('finished {}/{} dates'.format(index, len(dates))) try: basetime =
pd.to_datetime('2021-01-01')
pandas.to_datetime
""" parquet compat """ from __future__ import annotations from distutils.version import LooseVersion import io import os from typing import Any, AnyStr, Dict, List, Optional, Tuple from warnings import catch_warnings from pandas._typing import FilePathOrBuffer, StorageOptions from pandas.compat._optional import import_optional_dependency from pandas.errors import AbstractMethodError from pandas.util._decorators import doc from pandas import DataFrame, MultiIndex, get_option from pandas.core import generic from pandas.io.common import ( IOHandles, get_handle, is_fsspec_url, is_url, stringify_path, ) def get_engine(engine: str) -> BaseImpl: """ return our implementation """ if engine == "auto": engine = get_option("io.parquet.engine") if engine == "auto": # try engines in this order engine_classes = [PyArrowImpl, FastParquetImpl] error_msgs = "" for engine_class in engine_classes: try: return engine_class() except ImportError as err: error_msgs += "\n - " + str(err) raise ImportError( "Unable to find a usable engine; " "tried using: 'pyarrow', 'fastparquet'.\n" "A suitable version of " "pyarrow or fastparquet is required for parquet " "support.\n" "Trying to import the above resulted in these errors:" f"{error_msgs}" ) if engine == "pyarrow": return PyArrowImpl() elif engine == "fastparquet": return FastParquetImpl() raise ValueError("engine must be one of 'pyarrow', 'fastparquet'") def _get_path_or_handle( path: FilePathOrBuffer, fs: Any, storage_options: StorageOptions = None, mode: str = "rb", is_dir: bool = False, ) -> Tuple[FilePathOrBuffer, Optional[IOHandles], Any]: """File handling for PyArrow.""" path_or_handle = stringify_path(path) if is_fsspec_url(path_or_handle) and fs is None: fsspec = import_optional_dependency("fsspec") fs, path_or_handle = fsspec.core.url_to_fs( path_or_handle, **(storage_options or {}) ) elif storage_options and (not is_url(path_or_handle) or mode != "rb"): # can't write to a remote url # without making use of fsspec at the moment raise ValueError("storage_options passed with buffer, or non-supported URL") handles = None if ( not fs and not is_dir and isinstance(path_or_handle, str) and not os.path.isdir(path_or_handle) ): # use get_handle only when we are very certain that it is not a directory # fsspec resources can also point to directories # this branch is used for example when reading from non-fsspec URLs handles = get_handle( path_or_handle, mode, is_text=False, storage_options=storage_options ) fs = None path_or_handle = handles.handle return path_or_handle, handles, fs class BaseImpl: @staticmethod def validate_dataframe(df: DataFrame): if not isinstance(df, DataFrame): raise ValueError("to_parquet only supports IO with DataFrames") # must have value column names for all index levels (strings only) if isinstance(df.columns, MultiIndex): if not all( x.inferred_type in {"string", "empty"} for x in df.columns.levels ): raise ValueError( """ parquet must have string column names for all values in each level of the MultiIndex """ ) else: if df.columns.inferred_type not in {"string", "empty"}: raise ValueError("parquet must have string column names") # index level names must be strings valid_names = all( isinstance(name, str) for name in df.index.names if name is not None ) if not valid_names: raise ValueError("Index level names must be strings") def write(self, df: DataFrame, path, compression, **kwargs): raise AbstractMethodError(self) def read(self, path, columns=None, **kwargs): raise AbstractMethodError(self) class PyArrowImpl(BaseImpl): def __init__(self): import_optional_dependency( "pyarrow", extra="pyarrow is required for parquet support." ) import pyarrow.parquet # import utils to register the pyarrow extension types import pandas.core.arrays._arrow_utils # noqa self.api = pyarrow def write( self, df: DataFrame, path: FilePathOrBuffer[AnyStr], compression: Optional[str] = "snappy", index: Optional[bool] = None, storage_options: StorageOptions = None, partition_cols: Optional[List[str]] = None, **kwargs, ): self.validate_dataframe(df) from_pandas_kwargs: Dict[str, Any] = {"schema": kwargs.pop("schema", None)} if index is not None: from_pandas_kwargs["preserve_index"] = index table = self.api.Table.from_pandas(df, **from_pandas_kwargs) path_or_handle, handles, kwargs["filesystem"] = _get_path_or_handle( path, kwargs.pop("filesystem", None), storage_options=storage_options, mode="wb", is_dir=partition_cols is not None, ) try: if partition_cols is not None: # writes to multiple files under the given path self.api.parquet.write_to_dataset( table, path_or_handle, compression=compression, partition_cols=partition_cols, **kwargs, ) else: # write to single output file self.api.parquet.write_table( table, path_or_handle, compression=compression, **kwargs ) finally: if handles is not None: handles.close() def read( self, path, columns=None, use_nullable_dtypes=False, storage_options: StorageOptions = None, **kwargs, ): kwargs["use_pandas_metadata"] = True to_pandas_kwargs = {} if use_nullable_dtypes: if LooseVersion(self.api.__version__) >= "0.16": import pandas as pd mapping = { self.api.int8(): pd.Int8Dtype(), self.api.int16(): pd.Int16Dtype(), self.api.int32(): pd.Int32Dtype(), self.api.int64(): pd.Int64Dtype(), self.api.uint8(): pd.UInt8Dtype(), self.api.uint16():
pd.UInt16Dtype()
pandas.UInt16Dtype
# # Copyright 2018 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from datetime import time from os.path import abspath, dirname, join from unittest import TestCase import typing import re import functools import itertools import pathlib from collections import abc import pytest import numpy as np import pandas as pd import pandas.testing as tm from pandas import Timedelta, read_csv from parameterized import parameterized import pytz from pytz import UTC from toolz import concat from exchange_calendars import get_calendar from exchange_calendars.calendar_utils import ( ExchangeCalendarDispatcher, _default_calendar_aliases, _default_calendar_factories, ) from exchange_calendars.errors import ( CalendarNameCollision, InvalidCalendarName, NoSessionsError, ) from exchange_calendars.exchange_calendar import ExchangeCalendar, days_at_time from .test_utils import T class FakeCalendar(ExchangeCalendar): name = "DMY" tz = "Asia/Ulaanbaatar" open_times = ((None, time(11, 13)),) close_times = ((None, time(11, 49)),) class CalendarRegistrationTestCase(TestCase): def setup_method(self, method): self.dummy_cal_type = FakeCalendar self.dispatcher = ExchangeCalendarDispatcher({}, {}, {}) def teardown_method(self, method): self.dispatcher.clear_calendars() def test_register_calendar(self): # Build a fake calendar dummy_cal = self.dummy_cal_type() # Try to register and retrieve the calendar self.dispatcher.register_calendar("DMY", dummy_cal) retr_cal = self.dispatcher.get_calendar("DMY") self.assertEqual(dummy_cal, retr_cal) # Try to register again, expecting a name collision with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar("DMY", dummy_cal) # Deregister the calendar and ensure that it is removed self.dispatcher.deregister_calendar("DMY") with self.assertRaises(InvalidCalendarName): self.dispatcher.get_calendar("DMY") def test_register_calendar_type(self): self.dispatcher.register_calendar_type("DMY", self.dummy_cal_type) retr_cal = self.dispatcher.get_calendar("DMY") self.assertEqual(self.dummy_cal_type, type(retr_cal)) def test_both_places_are_checked(self): dummy_cal = self.dummy_cal_type() # if instance is registered, can't register type with same name self.dispatcher.register_calendar("DMY", dummy_cal) with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar_type("DMY", type(dummy_cal)) self.dispatcher.deregister_calendar("DMY") # if type is registered, can't register instance with same name self.dispatcher.register_calendar_type("DMY", type(dummy_cal)) with self.assertRaises(CalendarNameCollision): self.dispatcher.register_calendar("DMY", dummy_cal) def test_force_registration(self): self.dispatcher.register_calendar("DMY", self.dummy_cal_type()) first_dummy = self.dispatcher.get_calendar("DMY") # force-register a new instance self.dispatcher.register_calendar("DMY", self.dummy_cal_type(), force=True) second_dummy = self.dispatcher.get_calendar("DMY") self.assertNotEqual(first_dummy, second_dummy) class DefaultsTestCase(TestCase): def test_default_calendars(self): dispatcher = ExchangeCalendarDispatcher( calendars={}, calendar_factories=_default_calendar_factories, aliases=_default_calendar_aliases, ) # These are ordered aliases first, so that we can deregister the # canonical factories when we're done with them, and we'll be done with # them after they've been used by all aliases and by canonical name. for name in concat([_default_calendar_aliases, _default_calendar_factories]): self.assertIsNotNone( dispatcher.get_calendar(name), "get_calendar(%r) returned None" % name ) dispatcher.deregister_calendar(name) class DaysAtTimeTestCase(TestCase): @parameterized.expand( [ # NYSE standard day ( "2016-07-19", 0, time(9, 31), pytz.timezone("America/New_York"), "2016-07-19 9:31", ), # CME standard day ( "2016-07-19", -1, time(17, 1), pytz.timezone("America/Chicago"), "2016-07-18 17:01", ), # CME day after DST start ( "2004-04-05", -1, time(17, 1), pytz.timezone("America/Chicago"), "2004-04-04 17:01", ), # ICE day after DST start ( "1990-04-02", -1, time(19, 1), pytz.timezone("America/Chicago"), "1990-04-01 19:01", ), ] ) def test_days_at_time(self, day, day_offset, time_offset, tz, expected): days = pd.DatetimeIndex([pd.Timestamp(day, tz=tz)]) result = days_at_time(days, time_offset, tz, day_offset)[0] expected = pd.Timestamp(expected, tz=tz).tz_convert(UTC) self.assertEqual(result, expected) class ExchangeCalendarTestBase(object): # Override in subclasses. answer_key_filename = None calendar_class = None # Affects test_start_bound. Should be set to earliest date for which # calendar can be instantiated, or None if no start bound. START_BOUND: pd.Timestamp | None = None # Affects test_end_bound. Should be set to latest date for which # calendar can be instantiated, or None if no end bound. END_BOUND: pd.Timestamp | None = None # Affects tests that care about the empty periods between sessions. Should # be set to False for 24/7 calendars. GAPS_BETWEEN_SESSIONS = True # Affects tests that care about early closes. Should be set to False for # calendars that don't have any early closes. HAVE_EARLY_CLOSES = True # Affects tests that care about late opens. Since most do not, defaulting # to False. HAVE_LATE_OPENS = False # Affects test_for_breaks. True if one or more calendar sessions has a # break. HAVE_BREAKS = False # Affects test_session_has_break. SESSION_WITH_BREAK = None # None if no session has a break SESSION_WITHOUT_BREAK = T("2011-06-15") # None if all sessions have breaks # Affects test_sanity_check_session_lengths. Should be set to the largest # number of hours that ever appear in a single session. MAX_SESSION_HOURS = 0 # Affects test_minute_index_to_session_labels. # Change these if the start/end dates of your test suite don't contain the # defaults. MINUTE_INDEX_TO_SESSION_LABELS_START = pd.Timestamp("2011-01-04", tz=UTC) MINUTE_INDEX_TO_SESSION_LABELS_END = pd.Timestamp("2011-04-04", tz=UTC) # Affects tests around daylight savings. If possible, should contain two # dates that are not both in the same daylight savings regime. DAYLIGHT_SAVINGS_DATES = ["2004-04-05", "2004-11-01"] # Affects test_start_end. Change these if your calendar start/end # dates between 2010-01-03 and 2010-01-10 don't match the defaults. TEST_START_END_FIRST = pd.Timestamp("2010-01-03", tz=UTC) TEST_START_END_LAST = pd.Timestamp("2010-01-10", tz=UTC) TEST_START_END_EXPECTED_FIRST = pd.Timestamp("2010-01-04", tz=UTC) TEST_START_END_EXPECTED_LAST = pd.Timestamp("2010-01-08", tz=UTC) @staticmethod def load_answer_key(filename): """ Load a CSV from tests/resources/{filename}.csv """ fullpath = join( dirname(abspath(__file__)), "./resources", filename + ".csv", ) return read_csv( fullpath, index_col=0, # NOTE: Merely passing parse_dates=True doesn't cause pandas to set # the dtype correctly, and passing all reasonable inputs to the # dtype kwarg cause read_csv to barf. parse_dates=[0, 1, 2], date_parser=lambda x: pd.Timestamp(x, tz=UTC), ) @classmethod def setup_class(cls): cls.answers = cls.load_answer_key(cls.answer_key_filename) cls.start_date = cls.answers.index[0] cls.end_date = cls.answers.index[-1] cls.calendar = cls.calendar_class(cls.start_date, cls.end_date) cls.one_minute = pd.Timedelta(1, "T") cls.one_hour = pd.Timedelta(1, "H") cls.one_day = pd.Timedelta(1, "D") cls.today = pd.Timestamp.now(tz="UTC").floor("D") @classmethod def teardown_class(cls): cls.calendar = None cls.answers = None def test_bound_start(self): if self.START_BOUND is not None: cal = self.calendar_class(self.START_BOUND, self.today) self.assertIsInstance(cal, ExchangeCalendar) start = self.START_BOUND - pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{start}")): self.calendar_class(start, self.today) else: # verify no bound imposed cal = self.calendar_class(pd.Timestamp("1902-01-01", tz="UTC"), self.today) self.assertIsInstance(cal, ExchangeCalendar) def test_bound_end(self): if self.END_BOUND is not None: cal = self.calendar_class(self.today, self.END_BOUND) self.assertIsInstance(cal, ExchangeCalendar) end = self.END_BOUND + pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{end}")): self.calendar_class(self.today, end) else: # verify no bound imposed cal = self.calendar_class(self.today, pd.Timestamp("2050-01-01", tz="UTC")) self.assertIsInstance(cal, ExchangeCalendar) def test_sanity_check_session_lengths(self): # make sure that no session is longer than self.MAX_SESSION_HOURS hours for session in self.calendar.all_sessions: o, c = self.calendar.open_and_close_for_session(session) delta = c - o self.assertLessEqual(delta.seconds / 3600, self.MAX_SESSION_HOURS) def test_calculated_against_csv(self): tm.assert_index_equal(self.calendar.schedule.index, self.answers.index) def test_adhoc_holidays_specification(self): """adhoc holidays should be tz-naive (#33, #39).""" dti = pd.DatetimeIndex(self.calendar.adhoc_holidays) assert dti.tz is None def test_is_open_on_minute(self): one_minute = pd.Timedelta(minutes=1) m = self.calendar.is_open_on_minute for market_minute in self.answers.market_open[1:]: market_minute_utc = market_minute # The exchange should be classified as open on its first minute self.assertTrue(m(market_minute_utc, _parse=False)) if self.GAPS_BETWEEN_SESSIONS: # Decrement minute by one, to minute where the market was not # open pre_market = market_minute_utc - one_minute self.assertFalse(m(pre_market, _parse=False)) for market_minute in self.answers.market_close[:-1]: close_minute_utc = market_minute # should be open on its last minute self.assertTrue(m(close_minute_utc, _parse=False)) if self.GAPS_BETWEEN_SESSIONS: # increment minute by one minute, should be closed post_market = close_minute_utc + one_minute self.assertFalse(m(post_market, _parse=False)) def _verify_minute( self, calendar, minute, next_open_answer, prev_open_answer, next_close_answer, prev_close_answer, ): next_open = calendar.next_open(minute, _parse=False) self.assertEqual(next_open, next_open_answer) prev_open = self.calendar.previous_open(minute, _parse=False) self.assertEqual(prev_open, prev_open_answer) next_close = self.calendar.next_close(minute, _parse=False) self.assertEqual(next_close, next_close_answer) prev_close = self.calendar.previous_close(minute, _parse=False) self.assertEqual(prev_close, prev_close_answer) def test_next_prev_open_close(self): # for each session, check: # - the minute before the open (if gaps exist between sessions) # - the first minute of the session # - the second minute of the session # - the minute before the close # - the last minute of the session # - the first minute after the close (if gaps exist between sessions) opens = self.answers.market_open.iloc[1:-2] closes = self.answers.market_close.iloc[1:-2] previous_opens = self.answers.market_open.iloc[:-1] previous_closes = self.answers.market_close.iloc[:-1] next_opens = self.answers.market_open.iloc[2:] next_closes = self.answers.market_close.iloc[2:] for ( open_minute, close_minute, previous_open, previous_close, next_open, next_close, ) in zip( opens, closes, previous_opens, previous_closes, next_opens, next_closes ): minute_before_open = open_minute - self.one_minute # minute before open if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, minute_before_open, open_minute, previous_open, close_minute, previous_close, ) # open minute self._verify_minute( self.calendar, open_minute, next_open, previous_open, close_minute, previous_close, ) # second minute of session self._verify_minute( self.calendar, open_minute + self.one_minute, next_open, open_minute, close_minute, previous_close, ) # minute before the close self._verify_minute( self.calendar, close_minute - self.one_minute, next_open, open_minute, close_minute, previous_close, ) # the close self._verify_minute( self.calendar, close_minute, next_open, open_minute, next_close, previous_close, ) # minute after the close if self.GAPS_BETWEEN_SESSIONS: self._verify_minute( self.calendar, close_minute + self.one_minute, next_open, open_minute, next_close, close_minute, ) def test_next_prev_minute(self): all_minutes = self.calendar.all_minutes # test 20,000 minutes because it takes too long to do the rest. for idx, minute in enumerate(all_minutes[1:20000]): self.assertEqual( all_minutes[idx + 2], self.calendar.next_minute(minute, _parse=False) ) self.assertEqual( all_minutes[idx], self.calendar.previous_minute(minute, _parse=False) ) # test a couple of non-market minutes if self.GAPS_BETWEEN_SESSIONS: for open_minute in self.answers.market_open[1:]: hour_before_open = open_minute - self.one_hour self.assertEqual( open_minute, self.calendar.next_minute(hour_before_open, _parse=False), ) for close_minute in self.answers.market_close[1:]: hour_after_close = close_minute + self.one_hour self.assertEqual( close_minute, self.calendar.previous_minute(hour_after_close, _parse=False), ) def test_date_to_session_label(self): m = self.calendar.date_to_session_label sessions = self.answers.index[:30] # first 30 sessions # test for error if request session prior to first calendar session. date = self.answers.index[0] - self.one_day error_msg = ( "Cannot get a session label prior to the first calendar" f" session ('{self.answers.index[0]}'). Consider passing" " `direction` as 'next'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(date, "previous", _parse=False) # direction as "previous" dates = pd.date_range(sessions[0], sessions[-1], freq="D") last_session = None for date in dates: session_label = m(date, "previous", _parse=False) if date in sessions: assert session_label == date last_session = session_label else: assert session_label == last_session # direction as "next" last_session = None for date in dates.sort_values(ascending=False): session_label = m(date, "next", _parse=False) if date in sessions: assert session_label == date last_session = session_label else: assert session_label == last_session # test for error if request session after last calendar session. date = self.answers.index[-1] + self.one_day error_msg = ( "Cannot get a session label later than the last calendar" f" session ('{self.answers.index[-1]}'). Consider passing" " `direction` as 'previous'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(date, "next", _parse=False) if self.GAPS_BETWEEN_SESSIONS: not_sessions = dates[~dates.isin(sessions)][:5] for not_session in not_sessions: error_msg = ( f"`date` '{not_session}' does not represent a session. Consider" " passing a `direction`." ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, "none", _parse=False) # test default behaviour with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, _parse=False) # non-valid direction (can only be thrown if gaps between sessions) error_msg = ( "'not a direction' is not a valid `direction`. Valid `direction`" ' values are "next", "previous" and "none".' ) with pytest.raises(ValueError, match=re.escape(error_msg)): m(not_session, "not a direction", _parse=False) def test_minute_to_session_label(self): m = self.calendar.minute_to_session_label # minute is prior to first session's open minute_before_first_open = self.answers.iloc[0].market_open - self.one_minute session_label = self.answers.index[0] minutes_that_resolve_to_this_session = [ m(minute_before_first_open, _parse=False), m(minute_before_first_open, direction="next", _parse=False), ] unique_session_labels = set(minutes_that_resolve_to_this_session) self.assertTrue(len(unique_session_labels) == 1) self.assertIn(session_label, unique_session_labels) with self.assertRaises(ValueError): m(minute_before_first_open, direction="previous", _parse=False) with self.assertRaises(ValueError): m(minute_before_first_open, direction="none", _parse=False) # minute is between first session's open and last session's close for idx, (session_label, open_minute, close_minute, _, _) in enumerate( self.answers.iloc[1:-2].itertuples(name=None) ): hour_into_session = open_minute + self.one_hour minute_before_session = open_minute - self.one_minute minute_after_session = close_minute + self.one_minute next_session_label = self.answers.index[idx + 2] previous_session_label = self.answers.index[idx] # verify that minutes inside a session resolve correctly minutes_that_resolve_to_this_session = [ m(open_minute, _parse=False), m(open_minute, direction="next", _parse=False), m(open_minute, direction="previous", _parse=False), m(open_minute, direction="none", _parse=False), m(hour_into_session, _parse=False), m(hour_into_session, direction="next", _parse=False), m(hour_into_session, direction="previous", _parse=False), m(hour_into_session, direction="none", _parse=False), m(close_minute), m(close_minute, direction="next", _parse=False), m(close_minute, direction="previous", _parse=False), m(close_minute, direction="none", _parse=False), session_label, ] if self.GAPS_BETWEEN_SESSIONS: minutes_that_resolve_to_this_session.append( m(minute_before_session, _parse=False) ) minutes_that_resolve_to_this_session.append( m(minute_before_session, direction="next", _parse=False) ) minutes_that_resolve_to_this_session.append( m(minute_after_session, direction="previous", _parse=False) ) self.assertTrue( all( x == minutes_that_resolve_to_this_session[0] for x in minutes_that_resolve_to_this_session ) ) minutes_that_resolve_to_next_session = [ m(minute_after_session, _parse=False), m(minute_after_session, direction="next", _parse=False), next_session_label, ] self.assertTrue( all( x == minutes_that_resolve_to_next_session[0] for x in minutes_that_resolve_to_next_session ) ) self.assertEqual( m(minute_before_session, direction="previous", _parse=False), previous_session_label, ) if self.GAPS_BETWEEN_SESSIONS: # Make sure we use the cache correctly minutes_that_resolve_to_different_sessions = [ m(minute_after_session, direction="next", _parse=False), m(minute_after_session, direction="previous", _parse=False), m(minute_after_session, direction="next", _parse=False), ] self.assertEqual( minutes_that_resolve_to_different_sessions, [next_session_label, session_label, next_session_label], ) # make sure that exceptions are raised at the right time with self.assertRaises(ValueError): m(open_minute, "asdf", _parse=False) if self.GAPS_BETWEEN_SESSIONS: with self.assertRaises(ValueError): m(minute_before_session, direction="none", _parse=False) # minute is later than last session's close minute_after_last_close = self.answers.iloc[-1].market_close + self.one_minute session_label = self.answers.index[-1] minute_that_resolves_to_session_label = m( minute_after_last_close, direction="previous", _parse=False ) self.assertEqual(session_label, minute_that_resolves_to_session_label) with self.assertRaises(ValueError): m(minute_after_last_close, _parse=False) with self.assertRaises(ValueError): m(minute_after_last_close, direction="next", _parse=False) with self.assertRaises(ValueError): m(minute_after_last_close, direction="none", _parse=False) @parameterized.expand( [ (1, 0), (2, 0), (2, 1), ] ) def test_minute_index_to_session_labels(self, interval, offset): minutes = self.calendar.minutes_for_sessions_in_range( self.MINUTE_INDEX_TO_SESSION_LABELS_START, self.MINUTE_INDEX_TO_SESSION_LABELS_END, ) minutes = minutes[range(offset, len(minutes), interval)] np.testing.assert_array_equal( pd.DatetimeIndex(minutes.map(self.calendar.minute_to_session_label)), self.calendar.minute_index_to_session_labels(minutes), ) def test_next_prev_session(self): session_labels = self.answers.index[1:-2] max_idx = len(session_labels) - 1 # the very first session first_session_label = self.answers.index[0] with self.assertRaises(ValueError): self.calendar.previous_session_label(first_session_label, _parse=False) # all the sessions in the middle for idx, session_label in enumerate(session_labels): if idx < max_idx: self.assertEqual( self.calendar.next_session_label(session_label, _parse=False), session_labels[idx + 1], ) if idx > 0: self.assertEqual( self.calendar.previous_session_label(session_label, _parse=False), session_labels[idx - 1], ) # the very last session last_session_label = self.answers.index[-1] with self.assertRaises(ValueError): self.calendar.next_session_label(last_session_label, _parse=False) @staticmethod def _find_full_session(calendar): for session_label in calendar.schedule.index: if session_label not in calendar.early_closes: return session_label return None def test_minutes_for_period(self): # full session # find a session that isn't an early close. start from the first # session, should be quick. full_session_label = self._find_full_session(self.calendar) if full_session_label is None: raise ValueError("Cannot find a full session to test!") minutes = self.calendar.minutes_for_session(full_session_label) _open, _close = self.calendar.open_and_close_for_session(full_session_label) _break_start, _break_end = self.calendar.break_start_and_end_for_session( full_session_label ) if not pd.isnull(_break_start): constructed_minutes = np.concatenate( [ pd.date_range(start=_open, end=_break_start, freq="min"), pd.date_range(start=_break_end, end=_close, freq="min"), ] ) else: constructed_minutes = pd.date_range(start=_open, end=_close, freq="min") np.testing.assert_array_equal( minutes, constructed_minutes, ) # early close period if self.HAVE_EARLY_CLOSES: early_close_session_label = self.calendar.early_closes[0] minutes_for_early_close = self.calendar.minutes_for_session( early_close_session_label ) _open, _close = self.calendar.open_and_close_for_session( early_close_session_label ) np.testing.assert_array_equal( minutes_for_early_close, pd.date_range(start=_open, end=_close, freq="min"), ) # late open period if self.HAVE_LATE_OPENS: late_open_session_label = self.calendar.late_opens[0] minutes_for_late_open = self.calendar.minutes_for_session( late_open_session_label ) _open, _close = self.calendar.open_and_close_for_session( late_open_session_label ) np.testing.assert_array_equal( minutes_for_late_open, pd.date_range(start=_open, end=_close, freq="min"), ) def test_sessions_in_range(self): # pick two sessions session_count = len(self.calendar.schedule.index) first_idx = session_count // 3 second_idx = 2 * first_idx first_session_label = self.calendar.schedule.index[first_idx] second_session_label = self.calendar.schedule.index[second_idx] answer_key = self.calendar.schedule.index[first_idx : second_idx + 1] rtrn = self.calendar.sessions_in_range( first_session_label, second_session_label, _parse=False ) np.testing.assert_array_equal(answer_key, rtrn) def get_session_block(self): """ Get an "interesting" range of three sessions in a row. By default this tries to find and return a (full session, early close session, full session) block. """ if not self.HAVE_EARLY_CLOSES: # If we don't have any early closes, just return a "random" chunk # of three sessions. return self.calendar.all_sessions[10:13] shortened_session = self.calendar.early_closes[0] shortened_session_idx = self.calendar.schedule.index.get_loc(shortened_session) session_before = self.calendar.schedule.index[shortened_session_idx - 1] session_after = self.calendar.schedule.index[shortened_session_idx + 1] return [session_before, shortened_session, session_after] def test_minutes_in_range(self): sessions = self.get_session_block() first_open, first_close = self.calendar.open_and_close_for_session(sessions[0]) minute_before_first_open = first_open - self.one_minute middle_open, middle_close = self.calendar.open_and_close_for_session( sessions[1] ) last_open, last_close = self.calendar.open_and_close_for_session(sessions[-1]) minute_after_last_close = last_close + self.one_minute # get all the minutes between first_open and last_close minutes1 = self.calendar.minutes_in_range(first_open, last_close, _parse=False) minutes2 = self.calendar.minutes_in_range( minute_before_first_open, minute_after_last_close, _parse=False ) if self.GAPS_BETWEEN_SESSIONS: np.testing.assert_array_equal(minutes1, minutes2) else: # if no gaps, then minutes2 should have 2 extra minutes np.testing.assert_array_equal(minutes1, minutes2[1:-1]) # manually construct the minutes ( first_break_start, first_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[0]) ( middle_break_start, middle_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[1]) ( last_break_start, last_break_end, ) = self.calendar.break_start_and_end_for_session(sessions[-1]) intervals = [ (first_open, first_break_start, first_break_end, first_close), (middle_open, middle_break_start, middle_break_end, middle_close), (last_open, last_break_start, last_break_end, last_close), ] all_minutes = [] for _open, _break_start, _break_end, _close in intervals: if pd.isnull(_break_start): all_minutes.append( pd.date_range(start=_open, end=_close, freq="min"), ) else: all_minutes.append( pd.date_range(start=_open, end=_break_start, freq="min"), ) all_minutes.append( pd.date_range(start=_break_end, end=_close, freq="min"), ) all_minutes = np.concatenate(all_minutes) np.testing.assert_array_equal(all_minutes, minutes1) def test_minutes_for_sessions_in_range(self): sessions = self.get_session_block() minutes = self.calendar.minutes_for_sessions_in_range(sessions[0], sessions[-1]) # do it manually session0_minutes = self.calendar.minutes_for_session(sessions[0]) session1_minutes = self.calendar.minutes_for_session(sessions[1]) session2_minutes = self.calendar.minutes_for_session(sessions[2]) concatenated_minutes = np.concatenate( [session0_minutes.values, session1_minutes.values, session2_minutes.values] ) np.testing.assert_array_equal(concatenated_minutes, minutes.values) def test_sessions_window(self): sessions = self.get_session_block() np.testing.assert_array_equal( self.calendar.sessions_window(sessions[0], len(sessions) - 1, _parse=False), self.calendar.sessions_in_range(sessions[0], sessions[-1], _parse=False), ) np.testing.assert_array_equal( self.calendar.sessions_window( sessions[-1], -1 * (len(sessions) - 1), _parse=False ), self.calendar.sessions_in_range(sessions[0], sessions[-1], _parse=False), ) def test_session_distance(self): sessions = self.get_session_block() forward_distance = self.calendar.session_distance( sessions[0], sessions[-1], _parse=False, ) self.assertEqual(forward_distance, len(sessions)) backward_distance = self.calendar.session_distance( sessions[-1], sessions[0], _parse=False, ) self.assertEqual(backward_distance, -len(sessions)) one_day_distance = self.calendar.session_distance( sessions[0], sessions[0], _parse=False, ) self.assertEqual(one_day_distance, 1) def test_open_and_close_for_session(self): for session_label, open_answer, close_answer, _, _ in self.answers.itertuples( name=None ): found_open, found_close = self.calendar.open_and_close_for_session( session_label, _parse=False ) # Test that the methods for just session open and close produce the # same values as the method for getting both. alt_open = self.calendar.session_open(session_label, _parse=False) self.assertEqual(alt_open, found_open) alt_close = self.calendar.session_close(session_label, _parse=False) self.assertEqual(alt_close, found_close) self.assertEqual(open_answer, found_open) self.assertEqual(close_answer, found_close) def test_session_opens_in_range(self): found_opens = self.calendar.session_opens_in_range( self.answers.index[0], self.answers.index[-1], _parse=False, ) found_opens.index.freq = None tm.assert_series_equal(found_opens, self.answers["market_open"]) def test_session_closes_in_range(self): found_closes = self.calendar.session_closes_in_range( self.answers.index[0], self.answers.index[-1], _parse=False, ) found_closes.index.freq = None tm.assert_series_equal(found_closes, self.answers["market_close"]) def test_daylight_savings(self): # 2004 daylight savings switches: # Sunday 2004-04-04 and Sunday 2004-10-31 # make sure there's no weirdness around calculating the next day's # session's open time. m = dict(self.calendar.open_times) m[pd.Timestamp.min] = m.pop(None) open_times = pd.Series(m) for date in self.DAYLIGHT_SAVINGS_DATES: next_day = pd.Timestamp(date, tz=UTC) open_date = next_day + Timedelta(days=self.calendar.open_offset) the_open = self.calendar.schedule.loc[next_day].market_open localized_open = the_open.tz_localize(UTC).tz_convert(self.calendar.tz) self.assertEqual( (open_date.year, open_date.month, open_date.day), (localized_open.year, localized_open.month, localized_open.day), ) open_ix = open_times.index.searchsorted(pd.Timestamp(date), side="right") if open_ix == len(open_times): open_ix -= 1 self.assertEqual(open_times.iloc[open_ix].hour, localized_open.hour) self.assertEqual(open_times.iloc[open_ix].minute, localized_open.minute) def test_start_end(self): """ Check ExchangeCalendar with defined start/end dates. """ calendar = self.calendar_class( start=self.TEST_START_END_FIRST, end=self.TEST_START_END_LAST, ) self.assertEqual( calendar.first_trading_session, self.TEST_START_END_EXPECTED_FIRST, ) self.assertEqual( calendar.last_trading_session, self.TEST_START_END_EXPECTED_LAST, ) def test_has_breaks(self): has_breaks = self.calendar.has_breaks() self.assertEqual(has_breaks, self.HAVE_BREAKS) def test_session_has_break(self): if self.SESSION_WITHOUT_BREAK is not None: self.assertFalse( self.calendar.session_has_break(self.SESSION_WITHOUT_BREAK) ) if self.SESSION_WITH_BREAK is not None: self.assertTrue(self.calendar.session_has_break(self.SESSION_WITH_BREAK)) # TODO remove this class when all calendars migrated. No longer requried as # `minute_index_to_session_labels` comprehensively tested under new suite. class OpenDetectionTestCase(TestCase): # This is an extra set of unit tests that were added during a rewrite of # `minute_index_to_session_labels` to ensure that the existing # calendar-generic test suite correctly covered edge cases around # non-market minutes. def test_detect_non_market_minutes(self): cal = get_calendar("NYSE") # NOTE: This test is here instead of being on the base class for all # calendars because some of our calendars are 24/7, which means there # aren't any non-market minutes to find. day0 = cal.minutes_for_sessions_in_range( pd.Timestamp("2013-07-03", tz=UTC), pd.Timestamp("2013-07-03", tz=UTC), ) for minute in day0: self.assertTrue(cal.is_open_on_minute(minute)) day1 = cal.minutes_for_sessions_in_range( pd.Timestamp("2013-07-05", tz=UTC), pd.Timestamp("2013-07-05", tz=UTC), ) for minute in day1: self.assertTrue(cal.is_open_on_minute(minute)) def NYSE_timestamp(s): return pd.Timestamp(s, tz="America/New_York").tz_convert(UTC) non_market = [ # After close. NYSE_timestamp("2013-07-03 16:01"), # Holiday. NYSE_timestamp("2013-07-04 10:00"), # Before open. NYSE_timestamp("2013-07-05 9:29"), ] for minute in non_market: self.assertFalse(cal.is_open_on_minute(minute), minute) input_ = pd.to_datetime( np.hstack([day0.values, minute.asm8, day1.values]), utc=True, ) with self.assertRaises(ValueError) as e: cal.minute_index_to_session_labels(input_) exc_str = str(e.exception) self.assertIn("First Bad Minute: {}".format(minute), exc_str) # TODO remove this class when all calendars migrated. No longer requried as # this case is handled by new test base internally. class NoDSTExchangeCalendarTestBase(ExchangeCalendarTestBase): def test_daylight_savings(self): """ Several countries in Africa / Asia do not observe DST so we need to skip over this test for those markets """ pass def get_csv(name: str) -> pd.DataFrame: """Get csv file as DataFrame for given calendar `name`.""" filename = name.replace("/", "-").lower() + ".csv" path = pathlib.Path(__file__).parent.joinpath("resources", filename) df = pd.read_csv( path, index_col=0, parse_dates=[0, 1, 2, 3, 4], infer_datetime_format=True, ) df.index = df.index.tz_localize("UTC") for col in df: df[col] = df[col].dt.tz_localize("UTC") return df class Answers: """Inputs and expected output for testing a given calendar and side. Inputs and expected outputs are provided by public instance methods and properties. These either read directly from the corresponding .csv file or are evaluated from the .csv file contents. NB Properites / methods MUST NOT make evaluations by way of repeating the code of the ExchangeCalendar method they are intended to test! Parameters ---------- calendar_name Canonical name of calendar for which require answer info. For example, 'XNYS'. side {'both', 'left', 'right', 'neither'} Side of sessions to treat as trading minutes. """ ONE_MIN = pd.Timedelta(1, "T") TWO_MIN = pd.Timedelta(2, "T") ONE_DAY = pd.Timedelta(1, "D") LEFT_SIDES = ["left", "both"] RIGHT_SIDES = ["right", "both"] def __init__( self, calendar_name: str, side: str, ): self._name = calendar_name.upper() self._side = side # --- Exposed constructor arguments --- @property def name(self) -> str: """Name of corresponding calendar.""" return self._name @property def side(self) -> str: """Side of calendar for which answers valid.""" return self._side # --- Properties read (indirectly) from csv file --- @functools.lru_cache(maxsize=4) def _answers(self) -> pd.DataFrame: return get_csv(self.name) @property def answers(self) -> pd.DataFrame: """Answers as correspoding csv.""" return self._answers() @property def sessions(self) -> pd.DatetimeIndex: """Session labels.""" return self.answers.index @property def opens(self) -> pd.Series: """Market open time for each session.""" return self.answers.market_open @property def closes(self) -> pd.Series: """Market close time for each session.""" return self.answers.market_close @property def break_starts(self) -> pd.Series: """Break start time for each session.""" return self.answers.break_start @property def break_ends(self) -> pd.Series: """Break end time for each session.""" return self.answers.break_end # --- get and helper methods --- def get_next_session(self, session: pd.Timestamp) -> pd.Timestamp: """Get session that immediately follows `session`.""" assert ( session != self.last_session ), "Cannot get session later than last answers' session." idx = self.sessions.get_loc(session) + 1 return self.sessions[idx] def session_has_break(self, session: pd.Timestamp) -> bool: """Query if `session` has a break.""" return session in self.sessions_with_break @staticmethod def get_sessions_sample(sessions: pd.DatetimeIndex): """Return sample of given `sessions`. Sample includes: All sessions within first two years of `sessions`. All sessions within last two years of `sessions`. All sessions falling: within first 3 days of any month. from 28th of any month. from 14th through 16th of any month. """ if sessions.empty: return sessions mask = ( (sessions < sessions[0] + pd.DateOffset(years=2)) | (sessions > sessions[-1] - pd.DateOffset(years=2)) | (sessions.day <= 3) | (sessions.day >= 28) | (14 <= sessions.day) & (sessions.day <= 16) ) return sessions[mask] def get_sessions_minutes( self, start: pd.Timestamp, end: pd.Timestamp | int = 1 ) -> pd.DatetimeIndex: """Get trading minutes for 1 or more consecutive sessions. Parameters ---------- start Session from which to get trading minutes. end Session through which to get trading mintues. Can be passed as: pd.Timestamp: return will include trading minutes for `end` session. int: where int represents number of consecutive sessions inclusive of `start`, for which require trading minutes. Default is 1, such that by default will return trading minutes for only `start` session. """ idx = self.sessions.get_loc(start) stop = idx + end if isinstance(end, int) else self.sessions.get_loc(end) + 1 indexer = slice(idx, stop) dtis = [] for first, last, last_am, first_pm in zip( self.first_minutes[indexer], self.last_minutes[indexer], self.last_am_minutes[indexer], self.first_pm_minutes[indexer], ): if pd.isna(last_am): dtis.append(pd.date_range(first, last, freq="T")) else: dtis.append(pd.date_range(first, last_am, freq="T")) dtis.append(pd.date_range(first_pm, last, freq="T")) return dtis[0].union_many(dtis[1:]) # --- Evaluated general calendar properties --- @functools.lru_cache(maxsize=4) def _has_a_session_with_break(self) -> pd.DatetimeIndex: return self.break_starts.notna().any() @property def has_a_session_with_break(self) -> bool: """Does any session of answers have a break.""" return self._has_a_session_with_break() @property def has_a_session_without_break(self) -> bool: """Does any session of answers not have a break.""" return self.break_starts.isna().any() # --- Evaluated properties for first and last sessions --- @property def first_session(self) -> pd.Timestamp: """First session covered by answers.""" return self.sessions[0] @property def last_session(self) -> pd.Timestamp: """Last session covered by answers.""" return self.sessions[-1] @property def sessions_range(self) -> tuple[pd.Timestamp, pd.Timestamp]: """First and last sessions covered by answers.""" return self.first_session, self.last_session @property def first_session_open(self) -> pd.Timestamp: """Open time of first session covered by answers.""" return self.opens[0] @property def last_session_close(self) -> pd.Timestamp: """Close time of last session covered by answers.""" return self.closes[-1] @property def first_trading_minute(self) -> pd.Timestamp: open_ = self.first_session_open return open_ if self.side in self.LEFT_SIDES else open_ + self.ONE_MIN @property def last_trading_minute(self) -> pd.Timestamp: close = self.last_session_close return close if self.side in self.RIGHT_SIDES else close - self.ONE_MIN @property def trading_minutes_range(self) -> tuple[pd.Timestamp, pd.Timestamp]: """First and last trading minutes covered by answers.""" return self.first_trading_minute, self.last_trading_minute # --- out-of-bounds properties --- @property def minute_too_early(self) -> pd.Timestamp: """Minute earlier than first trading minute.""" return self.first_trading_minute - self.ONE_MIN @property def minute_too_late(self) -> pd.Timestamp: """Minute later than last trading minute.""" return self.last_trading_minute + self.ONE_MIN @property def session_too_early(self) -> pd.Timestamp: """Date earlier than first session.""" return self.first_session - self.ONE_DAY @property def session_too_late(self) -> pd.Timestamp: """Date later than last session.""" return self.last_session + self.ONE_DAY # --- Evaluated properties covering every session. --- @functools.lru_cache(maxsize=4) def _first_minutes(self) -> pd.Series: if self.side in self.LEFT_SIDES: minutes = self.opens.copy() else: minutes = self.opens + self.ONE_MIN minutes.name = "first_minutes" return minutes @property def first_minutes(self) -> pd.Series: """First trading minute of each session (UTC).""" return self._first_minutes() @property def first_minutes_plus_one(self) -> pd.Series: """First trading minute of each session plus one minute.""" return self.first_minutes + self.ONE_MIN @property def first_minutes_less_one(self) -> pd.Series: """First trading minute of each session less one minute.""" return self.first_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _last_minutes(self) -> pd.Series: if self.side in self.RIGHT_SIDES: minutes = self.closes.copy() else: minutes = self.closes - self.ONE_MIN minutes.name = "last_minutes" return minutes @property def last_minutes(self) -> pd.Series: """Last trading minute of each session.""" return self._last_minutes() @property def last_minutes_plus_one(self) -> pd.Series: """Last trading minute of each session plus one minute.""" return self.last_minutes + self.ONE_MIN @property def last_minutes_less_one(self) -> pd.Series: """Last trading minute of each session less one minute.""" return self.last_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _last_am_minutes(self) -> pd.Series: if self.side in self.RIGHT_SIDES: minutes = self.break_starts.copy() else: minutes = self.break_starts - self.ONE_MIN minutes.name = "last_am_minutes" return minutes @property def last_am_minutes(self) -> pd.Series: """Last pre-break trading minute of each session. NaT if session does not have a break. """ return self._last_am_minutes() @property def last_am_minutes_plus_one(self) -> pd.Series: """Last pre-break trading minute of each session plus one minute.""" return self.last_am_minutes + self.ONE_MIN @property def last_am_minutes_less_one(self) -> pd.Series: """Last pre-break trading minute of each session less one minute.""" return self.last_am_minutes - self.ONE_MIN @functools.lru_cache(maxsize=4) def _first_pm_minutes(self) -> pd.Series: if self.side in self.LEFT_SIDES: minutes = self.break_ends.copy() else: minutes = self.break_ends + self.ONE_MIN minutes.name = "first_pm_minutes" return minutes @property def first_pm_minutes(self) -> pd.Series: """First post-break trading minute of each session. NaT if session does not have a break. """ return self._first_pm_minutes() @property def first_pm_minutes_plus_one(self) -> pd.Series: """First post-break trading minute of each session plus one minute.""" return self.first_pm_minutes + self.ONE_MIN @property def first_pm_minutes_less_one(self) -> pd.Series: """First post-break trading minute of each session less one minute.""" return self.first_pm_minutes - self.ONE_MIN # --- Evaluated session sets and ranges that meet a specific condition --- @property def _mask_breaks(self) -> pd.Series: return self.break_starts.notna() @functools.lru_cache(maxsize=4) def _sessions_with_break(self) -> pd.DatetimeIndex: return self.sessions[self._mask_breaks] @property def sessions_with_break(self) -> pd.DatetimeIndex: return self._sessions_with_break() @functools.lru_cache(maxsize=4) def _sessions_without_break(self) -> pd.DatetimeIndex: return self.sessions[~self._mask_breaks] @property def sessions_without_break(self) -> pd.DatetimeIndex: return self._sessions_without_break() @property def sessions_without_break_run(self) -> pd.DatetimeIndex: """Longest run of consecutive sessions without a break.""" s = self.break_starts.isna() if s.empty: return pd.DatetimeIndex([], tz="UTC") trues_grouped = (~s).cumsum()[s] group_sizes = trues_grouped.value_counts() max_run_size = group_sizes.max() max_run_group_id = group_sizes[group_sizes == max_run_size].index[0] run_without_break = trues_grouped[trues_grouped == max_run_group_id].index return run_without_break @property def sessions_without_break_range(self) -> tuple[pd.Timestamp, pd.Timestamp] | None: """Longest session range that does not include a session with a break. Returns None if all sessions have a break. """ sessions = self.sessions_without_break_run if sessions.empty: return None return sessions[0], sessions[-1] @property def _mask_sessions_without_gap_after(self) -> pd.Series: if self.side == "neither": # will always have gap after if neither open or close are trading # minutes (assuming sessions cannot overlap) return pd.Series(False, index=self.sessions) elif self.side == "both": # a trading minute cannot be a minute of more than one session. assert not (self.closes == self.opens.shift(-1)).any() # there will be no gap if next open is one minute after previous close closes_plus_min = self.closes + pd.Timedelta(1, "T") return self.opens.shift(-1) == closes_plus_min else: return self.opens.shift(-1) == self.closes @property def _mask_sessions_without_gap_before(self) -> pd.Series: if self.side == "neither": # will always have gap before if neither open or close are trading # minutes (assuming sessions cannot overlap) return pd.Series(False, index=self.sessions) elif self.side == "both": # a trading minute cannot be a minute of more than one session. assert not (self.closes == self.opens.shift(-1)).any() # there will be no gap if previous close is one minute before next open opens_minus_one = self.opens - pd.Timedelta(1, "T") return self.closes.shift(1) == opens_minus_one else: return self.closes.shift(1) == self.opens @functools.lru_cache(maxsize=4) def _sessions_without_gap_after(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_after return self.sessions[mask][:-1] @property def sessions_without_gap_after(self) -> pd.DatetimeIndex: """Sessions not followed by a non-trading minute. Rather, sessions immediately followed by first trading minute of next session. """ return self._sessions_without_gap_after() @functools.lru_cache(maxsize=4) def _sessions_with_gap_after(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_after return self.sessions[~mask][:-1] @property def sessions_with_gap_after(self) -> pd.DatetimeIndex: """Sessions followed by a non-trading minute.""" return self._sessions_with_gap_after() @functools.lru_cache(maxsize=4) def _sessions_without_gap_before(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_before return self.sessions[mask][1:] @property def sessions_without_gap_before(self) -> pd.DatetimeIndex: """Sessions not preceeded by a non-trading minute. Rather, sessions immediately preceeded by last trading minute of previous session. """ return self._sessions_without_gap_before() @functools.lru_cache(maxsize=4) def _sessions_with_gap_before(self) -> pd.DatetimeIndex: mask = self._mask_sessions_without_gap_before return self.sessions[~mask][1:] @property def sessions_with_gap_before(self) -> pd.DatetimeIndex: """Sessions preceeded by a non-trading minute.""" return self._sessions_with_gap_before() # times are changing... @functools.lru_cache(maxsize=16) def _get_sessions_with_times_different_to_next_session( self, column: str, # typing.Literal["opens", "closes", "break_starts", "break_ends"] ) -> list[pd.DatetimeIndex]: """For a given answers column, get session labels where time differs from time of next session. Where `column` is a break time ("break_starts" or "break_ends"), return will not include sessions when next session has a different `has_break` status. For example, if session_0 has a break and session_1 does not have a break, or vice versa, then session_0 will not be included to return. For sessions followed by a session with a different `has_break` status, see `_get_sessions_with_has_break_different_to_next_session`. Returns ------- list of pd.Datetimeindex [0] sessions with earlier next session [1] sessions with later next session """ # column takes string to allow lru_cache (Series not hashable) is_break_col = column[0] == "b" column_ = getattr(self, column) if is_break_col: if column_.isna().all(): return [pd.DatetimeIndex([], tz="UTC")] * 4 column_ = column_.fillna(method="ffill").fillna(method="bfill") diff = (column_.shift(-1) - column_)[:-1] remainder = diff % pd.Timedelta(hours=24) mask = remainder != pd.Timedelta(0) sessions = self.sessions[:-1][mask] next_session_earlier_mask = remainder[mask] > pd.Timedelta(hours=12) next_session_earlier = sessions[next_session_earlier_mask] next_session_later = sessions[~next_session_earlier_mask] if is_break_col: mask = next_session_earlier.isin(self.sessions_without_break) next_session_earlier = next_session_earlier.drop(next_session_earlier[mask]) mask = next_session_later.isin(self.sessions_without_break) next_session_later = next_session_later.drop(next_session_later[mask]) return [next_session_earlier, next_session_later] @property def _sessions_with_opens_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("opens") @property def _sessions_with_closes_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("closes") @property def _sessions_with_break_start_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("break_starts") @property def _sessions_with_break_end_different_to_next_session( self, ) -> list[pd.DatetimeIndex]: return self._get_sessions_with_times_different_to_next_session("break_ends") @property def sessions_next_open_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_opens_different_to_next_session[0] @property def sessions_next_open_later(self) -> pd.DatetimeIndex: return self._sessions_with_opens_different_to_next_session[1] @property def sessions_next_open_different(self) -> pd.DatetimeIndex: return self.sessions_next_open_earlier.union(self.sessions_next_open_later) @property def sessions_next_close_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_closes_different_to_next_session[0] @property def sessions_next_close_later(self) -> pd.DatetimeIndex: return self._sessions_with_closes_different_to_next_session[1] @property def sessions_next_close_different(self) -> pd.DatetimeIndex: return self.sessions_next_close_earlier.union(self.sessions_next_close_later) @property def sessions_next_break_start_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_break_start_different_to_next_session[0] @property def sessions_next_break_start_later(self) -> pd.DatetimeIndex: return self._sessions_with_break_start_different_to_next_session[1] @property def sessions_next_break_start_different(self) -> pd.DatetimeIndex: earlier = self.sessions_next_break_start_earlier later = self.sessions_next_break_start_later return earlier.union(later) @property def sessions_next_break_end_earlier(self) -> pd.DatetimeIndex: return self._sessions_with_break_end_different_to_next_session[0] @property def sessions_next_break_end_later(self) -> pd.DatetimeIndex: return self._sessions_with_break_end_different_to_next_session[1] @property def sessions_next_break_end_different(self) -> pd.DatetimeIndex: earlier = self.sessions_next_break_end_earlier later = self.sessions_next_break_end_later return earlier.union(later) @functools.lru_cache(maxsize=4) def _get_sessions_with_has_break_different_to_next_session( self, ) -> tuple[pd.DatetimeIndex, pd.DatetimeIndex]: """Get sessions with 'has_break' different to next session. Returns ------- tuple[pd.DatetimeIndex, pd.DatetimeIndex] [0] Sessions that have a break and are immediately followed by a session which does not have a break. [1] Sessions that do not have a break and are immediately followed by a session which does have a break. """ mask = (self.break_starts.notna() & self.break_starts.shift(-1).isna())[:-1] sessions_with_break_next_session_without_break = self.sessions[:-1][mask] mask = (self.break_starts.isna() & self.break_starts.shift(-1).notna())[:-1] sessions_without_break_next_session_with_break = self.sessions[:-1][mask] return ( sessions_with_break_next_session_without_break, sessions_without_break_next_session_with_break, ) @property def sessions_with_break_next_session_without_break(self) -> pd.DatetimeIndex: return self._get_sessions_with_has_break_different_to_next_session()[0] @property def sessions_without_break_next_session_with_break(self) -> pd.DatetimeIndex: return self._get_sessions_with_has_break_different_to_next_session()[1] @functools.lru_cache(maxsize=4) def _sessions_next_time_different(self) -> pd.DatetimeIndex: return self.sessions_next_open_different.union_many( [ self.sessions_next_close_different, self.sessions_next_break_start_different, self.sessions_next_break_end_different, self.sessions_with_break_next_session_without_break, self.sessions_without_break_next_session_with_break, ] ) @property def sessions_next_time_different(self) -> pd.DatetimeIndex: """Sessions where next session has a different time for any column. Includes sessions where next session has a different `has_break` status. """ return self._sessions_next_time_different() # session blocks... def _create_changing_times_session_block( self, session: pd.Timestamp ) -> pd.DatetimeIndex: """Create block of sessions with changing times. Given a `session` known to have at least one time (open, close, break_start or break_end) different from the next session, returns a block of consecutive sessions ending with the first session after `session` that has the same times as the session that immediately preceeds it (i.e. the last two sessions of the block will have the same times), or the last calendar session. """ start_idx = self.sessions.get_loc(session) end_idx = start_idx + 1 while self.sessions[end_idx] in self.sessions_next_time_different: end_idx += 1 end_idx += 2 # +1 to include session with same times, +1 to serve as end index return self.sessions[start_idx:end_idx] def _get_normal_session_block(self) -> pd.DatetimeIndex: """Block of 3 sessions with unchanged timings.""" start_idx = len(self.sessions) // 3 end_idx = start_idx + 21 for i in range(start_idx, end_idx): times_1 = self.answers.iloc[i].dt.time times_2 = self.answers.iloc[i + 1].dt.time times_3 = self.answers.iloc[i + 2].dt.time one_and_two_equal = (times_1 == times_2) | (times_1.isna() & times_2.isna()) one_and_three_equal = (times_1 == times_3) | ( times_1.isna() & times_3.isna() ) if (one_and_two_equal & one_and_three_equal).all(): break assert i < (end_idx - 1), "Unable to evaluate a normal session block!" return self.sessions[i : i + 3] def _get_session_block( self, from_session_of: pd.DatetimeIndex, to_session_of: pd.DatetimeIndex ) -> pd.DatetimeIndex: """Get session block with bounds defined by sessions of given indexes. Block will start with middle session of `from_session_of`. Block will run to the nearest subsequent session of `to_session_of` (or `self.final_session` if this comes first). Block will end with the session that immedidately follows this session. """ i = len(from_session_of) // 2 start_session = from_session_of[i] start_idx = self.sessions.get_loc(start_session) end_idx = start_idx + 1 end_session = self.sessions[end_idx] while end_session not in to_session_of and end_session != self.last_session: end_idx += 1 end_session = self.sessions[end_idx] return self.sessions[start_idx : end_idx + 2] @functools.lru_cache(maxsize=4) def _session_blocks(self) -> dict[str, pd.DatetimeIndex]: blocks = {} blocks["normal"] = self._get_normal_session_block() blocks["first_three"] = self.sessions[:3] blocks["last_three"] = self.sessions[-3:] # blocks here include where: # session 1 has at least one different time from session 0 # session 0 has a break and session 1 does not (and vice versa) sessions_indexes = ( ("next_open_earlier", self.sessions_next_open_earlier), ("next_open_later", self.sessions_next_open_later), ("next_close_earlier", self.sessions_next_close_earlier), ("next_close_later", self.sessions_next_close_later), ("next_break_start_earlier", self.sessions_next_break_start_earlier), ("next_break_start_later", self.sessions_next_break_start_later), ("next_break_end_earlier", self.sessions_next_break_end_earlier), ("next_break_end_later", self.sessions_next_break_end_later), ( "with_break_to_without_break", self.sessions_with_break_next_session_without_break, ), ( "without_break_to_with_break", self.sessions_without_break_next_session_with_break, ), ) for name, index in sessions_indexes: if index.empty: blocks[name] = pd.DatetimeIndex([], tz="UTC") else: session = index[0] blocks[name] = self._create_changing_times_session_block(session) # blocks here move from session with gap to session without gap and vice versa if (not self.sessions_with_gap_after.empty) and ( not self.sessions_without_gap_after.empty ): without_gap_to_with_gap = self._get_session_block( self.sessions_without_gap_after, self.sessions_with_gap_after ) with_gap_to_without_gap = self._get_session_block( self.sessions_with_gap_after, self.sessions_without_gap_after ) else: without_gap_to_with_gap = pd.DatetimeIndex([], tz="UTC") with_gap_to_without_gap = pd.DatetimeIndex([], tz="UTC") blocks["without_gap_to_with_gap"] = without_gap_to_with_gap blocks["with_gap_to_without_gap"] = with_gap_to_without_gap # blocks that adjoin or contain a non_session date follows_non_session = pd.DatetimeIndex([], tz="UTC") preceeds_non_session = pd.DatetimeIndex([], tz="UTC") contains_non_session = pd.DatetimeIndex([], tz="UTC") if len(self.non_sessions) > 1: diff = self.non_sessions[1:] - self.non_sessions[:-1] mask = diff != pd.Timedelta( 1, "D" ) # non_session dates followed by a session valid_non_sessions = self.non_sessions[:-1][mask] if len(valid_non_sessions) > 1: slce = self.sessions.slice_indexer( valid_non_sessions[0], valid_non_sessions[1] ) sessions_between_non_sessions = self.sessions[slce] block_length = min(2, len(sessions_between_non_sessions)) follows_non_session = sessions_between_non_sessions[:block_length] preceeds_non_session = sessions_between_non_sessions[-block_length:] # take session before and session after non-session contains_non_session = self.sessions[slce.stop - 1 : slce.stop + 1] blocks["follows_non_session"] = follows_non_session blocks["preceeds_non_session"] = preceeds_non_session blocks["contains_non_session"] = contains_non_session return blocks @property def session_blocks(self) -> dict[str, pd.DatetimeIndex]: """Dictionary of session blocks of a particular behaviour. A block comprises either a single session or multiple contiguous sessions. Keys: "normal" - three sessions with unchanging timings. "first_three" - answers' first three sessions. "last_three" - answers's last three sessions. "next_open_earlier" - session 1 open is earlier than session 0 open. "next_open_later" - session 1 open is later than session 0 open. "next_close_earlier" - session 1 close is earlier than session 0 close. "next_close_later" - session 1 close is later than session 0 close. "next_break_start_earlier" - session 1 break_start is earlier than session 0 break_start. "next_break_start_later" - session 1 break_start is later than session 0 break_start. "next_break_end_earlier" - session 1 break_end is earlier than session 0 break_end. "next_break_end_later" - session 1 break_end is later than session 0 break_end. "with_break_to_without_break" - session 0 has a break, session 1 does not have a break. "without_break_to_with_break" - session 0 does not have a break, session 1 does have a break. "without_gap_to_with_gap" - session 0 is not followed by a gap, session -2 is followed by a gap, session -1 is preceeded by a gap. "with_gap_to_without_gap" - session 0 is followed by a gap, session -2 is not followed by a gap, session -1 is not preceeded by a gap. "follows_non_session" - one or two sessions where session 0 is preceeded by a date that is a non-session. "follows_non_session" - one or two sessions where session -1 is followed by a date that is a non-session. "contains_non_session" = two sessions with at least one non-session date in between. If no such session block exists for any key then value will take an empty DatetimeIndex (UTC). """ return self._session_blocks() def session_block_generator(self) -> abc.Iterator[tuple[str, pd.DatetimeIndex]]: """Generator of session blocks of a particular behaviour.""" for name, block in self.session_blocks.items(): if not block.empty: yield (name, block) @functools.lru_cache(maxsize=4) def _session_block_minutes(self) -> dict[str, pd.DatetimeIndex]: d = {} for name, block in self.session_blocks.items(): if block.empty: d[name] = pd.DatetimeIndex([], tz="UTC") continue d[name] = self.get_sessions_minutes(block[0], len(block)) return d @property def session_block_minutes(self) -> dict[str, pd.DatetimeIndex]: """Trading minutes for each `session_block`. Key: Session block name as documented to `session_blocks`. Value: Trading minutes of corresponding session block. """ return self._session_block_minutes() @property def sessions_sample(self) -> pd.DatetimeIndex: """Sample of normal and unusual sessions. Sample comprises set of sessions of all `session_blocks` (see `session_blocks` doc). In this way sample includes at least one sample of every indentified unique circumstance. """ dtis = list(self.session_blocks.values()) return dtis[0].union_many(dtis[1:]) # non-sessions... @functools.lru_cache(maxsize=4) def _non_sessions(self) -> pd.DatetimeIndex: all_dates = pd.date_range( start=self.first_session, end=self.last_session, freq="D" ) return all_dates.difference(self.sessions) @property def non_sessions(self) -> pd.DatetimeIndex: """Dates (UTC midnight) within answers range that are not sessions.""" return self._non_sessions() @property def sessions_range_defined_by_non_sessions( self, ) -> tuple[tuple[pd.Timestamp, pd.Timestamp], pd.Datetimeindex] | None: """Range containing sessions although defined with non-sessions. Returns ------- tuple[tuple[pd.Timestamp, pd.Timestamp], pd.Datetimeindex]: [0] tuple[pd.Timestamp, pd.Timestamp]: [0] range start as non-session date. [1] range end as non-session date. [1] pd.DatetimeIndex: Sessions in range. """ non_sessions = self.non_sessions if len(non_sessions) <= 1: return None limit = len(self.non_sessions) - 2 i = 0 start, end = non_sessions[i], non_sessions[i + 1] while (end - start) < pd.Timedelta(4, "D"): i += 1 start, end = non_sessions[i], non_sessions[i + 1] if i == limit: # Unable to evaluate range from consecutive non-sessions # that covers >= 3 sessions. Just go with max range... start, end = non_sessions[0], non_sessions[-1] slice_start, slice_end = self.sessions.searchsorted((start, end)) return (start, end), self.sessions[slice_start:slice_end] @property def non_sessions_run(self) -> pd.DatetimeIndex: """Longest run of non_sessions.""" ser = self.sessions.to_series() diff = ser.shift(-1) - ser max_diff = diff.max() if max_diff == pd.Timedelta(1, "D"): return pd.DatetimeIndex([]) session_before_run = diff[diff == max_diff].index[-1] run = pd.date_range( start=session_before_run + pd.Timedelta(1, "D"), periods=(max_diff // pd.Timedelta(1, "D")) - 1, freq="D", ) assert run.isin(self.non_sessions).all() assert run[0] > self.first_session assert run[-1] < self.last_session return run @property def non_sessions_range(self) -> tuple[pd.Timestamp, pd.Timestamp] | None: """Longest range covering a period without a session.""" non_sessions_run = self.non_sessions_run if non_sessions_run.empty: return None else: return self.non_sessions_run[0], self.non_sessions_run[-1] # --- Evaluated sets of minutes --- @functools.lru_cache(maxsize=4) def _evaluate_trading_and_break_minutes(self) -> tuple[tuple, tuple]: sessions = self.sessions_sample first_mins = self.first_minutes[sessions] first_mins_plus_one = first_mins + self.ONE_MIN last_mins = self.last_minutes[sessions] last_mins_less_one = last_mins - self.ONE_MIN trading_mins = [] break_mins = [] for session, mins_ in zip( sessions, zip(first_mins, first_mins_plus_one, last_mins, last_mins_less_one), ): trading_mins.append((mins_, session)) if self.has_a_session_with_break: last_am_mins = self.last_am_minutes[sessions] last_am_mins = last_am_mins[last_am_mins.notna()] first_pm_mins = self.first_pm_minutes[last_am_mins.index] last_am_mins_less_one = last_am_mins - self.ONE_MIN last_am_mins_plus_one = last_am_mins + self.ONE_MIN last_am_mins_plus_two = last_am_mins + self.TWO_MIN first_pm_mins_plus_one = first_pm_mins + self.ONE_MIN first_pm_mins_less_one = first_pm_mins - self.ONE_MIN first_pm_mins_less_two = first_pm_mins - self.TWO_MIN for session, mins_ in zip( last_am_mins.index, zip( last_am_mins, last_am_mins_less_one, first_pm_mins, first_pm_mins_plus_one, ), ): trading_mins.append((mins_, session)) for session, mins_ in zip( last_am_mins.index, zip( last_am_mins_plus_one, last_am_mins_plus_two, first_pm_mins_less_one, first_pm_mins_less_two, ), ): break_mins.append((mins_, session)) return (tuple(trading_mins), tuple(break_mins)) @property def trading_minutes(self) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp]]: """Edge trading minutes of `sessions_sample`. Returns ------- tuple of tuple[tuple[trading_minutes], session] tuple[trading_minutes] includes: first two trading minutes of a session. last two trading minutes of a session. If breaks: last two trading minutes of session's am subsession. first two trading minutes of session's pm subsession. session Session of trading_minutes """ return self._evaluate_trading_and_break_minutes()[0] def trading_minutes_only(self) -> abc.Iterator[pd.Timestamp]: """Generator of trading minutes of `self.trading_minutes`.""" for mins, _ in self.trading_minutes: for minute in mins: yield minute @property def trading_minute(self) -> pd.Timestamp: """A single trading minute.""" return self.trading_minutes[0][0][0] @property def break_minutes(self) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp]]: """Sample of break minutes of `sessions_sample`. Returns ------- tuple of tuple[tuple[break_minutes], session] tuple[break_minutes]: first two minutes of a break. last two minutes of a break. session Session of break_minutes """ return self._evaluate_trading_and_break_minutes()[1] def break_minutes_only(self) -> abc.Iterator[pd.Timestamp]: """Generator of break minutes of `self.break_minutes`.""" for mins, _ in self.break_minutes: for minute in mins: yield minute @functools.lru_cache(maxsize=4) def _non_trading_minutes( self, ) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp, pd.Timestamp]]: non_trading_mins = [] sessions = self.sessions_sample sessions = prev_sessions = sessions[sessions.isin(self.sessions_with_gap_after)] next_sessions = self.sessions[self.sessions.get_indexer(sessions) + 1] last_mins_plus_one = self.last_minutes[sessions] + self.ONE_MIN first_mins_less_one = self.first_minutes[next_sessions] - self.ONE_MIN for prev_session, next_session, mins_ in zip( prev_sessions, next_sessions, zip(last_mins_plus_one, first_mins_less_one) ): non_trading_mins.append((mins_, prev_session, next_session)) return tuple(non_trading_mins) @property def non_trading_minutes( self, ) -> tuple[tuple[tuple[pd.Timestamp], pd.Timestamp, pd.Timestamp]]: """non_trading_minutes that edge `sessions_sample`. NB. Does not include break minutes. Returns ------- tuple of tuple[tuple[non-trading minute], previous session, next session] tuple[non-trading minute] Two non-trading minutes. [0] first non-trading minute to follow a session. [1] last non-trading minute prior to the next session. previous session Session that preceeds non-trading minutes. next session Session that follows non-trading minutes. See Also -------- break_minutes """ return self._non_trading_minutes() def non_trading_minutes_only(self) -> abc.Iterator[pd.Timestamp]: """Generator of non-trading minutes of `self.non_trading_minutes`.""" for mins, _, _ in self.non_trading_minutes: for minute in mins: yield minute # --- method-specific inputs/outputs --- def prev_next_open_close_minutes( self, ) -> abc.Iterator[ tuple[ pd.Timestamp, tuple[ pd.Timestamp | None, pd.Timestamp | None, pd.Timestamp | None, pd.Timestamp | None, ], ] ]: """Generator of test parameters for prev/next_open/close methods. Inputs include following minutes of each session: open one minute prior to open (not included for first session) one minute after open close one minute before close one minute after close (not included for last session) NB Assumed that minutes prior to first open and after last close will be handled via parse_timestamp. Yields ------ 2-tuple: [0] Input a minute sd pd.Timestamp [1] 4 tuple of expected output of corresponding method: [0] previous_open as pd.Timestamp | None [1] previous_close as pd.Timestamp | None [2] next_open as pd.Timestamp | None [3] next_close as pd.Timestamp | None NB None indicates that corresponding method is expected to raise a ValueError for this input. """ close_is_next_open_bv = self.closes == self.opens.shift(-1) open_was_prev_close_bv = self.opens == self.closes.shift(+1) close_is_next_open = close_is_next_open_bv[0] # minutes for session 0 minute = self.opens[0] yield (minute, (None, None, self.opens[1], self.closes[0])) minute = minute + self.ONE_MIN yield (minute, (self.opens[0], None, self.opens[1], self.closes[0])) minute = self.closes[0] next_open = self.opens[2] if close_is_next_open else self.opens[1] yield (minute, (self.opens[0], None, next_open, self.closes[1])) minute += self.ONE_MIN prev_open = self.opens[1] if close_is_next_open else self.opens[0] yield (minute, (prev_open, self.closes[0], next_open, self.closes[1])) minute = self.closes[0] - self.ONE_MIN yield (minute, (self.opens[0], None, self.opens[1], self.closes[0])) # minutes for sessions over [1:-1] except for -1 close and 'close + one_min' opens = self.opens[1:-1] closes = self.closes[1:-1] prev_opens = self.opens[:-2] prev_closes = self.closes[:-2] next_opens = self.opens[2:] next_closes = self.closes[2:] opens_after_next = self.opens[3:] # add dummy row to equal lengths (won't be used) _ = pd.Series(pd.Timestamp("2200-01-01", tz="UTC")) opens_after_next = opens_after_next.append(_) stop = closes[-1] for ( open_, close, prev_open, prev_close, next_open, next_close, open_after_next, close_is_next_open, open_was_prev_close, ) in zip( opens, closes, prev_opens, prev_closes, next_opens, next_closes, opens_after_next, close_is_next_open_bv[1:-2], open_was_prev_close_bv[1:-2], ): if not open_was_prev_close: # only include open minutes if not otherwise duplicating # evaluations already made for prior close. yield (open_, (prev_open, prev_close, next_open, close)) yield (open_ - self.ONE_MIN, (prev_open, prev_close, open_, close)) yield (open_ + self.ONE_MIN, (open_, prev_close, next_open, close)) yield (close - self.ONE_MIN, (open_, prev_close, next_open, close)) if close != stop: next_open_ = open_after_next if close_is_next_open else next_open yield (close, (open_, prev_close, next_open_, next_close)) open_ = next_open if close_is_next_open else open_ yield (close + self.ONE_MIN, (open_, close, next_open_, next_close)) # close and 'close + one_min' for session -2 minute = self.closes[-2] next_open = None if close_is_next_open_bv[-2] else self.opens[-1] yield (minute, (self.opens[-2], self.closes[-3], next_open, self.closes[-1])) minute += self.ONE_MIN prev_open = self.opens[-1] if close_is_next_open_bv[-2] else self.opens[-2] yield (minute, (prev_open, self.closes[-2], next_open, self.closes[-1])) # minutes for session -1 if not open_was_prev_close_bv[-1]: open_ = self.opens[-1] prev_open = self.opens[-2] prev_close = self.closes[-2] next_open = None close = self.closes[-1] yield (open_, (prev_open, prev_close, next_open, close)) yield (open_ - self.ONE_MIN, (prev_open, prev_close, open_, close)) yield (open_ + self.ONE_MIN, (open_, prev_close, next_open, close)) minute = self.closes[-1] next_open = self.opens[2] if close_is_next_open_bv[-1] else self.opens[1] yield (minute, (self.opens[-1], self.closes[-2], None, None)) minute -= self.ONE_MIN yield (minute, (self.opens[-1], self.closes[-2], None, self.closes[-1])) # dunder def __repr__(self) -> str: return f"<Answers: calendar {self.name}, side {self.side}>" def no_parsing(f: typing.Callable): """Wrap a method under test so that it skips input parsing.""" return lambda *args, **kwargs: f(*args, _parse=False, **kwargs) class ExchangeCalendarTestBaseNew: """Test base for an ExchangeCalendar. Notes ----- === Fixtures === In accordance with the pytest framework, whilst methods are requried to have `self` as their first argument, no method should use `self`. All required inputs should come by way of fixtures received to the test method's arguments. Methods that are directly or indirectly dependent on the evaluation of trading minutes should be tested against the parameterized `all_calendars_with_answers` fixture. This fixture will execute the test against multiple calendar instances, one for each viable `side`. The following methods directly evaluate trading minutes: all_minutes _last_minute_nanos() _last_am_minute_nanos() _first_minute_nanos() _first_pm_minute_nanos() NB this list does not include methods that indirectly evaluate methods by way of calling (directly or indirectly) one of the above methods. Methods that are not dependent on the evaluation of trading minutes should only be tested against only the `default_calendar_with_answers` or `default_calendar` fixture. Calendar instances provided by fixtures should be used exclusively to call the method being tested. NO TEST INPUT OR EXPECTED OUTPUT SHOULD BE EVALUATED BY WAY OF CALLING A CALENDAR METHOD. Rather, test inputs and expected output should be taken directly, or evaluated from, properties/methods of the corresponding Answers fixture. Subclasses are required to override a limited number of fixtures and may be required to override others. Refer to the block comments. """ # subclass must override the following fixtures @pytest.fixture(scope="class") def calendar_cls(self) -> abc.Iterator[typing.Type[ExchangeCalendar]]: """ExchangeCalendar class to be tested. Examples: XNYSExchangeCalendar AlwaysOpenCalendar """ raise NotImplementedError("fixture must be implemented on subclass") @pytest.fixture def max_session_hours(self) -> abc.Iterator[int | float]: """Largest number of hours that can comprise a single session. Examples: 8 6.5 """ raise NotImplementedError("fixture must be implemented on subclass") # if subclass has a 24h session then subclass must override this fixture. # Define on subclass as is here with only difference being passing # ["left", "right"] to decorator's 'params' arg (24h calendars cannot # have a side defined as 'both' or 'neither'.). @pytest.fixture(scope="class", params=["both", "left", "right", "neither"]) def all_calendars_with_answers( self, request, calendars, answers ) -> abc.Iterator[tuple[ExchangeCalendar, Answers]]: """Parameterized calendars and answers for each side.""" yield (calendars[request.param], answers[request.param]) # subclass should override the following fixtures in the event that the # default defined here does not apply. @pytest.fixture def start_bound(self) -> abc.Iterator[pd.Timestamp | None]: """Earliest date for which calendar can be instantiated, or None if there is no start bound.""" yield None @pytest.fixture def end_bound(self) -> abc.Iterator[pd.Timestamp | None]: """Latest date for which calendar can be instantiated, or None if there is no end bound.""" yield None # Subclass can optionally override the following fixtures. By overriding # a fixture the associated test will be executed with input as yielded # by the fixture. Where fixtures are not overriden the associated tests # will be skipped. @pytest.fixture def regular_holidays_sample(self) -> abc.Iterator[list[str]]: """Sample of known regular calendar holidays. Empty list if no holidays. `test_regular_holidays_sample` will check that each date does not represent a calendar session. Example return: ["2020-12-25", "2021-01-01", ...] """ yield [] @pytest.fixture def adhoc_holidays_sample(self) -> abc.Iterator[list[str]]: """Sample of adhoc calendar holidays. Empty list if no adhoc holidays. `test_adhoc_holidays_sample` will check that each date does not represent a calendar session. Example return: ["2015-04-17", "2021-09-12", ...] """ yield [] @pytest.fixture def non_holidays_sample(self) -> abc.Iterator[list[str]]: """Sample of known dates that are not holidays. `test_non_holidays_sample` will check that each date represents a calendar session. Subclass should use this fixture if wishes to test edge cases, for example where a session is an exception to a rule, or where session preceeds/follows a holiday that is an exception to a rule. Example return: ["2019-12-27", "2020-01-02", ...] """ yield [] @pytest.fixture def late_opens_sample(self) -> abc.Iterator[list[str]]: """Sample of known calendar sessions with late opens. `test_late_opens_sample` will check that each date represents a session with a late open. Example returns: ["2022-01-03", "2022-04-22", ...] """ yield [] @pytest.fixture def early_closes_sample(self) -> abc.Iterator[list[str]]: """Sample of known calendar sessions with early closes. `test_early_closes_sample` will check that each date represents a session with an early close. Example returns: ["2019-12-24", "2019-12-31", ...] """ yield [] @pytest.fixture def early_closes_sample_time(self) -> abc.Iterator[pd.Timedelta | None]: """Local close time of sessions of `early_closes_sample` fixture. `test_early_closes_sample_time` will check all sessions of `early_closes_sample` have this close time. Only override fixture if: - `early_closes_sample` is overriden by subclass - ALL sessions of `early_closes_sample` have the same local close time (if sessions of `early_closes_sample` have different local close times then the subclass should instead check close times with a test defined on the subclass). Example returns: pd.Timedelta(14, "H") # 14:00 local time pd.Timedelta(hours=13, minutes=15) # 13:15 local time """ yield None @pytest.fixture def non_early_closes_sample(self) -> abc.Iterator[list[str]]: """Sample of known calendar sessions with normal close times. `test_non_early_closes_sample` will check each date does not represent a calendar session with an early close. Subclass should use this fixture to test edge cases, for example where an otherwise early close is an exception to a rule. Example return: ["2022-12-23", "2022-12-30] """ yield [] @pytest.fixture def non_early_closes_sample_time(self) -> abc.Iterator[pd.Timedelta | None]: """Local close time of sessions of `non_early_closes_sample` fixture. `test_non_early_closes_sample_time` will check all sessions of `non_early_closes_sample` have this close time. Only override fixture if: - `non_early_closes_sample` is overriden by subclass. - ALL sessions of `non_early_closes_sample` have the same local close time (if sessions of `non_early_closes_sample` have different local close times then the subclass should instead check close times with a test defined on the subclass). Example returns: pd.Timedelta(17, "H") # 17:00 local time pd.Timedelta(hours=16, minutes=30) # 16:30 local time """ yield None # --- NO FIXTURE BELOW THIS LINE SHOULD BE OVERRIDEN ON A SUBCLASS --- def test_testbase_integrity(self): """Ensure integrity of TestBase. Raises error if a reserved fixture is overriden by the subclass. """ cls = self.__class__ for fixture in [ "test_testbase_integrity", "name", "has_24h_session", "default_side", "sides", "answers", "default_answers", "calendars", "default_calendar", "calendars_with_answers", "default_calendar_with_answers", "one_minute", "today", "all_directions", "valid_overrides", "non_valid_overrides", "daylight_savings_dates", "late_opens", "early_closes", ]: if getattr(cls, fixture) != getattr(ExchangeCalendarTestBaseNew, fixture): raise RuntimeError(f"fixture '{fixture}' should not be overriden!") # Base class fixtures @pytest.fixture(scope="class") def name(self, calendar_cls) -> abc.Iterator[str]: """Calendar name.""" yield calendar_cls.name @pytest.fixture(scope="class") def has_24h_session(self, name) -> abc.Iterator[bool]: df = get_csv(name) yield (df.market_close == df.market_open.shift(-1)).any() @pytest.fixture(scope="class") def default_side(self, has_24h_session) -> abc.Iterator[str]: """Default calendar side.""" if has_24h_session: yield "left" else: yield "both" @pytest.fixture(scope="class") def sides(self, has_24h_session) -> abc.Iterator[list[str]]: """All valid sides options for calendar.""" if has_24h_session: yield ["left", "right"] else: yield ["both", "left", "right", "neither"] # Calendars and answers @pytest.fixture(scope="class") def answers(self, name, sides) -> abc.Iterator[dict[str, Answers]]: """Dict of answers, key as side, value as corresoponding answers.""" yield {side: Answers(name, side) for side in sides} @pytest.fixture(scope="class") def default_answers(self, answers, default_side) -> abc.Iterator[Answers]: yield answers[default_side] @pytest.fixture(scope="class") def calendars( self, calendar_cls, default_answers, sides ) -> abc.Iterator[dict[str, ExchangeCalendar]]: """Dict of calendars, key as side, value as corresoponding calendar.""" start = default_answers.first_session end = default_answers.last_session yield {side: calendar_cls(start, end, side) for side in sides} @pytest.fixture(scope="class") def default_calendar( self, calendars, default_side ) -> abc.Iterator[ExchangeCalendar]: yield calendars[default_side] @pytest.fixture(scope="class") def calendars_with_answers( self, calendars, answers, sides ) -> abc.Iterator[dict[str, tuple[ExchangeCalendar, Answers]]]: """Dict of calendars and answers, key as side.""" yield {side: (calendars[side], answers[side]) for side in sides} @pytest.fixture(scope="class") def default_calendar_with_answers( self, calendars_with_answers, default_side ) -> abc.Iterator[tuple[ExchangeCalendar, Answers]]: yield calendars_with_answers[default_side] # General use fixtures. @pytest.fixture(scope="class") def one_minute(self) -> abc.Iterator[pd.Timedelta]: yield pd.Timedelta(1, "T") @pytest.fixture(scope="class") def today(self) -> abc.Iterator[pd.Timedelta]: yield pd.Timestamp.now(tz="UTC").floor("D") @pytest.fixture(scope="class", params=["next", "previous", "none"]) def all_directions(self, request) -> abc.Iterator[str]: """Parameterised fixture of direction to go if minute is not a trading minute""" yield request.param @pytest.fixture(scope="class") def valid_overrides(self) -> abc.Iterator[list[str]]: """Names of methods that can be overriden by a subclass.""" yield [ "name", "bound_start", "bound_end", "_bound_start_error_msg", "_bound_end_error_msg", "default_start", "default_end", "tz", "open_times", "break_start_times", "break_end_times", "close_times", "weekmask", "open_offset", "close_offset", "regular_holidays", "adhoc_holidays", "special_opens", "special_opens_adhoc", "special_closes", "special_closes_adhoc", "special_weekmasks", "special_offsets", "special_offsets_adhoc", ] @pytest.fixture(scope="class") def non_valid_overrides(self, valid_overrides) -> abc.Iterator[list[str]]: """Names of methods that cannot be overriden by a subclass.""" yield [ name for name in dir(ExchangeCalendar) if name not in valid_overrides and not name.startswith("__") and not name == "_abc_impl" ] @pytest.fixture(scope="class") def daylight_savings_dates( self, default_calendar ) -> abc.Iterator[list[pd.Timestamp]]: """All dates in a specific year that mark the first day of a new time regime. Yields empty list if timezone's UCT offset does not change. Notes ----- NB Any test that employs this fixture assumes the accuarcy of the default calendar's `tz` property. """ cal = default_calendar year = cal.last_session.year - 1 days = pd.date_range(str(year), str(year + 1), freq="D") tzinfo = pytz.timezone(cal.tz.zone) prev_offset = tzinfo.utcoffset(days[0]) dates = [] for day in days[1:]: try: offset = tzinfo.utcoffset(day) except pytz.NonExistentTimeError: offset = tzinfo.utcoffset(day + pd.Timedelta(1, "H")) if offset != prev_offset: dates.append(day) if len(dates) == 2: break prev_offset = offset yield dates @pytest.fixture(scope="class") def late_opens( self, default_calendar_with_answers ) -> abc.Iterator[pd.DatetimeIndex]: """Calendar sessions with a late open. Late opens evaluated as those that are later than the prevailing open time as defined by `default_calendar.open_times`. Notes ----- NB Any test that employs this fixture ASSUMES the accuarcy of the following calendar properties: `open_times` `tz` """ cal, ans = default_calendar_with_answers d = dict(cal.open_times) d[pd.Timestamp.min] = d.pop(None) s = pd.Series(d).sort_index(ascending=False) date_to = pd.Timestamp.max dtis: list[pd.DatetimeIndex] = [] # For each period over which a distinct open time prevails... for date_from, time_ in s.iteritems(): opens = ans.opens.tz_convert(None)[date_from:date_to] # index to tz-naive sessions = opens.index td = pd.Timedelta(hours=time_.hour, minutes=time_.minute) # Evaluate session opens as if were all normal open time. normal_opens = sessions + pd.Timedelta(cal.open_offset, "D") + td normal_opens_utc = normal_opens.tz_localize(cal.tz).tz_convert("UTC") # Append those sessions with opens (according to answers) later than # what would be normal. dtis.append(sessions[opens > normal_opens_utc]) if date_from != pd.Timestamp.min: date_to = date_from - pd.Timedelta(1, "D") late_opens = dtis[0].union_many(dtis[1:]).tz_localize("UTC") yield late_opens @pytest.fixture(scope="class") def early_closes( self, default_calendar_with_answers ) -> abc.Iterator[pd.DatetimeIndex]: """Calendar sessions with a late open. Early closes evaluated as those that are earlier than the prevailing close time as defined by `default_calendar.close_times`. Notes ----- NB Any test that employs this fixture ASSUMES the accuarcy of the following calendar properties: `close_times` `tz` """ cal, ans = default_calendar_with_answers d = dict(cal.close_times) d[pd.Timestamp.min] = d.pop(None) s = pd.Series(d).sort_index(ascending=False) date_to = pd.Timestamp.max dtis: list[pd.DatetimeIndex] = [] for date_from, time_ in s.iteritems(): closes = ans.closes.tz_convert(None)[date_from:date_to] # index to tz-naive sessions = closes.index td = pd.Timedelta(hours=time_.hour, minutes=time_.minute) normal_closes = sessions + pd.Timedelta(cal.close_offset, "D") + td normal_closes_utc = normal_closes.tz_localize(cal.tz).tz_convert("UTC") dtis.append(sessions[closes < normal_closes_utc]) if date_from != pd.Timestamp.min: date_to = date_from - pd.Timedelta(1, "D") early_closes = dtis[0].union_many(dtis[1:]).tz_localize("UTC") yield early_closes # --- TESTS --- # Tests for calendar definition and construction methods. def test_base_integrity(self, calendar_cls, non_valid_overrides): cls = calendar_cls for name in non_valid_overrides: assert getattr(cls, name) == getattr(ExchangeCalendar, name) def test_calculated_against_csv(self, default_calendar_with_answers): calendar, ans = default_calendar_with_answers tm.assert_index_equal(calendar.schedule.index, ans.sessions) def test_start_end(self, default_answers, calendar_cls): ans = default_answers sessions = ans.session_blocks["normal"] start, end = sessions[0], sessions[-1] cal = calendar_cls(start, end) assert cal.first_session == start assert cal.last_session == end if len(ans.non_sessions) > 1: # start and end as non-sessions (start, end), sessions = ans.sessions_range_defined_by_non_sessions cal = calendar_cls(start, end) assert cal.first_session == sessions[0] assert cal.last_session == sessions[-1] def test_invalid_input(self, calendar_cls, sides, default_answers, name): ans = default_answers invalid_side = "both" if "both" not in sides else "invalid_side" error_msg = f"`side` must be in {sides} although received as {invalid_side}." with pytest.raises(ValueError, match=re.escape(error_msg)): calendar_cls(side=invalid_side) start = ans.sessions[1] end_same_as_start = ans.sessions[1] error_msg = ( "`start` must be earlier than `end` although `start` parsed as" f" '{start}' and `end` as '{end_same_as_start}'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): calendar_cls(start=start, end=end_same_as_start) end_before_start = ans.sessions[0] error_msg = ( "`start` must be earlier than `end` although `start` parsed as" f" '{start}' and `end` as '{end_before_start}'." ) with pytest.raises(ValueError, match=re.escape(error_msg)): calendar_cls(start=start, end=end_before_start) if len(ans.non_sessions) > 1: start, end = ans.non_sessions_range error_msg = ( f"The requested ExchangeCalendar, {name.upper()}, cannot be created as" f" there would be no sessions between the requested `start` ('{start}')" f" and `end` ('{end}') dates." ) with pytest.raises(NoSessionsError, match=re.escape(error_msg)): calendar_cls(start=start, end=end) def test_bound_start(self, calendar_cls, start_bound, today): if start_bound is not None: cal = calendar_cls(start_bound, today) assert isinstance(cal, ExchangeCalendar) start = start_bound - pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{start}")): calendar_cls(start, today) else: # verify no bound imposed cal = calendar_cls(pd.Timestamp("1902-01-01", tz="UTC"), today) assert isinstance(cal, ExchangeCalendar) def test_bound_end(self, calendar_cls, end_bound, today): if end_bound is not None: cal = calendar_cls(today, end_bound) assert isinstance(cal, ExchangeCalendar) end = end_bound + pd.DateOffset(days=1) with pytest.raises(ValueError, match=re.escape(f"{end}")): calendar_cls(today, end) else: # verify no bound imposed cal = calendar_cls(today, pd.Timestamp("2050-01-01", tz="UTC")) assert isinstance(cal, ExchangeCalendar) def test_sanity_check_session_lengths(self, default_calendar, max_session_hours): cal = default_calendar cal_max_secs = (cal.market_closes_nanos - cal.market_opens_nanos).max() assert cal_max_secs / 3600000000000 <= max_session_hours def test_adhoc_holidays_specification(self, default_calendar): """adhoc holidays should be tz-naive (#33, #39).""" dti = pd.DatetimeIndex(default_calendar.adhoc_holidays) assert dti.tz is None def test_daylight_savings(self, default_calendar, daylight_savings_dates): # make sure there's no weirdness around calculating the next day's # session's open time. if not daylight_savings_dates: pytest.skip() cal = default_calendar d = dict(cal.open_times) d[pd.Timestamp.min] = d.pop(None) open_times = pd.Series(d) for date in daylight_savings_dates: # where `next day` is first session of new daylight savings regime next_day = cal.date_to_session_label(T(date), "next") open_date = next_day + Timedelta(days=cal.open_offset) the_open = cal.schedule.loc[next_day].market_open localized_open = the_open.tz_localize(UTC).tz_convert(cal.tz) assert open_date.year == localized_open.year assert open_date.month == localized_open.month assert open_date.day == localized_open.day open_ix = open_times.index.searchsorted(date, side="right") if open_ix == len(open_times): open_ix -= 1 open_time = open_times.iloc[open_ix] assert open_time.hour == localized_open.hour assert open_time.minute == localized_open.minute # Tests for properties covering all sessions. def test_all_sessions(self, default_calendar_with_answers): cal, ans = default_calendar_with_answers ans_sessions = ans.sessions cal_sessions = cal.all_sessions tm.assert_index_equal(ans_sessions, cal_sessions) def test_opens_closes_break_starts_ends(self, default_calendar_with_answers): """Test `opens`, `closes, `break_starts` and `break_ends` properties.""" cal, ans = default_calendar_with_answers for prop in ( "opens", "closes", "break_starts", "break_ends", ): ans_series = getattr(ans, prop).dt.tz_convert(None) cal_series = getattr(cal, prop) tm.assert_series_equal(ans_series, cal_series, check_freq=False) def test_minutes_properties(self, all_calendars_with_answers): """Test minute properties. Tests following calendar properties: all_first_minutes all_last_minutes all_last_am_minutes all_first_pm_minutes """ cal, ans = all_calendars_with_answers for prop in ( "first_minutes", "last_minutes", "last_am_minutes", "first_pm_minutes", ): ans_minutes = getattr(ans, prop) cal_minutes = getattr(cal, "all_" + prop) tm.assert_series_equal(ans_minutes, cal_minutes, check_freq=False) # Tests for properties covering all minutes. def test_all_minutes(self, all_calendars_with_answers, one_minute): """Test trading minutes at sessions' bounds.""" calendar, ans = all_calendars_with_answers side = ans.side mins = calendar.all_minutes assert isinstance(mins, pd.DatetimeIndex) assert not mins.empty mins_plus_1 = mins + one_minute mins_less_1 = mins - one_minute if side in ["left", "neither"]: # Test that close and break_start not in mins, # but are in mins_plus_1 (unless no gap after) # do not test here for sessions with no gap after as for "left" these # sessions' close IS a trading minute as it's the same as next session's # open. # NB For "neither" all sessions will have gap after. closes = ans.closes[ans.sessions_with_gap_after] # closes should not be in minutes assert not mins.isin(closes).any() # all closes should be in minutes plus 1 # for speed, use only subset of mins that are of interest mins_plus_1_on_close = mins_plus_1[mins_plus_1.isin(closes)] assert closes.isin(mins_plus_1_on_close).all() # as noted above, if no gap after then close should be a trading minute # as will be first minute of next session. closes = ans.closes[ans.sessions_without_gap_after] mins_on_close = mins[mins.isin(closes)] assert closes.isin(mins_on_close).all() if ans.has_a_session_with_break: # break start should not be in minutes assert not mins.isin(ans.break_starts).any() # break start should be in minutes plus 1 break_starts = ans.break_starts[ans.sessions_with_break] mins_plus_1_on_start = mins_plus_1[mins_plus_1.isin(break_starts)] assert break_starts.isin(mins_plus_1_on_start).all() if side in ["left", "both"]: # Test that open and break_end are in mins, # but not in mins_plus_1 (unless no gap before) mins_on_open = mins[mins.isin(ans.opens)] assert ans.opens.isin(mins_on_open).all() opens = ans.opens[ans.sessions_with_gap_before] assert not mins_plus_1.isin(opens).any() opens = ans.opens[ans.sessions_without_gap_before] mins_plus_1_on_open = mins_plus_1[mins_plus_1.isin(opens)] assert opens.isin(mins_plus_1_on_open).all() if ans.has_a_session_with_break: break_ends = ans.break_ends[ans.sessions_with_break] mins_on_end = mins[mins.isin(ans.break_ends)] assert break_ends.isin(mins_on_end).all() if side in ["right", "neither"]: # Test that open and break_end are not in mins, # but are in mins_less_1 (unless no gap before) opens = ans.opens[ans.sessions_with_gap_before] assert not mins.isin(opens).any() mins_less_1_on_open = mins_less_1[mins_less_1.isin(opens)] assert opens.isin(mins_less_1_on_open).all() opens = ans.opens[ans.sessions_without_gap_before] mins_on_open = mins[mins.isin(opens)] assert opens.isin(mins_on_open).all() if ans.has_a_session_with_break: assert not mins.isin(ans.break_ends).any() break_ends = ans.break_ends[ans.sessions_with_break] mins_less_1_on_end = mins_less_1[mins_less_1.isin(break_ends)] assert break_ends.isin(mins_less_1_on_end).all() if side in ["right", "both"]: # Test that close and break_start are in mins, # but not in mins_less_1 (unless no gap after) mins_on_close = mins[mins.isin(ans.closes)] assert ans.closes.isin(mins_on_close).all() closes = ans.closes[ans.sessions_with_gap_after] assert not mins_less_1.isin(closes).any() closes = ans.closes[ans.sessions_without_gap_after] mins_less_1_on_close = mins_less_1[mins_less_1.isin(closes)] assert closes.isin(mins_less_1_on_close).all() if ans.has_a_session_with_break: break_starts = ans.break_starts[ans.sessions_with_break] mins_on_start = mins[mins.isin(ans.break_starts)] assert break_starts.isin(mins_on_start).all() # Tests for calendar properties. def test_calendar_bounds_properties(self, all_calendars_with_answers): """Test calendar properties that define a calendar bound. Tests following calendar properties: first_session last_session first_session_open last_session_close first_trading_minute last_trading_minute """ cal, ans = all_calendars_with_answers assert ans.first_session == cal.first_session assert ans.last_session == cal.last_session assert ans.first_session_open.tz_convert(None) == cal.first_session_open assert ans.last_session_close.tz_convert(None) == cal.last_session_close assert ans.first_trading_minute == cal.first_trading_minute assert ans.last_trading_minute == cal.last_trading_minute def test_has_breaks(self, default_calendar_with_answers): cal, ans = default_calendar_with_answers f = no_parsing(cal.has_breaks) has_a_break = ans.has_a_session_with_break assert f() == has_a_break if ans.has_a_session_without_break: assert not f(*ans.sessions_without_break_range) if has_a_break: # i.e. mixed, some sessions have a break, some don't block = ans.session_blocks["with_break_to_without_break"] if not block.empty: # guard against starting with no breaks, then an introduction # of breaks to every session after a certain date # (i.e. there would be no with_break_to_without_break) assert f(block[0], block[-1]) block = ans.session_blocks["without_break_to_with_break"] if not block.empty: # ...guard against opposite case (e.g. XKRX) assert f(block[0], block[-1]) else: # in which case all sessions must have a break. Make sure... assert cal.break_starts.notna().all() def test_regular_holidays_sample(self, default_calendar, regular_holidays_sample): """Test that calendar-specific sample of holidays are not sessions.""" if not regular_holidays_sample: pytest.skip() for holiday in regular_holidays_sample: assert T(holiday) not in default_calendar.all_sessions def test_adhoc_holidays_sample(self, default_calendar, adhoc_holidays_sample): """Test that calendar-specific sample of holidays are not sessions.""" if not adhoc_holidays_sample: pytest.skip() for holiday in adhoc_holidays_sample: assert T(holiday) not in default_calendar.all_sessions def test_non_holidays_sample(self, default_calendar, non_holidays_sample): """Test that calendar-specific sample of non-holidays are sessions.""" if not non_holidays_sample: pytest.skip() for date in non_holidays_sample: assert T(date) in default_calendar.all_sessions # NOTE: As of Oct 21 no calendar tests late opens (indeed, believe that no # calendar defines late opens). Test commented out to prevent skip tests littering # output. REINSTATE TEST IF any calendar defines and test late opens. # def test_late_opens_sample(self, default_calendar, late_opens_sample): # """Test calendar-specific sample of sessions are included to late opens.""" # if not late_opens_sample: # pytest.skip() # for date in late_opens_sample: # assert T(date) in default_calendar.late_opens def test_early_closes_sample(self, default_calendar, early_closes_sample): """Test calendar-specific sample of sessions are included to early closes.""" if not early_closes_sample: pytest.skip() for date in early_closes_sample: assert T(date) in default_calendar.early_closes def test_early_closes_sample_time( self, default_calendar, early_closes_sample, early_closes_sample_time ): """Test close time of calendar-specific sample of early closing sessions. Notes ----- TEST RELIES ON ACCURACY OF CALENDAR PROPERTIES `closes`, `tz` and `close_offset`. """ if early_closes_sample_time is None: pytest.skip() cal, tz = default_calendar, default_calendar.tz offset = pd.Timedelta(cal.close_offset, "D") + early_closes_sample_time for date in early_closes_sample: early_close = cal.closes[date].tz_localize(UTC).tz_convert(tz) expected = pd.Timestamp(date, tz=tz) + offset assert early_close == expected def test_non_early_closes_sample(self, default_calendar, non_early_closes_sample): """Test calendar-specific sample of sessions are not early closes.""" if not non_early_closes_sample: pytest.skip() for date in non_early_closes_sample: assert T(date) not in default_calendar.early_closes def test_non_early_closes_sample_time( self, default_calendar, non_early_closes_sample, non_early_closes_sample_time ): """Test close time of calendar-specific sample of sessions with normal closes. Notes ----- TEST RELIES ON ACCURACY OF CALENDAR PROPERTIES `closes`, `tz` and `close_offset`. """ if non_early_closes_sample_time is None: pytest.skip() cal, tz = default_calendar, default_calendar.tz offset = pd.Timedelta(cal.close_offset, "D") + non_early_closes_sample_time for date in non_early_closes_sample: close = cal.closes[date].tz_localize(UTC).tz_convert(tz) expected_close = pd.Timestamp(date, tz=tz) + offset assert close == expected_close def test_late_opens(self, default_calendar, late_opens): """Test late opens. Notes ----- TEST RELIES ON ACCURACY OF CALENDAR PROPERTIES `open_times` and `tz`. See `late_opens` fixture. """ tm.assert_index_equal(late_opens, default_calendar.late_opens) def test_early_closes(self, default_calendar, early_closes): """Test early closes. Notes ----- TEST RELIES ON ACCURACY OF CALENDAR PROPERTIES `close_times` and `tz`. See `early_closes` fixture. """ tm.assert_index_equal(early_closes, default_calendar.early_closes) # Tests for methods that interrogate a given session. def test_session_open_close_break_start_end(self, default_calendar_with_answers): """Test methods that get session open, close, break_start, break_end. Tests following calendar methods: session_open session_close open_and_close_for_session session_break_start session_break_end break_start_and_end_for_session """ # considered sufficient to limit test to sessions of session blocks. cal, ans = default_calendar_with_answers for _, block in ans.session_block_generator(): for session in block: ans_open = ans.opens[session] ans_close = ans.closes[session] assert cal.session_open(session, _parse=False) == ans_open assert cal.session_close(session, _parse=False) == ans_close assert cal.open_and_close_for_session(session, _parse=False) == ( ans_open, ans_close, ) break_start = cal.session_break_start(session, _parse=False) break_end = cal.session_break_end(session, _parse=False) break_start_and_end = cal.break_start_and_end_for_session( session, _parse=False ) ans_break_start = ans.break_starts[session] ans_break_end = ans.break_ends[session] if pd.isna(ans_break_start): assert pd.isna(break_start) and pd.isna(break_end) assert pd.isna(break_start_and_end[0]) assert pd.isna(break_start_and_end[1]) else: assert break_start == ans_break_start assert break_end == ans_break_end assert break_start_and_end[0] == ans_break_start assert break_start_and_end[1] == ans_break_end def test_session_minute_methods(self, all_calendars_with_answers): """Test methods that get a minute bound of a session or subsession. Tests following calendar methods: session_first_minute session_last_minute session_last_am_minute session_first_pm_minute session_first_and_last_minute """ # considered sufficient to limit test to sessions of session blocks. cal, ans = all_calendars_with_answers for _, block in ans.session_block_generator(): for session in block: ans_first_minute = ans.first_minutes[session] ans_last_minute = ans.last_minutes[session] assert ( cal.session_first_minute(session, _parse=False) == ans_first_minute ) assert cal.session_last_minute(session, _parse=False) == ans_last_minute assert cal.session_first_and_last_minute(session, _parse=False) == ( ans_first_minute, ans_last_minute, ) last_am_minute = cal.session_last_am_minute(session, _parse=False) first_pm_minute = cal.session_first_pm_minute(session, _parse=False) ans_last_am_minute = ans.last_am_minutes[session] ans_first_pm_minute = ans.first_pm_minutes[session] if pd.isna(ans_last_am_minute): assert
pd.isna(last_am_minute)
pandas.isna
from fuzzywuzzy import fuzz import string import pandas as pd import random import datetime from annoy import AnnoyIndex import numpy as np from pandas.api.types import is_numeric_dtype ### UTILITY Methods # from importutil import reload #sys.path.append('c:\\users\\pkapaleeswaran\\workspacej3\\py') class PyFrame: x = 7 def __init__(self, cache): self.cache = cache @classmethod def makefm(cls, frame): cache = {} cache['data']=frame cache['version'] = 0 cache['low_version'] = 0 cache[0] = frame return cls(cache) @classmethod def makefm_csv(cls, fileName): frame = pd.read_csv(fileName) cache = {} cache['data']=frame cache['version'] = 0 cache['low_version'] = 0 cache[0] = frame return cls(cache) def id_generator(self, size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def makeCopy(this): version = 0 if(version in this.cache): if('high_version' in this.cache): version = this.cache['high_version'] else: version = this.cache['version'] version = version+1 this.cache[version] = this.cache['data'].copy() this.cache['version'] = version this.cache['high_version'] = version # falls back to the last version def fallback(this): version = this.cache['version'] low_version = this.cache['low_version'] if(version in this.cache and version > low_version): this.cache['high_version'] = version version = version - 1 this.cache['version'] = version this.cache['data'] = this.cache[version] else: print ('cant fall back. In the latest') def calcRatio(self, actual_col, predicted_col): result = [] #actual_col = actual_col.unique #predicted_col = predicted_col.unique for x in actual_col: for y in predicted_col: ratio = fuzz.ratio(x,y) ratio = 1 - (ratio / 100) if(ratio != 0): data = [x,y,ratio] result.append(data) result = pd.DataFrame(result) return result def match(this, actual_col, predicted_col): cache = this.cache key_name = actual_col + "_" + predicted_col if( not(key_name in cache)): print ('building cache', key_name) daFrame = cache['data'] var_name = this.calcRatio(daFrame[actual_col].unique(), daFrame[predicted_col].unique()) var_name.columns = ['col1','col2','distance'] cache[key_name] = var_name var_name = cache[key_name] #print(var_name.head()) # seems like we dont need that right now #output = var_name[(var_name[2] > threshold) & (var_name[2] != 100)] return var_name def drop_col(this, col_name, inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() frame.drop(col_name, axis =1, inplace=True) this.cache['data'] = frame def split(this, col_name, delim, inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() col_to_split = frame[col_name] splitcol = col_to_split.str.split(delim, expand = True) for len in splitcol: frame[col_name + '_' + str(len)] = splitcol[len] this.cache['data'] = frame return frame def replace_val(this, col_name, old_value, new_value, regx=True, inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() nf = frame.replace({col_name: old_value}, {col_name: new_value}, regex=regx, inplace=inplace) print('replacing inplace') #this.cache['data'] = nf def replace_val2(this, col_name, cur_value, new_col, new_value, regx= True, inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() nf = frame.replace({col_name: cur_value}, {new_col: new_value}, regex=regx, inplace=inplace) print('replacing inplace') def upper(this, col_name, inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] column = frame[col_name] frame[col_name] = column.str.upper() this.cache['data'] = frame def lower(this, col_name, inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] column = frame[col_name] frame[col_name] = column.str.lower() this.cache['data'] = frame def title(this, col_name, inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] column = frame[col_name] frame[col_name] = column.str.title() this.cache['data'] = frame def concat(this, col1, col2, newcol, glue='_', inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] frame[newcol] = frame[col1] + glue + frame[col2] this.cache['data'] = frame def mathcat(this, operation, newcol, inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] frame[newcol] = operation this.cache['data'] = frame def dupecol(this, oldcol, newcol, inplace=True): if not inplace: this.makeCopy() frame = this.cache['data'] frame[newcol] = frame[oldcol] this.cache['data'] = frame # dropping row has to be done from inside java # newframe = mv[mv['Genre'] != 'Drama'] # change type is also done from java # The actual type is sent from java def change_col_type(this, col, type, inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() frame[col] = frame[col].astype(type) this.cache['data'] = frame # Index in euclidean space tc. # input is a pandas frame # the first column is typically the identifier # The remaining are the vector def buildnn(this, trees=10, type='euclidean'): frame = this.cache['data'] cols = len(frame.columns) - 1 t = AnnoyIndex() for i, row in frame: t.add_item(i, row[1:]) this.cache['nn'] = t # drops non numeric data columns from the frame def dropalpha(this, inplace=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] df = this.cache['data'] if not inplace: this.makeCopy() this.cache['data'] = df.select_dtypes(include=numerics) # drops non numeric data columns from the frame def dropnum(this, inplace=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] df = this.cache['data'] if not inplace: this.makeCopy() this.cache['data'] = df.select_dtypes(exclude=numerics) def extract_num(this, col_name, newcol='assign', inplace=True): if(newcol == 'assign'): this.replace_val(col_name, '[a-zA-Z]+', '') else: this.dupecol(col_name, newcol) this.replace_val(newcol, '[a-zA-Z]+', '') def extract_alpha(this, col_name, newcol='assign', inplace=True): if(newcol == 'assign'): this.replace_val(col_name, '\d+', '') else: this.dupecol(col_name, newcol) this.replace_val(newcol, '\d+', '') def unpivot(this, valcols, idcols=['all'], inplace=True): frame = this.cache['data'] if not inplace: this.makeCopy() # assimilate all the columns if the idcols = 'all' if idcols == ['all']: idcols = list(set(list(frame.columns.values)) - set(valcols)) output =
pd.melt(mv, id_vars=idcols, value_vars=valcols)
pandas.melt
# parse log files and generate an excel file import re import sys, getopt import pandas as pd import xlsxwriter rx_dict = { 'File': re.compile(r'File: (?P<file>.*) , Top Module: (?P<top_module>.*)'), 'Faults': re.compile(r'Found (?P<fault_sites>.*) fault sites in (?P<gates>.*) gates and (?P<ports>.*) ports.'), 'Time': re.compile(r'Time elapsed: (?P<time>.*)s.'), 'Coverage': re.compile(r'Simulations concluded: Coverage (?P<coverage>.*)%'), 'Iteration': re.compile(r'\((?P<current_coverage>.*)%/(?P<min_coverage>.*)%,\) incrementing to (?P<tv_count>.*).'), } def main(argv): log_file, output_file = parse_args(argv) data =
pd.DataFrame(columns=["File", "Top Module", "Fault Sites", "Gate Count", "Ports", "Run Time", "TV Count", "Coverage"])
pandas.DataFrame
from psaw import PushshiftAPI import pandas as pd import numpy as np import datetime class SubmissionData(object): def __init__(self, api_obj, subreddit_name): self.api = api_obj self.subreddit_name = subreddit_name self.submission_results = None self.submission_df = None def retrieve_submissions(self, limit=None): if limit is not None: submission_results = list(self.api.search_submissions(subreddit=self.subreddit_name, filter=['title', 'selftext', 'permalink', 'created_utc'], limit=limit)) else: submission_results = list(self.api.search_submissions(subreddit=self.subreddit_name, filter=['title', 'selftext', 'permalink', 'created_utc'])) self.submission_results = submission_results return None def submissions_to_dataframe(self): sub_dict = {'title': [], 'text': [], 'link': [], 'created_utc': []} for post in self.submission_results: try: title = post.title text = post.selftext link = post.permalink created = post.created_utc except AttributeError: continue else: sub_dict['title'].append(title) sub_dict['text'].append(text) sub_dict['link'].append(link) sub_dict['created_utc'].append(created) self.submission_df =
pd.DataFrame(sub_dict)
pandas.DataFrame
# ***************************************************************************** # Copyright (c) 2019, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import operator import numpy import pandas import numba import sdc from numba import types from numba.typing.templates import (infer_global, AbstractTemplate, infer, signature, AttributeTemplate, infer_getattr, bound_function) import numba.typing.typeof from numba.datamodel import StructModel from numba.errors import TypingError from numba.extending import (typeof_impl, type_callable, models, register_model, NativeValue, make_attribute_wrapper, lower_builtin, box, unbox, lower_getattr, intrinsic, overload_method, overload, overload_attribute) from numba import cgutils from sdc.str_ext import string_type from numba.targets.imputils import (impl_ret_new_ref, impl_ret_borrowed, iternext_impl, RefType) from sdc.str_arr_ext import (string_array_type, get_data_ptr, is_str_arr_typ, pre_alloc_string_array, _memcpy) from llvmlite import ir as lir import llvmlite.binding as ll from llvmlite.llvmpy.core import Type as LLType from .. import hstr_ext ll.add_symbol('array_setitem', hstr_ext.array_setitem) ll.add_symbol('array_getptr1', hstr_ext.array_getptr1) ll.add_symbol('dtor_str_arr_split_view', hstr_ext.dtor_str_arr_split_view) ll.add_symbol('str_arr_split_view_impl', hstr_ext.str_arr_split_view_impl) ll.add_symbol('str_arr_split_view_alloc', hstr_ext.str_arr_split_view_alloc) char_typ = types.uint8 offset_typ = types.uint32 data_ctypes_type = types.ArrayCTypes(types.Array(char_typ, 1, 'C')) offset_ctypes_type = types.ArrayCTypes(types.Array(offset_typ, 1, 'C')) # nested offset structure to represent S.str.split() # data_offsets array includes offsets to character data array # index_offsets array includes offsets to data_offsets array to identify lists class StringArraySplitViewType(types.IterableType): def __init__(self): super(StringArraySplitViewType, self).__init__( name='StringArraySplitViewType()') @property def dtype(self): # TODO: optimized list type return types.List(string_type) # TODO @property def iterator_type(self): return # StringArrayIterator() def copy(self): return StringArraySplitViewType() string_array_split_view_type = StringArraySplitViewType() class StringArraySplitViewPayloadType(types.Type): def __init__(self): super(StringArraySplitViewPayloadType, self).__init__( name='StringArraySplitViewPayloadType()') str_arr_split_view_payload_type = StringArraySplitViewPayloadType() # XXX: C equivalent in _str_ext.cpp @register_model(StringArraySplitViewPayloadType) class StringArrayPayloadModel(models.StructModel): def __init__(self, dmm, fe_type): members = [ ('index_offsets', types.CPointer(offset_typ)), ('data_offsets', types.CPointer(offset_typ)), #('null_bitmap', types.CPointer(char_typ)), ] models.StructModel.__init__(self, dmm, fe_type, members) str_arr_model_members = [ ('num_items', types.uint64), # number of lists # ('num_total_strs', types.uint64), # number of strings total #('num_total_chars', types.uint64), ('index_offsets', types.CPointer(offset_typ)), ('data_offsets', types.CPointer(offset_typ)), ('data', data_ctypes_type), #('null_bitmap', types.CPointer(char_typ)), ('meminfo', types.MemInfoPointer(str_arr_split_view_payload_type)), ] @register_model(StringArraySplitViewType) class StringArrayModel(models.StructModel): def __init__(self, dmm, fe_type): models.StructModel.__init__(self, dmm, fe_type, str_arr_model_members) make_attribute_wrapper(StringArraySplitViewType, 'num_items', '_num_items') make_attribute_wrapper(StringArraySplitViewType, 'index_offsets', '_index_offsets') make_attribute_wrapper(StringArraySplitViewType, 'data_offsets', '_data_offsets') make_attribute_wrapper(StringArraySplitViewType, 'data', '_data') class SplitViewStringMethodsType(types.IterableType): """ Type definition for pandas.core.strings.StringMethods functions handling. Members ---------- _data: :class:`SeriesType` input arg """ def __init__(self, data): self.data = data name = 'SplitViewStringMethodsType({})'.format(self.data) super(SplitViewStringMethodsType, self).__init__(name) @property def iterator_type(self): return None @register_model(SplitViewStringMethodsType) class SplitViewStringMethodsTypeModel(StructModel): """ Model for SplitViewStringMethodsType type All members must be the same as main type for this model """ def __init__(self, dmm, fe_type): members = [ ('data', fe_type.data) ] models.StructModel.__init__(self, dmm, fe_type, members) make_attribute_wrapper(SplitViewStringMethodsType, 'data', '_data') def construct_str_arr_split_view(context, builder): """Creates meminfo and sets dtor. """ alloc_type = context.get_data_type(str_arr_split_view_payload_type) alloc_size = context.get_abi_sizeof(alloc_type) llvoidptr = context.get_value_type(types.voidptr) llsize = context.get_value_type(types.uintp) dtor_ftype = lir.FunctionType(lir.VoidType(), [llvoidptr, llsize, llvoidptr]) dtor_fn = builder.module.get_or_insert_function( dtor_ftype, name="dtor_str_arr_split_view") meminfo = context.nrt.meminfo_alloc_dtor( builder, context.get_constant(types.uintp, alloc_size), dtor_fn, ) meminfo_data_ptr = context.nrt.meminfo_data(builder, meminfo) meminfo_data_ptr = builder.bitcast(meminfo_data_ptr, alloc_type.as_pointer()) # Nullify all data # builder.store( cgutils.get_null_value(alloc_type), # meminfo_data_ptr) return meminfo, meminfo_data_ptr @intrinsic def compute_split_view(typingctx, str_arr_typ, sep_typ=None): assert str_arr_typ == string_array_type and isinstance(sep_typ, types.StringLiteral) def codegen(context, builder, sig, args): str_arr, _ = args meminfo, meminfo_data_ptr = construct_str_arr_split_view( context, builder) in_str_arr = context.make_helper( builder, string_array_type, str_arr) # (str_arr_split_view_payload* out_view, int64_t n_strs, # uint32_t* offsets, char* data, char sep) fnty = lir.FunctionType(lir.VoidType(), [meminfo_data_ptr.type, lir.IntType(64), lir.IntType(32).as_pointer(), lir.IntType(8).as_pointer(), lir.IntType(8)]) fn_impl = builder.module.get_or_insert_function( fnty, name="str_arr_split_view_impl") sep_val = context.get_constant(types.int8, ord(sep_typ.literal_value)) builder.call(fn_impl, [meminfo_data_ptr, in_str_arr.num_items, in_str_arr.offsets, in_str_arr.data, sep_val]) view_payload = cgutils.create_struct_proxy( str_arr_split_view_payload_type)( context, builder, value=builder.load(meminfo_data_ptr)) out_view = context.make_helper(builder, string_array_split_view_type) out_view.num_items = in_str_arr.num_items out_view.index_offsets = view_payload.index_offsets out_view.data_offsets = view_payload.data_offsets # TODO: incref? out_view.data = context.compile_internal( builder, lambda S: get_data_ptr(S), data_ctypes_type(string_array_type), [str_arr]) # out_view.null_bitmap = view_payload.null_bitmap out_view.meminfo = meminfo ret = out_view._getvalue() #context.nrt.decref(builder, ty, ret) return impl_ret_new_ref( context, builder, string_array_split_view_type, ret) return string_array_split_view_type( string_array_type, sep_typ), codegen @box(StringArraySplitViewType) def box_str_arr_split_view(typ, val, c): context = c.context builder = c.builder sp_view = context.make_helper(builder, string_array_split_view_type, val) # create array of objects with num_items shape mod_name = c.context.insert_const_string(c.builder.module, "numpy") np_class_obj = c.pyapi.import_module_noblock(mod_name) dtype = c.pyapi.object_getattr_string(np_class_obj, 'object_') l_num_items = builder.sext(sp_view.num_items, c.pyapi.longlong) num_items_obj = c.pyapi.long_from_longlong(l_num_items) out_arr = c.pyapi.call_method( np_class_obj, "ndarray", (num_items_obj, dtype)) # Array setitem call arr_get_fnty = LLType.function( lir.IntType(8).as_pointer(), [c.pyapi.pyobj, c.pyapi.py_ssize_t]) arr_get_fn = c.pyapi._get_function(arr_get_fnty, name="array_getptr1") arr_setitem_fnty = LLType.function( lir.VoidType(), [c.pyapi.pyobj, lir.IntType(8).as_pointer(), c.pyapi.pyobj]) arr_setitem_fn = c.pyapi._get_function( arr_setitem_fnty, name="array_setitem") # for each string with cgutils.for_range(builder, sp_view.num_items) as loop: str_ind = loop.index # start and end offset of string's list in index_offsets # sp_view.index_offsets[str_ind] list_start_offset = builder.sext(builder.load(builder.gep(sp_view.index_offsets, [str_ind])), lir.IntType(64)) # sp_view.index_offsets[str_ind+1] list_end_offset = builder.sext( builder.load( builder.gep( sp_view.index_offsets, [ builder.add( str_ind, str_ind.type(1))])), lir.IntType(64)) # cgutils.printf(builder, "%d %d\n", list_start, list_end) # Build a new Python list nitems = builder.sub(list_end_offset, list_start_offset) nitems = builder.sub(nitems, nitems.type(1)) # cgutils.printf(builder, "str %lld n %lld\n", str_ind, nitems) list_obj = c.pyapi.list_new(nitems) with c.builder.if_then(cgutils.is_not_null(c.builder, list_obj), likely=True): with cgutils.for_range(c.builder, nitems) as loop: # data_offsets of current list start_index = builder.add(list_start_offset, loop.index) data_start = builder.load(builder.gep(sp_view.data_offsets, [start_index])) # add 1 since starts from -1 data_start = builder.add(data_start, data_start.type(1)) data_end = builder.load( builder.gep( sp_view.data_offsets, [ builder.add( start_index, start_index.type(1))])) # cgutils.printf(builder, "ind %lld %lld\n", data_start, data_end) data_ptr = builder.gep(builder.extract_value(sp_view.data, 0), [data_start]) str_size = builder.sext(builder.sub(data_end, data_start), lir.IntType(64)) str_obj = c.pyapi.string_from_string_and_size(data_ptr, str_size) c.pyapi.list_setitem(list_obj, loop.index, str_obj) arr_ptr = builder.call(arr_get_fn, [out_arr, str_ind]) builder.call(arr_setitem_fn, [out_arr, arr_ptr, list_obj]) c.pyapi.decref(np_class_obj) return out_arr @intrinsic def pre_alloc_str_arr_view(typingctx, num_items_t, num_offsets_t, data_t=None): assert num_items_t == types.intp and num_offsets_t == types.intp def codegen(context, builder, sig, args): num_items, num_offsets, data_ptr = args meminfo, meminfo_data_ptr = construct_str_arr_split_view( context, builder) # (str_arr_split_view_payload* out_view, int64_t num_items, # int64_t num_offsets) fnty = lir.FunctionType( lir.VoidType(), [meminfo_data_ptr.type, lir.IntType(64), lir.IntType(64)]) fn_impl = builder.module.get_or_insert_function( fnty, name="str_arr_split_view_alloc") builder.call(fn_impl, [meminfo_data_ptr, num_items, num_offsets]) view_payload = cgutils.create_struct_proxy( str_arr_split_view_payload_type)( context, builder, value=builder.load(meminfo_data_ptr)) out_view = context.make_helper(builder, string_array_split_view_type) out_view.num_items = num_items out_view.index_offsets = view_payload.index_offsets out_view.data_offsets = view_payload.data_offsets # TODO: incref? out_view.data = data_ptr if context.enable_nrt: context.nrt.incref(builder, data_t, data_ptr) # out_view.null_bitmap = view_payload.null_bitmap out_view.meminfo = meminfo ret = out_view._getvalue() return impl_ret_new_ref( context, builder, string_array_split_view_type, ret) return string_array_split_view_type( types.intp, types.intp, data_t), codegen @intrinsic def get_c_arr_ptr(typingctx, c_arr, ind_t=None): assert isinstance(c_arr, (types.CPointer, types.ArrayCTypes)) def codegen(context, builder, sig, args): in_arr, ind = args if isinstance(sig.args[0], types.ArrayCTypes): in_arr = builder.extract_value(in_arr, 0) return builder.bitcast( builder.gep(in_arr, [ind]), lir.IntType(8).as_pointer()) return types.voidptr(c_arr, ind_t), codegen @intrinsic def getitem_c_arr(typingctx, c_arr, ind_t=None): def codegen(context, builder, sig, args): in_arr, ind = args return builder.load(builder.gep(in_arr, [ind])) return c_arr.dtype(c_arr, ind_t), codegen @intrinsic def setitem_c_arr(typingctx, c_arr, ind_t, item_t=None): def codegen(context, builder, sig, args): in_arr, ind, item = args ptr = builder.gep(in_arr, [ind]) builder.store(item, ptr) return types.void(c_arr, ind_t, c_arr.dtype), codegen @intrinsic def get_array_ctypes_ptr(typingctx, arr_ctypes_t, ind_t=None): def codegen(context, builder, sig, args): in_arr_ctypes, ind = args arr_ctypes = context.make_helper( builder, arr_ctypes_t, in_arr_ctypes) out = context.make_helper(builder, arr_ctypes_t) out.data = builder.gep(arr_ctypes.data, [ind]) out.meminfo = arr_ctypes.meminfo res = out._getvalue() return impl_ret_borrowed(context, builder, arr_ctypes_t, res) return arr_ctypes_t(arr_ctypes_t, ind_t), codegen @numba.njit(no_cpython_wrapper=True) def get_split_view_index(arr, item_ind, str_ind): start_index = getitem_c_arr(arr._index_offsets, item_ind) # TODO: check num strings and support NAN # end_index = getitem_c_arr(arr._index_offsets, item_ind+1) data_start = getitem_c_arr( arr._data_offsets, start_index + str_ind) data_start += 1 # get around -1 storage in uint32 problem if start_index + str_ind == 0: data_start = 0 data_end = getitem_c_arr( arr._data_offsets, start_index + str_ind + 1) return data_start, (data_end - data_start) @numba.njit(no_cpython_wrapper=True) def get_split_view_data_ptr(arr, data_start): return get_array_ctypes_ptr(arr._data, data_start) @overload(len) def str_arr_split_view_len_overload(arr): if arr == string_array_split_view_type: return lambda arr: arr._num_items @overload_method(SplitViewStringMethodsType, 'len') def hpat_pandas_spliview_stringmethods_len(self): """ Pandas Series method :meth:`pandas.core.strings.StringMethods.len()` implementation. Note: Unicode type of list elements are supported only. Numpy.NaN is not supported as elements. .. only:: developer Test: python -m sdc.runtests sdc.tests.test_hiframes.TestHiFrames.test_str_split_filter Parameters ---------- self: :class:`pandas.core.strings.StringMethods` input arg Returns ------- :obj:`pandas.Series` returns :obj:`pandas.Series` object """ if not isinstance(self, SplitViewStringMethodsType): msg = 'Method len(). The object must be a pandas.core.strings. Given: {}' raise TypingError(msg.format(self)) def hpat_pandas_spliview_stringmethods_len_impl(self): item_count = len(self._data) result = numpy.empty(item_count, numba.types.int64) local_data = self._data._data for i in range(len(local_data)): result[i] = len(local_data[i]) return
pandas.Series(result, self._data._index, name=self._data._name)
pandas.Series
""" tests the pysat meta object and code """ import pysat import pandas as pds from nose.tools import assert_raises, raises import nose.tools from functools import partial import tempfile import pysat.instruments.pysat_testing # import pysat.instruments as instruments import numpy as np # import os import sys import importlib exclude_list = ['champ_star', 'superdarn_grdex', 'cosmic_gps', 'cosmic2013_gps', 'icon_euv', 'icon_ivm'] # dict, keyed by pysat instrument, with a list of usernames and passwords user_download_dict = {'supermag_magnetometer':['rstoneback', None]} if sys.version_info[0] >= 3: # TODO Remove when pyglow works in python 3 exclude_list.append('pysat_sgp4') def safe_data_dir(): saved_path = pysat.data_dir if saved_path is '': saved_path = '.' return saved_path def init_func_external(self): """Iterate through and create all of the test Instruments needed. Only want to do this once. """ # names of all the instrument modules instrument_names = pysat.instruments.__all__ temp = [] for name in instrument_names: if name not in exclude_list: temp.append(name) instrument_names = temp self.instruments = [] self.instrument_modules = [] # create temporary directory dir_name = tempfile.mkdtemp() saved_path = safe_data_dir() pysat.utils.set_data_dir(dir_name, store=False) for name in instrument_names: try: module = importlib.import_module(''.join(('.', name)), package='pysat.instruments') except ImportError: print ("Couldn't import instrument module") pass else: # try and grab basic information about the module so we # can iterate over all of the options try: info = module.test_dates except AttributeError: info = {} info[''] = {'':pysat.datetime(2009,1,1)} module.test_dates = info for sat_id in info.keys() : for tag in info[sat_id].keys(): try: inst = pysat.Instrument(inst_module=module, tag=tag, sat_id=sat_id, temporary_file_list=True) inst.test_dates = module.test_dates self.instruments.append(inst) self.instrument_modules.append(module) except: pass pysat.utils.set_data_dir(saved_path, store=False) init_inst = None init_mod = None class TestInstrumentQualifier(): def __init__(self): """Iterate through and create all of the test Instruments needed""" global init_inst global init_mod if init_inst is None: init_func_external(self) init_inst = self.instruments init_mod = self.instrument_modules else: self.instruments = init_inst self.instrument_modules = init_mod def setup(self): """Runs before every method to create a clean testing setup.""" pass def teardown(self): """Runs after every method to clean up previous testing.""" pass def check_module_loadable(self, module, tag, sat_id): a = pysat.Instrument(inst_module=module, tag=tag, sat_id=sat_id) assert True def check_module_importable(self, name): module = importlib.import_module(''.join(('.', name)), package='pysat.instruments') assert True def check_module_info(self, module): platform = module.platform name = module.name tags = module.tags sat_ids = module.sat_ids check = [] # check tags is a dict check.append(isinstance(tags, dict)) # that contains strings # check sat_ids is a dict check.append(isinstance(sat_ids, dict)) # that contains lists assert np.all(check) def test_modules_loadable(self): instrument_names = pysat.instruments.__all__ self.instruments = [] for name in instrument_names: f = partial(self.check_module_importable, name) f.description = ' '.join(('Checking importability for module:', name)) yield (f,) try: module = importlib.import_module(''.join(('.', name)), package='pysat.instruments') except ImportError: pass else: # try and grab basic information about the module so we # can iterate over all of the options f = partial(self.check_module_info, module) f.description = ' '.join(('Checking module has platform, name, tags, sat_ids. Testing module:', name)) yield (f,) try: info = module.test_dates except AttributeError: info = {} info[''] = {'':'failsafe'} for sat_id in info.keys() : for tag in info[sat_id].keys(): f = partial(self.check_module_loadable, module, tag, sat_id) f.description = ' '.join(('Checking pysat.Instrument instantiation for module:', name, 'tag:', tag, 'sat id:', sat_id)) yield (f, ) def check_load_presence(self, inst): _ = inst.load assert True def test_load_presence(self): for module in self.instrument_modules: f = partial(self.check_load_presence, module) f.description = ' '.join(('Checking for load routine for module: ', module.platform, module.name)) yield (f,) def check_list_files_presence(self, module): _ = module.list_files assert True def test_list_files_presence(self): for module in self.instrument_modules: f = partial(self.check_list_files_presence, module) f.description = ' '.join(('Checking for list_files routine for module: ', module.platform, module.name)) yield (f,) def check_download_presence(self, inst): _ = inst.download assert True def test_download_presence(self): for module in self.instrument_modules: yield (self.check_download_presence, module) def check_module_tdates(self, module): info = module.test_dates check = [] for sat_id in info.keys(): for tag in info[sat_id].keys(): check.append(isinstance(info[sat_id][tag], pysat.datetime)) assert np.all(check) def check_download(self, inst): from unittest.case import SkipTest import os start = inst.test_dates[inst.sat_id][inst.tag] # print (start) try: # check for username inst_name = '_'.join((inst.platform, inst.name)) if inst_name in user_download_dict: inst.download(start, start, user=user_download_dict[inst_name][0], password=user_download_dict[inst_name][1]) else: inst.download(start, start) except Exception as e: # couldn't run download, try to find test data instead print("Couldn't download data, trying to find test data.") saved_path = safe_data_dir() new_path = os.path.join(pysat.__path__[0],'tests', 'test_data') pysat.utils.set_data_dir(new_path, store=False) test_dates = inst.test_dates inst = pysat.Instrument(platform=inst.platform, name=inst.name, tag=inst.tag, sat_id=inst.sat_id, temporary_file_list=True) inst.test_dates = test_dates pysat.utils.set_data_dir(saved_path, store=False) if len(inst.files.files) > 0: print("Found test data.") raise SkipTest else: print("No test data found.") raise e assert True def check_load(self, inst, fuzzy=False): # set ringer data inst.data = pds.DataFrame([0]) start = inst.test_dates[inst.sat_id][inst.tag] inst.load(date=start) if not fuzzy: assert not inst.empty else: try: assert inst.data !=
pds.DataFrame([0])
pandas.DataFrame
import IMLearn.learners.regressors.linear_regression from IMLearn.learners.regressors import PolynomialFitting from IMLearn.utils import split_train_test import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go import plotly.io as pio pio.templates.default = "simple_white" DEGREE = 6 def load_data(filename: str) -> pd.DataFrame: """ Load city daily temperature dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (Temp) """ df = pd.read_csv(filename, parse_dates=["Date"]).dropna().drop_duplicates() df = df.drop("City", 1) df =
pd.get_dummies(df)
pandas.get_dummies
# Loading packages here import sys import argparse import numpy as np # import skbio as sb # Use this for ANOSIM import pandas as pd # Use this for working with dataframes import os import networkx import scipy.stats as stats # import scipy.spatial.distance as distance # conda install scipy # from skbio.diversity import beta_diversity # for bray curtis conditioning from sklearn.decomposition import PCA # Use for PCA import matplotlib.pyplot as plt # Use this for plotting # from skbio.stats.distance import anosim import math import csv import minepy # pip install minepy import time import seaborn as sb global min_count global window_size global outdir global disjoint global connectedness global detailed_ def remove_min_count(df, min_count): """ Function remove_min_count: This function removes data that is all zeros in a column best used once merging has taken place to get rid of all features that are zero in both conditions :param df: @type pandas dataframe: The data to remove counts below min_count :return: @type pandas dataframe: The resulting dataframe after removal """ return (df.loc[:, (df > min_count).any(axis=0)]) def add_one_smoothing(df): """ Function add_one_smoothing: Add one accounts for the possibility of unseen events (0s) occurring in the future. :param df: @type pandas dataframe: The data to smooth :return: @type pandas dataframe: The smoothed data """ temp = df.copy() + 1 temp = temp / temp.sum() return temp def bray_curtis(df): """ Function bray_curtis: Performs a bray-curtis dissimilarity :param df: @type pandas dataframe: The data to do the dissimilarity on :return: @type pandas dataframe: The bray-curtis'ed data Computes the Bray-Curtis distance between two 1-D arrays. """ temp = df.copy() ids = df.columns.values.tolist() bc = beta_diversity("braycurtis", temp.transpose(), ids) bc_df = pd.DataFrame(data=bc.data, index=bc.ids, columns=bc.ids) return bc_df def hellinger(df): """ Function hellinger: The hellinger transformation deals with the double zero problem in ecology. The hellinger transformation is the square root of the result of the current row divided by the sum of all rows. This is done for each element in the dataframe. :param df: @type pandas dataframe: The data to do the transformation on. :return: @type pandas dataframe: A dataframe of the hellinger transformed data. """ temp = df.copy() hellinger_data = np.sqrt(temp.div(temp.sum(axis=1), axis=0)) # Hellinger transformation return hellinger_data def condition(df, cond_type): """ Function condition: A preprocessing step to condition the data based on the type specidied :param data: @type pandas dataframe - The data to be conditioned :param cond_type: @type string - The type of conditioning to run. Valid values: add_one, hellinger :return: @type pandas dataframe - The conditioned dataframe. """ # print('conditioning type', cond_type) temp = df.copy() temp = temp.loc[(temp != 0).any(axis=1)] if cond_type == 'add_one': conditioned_data = add_one_smoothing(temp) elif cond_type == 'hellinger': conditioned_data = hellinger(temp) elif cond_type == 'bray_curtis': conditioned_data = bray_curtis(temp) else: conditioned_data = temp return conditioned_data def smooth(df, type): """ Function smooth: Smoothing function to filter out noise :param df: @type pandas dataframe: The data to be smoothed :param type: @type string: The type of smoothing to do (currently sliding_window is the only option) :return: @type pandas dataframe: A dataframe of the smoothed data """ temp = df.copy() if type == 'sliding_window': result = temp.rolling(window_size, min_periods=1, center=True).mean() else: result = temp return result def pca_abundance(df, num_pca_components=4, cond_type='hellinger'): """ Function pca_abundance: running PCA iteratively on the data, removing the highest/lowest abundance features (based on sorting of abundances array). The gradient is used to find the greatest change in inertia when features are removed. Then we select all the features up to that point. These are the most important features :param data: @type pandas dataframe: The data to run pca on :param num_pca_components: @type integer: The number of components to use for pca :param cond_type: @type string: The conditioning type to use for pca (eg. hellinger, add_one) :param smoothing_type: @type string: The type of smoothing to do on the dataframe of total eigenvalues found by PCA :return: important_features - a list of the most important features as found by running the PCA """ pca = PCA(n_components=num_pca_components) # Run a PCA with n components data = df.copy() # copy the data into a dataframe to manipulate eigen_df = pd.DataFrame() # create a dataframe to hold the eigenvalues from the pca abundances_arr = pd.unique(data.sum(axis=0)) # get the set of unique values abundances_arr = np.sort(abundances_arr)[::-1] # sort highest to lowest # now we want to loop through all the abundances and find those with the most variance # once we find those we'll have to match them back up to the features with those abundances # so that we can send back the list of sorted features for i in range(len(abundances_arr)): if len(abundances_arr) - i == num_pca_components: break conditioned_df = condition(data, cond_type) # condition data result = pca.fit(conditioned_df) # Run the PCA on the conditioned data here variance_arr = result.explained_variance_ratio_ # Output the variance associated with each eigenvector drop_list = list( data.columns[data.sum(axis=0) == abundances_arr[i]]) # Find all features with the current abundance components = result.components_ variance_df = pd.DataFrame(variance_arr, columns=[ str(abundances_arr[i])]).transpose() # Convert the eigenvalues to a data frame of OTU rows x N components # variance_df = pd.DataFrame(variance_arr).transpose() # Convert the eigenvalues to a data frame of OTU rows x N components eigen_df = eigen_df.append(variance_df) # Append to the eigenvalue df data.drop(drop_list, inplace=True, axis=1) # Drop all the features with the current abundance # You can only iterate over the number of features minus the number of components. if len(abundances_arr) - i == num_pca_components: break eigen_df['Total'] = eigen_df.sum(axis=1) # sum up the eigenvalues to get the total variance of all components # print('eigen df', eigen_df) total_eigen = eigen_df.copy().iloc[:, [-1]] total_eigen.sort_values(by='Total', ascending=0, inplace=True) # order the values in descending order, since we want to remove the highest eigenvalues # loop through each row and get the feature name and the abundance. # Match the feature name to the eigenvector variance from the total_eigen dataframe. # Then we'll return a dataframe with the feature as an index and the variance as the value ordered_features = pd.DataFrame(columns=['variance']) for index, row in df.sum(axis=0).iteritems(): if str(row) in total_eigen.index: # print('variance = ',total_eigen['Total'].loc[str(row)]) ordered_features.loc[index] = total_eigen['Total'].loc[str(row)] ordered_features.sort_values(by='variance', ascending=0, inplace=True) return ordered_features def pca_importance(df, num_pca_components=4, cond_type='hellinger'): """ Function pca_importance: running PCA and selecting the most important features as found by the eigenvectors. :param data: @type pandas dataframe: The data to run pca on :param num_pca_components: @type integer: The number of components to use for pca :param select_n: @type integer: The number of important features to return :param cond_type: @type string: The conditioning type to use for pca (eg. hellinger, add_one) :param smoothing_type: @type string: The type of smoothing to do on the dataframe of total eigenvalues found by PCA :return: ordered_features - a numpy array of the features ordered from most important to least, as found by running the PCA """ pca = PCA(n_components=num_pca_components) # Run a PCA with n components data = df.copy() # copy the data into a dataframe to manipulate conditioned_df = condition(data, cond_type) # condition data result = pca.fit(conditioned_df) # Run the PCA on the conditioned data here components = result.components_ # the eigenvectors/components eigenvectors = pd.DataFrame(components, columns=[data.columns]) abs_eigens = np.absolute(eigenvectors) # element wise absolute value to get rid of negatives variance = pd.DataFrame({'metric': abs_eigens.sum( axis=0)}) # sum up the components to get the amount of variance across all components for each feature variance['pca1'], variance['pca2'] = eigenvectors.iloc[0], eigenvectors.iloc[1] # order the features from largest to smallest to return as our sorted dataframe ordered_features = variance.sort_values(by='metric', ascending=0) # print('ordered_features columns', ordered_features.index.values[0]) if( type( ordered_features.index.values[0] ) is tuple ): # this means that a function has covereted indecis to sparse series, must convert this back to # a dense dataframe. This should be able to be removed after Qiime updates ordered_feature = pd.DataFrame(columns=["OTU","metric","pca1","pca2"]) for index, row in ordered_features.iterrows(): ordered_feature = ordered_feature.append( {"OTU": index[0], "metric": row["metric"], "pca1": row["pca1"], "pca2": row["pca2"] }, ignore_index=True ) ordered_feature = ordered_feature.set_index("OTU") return ordered_feature else: return ordered_features def pca_legendre(df, num_pca_components, cond_type='hellinger'): return 0 def abundance(df): data = df.copy() summed_vals = data.sum(axis=0) sorted_abundances = summed_vals.sort_values(ascending=0) return sorted_abundances def find_correlation(df, corr_type='spearman'): df_r = 0 data = df.copy() if corr_type == 'MIC': # the pstats output for the mic and tic are condensed 1D arrays # we need to turn the output into a 2D upper triangular matrix and then mirror it to get the # full correlation matrix micp, ticp = minepy.pstats(data.T, alpha=0.6, c=15, est="mic_approx") num_features = data.shape[1] tri = np.zeros((num_features, num_features)) tri[np.triu_indices(num_features, 1)] = micp full_corr = tri + tri.T df_r =
pd.DataFrame(full_corr)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd import json from matplotlib import pyplot as plt import numpy as np from numpy.fft import fft, fftfreq # Configuration anomaly_color = 'sandybrown' prediction_color = 'yellowgreen' training_color = 'yellowgreen' validation_color = 'gold' test_color = 'coral' figsize=(9, 3) autoclose = True def load_series(file_name, data_folder): # Load the input data data_path = f'{data_folder}/data/{file_name}' data = pd.read_csv(data_path) data['timestamp'] = pd.to_datetime(data['timestamp']) data.set_index('timestamp', inplace=True) # Load the labels label_path = f'{data_folder}/labels/combined_labels.json' with open(label_path) as fp: labels = pd.Series(json.load(fp)[file_name]) labels = pd.to_datetime(labels) # Load the windows window_path = f'{data_folder}/labels/combined_windows.json' window_cols = ['begin', 'end'] with open(window_path) as fp: windows = pd.DataFrame(columns=window_cols, data=json.load(fp)[file_name]) windows['begin'] = pd.to_datetime(windows['begin']) windows['end'] = pd.to_datetime(windows['end']) # Return data return data, labels, windows def plot_series(data, labels=None, windows=None, predictions=None, highlights=None, val_start=None, test_start=None, figsize=figsize, show_sampling_points=False, show_markers=False, filled_version=None): # Open a new figure if autoclose: plt.close('all') plt.figure(figsize=figsize) # Plot data if not show_markers: plt.plot(data.index, data.values, zorder=0) else: plt.plot(data.index, data.values, zorder=0, marker='.', markersize=3) if filled_version is not None: filled = filled_version.copy() filled[~data['value'].isnull()] = np.nan plt.scatter(filled.index, filled, marker='.', c='tab:orange', s=5); if show_sampling_points: vmin = data.min() lvl = np.full(len(data.index), vmin) plt.scatter(data.index, lvl, marker='.', c='tab:red', s=5) # Rotated x ticks plt.xticks(rotation=45) # Plot labels if labels is not None: plt.scatter(labels.values, data.loc[labels], color=anomaly_color, zorder=2, s=5) # Plot windows if windows is not None: for _, wdw in windows.iterrows(): plt.axvspan(wdw['begin'], wdw['end'], color=anomaly_color, alpha=0.3, zorder=1) # Plot training data if val_start is not None: plt.axvspan(data.index[0], val_start, color=training_color, alpha=0.1, zorder=-1) if val_start is None and test_start is not None: plt.axvspan(data.index[0], test_start, color=training_color, alpha=0.1, zorder=-1) if val_start is not None: plt.axvspan(val_start, test_start, color=validation_color, alpha=0.1, zorder=-1) if test_start is not None: plt.axvspan(test_start, data.index[-1], color=test_color, alpha=0.3, zorder=0) # Predictions if predictions is not None: plt.scatter(predictions.values, data.loc[predictions], color=prediction_color, alpha=.4, zorder=3, s=5) plt.tight_layout() def plot_autocorrelation(data, max_lag=100, figsize=figsize): # Open a new figure if autoclose: plt.close('all') plt.figure(figsize=figsize) # Autocorrelation plot pd.plotting.autocorrelation_plot(data['value']) # Customized x limits plt.xlim(0, max_lag) # Rotated x ticks plt.xticks(rotation=45) plt.tight_layout() def plot_histogram(data, bins=10, vmin=None, vmax=None, figsize=figsize): # Build a new figure if autoclose: plt.close('all') plt.figure(figsize=figsize) # Plot a histogram plt.hist(data, density=True, bins=bins) # Update limits lims = plt.xlim() if vmin is not None: lims = (vmin, lims[1]) if vmax is not None: lims = (lims[0], vmax) plt.xlim(lims) plt.tight_layout() def plot_histogram2d(xdata, ydata, bins=10, figsize=figsize): # Build a new figure if autoclose: plt.close('all') plt.figure(figsize=figsize) # Plot a histogram plt.hist2d(xdata, ydata, density=True, bins=bins) plt.tight_layout() def plot_density_estimator_1D(estimator, xr, figsize=figsize): # Build a new figure if autoclose: plt.close('all') plt.figure(figsize=figsize) # Plot the estimated density xvals = xr.reshape((-1, 1)) dvals = np.exp(estimator.score_samples(xvals)) plt.plot(xvals, dvals) plt.tight_layout() def plot_density_estimator_2D(estimator, xr, yr, figsize=figsize): # Plot the estimated density nx = len(xr) ny = len(yr) xc = np.repeat(xr, ny) yc = np.tile(yr, nx) data = np.vstack((xc, yc)).T dvals = np.exp(estimator.score_samples(data)) dvals = dvals.reshape((nx, ny)) # Build a new figure if autoclose: plt.close('all') plt.figure(figsize=figsize) plt.pcolor(dvals) plt.tight_layout() # plt.xticks(np.arange(0, len(xr)), xr) # plt.yticks(np.arange(0, len(xr)), yr) def plot_distribution_2D(f, xr, yr, figsize=figsize): # Build the input nx = len(xr) ny = len(yr) xc = np.repeat(xr, ny) yc = np.tile(yr, nx) data = np.vstack((xc, yc)).T dvals = np.exp(f.pdf(data)) dvals = dvals.reshape((nx, ny)) # Build a new figure if autoclose: plt.close('all') plt.figure(figsize=figsize) plt.pcolor(dvals) plt.tight_layout() xticks = np.linspace(0, len(xr), 6) xlabels = np.linspace(xr[0], xr[-1], 6) plt.xticks(xticks, xlabels) yticks = np.linspace(0, len(yr), 6) ylabels = np.linspace(yr[0], yr[-1], 6) plt.yticks(yticks, ylabels) def get_pred(signal, thr): return pd.Series(signal.index[signal >= thr]) def get_metrics(pred, labels, windows): tp = [] # True positives fp = [] # False positives fn = [] # False negatives advance = [] # Time advance, for true positives # Loop over all windows used_pred = set() for idx, w in windows.iterrows(): # Search for the earliest prediction pmin = None for p in pred: if p >= w['begin'] and p < w['end']: used_pred.add(p) if pmin is None or p < pmin: pmin = p # Compute true pos. (incl. advance) and false neg. l = labels[idx] if pmin is None: fn.append(l) else: tp.append(l) advance.append(l-pmin) # Compute false positives for p in pred: if p not in used_pred: fp.append(p) # Return all metrics as pandas series return pd.Series(tp), \ pd.Series(fp), \
pd.Series(fn)
pandas.Series
# -*- coding: utf-8 -*- """ Created 2020.05.22. Script for doing group level analysis of fidelity and true/false positive rates. @author: rouhinen """ import numpy as np import os import glob import matplotlib.pyplot as plt from tqdm import tqdm import pandas as pd from fidelityOpMinimal import fidelity_estimation, make_series_paired, source_fid_to_weights """Load source identities, forward and inverse operators from npy. """ subjectsPath = 'C:\\temp\\fWeighting\\fwSubjects_p\\' sourceIdPattern = '\\sourceIdentities_parc2018yeo7_XYZ.npy' # XYZ is replaced below. sourceFidPattern = '\\sourceFidelities_MEEG_parc2018yeo7_XYZ.npy' savePathBase = "C:\\temp\\fWeighting\\plotDump\\schaeferXYZ " forwardPattern = '\\forwardOperatorMEEG.npy' inversePattern = '\\inverseOperatorMEEG.npy' XYZto = '100' n_samples = 10000 n_cut_samples = 40 widths = np.arange(5, 6) # Source fidelity to weights settings exponent = 2 normalize = True flips = False # Save and plotting settings savePDFs = True tightLayout = True """ Replace XYZ """ sourceIdPattern = sourceIdPattern.replace('XYZ', XYZto) sourceFidPattern = sourceFidPattern.replace('XYZ', XYZto) savePathBase = savePathBase.replace('XYZ', XYZto) def get_tp_fp_rates(cp_PLV, truth_matrix): # Set thresholds from the data. Get about 200 thresholds. maxVal = np.max(cp_PLV) thresholds = np.sort(np.ravel(cp_PLV)) distance = int(len(thresholds) // 200) + (len(thresholds) % 200 > 0) # To int, round up. thresholds = thresholds[0:-1:distance] thresholds = np.append(thresholds, maxVal) tpRate = np.zeros(len(thresholds), dtype=float) fpRate = np.zeros(len(thresholds), dtype=float) for i, threshold in enumerate(thresholds): estTrueMat = cp_PLV > threshold tPos = np.sum(estTrueMat * truth_matrix) fPos = np.sum(estTrueMat * np.logical_not(truth_matrix)) tNeg = np.sum(np.logical_not(estTrueMat) * np.logical_not(truth_matrix)) fNeg = np.sum(truth_matrix) - tPos tpRate[i] = tPos / (tPos + fNeg) fpRate[i] = fPos / (fPos + tNeg) return tpRate, fpRate def find_nearest_index(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx def get_nearest_tp_semi_bin(binArray, tpRate, fpRate): nearestTP = np.zeros(len(binArray)) for i, fpval in enumerate(binArray): index = find_nearest_index(fpRate, fpval) nearestTP[i] = tpRate[index] return nearestTP def delete_diagonal(symm_matrix): symm_matrix = symm_matrix[~np.eye(symm_matrix.shape[0],dtype=bool)].reshape( symm_matrix.shape[0],-1) return symm_matrix def get_n_parcels(identities): idSet = set(identities) # Get unique IDs idSet = [item for item in idSet if item >= 0] # Remove negative values (should have only -1 if any) n_parcels = len(idSet) return n_parcels ## Create "bins" for X-Axis. n_bins = 101 binArray = np.logspace(-2, 0, n_bins-1, endpoint=True) # Values from 0.01 to 1 binArray = np.concatenate(([0], binArray)) # Add 0 to beginning ## Get subjects list, and first subject's number of parcels. subjects = next(os.walk(subjectsPath))[1] if any('_Population' in s for s in subjects): subjects.remove('_Population') subjectFolder = os.path.join(subjectsPath, subjects[0]) sourceIdFile = glob.glob(subjectFolder + sourceIdPattern)[0] identities = np.load(sourceIdFile) # Source length vector. Expected ids for parcels are 0 to n-1, where n is number of parcels, and -1 for sources that do not belong to any parcel. n_parcels = get_n_parcels(identities) ## Initialize arrays fidWArray = np.zeros((len(subjects), n_parcels), dtype=float) fidOArray = np.zeros((len(subjects), n_parcels), dtype=float) tpWArray = np.zeros((len(subjects), n_bins), dtype=float) tpOArray = np.zeros((len(subjects), n_bins), dtype=float) sizeArray = [] ### Loop over subjects. Insert values to subject x parcels/bins arrays. for run_i, subject in enumerate(tqdm(subjects)): ## Load files subjectFolder = os.path.join(subjectsPath, subject) fileSourceIdentities = glob.glob(subjectFolder + sourceIdPattern)[0] fileForwardOperator = glob.glob(subjectFolder + forwardPattern)[0] fileInverseOperator = glob.glob(subjectFolder + inversePattern)[0] fileSourceFidelities = glob.glob(subjectFolder + sourceFidPattern)[0] identities = np.load(fileSourceIdentities) # Source length vector. Expected ids for parcels are 0 to n-1, where n is number of parcels, and -1 for sources that do not belong to any parcel. forward = np.matrix(np.load(fileForwardOperator)) # sensors x sources inverse = np.matrix(np.load(fileInverseOperator)) # sources x sensors sourceFids = np.load(fileSourceFidelities) # sources # identities = np.genfromtxt(fileSourceIdentities, dtype='int32', delimiter=delimiter) # Source length vector. Expected ids for parcels are 0 to n-1, where n is number of parcels, and -1 for sources that do not belong to any parcel. # forward = np.matrix(np.genfromtxt(fileForwardOperator, dtype='float', delimiter=delimiter)) # sensors x sources # inverse = np.matrix(np.genfromtxt(fileInverseOperator, dtype='float', delimiter=delimiter)) # sources x sensors # sourceFids = np.genfromtxt(fileSourceFidelities, dtype='float', delimiter=delimiter) # sources weights = source_fid_to_weights(sourceFids, exponent=exponent, normalize=normalize, inverse=inverse, identities=identities, flips=flips) inverse_w = np.einsum('ij,i->ij', inverse, weights) n_parcels = get_n_parcels(identities) if run_i == 0: prior_n_parcels = n_parcels else: if prior_n_parcels == n_parcels: print('Running subject ' + subject) else: print('Mismatch in number of parcels between subjects!') """ Get fidelities from unpaired data. """ # inverse_w, _ = _compute_weights(sourceSeries, parcelSeries, identities, inverse) fidelityW, _ = fidelity_estimation(forward, inverse_w, identities) fidelityO, _ = fidelity_estimation(forward, inverse, identities) """ Do network estimation. Get cross-patch PLV values from paired data""" parcelSeriesPairs, pairs = make_series_paired(n_parcels, n_samples) _, cp_PLVPW = fidelity_estimation(forward, inverse_w, identities, parcel_series=parcelSeriesPairs) _, cp_PLVPO = fidelity_estimation(forward, inverse, identities, parcel_series=parcelSeriesPairs) # Do the cross-patch PLV estimation for unmodeled series cp_PLVU = np.zeros([n_parcels, n_parcels], dtype=np.complex128) for t in range(n_samples): parcelPLVn = parcelSeriesPairs[:,t] / np.abs(parcelSeriesPairs[:,t]) cp_PLVU += np.outer(parcelPLVn, np.conjugate(parcelPLVn)) /n_samples cp_PLVUim = np.abs(np.imag(cp_PLVU)) # Build truth matrix from pairs. truthMatrix = np.zeros((n_parcels, n_parcels), dtype=bool) for i, pair in enumerate(pairs): truthMatrix[pair[0], pair[1]] = True truthMatrix[pair[1], pair[0]] = True # Delete diagonal from truth and estimated matrices truthMatrix = delete_diagonal(truthMatrix) cp_PLVPW = delete_diagonal(cp_PLVPW) cp_PLVPO = delete_diagonal(cp_PLVPO) # Use imaginary PLV for the estimation. cp_PLVWim = np.abs(np.imag(cp_PLVPW)) cp_PLVOim = np.abs(np.imag(cp_PLVPO)) ## True positive and false positive rate estimation. tpRateW, fpRateW = get_tp_fp_rates(cp_PLVWim, truthMatrix) tpRateO, fpRateO = get_tp_fp_rates(cp_PLVOim, truthMatrix) # Get nearest TP values closest to the FP pair at the "bin" values. nearTPW = get_nearest_tp_semi_bin(binArray, tpRateW, fpRateW) nearTPO = get_nearest_tp_semi_bin(binArray, tpRateO, fpRateO) fidWArray[run_i,:] = fidelityW fidOArray[run_i,:] = fidelityO tpWArray[run_i,:] = nearTPW tpOArray[run_i,:] = nearTPO sizeArray.append(len(identities)) # Approximate head size with number of sources. print(f'gain of fidelities. Mean/mean {np.mean(fidWArray)/np.mean(fidOArray)}') print(f'gain of fidelities. Mean(fidelityW/fidelityO) {np.mean(fidWArray/fidOArray)}') ### Statistics. fidWAverage = np.average(fidWArray, axis=0) fidWStd = np.std(fidWArray, axis=0) fidOAverage = np.average(fidOArray, axis=0) fidOStd = np.std(fidOArray, axis=0) tpWAverage = np.average(tpWArray, axis=0) tpWStd = np.std(tpWArray, axis=0) tpOAverage = np.average(tpOArray, axis=0) tpOStd = np.std(tpOArray, axis=0) ### TEMP testing for sort first, then average and SD. fidWArraySorted = np.sort(fidWArray, axis=1) fidWAverageSorted = np.average(fidWArraySorted, axis=0) fidWStdSorted = np.std(fidWArraySorted, axis=0) fidOArraySorted = np.sort(fidOArray, axis=1) fidOAverageSorted = np.average(fidOArraySorted, axis=0) fidOStdSorted = np.std(fidOArraySorted, axis=0) """ Plots """ # Set global figure parameters, including CorelDraw compatibility (.fonttype) import matplotlib.pylab as pylab if tightLayout == True: params = {'legend.fontsize':'7', 'figure.figsize':(1.6, 1), 'axes.labelsize':'7', 'axes.titlesize':'7', 'xtick.labelsize':'7', 'ytick.labelsize':'7', 'lines.linewidth':'0.5', 'pdf.fonttype':42, 'ps.fonttype':42, 'font.family':'Arial'} else: # Looks nice on the screen parameters params = {'legend.fontsize':'7', 'figure.figsize':(3, 2), 'axes.labelsize':'7', 'axes.titlesize':'7', 'xtick.labelsize':'7', 'ytick.labelsize':'7', 'lines.linewidth':'0.5', 'pdf.fonttype':42, 'ps.fonttype':42, 'font.family':'Arial'} pylab.rcParams.update(params) parcelList = list(range(0, n_parcels)) """ Plot Fidelities. """ # Sort according to original fidelity sorting = np.argsort(fidOAverage) meansWF =
pd.DataFrame(fidWAverage[sorting])
pandas.DataFrame
import warnings import itertools from copy import copy from functools import partial from collections.abc import Iterable, Sequence, Mapping from numbers import Number from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import matplotlib as mpl from ._decorators import ( share_init_params_with_map, ) from .palettes import ( QUAL_PALETTES, color_palette, cubehelix_palette, _parse_cubehelix_args, ) from .utils import ( get_color_cycle, remove_na, ) class SemanticMapping: """Base class for mapping data values to plot attributes.""" # -- Default attributes that all SemanticMapping subclasses must set # Whether the mapping is numeric, categorical, or datetime map_type = None # Ordered list of unique values in the input data levels = None # A mapping from the data values to corresponding plot attributes lookup_table = None def __init__(self, plotter): # TODO Putting this here so we can continue to use a lot of the # logic that's built into the library, but the idea of this class # is to move towards semantic mappings that are agnositic about the # kind of plot they're going to be used to draw. # Fully achieving that is going to take some thinking. self.plotter = plotter def map(cls, plotter, *args, **kwargs): # This method is assigned the __init__ docstring method_name = "_{}_map".format(cls.__name__[:-7].lower()) setattr(plotter, method_name, cls(plotter, *args, **kwargs)) return plotter def _lookup_single(self, key): """Apply the mapping to a single data value.""" return self.lookup_table[key] def __call__(self, key, *args, **kwargs): """Get the attribute(s) values for the data key.""" if isinstance(key, (list, np.ndarray, pd.Series)): return [self._lookup_single(k, *args, **kwargs) for k in key] else: return self._lookup_single(key, *args, **kwargs) @share_init_params_with_map class HueMapping(SemanticMapping): """Mapping that sets artist colors according to data values.""" # A specification of the colors that should appear in the plot palette = None # An object that normalizes data values to [0, 1] range for color mapping norm = None # A continuous colormap object for interpolating in a numeric context cmap = None def __init__( self, plotter, palette=None, order=None, norm=None, ): """Map the levels of the `hue` variable to distinct colors. Parameters ---------- # TODO add generic parameters """ super().__init__(plotter) data = plotter.plot_data.get("hue",
pd.Series(dtype=float)
pandas.Series
import pandas as pd import yaml import requests import sys import urllib.parse from datetime import datetime from typing import TypeVar, Type sys.path.append("") T = TypeVar('T') from .twitter_objects import TweetQuery from .tweepy_functions import tweepy_connect, tweepy_get_tweets from crawler_associated_files.mongodb_conn.connect_mongo import mongo_connect, mongo_insert def read_auth(auth_path: str) -> str: with open(auth_path) as f: key_data = yaml.safe_load(f) bearer_token = key_data['the-tweet-catcher']['bearer-token'] return bearer_token def read_mongo_auth(auth_path: str) -> (str, str): with open(auth_path) as f: key_data = yaml.safe_load(f) username = key_data['mongo-db']['username'] passwd = key_data['mongo-db']['passwd'] return (username, passwd) def get_attr_list(obj: Type[T]): return [a for a in dir(obj) if not a.startswith('__') and not a.startswith('_')] def create_url(query: TweetQuery): # Create attribute list of TweetQuery base_query = '' attr_list = get_attr_list(query) for attribute in attr_list: attr_value = getattr(query, attribute) if attr_value is not None and len(base_query) == 0: base_query += (str(attr_value)) elif attr_value is not None and len(base_query) > 0: base_query += (' ' + str(attr_value)) base_query += ' lang:en' parsed_query = urllib.parse.quote(base_query) url = (f'https://api.twitter.com/2/tweets/search/recent?query={parsed_query}' f'&max_results={urllib.parse.quote(str(query.max_results))}' '&tweet.fields=author_id,created_at,lang,conversation_id' '&expansions=author_id,referenced_tweets.id' ) print(url) return url def create_headers(bearer_token: str): return {'Authorization': f'Bearer {bearer_token}'} def connect_to_endpoint(url: str, headers: dict): response = requests.request("GET", url, headers=headers) print(response.status_code) if response.status_code != 200: raise Exception(response.status_code, response.text) return response.json() def get_tweets(username_query: str, auth_path: str, max_result_count: int = 10, next_token: str = None): bearer_token = read_auth(auth_path) headers = create_headers(bearer_token) # Create query query = TweetQuery() query.author_username = username_query # query.text_query = username_query query.max_results = int(max_result_count) full_url = create_url(query) if next_token is not None: full_url += '&next_token=' + str(next_token) json_response = connect_to_endpoint(full_url, headers) return json_response def process_tweets(json_file): tweet_list = pd.DataFrame(columns=["username", "text", "created_at"]) if json_file["meta"]["result_count"] == 0: pass else: data_part = pd.DataFrame(json_file["data"]) #data_part = pd.DataFrame(json_file["includes"]["tweets"]) user_part =
pd.DataFrame(json_file["includes"]["users"])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on Fri Sep 18 15:52:01 2020 modeling operation. requirements = [ 'matplotlib>=3.1.3', 'sklearn>=0.22.1', 'seaborn>=0.10.0', 'factor_analyzer>=0.3.2', 'joblib>=0.14.1', ] @author: zoharslong """ from numpy import max as np_max, min as np_min, ravel as np_ravel, argsort as np_argsort, abs as np_abs from numpy import array as np_array, int32 as np_int32, int64 as np_int64, float64 as np_float64 from pandas import DataFrame, concat as pd_concat from re import findall as re_find from random import sample as rnd_smp from os.path import join as os_join from pyzohar.sub_slt_bsc.bsz import lsz from pyzohar.sub_slt_bsc.dfz import dfz import seaborn as sns # plot on factor analysis from factor_analyzer import FactorAnalyzer, calculate_kmo, calculate_bartlett_sphericity, Rotator from sklearn import metrics from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.cluster import KMeans from sklearn.svm import SVC, SVR from sklearn.svm._classes import SVC as typ_svc, SVR as typ_svr from sklearn.manifold import TSNE from matplotlib import pyplot as plt from joblib import dump as jb_dump, load as jb_load class mdz_nit(dfz): """ modeling class initiation >>> mdl = mdz_nit(DataFrame(),dfz_mpt=dfz(),dct_mdl={'_id':'','fld':'','clm_x':[],'clm_y':[],'drp':None,'kep':None}) >>> mdl.mdl_nit() """ def __init__(self, dts=None, lcn=None, *, spr=False, dfz_mpt=None, dct_mdl=None): """ more param of self is available, in [clm_x, clm_y, _x, _y, mdl] :param dts: self.dts, premier than dfz_mpt :param lcn: self.lcn, premier than dfz_mpt :param spr: let self = self.dts :param dfz_mpt: a dfz for inserted :param dct_mdl: a dict of params, keys in ['_id', 'fld', 'clm_y', 'clm_x', 'drp', 'kep'] :param dct_mdl: more params are auto generated, in ['fls', 'smp_raw/_y_0/_y_1/_trn/_tst'] """ if dfz_mpt is not None: dts = dts if dts is not None else dfz_mpt.dts.copy() lcn = lcn if lcn is not None else dfz_mpt.lcn.copy() super(mdz_nit, self).__init__(dts, lcn, spr=spr) self.clm_x, self.clm_y, self._x, self._y, self.mdl = None, None, None, None, None self.mdl_nit(dct_mdl=dct_mdl) def mdl_nit(self, dct_mdl=None, rst=True): """ 针对model的初始化, 会使用self.dts对self.lcn.mdl的一系列params进行刷新, 通常在self.dts发生变化的时候必须调用 :param dct_mdl: a dict of params, keys in ['_id', 'fld', 'clm_y', 'clm_x', 'drp', 'kep'] :param rst: reset self.lcn.mdl or not, default True :return: None """ if dct_mdl is not None: mch_tmp = [self.lcn['mdl']['_id'], self.lcn['mdl']['clm_y'], self.lcn['mdl']['clm_x']] if \ 'mdl' in self.lcn.keys() else None dct_mdl['clm_x'] = lsz(dct_mdl['clm_x']).typ_to_lst(rtn=True) dct_mdl['clm_y'] = lsz(dct_mdl['clm_y']).typ_to_lst(rtn=True) self.lcn.update({'mdl': dct_mdl}) self.clm_x = self.lcn['mdl']['clm_x'] self.clm_y = self.lcn['mdl']['clm_y'] self.lcn['mdl']['fls'] = 'mdl_' + self.lcn['mdl']['_id'] + '_' + self.lcn['mdl']['clm_y'][0] + '.pkl' if mch_tmp != [self.lcn['mdl']['_id'], self.lcn['mdl']['clm_y'], self.lcn['mdl']['clm_x']]: self.mdl, self._x, self._y = None, None, None # 当参数发生较大改变时, 删除已经存在的self.mdl if rst: self.mdl_smp_trc() def mdl_smp_trc(self): """ basic sample trace """ tmp = dfz(self.dts.copy(), self.lcn.copy()) if tmp.len > 0: # 标记数据集筛选 if self.lcn['mdl']['drp']: tmp.drp_dcm_ctt(self.lcn['mdl']['drp'], prm='drop', ndx_rst=False) if self.lcn['mdl']['kep']: tmp.drp_dcm_ctt(self.lcn['mdl']['kep'], prm='keep', ndx_rst=False) # 生成样本参数 self.lcn['mdl']['smp_raw'] = {'ndx': tmp.dts.index.tolist(), 'clm_x': self.clm_x, 'clm_y': self.clm_y} tmp.drp_dcm_ctt({self.clm_y[0]: 1}, prm='keep', ndx_rst=False) self.lcn['mdl']['smp_y_1'] = {'ndx': tmp.dts.index.tolist(), 'clm_x': self.clm_x, 'clm_y': self.clm_y} dff_ndx = lsz().mrg('differ', self.lcn['mdl']['smp_raw']['ndx'], self.lcn['mdl']['smp_y_1']['ndx'], rtn=True) self.lcn['mdl']['smp_y_0'] = {'ndx': dff_ndx, 'clm_x': self.clm_x, 'clm_y': self.clm_y} self._dl_smp_blc() # generate smp_trn, smp_tst def _dl_smp_blc(self): """ train/test sample balanced; 样本平衡策略, 以标志变量中较少的一方为基准, 保持标志平衡, 测试集占比10% >>> # 另一种既有的训练集划分方法 >>> x_trn, x_tst, y_trn, y_tst = train_test_split(self._x, self._y, test_size=0.2, random_state=2) """ smp_min = min(len(self.lcn['mdl']['smp_y_1']['ndx']), len(self.lcn['mdl']['smp_y_0']['ndx'])) ndx_y_0 = rnd_smp(self.lcn['mdl']['smp_y_0']['ndx'], int(smp_min * 0.9)) ndx_y_1 = rnd_smp(self.lcn['mdl']['smp_y_1']['ndx'], int(smp_min * 0.9)) self.lcn['mdl']['smp_trn'] = {'ndx': ndx_y_0 + ndx_y_1, 'clm_x': self.clm_x, 'clm_y': self.clm_y} ndx_t_0 = lsz().mrg('differ', self.lcn['mdl']['smp_y_0']['ndx'], ndx_y_0, rtn=True) ndx_t_1 = lsz().mrg('differ', self.lcn['mdl']['smp_y_1']['ndx'], ndx_y_1, rtn=True) if len(self.lcn['mdl']['smp_y_1']['ndx']) < len(self.lcn['mdl']['smp_y_0']['ndx']): ndx_t_0 = rnd_smp(ndx_t_0, int(smp_min * 0.1)) else: ndx_t_1 = rnd_smp(ndx_t_1, int(smp_min * 0.1)) self.lcn['mdl']['smp_tst'] = {'ndx': ndx_t_0 + ndx_t_1, 'clm_x': self.clm_x, 'clm_y': self.clm_y} def mdl_smp_mpt(self, tgt=None, *, rtn=False): """ model sample from param to real datasets, saved in self._x and self._y :param tgt: in [None, 'smp_raw', 'smp_trn', 'smp_tst'] :param rtn: if return (dtf_y, dtf_x) or not, default False; if return, self._x/_y will not change :return: if rtn is True, return (dtf_y, dtf_x) """ tmp, y, x = dfz(self.dts, self.lcn), None, None if tmp.len > 0: if tgt is None: # 无样本集条件,则默认导入self.dts y, x = tmp.dts[self.clm_y], tmp.dts[self.clm_x] else: # 否则根据样本集参数选择样本集 tmp.drp_dcm(self.lcn['mdl'][tgt]['ndx'], prm='keep', ndx_rst=False) y, x = tmp.dts[self.lcn['mdl'][tgt]['clm_y']], tmp.dts[self.lcn['mdl'][tgt]['clm_x']] if rtn: return y, x self._y, self._x = y, x def mdl_sav(self, *, fld=None, fls=None): """ save model into .pkl file :param fld: default None, get fold location from self.lcn :param fls: default None, get file location from self.lcn :return: None """ fld = self.lcn['mdl']['fld'] if fld is None else fld fls = self.lcn['mdl']['fls'] if fls is None else fls jb_dump(self.mdl, os_join(fld, fls)) def mdl_lod(self, *, fld=None, fls=None): """ import model from .pkl file :param fld: default None, get fold location from self.lcn :param fls: default None, get file location from self.lcn :return: None """ fld = self.lcn['mdl']['fld'] if fld is None else fld fls = self.lcn['mdl']['fls'] if fls is None else fls self.mdl = jb_load(os_join(fld, fls)) str_tmp = self.lcn['mdl']['_id'] self.lcn['mdl']['_id'] = re_find('mdl_(.*?)_' + self.lcn['mdl']['clm_y'][0], self.lcn['mdl']['fls'])[0] if str_tmp != self.lcn['mdl']['_id']: print('info: _id switch from %s to %s' % (str_tmp, self.lcn['mdl']['_id'])) def drp_dcm_for_bly(self, flt_smp=2): """ drop documents for the balance of Target label. 使用self.clm_y进行样本数量平衡, 会直接导致self.dts的改变 :param flt_smp: 选择数量较多的label进行抽样,使其数量达到flt_smp倍于数量较少的label :return: None """ # 不同分类的样本数量控制 stm_1 = self.dts.loc[self.dts[self.clm_y[0]] == 1] stm_0 = self.dts.loc[self.dts[self.clm_y[0]] == 0] shp_0, shp_1 = stm_0.shape[0], stm_1.shape[0] try: stm_0 = stm_0.sample(int(shp_1 * flt_smp)) if shp_1*flt_smp < shp_0 else stm_0 stm_1 = stm_1.sample(int(shp_0 * flt_smp)) if shp_0*flt_smp < shp_1 else stm_1 except ValueError: pass self.dts = pd_concat([stm_1, stm_0]) self.mdl_nit() class mdz_fct(mdz_nit): """ model factor analysis 聚类的验证 https://blog.csdn.net/u010159842/article/details/78624135 >>> mdl = mdz(DataFrame(),dfz_mpt=dfz(),dct_mdl={'_id':'','fld':'','clm_x':[],'clm_y':[],'drp':None,'kep':None}) >>> mdl.drp_dcm_na(mdl.clm_x) # 删除为空的数据行 >>> mdl.mdl_nit() # 刷新参数集状态, 需要在self.dts发生行列变动时执行 >>> mdl.mdl_smp_mpt() # 根据参数集生成数据集 [None, 'smp_trn', 'smp_tst', 'smp_raw'] >>> mdl.rnd_frs_clf() # 随机森林变量重要性检验 >>> mdl.fct_fit(10, prm='chksav') # 拟合模型 ['chk', 'sav'] >>> mdl.fct_transform(['电话积极','带看高效','上线稳定','电话稳定','在岗稳定','带看稳定']) # 应用模型 """ def __init__(self, dts=None, lcn=None, *, spr=False, dfz_mpt=None, dct_mdl=None): """ more param of self is available, in [clm_x, clm_y, _x, _y, mdl] :param dts: self.dts, premier than dfz_mpt :param lcn: self.lcn, premier than dfz_mpt :param spr: let self = self.dts :param dfz_mpt: a dfz for inserted :param dct_mdl: a dict of params, keys in ['_id', 'fld', 'clm_y', 'clm_x', 'drp', 'kep'] :param dct_mdl: more params are auto generated, in ['fls', 'smp_raw/_y_0/_y_1/_trn/_tst'] """ super(mdz_fct, self).__init__(dts, lcn, spr=spr, dfz_mpt=dfz_mpt, dct_mdl=dct_mdl) def fct_fit(self, nfc=3, mtd='principal', rtt='varimax', *, prm='chksav'): """ factor fit step, to check or save model :param nfc: number of factors, default 3 :param mtd: method, default 'principal' :param rtt: rotation method, default 'varimax' :param prm: in ['chk', 'sav', ''] for [model check, save to file, import self.mdl only] :return: None """ self.mdl = FactorAnalyzer(n_factors=nfc, method=mtd, rotation=rtt) self.mdl.fit(self._x) if re_find('chk', prm): self._ct_fit_chk() if re_find('sav', prm): self.mdl_sav() def _ct_fit_chk(self, prm='kmocmmegnvrnlod'): """ 几种常见的factor检查方法 :param prm: ['kmo/cmm/egn/vrn/lod'] for kmo, communalities, eigenvalues, variance, load matrix :return: indicators and pictures in prm """ if re_find('kmo', prm): print('kmo %.4f; bartlett %.4f.' % (self._ct_fit_chk_kmo())) # kmo if re_find('cmm', prm): print('communalities: %s' % self.mdl.get_communalities()) # 公因子方差 if re_find('egn', prm): self._ct_fit_chk_egn() # egn图 if re_find('vrn', prm): self._ct_fit_chk_vrn() # 因子代表性 if re_find('lod', prm): self._ct_fit_chk_lod() # 载荷矩阵重要性和命名 def _ct_fit_chk_kmo(self): """ kmo检验和巴特利特, 前者要求尽可能大, 后者要求<0.05 :return: [kmo_model, bartlett] """ kmo_all, kmo_model = calculate_kmo(self._x) bartlett = round(calculate_bartlett_sphericity(self._x)[1], 4) return kmo_model, bartlett def _ct_fit_chk_egn(self): """ eigenvalues to check factor number :return: a picture of eigenvalues """ ev, v = self.mdl.get_eigenvalues() # eigen values 特征值; 通常要求大于1 plt.scatter(range(1, ev.shape[0] + 1), ev) plt.plot(range(1, ev.shape[0] + 1), ev) plt.title('Scree Plot') plt.xlabel('Factors') plt.ylabel('Eigenvalue') plt.grid() plt.show() def _ct_fit_chk_vrn(self): """ variance plot to check factor number :return: a picture of variance """ vrn = self.mdl.get_factor_variance() # 因子的累积贡献度 plt.scatter(range(1, vrn[2].shape[0] + 1), vrn[2]) plt.plot(range(1, vrn[2].shape[0] + 1), vrn[2]) plt.title('Scree Plot') plt.xlabel('Factors') plt.ylabel('variance') plt.grid() plt.show() def _ct_fit_chk_lod(self, *, prn=False): """ load plot to check factor number :param prn: save the picture or not, default False :return: a picture of load matrix """ rtr = Rotator() load_matrix = rtr.fit_transform(self.mdl.loadings_) sns.set(font="simhei") df_cm = DataFrame(np_abs(load_matrix), index=self._x.columns) plt.figure(figsize=(8, 8)) ax = sns.heatmap(df_cm, annot=True, cmap="BuPu") ax.yaxis.set_tick_params(labelsize=10) # 设置y轴的字体的大小 plt.title('Factor Analysis', fontsize='xx-large') plt.ylabel('Sepal Width', fontsize='xx-large') # Set y-axis label plt.show() if prn: plt.savefig('factorAnalysis.png', dpi=300) def fct_transform(self, rnm=None, *, rtn=False): """ factor analysis transform by self.mdl, merge factors on the left side of self.dts. :param rnm: new name of factors in list :param rtn: if return factors or not, default False :return: if rtn is True, return factors in type dataframe """ if self.mdl is None: self.mdl_lod() vrn = self.mdl.get_factor_variance() dtf_fct = self.mdl.transform(self._x) # 构造命名 dct_fct = {i: 'fct_' + str(i) for i in range(len(vrn[0]))} if rnm is not None: dct_tmp = {i: rnm[i] for i in range(len(rnm))} if type(rnm) in [list] else rnm.copy() dct_fct.update(dct_tmp) # 计算总分 lst = [] for i in dtf_fct: lst.append(sum([i[j] * vrn[1][j] for j in range(len(i))])) dtf_fnl = DataFrame(dtf_fct, index=self._x.index).rename(columns=dct_fct) dtf_fnl['scr'] = lst # 将结果附加的根源数据集self.dts中 self.mrg_dtf(dtf_fnl, prm='outer_index') if rtn: return dtf_fnl class mdz_kmn(mdz_nit): """ model factor analysis >>> mdl = mdz(DataFrame(),dfz_mpt=dfz(),dct_mdl={'_id':'','fld':'','clm_x':[],'clm_y':[],'drp':None,'kep':None}) >>> mdl.mdl_nit({'_id':''}) # 切换某些dct_mdl中的参数需要使用这个句子 >>> mdl.mdl_smp_mpt() # 根据参数集生成数据集 [None, 'smp_trn', 'smp_tst', 'smp_raw'] >>> mdl.kmn_fit([2,6]) # 测试二到六个聚类的效果 >>> mdl.kmn_fit(3, prm='sav') # 经过测试, 确定3格局类最好时对模型进行保存 >>> mdl.kmn_transform('类型') # 应用上一步存档的模型, 对分类变量命名为'类型' """ def __init__(self, dts=None, lcn=None, *, spr=False, dfz_mpt=None, dct_mdl=None): """ more param of self is available, in [clm_x, clm_y, _x, _y, mdl] :param dts: self.dts, premier than dfz_mpt :param lcn: self.lcn, premier than dfz_mpt :param spr: let self = self.dts :param dfz_mpt: a dfz for inserted :param dct_mdl: a dict of params, keys in ['_id', 'fld', 'clm_y', 'clm_x', 'drp', 'kep'] :param dct_mdl: more params are auto generated, in ['fls', 'smp_raw/_y_0/_y_1/_trn/_tst'] """ super(mdz_kmn, self).__init__(dts, lcn, spr=spr, dfz_mpt=dfz_mpt, dct_mdl=dct_mdl) def kmn_fit(self, ncl=None, *, prm='sav'): """ function the best clusters for k-menas. :param ncl: iter clusters, default [2,6] :param prm: in ['sav'] for save .pkl file to local path @return: None """ ncl = lsz(ncl).typ_to_lst(rtn=True) if ncl is not None else [2, 6] ncl = range(ncl[0], ncl[1]) if len(ncl) == 2 else ncl # [None, [2,4], 3] to [[2,6], [2,4], [3]] for i in ncl: self.mdl = KMeans(n_clusters=i, max_iter=1000) self.mdl.fit(self._x) y_lbl = self.mdl.labels_ print('cluster %i; inertia %i; silhouette %.4f; calinski_harabasz %i;' % ( i, # cluster number self.mdl.inertia_, # 距离越小说明簇分的越好 metrics.silhouette_score(self._x, y_lbl, metric='euclidean'), # 越接近1越好, range[-1, 1] metrics.calinski_harabasz_score(self._x, y_lbl) # 越大越好 )) if prm in ['sav', 'save'] and len(ncl) == 1: # 只有ncl唯一, 非测试环节时方进行保存 self.mdl_sav() def kmn_transform(self, rnm=None, *, rtn=False): """ K-means transform :param rnm: rename in type str, only one new column need this rename param :param rtn: return a dataframe or not, default False :return: if rtn is True, return a dataframe of cluster label """ rnm = 'clr' if rnm is None else rnm if self.mdl is None: self.mdl_lod() self.mdl.fit(self._x) y_lbl = self.mdl.labels_ self.mrg_dtf(DataFrame(y_lbl, columns=[rnm], index=self._x.index), prm='outer_index') if rtn: return DataFrame(y_lbl, columns=[rnm], index=self._x.index) class mdz_tsn(mdz_nit): """ model factor analysis >>> mdl = mdz(DataFrame(),dfz_mpt=dfz(),dct_mdl={'_id':'','fld':'','clm_x':[],'clm_y':[],'drp':None,'kep':None}) >>> mdl.mdl_nit({}) >>> mdl.mdl_smp_mpt('smp_trn') # 根据参数集生成数据集 [None, 'smp_trn', 'smp_tst', 'smp_raw'] >>> mdl.tsn_fit_transform(rnm=['a','b'], prm='savplt') """ def __init__(self, dts=None, lcn=None, *, spr=False, dfz_mpt=None, dct_mdl=None): """ more param of self is available, in [clm_x, clm_y, _x, _y, mdl] :param dts: self.dts, premier than dfz_mpt :param lcn: self.lcn, premier than dfz_mpt :param spr: let self = self.dts :param dfz_mpt: a dfz for inserted :param dct_mdl: a dict of params, keys in ['_id', 'fld', 'clm_y', 'clm_x', 'drp', 'kep'] :param dct_mdl: more params are auto generated, in ['fls', 'smp_raw/_y_0/_y_1/_trn/_tst'] """ super(mdz_tsn, self).__init__(dts, lcn, spr=spr, dfz_mpt=dfz_mpt, dct_mdl=dct_mdl) def tsn_fit_transform(self, ncl=None, rnm=None, *, prm='savplt', rtn=False, tsn_init='random', tsn_random_state=0): """ t-SNE fit and transform in one step :param ncl: number of components(factors) :param rnm: rename new factors in type list, :param prm: when find 'sav', save local .pkl file; when find 'plt', draw a 2D plot for the result :param rtn: if return the components in DataFrame or not, default False :param tsn_init: TSNE param :param tsn_random_state: TSNE paran :return: if rtn is True, return the result in a DataFrame """ ncl = 2 if ncl is None else ncl # 构造命名 dct_rnm = {i: 'tsn_' + str(i) for i in range(ncl)} if rnm is not None: dct_tmp = {i: rnm[i] for i in range(ncl)} if type(rnm) in [list] else rnm.copy() dct_rnm.update(dct_tmp) # 建模环节 self.mdl = TSNE(n_components=ncl, init=tsn_init, random_state=tsn_random_state) y_ncl = self.mdl.fit_transform(self._x) y_dtf = DataFrame(y_ncl, index=self._x.index).rename(columns=dct_rnm) self.mrg_dtf(y_dtf, prm='outer_index') if re_find('sav', prm): # 保存 self.mdl_sav() if re_find('plt', prm) and ncl == 2: # 当降维2时输出散点图 self._sn_plt(y_dtf) if rtn: return y_dtf def _sn_plt(self, y_dtf, y_lbl=None): """ t-SNE plot in 2D """ y_ncl = dfz(y_dtf).dtf_to_typ(typ='list', rtn=True, prm='split')['data'] x_min, x_max = np_min(y_ncl, 0), np_max(y_ncl, 0) y_tsn = (y_ncl - x_min) / (x_max - x_min) # 范围标准化 y_lbl =
DataFrame(self._y)
pandas.DataFrame
import streamlit as st import pandas as pd import numpy as np import seaborn as sns from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import RobustScaler from lightgbm import LGBMClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import pickle st.set_option('deprecation.showPyplotGlobalUse', False) st.title("Churn Prediction") st.header('Dataset Selection and Loading') dataset_name = st.selectbox("Select Datasets", ['Telco_Churn']) st.write('You selected:', dataset_name, 'dataset') def get_dataset(): df = pd.read_csv("telecom.csv") target_column = "Churn" df["SeniorCitizen"] = df["SeniorCitizen"].replace([0, 1], ['No', 'Yes']) df["TotalCharges"] = pd.to_numeric(df['TotalCharges'], errors='coerce') return df, target_column df, target_column = get_dataset() df1 = df.copy() st.subheader('Checking the Dataset') st.table(df.head()) st.subheader('Types of Variables') pd.DataFrame(df.dtypes, columns = ["Col"]) st.subheader('Exploratory Data Analysis') visualization = st.selectbox('Select Visualization Type', ('Pairplot', 'Heatmap')) if visualization == 'Pairplot': fig = sns.pairplot(df, hue=target_column) st.pyplot(fig=fig) elif visualization == 'Heatmap': fig, ax = plt.subplots() sns.heatmap(df.corr(), vmin=-1, cmap='coolwarm', annot=True) st.pyplot(fig) st.header('Columns Selection for Analysis') st.cache() columns_select = st.selectbox("Select All Columns or Select Columns You Want to Drop", ("All Columns", "Select Columns to Drop")) if columns_select == "Select Columns to Drop": d_list = st.multiselect("Please select columns to be dropped", df.columns) df = df.drop(d_list, axis=1) if st.button("Generate Codes for Columns to be Dropped"): if columns_select == "Select Columns to Drop": st.code(f"""df = df.drop({d_list},axis=1)""") st.header('Multicollinearity Checking') threshold = st.selectbox("Select threshold for multicollinearity", (1, 0.9, 0.8, 0.7)) Corr_Columns = [] numeric_cols = df.select_dtypes(exclude=["object"]).columns def multicollinearity(dataset, threshold): corr_matrix = dataset.corr() for i in range(len(corr_matrix.columns)): for j in range(i): if abs(corr_matrix.iloc[i, j]) > threshold: colname = corr_matrix.columns[i] Corr_Columns.append(colname) return Corr_Columns multicollinearity(df, threshold=threshold) df.drop(Corr_Columns, axis=1, inplace=True) if len(Corr_Columns) > 0: st.write(f"{Corr_Columns} columns having correlation value more than {threshold} and therefore dropped") else: st.write("No columns found exceeding the threshold") st.header('Checking Missing Values') threshold_value = st.selectbox("Select Threshold for Missing Value Checking", (70, 60, 50, 40, 30, 20, 10)) drop_list = [] def missing_drop(df, threshold_value): for variable in df.columns: percentage = round((df[variable].isnull().sum() / df[variable].count()) * 10) if percentage > threshold_value: st.write(f"The percentage of missing variable for {variable} is % {percentage}") drop_list.append(variable) if len(drop_list) == 0: st.write("No Columns exceeding the Threshold") missing_drop(df, threshold_value) st.header('Missing Value Handling') missing_values = st.selectbox("Select one method for missing value imputation ", ("Drop All Missing Values", "Filling with Either Median or Mode")) def impute_with_median(df, variable): if df[variable].isnull().sum() > 0: st.write( f"{variable} column has {df[variable].isnull().sum()} missing value and replaced with median:{df[variable].median()}") df[variable + "NAN"] = np.where(df[variable].isnull(), 1, 0) df[variable] = df[variable].fillna(df[variable].median()) def impute_with_mode(df, variable): if df[variable].isnull().sum() > 0: st.write( f"{variable} column has {df[variable].isnull().sum()} missing value and replaced {df[variable].mode()[0]}") df[variable + "NAN"] = np.where(df[variable].isnull(), 1, 0) frequent = df[variable].mode()[0] df[variable].fillna(frequent, inplace=True) if missing_values == "Drop All Missing Values": for variable in df.columns: if df[variable].isnull().sum() > 0: st.write(f"{variable} column has {df[variable].isnull().sum()} missing value") st.write(f" percentages of total missing data :% {(df.isnull().sum().sum() / df.shape[0]) * 10}") df.dropna(inplace=True) else: for i in df.columns: if np.dtype(df[i]) == "object": impute_with_mode(df, i) else: impute_with_median(df, i) st.header('Outliers Detection and Handling') Handling_Outliers = st.selectbox("Select One Option for Outlier Handling ", ("Keep Outliers", "Handle Outliers")) numeric_cols = df.select_dtypes(exclude=["object"]).columns def outliers_detection_handling(df, variable): IQR = df[variable].quantile(0.75) - df[variable].quantile(0.25) lower_bound = df[variable].quantile(0.25) - (IQR * 1.5) upper_bound = df[variable].quantile(0.75) + (IQR * 1.5) df[variable] = np.where(df[variable] > upper_bound, upper_bound, df[variable]) df[variable] = np.where(df[variable] < lower_bound, lower_bound, df[variable]) return df[variable] if Handling_Outliers == "Handle Outliers": for i in numeric_cols: IQR = df[i].quantile(0.75) - df[i].quantile(0.25) lower_bound = df[i].quantile(0.25) - (IQR * 1.5) upper_bound = df[i].quantile(0.75) + (IQR * 1.5) num_outliers = df[~df[i].between(lower_bound, upper_bound)].value_counts().sum() if (df[i].max() > upper_bound) | (df[i].min() < lower_bound): outliers_detection_handling(df, i) st.write(f"{i} column has {num_outliers} outliers and set to either upper or lower bound.") else: st.write("You are keeping all outliers") st.header('One Hot Encoding') y = df[target_column] X = df.drop(target_column, axis=1) df = X encode_list = [] def one_hot_encoder(df): for i in X.columns: if (np.dtype(df[i]) == "object"): unique_value = len(df[i].value_counts().sort_values(ascending=False).head(10).index) if unique_value > 10: for categories in (df[i].value_counts().sort_values(ascending=False).head(10).index): df[i + "_" + categories] = np.where(df[i] == categories, 1, 0) encode_list.append(i + "_" + categories) else: for categories in (df[i].value_counts().sort_values(ascending=False).head(unique_value - 1).index): df[i + "_" + categories] = np.where(df[i] == categories, 1, 0) encode_list.append(i + "_" + categories) return df, encode_list num_cat_col = len(df.select_dtypes(include=["object"]).columns) one_hot_encoder(df) for i in df.columns: if (np.dtype(df[i]) == "object"): df = df.drop([i], axis=1) col_after_endoded_all = df.columns st.write(f"One hot encoding : {num_cat_col} columns are encoded and {len(encode_list)} new columns are added") st.header('Feature Engineering') feature_selection = st.selectbox("Feature Selection", ("Keep all Features", "Select Features")) def feature_importance(endogenous, exogenous, n): selected_feat = SelectKBest(score_func=chi2, k=10) selected = selected_feat.fit(endogenous, exogenous) feature_score = pd.DataFrame(selected.scores_, index=endogenous.columns, columns=["Score"])["Score"].sort_values( ascending=False).reset_index() st.write("Table: Feature Importance") st.table(feature_score.head(n)) st.write("Feature Importance") plt.figure(figsize=(20, 12)) sns.barplot(data=feature_score.sort_values(by='Score', ascending=False).head(n), x='Score', y='index') st.pyplot() X_Selected.extend(feature_score["index"].head(n)) if feature_selection == "Select Features": st.write() feature_number = st.slider("Select Number of Features You Want to Observe by Using Slider", 1, df.shape[1]) X_Selected = [] feature_importance(df, y, feature_number) df = df[X_Selected] else: st.write(f"You selected all features and the number of selected features is: {len(df.columns)}") st.header('Standardization') standardization = st.selectbox("Standardization", ("No Need to Apply Standardization", "Apply Standardization")) if standardization == 'Apply Standardization': methods = st.selectbox("Select one of the Standardization Methods: ", ("StandardScaler", "MinMaxScaler", "RobustScaler")) num_cols = [] df_new = df1.drop(target_column, axis=1) numeric_cols = df_new.select_dtypes(exclude=["object"]).columns for i in numeric_cols: if i not in df.columns: pass else: num_cols.append(i) for i in num_cols: if methods == "StandardScaler": scaler = StandardScaler() df[num_cols] = scaler.fit_transform(df[num_cols]) elif methods == "MinMaxScaler": scaler = MinMaxScaler() df[num_cols] = scaler.fit_transform(df[num_cols]) else: scaler = RobustScaler() df[num_cols] = scaler.fit_transform(df[num_cols]) st.write(f"{num_cols} are scaled by using {methods}") st.header('Model Evaluation') models_name = st.sidebar.selectbox("Select Model for ML", ("LightGBM", "Random Forest")) params = dict() def parameter_selection(clf_name): if clf_name == "LightGBM": st.sidebar.write("Select Parameters") n_estimators = st.sidebar.slider("n_estimators", 10, 1000, 100, 10) max_depth = st.sidebar.slider("max_depth", 3, 20,1,1) learning_rate = st.sidebar.slider('learning_rate', 0.01, 1.0, 0.1, 0.1) num_leaves = st.sidebar.slider('num_leaves', 10, 300, 31, 10) params["n_estimators"] = n_estimators params["max_depth"] = max_depth params["num_leaves"] = num_leaves params["learning_rate"] = learning_rate else: st.sidebar.write("Select Parameters") max_depth = st.sidebar.slider("max_depth", 2, 100, 1, 2) n_estimators = st.sidebar.slider("n_estimators", 50, 1000, 100, 10) criterion = st.sidebar.selectbox("criterion", ('gini','entropy')) max_features = st.sidebar.selectbox("max_features", ('auto', 'sqrt', 'log2')) min_samples_leaf = st.sidebar.slider("min_samples_leaf", 1, 10, 5) min_samples_split = st.sidebar.slider("min_samples_split", 2, 10) params["max_depth"] = max_depth params["n_estimators"] = n_estimators params["criterion"] = criterion params["max_features"] = max_features params["min_samples_leaf"] = min_samples_leaf params["min_samples_split"] = min_samples_split a = RandomForestClassifier() return params parameter_selection(models_name) def get_classifier(classifier_name, params): if classifier_name == "LightGBM": clf_model = LGBMClassifier(num_leaves=params["num_leaves"], n_estimators=params["n_estimators"], max_depth=params["max_depth"], learning_rate=params["learning_rate"], random_state=42) else: clf_model = RandomForestClassifier(n_estimators=params["n_estimators"], max_depth=params["max_depth"], criterion=params["criterion"], max_features=params["max_features"], min_samples_leaf=params["min_samples_leaf"], min_samples_split=params["min_samples_split"], random_state=42) return clf_model clf_model = get_classifier(models_name, params) st.cache() X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.2, random_state=42) clf_model.fit(X_train, y_train) y_pred = clf_model.predict(X_test) acc = accuracy_score(y_test, y_pred) f1_scr = f1_score(y_test, y_pred, average='macro') cls_report = classification_report(y_test, y_pred) cnf_matrix = confusion_matrix(y_test, y_pred) st.sidebar.write(f"Selected Classifier = {models_name}") st.sidebar.write(f"Accuracy Score = {acc}") st.write(f"Selected Classifier = {models_name}") st.write(f"Accuracy Score = {acc}") st.subheader('Confusion Matrix') st.table(cnf_matrix) st.subheader('Classification Report') st.text('Classification Report:\n ' + cls_report) st.header('Model Download') st.cache() def download_model(model): pickle.dump(clf_model, open("final_model", 'wb')) download_model(clf_model) st.write(f'Trained model is saved as final_model for later use') st.header('Churn Probability of Customers') if st.button("Prediction Probality of Top 10 Churned Customers"): col_val = ['0', '1'] a = clf_model.predict_proba(X_test) b = pd.DataFrame(data=a, columns=col_val) sorted_val = b.sort_values(by='0', ascending=False) st.table(sorted_val.head(10)) if st.button("Prediction Probality of Top 20 Loyal Customers"): col_val = ['0', '1'] a = clf_model.predict_proba(X_test) b = pd.DataFrame(data=a, columns=col_val) sorted_val = b.sort_values(by='0') st.table(sorted_val.head(20)) st.header('Prediction') st.subheader("Please select your variables to predict") st.write('Please **do not leave** Tenure, Montly Charges, and Total Charges columns **empty**') df1.drop(target_column, axis=1, inplace=True) df1.drop('customerID', axis=1, inplace=True) columns = df1.columns cat_columns = df1.select_dtypes(include=["object"]).columns dftest =
pd.DataFrame()
pandas.DataFrame
import json import pandas as pd # weather Stations with open("data\demokritos\\raw\weather_station.json") as f: data = json.load(f) columns = data["results"][0]["series"][0]["columns"] values = data["results"][0]["series"][0]["values"] df = pd.DataFrame(values, columns=columns) df = df.drop(["packets"], axis=1) dfs = dict(tuple(df.groupby("id"))) my_dict = {} for id in df.id.unique(): my_dict[id] = dfs[id] my_dict[id]["time"] = pd.to_datetime(my_dict[id]["time"], utc=True) my_dict[id]["time"] = my_dict[id]["time"].dt.tz_convert("Europe/Athens") my_dict[id]["time"] = my_dict[id]["time"].dt.round("1min") my_dict[id]["time"] = pd.to_datetime(my_dict[id]["time"]) my_dict[id].set_index("time", inplace=True) my_dict[id].to_csv( "data\demokritos\\refined\weather_station_" + id + ".csv" ) my_dict[id] = my_dict[id].resample("1H").sum() my_dict[id].to_csv( "data\demokritos\\resampled\weather_station_" + id + ".csv" ) # HM_LHLM06 Controller with open("data\demokritos\\raw\HM_LHLM06.json") as f: data = json.load(f) columns = data["results"][0]["series"][0]["columns"] values = data["results"][0]["series"][0]["values"] df = pd.DataFrame(values, columns=columns) dfs = dict(tuple(df.groupby("id"))) my_dict = {} for id in df.id.unique(): my_dict[id] = dfs[id] my_dict[id]["time"] =
pd.to_datetime(my_dict[id]["time"], utc=True)
pandas.to_datetime
import pandas import numpy import warnings import scipy.stats from sklearn.linear_model import LinearRegression as _LinearRegression from sklearn.feature_selection import mutual_info_regression from sklearn.base import clone from sklearn.metrics import r2_score from .frameable import FrameableMixin from .model_selection import CrossValMixin class LinearRegression(_LinearRegression, FrameableMixin, CrossValMixin): """ Ordinary least squares Linear Regression. This class extends the LinearRegression provided in scikit-learn. Parameters ---------- fit_intercept : boolean, optional, default True whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. n_jobs : int or None, optional (default=None) The number of jobs to use for the computation. This will only provide speedup for n_targets > 1 and sufficient large problems. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. Attributes ---------- coef_ : array, shape (n_features, ) or (n_targets, n_features) Estimated coefficients for the linear regression problem. If multiple targets are passed during the fit (y 2D), this is a 2D array of shape (n_targets, n_features), while if only one target is passed, this is a 1D array of length n_features. intercept_ : array Independent term in the linear model. """ def __init__( self, fit_intercept=True, normalize=False, copy_X=True, n_jobs=None, stats_on_fit=True, ): super().__init__( fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, n_jobs=n_jobs ) self.stats_on_fit = stats_on_fit def fit(self, X, y, sample_weight=None): self._pre_fit(X, y) super().fit(X, y, sample_weight=sample_weight) if self.stats_on_fit: if isinstance(X, pandas.DataFrame): self._X_columns = list(X.columns) elif isinstance(X, pandas.Series): self._X_columns = [str(X.name),] else: self._X_columns = None sse = numpy.sum((self.predict(X) - y) ** 2, axis=0) / float(X.shape[0] - X.shape[1]) if sse.shape == (): sse = sse.reshape(1,) self.sse_ = sse if self.fit_intercept: if not isinstance(X, pandas.DataFrame): X1 = pandas.DataFrame(X) else: X1 = X.copy(deep=True) X1['__constant__'] = 1.0 else: X1 = X try: inv_X_XT = numpy.linalg.inv(numpy.dot(X1.T, X1)) except numpy.linalg.LinAlgError: inv_X_XT = numpy.full_like(numpy.dot(X1.T, X1), fill_value=numpy.nan) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) try: se = numpy.array([ numpy.sqrt(numpy.diagonal(sse[i] * inv_X_XT)) for i in range(sse.shape[0]) ]) except: print("sse.shape",sse.shape) print(sse) raise if self.fit_intercept: self.stderr_ = se[:,:-1] self.t_ = self.coef_ / se[:,:-1] self.stderr_intercept_ = se[:,-1] self.t_intercept_ = self.intercept_ / se[:,-1] else: self.stderr_ = se self.t_ = self.coef_ / se self.p_ = 2 * (1 - scipy.stats.t.cdf(numpy.abs(self.t_), y.shape[0] - X.shape[1])) if self.fit_intercept: self.p_intercept_ = 2 * (1 - scipy.stats.t.cdf(numpy.abs(self.t_intercept_), y.shape[0] - X.shape[1])) r2 = r2_score(y, self.predict(X), sample_weight=sample_weight, multioutput='raw_values') if isinstance(self._Y_columns, str): self.r2 = pandas.Series(r2, index=[self._Y_columns,]) elif isinstance(self._Y_columns, list): self.r2 =
pandas.Series(r2, index=self._Y_columns)
pandas.Series
from arche import arche, SH_URL from arche.arche import Arche from arche.rules.result import Level from conftest import create_result import pandas as pd import pytest def test_target_equals_source(): with pytest.raises(ValueError) as excinfo: Arche(source="0/0/1", target="0/0/1") assert ( str(excinfo.value) == "'target' is equal to 'source'. Data to compare should have different sources." ) def test_target_items(mocker, get_job_items): mocker.patch("arche.Arche.get_items", return_value=get_job_items) arche = Arche("source", target="target") assert arche.target_items is get_job_items assert arche._target_items is get_job_items assert arche.target_items is get_job_items def test_target_items_none(mocker): arche = Arche("source") assert arche.target_items is None def test_arche_df(get_df): a = Arche(source=get_df, target=get_df)
pd.testing.assert_frame_equal(a.source_items.df, get_df)
pandas.testing.assert_frame_equal
from flask import render_template, flash, redirect, url_for, request, Flask, jsonify, send_from_directory from app import app, db, ImmigrationToolBox, DataWizardTools from app.models import User, Post from app.forms import PostForm from werkzeug.urls import url_parse from datetime import datetime import pandas as pd @app.route("/IOIimmQuarterly", methods=['GET', 'POST']) def upload_IOIimmQuarterly(): if request.method == 'POST': print(request.files['file']) f = request.files['file'] test = pd.read_excel(f) test.fillna('',inplace=True) #Cleaning if test.iloc[0][0] == '': df = pd.read_excel(f,skiprows=2) else: df =
pd.read_excel(f)
pandas.read_excel
''' Backtest the strategies. ''' import os import sys import argparse import pandas as pd import numpy as np import util from strategy import * def print_orders(orders, stock_data, indent=1): ''' Print the order in human-readable format. For debug purpose ''' for code, quantity in orders.items(): price = stock_data[code]['CLOSE'] if quantity > 0: print('\t' * indent + f"Bought {quantity} shares of {code} @ {price}") elif quantity < 0: quantity = -quantity print('\t' * indent + f"Sold/shorted {quantity} shares of {code} @ {price}") def print_config(config): ''' Print the key configurations for backtesting. ''' backtesting_start = config.get('BACKTESTING_START', '?') backtesting_end = config.get('BACKTESTING_END', '?') exit_threshold = config.get('EXIT_THRESHOLD', '?') enter_threshold = config.get('ENTER_THRESHOLD', '?') enter2_threshold = config.get('ENTER2_THRESHOLD', '?') enter3_threshold = config.get('ENTER3_THRESHOLD', '?') stop_threshold = config.get('STOP_THRESHOLD', '?') enter_allocation = config.get('ENTER_ALLOCATION', '?') enter2_allocation = config.get('ENTER2_ALLOCATION', '?') enter3_allocation = config.get('ENTER3_ALLOCATION', '?') max_leverage = config.get('MAX_LEVERAGE', '?') print(f"Back-testing period=from {backtesting_start} to {backtesting_end}") print(f"enter={enter_threshold}, {enter2_threshold}, {enter3_threshold}, stop={stop_threshold}, exit={exit_threshold}") print(f"max_leverage={max_leverage}, allocations={enter_allocation}, {enter2_allocation}, {enter3_allocation}") def cash_change(orders, stock_data, tx_cost_per_share=0, tx_cost_per_dollar=0): ''' Calculate the change of cash as a result of a series of orders. Use the latest daily close price of the stocks as the settlement price. For now, accept any order with no margin requirement (you can buy/short however much you want). ''' change = 0 for code, quantity in orders.items(): if not code in stock_data: raise Exception("Stock data not found for " + code) settlement_price = stock_data[code]['CLOSE'] # If quantity > 0, it means buying the instrument, so cash goes down. Vice versa. tx_amount = -settlement_price * int(quantity) change += tx_amount # Apply SEC's fee (per dollar amount) change -= abs(tx_amount) * tx_cost_per_dollar # Apply broker's fee (per share) change -= quantity * tx_cost_per_share return round(change, 2) def net_worth(positions, stock_data): ''' Calculate the network of the positions. ''' worth = 0 for code, quantity in positions.items(): if not code in stock_data: raise Exception("Stock data not found for " + code) settlement_price = stock_data[code]['CLOSE'] worth += settlement_price * int(quantity) return round(worth, 2) def evaluate(strategy, config): ''' Evaluate the strategy. Returns a dict of performace metrics ''' training_start = config['TRAINING_START'] training_end = config['TRAINING_END'] backtesting_start = config['BACKTESTING_START'] backtesting_end = config['BACKTESTING_END'] initial_cash = float(config['INITIAL_CASH']) max_leverage = float(config['MAX_LEVERAGE']) tx_cost_per_share = float(config['TX_COST_PER_SHARE']) tx_cost_per_dollar = float(config['TX_COST_PER_DOLLAR']) risk_free_rate = float(config['RISK_FREE_RATE']) * (pd.to_datetime(backtesting_end) - pd.to_datetime(backtesting_start)).days / 360 # Prepare the data for the strategy stock_codes = set() for pair in strategy.pairs: stock_codes.add(pair.X) stock_codes.add(pair.Y) stock_data = util.load_stock_data(config['STOCK_DATA_FOLDER'], list(stock_codes)) strategy.feed(stock_data) strategy.analyze_spread(training_start, training_end) strategy.allocate_money(initial_cash * max_leverage) cash = initial_cash daily_tnw = [] leverages = [] # Advance the timeline day by day testing_dates = [d for d in list(stock_data.values())[0].index if backtesting_start <= d and d <= backtesting_end] testing_dates.sort() for date in testing_dates: strategy.now(date) # Get and execute orders for the day orders = strategy.decide() stock_data_single_day = {} for code, df in stock_data.items(): stock_data_single_day[code] = df.loc[date] cash += cash_change(orders, stock_data_single_day) # Update the orders in strategy strategy.positions(orders, incremental=True) # Record the net worth and return total_net_worth = cash + net_worth(strategy.positions(), stock_data_single_day) # Calculate the leverage market_value = cash for stock, quantity in strategy.positions().items(): if quantity > 0: market_value += quantity * stock_data_single_day[stock]['CLOSE'] leverage = market_value / total_net_worth leverages.append(leverage) daily_tnw.append(total_net_worth) # Calculate the values for the performance metrics daily_return = [] prev_tnw = initial_cash for tnw in daily_tnw: daily_return.append(tnw / prev_tnw - 1) prev_tnw = tnw df_metrics = pd.DataFrame({ "tnw": daily_tnw, "ret": daily_return }) final_return = daily_tnw[-1] / initial_cash - 1 daily_tnw_aug = [initial_cash] + daily_tnw ret_std = df_metrics['ret'].std() performance_metrics = { "Final Return": final_return, "Volatility": ret_std, "Sharpe Ratio": (final_return - risk_free_rate) / ret_std if ret_std > 0 else np.nan, "Up Percentage": len([r for r in daily_return if r > 0]) / len(daily_return), "Max Drawdown": (min(daily_tnw_aug) - max(daily_tnw_aug)) / max(daily_tnw_aug), "Skewness": df_metrics['ret'].skew(), "Kurtosis": df_metrics['ret'].kurt(), "Avg Leverage": sum(leverages) / len(leverages), "Max Leverage": max(leverages) } return performance_metrics def evaluate_cumulative_pairs(pairs, config, lower=None, upper=None, tx_log=False): ''' Evaluate pairs cumulatively of a portfolio. Returns a pandas DataFrame Object contains the evaluation result. ''' thresholds = [ float(config["EXIT_THRESHOLD"]), float(config["ENTER_THRESHOLD"]), float(config["ENTER2_THRESHOLD"]), float(config["ENTER3_THRESHOLD"]), float(config["STOP_THRESHOLD"]) ] allocations = [ float(config["ENTER_ALLOCATION"]), float(config["ENTER2_ALLOCATION"]), float(config["ENTER3_ALLOCATION"]) ] if lower is None: lower = [1, 1] lower_start = int(lower[0]) lower_end = int(lower[1]) if len(lower) > 1 else lower_start if upper is None: upper = [len(pairs), len(pairs)] upper_start = int(upper[0]) upper_end = int(upper[1]) if len(upper) > 1 else upper_start pairs_original = pairs columns = None df_result = pd.DataFrame() for s in range(lower_start - 1, lower_end): for e in range(upper_start, upper_end + 1): pairs = pairs_original[s : e] strategy = PairTradeStrategy(pairs, thresholds, allocations) results = evaluate(strategy, config) if tx_log: results = strategy.transaction_history() if columns is None: columns = ['Start Pair', 'End Pair'] + list(results.keys()) if not tx_log: print(*columns, sep='\t') df_result =
pd.DataFrame(columns=columns)
pandas.DataFrame
#Based on https://www.kaggle.com/tezdhar/wordbatch-with-memory-test import gc import time import numpy as np import pandas as pd from scipy.sparse import csr_matrix, hstack from sklearn.feature_extraction.text import CountVectorizer from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split import psutil import os import wordbatch from wordbatch.extractors import WordBag from wordbatch.models import FTRL, FM_FTRL from nltk.corpus import stopwords import re def rmsle(y, y0): assert len(y) == len(y0) return np.sqrt(np.mean(np.power(np.log1p(y) - np.log1p(y0), 2))) def handle_missing_inplace(dataset): dataset['description'].fillna(value='na', inplace=True) dataset["image"].fillna("noinformation", inplace=True) dataset["param_1"].fillna("nicapotato", inplace=True) dataset["param_2"].fillna("nicapotato", inplace=True) dataset["param_3"].fillna("nicapotato", inplace=True) dataset['image_top_1'].fillna(value=-1, inplace=True) dataset['price'].fillna(value=0, inplace=True) def to_categorical(dataset): dataset['param_1'] = dataset['param_1'].astype('category') dataset['param_2'] = dataset['param_2'].astype('category') dataset['param_3'] = dataset['param_3'].astype('category') dataset['image_top_1'] = dataset['image_top_1'].astype('category') dataset['image'] = dataset['image'].astype('category') dataset['price'] = dataset['price'].astype('category') #counting dataset['num_desc_punct'] = dataset['num_desc_punct'].astype('category') dataset['num_desc_capE'] = dataset['num_desc_capE'].astype('category') dataset['num_desc_capP'] = dataset['num_desc_capP'].astype('category') dataset['num_title_punct'] = dataset['num_title_punct'].astype('category') dataset['num_title_capE'] = dataset['num_title_capE'].astype('category') dataset['num_title_capP'] = dataset['num_title_capP'].astype('category') dataset['is_in_desc_хорошо'] = dataset['is_in_desc_хорошо'].astype('category') dataset['is_in_desc_Плохо'] = dataset['is_in_desc_Плохо'].astype('category') dataset['is_in_desc_новый'] = dataset['is_in_desc_новый'].astype('category') dataset['is_in_desc_старый'] = dataset['is_in_desc_старый'].astype('category') dataset['is_in_desc_используемый'] = dataset['is_in_desc_используемый'].astype('category') dataset['is_in_desc_есплатная_доставка'] = dataset['is_in_desc_есплатная_доставка'].astype('category') dataset['is_in_desc_есплатный_возврат'] = dataset['is_in_desc_есплатный_возврат'].astype('category') dataset['is_in_desc_идеально'] = dataset['is_in_desc_идеально'].astype('category') dataset['is_in_desc_подержанный'] = dataset['is_in_desc_подержанный'].astype('category') dataset['is_in_desc_пСниженные_цены'] = dataset['is_in_desc_пСниженные_цены'].astype('category') #region dataset['region'] = dataset['region'].astype('category') dataset['city'] = dataset['city'].astype('category') dataset['user_type'] = dataset['user_type'].astype('category') dataset['category_name'] = dataset['category_name'].astype('category') dataset['parent_category_name'] = dataset['parent_category_name'].astype('category') # dataset['price+'] = dataset['price+'].astype('category') # dataset['desc_len'] = dataset['desc_len'].astype('category') # dataset['title_len'] = dataset['title_len'].astype('category') # dataset['title_desc_len_ratio'] = dataset['title_desc_len_ratio'].astype('category') # dataset['desc_word_count'] = dataset['desc_word_count'].astype('category') # dataset['mean_des'] = dataset['mean_des'].astype('category') # Define helpers for text normalization stopwords = {x: 1 for x in stopwords.words('russian')} non_alphanums = re.compile(u'[^A-Za-z0-9]+') def normalize_text(text): # if np.isnan(text): text='na' return u" ".join( [x for x in [y for y in non_alphanums.sub(' ', text).lower().strip().split(" ")] \ if len(x) > 1 and x not in stopwords]) develop = True # develop= False if __name__ == '__main__': start_time = time.time() from time import gmtime, strftime from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer import re from scipy.sparse import hstack from nltk.corpus import stopwords from contextlib import contextmanager @contextmanager def timer(name): t0 = time.time() yield print('[{}] done in {:.0f} s'.format(name, (time.time() - t0))) import string print(strftime("%Y-%m-%d %H:%M:%S", gmtime())) print("\nData Load Stage") # , nrows = nrows nrows=10000*1 training = pd.read_csv('../input/train.csv', index_col="item_id", parse_dates=["activation_date"]) len_train = len(training) traindex = training.index testing = pd.read_csv('../input/test.csv', index_col="item_id", parse_dates=["activation_date"]) testdex = testing.index # labels = training['deal_probability'].values y = training.deal_probability.copy() training.drop("deal_probability", axis=1, inplace=True) # suppl # used_cols = ["item_id", "user_id"] # train_active = pd.read_csv("../input/train_active.csv", usecols=used_cols) # test_active = pd.read_csv("../input/test_active.csv", usecols=used_cols) # train_periods = pd.read_csv("../input/periods_train.csv", parse_dates=["date_from", "date_to"]) # test_periods = pd.read_csv("../input/periods_test.csv", parse_dates=["date_from", "date_to"]) # ============================================================================= # Add region-income # ============================================================================= tmp = pd.read_csv("../input/region_income.csv", sep=";", names=["region", "income"]) training = training.merge(tmp, on="region", how="left") testing = testing.merge(tmp, on="region", how="left") del tmp; gc.collect() # ============================================================================= # Add region-income # ============================================================================= tmp = pd.read_csv("../input/city_population_wiki_v3.csv",) training = training.merge(tmp, on="city", how="left") testing = testing.merge(tmp, on="city", how="left") del tmp; gc.collect() import pickle with open('../input/train_image_features.p', 'rb') as f: x = pickle.load(f) train_blurinesses = x['blurinesses'] train_ids = x['ids'] with open('../input/test_image_features.p', 'rb') as f: x = pickle.load(f) test_blurinesses = x['blurinesses'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_blurinesses, columns=['blurinesses']) incep_test_image_df = pd.DataFrame(test_blurinesses, columns=[f'blurinesses']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) training = training.join(incep_train_image_df.set_index('image'), on='image') testing = testing.join(incep_test_image_df.set_index('image'), on='image') print('adding whitenesses ...') with open('../input/train_image_features.p', 'rb') as f: x = pickle.load(f) train_whitenesses = x['whitenesses'] train_ids = x['ids'] with open('../input/test_image_features.p', 'rb') as f: x = pickle.load(f) test_whitenesses = x['whitenesses'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_whitenesses, columns=['whitenesses']) incep_test_image_df = pd.DataFrame(test_whitenesses, columns=[f'whitenesses']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) training = training.join(incep_train_image_df.set_index('image'), on='image') testing = testing.join(incep_test_image_df.set_index('image'), on='image') print('adding dullnesses ...') with open('../input/train_image_features.p', 'rb') as f: x = pickle.load(f) train_dullnesses = x['dullnesses'] train_ids = x['ids'] with open('../input/test_image_features.p', 'rb') as f: x = pickle.load(f) test_dullnesses = x['dullnesses'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_dullnesses, columns=['dullnesses']) incep_test_image_df = pd.DataFrame(test_dullnesses, columns=[f'dullnesses']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) training = training.join(incep_train_image_df.set_index('image'), on='image') testing = testing.join(incep_test_image_df.set_index('image'), on='image') print('adding average_pixel_width ...') with open('../input/train_image_features_1.p', 'rb') as f: x = pickle.load(f) train_average_pixel_width = x['average_pixel_width'] train_ids = x['ids'] with open('../input/test_image_features_1.p', 'rb') as f: x = pickle.load(f) test_average_pixel_width = x['average_pixel_width'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_average_pixel_width, columns=['average_pixel_width']) incep_test_image_df = pd.DataFrame(test_average_pixel_width, columns=[f'average_pixel_width']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) training = training.join(incep_train_image_df.set_index('image'), on='image') testing = testing.join(incep_test_image_df.set_index('image'), on='image') print('adding average_reds ...') with open('../input/train_image_features_1.p', 'rb') as f: x = pickle.load(f) train_average_reds = x['average_reds'] train_ids = x['ids'] with open('../input/test_image_features_1.p', 'rb') as f: x = pickle.load(f) test_average_reds = x['average_reds'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df = pd.DataFrame(train_average_reds, columns=['average_reds']) incep_test_image_df = pd.DataFrame(test_average_reds, columns=[f'average_reds']) incep_train_image_df['image'] = (train_ids) incep_test_image_df['image'] = (test_ids) training = training.join(incep_train_image_df.set_index('image'), on='image') testing = testing.join(incep_test_image_df.set_index('image'), on='image') print('adding average_blues ...') with open('../input/train_image_features_1.p', 'rb') as f: x = pickle.load(f) train_average_blues = x['average_blues'] train_ids = x['ids'] with open('../input/test_image_features_1.p', 'rb') as f: x = pickle.load(f) test_average_blues = x['average_blues'] test_ids = x['ids'] del x; gc.collect() incep_train_image_df =
pd.DataFrame(train_average_blues, columns=['average_blues'])
pandas.DataFrame
import math import queue from datetime import datetime, timedelta, timezone import pandas as pd from storey import build_flow, SyncEmitSource, Reduce, Table, AggregateByKey, FieldAggregator, NoopDriver, \ DataframeSource from storey.dtypes import SlidingWindows, FixedWindows, EmitAfterMaxEvent, EmitEveryEvent test_base_time = datetime.fromisoformat("2020-07-21T21:40:00+00:00") def append_return(lst, x): lst.append(x) return lst def test_sliding_window_simple_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 0, 'number_of_stuff_max_2h': 0, 'number_of_stuff_max_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 1, 'number_of_stuff_max_2h': 1, 'number_of_stuff_max_24h': 1, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_stuff_min_1h': 0, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 2, 'number_of_stuff_max_2h': 2, 'number_of_stuff_max_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_min_1h': 1, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 3, 'number_of_stuff_max_2h': 3, 'number_of_stuff_max_24h': 3, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 1.5, 'number_of_stuff_avg_24h': 1.5}, {'col1': 4, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_sum_24h': 10, 'number_of_stuff_min_1h': 2, 'number_of_stuff_min_2h': 0, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 4, 'number_of_stuff_max_2h': 4, 'number_of_stuff_max_24h': 4, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_sum_24h': 15, 'number_of_stuff_min_1h': 3, 'number_of_stuff_min_2h': 1, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 5, 'number_of_stuff_max_2h': 5, 'number_of_stuff_max_24h': 5, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 2.5}, {'col1': 6, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 21, 'number_of_stuff_min_1h': 4, 'number_of_stuff_min_2h': 2, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 6, 'number_of_stuff_max_2h': 6, 'number_of_stuff_max_24h': 6, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'number_of_stuff_sum_1h': 18, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_sum_24h': 28, 'number_of_stuff_min_1h': 5, 'number_of_stuff_min_2h': 3, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 7, 'number_of_stuff_max_2h': 7, 'number_of_stuff_max_24h': 7, 'number_of_stuff_avg_1h': 6.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 3.5}, {'col1': 8, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 30, 'number_of_stuff_sum_24h': 36, 'number_of_stuff_min_1h': 6, 'number_of_stuff_min_2h': 4, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 8, 'number_of_stuff_max_2h': 8, 'number_of_stuff_max_24h': 8, 'number_of_stuff_avg_1h': 7.0, 'number_of_stuff_avg_2h': 6.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'number_of_stuff_sum_1h': 24, 'number_of_stuff_sum_2h': 35, 'number_of_stuff_sum_24h': 45, 'number_of_stuff_min_1h': 7, 'number_of_stuff_min_2h': 5, 'number_of_stuff_min_24h': 0, 'number_of_stuff_max_1h': 9, 'number_of_stuff_max_2h': 9, 'number_of_stuff_max_24h': 9, 'number_of_stuff_avg_1h': 8.0, 'number_of_stuff_avg_2h': 7.0, 'number_of_stuff_avg_24h': 4.5} ] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_sparse_data(): controller = build_flow([ SyncEmitSource(), AggregateByKey( [FieldAggregator("number_of_stuff1", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_stuff2", "col2", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): controller.emit({'col1': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.emit({'col2': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': math.nan, 'number_of_stuff2_avg_24h': math.nan, 'number_of_stuff2_avg_2h': math.nan, 'number_of_stuff2_max_1h': math.nan, 'number_of_stuff2_max_24h': math.nan, 'number_of_stuff2_max_2h': math.nan, 'number_of_stuff2_min_1h': math.nan, 'number_of_stuff2_min_24h': math.nan, 'number_of_stuff2_min_2h': math.nan, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col1': 1, 'number_of_stuff1_avg_1h': 0.5, 'number_of_stuff1_avg_24h': 0.5, 'number_of_stuff1_avg_2h': 0.5, 'number_of_stuff1_max_1h': 1, 'number_of_stuff1_max_24h': 1, 'number_of_stuff1_max_2h': 1, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 1, 'number_of_stuff1_sum_24h': 1, 'number_of_stuff1_sum_2h': 1, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 1, 'number_of_stuff1_avg_1h': 0.5, 'number_of_stuff1_avg_24h': 0.5, 'number_of_stuff1_avg_2h': 0.5, 'number_of_stuff1_max_1h': 1, 'number_of_stuff1_max_24h': 1, 'number_of_stuff1_max_2h': 1, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 1, 'number_of_stuff1_sum_24h': 1, 'number_of_stuff1_sum_2h': 1, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col1': 2, 'number_of_stuff1_avg_1h': 1.0, 'number_of_stuff1_avg_24h': 1.0, 'number_of_stuff1_avg_2h': 1.0, 'number_of_stuff1_max_1h': 2, 'number_of_stuff1_max_24h': 2, 'number_of_stuff1_max_2h': 2, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 3, 'number_of_stuff1_sum_24h': 3, 'number_of_stuff1_sum_2h': 3, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col2': 2, 'number_of_stuff1_avg_1h': 1.0, 'number_of_stuff1_avg_24h': 1.0, 'number_of_stuff1_avg_2h': 1.0, 'number_of_stuff1_max_1h': 2, 'number_of_stuff1_max_24h': 2, 'number_of_stuff1_max_2h': 2, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 3, 'number_of_stuff1_sum_24h': 3, 'number_of_stuff1_sum_2h': 3, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col1': 3, 'number_of_stuff1_avg_1h': 2.0, 'number_of_stuff1_avg_24h': 1.5, 'number_of_stuff1_avg_2h': 1.5, 'number_of_stuff1_max_1h': 3, 'number_of_stuff1_max_24h': 3, 'number_of_stuff1_max_2h': 3, 'number_of_stuff1_min_1h': 1, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 6, 'number_of_stuff1_sum_24h': 6, 'number_of_stuff1_sum_2h': 6, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col2': 3, 'number_of_stuff1_avg_1h': 2.0, 'number_of_stuff1_avg_24h': 1.5, 'number_of_stuff1_avg_2h': 1.5, 'number_of_stuff1_max_1h': 3, 'number_of_stuff1_max_24h': 3, 'number_of_stuff1_max_2h': 3, 'number_of_stuff1_min_1h': 1, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 6, 'number_of_stuff1_sum_24h': 6, 'number_of_stuff1_sum_2h': 6, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col1': 4, 'number_of_stuff1_avg_1h': 3.0, 'number_of_stuff1_avg_24h': 2.0, 'number_of_stuff1_avg_2h': 2.0, 'number_of_stuff1_max_1h': 4, 'number_of_stuff1_max_24h': 4, 'number_of_stuff1_max_2h': 4, 'number_of_stuff1_min_1h': 2, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 9, 'number_of_stuff1_sum_24h': 10, 'number_of_stuff1_sum_2h': 10, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col2': 4, 'number_of_stuff1_avg_1h': 3.0, 'number_of_stuff1_avg_24h': 2.0, 'number_of_stuff1_avg_2h': 2.0, 'number_of_stuff1_max_1h': 4, 'number_of_stuff1_max_24h': 4, 'number_of_stuff1_max_2h': 4, 'number_of_stuff1_min_1h': 2, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 9, 'number_of_stuff1_sum_24h': 10, 'number_of_stuff1_sum_2h': 10, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col1': 5, 'number_of_stuff1_avg_1h': 4.0, 'number_of_stuff1_avg_24h': 2.5, 'number_of_stuff1_avg_2h': 3.0, 'number_of_stuff1_max_1h': 5, 'number_of_stuff1_max_24h': 5, 'number_of_stuff1_max_2h': 5, 'number_of_stuff1_min_1h': 3, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 1, 'number_of_stuff1_sum_1h': 12, 'number_of_stuff1_sum_24h': 15, 'number_of_stuff1_sum_2h': 15, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col2': 5, 'number_of_stuff1_avg_1h': 4.0, 'number_of_stuff1_avg_24h': 2.5, 'number_of_stuff1_avg_2h': 3.0, 'number_of_stuff1_max_1h': 5, 'number_of_stuff1_max_24h': 5, 'number_of_stuff1_max_2h': 5, 'number_of_stuff1_min_1h': 3, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 1, 'number_of_stuff1_sum_1h': 12, 'number_of_stuff1_sum_24h': 15, 'number_of_stuff1_sum_2h': 15, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col1': 6, 'number_of_stuff1_avg_1h': 5.0, 'number_of_stuff1_avg_24h': 3.0, 'number_of_stuff1_avg_2h': 4.0, 'number_of_stuff1_max_1h': 6, 'number_of_stuff1_max_24h': 6, 'number_of_stuff1_max_2h': 6, 'number_of_stuff1_min_1h': 4, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 2, 'number_of_stuff1_sum_1h': 15, 'number_of_stuff1_sum_24h': 21, 'number_of_stuff1_sum_2h': 20, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col2': 6, 'number_of_stuff1_avg_1h': 5.0, 'number_of_stuff1_avg_24h': 3.0, 'number_of_stuff1_avg_2h': 4.0, 'number_of_stuff1_max_1h': 6, 'number_of_stuff1_max_24h': 6, 'number_of_stuff1_max_2h': 6, 'number_of_stuff1_min_1h': 4, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 2, 'number_of_stuff1_sum_1h': 15, 'number_of_stuff1_sum_24h': 21, 'number_of_stuff1_sum_2h': 20, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col1': 7, 'number_of_stuff1_avg_1h': 6.0, 'number_of_stuff1_avg_24h': 3.5, 'number_of_stuff1_avg_2h': 5.0, 'number_of_stuff1_max_1h': 7, 'number_of_stuff1_max_24h': 7, 'number_of_stuff1_max_2h': 7, 'number_of_stuff1_min_1h': 5, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 3, 'number_of_stuff1_sum_1h': 18, 'number_of_stuff1_sum_24h': 28, 'number_of_stuff1_sum_2h': 25, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col2': 7, 'number_of_stuff1_avg_1h': 6.0, 'number_of_stuff1_avg_24h': 3.5, 'number_of_stuff1_avg_2h': 5.0, 'number_of_stuff1_max_1h': 7, 'number_of_stuff1_max_24h': 7, 'number_of_stuff1_max_2h': 7, 'number_of_stuff1_min_1h': 5, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 3, 'number_of_stuff1_sum_1h': 18, 'number_of_stuff1_sum_24h': 28, 'number_of_stuff1_sum_2h': 25, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col1': 8, 'number_of_stuff1_avg_1h': 7.0, 'number_of_stuff1_avg_24h': 4.0, 'number_of_stuff1_avg_2h': 6.0, 'number_of_stuff1_max_1h': 8, 'number_of_stuff1_max_24h': 8, 'number_of_stuff1_max_2h': 8, 'number_of_stuff1_min_1h': 6, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 4, 'number_of_stuff1_sum_1h': 21, 'number_of_stuff1_sum_24h': 36, 'number_of_stuff1_sum_2h': 30, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col2': 8, 'number_of_stuff1_avg_1h': 7.0, 'number_of_stuff1_avg_24h': 4.0, 'number_of_stuff1_avg_2h': 6.0, 'number_of_stuff1_max_1h': 8, 'number_of_stuff1_max_24h': 8, 'number_of_stuff1_max_2h': 8, 'number_of_stuff1_min_1h': 6, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 4, 'number_of_stuff1_sum_1h': 21, 'number_of_stuff1_sum_24h': 36, 'number_of_stuff1_sum_2h': 30, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col1': 9, 'number_of_stuff1_avg_1h': 8.0, 'number_of_stuff1_avg_24h': 4.5, 'number_of_stuff1_avg_2h': 7.0, 'number_of_stuff1_max_1h': 9, 'number_of_stuff1_max_24h': 9, 'number_of_stuff1_max_2h': 9, 'number_of_stuff1_min_1h': 7, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 5, 'number_of_stuff1_sum_1h': 24, 'number_of_stuff1_sum_24h': 45, 'number_of_stuff1_sum_2h': 35, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col2': 9, 'number_of_stuff1_avg_1h': 8.0, 'number_of_stuff1_avg_24h': 4.5, 'number_of_stuff1_avg_2h': 7.0, 'number_of_stuff1_max_1h': 9, 'number_of_stuff1_max_24h': 9, 'number_of_stuff1_max_2h': 9, 'number_of_stuff1_min_1h': 7, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 5, 'number_of_stuff1_sum_1h': 24, 'number_of_stuff1_sum_24h': 45, 'number_of_stuff1_sum_2h': 35, 'number_of_stuff2_avg_1h': 8.0, 'number_of_stuff2_avg_24h': 4.5, 'number_of_stuff2_avg_2h': 7.0, 'number_of_stuff2_max_1h': 9, 'number_of_stuff2_max_24h': 9, 'number_of_stuff2_max_2h': 9, 'number_of_stuff2_min_1h': 7, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 5, 'number_of_stuff2_sum_1h': 24, 'number_of_stuff2_sum_24h': 45, 'number_of_stuff2_sum_2h': 35}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_sparse_data_uneven_feature_occurrence(): controller = build_flow([ SyncEmitSource(), AggregateByKey( [FieldAggregator("number_of_stuff1", "col1", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_stuff2", "col2", ["sum", "avg", "min", "max"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() controller.emit({'col1': 0}, 'tal', test_base_time) for i in range(10): controller.emit({'col2': i}, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': math.nan, 'number_of_stuff2_avg_24h': math.nan, 'number_of_stuff2_avg_2h': math.nan, 'number_of_stuff2_max_1h': math.nan, 'number_of_stuff2_max_24h': math.nan, 'number_of_stuff2_max_2h': math.nan, 'number_of_stuff2_min_1h': math.nan, 'number_of_stuff2_min_24h': math.nan, 'number_of_stuff2_min_2h': math.nan, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 0, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.0, 'number_of_stuff2_avg_24h': 0.0, 'number_of_stuff2_avg_2h': 0.0, 'number_of_stuff2_max_1h': 0, 'number_of_stuff2_max_24h': 0, 'number_of_stuff2_max_2h': 0, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 0, 'number_of_stuff2_sum_24h': 0, 'number_of_stuff2_sum_2h': 0}, {'col2': 1, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 0.5, 'number_of_stuff2_avg_24h': 0.5, 'number_of_stuff2_avg_2h': 0.5, 'number_of_stuff2_max_1h': 1, 'number_of_stuff2_max_24h': 1, 'number_of_stuff2_max_2h': 1, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 1, 'number_of_stuff2_sum_24h': 1, 'number_of_stuff2_sum_2h': 1}, {'col2': 2, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 1.0, 'number_of_stuff2_avg_24h': 1.0, 'number_of_stuff2_avg_2h': 1.0, 'number_of_stuff2_max_1h': 2, 'number_of_stuff2_max_24h': 2, 'number_of_stuff2_max_2h': 2, 'number_of_stuff2_min_1h': 0, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 3, 'number_of_stuff2_sum_24h': 3, 'number_of_stuff2_sum_2h': 3}, {'col2': 3, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 2.0, 'number_of_stuff2_avg_24h': 1.5, 'number_of_stuff2_avg_2h': 1.5, 'number_of_stuff2_max_1h': 3, 'number_of_stuff2_max_24h': 3, 'number_of_stuff2_max_2h': 3, 'number_of_stuff2_min_1h': 1, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 6, 'number_of_stuff2_sum_24h': 6, 'number_of_stuff2_sum_2h': 6}, {'col2': 4, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 3.0, 'number_of_stuff2_avg_24h': 2.0, 'number_of_stuff2_avg_2h': 2.0, 'number_of_stuff2_max_1h': 4, 'number_of_stuff2_max_24h': 4, 'number_of_stuff2_max_2h': 4, 'number_of_stuff2_min_1h': 2, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 0, 'number_of_stuff2_sum_1h': 9, 'number_of_stuff2_sum_24h': 10, 'number_of_stuff2_sum_2h': 10}, {'col2': 5, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 4.0, 'number_of_stuff2_avg_24h': 2.5, 'number_of_stuff2_avg_2h': 3.0, 'number_of_stuff2_max_1h': 5, 'number_of_stuff2_max_24h': 5, 'number_of_stuff2_max_2h': 5, 'number_of_stuff2_min_1h': 3, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 1, 'number_of_stuff2_sum_1h': 12, 'number_of_stuff2_sum_24h': 15, 'number_of_stuff2_sum_2h': 15}, {'col2': 6, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 5.0, 'number_of_stuff2_avg_24h': 3.0, 'number_of_stuff2_avg_2h': 4.0, 'number_of_stuff2_max_1h': 6, 'number_of_stuff2_max_24h': 6, 'number_of_stuff2_max_2h': 6, 'number_of_stuff2_min_1h': 4, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 2, 'number_of_stuff2_sum_1h': 15, 'number_of_stuff2_sum_24h': 21, 'number_of_stuff2_sum_2h': 20}, {'col2': 7, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 6.0, 'number_of_stuff2_avg_24h': 3.5, 'number_of_stuff2_avg_2h': 5.0, 'number_of_stuff2_max_1h': 7, 'number_of_stuff2_max_24h': 7, 'number_of_stuff2_max_2h': 7, 'number_of_stuff2_min_1h': 5, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 3, 'number_of_stuff2_sum_1h': 18, 'number_of_stuff2_sum_24h': 28, 'number_of_stuff2_sum_2h': 25}, {'col2': 8, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 7.0, 'number_of_stuff2_avg_24h': 4.0, 'number_of_stuff2_avg_2h': 6.0, 'number_of_stuff2_max_1h': 8, 'number_of_stuff2_max_24h': 8, 'number_of_stuff2_max_2h': 8, 'number_of_stuff2_min_1h': 6, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 4, 'number_of_stuff2_sum_1h': 21, 'number_of_stuff2_sum_24h': 36, 'number_of_stuff2_sum_2h': 30}, {'col2': 9, 'number_of_stuff1_avg_1h': 0.0, 'number_of_stuff1_avg_24h': 0.0, 'number_of_stuff1_avg_2h': 0.0, 'number_of_stuff1_max_1h': 0, 'number_of_stuff1_max_24h': 0, 'number_of_stuff1_max_2h': 0, 'number_of_stuff1_min_1h': 0, 'number_of_stuff1_min_24h': 0, 'number_of_stuff1_min_2h': 0, 'number_of_stuff1_sum_1h': 0, 'number_of_stuff1_sum_24h': 0, 'number_of_stuff1_sum_2h': 0, 'number_of_stuff2_avg_1h': 8.0, 'number_of_stuff2_avg_24h': 4.5, 'number_of_stuff2_avg_2h': 7.0, 'number_of_stuff2_max_1h': 9, 'number_of_stuff2_max_24h': 9, 'number_of_stuff2_max_2h': 9, 'number_of_stuff2_min_1h': 7, 'number_of_stuff2_min_24h': 0, 'number_of_stuff2_min_2h': 5, 'number_of_stuff2_sum_1h': 24, 'number_of_stuff2_sum_24h': 45, 'number_of_stuff2_sum_2h': 35}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_multiple_keys_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, f'{i % 2}', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [ {'col1': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 2, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'number_of_stuff_sum_1h': 4, 'number_of_stuff_sum_2h': 4, 'number_of_stuff_sum_24h': 4, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 4, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'number_of_stuff_sum_1h': 9, 'number_of_stuff_sum_2h': 9, 'number_of_stuff_sum_24h': 9, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 6, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'number_of_stuff_sum_1h': 16, 'number_of_stuff_sum_2h': 16, 'number_of_stuff_sum_24h': 16, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 8, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'number_of_stuff_sum_1h': 25, 'number_of_stuff_sum_2h': 25, 'number_of_stuff_sum_24h': 25, 'number_of_stuff_avg_1h': 5.0, 'number_of_stuff_avg_2h': 5.0, 'number_of_stuff_avg_24h': 5.0}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_aggregations_with_filters_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m'), aggr_filter=lambda element: element['is_valid'] == 0)], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i, 'is_valid': i % 2} controller.emit(data, 'tal', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'is_valid': 0, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'is_valid': 1, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 2, 'is_valid': 0, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'is_valid': 1, 'number_of_stuff_sum_1h': 2, 'number_of_stuff_sum_2h': 2, 'number_of_stuff_sum_24h': 2, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 4, 'is_valid': 0, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'is_valid': 1, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 6, 'is_valid': 0, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'is_valid': 1, 'number_of_stuff_sum_1h': 12, 'number_of_stuff_sum_2h': 12, 'number_of_stuff_sum_24h': 12, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 8, 'is_valid': 0, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'is_valid': 1, 'number_of_stuff_sum_1h': 20, 'number_of_stuff_sum_2h': 20, 'number_of_stuff_sum_24h': 20, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_aggregations_with_max_values_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("num_hours_with_stuff_in_the_last_24h", "col1", ["count"], SlidingWindows(['24h'], '1h'), max_value=5)], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=10 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'num_hours_with_stuff_in_the_last_24h_count_24h': 1}, {'col1': 1, 'num_hours_with_stuff_in_the_last_24h_count_24h': 2}, {'col1': 2, 'num_hours_with_stuff_in_the_last_24h_count_24h': 3}, {'col1': 3, 'num_hours_with_stuff_in_the_last_24h_count_24h': 4}, {'col1': 4, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 5, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 6, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 7, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 8, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}, {'col1': 9, 'num_hours_with_stuff_in_the_last_24h_count_24h': 5}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_sliding_window_simple_aggregation_flow_multiple_fields(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["sum", "avg"], SlidingWindows(['1h', '2h', '24h'], '10m')), FieldAggregator("number_of_things", "col2", ["count"], SlidingWindows(['1h', '2h'], '15m')), FieldAggregator("abc", "col3", ["sum"], SlidingWindows(['24h'], '10m'))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i, 'col2': i * 1.2, 'col3': i * 2 + 4} controller.emit(data, 'tal', test_base_time + timedelta(minutes=i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'col2': 0.0, 'col3': 4, 'number_of_stuff_sum_1h': 0, 'number_of_stuff_sum_2h': 0, 'number_of_stuff_sum_24h': 0, 'number_of_things_count_1h': 1, 'number_of_things_count_2h': 1, 'abc_sum_24h': 4, 'number_of_stuff_avg_1h': 0.0, 'number_of_stuff_avg_2h': 0.0, 'number_of_stuff_avg_24h': 0.0}, {'col1': 1, 'col2': 1.2, 'col3': 6, 'number_of_stuff_sum_1h': 1, 'number_of_stuff_sum_2h': 1, 'number_of_stuff_sum_24h': 1, 'number_of_things_count_1h': 2, 'number_of_things_count_2h': 2, 'abc_sum_24h': 10, 'number_of_stuff_avg_1h': 0.5, 'number_of_stuff_avg_2h': 0.5, 'number_of_stuff_avg_24h': 0.5}, {'col1': 2, 'col2': 2.4, 'col3': 8, 'number_of_stuff_sum_1h': 3, 'number_of_stuff_sum_2h': 3, 'number_of_stuff_sum_24h': 3, 'number_of_things_count_1h': 3, 'number_of_things_count_2h': 3, 'abc_sum_24h': 18, 'number_of_stuff_avg_1h': 1.0, 'number_of_stuff_avg_2h': 1.0, 'number_of_stuff_avg_24h': 1.0}, {'col1': 3, 'col2': 3.5999999999999996, 'col3': 10, 'number_of_stuff_sum_1h': 6, 'number_of_stuff_sum_2h': 6, 'number_of_stuff_sum_24h': 6, 'number_of_things_count_1h': 4, 'number_of_things_count_2h': 4, 'abc_sum_24h': 28, 'number_of_stuff_avg_1h': 1.5, 'number_of_stuff_avg_2h': 1.5, 'number_of_stuff_avg_24h': 1.5}, {'col1': 4, 'col2': 4.8, 'col3': 12, 'number_of_stuff_sum_1h': 10, 'number_of_stuff_sum_2h': 10, 'number_of_stuff_sum_24h': 10, 'number_of_things_count_1h': 5, 'number_of_things_count_2h': 5, 'abc_sum_24h': 40, 'number_of_stuff_avg_1h': 2.0, 'number_of_stuff_avg_2h': 2.0, 'number_of_stuff_avg_24h': 2.0}, {'col1': 5, 'col2': 6.0, 'col3': 14, 'number_of_stuff_sum_1h': 15, 'number_of_stuff_sum_2h': 15, 'number_of_stuff_sum_24h': 15, 'number_of_things_count_1h': 6, 'number_of_things_count_2h': 6, 'abc_sum_24h': 54, 'number_of_stuff_avg_1h': 2.5, 'number_of_stuff_avg_2h': 2.5, 'number_of_stuff_avg_24h': 2.5}, {'col1': 6, 'col2': 7.199999999999999, 'col3': 16, 'number_of_stuff_sum_1h': 21, 'number_of_stuff_sum_2h': 21, 'number_of_stuff_sum_24h': 21, 'number_of_things_count_1h': 7, 'number_of_things_count_2h': 7, 'abc_sum_24h': 70, 'number_of_stuff_avg_1h': 3.0, 'number_of_stuff_avg_2h': 3.0, 'number_of_stuff_avg_24h': 3.0}, {'col1': 7, 'col2': 8.4, 'col3': 18, 'number_of_stuff_sum_1h': 28, 'number_of_stuff_sum_2h': 28, 'number_of_stuff_sum_24h': 28, 'number_of_things_count_1h': 8, 'number_of_things_count_2h': 8, 'abc_sum_24h': 88, 'number_of_stuff_avg_1h': 3.5, 'number_of_stuff_avg_2h': 3.5, 'number_of_stuff_avg_24h': 3.5}, {'col1': 8, 'col2': 9.6, 'col3': 20, 'number_of_stuff_sum_1h': 36, 'number_of_stuff_sum_2h': 36, 'number_of_stuff_sum_24h': 36, 'number_of_things_count_1h': 9, 'number_of_things_count_2h': 9, 'abc_sum_24h': 108, 'number_of_stuff_avg_1h': 4.0, 'number_of_stuff_avg_2h': 4.0, 'number_of_stuff_avg_24h': 4.0}, {'col1': 9, 'col2': 10.799999999999999, 'col3': 22, 'number_of_stuff_sum_1h': 45, 'number_of_stuff_sum_2h': 45, 'number_of_stuff_sum_24h': 45, 'number_of_things_count_1h': 10, 'number_of_things_count_2h': 10, 'abc_sum_24h': 130, 'number_of_stuff_avg_1h': 4.5, 'number_of_stuff_avg_2h': 4.5, 'number_of_stuff_avg_24h': 4.5}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_simple_aggregation_flow(): controller = build_flow([ SyncEmitSource(), AggregateByKey([FieldAggregator("number_of_stuff", "col1", ["count"], FixedWindows(['1h', '2h', '3h', '24h']))], Table("test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() for i in range(10): data = {'col1': i} controller.emit(data, 'tal', test_base_time + timedelta(minutes=25 * i)) controller.terminate() actual = controller.await_termination() expected_results = [{'col1': 0, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 1, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 2, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 3, 'number_of_stuff_count_1h': 3, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}, {'col1': 4, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 5, 'number_of_stuff_count_24h': 5}, {'col1': 5, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 5, 'number_of_stuff_count_3h': 6, 'number_of_stuff_count_24h': 6}, {'col1': 6, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 1, 'number_of_stuff_count_3h': 1, 'number_of_stuff_count_24h': 1}, {'col1': 7, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 2, 'number_of_stuff_count_3h': 2, 'number_of_stuff_count_24h': 2}, {'col1': 8, 'number_of_stuff_count_1h': 1, 'number_of_stuff_count_2h': 3, 'number_of_stuff_count_3h': 3, 'number_of_stuff_count_24h': 3}, {'col1': 9, 'number_of_stuff_count_1h': 2, 'number_of_stuff_count_2h': 4, 'number_of_stuff_count_3h': 4, 'number_of_stuff_count_24h': 4}] assert actual == expected_results, \ f'actual did not match expected. \n actual: {actual} \n expected: {expected_results}' def test_fixed_window_aggregation_with_uncommon_windows_flow(): time_format = '%Y-%m-%d %H:%M:%S.%f' columns = ['sample_time', 'signal', 'isotope'] data = [[datetime.strptime('2021-05-30 16:42:15.797000', time_format).replace(tzinfo=timezone.utc), 790.235, 'U235'], [datetime.strptime('2021-05-30 16:45:15.798000', time_format).replace(tzinfo=timezone.utc), 498.491, 'U235'], [datetime.strptime('2021-05-30 16:48:15.799000', time_format).replace(tzinfo=timezone.utc), 34650.00343, 'U235'], [datetime.strptime('2021-05-30 16:51:15.800000', time_format).replace(tzinfo=timezone.utc), 189.823, 'U235'], [datetime.strptime('2021-05-30 16:54:15.801000', time_format).replace(tzinfo=timezone.utc), 379.524, 'U235'], [datetime.strptime('2021-05-30 16:57:15.802000', time_format).replace(tzinfo=timezone.utc), 2225.4952, 'U235'], [datetime.strptime('2021-05-30 17:00:15.803000', time_format).replace(tzinfo=timezone.utc), 1049.0903, 'U235'], [datetime.strptime('2021-05-30 17:03:15.804000', time_format).replace(tzinfo=timezone.utc), 41905.63447, 'U235'], [datetime.strptime('2021-05-30 17:06:15.805000', time_format).replace(tzinfo=timezone.utc), 4987.6764, 'U235'], [datetime.strptime('2021-05-30 17:09:15.806000', time_format).replace(tzinfo=timezone.utc), 67657.11975, 'U235'], [datetime.strptime('2021-05-30 17:12:15.807000', time_format).replace(tzinfo=timezone.utc), 56173.06327, 'U235'], [datetime.strptime('2021-05-30 17:15:15.808000', time_format).replace(tzinfo=timezone.utc), 14249.67394, 'U235'], [datetime.strptime('2021-05-30 17:18:15.809000', time_format).replace(tzinfo=timezone.utc), 656.831, 'U235'], [datetime.strptime('2021-05-30 17:21:15.810000', time_format).replace(tzinfo=timezone.utc), 5768.4822, 'U235'], [datetime.strptime('2021-05-30 17:24:15.811000', time_format).replace(tzinfo=timezone.utc), 929.028, 'U235'], [datetime.strptime('2021-05-30 17:27:15.812000', time_format).replace(tzinfo=timezone.utc), 2585.9646, 'U235'], [datetime.strptime('2021-05-30 17:30:15.813000', time_format).replace(tzinfo=timezone.utc), 358.918, 'U235']] df = pd.DataFrame(data, columns=columns) controller = build_flow([ DataframeSource(df, time_field="sample_time", key_field="isotope"), AggregateByKey([FieldAggregator("samples", "signal", ["count"], FixedWindows(['15m', '25m', '45m', '1h']))], Table("U235_test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() termination_result = controller.await_termination() expected = [{'samples_count_15m': 1.0, 'samples_count_25m': 1.0, 'samples_count_45m': 1.0, 'samples_count_1h': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:42:15.797000+0000', tz='UTC'), 'signal': 790.235, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 2.0, 'samples_count_45m': 2.0, 'samples_count_1h': 2.0, 'sample_time': pd.Timestamp('2021-05-30 16:45:15.798000+0000', tz='UTC'), 'signal': 498.491, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 3.0, 'samples_count_45m': 3.0, 'samples_count_1h': 3.0, 'sample_time': pd.Timestamp('2021-05-30 16:48:15.799000+0000', tz='UTC'), 'signal': 34650.00343, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 4.0, 'samples_count_45m': 4.0, 'samples_count_1h': 4.0, 'sample_time': pd.Timestamp('2021-05-30 16:51:15.800000+0000', tz='UTC'), 'signal': 189.823, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 5.0, 'samples_count_45m': 5.0, 'samples_count_1h': 5.0, 'sample_time': pd.Timestamp('2021-05-30 16:54:15.801000+0000', tz='UTC'), 'signal': 379.524, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 6.0, 'samples_count_45m': 6.0, 'samples_count_1h': 6.0, 'sample_time': pd.Timestamp('2021-05-30 16:57:15.802000+0000', tz='UTC'), 'signal': 2225.4952, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 1.0, 'samples_count_45m': 7.0, 'samples_count_1h': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:00:15.803000+0000', tz='UTC'), 'signal': 1049.0903, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 2.0, 'samples_count_45m': 8.0, 'samples_count_1h': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:03:15.804000+0000', tz='UTC'), 'signal': 41905.63447, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 3.0, 'samples_count_45m': 9.0, 'samples_count_1h': 3.0, 'sample_time': pd.Timestamp('2021-05-30 17:06:15.805000+0000', tz='UTC'), 'signal': 4987.6764, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 4.0, 'samples_count_45m': 10.0, 'samples_count_1h': 4.0, 'sample_time': pd.Timestamp('2021-05-30 17:09:15.806000+0000', tz='UTC'), 'signal': 67657.11975, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 5.0, 'samples_count_45m': 11.0, 'samples_count_1h': 5.0, 'sample_time': pd.Timestamp('2021-05-30 17:12:15.807000+0000', tz='UTC'), 'signal': 56173.06327, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 6.0, 'samples_count_45m': 1.0, 'samples_count_1h': 6.0, 'sample_time': pd.Timestamp('2021-05-30 17:15:15.808000+0000', tz='UTC'), 'signal': 14249.67394, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 7.0, 'samples_count_45m': 2.0, 'samples_count_1h': 7.0, 'sample_time': pd.Timestamp('2021-05-30 17:18:15.809000+0000', tz='UTC'), 'signal': 656.831, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 8.0, 'samples_count_45m': 3.0, 'samples_count_1h': 8.0, 'sample_time': pd.Timestamp('2021-05-30 17:21:15.810000+0000', tz='UTC'), 'signal': 5768.4822, 'isotope': 'U235'}, {'samples_count_15m': 4.0, 'samples_count_25m': 9.0, 'samples_count_45m': 4.0, 'samples_count_1h': 9.0, 'sample_time': pd.Timestamp('2021-05-30 17:24:15.811000+0000', tz='UTC'), 'signal': 929.028, 'isotope': 'U235'}, {'samples_count_15m': 5.0, 'samples_count_25m': 1.0, 'samples_count_45m': 5.0, 'samples_count_1h': 10.0, 'sample_time': pd.Timestamp('2021-05-30 17:27:15.812000+0000', tz='UTC'), 'signal': 2585.9646, 'isotope': 'U235'}, {'samples_count_15m': 1.0, 'samples_count_25m': 2.0, 'samples_count_45m': 6.0, 'samples_count_1h': 11.0, 'sample_time': pd.Timestamp('2021-05-30 17:30:15.813000+0000', tz='UTC'), 'signal': 358.918, 'isotope': 'U235'}] assert termination_result == expected, \ f'actual did not match expected. \n actual: {termination_result} \n expected: {expected}' def test_fixed_window_aggregation_with_multiple_keys_flow(): time_format = '%Y-%m-%d %H:%M:%S.%f' columns = ['sample_time', 'signal', 'isotope'] data = [[datetime.strptime('2021-05-30 16:42:15.797000', time_format).replace(tzinfo=timezone.utc), 790.235, 'U235'], [datetime.strptime('2021-05-30 16:45:15.798000', time_format).replace(tzinfo=timezone.utc), 498.491, 'U235'], [datetime.strptime('2021-05-30 16:48:15.799000', time_format).replace(tzinfo=timezone.utc), 34650.00343, 'U238'], [datetime.strptime('2021-05-30 16:51:15.800000', time_format).replace(tzinfo=timezone.utc), 189.823, 'U238'], [datetime.strptime('2021-05-30 16:54:15.801000', time_format).replace(tzinfo=timezone.utc), 379.524, 'U238'], [datetime.strptime('2021-05-30 16:57:15.802000', time_format).replace(tzinfo=timezone.utc), 2225.4952, 'U238'], [datetime.strptime('2021-05-30 17:00:15.803000', time_format).replace(tzinfo=timezone.utc), 1049.0903, 'U235'], [datetime.strptime('2021-05-30 17:03:15.804000', time_format).replace(tzinfo=timezone.utc), 41905.63447, 'U238'], [datetime.strptime('2021-05-30 17:06:15.805000', time_format).replace(tzinfo=timezone.utc), 4987.6764, 'U235'], [datetime.strptime('2021-05-30 17:09:15.806000', time_format).replace(tzinfo=timezone.utc), 67657.11975, 'U235'], [datetime.strptime('2021-05-30 17:12:15.807000', time_format).replace(tzinfo=timezone.utc), 56173.06327, 'U235'], [datetime.strptime('2021-05-30 17:15:15.808000', time_format).replace(tzinfo=timezone.utc), 14249.67394, 'U238'], [datetime.strptime('2021-05-30 17:18:15.809000', time_format).replace(tzinfo=timezone.utc), 656.831, 'U238'], [datetime.strptime('2021-05-30 17:21:15.810000', time_format).replace(tzinfo=timezone.utc), 5768.4822, 'U235'], [datetime.strptime('2021-05-30 17:24:15.811000', time_format).replace(tzinfo=timezone.utc), 929.028, 'U235'], [datetime.strptime('2021-05-30 17:27:15.812000', time_format).replace(tzinfo=timezone.utc), 2585.9646, 'U238'], [datetime.strptime('2021-05-30 17:30:15.813000', time_format).replace(tzinfo=timezone.utc), 358.918, 'U238']] df = pd.DataFrame(data, columns=columns) controller = build_flow([ DataframeSource(df, time_field="sample_time", key_field="isotope"), AggregateByKey([FieldAggregator("samples", "signal", ["count"], FixedWindows(['10m', '15m']))], Table("U235_test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() termination_result = controller.await_termination() expected = [ {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:42:15.797000+0000', tz='UTC'), 'signal': 790.235, 'isotope': 'U235'}, {'samples_count_10m': 2.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:45:15.798000+0000', tz='UTC'), 'signal': 498.491, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:48:15.799000+0000', tz='UTC'), 'signal': 34650.00343, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 16:51:15.800000+0000', tz='UTC'), 'signal': 189.823, 'isotope': 'U238'}, {'samples_count_10m': 2.0, 'samples_count_15m': 3.0, 'sample_time': pd.Timestamp('2021-05-30 16:54:15.801000+0000', tz='UTC'), 'signal': 379.524, 'isotope': 'U238'}, {'samples_count_10m': 3.0, 'samples_count_15m': 4.0, 'sample_time': pd.Timestamp('2021-05-30 16:57:15.802000+0000', tz='UTC'), 'signal': 2225.4952, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:00:15.803000+0000', tz='UTC'), 'signal': 1049.0903, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:03:15.804000+0000', tz='UTC'), 'signal': 41905.63447, 'isotope': 'U238'}, {'samples_count_10m': 2.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:06:15.805000+0000', tz='UTC'), 'signal': 4987.6764, 'isotope': 'U235'}, {'samples_count_10m': 3.0, 'samples_count_15m': 3.0, 'sample_time': pd.Timestamp('2021-05-30 17:09:15.806000+0000', tz='UTC'), 'signal': 67657.11975, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 4.0, 'sample_time': pd.Timestamp('2021-05-30 17:12:15.807000+0000', tz='UTC'), 'signal': 56173.06327, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:15:15.808000+0000', tz='UTC'), 'signal': 14249.67394, 'isotope': 'U238'}, {'samples_count_10m': 2.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:18:15.809000+0000', tz='UTC'), 'signal': 656.831, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:21:15.810000+0000', tz='UTC'), 'signal': 5768.4822, 'isotope': 'U235'}, {'samples_count_10m': 2.0, 'samples_count_15m': 2.0, 'sample_time': pd.Timestamp('2021-05-30 17:24:15.811000+0000', tz='UTC'), 'signal': 929.028, 'isotope': 'U235'}, {'samples_count_10m': 1.0, 'samples_count_15m': 3.0, 'sample_time': pd.Timestamp('2021-05-30 17:27:15.812000+0000', tz='UTC'), 'signal': 2585.9646, 'isotope': 'U238'}, {'samples_count_10m': 1.0, 'samples_count_15m': 1.0, 'sample_time': pd.Timestamp('2021-05-30 17:30:15.813000+0000', tz='UTC'), 'signal': 358.918, 'isotope': 'U238'}] assert termination_result == expected, \ f'actual did not match expected. \n actual: {termination_result} \n expected: {expected}' def test_sliding_window_aggregation_with_uncommon_windows_flow(): time_format = '%Y-%m-%d %H:%M:%S.%f' columns = ['sample_time', 'signal', 'isotope'] data = [[datetime.strptime('2021-05-30 16:42:15.797000', time_format).replace(tzinfo=timezone.utc), 790.235, 'U235'], [datetime.strptime('2021-05-30 16:45:15.798000', time_format).replace(tzinfo=timezone.utc), 498.491, 'U235'], [datetime.strptime('2021-05-30 16:48:15.799000', time_format).replace(tzinfo=timezone.utc), 34650.00343, 'U235'], [datetime.strptime('2021-05-30 16:51:15.800000', time_format).replace(tzinfo=timezone.utc), 189.823, 'U235'], [datetime.strptime('2021-05-30 16:54:15.801000', time_format).replace(tzinfo=timezone.utc), 379.524, 'U235'], [datetime.strptime('2021-05-30 16:57:15.802000', time_format).replace(tzinfo=timezone.utc), 2225.4952, 'U235'], [datetime.strptime('2021-05-30 17:00:15.803000', time_format).replace(tzinfo=timezone.utc), 1049.0903, 'U235'], [datetime.strptime('2021-05-30 17:03:15.804000', time_format).replace(tzinfo=timezone.utc), 41905.63447, 'U235'], [datetime.strptime('2021-05-30 17:06:15.805000', time_format).replace(tzinfo=timezone.utc), 4987.6764, 'U235'], [datetime.strptime('2021-05-30 17:09:15.806000', time_format).replace(tzinfo=timezone.utc), 67657.11975, 'U235'], [datetime.strptime('2021-05-30 17:12:15.807000', time_format).replace(tzinfo=timezone.utc), 56173.06327, 'U235'], [datetime.strptime('2021-05-30 17:15:15.808000', time_format).replace(tzinfo=timezone.utc), 14249.67394, 'U235'], [datetime.strptime('2021-05-30 17:18:15.809000', time_format).replace(tzinfo=timezone.utc), 656.831, 'U235'], [datetime.strptime('2021-05-30 17:21:15.810000', time_format).replace(tzinfo=timezone.utc), 5768.4822, 'U235'], [datetime.strptime('2021-05-30 17:24:15.811000', time_format).replace(tzinfo=timezone.utc), 929.028, 'U235'], [datetime.strptime('2021-05-30 17:27:15.812000', time_format).replace(tzinfo=timezone.utc), 2585.9646, 'U235'], [datetime.strptime('2021-05-30 17:30:15.813000', time_format).replace(tzinfo=timezone.utc), 358.918, 'U235']] df = pd.DataFrame(data, columns=columns) controller = build_flow([ DataframeSource(df, time_field="sample_time", key_field="isotope"), AggregateByKey([FieldAggregator("samples", "signal", ["count"], SlidingWindows(['15m', '25m', '45m', '1h'], '5m'))], Table("U235_test", NoopDriver())), Reduce([], lambda acc, x: append_return(acc, x)), ]).run() termination_result = controller.await_termination() expected = [{'samples_count_15m': 1.0, 'samples_count_25m': 1.0, 'samples_count_45m': 1.0, 'samples_count_1h': 1.0, 'sample_time': pd.Timestamp('2021-05-30 16:42:15.797000+0000', tz='UTC'), 'signal': 790.235, 'isotope': 'U235'}, {'samples_count_15m': 2.0, 'samples_count_25m': 2.0, 'samples_count_45m': 2.0, 'samples_count_1h': 2.0, 'sample_time': pd.Timestamp('2021-05-30 16:45:15.798000+0000', tz='UTC'), 'signal': 498.491, 'isotope': 'U235'}, {'samples_count_15m': 3.0, 'samples_count_25m': 3.0, 'samples_count_45m': 3.0, 'samples_count_1h': 3.0, 'sample_time':
pd.Timestamp('2021-05-30 16:48:15.799000+0000', tz='UTC')
pandas.Timestamp
import yaml from pathlib import Path import pandas as pd from models.cleaners import clean_population, clean_country_codes, clean_life_expectancy, clean_mortality from models.utils.paths import get_data_path, get_cleaned_data_path, get_prepared_data_path DATA_DIR = get_data_path() DATA_CLEANED_DIR = get_cleaned_data_path() DATA_PREPARED_DIR = get_prepared_data_path() NL_LIFE_EXP_FILE = 'netherlands_life_exp.xlsx' JP_LIFE_EXP_FILE = 'japan_life_exp.xlsx' CA_LIFE_EXP_FILE = 'canada_life_exp.xlsx' COUNTRY_CODES_FILE = 'country_codes' POPULATION_FILE = 'pop' MORTALITY_FILE = 'Morticd10_part' # append 1 till 5 and concatenate the 5 files together NL_LIFE_EXP_PATH = Path(DATA_DIR, NL_LIFE_EXP_FILE) JP_LIFE_EXP_PATH = Path(DATA_DIR, JP_LIFE_EXP_FILE) CA_LIFE_EXP_PATH = Path(DATA_DIR, CA_LIFE_EXP_FILE) COUNTRY_CODES_PATH = Path(DATA_DIR, COUNTRY_CODES_FILE) POPULATION_PATH = Path(DATA_DIR, POPULATION_FILE) MORTALITY_PATH = Path(DATA_DIR, MORTALITY_FILE) if __name__ == '__main__': if not Path(Path(DATA_CLEANED_DIR)).exists(): Path.mkdir(Path(DATA_CLEANED_DIR)) if not Path(Path(DATA_PREPARED_DIR)).exists(): Path.mkdir(Path(DATA_PREPARED_DIR)) # Load datasets mortality_datasets = [Path(DATA_DIR, f"{MORTALITY_FILE}{str(i + 1)}") for i in range(0, 5)] mortality_datasets = [
pd.read_csv(data_path)
pandas.read_csv
# pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import os import operator import unittest import cStringIO as StringIO import nose from numpy import nan import numpy as np import numpy.ma as ma from pandas import Index, Series, TimeSeries, DataFrame, isnull, notnull from pandas.core.index import MultiIndex import pandas.core.datetools as datetools from pandas.util import py3compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm #------------------------------------------------------------------------------- # Series test cases JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class CheckNameIntegration(object): def test_scalarop_preserve_name(self): result = self.ts * 2 self.assertEquals(result.name, self.ts.name) def test_copy_name(self): result = self.ts.copy() self.assertEquals(result.name, self.ts.name) # def test_copy_index_name_checking(self): # # don't want to be able to modify the index stored elsewhere after # # making a copy # self.ts.index.name = None # cp = self.ts.copy() # cp.index.name = 'foo' # self.assert_(self.ts.index.name is None) def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) self.assertEquals(result.name, self.ts.name) def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts self.assertEquals(result.name, self.ts.name) result = self.ts * self.ts[:-2] self.assertEquals(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'something else' result = self.ts + cp self.assert_(result.name is None) def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) self.assertEquals(result.name, self.ts.name) def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] self.assertEquals(result.name, self.ts.name) result = self.ts[[0, 2, 4]] self.assertEquals(result.name, self.ts.name) result = self.ts[5:10] self.assertEquals(result.name, self.ts.name) def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(range(0,len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth"] expected = "\n".join(expected) self.assertEquals(repr(s), expected) def test_multilevel_preserve_name(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(np.random.randn(len(index)), index=index, name='sth') result = s['foo'] result2 = s.ix['foo'] self.assertEquals(result.name, s.name) self.assertEquals(result2.name, s.name) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) # test big series (diff code path) s = Series(range(0,1000)) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) def test_pickle_preserve_name(self): unpickled = self._pickle_roundtrip(self.ts) self.assertEquals(unpickled.name, self.ts.name) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() self.assertEquals(result.name, self.ts.name) def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) self.assertEquals(result.name, self.ts.name) def test_to_sparse_pass_name(self): result = self.ts.to_sparse() self.assertEquals(result.name, self.ts.name) class SafeForSparse(object): pass class TestSeries(unittest.TestCase, CheckNameIntegration): def setUp(self): self.ts =
tm.makeTimeSeries()
pandas.util.testing.makeTimeSeries
import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import power_transform from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import os import datetime import numpy as np import seaborn as sns from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import Imputer #Garbage Collector import gc os.getcwd() os.chdir('C:/Users/Mann-A2/Documents/Python Repository/IEEE Fraud Detection - Kaggle/ieee-fraud-detection') from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" train_identity = pd.read_csv('train_identity.csv') train_transaction = pd.read_csv('train_transaction.csv') test_identity = pd.read_csv('test_identity.csv') test_transaction = pd.read_csv('test_transaction.csv') # function to reduce size def reduce_mem_usage(df): """ iterate through all the columns of a dataframe and modify the data type to reduce memory usage. """ start_mem = df.memory_usage().sum() / 1024**2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem)) for col in df.columns: col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024**2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem)) print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem)) return df #split function def id_split(dataframe): dataframe['device_name'] = dataframe['DeviceInfo'].str.split('/', expand=True)[0] dataframe['device_version'] = dataframe['DeviceInfo'].str.split('/', expand=True)[1] dataframe['OS_id_30'] = dataframe['id_30'].str.split(' ', expand=True)[0] dataframe['version_id_30'] = dataframe['id_30'].str.split(' ', expand=True)[1] dataframe['browser_id_31'] = dataframe['id_31'].str.split(' ', expand=True)[0] dataframe['version_id_31'] = dataframe['id_31'].str.split(' ', expand=True)[1] dataframe['screen_width'] = dataframe['id_33'].str.split('x', expand=True)[0] dataframe['screen_height'] = dataframe['id_33'].str.split('x', expand=True)[1] dataframe['id_34'] = dataframe['id_34'].str.split(':', expand=True)[1] dataframe['id_23'] = dataframe['id_23'].str.split(':', expand=True)[1] dataframe.loc[dataframe['device_name'].str.contains('SM', na=False), 'device_name'] = 'Samsung' dataframe.loc[dataframe['device_name'].str.contains('SAMSUNG', na=False), 'device_name'] = 'Samsung' dataframe.loc[dataframe['device_name'].str.contains('GT-', na=False), 'device_name'] = 'Samsung' dataframe.loc[dataframe['device_name'].str.contains('Moto G', na=False), 'device_name'] = 'Motorola' dataframe.loc[dataframe['device_name'].str.contains('Moto', na=False), 'device_name'] = 'Motorola' dataframe.loc[dataframe['device_name'].str.contains('moto', na=False), 'device_name'] = 'Motorola' dataframe.loc[dataframe['device_name'].str.contains('LG-', na=False), 'device_name'] = 'LG' dataframe.loc[dataframe['device_name'].str.contains('rv:', na=False), 'device_name'] = 'RV' dataframe.loc[dataframe['device_name'].str.contains('HUAWEI', na=False), 'device_name'] = 'Huawei' dataframe.loc[dataframe['device_name'].str.contains('ALE-', na=False), 'device_name'] = 'Huawei' dataframe.loc[dataframe['device_name'].str.contains('-L', na=False), 'device_name'] = 'Huawei' dataframe.loc[dataframe['device_name'].str.contains('Blade', na=False), 'device_name'] = 'ZTE' dataframe.loc[dataframe['device_name'].str.contains('BLADE', na=False), 'device_name'] = 'ZTE' dataframe.loc[dataframe['device_name'].str.contains('Linux', na=False), 'device_name'] = 'Linux' dataframe.loc[dataframe['device_name'].str.contains('XT', na=False), 'device_name'] = 'Sony' dataframe.loc[dataframe['device_name'].str.contains('HTC', na=False), 'device_name'] = 'HTC' dataframe.loc[dataframe['device_name'].str.contains('ASUS', na=False), 'device_name'] = 'Asus' dataframe.loc[dataframe.device_name.isin(dataframe.device_name.value_counts()[dataframe.device_name.value_counts() < 200].index), 'device_name'] = "Others" dataframe['had_id'] = 1 gc.collect() return dataframe train_identity = id_split(train_identity) test_identity = id_split(test_identity) #Data joining train = pd.merge(train_transaction, train_identity, on='TransactionID', how='left', left_index=True, right_index=True) test = pd.merge(test_transaction, test_identity, on='TransactionID', how='left', left_index=True, right_index=True) print('Data was successfully merged!\n') del train_identity, train_transaction, test_identity, test_transaction print(f'Train dataset has {train.shape[0]} rows and {train.shape[1]} columns.') print(f'Test dataset has {test.shape[0]} rows and {test.shape[1]} columns.\n') #============================================================================ useful_features = ['isFraud', 'TransactionDT', 'TransactionAmt', 'ProductCD', 'card1', 'card2', 'card3', 'card4', 'card5', 'card6', 'addr1', 'addr2', 'dist1', 'P_emaildomain', 'R_emaildomain', 'C1', 'C2', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'C10', 'C11', 'C12', 'C13', 'C14', 'D1', 'D2', 'D3', 'D4', 'D5', 'D10', 'D11', 'D15', 'M2', 'M3', 'M4', 'M5', 'M6', 'M7', 'M8', 'M9', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V17', 'V19', 'V20', 'V29', 'V30', 'V33', 'V34', 'V35', 'V36', 'V37', 'V38', 'V40', 'V44', 'V45', 'V46', 'V47', 'V48', 'V49', 'V51', 'V52', 'V53', 'V54', 'V56', 'V58', 'V59', 'V60', 'V61', 'V62', 'V63', 'V64', 'V69', 'V70', 'V71', 'V72', 'V73', 'V74', 'V75', 'V76', 'V78', 'V80', 'V81', 'V82', 'V83', 'V84', 'V85', 'V87', 'V90', 'V91', 'V92', 'V93', 'V94', 'V95', 'V96', 'V97', 'V99', 'V100', 'V126', 'V127', 'V128', 'V130', 'V131', 'V138', 'V139', 'V140', 'V143', 'V145', 'V146', 'V147', 'V149', 'V150', 'V151', 'V152', 'V154', 'V156', 'V158', 'V159', 'V160', 'V161', 'V162', 'V163', 'V164', 'V165', 'V166', 'V167', 'V169', 'V170', 'V171', 'V172', 'V173', 'V175', 'V176', 'V177', 'V178', 'V180', 'V182', 'V184', 'V187', 'V188', 'V189', 'V195', 'V197', 'V200', 'V201', 'V202', 'V203', 'V204', 'V205', 'V206', 'V207', 'V208', 'V209', 'V210', 'V212', 'V213', 'V214', 'V215', 'V216', 'V217', 'V219', 'V220', 'V221', 'V222', 'V223', 'V224', 'V225', 'V226', 'V227', 'V228', 'V229', 'V231', 'V233', 'V234', 'V238', 'V239', 'V242', 'V243', 'V244', 'V245', 'V246', 'V247', 'V249', 'V251', 'V253', 'V256', 'V257', 'V258', 'V259', 'V261', 'V262', 'V263', 'V264', 'V265', 'V266', 'V267', 'V268', 'V270', 'V271', 'V272', 'V273', 'V274', 'V275', 'V276', 'V277', 'V278', 'V279', 'V280', 'V282', 'V283', 'V285', 'V287', 'V288', 'V289', 'V291', 'V292', 'V294', 'V303', 'V304', 'V306', 'V307', 'V308', 'V310', 'V312', 'V313', 'V314', 'V315', 'V317', 'V322', 'V323', 'V324', 'V326', 'V329', 'V331', 'V332', 'V333', 'V335', 'V336', 'V338', 'id_01', 'id_02', 'id_05', 'id_06', 'id_11', 'id_12', 'id_13', 'id_15', 'id_17', 'id_19', 'id_20', 'id_31', 'id_36', 'id_37', 'id_38', 'DeviceType', 'DeviceInfo', 'device_name', 'device_version', 'OS_id_30', 'version_id_30', 'browser_id_31', 'version_id_31', 'screen_width', 'screen_height', 'had_id'] cols_to_drop = [col for col in train.columns if col not in useful_features] train = train.drop(cols_to_drop, axis=1) test = test.drop(cols_to_drop, axis=1) #Merging email columns train.P_emaildomain.fillna(train.R_emaildomain, inplace=True) del train['R_emaildomain'] test.P_emaildomain.fillna(test.R_emaildomain, inplace=True) del test['R_emaildomain'] # New feature - log of transaction amount. () train['TransactionAmt_Log'] = np.log(train['TransactionAmt']) test['TransactionAmt_Log'] = np.log(test['TransactionAmt']) # New feature - decimal part of the transaction amount. train['TransactionAmt_decimal'] = ((train['TransactionAmt'] - train['TransactionAmt'].astype(int)) * 1000).astype(int) test['TransactionAmt_decimal'] = ((test['TransactionAmt'] - test['TransactionAmt'].astype(int)) * 1000).astype(int) # New feature - day of week in which a transaction happened. train['Transaction_day_of_week'] = np.floor((train['TransactionDT'] / (3600 * 24) - 1) % 7) test['Transaction_day_of_week'] = np.floor((test['TransactionDT'] / (3600 * 24) - 1) % 7) # New feature - hour of the day in which a transaction happened. train['Transaction_hour'] = np.floor(train['TransactionDT'] / 3600) % 24 test['Transaction_hour'] = np.floor(test['TransactionDT'] / 3600) % 24 del train['TransactionAmt'], train['TransactionDT'] del test['TransactionAmt'], test['TransactionDT'] #handling missing values -- replacing with -999 train.replace(np.nan, -999, inplace=True) test.replace(np.nan, -999, inplace=True) train.isnull().sum() test.isnull().sum() #===================== #You can use isnull with mean for treshold and then remove columns by boolean # indexing with loc (because remove columns), also need invert condition - # so <.8 means remove all columns >=0.8: # #df = df.loc[:, df.isnull().mean() < .8] #Label Encoding # Encoding - count encoding for both train and test for feature in ['card1', 'card2', 'card3', 'card4', 'card5', 'card6', 'id_36']: train[feature + '_count_full'] = train[feature].map(pd.concat([train[feature], test[feature]], ignore_index=True).value_counts(dropna=False)) test[feature + '_count_full'] = test[feature].map(
pd.concat([train[feature], test[feature]], ignore_index=True)
pandas.concat
import numpy as np import pandas as pd def haversine(lat1, lon1, lat2, lon2, to_radians=True, earth_radius=6371): if to_radians: lat1, lon1, lat2, lon2 = np.radians([lat1, lon1, lat2, lon2]) a = np.sin((lat2-lat1)/2.0)**2 + \ np.cos(lat1) * np.cos(lat2) * np.sin((lon2-lon1)/2.0)**2 return earth_radius * 2 * np.arcsin(np.sqrt(a)) * 1000 def extract_displacement_speed_acceleration(csv_filepath): df =
pd.read_csv(csv_filepath)
pandas.read_csv
import pandas as pd tools = pd.read_csv("clean_bitcoin_otc.csv") tools = tools.values.tolist() curr = set() for t in tools: curr = curr.union([t[0],t[1]]) curr = list(curr) mapper= {c:ind for ind, c in enumerate(curr)} tools = [[mapper[t[0]],mapper[t[1]],t[2]] for t in tools] tools =
pd.DataFrame(tools, columns = ["id1","id2","sign"])
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/03_manage_data.ipynb (unless otherwise specified). __all__ = ['NORMALIZE', 'HORIZONS', 'COLUMNS', 'savePredict', 'loadPredict', 'updatePredicts', 'doNewPredicts', 'infoDatesPredicts'] # Cell from .load_model import getAllHorizonPrediction import datetime import numpy as np from .resources import getInfo import csv import pandas as pd import pickle from fastcore.script import * # @Callparser NORMALIZE=707.6 HORIZONS=[3,5,7,10,14,21,27] COLUMNS=['Date','H3','H5','H7','H10','H14','H21','H27'] # Cell def savePredict(datalist): path=getInfo("csvdirectory")+"predictionData.csv" try: outfile = open(path, 'wb') pickle.dump(datalist, outfile ) finally: outfile.close() # Cell def loadPredict(): predict= pd.DataFrame(columns=COLUMNS) path=getInfo("csvdirectory")+"predictionData.csv" try: with open(path,'rb') as infile: predict = pickle.load(infile, encoding='bytes') infile.close() except IOError: print("File not accessible") return predict # Cell @call_parse def updatePredicts(): path=getInfo("csvdirectory")+"predictionData.csv" datapredict=loadPredict() if(not datapredict.empty): yesterday = datetime.datetime.today().date()-datetime.timedelta(1) predictdate=pd.to_datetime(datapredict.loc[0,"Date"])+datetime.timedelta(1) #First date to predict if(yesterday >= predictdate): while(yesterday >= predictdate):# while yesterday is not in the past of data(predictdate) #print(predictdate,yesterday) print("Currently making ", predictdate.strftime("%Y-%m-%d") ," prediction") currentpredict=getAllHorizonPrediction(predictdate) datapredict=pd.concat([pd.DataFrame(currentpredict,columns=COLUMNS), datapredict], ignore_index=True) predictdate=predictdate+datetime.timedelta(1) print("Updated to ",yesterday) savePredict(datapredict) else: print("It was already updated") else: print("The file does not exist, you should make predictions to update") # Cell def doNewPredicts(days): datapredict=loadPredict() if(not datapredict.empty): datestart=pd.to_datetime(datapredict.iloc[-1].Date)-datetime.timedelta(1) else: datestart=datetime.datetime.now().replace(hour=0, minute=0, second=0, microsecond=0)-datetime.timedelta(1) for numdays in range(days): print((datestart-datetime.timedelta(numdays)).strftime("%Y-%m-%d")) currentpredict=getAllHorizonPrediction(datestart-datetime.timedelta(numdays)) datapredict=pd.concat([datapredict,
pd.DataFrame(currentpredict,columns=COLUMNS)
pandas.DataFrame
from __future__ import absolute_import, division, unicode_literals import unittest import jsonpickle from helper import SkippableTest try: import pandas as pd import numpy as np from pandas.testing import assert_series_equal from pandas.testing import assert_frame_equal from pandas.testing import assert_index_equal except ImportError: np = None class PandasTestCase(SkippableTest): def setUp(self): if np is None: self.should_skip = True return self.should_skip = False import jsonpickle.ext.pandas jsonpickle.ext.pandas.register_handlers() def tearDown(self): if self.should_skip: return import jsonpickle.ext.pandas jsonpickle.ext.pandas.unregister_handlers() def roundtrip(self, obj): return jsonpickle.decode(jsonpickle.encode(obj)) def test_series_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') ser = pd.Series( { 'an_int': np.int_(1), 'a_float': np.float_(2.5), 'a_nan': np.nan, 'a_minus_inf': -np.inf, 'an_inf': np.inf, 'a_str': np.str_('foo'), 'a_unicode': np.unicode_('bar'), 'date': np.datetime64('2014-01-01'), 'complex': np.complex_(1 - 2j), # TODO: the following dtypes are not currently supported. # 'object': np.object_({'a': 'b'}), } ) decoded_ser = self.roundtrip(ser) assert_series_equal(decoded_ser, ser) def test_dataframe_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') df = pd.DataFrame( { 'an_int': np.int_([1, 2, 3]), 'a_float': np.float_([2.5, 3.5, 4.5]), 'a_nan': np.array([np.nan] * 3), 'a_minus_inf': np.array([-np.inf] * 3), 'an_inf': np.array([np.inf] * 3), 'a_str': np.str_('foo'), 'a_unicode': np.unicode_('bar'), 'date': np.array([np.datetime64('2014-01-01')] * 3), 'complex': np.complex_([1 - 2j, 2 - 1.2j, 3 - 1.3j]), # TODO: the following dtypes are not currently supported. # 'object': np.object_([{'a': 'b'}]*3), } ) decoded_df = self.roundtrip(df) assert_frame_equal(decoded_df, df) def test_multindex_dataframe_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') df = pd.DataFrame( { 'idx_lvl0': ['a', 'b', 'c'], 'idx_lvl1': np.int_([1, 1, 2]), 'an_int': np.int_([1, 2, 3]), 'a_float': np.float_([2.5, 3.5, 4.5]), 'a_nan': np.array([np.nan] * 3), 'a_minus_inf': np.array([-np.inf] * 3), 'an_inf': np.array([np.inf] * 3), 'a_str': np.str_('foo'), 'a_unicode': np.unicode_('bar'), } ) df = df.set_index(['idx_lvl0', 'idx_lvl1']) decoded_df = self.roundtrip(df) assert_frame_equal(decoded_df, df) def test_dataframe_with_interval_index_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') df = pd.DataFrame( {'a': [1, 2], 'b': [3, 4]}, index=pd.IntervalIndex.from_breaks([1, 2, 4]) ) decoded_df = self.roundtrip(df) assert_frame_equal(decoded_df, df) def test_index_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') idx = pd.Index(range(5, 10)) decoded_idx = self.roundtrip(idx) assert_index_equal(decoded_idx, idx) def test_datetime_index_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') idx = pd.date_range(start='2019-01-01', end='2019-02-01', freq='D') decoded_idx = self.roundtrip(idx) assert_index_equal(decoded_idx, idx) def test_ragged_datetime_index_roundtrip(self): if self.should_skip: return self.skip('pandas is not importable') idx =
pd.DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-05'])
pandas.DatetimeIndex
import collections import numpy as np import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, isna, ) import pandas._testing as tm class TestCategoricalMissing: def test_isna(self): exp = np.array([False, False, True]) cat = Categorical(["a", "b", np.nan]) res = cat.isna() tm.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = list(range(10)) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) tm.assert_numpy_array_equal(isna(cat), labels == -1) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) tm.assert_index_equal(c.categories, Index(["a", "b"])) tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8)) c[1] = np.nan tm.assert_index_equal(c.categories, Index(["a", "b"])) tm.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0], dtype=np.int8)) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) tm.assert_index_equal(c.categories, Index(["a", "b"])) tm.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0], dtype=np.int8)) def test_set_dtype_nans(self): c = Categorical(["a", "b", np.nan]) result = c._set_dtype(CategoricalDtype(["a", "c"])) tm.assert_numpy_array_equal(result.codes, np.array([0, -1, -1], dtype="int8")) def test_set_item_nan(self): cat = Categorical([1, 2, 3]) cat[1] = np.nan exp = Categorical([1, np.nan, 3], categories=[1, 2, 3]) tm.assert_categorical_equal(cat, exp) @pytest.mark.parametrize( "fillna_kwargs, msg", [ ( {"value": 1, "method": "ffill"}, "Cannot specify both 'value' and 'method'.", ), ({}, "Must specify a fill 'value' or 'method'."), ({"method": "bad"}, "Invalid fill method. Expecting .* bad"), ( {"value": Series([1, 2, 3, 4, "a"])}, "Cannot setitem on a Categorical with a new category", ), ], ) def test_fillna_raises(self, fillna_kwargs, msg): # https://github.com/pandas-dev/pandas/issues/19682 # https://github.com/pandas-dev/pandas/issues/13628 cat = Categorical([1, 2, 3, None, None]) with pytest.raises(ValueError, match=msg): cat.fillna(**fillna_kwargs) @pytest.mark.parametrize("named", [True, False]) def test_fillna_iterable_category(self, named): # https://github.com/pandas-dev/pandas/issues/21097 if named: Point = collections.namedtuple("Point", "x y") else: Point = lambda *args: args # tuple cat = Categorical(np.array([Point(0, 0), Point(0, 1), None], dtype=object)) result = cat.fillna(Point(0, 0)) expected = Categorical([Point(0, 0), Point(0, 1), Point(0, 0)]) tm.assert_categorical_equal(result, expected) def test_fillna_array(self): # accept Categorical or ndarray value if it holds appropriate values cat = Categorical(["A", "B", "C", None, None]) other = cat.fillna("C") result = cat.fillna(other) tm.assert_categorical_equal(result, other) assert isna(cat[-1]) # didnt modify original inplace other = np.array(["A", "B", "C", "B", "A"]) result = cat.fillna(other) expected = Categorical(["A", "B", "C", "B", "A"], dtype=cat.dtype) tm.assert_categorical_equal(result, expected) assert isna(cat[-1]) # didnt modify original inplace @pytest.mark.parametrize( "values, expected", [ ([1, 2, 3], np.array([False, False, False])), ([1, 2, np.nan], np.array([False, False, True])), ([1, 2, np.inf], np.array([False, False, True])), ([1, 2, pd.NA], np.array([False, False, True])), ], ) def test_use_inf_as_na(self, values, expected): # https://github.com/pandas-dev/pandas/issues/33594 with pd.option_context("mode.use_inf_as_na", True): cat = Categorical(values) result = cat.isna()
tm.assert_numpy_array_equal(result, expected)
pandas._testing.assert_numpy_array_equal
import pandas as pd import numpy as np import glob as glob import seaborn as sns import matplotlib.pyplot as plt def filter_TDP(data_frame, thresh = 0.3): """[optional function that removes molecules that do not transition below threshold at some point] Args: data_frame ([dataframe]): [dataframe that has been cleaned to remove outliers by 'remove_outliers' function] thresh (float, optional): [FRET value to threshold - will filter molecules and keep those that go below the thresh]. Defaults to 0.3. Returns: [dataframe]: [contains only molecules of interest] """ filtered_mol = [] for treatment, df in data_frame.groupby("treatment_name"): mol_list = df[(df["FRET_before"] <= thresh)|(df["FRET_after"] <= thresh)].Molecule.unique().tolist() filtered = df[df["Molecule"].isin(mol_list)] filtered_mol.append(filtered) filtered_mol = pd.concat(filtered_mol) return filtered_mol def remove_outliers(compiled, plot_type, data_type = "raw"): """[removes outliers from dataframe] Args: compiled ([dataframe]): [raw dataframe containing outliers to be removed] plot_type ([str]): [string can either be 'hist' for histogram data or 'TDP' for TDP data] data_type (str, optional): [removes either raw FRET values or 'idealized' FRET values]. Defaults to "raw". Returns: [dataframe]: [returns cleaned data without outliers] """ if plot_type == 'hist': if data_type == "raw": rawFRET = compiled[(compiled[3] > -0.5) & (compiled[3] < 1.5)].copy() return rawFRET if data_type == "idealized": idealizedFRET = compiled[(compiled[4] > -0.5) & (compiled[4] < 1.5)].copy() return idealizedFRET elif plot_type == 'TDP': outliers = compiled[(compiled["FRET before transition"] < -0.5)|(compiled["FRET before transition"] > 1.5)|(compiled["FRET after transition"] < -0.5) | (compiled["FRET after transition"] > 1.5)].index compiled.drop(outliers, inplace = True) return compiled else: print('invalid plot type, please set plot_type as "hist" or "TDP" - you idiot') def cleanup_dwell(data, fps, thresh, first_dwell = "delete"): """[Will convert the data frome frame number to unit of time (seconds) and then delete all dwell times that are smaller than the set threshold (defined previously) in seconds. Will also delete the first dwell state from each molecule] Args: data ([dataframe]): [raw data] first_dwell (str, optional): [Set to 'keep' to keep the first dwell state from each molecule otherwise Will delete the first dwell state from each molecule by default]. Defaults to "delete". Returns: [dataframe]: [Data is now cleaned and ready for subsequent processing] """ if first_dwell == "delete": filtered = [] for molecule, df in data.groupby("Molecule"): filtered.append(df.iloc[1:]) filtered = pd.concat(filtered) #####filtered = pd.concat([df.iloc[1:] for molecule, df in A.groupby("Molecule")]) ##code here is the same as the for loop but in a list comprehension format filtered["Time (s)"] = filtered["Time"]/fps filtered = filtered[filtered["Time (s)"] >= thresh] return filtered if first_dwell == "keep": data["Time (s)"] = data["Time"]/fps data = data[data["Time (s)"] >= thresh] return data def filter_dwell(df, FRET_thresh, headers): """[Will take the cleaned TDP data and will filter it using a threshold (defined by FRET_thresh) into seperate types of transitions (e.g., < 0.5 to > 0.5 FRET if FRET_thresh is = 0.5 is one example of a type of transition). Args: df ([dataframe]): [contains cleaned data that has been processed using the 'cleanup_dwell' function] Returns: [dataframe]: [contains dwell time that has been categorized into each transition class] """ filtered_lowtohigh = df[(df["FRET_before"] < FRET_thresh) & (df["FRET_after"] > FRET_thresh)].copy() filtered_lowtolow = df[(df["FRET_before"] < FRET_thresh) & (df["FRET_after"] < FRET_thresh)].copy() filtered_hightolow = df[(df["FRET_before"] > FRET_thresh) & (df["FRET_after"] < FRET_thresh)].copy() filtered_hightohigh = df[(df["FRET_before"] > FRET_thresh) & (df["FRET_after"] > FRET_thresh)].copy() dataf = [filtered_lowtolow["Time (s)"], filtered_lowtohigh["Time (s)"], filtered_hightohigh["Time (s)"], filtered_hightolow["Time (s)"]] df_col = pd.concat(dataf, axis = 1, keys = headers) df_col = df_col.apply(lambda x:pd.Series(x.dropna().values)) ## removes NaN values from each column in df_col return df_col def transition_frequency(filt): """calculates the transition frequency (i.e., the number of transitions per transition class divided by the total number of transitions observed). For example if there are 40 transitions total, and a < 0.5 to > 0.5 transition occurs 10 times, then the transition probability for that transition type is 0.25 or 25%. Args: filt (dataframe): contains the dataframe with filtered data (cleaned data has been filtered by 'filter_dwell' function) Returns: dataframe: returns a dataframe containing the percentage for each transition type """ count_df_col = pd.DataFrame(filt.count(axis = 0)).transpose() count_df_col["sum"] = count_df_col.sum(axis = 1) dwell_frequency = pd.DataFrame([(count_df_col[column]/count_df_col["sum"])*100 for column in count_df_col]).transpose() print(dwell_frequency) return dwell_frequency def calculate_mean(filtered_data, treatment_name): """calculates the mean dwell time of each type of transition class Args: filtered_data (dataframe): dataframe generated after the 'cleanup_dwell' and 'filter_dwell' functions have been run treatment_name (str): not required, only present to receive input from for loop. set to treatment_name Returns: [dataframe]: returns dataframe containing the mean of each transition class """ mean_dwell = pd.DataFrame([filtered_data.iloc[0:].mean()]) mean_dwell["sample"] = treatment_name return mean_dwell def float_generator(data_frame, treatment, FRET_thresh): """Will generate the float values used to scale the size of the arrows when plotting the summary heatmap Args: data_frame (dataframe): Takes dataframe containing the transition frequencies generated using the 'transition_frequency' function treatment (str): will take 'treatment' from for loop. Leave as treatment. Returns: [dataframe]: returns values used to scale arrow - """ transition_frequency_arrow = data_frame[data_frame["sample"]== treatment] normalised_number_lowtohigh = float(np.array(transition_frequency_arrow[f"< {FRET_thresh} to > {FRET_thresh}"])/1000) normalised_number_hightolow = float(np.array(transition_frequency_arrow[f"> {FRET_thresh} to < {FRET_thresh}"])/1000) normalised_number_hightohigh = float(np.array(transition_frequency_arrow[f"> {FRET_thresh} to > {FRET_thresh}"])/1000) normalised_number_lowtolow = float(np.array(transition_frequency_arrow[f"< {FRET_thresh} to < {FRET_thresh}"])/1000) arrow_list = [normalised_number_lowtohigh,normalised_number_hightolow,normalised_number_hightohigh,normalised_number_lowtolow] return arrow_list def heatmap_prep(histogram_data, treatment, FRET_thresh): """Takes the data and calculates the number of data points total (total), how much data points are below a threshold (time below) and above a threshold (time above) and will use these values to calculate what proportion of time the FRET is below or above thresh. Will then feed into the heatmap when plotting Args: histogram_data (dataframe): data used to plot the histogram - will include all the cleaned FRET and idealized FRET values (time not a factor here, just number of frames) treatment (str): only used to be fed from for loop. do not change Returns: df: contains the data required to plot the heatmap. will be as a proportion of time spent below or above threshold """ subset_data = histogram_data[histogram_data["treatment_name"]==treatment] total = len(subset_data[(subset_data["FRET"] < FRET_thresh) | (subset_data["FRET"] > FRET_thresh)]) subset_data_largerthanthresh = len(subset_data[subset_data["FRET"] > FRET_thresh]) subset_data_lessthanthresh = len(subset_data[subset_data["FRET"] < FRET_thresh]) time_below = (subset_data_lessthanthresh/total) time_above = (subset_data_largerthanthresh/total) thresh_dicts = {f"< {FRET_thresh}":[time_below], f"> {FRET_thresh}":[time_above] } thresh_dfs = pd.DataFrame(thresh_dicts) #thresh_dfs["treatment"] = treatment return thresh_dfs def mean_dwell_prep(mean_dwell_data, treatment, FRET_thresh): """calculates the mean values for each transition class and converts to float values for plotting in summary heatmap Args: mean_dwell_data (dataframe): dataframe containing mean values treatment (str): used for a for loop. do not change. Returns: [list]: contains list of float values """ subset_mean_dwell = mean_dwell_data[mean_dwell_data["sample"]== treatment] meandwell_lowtohigh = float(np.array(subset_mean_dwell[f"< {FRET_thresh} to > {FRET_thresh}"])) meandwell_hightolow = float(np.array(subset_mean_dwell[f"> {FRET_thresh} to < {FRET_thresh}"])) meandwell_hightohigh = float(np.array(subset_mean_dwell[f"> {FRET_thresh} to > {FRET_thresh}"])) meandwell_lowtolow = float(np.array(subset_mean_dwell[f"< {FRET_thresh} to < {FRET_thresh}"])) mean_list = [meandwell_lowtohigh,meandwell_hightolow,meandwell_hightohigh,meandwell_lowtolow] return mean_list def file_reader(input_folder, data_type, frame_rate = False, column_names = False): """will import data Args: input_folder (directory): where data is stored data_type (str): what data will be used to plot, needs to be either 'hist', 'TDP', 'transition_frequency' or 'other'. Returns: dataframe: dataframe with data to be used in subseqeunt codes """ if data_type == 'hist': filenames = glob.glob(input_folder + "/*.dat") dfs = [] for filename in filenames: molecule_number = filename.split('\\')[1].split('_')[0] hist_data = pd.read_table(filename, sep="\s+", header=None) hist_data['molecule number'] = molecule_number dfs.append(hist_data) ### will error if forward slash (e.g. "/s+") test = pd.concat(dfs) test_dfs = pd.DataFrame(test) return test_dfs elif data_type == 'TDP': filename = input_folder A = pd.read_table(filename, header = None, sep="\s+") A.columns = ['Molecule', 'Idealized_FRET'] return A elif data_type == 'transition_frequency': if not column_names: print('no column_names found, specify list to use') return filenames = glob.glob(input_folder + "/*.csv") dfs = [] for filename in filenames: dfs.append(
pd.read_csv(filename, header=None)
pandas.read_csv
from collections import ( abc, deque, ) from decimal import Decimal from warnings import catch_warnings import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal class TestConcatenate: def test_append_concat(self): # GH#1815 d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC") d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC") s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_concat_copy(self, using_array_manager): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for arr in result._mgr.arrays: assert arr.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": assert arr.base is df._mgr.arrays[0].base elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: if using_array_manager: # we get the same array object, which has no base assert arr is df3._mgr.arrays[0] else: assert arr.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": if using_array_manager: # this is a view on some array in either df or df4 assert any( np.shares_memory(arr, other) for other in df._mgr.arrays + df4._mgr.arrays ) else: # the block was consolidated, so we got a copy anyway assert arr.base is None elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: # this is a view on df3 assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays) def test_concat_with_group_keys(self): # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True) tm.assert_frame_equal(result, expected) def test_dtype_coerceion(self): # 12411 df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 12045 import datetime df = DataFrame( {"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]} ) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 11594 df = DataFrame({"text": ["some words"] + [None] * 9}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) def test_concat_single_with_key(self): df = DataFrame(np.random.randn(10, 4)) result = concat([df], keys=["foo"]) expected = concat([df, df], keys=["foo", "bar"]) tm.assert_frame_equal(result, expected[:10]) def test_concat_no_items_raises(self): with pytest.raises(ValueError, match="No objects to concatenate"): concat([]) def test_concat_exclude_none(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df[:5], None, None, df[5:]] result = concat(pieces) tm.assert_frame_equal(result, df) with pytest.raises(ValueError, match="All objects passed were None"): concat([None, None]) def test_concat_keys_with_none(self): # #1649 df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]]) result = concat({"a": None, "b": df0, "c": df0[:2], "d": df0[:1], "e": df0}) expected = concat({"b": df0, "c": df0[:2], "d": df0[:1], "e": df0}) tm.assert_frame_equal(result, expected) result = concat( [None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"] ) expected = concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"]) tm.assert_frame_equal(result, expected) def test_concat_bug_1719(self): ts1 = tm.makeTimeSeries() ts2 = tm.makeTimeSeries()[::2] # to join with union # these two are of different length! left = concat([ts1, ts2], join="outer", axis=1) right = concat([ts2, ts1], join="outer", axis=1) assert len(left) == len(right) def test_concat_bug_2972(self): ts0 = Series(np.zeros(5)) ts1 = Series(np.ones(5)) ts0.name = ts1.name = "same name" result = concat([ts0, ts1], axis=1) expected = DataFrame({0: ts0, 1: ts1}) expected.columns = ["same name", "same name"] tm.assert_frame_equal(result, expected) def test_concat_bug_3602(self): # GH 3602, duplicate columns df1 = DataFrame( { "firmNo": [0, 0, 0, 0], "prc": [6, 6, 6, 6], "stringvar": ["rrr", "rrr", "rrr", "rrr"], } ) df2 = DataFrame( {"C": [9, 10, 11, 12], "misc": [1, 2, 3, 4], "prc": [6, 6, 6, 6]} ) expected = DataFrame( [ [0, 6, "rrr", 9, 1, 6], [0, 6, "rrr", 10, 2, 6], [0, 6, "rrr", 11, 3, 6], [0, 6, "rrr", 12, 4, 6], ] ) expected.columns = ["firmNo", "prc", "stringvar", "C", "misc", "prc"] result = concat([df1, df2], axis=1) tm.assert_frame_equal(result, expected) def test_concat_iterables(self): # GH8645 check concat works with tuples, list, generators, and weird # stuff like deque and custom iterables df1 = DataFrame([1, 2, 3]) df2 = DataFrame([4, 5, 6]) expected = DataFrame([1, 2, 3, 4, 5, 6]) tm.assert_frame_equal(concat((df1, df2), ignore_index=True), expected) tm.assert_frame_equal(concat([df1, df2], ignore_index=True), expected) tm.assert_frame_equal( concat((df for df in (df1, df2)), ignore_index=True), expected ) tm.assert_frame_equal(concat(deque((df1, df2)), ignore_index=True), expected) class CustomIterator1: def __len__(self) -> int: return 2 def __getitem__(self, index): try: return {0: df1, 1: df2}[index] except KeyError as err: raise IndexError from err tm.assert_frame_equal(concat(CustomIterator1(), ignore_index=True), expected) class CustomIterator2(abc.Iterable): def __iter__(self): yield df1 yield df2 tm.assert_frame_equal(concat(CustomIterator2(), ignore_index=True), expected) def test_concat_order(self): # GH 17344 dfs = [DataFrame(index=range(3), columns=["a", 1, None])] dfs += [DataFrame(index=range(3), columns=[None, 1, "a"]) for i in range(100)] result = concat(dfs, sort=True).columns expected = dfs[0].columns tm.assert_index_equal(result, expected) def test_concat_different_extension_dtypes_upcasts(self): a = Series(pd.array([1, 2], dtype="Int64")) b = Series(to_decimal([1, 2])) result = concat([a, b], ignore_index=True) expected = Series([1, 2, Decimal(1), Decimal(2)], dtype=object) tm.assert_series_equal(result, expected) def test_concat_ordered_dict(self): # GH 21510 expected = concat( [Series(range(3)), Series(range(4))], keys=["First", "Another"] ) result = concat({"First": Series(range(3)), "Another": Series(range(4))}) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("pdt", [Series, DataFrame]) @pytest.mark.parametrize("dt", np.sctypes["float"]) def test_concat_no_unnecessary_upcast(dt, pdt): # GH 13247 dims = pdt(dtype=object).ndim dfs = [ pdt(np.array([1], dtype=dt, ndmin=dims)), pdt(np.array([np.nan], dtype=dt, ndmin=dims)), pdt(np.array([5], dtype=dt, ndmin=dims)), ] x = concat(dfs) assert x.values.dtype == dt @pytest.mark.parametrize("pdt", [create_series_with_explicit_dtype, DataFrame]) @pytest.mark.parametrize("dt", np.sctypes["int"]) def test_concat_will_upcast(dt, pdt): with catch_warnings(record=True): dims = pdt().ndim dfs = [ pdt(np.array([1], dtype=dt, ndmin=dims)), pdt(np.array([np.nan], ndmin=dims)), pdt(np.array([5], dtype=dt, ndmin=dims)), ] x = concat(dfs) assert x.values.dtype == "float64" def test_concat_empty_and_non_empty_frame_regression(): # GH 18178 regression test df1 = DataFrame({"foo": [1]}) df2 = DataFrame({"foo": []}) expected = DataFrame({"foo": [1.0]}) result = concat([df1, df2]) tm.assert_frame_equal(result, expected) def test_concat_sparse(): # GH 23557 a = Series(SparseArray([0, 1, 2])) expected = DataFrame(data=[[0, 0], [1, 1], [2, 2]]).astype( pd.SparseDtype(np.int64, 0) ) result = concat([a, a], axis=1) tm.assert_frame_equal(result, expected) def test_concat_dense_sparse(): # GH 30668 a = Series(pd.arrays.SparseArray([1, None]), dtype=float) b = Series([1], dtype=float) expected = Series(data=[1, None, 1], index=[0, 1, 0]).astype( pd.SparseDtype(np.float64, None) ) result = concat([a, b], axis=0) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("keys", [["e", "f", "f"], ["f", "e", "f"]]) def test_duplicate_keys(keys): # GH 33654 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) s1 = Series([7, 8, 9], name="c") s2 = Series([10, 11, 12], name="d") result = concat([df, s1, s2], axis=1, keys=keys) expected_values = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]] expected_columns = MultiIndex.from_tuples( [(keys[0], "a"), (keys[0], "b"), (keys[1], "c"), (keys[2], "d")] ) expected = DataFrame(expected_values, columns=expected_columns) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "obj", [ tm.SubclassedDataFrame({"A": np.arange(0, 10)}), tm.SubclassedSeries(np.arange(0, 10), name="A"), ], ) def test_concat_preserves_subclass(obj): # GH28330 -- preserve subclass result = concat([obj, obj]) assert isinstance(result, type(obj)) def test_concat_frame_axis0_extension_dtypes(): # preserve extension dtype (through common_dtype mechanism) df1 = DataFrame({"a": pd.array([1, 2, 3], dtype="Int64")}) df2 = DataFrame({"a": np.array([4, 5, 6])}) result = concat([df1, df2], ignore_index=True) expected = DataFrame({"a": [1, 2, 3, 4, 5, 6]}, dtype="Int64") tm.assert_frame_equal(result, expected) result = concat([df2, df1], ignore_index=True) expected = DataFrame({"a": [4, 5, 6, 1, 2, 3]}, dtype="Int64") tm.assert_frame_equal(result, expected) def test_concat_preserves_extension_int64_dtype(): # GH 24768 df_a = DataFrame({"a": [-1]}, dtype="Int64") df_b = DataFrame({"b": [1]}, dtype="Int64") result = concat([df_a, df_b], ignore_index=True) expected = DataFrame({"a": [-1, None], "b": [None, 1]}, dtype="Int64") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype1,dtype2,expected_dtype", [ ("bool", "bool", "bool"), ("boolean", "bool", "boolean"), ("bool", "boolean", "boolean"), ("boolean", "boolean", "boolean"), ], ) def test_concat_bool_types(dtype1, dtype2, expected_dtype): # GH 42800 ser1 = Series([True, False], dtype=dtype1) ser2 = Series([False, True], dtype=dtype2) result =
concat([ser1, ser2], ignore_index=True)
pandas.concat
''' Module docstring ''' import sys import os from importlib import reload import tempfile import string import pyutilib import contextlib from collections import namedtuple import numbers import numpy as np import pandas as pd import pyomo.environ as po from pyomo.core.base.objective import SimpleObjective from pyomo.opt import SolverFactory import grimsel.auxiliary.maps as maps import grimsel.auxiliary.timemap as timemap import grimsel.core.constraints as constraints import grimsel.core.variables as variables import grimsel.core.parameters as parameters import grimsel.core.sets as sets import grimsel.core.io as io # for class methods from grimsel import _get_logger logger = _get_logger(__name__) def get_random_suffix(): return ''.join(np.random.choice(list(string.ascii_lowercase), 4)) # #TEMP_DIR = 'grimsel_temp_' + get_random_suffix() #def create_tempfile(self, suffix=None, prefix=None, text=False, dirc=None): # """ # Return the absolute path of a temporary filename that is_init_pf_dicts # guaranteed to be unique. This function generates the file and returns # the filename. # """ # # logger.warn('!!!!!!!!tempfiles.TempfileManagerPlugin.create_tempfile ' # 'is monkey patched!!!!!!!!') # # if suffix is None: # suffix = '' # if prefix is None: # prefix = 'tmp' # # ans = tempfile.mkstemp(suffix=suffix, prefix=prefix, text=text, dir=dirc) # ans = list(ans) # if not os.path.isabs(ans[1]): #pragma:nocover # fname = os.path.join(dirc, ans[1]) # else: # fname = ans[1] # os.close(ans[0]) # # dirc = TEMP_DIR # # if not os.path.isdir(dirc): # os.mkdir(dirc) # # new_fname = os.path.join(dirc, 'grimsel_temp_' + get_random_suffix() + suffix) # # Delete any file having the sequential name and then # # rename # if os.path.exists(new_fname): # os.remove(new_fname) # fname = new_fname # # self._tempfiles[-1].append(fname) # return fname # #import pyutilib.component.config.tempfiles as tempfiles #tempfiles.TempfileManagerPlugin.create_tempfile = create_tempfile reload(constraints) reload(variables) reload(parameters) reload(sets) class ModelBase(po.ConcreteModel, constraints.Constraints, parameters.Parameters, variables.Variables, sets.Sets): # class attributes as defaults for presolve_fixed_capacities list_vars = [('var_yr_cap_pwr_rem', 'cap_pwr_rem'), ('var_yr_cap_pwr_new', 'cap_pwr_new')] list_constr_deact = ['set_win_sol'] # db = get_config('sql_connect')['db'] def __init__(self, **kwargs): ''' Keyword arguments: nhours -- time resolution of the model, used for profile scaling sc_warmstart -- input database schema for presolving slct_node -- limit node selection slct_encar -- limit to energy carrier selection skip_runs -- boolean; if True, solver calls are skipped, also stops the IO instance from trying to write the model variables. ''' super(ModelBase, self).__init__() # init of po.ConcreteModel defaults = {'slct_node': [], 'slct_pp_type': [], 'slct_node_connect': [], 'slct_encar': [], 'nhours': 1, 'unq_code': '', 'mps': None, 'tm_filt': False, 'verbose_solver': True, 'constraint_groups': None, 'symbolic_solver_labels': False, 'skip_runs': False, 'nthreads': False, 'keepfiles': True, 'tempdir': None} for key, val in defaults.items(): setattr(self, key, val) self.__dict__.update(kwargs) self._check_contraint_groups() logger.info('self.slct_encar=' + str(self.slct_encar)) logger.info('self.slct_pp_type=' + str(self.slct_pp_type)) logger.info('self.slct_node=' + str(self.slct_node)) logger.info('self.slct_node_connect=' + str(self.slct_node_connect)) logger.info('self.nhours=' + str(self.nhours)) logger.info('self.constraint_groups=' + str(self.constraint_groups)) self.warmstartfile = self.solutionfile = None # attributes for presolve_fixed_capacities self.list_vars = ModelBase.list_vars self.list_constr_deact = ModelBase.list_constr_deact # def _update_slct_lists(self): # '''''' # for attr, series in ((self.slct_encar, self.df_def_encar.ca), # (self.slct_encar_id, self.df_def_encar.ca_id), # (self.slct_pp_type_id, self.df_def_pp_type.pt), # (self.slct_pp_type_id, self.df_def_pp_type.pt), # (self.slct_node, self.df_def_node.nd)): # if not attr: # attr = series.tolist() def build_model(self): ''' Call the relevant model methods to get everything set up. This consists in: 1. call self.get_setlst (in Sets mixin class) to initialize the self.setlst dictionary 2. call self.define_sets (in Sets mixin class) to initialize Pyomo set objects 3. call self.define_parameters (in Parameters mixin class) 4. call self.define_variables (in Variables mixin class) 5. call self.add_all_constraints 6. call self.init_solver .. note:: io needs to have loaded all data, i.e. set the ModelBase DataFrames. ''' self.get_setlst() self.define_sets() self.define_parameters() if not self.skip_runs: self.define_variables() self.add_all_constraints() self.init_solver() @classmethod def get_constraint_groups(cls, excl=None): ''' Returns list names of methods defining constraint groups. This classmethod can also be used to define the constraint_groups parameter to initialize the ModelBase object by selecting certain groups to be excluded. Parameters ---------- excl : list exclude certain group names from the returned list Returns ------- list Names of constraint groups. These correspond to the methods in the :class:`Constraints` class without the prefix `add_` and the suffix `_rules` ''' cg_lst = [mth.replace('add_', '').replace('_rules', '') for mth in dir(cls) if mth.startswith('add_') and 'rule' in mth] if excl: cg_lst = [cg for cg in cg_lst if not cg in excl] return cg_lst def _check_contraint_groups(self): ''' Verification and completion of the constraint group selection. Verifies constraint groups if the ``constraint_groups`` argument is not None. Otherwise it gathers all accordingly named methods from the class attributes and populates the list thusly. Raises ------ ValueError If the :class:`ModelBase` instance attribute ``constraint_groups`` contains invalid entries. ''' cg_options = self.get_constraint_groups() if self.constraint_groups is None: self.constraint_groups = cg_options else: # get invalid constraint groups in input nv = [cg for cg in self.constraint_groups if not cg in cg_options] if nv: estr = ('Invalid constraint group(s): {nv}.' + '\nPossible choices are:\n{cg}' ).format(nv=', '.join(nv), cg=',\n'.join(cg_options)) raise ValueError(estr) def add_all_constraints(self): ''' Call all selected methods from the constraint mixin class. Loops through the `constraint_groups` list and calls the corresponding methods in the :class:`.Constraints` mixing class. ''' for cg in set(self.constraint_groups): logger.info('##### Calling constraint group {}'.format(cg.upper())) getattr(self, 'add_%s_rules'%cg)() def _limit_prof_to_cap(self): if len(self.chp) > 0: self.limit_prof_to_cap() def limit_prof_to_cap(self, param_mod='cap_pwr_leg'): ''' Make sure CHP profiles don't ask for more power than feasible. This operates on the parameters and is called before each model run. ''' logger.info('Limiting chp profiles to cap_pwr_leg') # get list of plants relevant for chp from corresponding set pp_chp = self.setlst['chp'] df_chpprof = io.IO.param_to_df(self.chpprof, ('sy', 'nd_id', 'ca_id')) df_erg_chp = io.IO.param_to_df(self.erg_chp, ('pp_id', 'ca_id')) df_erg_chp = df_erg_chp.loc[df_erg_chp.pp_id.isin(pp_chp)] df_erg_chp['nd_id'] = df_erg_chp.pp_id.replace(self.mps.dict_plant_2_node_id) # outer join profiles and energy to get a profile for each fuel df_chpprof_tot = pd.merge(df_erg_chp.rename(columns={'value': 'erg'}), df_chpprof.rename(columns={'value': 'prof'}), on=['nd_id', 'ca_id']) # scale profiles df_chpprof_tot['prof_sc'] = df_chpprof_tot['erg'] * df_chpprof_tot['prof'] # get capacities from parameter df_cap_pwr_leg = io.IO.param_to_df(self.cap_pwr_leg, ('pp_id', 'ca_id')) # keep only chp-related fuels df_cap_pwr_leg = df_cap_pwr_leg.loc[df_cap_pwr_leg.pp_id.isin(self.chp)] # pivot_by fl_id df_cappv = df_cap_pwr_leg.pivot_table(values='value', index=['ca_id', 'pp_id'], aggfunc=np.sum)['value'] # rename df_cappv = df_cappv.rename('cap').reset_index() # add capacity to profiles df_chpprof_tot = pd.merge(df_cappv, df_chpprof_tot, on=['ca_id', 'pp_id']) # find occurrences of capacity zero and chp erg non-zero df_slct = df_chpprof_tot[['pp_id', 'ca_id', 'cap', 'erg']].drop_duplicates().copy() df_slct = df_slct.loc[df_slct.cap.isin([0]) & -df_slct.erg.isin([0])] str_erg_cap = '' if len(df_slct > 0): for nrow, row in df_slct.iterrows(): str_erg_cap += 'pp_id=%d, ca_id=%d: cap_pwr_leg=%f, erg_chp=%f\n'%tuple(row.values) raise ValueError ('limit_prof_to_cap: one or more cap_pwr_leg are zero ' 'while erg_chp is greater 0: \n' + str_erg_cap) # find occurrences of capacity violations mask_viol = df_chpprof_tot.prof_sc > df_chpprof_tot.cap if mask_viol.sum() == 0: logger.info('ok, nothing changed.') else: # REPORTING df_profviol = df_chpprof_tot.loc[mask_viol] dict_viol = df_profviol.pivot_table(index=['pp_id', 'ca_id'], values='sy', aggfunc=len)['sy'].to_dict() for kk, vv in dict_viol.items(): logger.warning('limit_prof_to_cap: \n(pp, ca)=' '{}: {} violations'.format(kk, vv)) logger.warning('limit_prof_to_cap: Modifing model ' 'parameter ' + param_mod) if param_mod == 'chpprof': df_profviol['prof'] *= 0.999 * df_chpprof_tot.cap / df_chpprof_tot.prof_sc dict_chpprof = (df_profviol.pivot_table(index=['sy', 'nd_id', 'ca_id'], values='prof', aggfunc=min)['prof'] .to_dict()) for kk, vv in dict_chpprof.items(): self.chpprof[kk] = vv elif param_mod == 'cap_pwr_leg': # calculate capacity scaling factor df_capsc = df_profviol.pivot_table(index=['pp_id', 'ca_id'], values=['cap', 'prof_sc'], aggfunc=np.max) df_capsc['cap_sc'] = df_capsc.prof_sc / df_capsc.cap # merge scaling factor with capacity table df_cap_pwr_leg = df_cap_pwr_leg.join(df_capsc, on=df_capsc.index.names) df_cap_pwr_leg = df_cap_pwr_leg.loc[-df_cap_pwr_leg.cap_sc.isnull()] # apply scaling factor to all capacity with the relevant fuel df_cap_pwr_leg['cap'] *= df_cap_pwr_leg.cap_sc * 1.0001 # dictionary dict_cap_pwr_leg = df_cap_pwr_leg.set_index(['pp_id', 'ca_id'])['cap'] dict_cap_pwr_leg = dict_cap_pwr_leg.to_dict() for kk, vv in dict_cap_pwr_leg.items(): self.cap_pwr_leg[kk] = vv def _init_pf_dicts(self): ''' Initializes dicts mapping the profile ids to other model ids. This results in dictionaries which are assigned as :class:`ModelBase` instance attributes: * ``dict_pricesll_pf``: (fl_id, nd_id, ca_id) |rarr| (pricesll_pf_id) * ``dict_pricebuy_pf``: (fl_id, nd_id, ca_id) |rarr| (pricebuy_pf_id) * ``dict_dmnd_pf``: (nd_id, ca_id) |rarr| (dmnd_pf_id) * ``dict_supply_pf``: (pp_id, ca_id) |rarr| (supply_pf_id) Purpose --------- The resulting dictionaries are used for filtering the profile tables in the :module:`io` module and to access the profile parameters in the model :class:`Constraints`. ''' list_pf = [(self.df_fuel_node_encar, ['fl_id', 'nd_id', 'ca_id'], 'pricebuy'), (self.df_fuel_node_encar, ['fl_id', 'nd_id', 'ca_id'], 'pricesll'), (self.df_node_encar, ['nd_id', 'ca_id'], 'dmnd'), (self.df_plant_encar, ['pp_id', 'ca_id'], 'supply')] df, ind, name = list_pf[-1] for df, ind, name in list_pf: col = '%s_pf_id'%name if df is not None and col in df.columns: ind_df = df.loc[~df[col].isna()].set_index(ind)[col] dct = ind_df.to_dict() else: dct = {} setattr(self, 'dict_%s_pf'%name, dct) def translate_pf_id(self, df): ''' Adds model id columns for the profile ids in the input DataFrame. Searches vars(self) for the pf_dict corresponding to the pf_ids in the input DataFrame. Then uses this dictionary to add additional columns to the output table. Parameters ---------- df (DataFrame): DataFrame with pf_id column. Returns ------- :obj:`pandas.DataFrame` Input DataFrame with added model ids corresponding to the pf_id. Raises ------ IndexError: If multiple pf dictionaries correspond to the pf_id values in the input DataFrame. IndexError: If no pf dictionary can be found for the pf_id values. ''' # identify corresponding pf dict list_pf_id = set(df.pf_id.unique().tolist()) pf_arrs = {name_dict: list_pf_id .issubset(set(getattr(self, name_dict).values())) for name_dict in vars(self) if name_dict.startswith('dict_') and name_dict.endswith('_pf')} if sum(pf_arrs.values()) > 1: raise ValueError('Ambiguous pf array in translate_pf_id ' 'or df empty.') elif sum(pf_arrs.values()) == 0: raise ValueError('No pf array found for table with columns ' '%s'%df.columns.tolist() + '. Maybe you are ' 'trying to translate a table with pf_ids which ' 'are not included in the original model.') else: pf_dict = {val: key for key, val in pf_arrs.items()}[True] new_cols = {'dict_pricesll_pf': ['fl_id', 'nd_id', 'ca_id'], 'dict_pricebuy_pf': ['fl_id', 'nd_id', 'ca_id'], 'dict_price_pf': ['fl_id', 'nd_id', 'ca_id'], 'dict_dmnd_pf': ['nd_id', 'ca_id'], 'dict_supply_pf': ['pp_id', 'ca_id']}[pf_dict] pf_dict = getattr(self, pf_dict) df_new = pd.Series(pf_dict).reset_index() df_new.columns = new_cols + ['pf_id'] df_new = pd.merge(df_new, df, on='pf_id') return df_new def _get_nhours_nodes(self, nhours): ''' Generates the nhours dictionary ``nhours``. Returns ------- nhours_dict : dict ``{node_1: (original time res, target time res), node_2: (original time res, target time res), ...}`` ''' logger.debug('Generating nhours dictionary for ' 'nhours={} with type {}'.format(nhours, type(nhours))) if isinstance(nhours, dict): nhours_dict = {} for nd_id in self.slct_node_id: nd = self.mps.dict_nd[nd_id] if nd in nhours: if isinstance(nhours[nd], tuple): # all there nhours_dict[nd_id] = nhours[nd] elif isinstance(nhours[nd], numbers.Number): # assuming original time resolution 1 hour nhours_dict[nd_id] = (1, nhours[nd]) else: # assuming default nhours_dict[nd_id] = (1, 1) elif isinstance(nhours, numbers.Number): nhours_dict = {nd: (1, nhours) for nd in self.slct_node_id} elif isinstance(nhours, tuple): nhours_dict = {nd: nhours for nd in self.slct_node_id} else: raise ValueError(f'Unknown structure of `nhours`: {nhours}.\n' f'Must be one of\n' f'* number: constant target time resolution,' f' assuming 1 hour input data time resolution\n' f'* tuple (input_t_res, target_t_res): applied' f' to all nodes\n' '* dict {nd: (input, target)}: explicit ' 'specification') return nhours_dict def init_maps(self): ''' Uses the input DataFrames to initialize a :class:`grimsel.auxiliary.maps.Maps` instance. ''' dct = {var.replace('df_def_', ''): getattr(self, var) for var in vars(self) if 'df_def_' in var} self.mps = maps.Maps.from_dicts(dct) def _init_time_map_connect(self): df_ndcnn = self.df_node_connect[['nd_id', 'nd_2_id', 'ca_id']].drop_duplicates() df_ndcnn['freq'] = df_ndcnn.nd_id.apply(lambda x: {key: frnh[0] for key, frnh in self._dict_nd_tm.items()}[x]) df_ndcnn['nhours'] = df_ndcnn.nd_id.apply(lambda x: {key: frnh[1] for key, frnh in self._dict_nd_tm.items()}[x]) df_ndcnn['freq_2'] = df_ndcnn.nd_2_id.apply(lambda x: {key: frnh[0] for key, frnh in self._dict_nd_tm.items()}[x]) df_ndcnn['nhours_2'] = df_ndcnn.nd_2_id.apply(lambda x: {key: frnh[1] for key, frnh in self._dict_nd_tm.items()}[x]) df_ndcnn['tm_id'] = df_ndcnn.nd_id.replace(self.dict_nd_tm_id) df_ndcnn['tm_2_id'] = df_ndcnn.nd_2_id.replace(self.dict_nd_tm_id) # make dict_sy_ndnd_min is_min_node = pd.concat([df_ndcnn, df_ndcnn.assign(nd_id = df_ndcnn.nd_2_id, nd_2_id = df_ndcnn.nd_id, nhours = df_ndcnn.nhours_2, nhours_2 = df_ndcnn.nhours)]) self.is_min_node = ( is_min_node.assign(is_min=is_min_node.nhours <= is_min_node.nhours_2) .set_index(['nd_id', 'nd_2_id']) .is_min).to_dict() def get_map_sy(x): tm = timemap.TimeMap(tm_filt=self.tm_filt, minimum=True, freq=x[['freq', 'freq_2']].min(axis=1).values[0], nhours=x.nhours.iloc[0]) tm_2 = timemap.TimeMap(tm_filt=self.tm_filt, minimum=True, freq=x[['freq', 'freq_2']].min(axis=1).values[0], nhours=x.nhours_2.iloc[0]) return pd.merge(tm.df_hoy_soy, tm_2.df_hoy_soy.rename(columns={'sy': 'sy2'}), on='hy')[['sy', 'sy2']] self.dict_ndnd_tm_id = df_ndcnn.set_index(['nd_id', 'nd_2_id']).copy() self.dict_ndnd_tm_id['tm_min_id'] = self.dict_ndnd_tm_id.apply(lambda x: x.tm_id if x.nhours <= x.nhours_2 else x.tm_2_id, axis=1) self.dict_ndnd_tm_id = self.dict_ndnd_tm_id.tm_min_id.to_dict() self.dict_ndnd_tm_id = {**self.dict_ndnd_tm_id, **{(key[1], key[0]): val for key, val in self.dict_ndnd_tm_id.items()}} sysymap = df_ndcnn[[c for c in df_ndcnn.columns if not 'nd' in c]] sysymap = df_ndcnn.drop_duplicates() sysymap = df_ndcnn.groupby(['tm_id', 'tm_2_id']).apply(get_map_sy).reset_index() sysymap = sysymap.drop('level_2', axis=1) self.df_sysy_ndcnn = pd.merge( df_ndcnn[['nd_id', 'nd_2_id', 'ca_id', 'tm_id', 'tm_2_id']], sysymap, on=['tm_id', 'tm_2_id'], how='outer') self.dict_sysy = {**self.df_sysy_ndcnn.groupby(['nd_id', 'nd_2_id', 'sy']).sy2.apply(lambda x: set((*x,))).to_dict(), **self.df_sysy_ndcnn.groupby(['nd_2_id', 'nd_id', 'sy2']).sy.apply(lambda x: set((*x,))).to_dict()} self.df_symin_ndcnn = self.df_sysy_ndcnn.join(df_ndcnn.set_index(['nd_id', 'nd_2_id'])[['nhours', 'nhours_2']], on=['nd_id', 'nd_2_id']) idx = ['nd_id', 'nd_2_id'] cols = ['sy', 'sy2', 'tm_2_id', 'ca_id', 'tm_id', 'nhours', 'nhours_2'] list_df = [] for nd_id, nd_2_id in set(self.df_symin_ndcnn.set_index(idx).index.values): df = self.df_symin_ndcnn.set_index(idx).loc[[(nd_id, nd_2_id)], cols] nd_smaller = df.nhours.iloc[0] <= df.nhours_2.iloc[0] list_df.append(df.assign(symin = df.sy if nd_smaller else df.sy2, tm_min_id = df.tm_id if nd_smaller else df.tm_2_id)) cols = ['tm_min_id', 'symin', 'nd_id', 'nd_2_id', 'ca_id'] self.df_symin_ndcnn = pd.concat(list_df).reset_index()[cols] def _init_time_map_input(self): ''' If a *tm_soy* table is provided in the input data, time slots are assumed to be exogenously defined. ''' # assert number of time slots in all profiles equals time slots in # tm_soy input table nsy = len(self.df_tm_soy.sy) assert(len(self.df_profdmnd.hy.unique()) == nsy), \ 'Inconsistent time slots tm_soy/profsupply' if getattr(self, 'profsupply', None) is not None: assert(len(self.df_profsupply.hy.unique()) == nsy), \ 'Inconsistent time slots tm_soy/profsupply' if getattr(self, 'profchp', None) is not None: assert(len(self.df_profchp.hy.unique()) == nsy), \ 'Inconsistent time slots tm_soy/profchp' if getattr(self, 'profchp', None) is not None: assert(len(self.df_profinflow.hy.unique()) == nsy), \ 'Inconsistent time slots tm_soy/profinflow' assert(len(self.df_tm_soy.weight.unique()) == 1), \ 'Multiple weights in input df_tm_soy. Can\'t infer time resolution.' # nhours follows from weight in df_tm_soy self.nhours = self.df_tm_soy.weight.iloc[0] self._dict_nd_tm = self._get_nhours_nodes(self.nhours) # generate unique time map ids dict_tm = {ntm: frnh for ntm, frnh in enumerate(set(self._dict_nd_tm.values()))} self.dict_nd_tm_id = {nd: {val: key for key, val in dict_tm.items()}[tm] for nd, tm in self._dict_nd_tm.items()} self._tm_objs = {} self.df_def_node['tm_id'] = (self.df_def_node.reset_index().nd_id .replace(self.dict_nd_tm_id).values) unique_tm_id = self.df_def_node['tm_id'].iloc[0] self.df_hoy_soy = self.df_tm_soy[['sy']].assign( hy=lambda x: x.sy, tm_id=unique_tm_id) self.df_tm_soy = self.df_tm_soy.assign(tm_id=unique_tm_id, mt_id=None) self.df_tm_soy_full = None self.dict_soy_week = None self.dict_soy_month = None self.dict_week_soy = None self.dict_month_soy = None self.df_sy_min_all = None # dict pp_id -> tm self.dict_pp_tm_id = ( self.df_def_plant.assign(tm_id=self.df_def_plant.nd_id .replace(self.dict_nd_tm_id)) .set_index('pp_id').tm_id.to_dict()) # dict tm_id -> sy unq_list = lambda x: list(set(x)) pv_kws = dict(index='tm_id', values='sy', aggfunc=unq_list) self.dict_tm_sy = self.df_hoy_soy.pivot_table(**pv_kws).sy.to_dict() def _init_time_map(self): ''' Create a TimeMap instance and obtain derived attributes. Generated attributes: * ``tm`` (``TimeMap``): TimeMap object * ``df_tm_soy`` (``DataFrame``): timemap table * ``df_tm_soy_full`` (``DataFrame``): full timemap table ''' self._dict_nd_tm = self._get_nhours_nodes(self.nhours) # generate unique time map ids dict_tm = {ntm: frnh for ntm, frnh in enumerate(set(self._dict_nd_tm.values()))} self.dict_nd_tm_id = {nd: {val: key for key, val in dict_tm.items()}[tm] for nd, tm in self._dict_nd_tm.items()} self._tm_objs = {tm_id: timemap.TimeMap(tm_filt=self.tm_filt, nhours=frnh[1], freq=frnh[0]) for tm_id, frnh in dict_tm.items()} self.df_def_node['tm_id'] = (self.df_def_node.reset_index().nd_id .replace(self.dict_nd_tm_id).values) cols_red = ['wk_id', 'mt_id', 'sy', 'weight', 'wk_weight'] list_tm_soy = [tm.df_time_red[cols_red].assign(tm_id=tm_id) for tm_id, tm in self._tm_objs.items()] self.df_tm_soy = pd.concat(list_tm_soy, axis=0) list_tm_soy_full = [tm.df_time_red.assign(tm_id=tm_id) for tm_id, tm in self._tm_objs.items()] self.df_tm_soy_full = pd.concat(list_tm_soy_full, axis=0, sort=True) list_hoy_soy = [tm.df_hoy_soy.assign(tm_id=tm_id) for tm_id, tm in self._tm_objs.items()] self.df_hoy_soy =
pd.concat(list_hoy_soy, axis=0)
pandas.concat
""" Movie Recommendation Skill. - movies like <movie-name> """ import numpy as np import pandas as pd from nltk import edit_distance # Local Imports. from backend.config import cosine_sim_scores_path, movie_data_path def find_nearest_title(user_input_title): """ Checks for nearest movie title in dataset Parameters ---------- user_input_title: str. Returns ------- nearest_title """ movies = pd.read_csv(movie_data_path) movie_titles = movies["title"] distances = {} for titles in movie_titles: distances[titles] = edit_distance(user_input_title, titles) sorted_distances = sorted(distances.items(), key=lambda x: x[1], reverse=False) nearest_title = sorted_distances[0][0] return nearest_title def get_movie_plot(user_input_tokens): """ Returns movie's summary. Parameters ---------- user_input_tokens: list. Returns ------- summary. """ # Process movie title from user. user_input_title = user_input_tokens[1:] user_input_title = ' '.join(user_input_title) # Find nearest title. movie_title = find_nearest_title(user_input_title) movie_data = pd.read_csv(movie_data_path) # Find Plot. plot = movie_data[movie_data["title"] == movie_title]["summary"].values[0] year_of_release = movie_data[movie_data["title"] == movie_title]["year_of_release"].values[0] genre = movie_data[movie_data["title"] == movie_title]["genres"].values[0] # Format Response. movie_plot = f"{movie_title.capitalize()} ({year_of_release}, {genre}): {plot}" return movie_plot def get_recommendations(user_input_tokens): """ Computes Top 5 movie recommendation. Parameters ---------- user_input_tokens: tokenized input. Returns ------- 5 similar movies. """ # Process movie title from user input. user_input_title = user_input_tokens[2:] user_input_title = ' '.join(user_input_title) movie_title = find_nearest_title(user_input_title) # Read files from db. movie_data =
pd.read_csv(movie_data_path)
pandas.read_csv
import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score import joblib import os class Logistic_Regression(): df_bid_requests=pd.read_csv("D:/lecture sources/Win2021/information system/BCB_help/data/ipinyou/1458/dummified_train_test.txt", sep="\t") df_bid_test=pd.read_csv("D:/lecture sources/Win2021/information system/BCB_help/data/ipinyou/1458/dummified_test_test.txt", sep="\t") bf_help=pd.read_csv("D:/lecture sources/Win2021/information system/BCB_help/data/ipinyou/1458/train.log.txt", sep="\t") # #print(df_bid_test) #training df_bid_requests['click']=bf_help['click'] df_bid_test=pd.DataFrame(df_bid_test.astype(np.uint8)) df_bid_requests=pd.DataFrame(df_bid_requests.astype(np.uint8)) X = df_bid_requests.drop(['click'], axis=1) Y = df_bid_requests.click #df_bid_test = df_bid_test[np.intersect1d(X.columns, df_bid_test.columns)] X=X[np.intersect1d(X.columns, df_bid_test.columns)] # ########### Train model with Logitstic Regression # Logistic Regression: Model fitting # print(X.dtypes) # logreg = LogisticRegression(class_weight='balanced', max_iter=1000) # logreg.fit(X, Y) #save models # joblib_filename = "logreg_1.sav" # joblib.dump(logreg, joblib_filename) # # ## Check auccuracy score # print(logreg.score(X,Y)) # prob = logreg.predict_proba(X)[:, 1] # print(roc_auc_score(Y, prob)) logreg = joblib.load("logreg.sav") # # # ## Logistic Regression: Predict CTR ctr_pre_train=logreg.predict(X) ctr_pre_train_proba=logreg.predict_proba(X) df_ctr_train = pd.DataFrame(ctr_pre_train_proba, columns=['ctr_prediction_pro','ctr_prediction']) df_ctr_train['click'] =ctr_pre_train df_ctr_train.to_csv('D:/lecture sources/Win2021/information system/BCB_help/data/ipinyou/1458/ctr_pred_train.txt', index=False, sep='\t', header=True) ctr_pred = logreg.predict(df_bid_test[X.columns]) ctr_pre_proba = logreg.predict_proba(df_bid_test[X.columns]) df_ctr_test =
pd.DataFrame(ctr_pre_proba, columns=['ctr_prediction_pro_0', 'ctr_prediction_pro_1'])
pandas.DataFrame
import numpy as np import matplotlib.pyplot as plt import pandas as pd import os import sys import multiprocess as mp import itertools import pickle import time # import gpflow # import tensorflow as tf import GPy # from IPython.display import display from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn import preprocessing from tqdm import tqdm import perform_kernel_regression_fair_learing from perform_kernel_regression_fair_learing import FairLearning from perform_kernel_regression_fair_learing import fl_wrapper from perform_kernel_regression_fair_learing import FairLearning_process from perform_kernel_regression_fair_learing import centre_mat from perform_kernel_regression_fair_learing import cross_v from hyppo.independence import Hsic # for median_heuristic from numpy.random import permutation from scipy.spatial.distance import squareform, pdist, cdist import time # %% X = pd.read_csv('X.csv') y = pd.read_csv('y.csv') X = X.values.reshape(X.shape)[:, 1:] y = y.values.reshape(y.shape)[:, 1:] # %% x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3) #%% def save_csv(array_name, filename): pd.DataFrame(array_name).to_csv(filename + '.csv') save_csv(x_train, 'x_train') save_csv(x_test, 'x_test') save_csv(y_train, 'y_train') save_csv(y_test, 'y_test') #%% x_train = pd.read_csv('x_train.csv').values[:, 1:] x_test =
pd.read_csv('x_test.csv')
pandas.read_csv
""" A warehouse for constant values required to initilize the PUDL Database. This constants module stores and organizes a bunch of constant values which are used throughout PUDL to populate static lists within the data packages or for data cleaning purposes. """ import pandas as pd import sqlalchemy as sa ###################################################################### # Constants used within the init.py module. ###################################################################### prime_movers = [ 'steam_turbine', 'gas_turbine', 'hydro', 'internal_combustion', 'solar_pv', 'wind_turbine' ] """list: A list of the types of prime movers""" rto_iso = { 'CAISO': 'California ISO', 'ERCOT': 'Electric Reliability Council of Texas', 'MISO': 'Midcontinent ISO', 'ISO-NE': 'ISO New England', 'NYISO': 'New York ISO', 'PJM': 'PJM Interconnection', 'SPP': 'Southwest Power Pool' } """dict: A dictionary containing ISO/RTO abbreviations (keys) and names (values) """ us_states = { 'AK': 'Alaska', 'AL': 'Alabama', 'AR': 'Arkansas', 'AS': 'American Samoa', 'AZ': 'Arizona', 'CA': 'California', 'CO': 'Colorado', 'CT': 'Connecticut', 'DC': 'District of Columbia', 'DE': 'Delaware', 'FL': 'Florida', 'GA': 'Georgia', 'GU': 'Guam', 'HI': 'Hawaii', 'IA': 'Iowa', 'ID': 'Idaho', 'IL': 'Illinois', 'IN': 'Indiana', 'KS': 'Kansas', 'KY': 'Kentucky', 'LA': 'Louisiana', 'MA': 'Massachusetts', 'MD': 'Maryland', 'ME': 'Maine', 'MI': 'Michigan', 'MN': 'Minnesota', 'MO': 'Missouri', 'MP': 'Northern Mariana Islands', 'MS': 'Mississippi', 'MT': 'Montana', 'NA': 'National', 'NC': 'North Carolina', 'ND': 'North Dakota', 'NE': 'Nebraska', 'NH': 'New Hampshire', 'NJ': 'New Jersey', 'NM': 'New Mexico', 'NV': 'Nevada', 'NY': 'New York', 'OH': 'Ohio', 'OK': 'Oklahoma', 'OR': 'Oregon', 'PA': 'Pennsylvania', 'PR': 'Puerto Rico', 'RI': 'Rhode Island', 'SC': 'South Carolina', 'SD': 'South Dakota', 'TN': 'Tennessee', 'TX': 'Texas', 'UT': 'Utah', 'VA': 'Virginia', 'VI': 'Virgin Islands', 'VT': 'Vermont', 'WA': 'Washington', 'WI': 'Wisconsin', 'WV': 'West Virginia', 'WY': 'Wyoming' } """dict: A dictionary containing US state abbreviations (keys) and names (values) """ canada_prov_terr = { 'AB': 'Alberta', 'BC': 'British Columbia', 'CN': 'Canada', 'MB': 'Manitoba', 'NB': 'New Brunswick', 'NS': 'Nova Scotia', 'NL': 'Newfoundland and Labrador', 'NT': 'Northwest Territories', 'NU': 'Nunavut', 'ON': 'Ontario', 'PE': 'Prince Edwards Island', 'QC': 'Quebec', 'SK': 'Saskatchewan', 'YT': 'Yukon Territory', } """dict: A dictionary containing Canadian provinces' and territories' abbreviations (keys) and names (values) """ cems_states = {k: v for k, v in us_states.items() if v not in {'Alaska', 'American Samoa', 'Guam', 'Hawaii', 'Northern Mariana Islands', 'National', 'Puerto Rico', 'Virgin Islands'} } """dict: A dictionary containing US state abbreviations (keys) and names (values) that are present in the CEMS dataset """ # This is imperfect for states that have split timezones. See: # https://en.wikipedia.org/wiki/List_of_time_offsets_by_U.S._state_and_territory # For states that are split, I went with where there seem to be more people # List of timezones in pytz.common_timezones # Canada: https://en.wikipedia.org/wiki/Time_in_Canada#IANA_time_zone_database state_tz_approx = { "AK": "US/Alaska", # Alaska; Not in CEMS "AL": "US/Central", # Alabama "AR": "US/Central", # Arkansas "AS": "Pacific/Pago_Pago", # American Samoa; Not in CEMS "AZ": "US/Arizona", # Arizona "CA": "US/Pacific", # California "CO": "US/Mountain", # Colorado "CT": "US/Eastern", # Connecticut "DC": "US/Eastern", # District of Columbia "DE": "US/Eastern", # Delaware "FL": "US/Eastern", # Florida (split state) "GA": "US/Eastern", # Georgia "GU": "Pacific/Guam", # Guam; Not in CEMS "HI": "US/Hawaii", # Hawaii; Not in CEMS "IA": "US/Central", # Iowa "ID": "US/Mountain", # Idaho (split state) "IL": "US/Central", # Illinois "IN": "US/Eastern", # Indiana (split state) "KS": "US/Central", # Kansas (split state) "KY": "US/Eastern", # Kentucky (split state) "LA": "US/Central", # Louisiana "MA": "US/Eastern", # Massachusetts "MD": "US/Eastern", # Maryland "ME": "US/Eastern", # Maine "MI": "America/Detroit", # Michigan (split state) "MN": "US/Central", # Minnesota "MO": "US/Central", # Missouri "MP": "Pacific/Saipan", # Northern Mariana Islands; Not in CEMS "MS": "US/Central", # Mississippi "MT": "US/Mountain", # Montana "NC": "US/Eastern", # North Carolina "ND": "US/Central", # North Dakota (split state) "NE": "US/Central", # Nebraska (split state) "NH": "US/Eastern", # New Hampshire "NJ": "US/Eastern", # New Jersey "NM": "US/Mountain", # New Mexico "NV": "US/Pacific", # Nevada "NY": "US/Eastern", # New York "OH": "US/Eastern", # Ohio "OK": "US/Central", # Oklahoma "OR": "US/Pacific", # Oregon (split state) "PA": "US/Eastern", # Pennsylvania "PR": "America/Puerto_Rico", # Puerto Rico; Not in CEMS "RI": "US/Eastern", # Rhode Island "SC": "US/Eastern", # South Carolina "SD": "US/Central", # South Dakota (split state) "TN": "US/Central", # Tennessee "TX": "US/Central", # Texas "UT": "US/Mountain", # Utah "VA": "US/Eastern", # Virginia "VI": "America/Puerto_Rico", # Virgin Islands; Not in CEMS "VT": "US/Eastern", # Vermont "WA": "US/Pacific", # Washington "WI": "US/Central", # Wisconsin "WV": "US/Eastern", # West Virginia "WY": "US/Mountain", # Wyoming # Canada (none of these are in CEMS) "AB": "America/Edmonton", # Alberta "BC": "America/Vancouver", # British Columbia (split province) "MB": "America/Winnipeg", # Manitoba "NB": "America/Moncton", # New Brunswick "NS": "America/Halifax", # Nova Scotia "NL": "America/St_Johns", # Newfoundland and Labrador (split province) "NT": "America/Yellowknife", # Northwest Territories (split province) "NU": "America/Iqaluit", # Nunavut (split province) "ON": "America/Toronto", # Ontario (split province) "PE": "America/Halifax", # Prince Edwards Island "QC": "America/Montreal", # Quebec (split province) "SK": "America/Regina", # Saskatchewan (split province) "YT": "America/Whitehorse", # Yukon Territory } """dict: A dictionary containing US and Canadian state/territory abbreviations (keys) and timezones (values) """ ferc1_power_purchase_type = { 'RQ': 'requirement', 'LF': 'long_firm', 'IF': 'intermediate_firm', 'SF': 'short_firm', 'LU': 'long_unit', 'IU': 'intermediate_unit', 'EX': 'electricity_exchange', 'OS': 'other_service', 'AD': 'adjustment' } """dict: A dictionary of abbreviations (keys) and types (values) for power purchase agreements from FERC Form 1. """ # Dictionary mapping DBF files (w/o .DBF file extension) to DB table names ferc1_dbf2tbl = { 'F1_1': 'f1_respondent_id', 'F1_2': 'f1_acb_epda', 'F1_3': 'f1_accumdepr_prvsn', 'F1_4': 'f1_accumdfrrdtaxcr', 'F1_5': 'f1_adit_190_detail', 'F1_6': 'f1_adit_190_notes', 'F1_7': 'f1_adit_amrt_prop', 'F1_8': 'f1_adit_other', 'F1_9': 'f1_adit_other_prop', 'F1_10': 'f1_allowances', 'F1_11': 'f1_bal_sheet_cr', 'F1_12': 'f1_capital_stock', 'F1_13': 'f1_cash_flow', 'F1_14': 'f1_cmmn_utlty_p_e', 'F1_15': 'f1_comp_balance_db', 'F1_16': 'f1_construction', 'F1_17': 'f1_control_respdnt', 'F1_18': 'f1_co_directors', 'F1_19': 'f1_cptl_stk_expns', 'F1_20': 'f1_csscslc_pcsircs', 'F1_21': 'f1_dacs_epda', 'F1_22': 'f1_dscnt_cptl_stk', 'F1_23': 'f1_edcfu_epda', 'F1_24': 'f1_elctrc_erg_acct', 'F1_25': 'f1_elctrc_oper_rev', 'F1_26': 'f1_elc_oper_rev_nb', 'F1_27': 'f1_elc_op_mnt_expn', 'F1_28': 'f1_electric', 'F1_29': 'f1_envrnmntl_expns', 'F1_30': 'f1_envrnmntl_fclty', 'F1_31': 'f1_fuel', 'F1_32': 'f1_general_info', 'F1_33': 'f1_gnrt_plant', 'F1_34': 'f1_important_chg', 'F1_35': 'f1_incm_stmnt_2', 'F1_36': 'f1_income_stmnt', 'F1_37': 'f1_miscgen_expnelc', 'F1_38': 'f1_misc_dfrrd_dr', 'F1_39': 'f1_mthly_peak_otpt', 'F1_40': 'f1_mtrl_spply', 'F1_41': 'f1_nbr_elc_deptemp', 'F1_42': 'f1_nonutility_prop', 'F1_43': 'f1_note_fin_stmnt', # 37% of DB 'F1_44': 'f1_nuclear_fuel', 'F1_45': 'f1_officers_co', 'F1_46': 'f1_othr_dfrrd_cr', 'F1_47': 'f1_othr_pd_in_cptl', 'F1_48': 'f1_othr_reg_assets', 'F1_49': 'f1_othr_reg_liab', 'F1_50': 'f1_overhead', 'F1_51': 'f1_pccidica', 'F1_52': 'f1_plant_in_srvce', 'F1_53': 'f1_pumped_storage', 'F1_54': 'f1_purchased_pwr', 'F1_55': 'f1_reconrpt_netinc', 'F1_56': 'f1_reg_comm_expn', 'F1_57': 'f1_respdnt_control', 'F1_58': 'f1_retained_erng', 'F1_59': 'f1_r_d_demo_actvty', 'F1_60': 'f1_sales_by_sched', 'F1_61': 'f1_sale_for_resale', 'F1_62': 'f1_sbsdry_totals', 'F1_63': 'f1_schedules_list', 'F1_64': 'f1_security_holder', 'F1_65': 'f1_slry_wg_dstrbtn', 'F1_66': 'f1_substations', 'F1_67': 'f1_taxacc_ppchrgyr', 'F1_68': 'f1_unrcvrd_cost', 'F1_69': 'f1_utltyplnt_smmry', 'F1_70': 'f1_work', 'F1_71': 'f1_xmssn_adds', 'F1_72': 'f1_xmssn_elc_bothr', 'F1_73': 'f1_xmssn_elc_fothr', 'F1_74': 'f1_xmssn_line', 'F1_75': 'f1_xtraordnry_loss', 'F1_76': 'f1_codes_val', 'F1_77': 'f1_sched_lit_tbl', 'F1_78': 'f1_audit_log', 'F1_79': 'f1_col_lit_tbl', 'F1_80': 'f1_load_file_names', 'F1_81': 'f1_privilege', 'F1_82': 'f1_sys_error_log', 'F1_83': 'f1_unique_num_val', 'F1_84': 'f1_row_lit_tbl', 'F1_85': 'f1_footnote_data', 'F1_86': 'f1_hydro', 'F1_87': 'f1_footnote_tbl', # 52% of DB 'F1_88': 'f1_ident_attsttn', 'F1_89': 'f1_steam', 'F1_90': 'f1_leased', 'F1_91': 'f1_sbsdry_detail', 'F1_92': 'f1_plant', 'F1_93': 'f1_long_term_debt', 'F1_106_2009': 'f1_106_2009', 'F1_106A_2009': 'f1_106a_2009', 'F1_106B_2009': 'f1_106b_2009', 'F1_208_ELC_DEP': 'f1_208_elc_dep', 'F1_231_TRN_STDYCST': 'f1_231_trn_stdycst', 'F1_324_ELC_EXPNS': 'f1_324_elc_expns', 'F1_325_ELC_CUST': 'f1_325_elc_cust', 'F1_331_TRANSISO': 'f1_331_transiso', 'F1_338_DEP_DEPL': 'f1_338_dep_depl', 'F1_397_ISORTO_STL': 'f1_397_isorto_stl', 'F1_398_ANCL_PS': 'f1_398_ancl_ps', 'F1_399_MTH_PEAK': 'f1_399_mth_peak', 'F1_400_SYS_PEAK': 'f1_400_sys_peak', 'F1_400A_ISO_PEAK': 'f1_400a_iso_peak', 'F1_429_TRANS_AFF': 'f1_429_trans_aff', 'F1_ALLOWANCES_NOX': 'f1_allowances_nox', 'F1_CMPINC_HEDGE_A': 'f1_cmpinc_hedge_a', 'F1_CMPINC_HEDGE': 'f1_cmpinc_hedge', 'F1_EMAIL': 'f1_email', 'F1_RG_TRN_SRV_REV': 'f1_rg_trn_srv_rev', 'F1_S0_CHECKS': 'f1_s0_checks', 'F1_S0_FILING_LOG': 'f1_s0_filing_log', 'F1_SECURITY': 'f1_security' # 'F1_PINS': 'f1_pins', # private data, not publicized. # 'F1_FREEZE': 'f1_freeze', # private data, not publicized } """dict: A dictionary mapping FERC Form 1 DBF files(w / o .DBF file extension) (keys) to database table names (values). """ ferc1_huge_tables = { 'f1_footnote_tbl', 'f1_footnote_data', 'f1_note_fin_stmnt', } """set: A set containing large FERC Form 1 tables. """ # Invert the map above so we can go either way as needed ferc1_tbl2dbf = {v: k for k, v in ferc1_dbf2tbl.items()} """dict: A dictionary mapping database table names (keys) to FERC Form 1 DBF files(w / o .DBF file extension) (values). """ # This dictionary maps the strings which are used to denote field types in the # DBF objects to the corresponding generic SQLAlchemy Column types: # These definitions come from a combination of the dbfread example program # dbf2sqlite and this DBF file format documentation page: # http://www.dbase.com/KnowledgeBase/int/db7_file_fmt.htm # Un-mapped types left as 'XXX' which should obviously make an error... dbf_typemap = { 'C': sa.String, 'D': sa.Date, 'F': sa.Float, 'I': sa.Integer, 'L': sa.Boolean, 'M': sa.Text, # 10 digit .DBT block number, stored as a string... 'N': sa.Float, 'T': sa.DateTime, '0': sa.Integer, # based on dbf2sqlite mapping 'B': 'XXX', # .DBT block number, binary string '@': 'XXX', # Timestamp... Date = Julian Day, Time is in milliseconds? '+': 'XXX', # Autoincrement (e.g. for IDs) 'O': 'XXX', # Double, 8 bytes 'G': 'XXX', # OLE 10 digit/byte number of a .DBT block, stored as string } """dict: A dictionary mapping field types in the DBF objects (keys) to the corresponding generic SQLAlchemy Column types. """ # This is the set of tables which have been successfully integrated into PUDL: ferc1_pudl_tables = ( 'fuel_ferc1', # Plant-level data, linked to plants_steam_ferc1 'plants_steam_ferc1', # Plant-level data 'plants_small_ferc1', # Plant-level data 'plants_hydro_ferc1', # Plant-level data 'plants_pumped_storage_ferc1', # Plant-level data 'purchased_power_ferc1', # Inter-utility electricity transactions 'plant_in_service_ferc1', # Row-mapped plant accounting data. # 'accumulated_depreciation_ferc1' # Requires row-mapping to be useful. ) """tuple: A tuple containing the FERC Form 1 tables that can be successfully integrated into PUDL. """ table_map_ferc1_pudl = { 'fuel_ferc1': 'f1_fuel', 'plants_steam_ferc1': 'f1_steam', 'plants_small_ferc1': 'f1_gnrt_plant', 'plants_hydro_ferc1': 'f1_hydro', 'plants_pumped_storage_ferc1': 'f1_pumped_storage', 'plant_in_service_ferc1': 'f1_plant_in_srvce', 'purchased_power_ferc1': 'f1_purchased_pwr', # 'accumulated_depreciation_ferc1': 'f1_accumdepr_prvsn' } """dict: A dictionary mapping PUDL table names (keys) to the corresponding FERC Form 1 DBF table names. """ # This is the list of EIA923 tables that can be successfully pulled into PUDL eia923_pudl_tables = ('generation_fuel_eia923', 'boiler_fuel_eia923', 'generation_eia923', 'coalmine_eia923', 'fuel_receipts_costs_eia923') """tuple: A tuple containing the EIA923 tables that can be successfully integrated into PUDL. """ epaipm_pudl_tables = ( 'transmission_single_epaipm', 'transmission_joint_epaipm', 'load_curves_epaipm', 'plant_region_map_epaipm', ) """tuple: A tuple containing the EPA IPM tables that can be successfully integrated into PUDL. """ # List of entity tables entity_tables = ['utilities_entity_eia', 'plants_entity_eia', 'generators_entity_eia', 'boilers_entity_eia', 'regions_entity_epaipm', ] """list: A list of PUDL entity tables. """ xlsx_maps_pkg = 'pudl.package_data.meta.xlsx_maps' """string: The location of the xlsx maps within the PUDL package data.""" ############################################################################## # EIA 923 Spreadsheet Metadata ############################################################################## ############################################################################## # EIA 860 Spreadsheet Metadata ############################################################################## # This is the list of EIA860 tables that can be successfully pulled into PUDL eia860_pudl_tables = ( 'boiler_generator_assn_eia860', 'utilities_eia860', 'plants_eia860', 'generators_eia860', 'ownership_eia860' ) """tuple: A tuple enumerating EIA 860 tables for which PUDL's ETL works.""" # The set of FERC Form 1 tables that have the same composite primary keys: [ # respondent_id, report_year, report_prd, row_number, spplmnt_num ]. # TODO: THIS ONLY PERTAINS TO 2015 AND MAY NEED TO BE ADJUSTED BY YEAR... ferc1_data_tables = ( 'f1_acb_epda', 'f1_accumdepr_prvsn', 'f1_accumdfrrdtaxcr', 'f1_adit_190_detail', 'f1_adit_190_notes', 'f1_adit_amrt_prop', 'f1_adit_other', 'f1_adit_other_prop', 'f1_allowances', 'f1_bal_sheet_cr', 'f1_capital_stock', 'f1_cash_flow', 'f1_cmmn_utlty_p_e', 'f1_comp_balance_db', 'f1_construction', 'f1_control_respdnt', 'f1_co_directors', 'f1_cptl_stk_expns', 'f1_csscslc_pcsircs', 'f1_dacs_epda', 'f1_dscnt_cptl_stk', 'f1_edcfu_epda', 'f1_elctrc_erg_acct', 'f1_elctrc_oper_rev', 'f1_elc_oper_rev_nb', 'f1_elc_op_mnt_expn', 'f1_electric', 'f1_envrnmntl_expns', 'f1_envrnmntl_fclty', 'f1_fuel', 'f1_general_info', 'f1_gnrt_plant', 'f1_important_chg', 'f1_incm_stmnt_2', 'f1_income_stmnt', 'f1_miscgen_expnelc', 'f1_misc_dfrrd_dr', 'f1_mthly_peak_otpt', 'f1_mtrl_spply', 'f1_nbr_elc_deptemp', 'f1_nonutility_prop', 'f1_note_fin_stmnt', 'f1_nuclear_fuel', 'f1_officers_co', 'f1_othr_dfrrd_cr', 'f1_othr_pd_in_cptl', 'f1_othr_reg_assets', 'f1_othr_reg_liab', 'f1_overhead', 'f1_pccidica', 'f1_plant_in_srvce', 'f1_pumped_storage', 'f1_purchased_pwr', 'f1_reconrpt_netinc', 'f1_reg_comm_expn', 'f1_respdnt_control', 'f1_retained_erng', 'f1_r_d_demo_actvty', 'f1_sales_by_sched', 'f1_sale_for_resale', 'f1_sbsdry_totals', 'f1_schedules_list', 'f1_security_holder', 'f1_slry_wg_dstrbtn', 'f1_substations', 'f1_taxacc_ppchrgyr', 'f1_unrcvrd_cost', 'f1_utltyplnt_smmry', 'f1_work', 'f1_xmssn_adds', 'f1_xmssn_elc_bothr', 'f1_xmssn_elc_fothr', 'f1_xmssn_line', 'f1_xtraordnry_loss', 'f1_hydro', 'f1_steam', 'f1_leased', 'f1_sbsdry_detail', 'f1_plant', 'f1_long_term_debt', 'f1_106_2009', 'f1_106a_2009', 'f1_106b_2009', 'f1_208_elc_dep', 'f1_231_trn_stdycst', 'f1_324_elc_expns', 'f1_325_elc_cust', 'f1_331_transiso', 'f1_338_dep_depl', 'f1_397_isorto_stl', 'f1_398_ancl_ps', 'f1_399_mth_peak', 'f1_400_sys_peak', 'f1_400a_iso_peak', 'f1_429_trans_aff', 'f1_allowances_nox', 'f1_cmpinc_hedge_a', 'f1_cmpinc_hedge', 'f1_rg_trn_srv_rev') """tuple: A tuple containing the FERC Form 1 tables that have the same composite primary keys: [respondent_id, report_year, report_prd, row_number, spplmnt_num]. """ # Line numbers, and corresponding FERC account number # from FERC Form 1 pages 204-207, Electric Plant in Service. # Descriptions from: https://www.law.cornell.edu/cfr/text/18/part-101 ferc_electric_plant_accounts = pd.DataFrame.from_records([ # 1. Intangible Plant (2, '301', 'Intangible: Organization'), (3, '302', 'Intangible: Franchises and consents'), (4, '303', 'Intangible: Miscellaneous intangible plant'), (5, 'subtotal_intangible', 'Subtotal: Intangible Plant'), # 2. Production Plant # A. steam production (8, '310', 'Steam production: Land and land rights'), (9, '311', 'Steam production: Structures and improvements'), (10, '312', 'Steam production: Boiler plant equipment'), (11, '313', 'Steam production: Engines and engine-driven generators'), (12, '314', 'Steam production: Turbogenerator units'), (13, '315', 'Steam production: Accessory electric equipment'), (14, '316', 'Steam production: Miscellaneous power plant equipment'), (15, '317', 'Steam production: Asset retirement costs for steam production\ plant'), (16, 'subtotal_steam_production', 'Subtotal: Steam Production Plant'), # B. nuclear production (18, '320', 'Nuclear production: Land and land rights (Major only)'), (19, '321', 'Nuclear production: Structures and improvements (Major\ only)'), (20, '322', 'Nuclear production: Reactor plant equipment (Major only)'), (21, '323', 'Nuclear production: Turbogenerator units (Major only)'), (22, '324', 'Nuclear production: Accessory electric equipment (Major\ only)'), (23, '325', 'Nuclear production: Miscellaneous power plant equipment\ (Major only)'), (24, '326', 'Nuclear production: Asset retirement costs for nuclear\ production plant (Major only)'), (25, 'subtotal_nuclear_produciton', 'Subtotal: Nuclear Production Plant'), # C. hydraulic production (27, '330', 'Hydraulic production: Land and land rights'), (28, '331', 'Hydraulic production: Structures and improvements'), (29, '332', 'Hydraulic production: Reservoirs, dams, and waterways'), (30, '333', 'Hydraulic production: Water wheels, turbines and generators'), (31, '334', 'Hydraulic production: Accessory electric equipment'), (32, '335', 'Hydraulic production: Miscellaneous power plant equipment'), (33, '336', 'Hydraulic production: Roads, railroads and bridges'), (34, '337', 'Hydraulic production: Asset retirement costs for hydraulic\ production plant'), (35, 'subtotal_hydraulic_production', 'Subtotal: Hydraulic Production\ Plant'), # D. other production (37, '340', 'Other production: Land and land rights'), (38, '341', 'Other production: Structures and improvements'), (39, '342', 'Other production: Fuel holders, producers, and accessories'), (40, '343', 'Other production: Prime movers'), (41, '344', 'Other production: Generators'), (42, '345', 'Other production: Accessory electric equipment'), (43, '346', 'Other production: Miscellaneous power plant equipment'), (44, '347', 'Other production: Asset retirement costs for other production\ plant'), (None, '348', 'Other production: Energy Storage Equipment'), (45, 'subtotal_other_production', 'Subtotal: Other Production Plant'), (46, 'subtotal_production', 'Subtotal: Production Plant'), # 3. Transmission Plant, (48, '350', 'Transmission: Land and land rights'), (None, '351', 'Transmission: Energy Storage Equipment'), (49, '352', 'Transmission: Structures and improvements'), (50, '353', 'Transmission: Station equipment'), (51, '354', 'Transmission: Towers and fixtures'), (52, '355', 'Transmission: Poles and fixtures'), (53, '356', 'Transmission: Overhead conductors and devices'), (54, '357', 'Transmission: Underground conduit'), (55, '358', 'Transmission: Underground conductors and devices'), (56, '359', 'Transmission: Roads and trails'), (57, '359.1', 'Transmission: Asset retirement costs for transmission\ plant'), (58, 'subtotal_transmission', 'Subtotal: Transmission Plant'), # 4. Distribution Plant (60, '360', 'Distribution: Land and land rights'), (61, '361', 'Distribution: Structures and improvements'), (62, '362', 'Distribution: Station equipment'), (63, '363', 'Distribution: Storage battery equipment'), (64, '364', 'Distribution: Poles, towers and fixtures'), (65, '365', 'Distribution: Overhead conductors and devices'), (66, '366', 'Distribution: Underground conduit'), (67, '367', 'Distribution: Underground conductors and devices'), (68, '368', 'Distribution: Line transformers'), (69, '369', 'Distribution: Services'), (70, '370', 'Distribution: Meters'), (71, '371', 'Distribution: Installations on customers\' premises'), (72, '372', 'Distribution: Leased property on customers\' premises'), (73, '373', 'Distribution: Street lighting and signal systems'), (74, '374', 'Distribution: Asset retirement costs for distribution plant'), (75, 'subtotal_distribution', 'Subtotal: Distribution Plant'), # 5. Regional Transmission and Market Operation Plant (77, '380', 'Regional transmission: Land and land rights'), (78, '381', 'Regional transmission: Structures and improvements'), (79, '382', 'Regional transmission: Computer hardware'), (80, '383', 'Regional transmission: Computer software'), (81, '384', 'Regional transmission: Communication Equipment'), (82, '385', 'Regional transmission: Miscellaneous Regional Transmission\ and Market Operation Plant'), (83, '386', 'Regional transmission: Asset Retirement Costs for Regional\ Transmission and Market Operation\ Plant'), (84, 'subtotal_regional_transmission', 'Subtotal: Transmission and Market\ Operation Plant'), (None, '387', 'Regional transmission: [Reserved]'), # 6. General Plant (86, '389', 'General: Land and land rights'), (87, '390', 'General: Structures and improvements'), (88, '391', 'General: Office furniture and equipment'), (89, '392', 'General: Transportation equipment'), (90, '393', 'General: Stores equipment'), (91, '394', 'General: Tools, shop and garage equipment'), (92, '395', 'General: Laboratory equipment'), (93, '396', 'General: Power operated equipment'), (94, '397', 'General: Communication equipment'), (95, '398', 'General: Miscellaneous equipment'), (96, 'subtotal_general', 'Subtotal: General Plant'), (97, '399', 'General: Other tangible property'), (98, '399.1', 'General: Asset retirement costs for general plant'), (99, 'total_general', 'TOTAL General Plant'), (100, '101_and_106', 'Electric plant in service (Major only)'), (101, '102_purchased', 'Electric plant purchased'), (102, '102_sold', 'Electric plant sold'), (103, '103', 'Experimental plant unclassified'), (104, 'total_electric_plant', 'TOTAL Electric Plant in Service')], columns=['row_number', 'ferc_account_id', 'ferc_account_description']) """list: A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form 1 pages 204 - 207, Electric Plant in Service. """ # Line numbers, and corresponding FERC account number # from FERC Form 1 page 219, ACCUMULATED PROVISION FOR DEPRECIATION # OF ELECTRIC UTILITY PLANT (Account 108). ferc_accumulated_depreciation = pd.DataFrame.from_records([ # Section A. Balances and Changes During Year (1, 'balance_beginning_of_year', 'Balance Beginning of Year'), (3, 'depreciation_expense', '(403) Depreciation Expense'), (4, 'depreciation_expense_asset_retirement', \ '(403.1) Depreciation Expense for Asset Retirement Costs'), (5, 'expense_electric_plant_leased_to_others', \ '(413) Exp. of Elec. Plt. Leas. to Others'), (6, 'transportation_expenses_clearing',\ 'Transportation Expenses-Clearing'), (7, 'other_clearing_accounts', 'Other Clearing Accounts'), (8, 'other_accounts_specified',\ 'Other Accounts (Specify, details in footnote):'), # blank: might also be other charges like line 17. (9, 'other_charges', 'Other Charges:'), (10, 'total_depreciation_provision_for_year',\ 'TOTAL Deprec. Prov for Year (Enter Total of lines 3 thru 9)'), (11, 'net_charges_for_plant_retired', 'Net Charges for Plant Retired:'), (12, 'book_cost_of_plant_retired', 'Book Cost of Plant Retired'), (13, 'cost_of_removal', 'Cost of Removal'), (14, 'salvage_credit', 'Salvage (Credit)'), (15, 'total_net_charges_for_plant_retired',\ 'TOTAL Net Chrgs. for Plant Ret. (Enter Total of lines 12 thru 14)'), (16, 'other_debit_or_credit_items',\ 'Other Debit or Cr. Items (Describe, details in footnote):'), # blank: can be "Other Charges", e.g. in 2012 for PSCo. (17, 'other_charges_2', 'Other Charges 2'), (18, 'book_cost_or_asset_retirement_costs_retired',\ 'Book Cost or Asset Retirement Costs Retired'), (19, 'balance_end_of_year', \ 'Balance End of Year (Enter Totals of lines 1, 10, 15, 16, and 18)'), # Section B. Balances at End of Year According to Functional Classification (20, 'steam_production_end_of_year', 'Steam Production'), (21, 'nuclear_production_end_of_year', 'Nuclear Production'), (22, 'hydraulic_production_end_of_year',\ 'Hydraulic Production-Conventional'), (23, 'pumped_storage_end_of_year', 'Hydraulic Production-Pumped Storage'), (24, 'other_production', 'Other Production'), (25, 'transmission', 'Transmission'), (26, 'distribution', 'Distribution'), (27, 'regional_transmission_and_market_operation', 'Regional Transmission and Market Operation'), (28, 'general', 'General'), (29, 'total', 'TOTAL (Enter Total of lines 20 thru 28)')], columns=['row_number', 'line_id', 'ferc_account_description']) """list: A list of tuples containing row numbers, FERC account IDs, and FERC account descriptions from FERC Form 1 page 219, Accumulated Provision for Depreciation of electric utility plant(Account 108). """ ###################################################################### # Constants from EIA From 923 used within init.py module ###################################################################### # From Page 7 of EIA Form 923, Census Region a US state is located in census_region = { 'NEW': 'New England', 'MAT': 'Middle Atlantic', 'SAT': 'South Atlantic', 'ESC': 'East South Central', 'WSC': 'West South Central', 'ENC': 'East North Central', 'WNC': 'West North Central', 'MTN': 'Mountain', 'PACC': 'Pacific Contiguous (OR, WA, CA)', 'PACN': 'Pacific Non-Contiguous (AK, HI)', } """dict: A dictionary mapping Census Region abbreviations (keys) to Census Region names (values). """ # From Page 7 of EIA Form923 # Static list of NERC (North American Electric Reliability Corporation) # regions, used for where plant is located nerc_region = { 'NPCC': 'Northeast Power Coordinating Council', 'ASCC': 'Alaska Systems Coordinating Council', 'HICC': 'Hawaiian Islands Coordinating Council', 'MRO': 'Midwest Reliability Organization', 'SERC': 'SERC Reliability Corporation', 'RFC': 'Reliability First Corporation', 'SPP': 'Southwest Power Pool', 'TRE': 'Texas Regional Entity', 'FRCC': 'Florida Reliability Coordinating Council', 'WECC': 'Western Electricity Coordinating Council' } """dict: A dictionary mapping NERC Region abbreviations (keys) to NERC Region names (values). """ # From Page 7 of EIA Form 923 EIA’s internal consolidated NAICS sectors. # For internal purposes, EIA consolidates NAICS categories into seven groups. sector_eia = { # traditional regulated electric utilities '1': 'Electric Utility', # Independent power producers which are not cogenerators '2': 'NAICS-22 Non-Cogen', # Independent power producers which are cogenerators, but whose # primary business purpose is the sale of electricity to the public '3': 'NAICS-22 Cogen', # Commercial non-cogeneration facilities that produce electric power, # are connected to the gird, and can sell power to the public '4': 'Commercial NAICS Non-Cogen', # Commercial cogeneration facilities that produce electric power, are # connected to the grid, and can sell power to the public '5': 'Commercial NAICS Cogen', # Industrial non-cogeneration facilities that produce electric power, are # connected to the gird, and can sell power to the public '6': 'Industrial NAICS Non-Cogen', # Industrial cogeneration facilities that produce electric power, are # connected to the gird, and can sell power to the public '7': 'Industrial NAICS Cogen' } """dict: A dictionary mapping EIA numeric codes (keys) to EIA’s internal consolidated NAICS sectors (values). """ # EIA 923: EIA Type of prime mover: prime_movers_eia923 = { 'BA': 'Energy Storage, Battery', 'BT': 'Turbines Used in a Binary Cycle. Including those used for geothermal applications', 'CA': 'Combined-Cycle -- Steam Part', 'CC': 'Combined-Cycle, Total Unit', 'CE': 'Energy Storage, Compressed Air', 'CP': 'Energy Storage, Concentrated Solar Power', 'CS': 'Combined-Cycle Single-Shaft Combustion Turbine and Steam Turbine share of single', 'CT': 'Combined-Cycle Combustion Turbine Part', 'ES': 'Energy Storage, Other (Specify on Schedule 9, Comments)', 'FC': 'Fuel Cell', 'FW': 'Energy Storage, Flywheel', 'GT': 'Combustion (Gas) Turbine. Including Jet Engine design', 'HA': 'Hydrokinetic, Axial Flow Turbine', 'HB': 'Hydrokinetic, Wave Buoy', 'HK': 'Hydrokinetic, Other', 'HY': 'Hydraulic Turbine. Including turbines associated with delivery of water by pipeline.', 'IC': 'Internal Combustion (diesel, piston, reciprocating) Engine', 'PS': 'Energy Storage, Reversible Hydraulic Turbine (Pumped Storage)', 'OT': 'Other', 'ST': 'Steam Turbine. Including Nuclear, Geothermal, and Solar Steam (does not include Combined Cycle).', 'PV': 'Photovoltaic', 'WT': 'Wind Turbine, Onshore', 'WS': 'Wind Turbine, Offshore' } """dict: A dictionary mapping EIA 923 prime mover codes (keys) and prime mover names / descriptions (values). """ # EIA 923: The fuel code reported to EIA.Two or three letter alphanumeric: fuel_type_eia923 = { 'AB': 'Agricultural By-Products', 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BIT': 'Bituminous Coal', 'BLQ': 'Black Liquor', 'CBL': 'Coal, Blended', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'GEO': 'Geothermal', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LFG': 'Landfill Gas', 'LIG': 'Lignite Coal', 'MSB': 'Biogenic Municipal Solid Waste', 'MSN': 'Non-biogenic Municipal Solid Waste', 'MSW': 'Municipal Solid Waste', 'MWH': 'Electricity used for energy storage', 'NG': 'Natural Gas', 'NUC': 'Nuclear. Including Uranium, Plutonium, and Thorium.', 'OBG': 'Other Biomass Gas. Including digester gas, methane, and other biomass gases.', 'OBL': 'Other Biomass Liquids', 'OBS': 'Other Biomass Solids', 'OG': 'Other Gas', 'OTH': 'Other Fuel', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propane', 'PUR': 'Purchased Steam', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SGC': 'Coal-Derived Synthesis Gas', 'SGP': 'Synthesis Gas from Petroleum Coke', 'SLW': 'Sludge Waste', 'SUB': 'Subbituminous Coal', 'SUN': 'Solar', 'TDF': 'Tire-derived Fuels', 'WAT': 'Water at a Conventional Hydroelectric Turbine and water used in Wave Buoy Hydrokinetic Technology, current Hydrokinetic Technology, Tidal Hydrokinetic Technology, and Pumping Energy for Reversible (Pumped Storage) Hydroelectric Turbines.', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WDL': 'Wood Waste Liquids, excluding Black Liquor. Including red liquor, sludge wood, spent sulfite liquor, and other wood-based liquids.', 'WDS': 'Wood/Wood Waste Solids. Including paper pellets, railroad ties, utility polies, wood chips, bark, and other wood waste solids.', 'WH': 'Waste Heat not directly attributed to a fuel source', 'WND': 'Wind', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.' } """dict: A dictionary mapping EIA 923 fuel type codes (keys) and fuel type names / descriptions (values). """ # Fuel type strings for EIA 923 generator fuel table fuel_type_eia923_gen_fuel_coal_strings = [ 'ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', ] """list: The list of EIA 923 Generation Fuel strings associated with coal fuel. """ fuel_type_eia923_gen_fuel_oil_strings = [ 'dfo', 'rfo', 'wo', 'jf', 'ker', ] """list: The list of EIA 923 Generation Fuel strings associated with oil fuel. """ fuel_type_eia923_gen_fuel_gas_strings = [ 'bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp', ] """list: The list of EIA 923 Generation Fuel strings associated with gas fuel. """ fuel_type_eia923_gen_fuel_solar_strings = ['sun', ] """list: The list of EIA 923 Generation Fuel strings associated with solar power. """ fuel_type_eia923_gen_fuel_wind_strings = ['wnd', ] """list: The list of EIA 923 Generation Fuel strings associated with wind power. """ fuel_type_eia923_gen_fuel_hydro_strings = ['wat', ] """list: The list of EIA 923 Generation Fuel strings associated with hydro power. """ fuel_type_eia923_gen_fuel_nuclear_strings = ['nuc', ] """list: The list of EIA 923 Generation Fuel strings associated with nuclear power. """ fuel_type_eia923_gen_fuel_waste_strings = [ 'ab', 'blq', 'msb', 'msn', 'msw', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds'] """list: The list of EIA 923 Generation Fuel strings associated with solid waste fuel. """ fuel_type_eia923_gen_fuel_other_strings = ['geo', 'mwh', 'oth', 'pur', 'wh', ] """list: The list of EIA 923 Generation Fuel strings associated with geothermal power. """ fuel_type_eia923_gen_fuel_simple_map = { 'coal': fuel_type_eia923_gen_fuel_coal_strings, 'oil': fuel_type_eia923_gen_fuel_oil_strings, 'gas': fuel_type_eia923_gen_fuel_gas_strings, 'solar': fuel_type_eia923_gen_fuel_solar_strings, 'wind': fuel_type_eia923_gen_fuel_wind_strings, 'hydro': fuel_type_eia923_gen_fuel_hydro_strings, 'nuclear': fuel_type_eia923_gen_fuel_nuclear_strings, 'waste': fuel_type_eia923_gen_fuel_waste_strings, 'other': fuel_type_eia923_gen_fuel_other_strings, } """dict: A dictionary mapping EIA 923 Generation Fuel fuel types (keys) to lists of strings associated with that fuel type (values). """ # Fuel type strings for EIA 923 boiler fuel table fuel_type_eia923_boiler_fuel_coal_strings = [ 'ant', 'bit', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type coal. """ fuel_type_eia923_boiler_fuel_oil_strings = ['dfo', 'rfo', 'wo', 'jf', 'ker', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type oil. """ fuel_type_eia923_boiler_fuel_gas_strings = [ 'bfg', 'lfg', 'ng', 'og', 'obg', 'pg', 'sgc', 'sgp', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type gas. """ fuel_type_eia923_boiler_fuel_waste_strings = [ 'ab', 'blq', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type waste. """ fuel_type_eia923_boiler_fuel_other_strings = ['oth', 'pur', 'wh', ] """list: A list of strings from EIA 923 Boiler Fuel associated with fuel type other. """ fuel_type_eia923_boiler_fuel_simple_map = { 'coal': fuel_type_eia923_boiler_fuel_coal_strings, 'oil': fuel_type_eia923_boiler_fuel_oil_strings, 'gas': fuel_type_eia923_boiler_fuel_gas_strings, 'waste': fuel_type_eia923_boiler_fuel_waste_strings, 'other': fuel_type_eia923_boiler_fuel_other_strings, } """dict: A dictionary mapping EIA 923 Boiler Fuel fuel types (keys) to lists of strings associated with that fuel type (values). """ # PUDL consolidation of EIA923 AER fuel type strings into same categories as # 'energy_source_eia923' plus additional renewable and nuclear categories. # These classifications are not currently used, as the EIA fuel type and energy # source designations provide more detailed information. aer_coal_strings = ['col', 'woc', 'pc'] """list: A list of EIA 923 AER fuel type strings associated with coal. """ aer_gas_strings = ['mlg', 'ng', 'oog'] """list: A list of EIA 923 AER fuel type strings associated with gas. """ aer_oil_strings = ['dfo', 'rfo', 'woo'] """list: A list of EIA 923 AER fuel type strings associated with oil. """ aer_solar_strings = ['sun'] """list: A list of EIA 923 AER fuel type strings associated with solar power. """ aer_wind_strings = ['wnd'] """list: A list of EIA 923 AER fuel type strings associated with wind power. """ aer_hydro_strings = ['hps', 'hyc'] """list: A list of EIA 923 AER fuel type strings associated with hydro power. """ aer_nuclear_strings = ['nuc'] """list: A list of EIA 923 AER fuel type strings associated with nuclear power. """ aer_waste_strings = ['www'] """list: A list of EIA 923 AER fuel type strings associated with waste. """ aer_other_strings = ['geo', 'orw', 'oth'] """list: A list of EIA 923 AER fuel type strings associated with other fuel. """ aer_fuel_type_strings = { 'coal': aer_coal_strings, 'gas': aer_gas_strings, 'oil': aer_oil_strings, 'solar': aer_solar_strings, 'wind': aer_wind_strings, 'hydro': aer_hydro_strings, 'nuclear': aer_nuclear_strings, 'waste': aer_waste_strings, 'other': aer_other_strings } """dict: A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values). """ # EIA 923: A partial aggregation of the reported fuel type codes into # larger categories used by EIA in, for example, # the Annual Energy Review (AER).Two or three letter alphanumeric. # See the Fuel Code table (Table 5), below: fuel_type_aer_eia923 = { 'SUN': 'Solar PV and thermal', 'COL': 'Coal', 'DFO': 'Distillate Petroleum', 'GEO': 'Geothermal', 'HPS': 'Hydroelectric Pumped Storage', 'HYC': 'Hydroelectric Conventional', 'MLG': 'Biogenic Municipal Solid Waste and Landfill Gas', 'NG': 'Natural Gas', 'NUC': 'Nuclear', 'OOG': 'Other Gases', 'ORW': 'Other Renewables', 'OTH': 'Other (including nonbiogenic MSW)', 'PC': 'Petroleum Coke', 'RFO': 'Residual Petroleum', 'WND': 'Wind', 'WOC': 'Waste Coal', 'WOO': 'Waste Oil', 'WWW': 'Wood and Wood Waste' } """dict: A dictionary mapping EIA 923 AER fuel types (keys) to lists of strings associated with that fuel type (values). """ fuel_type_eia860_coal_strings = ['ant', 'bit', 'cbl', 'lig', 'pc', 'rc', 'sc', 'sub', 'wc', 'coal', 'petroleum coke', 'col', 'woc'] """list: A list of strings from EIA 860 associated with fuel type coal. """ fuel_type_eia860_oil_strings = ['dfo', 'jf', 'ker', 'rfo', 'wo', 'woo', 'petroleum'] """list: A list of strings from EIA 860 associated with fuel type oil. """ fuel_type_eia860_gas_strings = ['bfg', 'lfg', 'mlg', 'ng', 'obg', 'og', 'pg', 'sgc', 'sgp', 'natural gas', 'other gas', 'oog', 'sg'] """list: A list of strings from EIA 860 associated with fuel type gas. """ fuel_type_eia860_solar_strings = ['sun', 'solar'] """list: A list of strings from EIA 860 associated with solar power. """ fuel_type_eia860_wind_strings = ['wnd', 'wind', 'wt'] """list: A list of strings from EIA 860 associated with wind power. """ fuel_type_eia860_hydro_strings = ['wat', 'hyc', 'hps', 'hydro'] """list: A list of strings from EIA 860 associated with hydro power. """ fuel_type_eia860_nuclear_strings = ['nuc', 'nuclear'] """list: A list of strings from EIA 860 associated with nuclear power. """ fuel_type_eia860_waste_strings = ['ab', 'blq', 'bm', 'msb', 'msn', 'obl', 'obs', 'slw', 'tdf', 'wdl', 'wds', 'biomass', 'msw', 'www'] """list: A list of strings from EIA 860 associated with fuel type waste. """ fuel_type_eia860_other_strings = ['mwh', 'oth', 'pur', 'wh', 'geo', 'none', 'orw', 'other'] """list: A list of strings from EIA 860 associated with fuel type other. """ fuel_type_eia860_simple_map = { 'coal': fuel_type_eia860_coal_strings, 'oil': fuel_type_eia860_oil_strings, 'gas': fuel_type_eia860_gas_strings, 'solar': fuel_type_eia860_solar_strings, 'wind': fuel_type_eia860_wind_strings, 'hydro': fuel_type_eia860_hydro_strings, 'nuclear': fuel_type_eia860_nuclear_strings, 'waste': fuel_type_eia860_waste_strings, 'other': fuel_type_eia860_other_strings, } """dict: A dictionary mapping EIA 860 fuel types (keys) to lists of strings associated with that fuel type (values). """ # EIA 923/860: Lumping of energy source categories. energy_source_eia_simple_map = { 'coal': ['ANT', 'BIT', 'LIG', 'PC', 'SUB', 'WC', 'RC'], 'oil': ['DFO', 'JF', 'KER', 'RFO', 'WO'], 'gas': ['BFG', 'LFG', 'NG', 'OBG', 'OG', 'PG', 'SG', 'SGC', 'SGP'], 'solar': ['SUN'], 'wind': ['WND'], 'hydro': ['WAT'], 'nuclear': ['NUC'], 'waste': ['AB', 'BLQ', 'MSW', 'OBL', 'OBS', 'SLW', 'TDF', 'WDL', 'WDS'], 'other': ['GEO', 'MWH', 'OTH', 'PUR', 'WH'] } """dict: A dictionary mapping EIA fuel types (keys) to fuel codes (values). """ fuel_group_eia923_simple_map = { 'coal': ['coal', 'petroleum coke'], 'oil': ['petroleum'], 'gas': ['natural gas', 'other gas'] } """dict: A dictionary mapping EIA 923 simple fuel types("oil", "coal", "gas") (keys) to fuel types (values). """ # EIA 923: The type of physical units fuel consumption is reported in. # All consumption is reported in either short tons for solids, # thousands of cubic feet for gases, and barrels for liquids. fuel_units_eia923 = { 'mcf': 'Thousands of cubic feet (for gases)', 'short_tons': 'Short tons (for solids)', 'barrels': 'Barrels (for liquids)' } """dict: A dictionary mapping EIA 923 fuel units (keys) to fuel unit descriptions (values). """ # EIA 923: Designates the purchase type under which receipts occurred # in the reporting month. One or two character alphanumeric: contract_type_eia923 = { 'C': 'Contract - Fuel received under a purchase order or contract with a term of one year or longer. Contracts with a shorter term are considered spot purchases ', 'NC': 'New Contract - Fuel received under a purchase order or contract with duration of one year or longer, under which deliveries were first made during the reporting month', 'N': 'New Contract - see NC code. This abbreviation existed only in 2008 before being replaced by NC.', 'S': 'Spot Purchase', 'T': 'Tolling Agreement – Fuel received under a tolling agreement (bartering arrangement of fuel for generation)' } """dict: A dictionary mapping EIA 923 contract codes (keys) to contract descriptions (values) for each month in the Fuel Receipts and Costs table. """ # EIA 923: The fuel code associated with the fuel receipt. # Defined on Page 7 of EIA Form 923 # Two or three character alphanumeric: energy_source_eia923 = { 'ANT': 'Anthracite Coal', 'BFG': 'Blast Furnace Gas', 'BM': 'Biomass', 'BIT': 'Bituminous Coal', 'DFO': 'Distillate Fuel Oil. Including diesel, No. 1, No. 2, and No. 4 fuel oils.', 'JF': 'Jet Fuel', 'KER': 'Kerosene', 'LIG': 'Lignite Coal', 'NG': 'Natural Gas', 'PC': 'Petroleum Coke', 'PG': 'Gaseous Propone', 'OG': 'Other Gas', 'RC': 'Refined Coal', 'RFO': 'Residual Fuel Oil. Including No. 5 & 6 fuel oils and bunker C fuel oil.', 'SG': 'Synthesis Gas from Petroleum Coke', 'SGP': 'Petroleum Coke Derived Synthesis Gas', 'SC': 'Coal-based Synfuel. Including briquettes, pellets, or extrusions, which are formed by binding materials or processes that recycle materials.', 'SUB': 'Subbituminous Coal', 'WC': 'Waste/Other Coal. Including anthracite culm, bituminous gob, fine coal, lignite waste, waste coal.', 'WO': 'Waste/Other Oil. Including crude oil, liquid butane, liquid propane, naphtha, oil waste, re-refined moto oil, sludge oil, tar oil, or other petroleum-based liquid wastes.', } """dict: A dictionary mapping fuel codes (keys) to fuel descriptions (values) for each fuel receipt from the EIA 923 Fuel Receipts and Costs table. """ # EIA 923 Fuel Group, from Page 7 EIA Form 923 # Groups fossil fuel energy sources into fuel groups that are located in the # Electric Power Monthly: Coal, Natural Gas, Petroleum, Petroleum Coke. fuel_group_eia923 = ( 'coal', 'natural_gas', 'petroleum', 'petroleum_coke', 'other_gas' ) """tuple: A tuple containing EIA 923 fuel groups. """ # EIA 923: Type of Coal Mine as defined on Page 7 of EIA Form 923 coalmine_type_eia923 = { 'P': 'Preparation Plant', 'S': 'Surface', 'U': 'Underground', 'US': 'Both an underground and surface mine with most coal extracted from underground', 'SU': 'Both an underground and surface mine with most coal extracted from surface', } """dict: A dictionary mapping EIA 923 coal mine type codes (keys) to descriptions (values). """ # EIA 923: State abbreviation related to coal mine location. # Country abbreviations are also used in this category, but they are # non-standard because of collisions with US state names. Instead of using # the provided non-standard names, we convert to ISO-3166-1 three letter # country codes https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3 coalmine_country_eia923 = { 'AU': 'AUS', # Australia 'CL': 'COL', # Colombia 'CN': 'CAN', # Canada 'IS': 'IDN', # Indonesia 'PL': 'POL', # Poland 'RS': 'RUS', # Russia 'UK': 'GBR', # United Kingdom of Great Britain 'VZ': 'VEN', # Venezuela 'OT': 'other_country', 'IM': 'unknown' } """dict: A dictionary mapping coal mine country codes (keys) to ISO-3166-1 three letter country codes (values). """ # EIA 923: Mode for the longest / second longest distance. transport_modes_eia923 = { 'RR': 'Rail: Shipments of fuel moved to consumers by rail \ (private or public/commercial). Included is coal hauled to or \ away from a railroad siding by truck if the truck did not use public\ roads.', 'RV': 'River: Shipments of fuel moved to consumers via river by barge. \ Not included are shipments to Great Lakes coal loading docks, \ tidewater piers, or coastal ports.', 'GL': 'Great Lakes: Shipments of coal moved to consumers via \ the Great Lakes. These shipments are moved via the Great Lakes \ coal loading docks, which are identified by name and location as \ follows: Conneaut Coal Storage & Transfer, Conneaut, Ohio; \ NS Coal Dock (Ashtabula Coal Dock), Ashtabula, Ohio; \ Sandusky Coal Pier, Sandusky, Ohio; Toledo Docks, Toledo, Ohio; \ KCBX Terminals Inc., Chicago, Illinois; \ Superior Midwest Energy Terminal, Superior, Wisconsin', 'TP': 'Tidewater Piers and Coastal Ports: Shipments of coal moved to \ Tidewater Piers and Coastal Ports for further shipments to consumers \ via coastal water or ocean. The Tidewater Piers and Coastal Ports \ are identified by name and location as follows: Dominion Terminal \ Associates, Newport News, Virginia; McDuffie Coal Terminal, Mobile, \ Alabama; IC Railmarine Terminal, Convent, Louisiana; \ International Marine Terminals, Myrtle Grove, Louisiana; \ Cooper/T. Smith Stevedoring Co. Inc., Darrow, Louisiana; \ Seward Terminal Inc., Seward, Alaska; Los Angeles Export Terminal, \ Inc., Los Angeles, California; Levin-Richmond Terminal Corp., \ Richmond, California; Baltimore Terminal, Baltimore, Maryland; \ Norfolk Southern Lamberts Point P-6, Norfolk, Virginia; \ Chesapeake Bay Piers, Baltimore, Maryland; Pier IX Terminal Company, \ Newport News, Virginia; Electro-Coal Transport Corp., Davant, \ Louisiana', 'WT': 'Water: Shipments of fuel moved to consumers by other waterways.', 'TR': 'Truck: Shipments of fuel moved to consumers by truck. \ Not included is fuel hauled to or away from a railroad siding by \ truck on non-public roads.', 'tr': 'Truck: Shipments of fuel moved to consumers by truck. \ Not included is fuel hauled to or away from a railroad siding by \ truck on non-public roads.', 'TC': 'Tramway/Conveyor: Shipments of fuel moved to consumers \ by tramway or conveyor.', 'SP': 'Slurry Pipeline: Shipments of coal moved to consumers \ by slurry pipeline.', 'PL': 'Pipeline: Shipments of fuel moved to consumers by pipeline' } """dict: A dictionary mapping primary and secondary transportation mode codes (keys) to descriptions (values). """ # we need to include all of the columns which we want to keep for either the # entity or annual tables. The order here matters. We need to harvest the plant # location before harvesting the location of the utilites for example. entities = { 'plants': [ # base cols ['plant_id_eia'], # static cols ['balancing_authority_code_eia', 'balancing_authority_name_eia', 'city', 'county', 'ferc_cogen_status', 'ferc_exempt_wholesale_generator', 'ferc_small_power_producer', 'grid_voltage_2_kv', 'grid_voltage_3_kv', 'grid_voltage_kv', 'iso_rto_code', 'latitude', 'longitude', 'service_area', 'plant_name_eia', 'primary_purpose_naics_id', 'sector_id', 'sector_name', 'state', 'street_address', 'zip_code'], # annual cols ['ash_impoundment', 'ash_impoundment_lined', 'ash_impoundment_status', 'datum', 'energy_storage', 'ferc_cogen_docket_no', 'water_source', 'ferc_exempt_wholesale_generator_docket_no', 'ferc_small_power_producer_docket_no', 'liquefied_natural_gas_storage', 'natural_gas_local_distribution_company', 'natural_gas_storage', 'natural_gas_pipeline_name_1', 'natural_gas_pipeline_name_2', 'natural_gas_pipeline_name_3', 'nerc_region', 'net_metering', 'pipeline_notes', 'regulatory_status_code', 'transmission_distribution_owner_id', 'transmission_distribution_owner_name', 'transmission_distribution_owner_state', 'utility_id_eia'], # need type fixing {}, ], 'generators': [ # base cols ['plant_id_eia', 'generator_id'], # static cols ['prime_mover_code', 'duct_burners', 'operating_date', 'topping_bottoming_code', 'solid_fuel_gasification', 'pulverized_coal_tech', 'fluidized_bed_tech', 'subcritical_tech', 'supercritical_tech', 'ultrasupercritical_tech', 'stoker_tech', 'other_combustion_tech', 'bypass_heat_recovery', 'rto_iso_lmp_node_id', 'rto_iso_location_wholesale_reporting_id', 'associated_combined_heat_power', 'original_planned_operating_date', 'operating_switch', 'previously_canceled'], # annual cols ['capacity_mw', 'fuel_type_code_pudl', 'multiple_fuels', 'ownership_code', 'owned_by_non_utility', 'deliver_power_transgrid', 'summer_capacity_mw', 'winter_capacity_mw', 'summer_capacity_estimate', 'winter_capacity_estimate', 'minimum_load_mw', 'distributed_generation', 'technology_description', 'reactive_power_output_mvar', 'energy_source_code_1', 'energy_source_code_2', 'energy_source_code_3', 'energy_source_code_4', 'energy_source_code_5', 'energy_source_code_6', 'energy_source_1_transport_1', 'energy_source_1_transport_2', 'energy_source_1_transport_3', 'energy_source_2_transport_1', 'energy_source_2_transport_2', 'energy_source_2_transport_3', 'startup_source_code_1', 'startup_source_code_2', 'startup_source_code_3', 'startup_source_code_4', 'time_cold_shutdown_full_load_code', 'syncronized_transmission_grid', 'turbines_num', 'operational_status_code', 'operational_status', 'planned_modifications', 'planned_net_summer_capacity_uprate_mw', 'planned_net_winter_capacity_uprate_mw', 'planned_new_capacity_mw', 'planned_uprate_date', 'planned_net_summer_capacity_derate_mw', 'planned_net_winter_capacity_derate_mw', 'planned_derate_date', 'planned_new_prime_mover_code', 'planned_energy_source_code_1', 'planned_repower_date', 'other_planned_modifications', 'other_modifications_date', 'planned_retirement_date', 'carbon_capture', 'cofire_fuels', 'switch_oil_gas', 'turbines_inverters_hydrokinetics', 'nameplate_power_factor', 'uprate_derate_during_year', 'uprate_derate_completed_date', 'current_planned_operating_date', 'summer_estimated_capability_mw', 'winter_estimated_capability_mw', 'retirement_date', 'utility_id_eia', 'data_source'], # need type fixing {} ], # utilities must come after plants. plant location needs to be # removed before the utility locations are compiled 'utilities': [ # base cols ['utility_id_eia'], # static cols ['utility_name_eia'], # annual cols ['street_address', 'city', 'state', 'zip_code', 'entity_type', 'plants_reported_owner', 'plants_reported_operator', 'plants_reported_asset_manager', 'plants_reported_other_relationship', 'attention_line', 'address_2', 'zip_code_4', 'contact_firstname', 'contact_lastname', 'contact_title', 'contact_firstname_2', 'contact_lastname_2', 'contact_title_2', 'phone_extension_1', 'phone_extension_2', 'phone_number_1', 'phone_number_2'], # need type fixing {'utility_id_eia': 'int64', }, ], 'boilers': [ # base cols ['plant_id_eia', 'boiler_id'], # static cols ['prime_mover_code'], # annual cols [], # need type fixing {}, ] } """dict: A dictionary containing table name strings (keys) and lists of columns to keep for those tables (values). """ epacems_tables = ("hourly_emissions_epacems") """tuple: A tuple containing tables of EPA CEMS data to pull into PUDL. """ files_dict_epaipm = { 'transmission_single_epaipm': '*table_3-21*', 'transmission_joint_epaipm': '*transmission_joint_ipm*', 'load_curves_epaipm': '*table_2-2_*', 'plant_region_map_epaipm': '*needs_v6*', } """dict: A dictionary of EPA IPM tables and strings that files of those tables contain. """ epaipm_url_ext = { 'transmission_single_epaipm': 'table_3-21_annual_transmission_capabilities_of_u.s._model_regions_in_epa_platform_v6_-_2021.xlsx', 'load_curves_epaipm': 'table_2-2_load_duration_curves_used_in_epa_platform_v6.xlsx', 'plant_region_map_epaipm': 'needs_v6_november_2018_reference_case_0.xlsx', } """dict: A dictionary of EPA IPM tables and associated URLs extensions for downloading that table's data. """ epaipm_region_names = [ 'ERC_PHDL', 'ERC_REST', 'ERC_FRNT', 'ERC_GWAY', 'ERC_WEST', 'FRCC', 'NENG_CT', 'NENGREST', 'NENG_ME', 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS', 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K', 'PJM_West', 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC', 'S_C_KY', 'S_C_TVA', 'S_D_AECI', 'S_SOU', 'S_VACA', 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE', 'WECC_AZ', 'WEC_BANC', 'WECC_CO', 'WECC_ID', 'WECC_IID', 'WEC_LADW', 'WECC_MT', 'WECC_NM', 'WEC_CALN', 'WECC_NNV', 'WECC_PNW', 'WEC_SDGE', 'WECC_SCE', 'WECC_SNV', 'WECC_UT', 'WECC_WY', 'CN_AB', 'CN_BC', 'CN_NL', 'CN_MB', 'CN_NB', 'CN_NF', 'CN_NS', 'CN_ON', 'CN_PE', 'CN_PQ', 'CN_SK', ] """list: A list of EPA IPM region names.""" epaipm_region_aggregations = { 'PJM': [ 'PJM_AP', 'PJM_ATSI', 'PJM_COMD', 'PJM_Dom', 'PJM_EMAC', 'PJM_PENE', 'PJM_SMAC', 'PJM_WMAC' ], 'NYISO': [ 'NY_Z_A', 'NY_Z_B', 'NY_Z_C&E', 'NY_Z_D', 'NY_Z_F', 'NY_Z_G-I', 'NY_Z_J', 'NY_Z_K' ], 'ISONE': ['NENG_CT', 'NENGREST', 'NENG_ME'], 'MISO': [ 'MIS_AR', 'MIS_IL', 'MIS_INKY', 'MIS_IA', 'MIS_MIDA', 'MIS_LA', 'MIS_LMI', 'MIS_MNWI', 'MIS_D_MS', 'MIS_MO', 'MIS_MAPP', 'MIS_AMSO', 'MIS_WOTA', 'MIS_WUMS' ], 'SPP': [ 'SPP_NEBR', 'SPP_N', 'SPP_SPS', 'SPP_WEST', 'SPP_KIAM', 'SPP_WAUE' ], 'WECC_NW': [ 'WECC_CO', 'WECC_ID', 'WECC_MT', 'WECC_NNV', 'WECC_PNW', 'WECC_UT', 'WECC_WY' ] } """ dict: A dictionary containing EPA IPM regions (keys) and lists of their associated abbreviations (values). """ epaipm_rename_dict = { 'transmission_single_epaipm': { 'From': 'region_from', 'To': 'region_to', 'Capacity TTC (MW)': 'firm_ttc_mw', 'Energy TTC (MW)': 'nonfirm_ttc_mw', 'Transmission Tariff (2016 mills/kWh)': 'tariff_mills_kwh', }, 'load_curves_epaipm': { 'day': 'day_of_year', 'region': 'region_id_epaipm', }, 'plant_region_map_epaipm': { 'ORIS Plant Code': 'plant_id_eia', 'Region Name': 'region', }, } glue_pudl_tables = ('plants_eia', 'plants_ferc', 'plants', 'utilities_eia', 'utilities_ferc', 'utilities', 'utility_plant_assn') """ dict: A dictionary of dictionaries containing EPA IPM tables (keys) and items for each table to be renamed along with the replacement name (values). """ data_sources = ( 'eia860', 'eia861', 'eia923', 'epacems', 'epaipm', 'ferc1', 'ferc714', # 'pudl' ) """tuple: A tuple containing the data sources we are able to pull into PUDL.""" # All the years for which we ought to be able to download these data sources data_years = { 'eia860': tuple(range(2001, 2020)), 'eia861': tuple(range(1990, 2020)), 'eia923': tuple(range(2001, 2020)), 'epacems': tuple(range(1995, 2021)), 'epaipm': (None, ), 'ferc1': tuple(range(1994, 2020)), 'ferc714': (None, ), } """ dict: A dictionary of data sources (keys) and tuples containing the years that we expect to be able to download for each data source (values). """ # The full set of years we currently expect to be able to ingest, per source: working_partitions = { 'eia860': { 'years': tuple(range(2004, 2020)) }, 'eia860m': { 'year_month': '2020-11' }, 'eia861': { 'years': tuple(range(2001, 2020)) }, 'eia923': { 'years': tuple(range(2001, 2020)) }, 'epacems': { 'years': tuple(range(1995, 2021)), 'states': tuple(cems_states.keys())}, 'ferc1': { 'years': tuple(range(1994, 2020)) }, 'ferc714': {}, } """ dict: A dictionary of data sources (keys) and dictionaries (values) of names of partition type (sub-key) and paritions (sub-value) containing the paritions such as tuples of years for each data source that are able to be ingested into PUDL. """ pudl_tables = { 'eia860': eia860_pudl_tables, 'eia861': ( "service_territory_eia861", "balancing_authority_eia861", "sales_eia861", "advanced_metering_infrastructure_eia861", "demand_response_eia861", "demand_side_management_eia861", "distributed_generation_eia861", "distribution_systems_eia861", "dynamic_pricing_eia861", "energy_efficiency_eia861", "green_pricing_eia861", "mergers_eia861", "net_metering_eia861", "non_net_metering_eia861", "operational_data_eia861", "reliability_eia861", "utility_data_eia861", ), 'eia923': eia923_pudl_tables, 'epacems': epacems_tables, 'epaipm': epaipm_pudl_tables, 'ferc1': ferc1_pudl_tables, 'ferc714': ( "respondent_id_ferc714", "id_certification_ferc714", "gen_plants_ba_ferc714", "demand_monthly_ba_ferc714", "net_energy_load_ba_ferc714", "adjacency_ba_ferc714", "interchange_ba_ferc714", "lambda_hourly_ba_ferc714", "lambda_description_ferc714", "description_pa_ferc714", "demand_forecast_pa_ferc714", "demand_hourly_pa_ferc714", ), 'glue': glue_pudl_tables, } """ dict: A dictionary containing data sources (keys) and the list of associated tables from that datasource that can be pulled into PUDL (values). """ base_data_urls = { 'eia860': 'https://www.eia.gov/electricity/data/eia860', 'eia861': 'https://www.eia.gov/electricity/data/eia861/zip', 'eia923': 'https://www.eia.gov/electricity/data/eia923', 'epacems': 'ftp://newftp.epa.gov/dmdnload/emissions/hourly/monthly', 'ferc1': 'ftp://eforms1.ferc.gov/f1allyears', 'ferc714': 'https://www.ferc.gov/docs-filing/forms/form-714/data', 'ferceqr': 'ftp://eqrdownload.ferc.gov/DownloadRepositoryProd/BulkNew/CSV', 'msha': 'https://arlweb.msha.gov/OpenGovernmentData/DataSets', 'epaipm': 'https://www.epa.gov/sites/production/files/2019-03', 'pudl': 'https://catalyst.coop/pudl/' } """ dict: A dictionary containing data sources (keys) and their base data URLs (values). """ need_fix_inting = { 'plants_steam_ferc1': ('construction_year', 'installation_year'), 'plants_small_ferc1': ('construction_year', 'ferc_license_id'), 'plants_hydro_ferc1': ('construction_year', 'installation_year',), 'plants_pumped_storage_ferc1': ('construction_year', 'installation_year',), 'hourly_emissions_epacems': ('facility_id', 'unit_id_epa',), } """ dict: A dictionary containing tables (keys) and column names (values) containing integer - type columns whose null values need fixing. """ contributors = { "catalyst-cooperative": { "title": "Catalyst Cooperative", "path": "https://catalyst.coop/", "role": "publisher", "email": "<EMAIL>", "organization": "Catalyst Cooperative", }, "zane-selvans": { "title": "<NAME>", "email": "<EMAIL>", "path": "https://amateurearthling.org/", "role": "wrangler", "organization": "Catalyst Cooperative" }, "christina-gosnell": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "steven-winter": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "alana-wilson": { "title": "<NAME>", "email": "<EMAIL>", "role": "contributor", "organization": "Catalyst Cooperative", }, "karl-dunkle-werner": { "title": "<NAME>", "email": "<EMAIL>", "path": "https://karldw.org/", "role": "contributor", "organization": "UC Berkeley", }, 'greg-schivley': { "title": "<NAME>", "role": "contributor", }, } """ dict: A dictionary of dictionaries containing organization names (keys) and their attributes (values). """ data_source_info = { "eia860": { "title": "EIA Form 860", "path": "https://www.eia.gov/electricity/data/eia860/", }, "eia861": { "title": "EIA Form 861", "path": "https://www.eia.gov/electricity/data/eia861/", }, "eia923": { "title": "EIA Form 923", "path": "https://www.eia.gov/electricity/data/eia923/", }, "eiawater": { "title": "EIA Water Use for Power", "path": "https://www.eia.gov/electricity/data/water/", }, "epacems": { "title": "EPA Air Markets Program Data", "path": "https://ampd.epa.gov/ampd/", }, "epaipm": { "title": "EPA Integrated Planning Model", "path": "https://www.epa.gov/airmarkets/national-electric-energy-data-system-needs-v6", }, "ferc1": { "title": "FERC Form 1", "path": "https://www.ferc.gov/docs-filing/forms/form-1/data.asp", }, "ferc714": { "title": "FERC Form 714", "path": "https://www.ferc.gov/docs-filing/forms/form-714/data.asp", }, "ferceqr": { "title": "FERC Electric Quarterly Report", "path": "https://www.ferc.gov/docs-filing/eqr.asp", }, "msha": { "title": "Mining Safety and Health Administration", "path": "https://www.msha.gov/mine-data-retrieval-system", }, "phmsa": { "title": "Pipelines and Hazardous Materials Safety Administration", "path": "https://www.phmsa.dot.gov/data-and-statistics/pipeline/data-and-statistics-overview", }, "pudl": { "title": "The Public Utility Data Liberation Project (PUDL)", "path": "https://catalyst.coop/pudl/", "email": "<EMAIL>", }, } """ dict: A dictionary of dictionaries containing datasources (keys) and associated attributes (values) """ contributors_by_source = { "pudl": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", "karl-dunkle-werner", ], "eia923": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", ], "eia860": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", ], "ferc1": [ "catalyst-cooperative", "zane-selvans", "christina-gosnell", "steven-winter", "alana-wilson", ], "epacems": [ "catalyst-cooperative", "karl-dunkle-werner", "zane-selvans", ], "epaipm": [ "greg-schivley", ], } """ dict: A dictionary of data sources (keys) and lists of contributors (values). """ licenses = { "cc-by-4.0": { "name": "CC-BY-4.0", "title": "Creative Commons Attribution 4.0", "path": "https://creativecommons.org/licenses/by/4.0/" }, "us-govt": { "name": "other-pd", "title": "U.S. Government Work", "path": "http://www.usa.gov/publicdomain/label/1.0/", } } """ dict: A dictionary of dictionaries containing license types and their attributes. """ output_formats = [ 'sqlite', 'parquet', 'datapkg', ] """list: A list of types of PUDL output formats.""" keywords_by_data_source = { 'pudl': [ 'us', 'electricity', ], 'eia860': [ 'electricity', 'electric', 'boiler', 'generator', 'plant', 'utility', 'fuel', 'coal', 'natural gas', 'prime mover', 'eia860', 'retirement', 'capacity', 'planned', 'proposed', 'energy', 'hydro', 'solar', 'wind', 'nuclear', 'form 860', 'eia', 'annual', 'gas', 'ownership', 'steam', 'turbine', 'combustion', 'combined cycle', 'eia', 'energy information administration' ], 'eia923': [ 'fuel', 'boiler', 'generator', 'plant', 'utility', 'cost', 'price', 'natural gas', 'coal', 'eia923', 'energy', 'electricity', 'form 923', 'receipts', 'generation', 'net generation', 'monthly', 'annual', 'gas', 'fuel consumption', 'MWh', 'energy information administration', 'eia', 'mercury', 'sulfur', 'ash', 'lignite', 'bituminous', 'subbituminous', 'heat content' ], 'epacems': [ 'epa', 'us', 'emissions', 'pollution', 'ghg', 'so2', 'co2', 'sox', 'nox', 'load', 'utility', 'electricity', 'plant', 'generator', 'unit', 'generation', 'capacity', 'output', 'power', 'heat content', 'mmbtu', 'steam', 'cems', 'continuous emissions monitoring system', 'hourly' 'environmental protection agency', 'ampd', 'air markets program data', ], 'ferc1': [ 'electricity', 'electric', 'utility', 'plant', 'steam', 'generation', 'cost', 'expense', 'price', 'heat content', 'ferc', 'form 1', 'federal energy regulatory commission', 'capital', 'accounting', 'depreciation', 'finance', 'plant in service', 'hydro', 'coal', 'natural gas', 'gas', 'opex', 'capex', 'accounts', 'investment', 'capacity' ], 'ferc714': [ 'electricity', 'electric', 'utility', 'planning area', 'form 714', 'balancing authority', 'demand', 'system lambda', 'ferc', 'federal energy regulatory commission', "hourly", "generation", "interchange", "forecast", "load", "adjacency", "plants", ], 'epaipm': [ 'epaipm', 'integrated planning', ] } """dict: A dictionary of datasets (keys) and keywords (values). """ ENTITY_TYPE_DICT = { 'M': 'Municipal', 'C': 'Cooperative', 'R': 'Retail Power Marketer', 'I': 'Investor Owned', 'P': 'Political Subdivision', 'T': 'Transmission', 'S': 'State', 'W': 'Wholesale Power Marketer', 'F': 'Federal', 'A': 'Municipal Mktg Authority', 'G': 'Community Choice Aggregator', 'D': 'Nonutility DSM Administrator', 'B': 'Behind the Meter', 'Q': 'Independent Power Producer', 'IND': 'Industrial', 'COM': 'Commercial', 'PR': 'Private', # Added by AES for OD table (Arbitrary moniker) 'PO': 'Power Marketer', # Added by AES for OD table 'U': 'Unknown', # Added by AES for OD table 'O': 'Other' # Added by AES for OD table } # Confirm these designations -- educated guess based on the form instructions MOMENTARY_INTERRUPTION_DEF = { # Added by AES for R table 'L': 'Less than 1 minute', 'F': 'Less than or equal to 5 minutes', 'O': 'Other', } # https://www.eia.gov/electricity/data/eia411/#tabs_NERC-3 RECOGNIZED_NERC_REGIONS = [ 'BASN', # ASSESSMENT AREA Basin (WECC) 'CALN', # ASSESSMENT AREA California (WECC) 'CALS', # ASSESSMENT AREA California (WECC) 'DSW', # ASSESSMENT AREA Desert Southwest (WECC) 'ASCC', # Alaska 'ISONE', # ISO New England (NPCC) 'ERCOT', # lumped under TRE in 2017 Form instructions 'NORW', # ASSESSMENT AREA Northwest (WECC) 'NYISO', # ISO (NPCC) 'PJM', # RTO 'ROCK', # ASSESSMENT AREA Rockies (WECC) 'ECAR', # OLD RE Now part of RFC and SERC 'FRCC', # included in 2017 Form instructions, recently joined with SERC 'HICC', # Hawaii 'MAAC', # OLD RE Now part of RFC 'MAIN', # OLD RE Now part of SERC, RFC, MRO 'MAPP', # OLD/NEW RE Became part of MRO, resurfaced in 2010 'MRO', # RE included in 2017 Form instructions 'NPCC', # RE included in 2017 Form instructions 'RFC', # RE included in 2017 Form instructions 'SERC', # RE included in 2017 Form instructions 'SPP', # RE included in 2017 Form instructions 'TRE', # RE included in 2017 Form instructions (included ERCOT) 'WECC', # RE included in 2017 Form instructions 'WSCC', # OLD RE pre-2002 version of WECC 'MISO', # ISO unclear whether technically a regional entity, but lots of entries 'ECAR_MAAC', 'MAPP_WECC', 'RFC_SERC', 'SPP_WECC', 'MRO_WECC', 'ERCOT_SPP', 'SPP_TRE', 'ERCOT_TRE', 'MISO_TRE', 'VI', # Virgin Islands 'GU', # Guam 'PR', # Puerto Rico 'AS', # American Samoa 'UNK', ] CUSTOMER_CLASSES = [ "commercial", "industrial", "direct_connection", "other", "residential", "total", "transportation" ] TECH_CLASSES = [ 'backup', # WHERE Is this used? because removed from DG table b/c not a real component 'chp_cogen', 'combustion_turbine', 'fuel_cell', 'hydro', 'internal_combustion', 'other', 'pv', 'steam', 'storage_pv', 'all_storage', # need 'all' as prefix so as not to confuse with other storage category 'total', 'virtual_pv', 'wind', ] REVENUE_CLASSES = [ 'retail_sales', 'unbundled', 'delivery_customers', 'sales_for_resale', 'credits_or_adjustments', 'other', 'transmission', 'total', ] RELIABILITY_STANDARDS = [ 'ieee_standard', 'other_standard' ] FUEL_CLASSES = [ 'gas', 'oil', 'other', 'renewable', 'water', 'wind', 'wood', ] RTO_CLASSES = [ 'caiso', 'ercot', 'pjm', 'nyiso', 'spp', 'miso', 'isone', 'other' ] ESTIMATED_OR_ACTUAL = {'E': 'estimated', 'A': 'actual'} TRANSIT_TYPE_DICT = { 'CV': 'conveyer', 'PL': 'pipeline', 'RR': 'railroad', 'TK': 'truck', 'WA': 'water', 'UN': 'unknown', } """dict: A dictionary of datasets (keys) and keywords (values). """ column_dtypes = { "ferc1": { # Obviously this is not yet a complete list... "construction_year": pd.Int64Dtype(), "installation_year": pd.Int64Dtype(), "plant_id_ferc1": pd.Int64Dtype(), "plant_id_pudl": pd.Int64Dtype(), "report_date": "datetime64[ns]", "report_year": pd.Int64Dtype(), "utility_id_ferc1": pd.Int64Dtype(), "utility_id_pudl": pd.Int64Dtype(), }, "ferc714": { # INCOMPLETE "demand_mwh": float, "demand_annual_mwh": float, "eia_code": pd.Int64Dtype(), "peak_demand_summer_mw": float, "peak_demand_winter_mw": float, "report_date": "datetime64[ns]", "respondent_id_ferc714": pd.Int64Dtype(), "respondent_name_ferc714": pd.StringDtype(), "respondent_type": pd.CategoricalDtype(categories=[ "utility", "balancing_authority", ]), "timezone": pd.CategoricalDtype(categories=[ "America/New_York", "America/Chicago", "America/Denver", "America/Los_Angeles", "America/Anchorage", "Pacific/Honolulu"]), "utc_datetime": "datetime64[ns]", }, "epacems": { 'state': pd.StringDtype(), 'plant_id_eia': pd.Int64Dtype(), # Nullable Integer 'unitid': pd.StringDtype(), 'operating_datetime_utc': "datetime64[ns]", 'operating_time_hours': float, 'gross_load_mw': float, 'steam_load_1000_lbs': float, 'so2_mass_lbs': float, 'so2_mass_measurement_code': pd.StringDtype(), 'nox_rate_lbs_mmbtu': float, 'nox_rate_measurement_code': pd.StringDtype(), 'nox_mass_lbs': float, 'nox_mass_measurement_code': pd.StringDtype(), 'co2_mass_tons': float, 'co2_mass_measurement_code': pd.StringDtype(), 'heat_content_mmbtu': float, 'facility_id': pd.Int64Dtype(), # Nullable Integer 'unit_id_epa': pd.Int64Dtype(), # Nullable Integer }, "eia": { 'actual_peak_demand_savings_mw': float, # Added by AES for DR table 'address_2': pd.StringDtype(), # Added by AES for 860 utilities table 'advanced_metering_infrastructure': pd.Int64Dtype(), # Added by AES for AMI table # Added by AES for UD misc table 'alternative_fuel_vehicle_2_activity': pd.BooleanDtype(), 'alternative_fuel_vehicle_activity': pd.BooleanDtype(), 'annual_indirect_program_cost': float, 'annual_total_cost': float, 'ash_content_pct': float, 'ash_impoundment': pd.BooleanDtype(), 'ash_impoundment_lined': pd.BooleanDtype(), # TODO: convert this field to more descriptive words 'ash_impoundment_status': pd.StringDtype(), 'associated_combined_heat_power': pd.BooleanDtype(), 'attention_line': pd.StringDtype(), 'automated_meter_reading': pd.Int64Dtype(), # Added by AES for AMI table 'backup_capacity_mw': float, # Added by AES for NNM & DG misc table 'balancing_authority_code_eia': pd.CategoricalDtype(), 'balancing_authority_id_eia': pd.Int64Dtype(), 'balancing_authority_name_eia': pd.StringDtype(), 'bga_source': pd.StringDtype(), 'boiler_id': pd.StringDtype(), 'bunded_activity': pd.BooleanDtype(), 'business_model': pd.CategoricalDtype(categories=[ "retail", "energy_services"]), 'buy_distribution_activity': pd.BooleanDtype(), 'buying_transmission_activity': pd.BooleanDtype(), 'bypass_heat_recovery': pd.BooleanDtype(), 'caidi_w_major_event_days_minus_loss_of_service_minutes': float, 'caidi_w_major_event_dats_minutes': float, 'caidi_wo_major_event_days_minutes': float, 'capacity_mw': float, 'carbon_capture': pd.BooleanDtype(), 'chlorine_content_ppm': float, 'circuits_with_voltage_optimization': pd.Int64Dtype(), 'city': pd.StringDtype(), 'cofire_fuels': pd.BooleanDtype(), 'consumed_by_facility_mwh': float, 'consumed_by_respondent_without_charge_mwh': float, 'contact_firstname': pd.StringDtype(), 'contact_firstname_2': pd.StringDtype(), 'contact_lastname': pd.StringDtype(), 'contact_lastname_2': pd.StringDtype(), 'contact_title': pd.StringDtype(), 'contact_title_2': pd.StringDtype(), 'contract_expiration_date': 'datetime64[ns]', 'contract_type_code': pd.StringDtype(), 'county': pd.StringDtype(), 'county_id_fips': pd.StringDtype(), # Must preserve leading zeroes 'credits_or_adjustments': float, 'critical_peak_pricing': pd.BooleanDtype(), 'critical_peak_rebate': pd.BooleanDtype(), 'current_planned_operating_date': 'datetime64[ns]', 'customers': float, 'customer_class': pd.CategoricalDtype(categories=CUSTOMER_CLASSES), 'customer_incentives_cost': float, 'customer_incentives_incremental_cost': float, 'customer_incentives_incremental_life_cycle_cost': float, 'customer_other_costs_incremental_life_cycle_cost': float, 'daily_digital_access_customers': pd.Int64Dtype(), 'data_observed': pd.BooleanDtype(), 'datum': pd.StringDtype(), 'deliver_power_transgrid': pd.BooleanDtype(), 'delivery_customers': float, 'direct_load_control_customers': pd.Int64Dtype(), 'distributed_generation': pd.BooleanDtype(), 'distributed_generation_owned_capacity_mw': float, 'distribution_activity': pd.BooleanDtype(), 'distribution_circuits': pd.Int64Dtype(), 'duct_burners': pd.BooleanDtype(), 'energy_displaced_mwh': float, 'energy_efficiency_annual_cost': float, 'energy_efficiency_annual_actual_peak_reduction_mw': float, 'energy_efficiency_annual_effects_mwh': float, 'energy_efficiency_annual_incentive_payment': float, 'energy_efficiency_incremental_actual_peak_reduction_mw': float, 'energy_efficiency_incremental_effects_mwh': float, 'energy_savings_estimates_independently_verified': pd.BooleanDtype(), 'energy_savings_independently_verified': pd.BooleanDtype(), 'energy_savings_mwh': float, 'energy_served_ami_mwh': float, 'energy_source_1_transport_1': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_1_transport_2': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_1_transport_3': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_2_transport_1': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_2_transport_2': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_2_transport_3': pd.CategoricalDtype(categories=TRANSIT_TYPE_DICT.values()), 'energy_source_code': pd.StringDtype(), 'energy_source_code_1': pd.StringDtype(), 'energy_source_code_2': pd.StringDtype(), 'energy_source_code_3': pd.StringDtype(), 'energy_source_code_4': pd.StringDtype(), 'energy_source_code_5': pd.StringDtype(), 'energy_source_code_6': pd.StringDtype(), 'energy_storage': pd.BooleanDtype(), 'entity_type': pd.CategoricalDtype(categories=ENTITY_TYPE_DICT.values()), 'estimated_or_actual_capacity_data': pd.CategoricalDtype(categories=ESTIMATED_OR_ACTUAL.values()), 'estimated_or_actual_fuel_data': pd.CategoricalDtype(categories=ESTIMATED_OR_ACTUAL.values()), 'estimated_or_actual_tech_data': pd.CategoricalDtype(categories=ESTIMATED_OR_ACTUAL.values()), 'exchange_energy_delivered_mwh': float, 'exchange_energy_recieved_mwh': float, 'ferc_cogen_docket_no': pd.StringDtype(), 'ferc_cogen_status': pd.BooleanDtype(), 'ferc_exempt_wholesale_generator': pd.BooleanDtype(), 'ferc_exempt_wholesale_generator_docket_no': pd.StringDtype(), 'ferc_small_power_producer': pd.BooleanDtype(), 'ferc_small_power_producer_docket_no': pd.StringDtype(), 'fluidized_bed_tech': pd.BooleanDtype(), 'fraction_owned': float, 'fuel_class': pd.StringDtype(), 'fuel_consumed_for_electricity_mmbtu': float, 'fuel_consumed_for_electricity_units': float, 'fuel_consumed_mmbtu': float, 'fuel_consumed_units': float, 'fuel_cost_per_mmbtu': float, 'fuel_group_code': pd.StringDtype(), 'fuel_group_code_simple': pd.StringDtype(), 'fuel_mmbtu_per_unit': float, 'fuel_pct': float, 'fuel_qty_units': float, # are fuel_type and fuel_type_code the same?? # fuel_type includes 40 code-like things.. WAT, SUN, NUC, etc. 'fuel_type': pd.StringDtype(), # from the boiler_fuel_eia923 table, there are 30 code-like things, like NG, BIT, LIG 'fuel_type_code': pd.StringDtype(), 'fuel_type_code_aer': pd.StringDtype(), 'fuel_type_code_pudl': pd.StringDtype(), 'furnished_without_charge_mwh': float, 'generation_activity': pd.BooleanDtype(), # this is a mix of integer-like values (2 or 5) and strings like AUGSF 'generator_id': pd.StringDtype(), 'generators_number': float, 'generators_num_less_1_mw': float, 'green_pricing_revenue': float, 'grid_voltage_2_kv': float, 'grid_voltage_3_kv': float, 'grid_voltage_kv': float, 'heat_content_mmbtu_per_unit': float, 'highest_distribution_voltage_kv': float, 'home_area_network': pd.Int64Dtype(), 'inactive_accounts_included': pd.BooleanDtype(), 'incremental_energy_savings_mwh': float, 'incremental_life_cycle_energy_savings_mwh': float, 'incremental_life_cycle_peak_reduction_mwh': float, 'incremental_peak_reduction_mw': float, 'iso_rto_code': pd.StringDtype(), 'latitude': float, 'liquefied_natural_gas_storage': pd.BooleanDtype(), 'load_management_annual_cost': float, 'load_management_annual_actual_peak_reduction_mw': float, 'load_management_annual_effects_mwh': float, 'load_management_annual_incentive_payment': float, 'load_management_annual_potential_peak_reduction_mw': float, 'load_management_incremental_actual_peak_reduction_mw': float, 'load_management_incremental_effects_mwh': float, 'load_management_incremental_potential_peak_reduction_mw': float, 'longitude': float, 'major_program_changes': pd.BooleanDtype(), 'mercury_content_ppm': float, 'merge_address': pd.StringDtype(), 'merge_city': pd.StringDtype(), 'merge_company': pd.StringDtype(), 'merge_date': 'datetime64[ns]', 'merge_state': pd.StringDtype(), 'mine_id_msha': pd.Int64Dtype(), 'mine_id_pudl': pd.Int64Dtype(), 'mine_name': pd.StringDtype(), 'mine_type_code': pd.StringDtype(), 'minimum_load_mw': float, 'moisture_content_pct': float, 'momentary_interruption_definition': pd.CategoricalDtype(categories=MOMENTARY_INTERRUPTION_DEF.values()), 'multiple_fuels': pd.BooleanDtype(), 'nameplate_power_factor': float, 'natural_gas_delivery_contract_type_code': pd.StringDtype(), 'natural_gas_local_distribution_company': pd.StringDtype(), 'natural_gas_pipeline_name_1': pd.StringDtype(), 'natural_gas_pipeline_name_2': pd.StringDtype(), 'natural_gas_pipeline_name_3': pd.StringDtype(), 'natural_gas_storage': pd.BooleanDtype(), 'natural_gas_transport_code': pd.StringDtype(), 'nerc_region': pd.CategoricalDtype(categories=RECOGNIZED_NERC_REGIONS), 'nerc_regions_of_operation': pd.CategoricalDtype(categories=RECOGNIZED_NERC_REGIONS), 'net_generation_mwh': float, 'net_metering': pd.BooleanDtype(), 'net_power_exchanged_mwh': float, 'net_wheeled_power_mwh': float, 'new_parent': pd.StringDtype(), 'non_amr_ami': pd.Int64Dtype(), 'nuclear_unit_id': pd.Int64Dtype(), 'operates_generating_plant': pd.BooleanDtype(), 'operating_date': 'datetime64[ns]', 'operating_switch': pd.StringDtype(), # TODO: double check this for early 860 years 'operational_status': pd.StringDtype(), 'operational_status_code': pd.StringDtype(), 'original_planned_operating_date': 'datetime64[ns]', 'other': float, 'other_combustion_tech': pd.BooleanDtype(), 'other_costs': float, 'other_costs_incremental_cost': float, 'other_modifications_date': 'datetime64[ns]', 'other_planned_modifications': pd.BooleanDtype(), 'outages_recorded_automatically': pd.BooleanDtype(), 'owned_by_non_utility': pd.BooleanDtype(), 'owner_city': pd.StringDtype(), 'owner_name': pd.StringDtype(), 'owner_state': pd.StringDtype(), 'owner_street_address': pd.StringDtype(), 'owner_utility_id_eia': pd.Int64Dtype(), 'owner_zip_code': pd.StringDtype(), # we should transition these into readable codes, not a one letter thing 'ownership_code': pd.StringDtype(), 'phone_extension_1': pd.StringDtype(), 'phone_extension_2': pd.StringDtype(), 'phone_number_1': pd.StringDtype(), 'phone_number_2': pd.StringDtype(), 'pipeline_notes': pd.StringDtype(), 'planned_derate_date': 'datetime64[ns]', 'planned_energy_source_code_1': pd.StringDtype(), 'planned_modifications': pd.BooleanDtype(), 'planned_net_summer_capacity_derate_mw': float, 'planned_net_summer_capacity_uprate_mw': float, 'planned_net_winter_capacity_derate_mw': float, 'planned_net_winter_capacity_uprate_mw': float, 'planned_new_capacity_mw': float, 'planned_new_prime_mover_code': pd.StringDtype(), 'planned_repower_date': 'datetime64[ns]', 'planned_retirement_date': 'datetime64[ns]', 'planned_uprate_date': 'datetime64[ns]', 'plant_id_eia': pd.Int64Dtype(), 'plant_id_epa': pd.Int64Dtype(), 'plant_id_pudl': pd.Int64Dtype(), 'plant_name_eia': pd.StringDtype(), 'plants_reported_asset_manager': pd.BooleanDtype(), 'plants_reported_operator': pd.BooleanDtype(), 'plants_reported_other_relationship': pd.BooleanDtype(), 'plants_reported_owner': pd.BooleanDtype(), 'point_source_unit_id_epa': pd.StringDtype(), 'potential_peak_demand_savings_mw': float, 'pulverized_coal_tech': pd.BooleanDtype(), 'previously_canceled': pd.BooleanDtype(), 'price_responsive_programes': pd.BooleanDtype(), 'price_responsiveness_customers': pd.Int64Dtype(), 'primary_transportation_mode_code': pd.StringDtype(), 'primary_purpose_naics_id': pd.Int64Dtype(), 'prime_mover_code': pd.StringDtype(), 'pv_current_flow_type': pd.CategoricalDtype(categories=['AC', 'DC']), 'reactive_power_output_mvar': float, 'real_time_pricing_program': pd.BooleanDtype(), 'rec_revenue': float, 'rec_sales_mwh': float, 'regulatory_status_code': pd.StringDtype(), 'report_date': 'datetime64[ns]', 'reported_as_another_company': pd.StringDtype(), 'retail_marketing_activity': pd.BooleanDtype(), 'retail_sales': float, 'retail_sales_mwh': float, 'retirement_date': 'datetime64[ns]', 'revenue_class': pd.CategoricalDtype(categories=REVENUE_CLASSES), 'rto_iso_lmp_node_id': pd.StringDtype(), 'rto_iso_location_wholesale_reporting_id': pd.StringDtype(), 'rtos_of_operation': pd.StringDtype(), 'saidi_w_major_event_dats_minus_loss_of_service_minutes': float, 'saidi_w_major_event_days_minutes': float, 'saidi_wo_major_event_days_minutes': float, 'saifi_w_major_event_days_customers': float, 'saifi_w_major_event_days_minus_loss_of_service_customers': float, 'saifi_wo_major_event_days_customers': float, 'sales_for_resale': float, 'sales_for_resale_mwh': float, 'sales_mwh': float, 'sales_revenue': float, 'sales_to_ultimate_consumers_mwh': float, 'secondary_transportation_mode_code': pd.StringDtype(), 'sector_id': pd.Int64Dtype(), 'sector_name': pd.StringDtype(), 'service_area':
pd.StringDtype()
pandas.StringDtype
#!/usr/bin/env python # coding: utf-8 # # CE-40717: Machine Learning # ## HW8-Clustering & Reinforcement Learning # # <NAME> - 99210259 # ### Kmeans & GMM: # # At this question, we tend to implement Kmeans & GMM algorithms. For this purpose, `DO NOT EMPLOY` ready-for-use python libraries. Use this implementation for solving the following questions. Kmeans should continue till centeroids won't change. Furthermore, GMM also should continue till the difference of two consecutive likelihood logarithm would be less than 0.1. Notice that after executing the Kmeans part, the primitive centroids of GMM should be identical with ultimate Kmeans centroids. # In[8]: from sklearn.datasets.samples_generator import make_classification, make_moons, make_circles import numpy as np import pandas as pd import matplotlib.pyplot as plt # #### Part 1: # # Utilize the subsequent cell in order to create the Dataset. Afterwards, try to execute the algorithm with k=2 centroids. At Kmeans, it is recommended to execute the algorithm with several various starting states in order to eventually choose the best respective result. # In[9]: X,Y = make_classification(n_samples=700, n_features=10, n_informative=5, n_redundant=0, n_clusters_per_class=2, n_classes=3) # ## KMeans Implementation # In[10]: class KMeans: def __init__(self, n_clusters = 3, tolerance = 0.01, max_iter = 100, runs = 1): self.n_clusters = n_clusters self.tolerance = tolerance self.cluster_means = np.zeros(n_clusters) self.max_iter = max_iter self.runs = runs def fit(self, X,Y): row_count, col_count = X.shape X_values = self.__get_values(X) X_labels = np.zeros(row_count) costs = np.zeros(self.runs) all_clusterings = [] for i in range(self.runs): cluster_means = self.__initialize_means(X_values, row_count) for _ in range(self.max_iter): previous_means = np.copy(cluster_means) distances = self.__compute_distances(X_values, cluster_means, row_count) X_labels = self.__label_examples(distances) cluster_means = self.__compute_means(X_values, X_labels, col_count) clusters_not_changed = np.abs(cluster_means - previous_means) < self.tolerance if np.all(clusters_not_changed) != False: break X_values_with_labels = np.append(X_values, X_labels[:, np.newaxis], axis = 1) all_clusterings.append( (cluster_means, X_values_with_labels) ) costs[i] = self.__compute_cost(X_values, X_labels, cluster_means) best_clustering_index = costs.argmin() self.costs = costs self.cost_ = costs[best_clustering_index] self.centroid,self.items = all_clusterings[best_clustering_index] self.y = Y return all_clusterings[best_clustering_index] def __initialize_means(self, X, row_count): return X [ np.random.choice(row_count, size=self.n_clusters, replace=False) ] def __compute_distances(self, X, cluster_means, row_count): distances = np.zeros((row_count, self.n_clusters)) for cluster_mean_index, cluster_mean in enumerate(cluster_means): distances[:, cluster_mean_index] = np.linalg.norm(X - cluster_mean, axis = 1) return distances def __label_examples(self, distances): return distances.argmin(axis = 1) def __compute_means(self, X, labels, col_count): cluster_means = np.zeros((self.n_clusters, col_count)) for cluster_mean_index, _ in enumerate(cluster_means): cluster_elements = X [ labels == cluster_mean_index ] if len(cluster_elements): cluster_means[cluster_mean_index, :] = cluster_elements.mean(axis = 0) return cluster_means def __compute_cost(self, X, labels, cluster_means): cost = 0 for cluster_mean_index, cluster_mean in enumerate(cluster_means): cluster_elements = X [ labels == cluster_mean_index ] cost += np.linalg.norm(cluster_elements - cluster_mean, axis = 1).sum() return cost def __get_values(self, X): if isinstance(X, np.ndarray): return X return np.array(X) def predict(self): data=pd.DataFrame(self.items) added_column=list(data.columns)[-1] data['Label'] = self.y resultOfClustering=data.groupby([added_column])['Label'].agg(lambda x: x.value_counts().index[0]) mapping = dict() for label in range(self.n_clusters): label_predicted = resultOfClustering[label] mapping[label] = label_predicted data['PredictedLabels']=data[added_column].map(mapping) return np.array(data['PredictedLabels']) # In[11]: kmeans=KMeans(2,max_iter=10000,runs=20) centroids,kmeans_items=kmeans.fit(X,Y) plt.plot(np.arange(len(kmeans.costs)),kmeans.costs) plt.title('error of different runs') plt.xticks(np.arange(len(kmeans.costs))) plt.show(); # In[ ]: # ## Gaussian Mixture Model Implementation # In[12]: import numpy as np import scipy.stats as sp class GaussianMixModel(): def __init__(self, X, k=2): X = np.asarray(X) self.m, self.n = X.shape self.data = X.copy() self.k = k self.sigma_arr = np.array([np.asmatrix(np.identity(self.n)) for i in range(self.k)]) self.phi = np.ones(self.k)/self.k self.Z = np.asmatrix(np.empty((self.m, self.k), dtype=float)) def initialize_means(self,means): self.mean_arr = means def fit(self, tol=0.1): num_iters = 0 logl = 1 previous_logl = 0 while(logl-previous_logl > tol): previous_logl = self.loglikelihood() self.e_step() self.m_step() num_iters += 1 logl = self.loglikelihood() print('Iteration %d: log-likelihood is %.6f'%(num_iters, logl)) print('Terminate at %d-th iteration:log-likelihood is %.6f'%(num_iters, logl)) def loglikelihood(self): logl = 0 for i in range(self.m): tmp = 0 for j in range(self.k): tmp += sp.multivariate_normal.pdf(self.data[i, :],self.mean_arr[j, :].A1,self.sigma_arr[j, :]) * self.phi[j] logl += np.log(tmp) return logl def e_step(self): for i in range(self.m): den = 0 for j in range(self.k): num = sp.multivariate_normal.pdf(self.data[i, :], self.mean_arr[j].A1, self.sigma_arr[j]) *\ self.phi[j] den += num self.Z[i, j] = num self.Z[i, :] /= den assert self.Z[i, :].sum() - 1 < 1e-4 # Program stop if this condition is false def m_step(self): for j in range(self.k): const = self.Z[:, j].sum() self.phi[j] = 1/self.m * const _mu_j = np.zeros(self.n) _sigma_j = np.zeros((self.n, self.n)) for i in range(self.m): _mu_j += (self.data[i, :] * self.Z[i, j]) _sigma_j += self.Z[i, j] * ((self.data[i, :] - self.mean_arr[j, :]).T * (self.data[i, :] - self.mean_arr[j, :])) self.mean_arr[j] = _mu_j / const self.sigma_arr[j] = _sigma_j / const def predict(self): return np.array(np.argmax(gmm.Z,axis=1)).flatten() # In[13]: gmm=GaussianMixModel(X,k=2) gmm.initialize_means(np.asmatrix(centroids)) gmm.fit() # #### Part 2: # # In a separated cell, implement `Purity` and `Rand-Index` criteria in order to compare the performance of mentioned algorithms. # ## KMeans # In[ ]: print('Purity Of kmeans: ',np.sum(kmeans.predict()==Y)/len(Y)) # In[447]: from scipy.special import comb def rand_index_score(clusters, classes): A = np.c_[(clusters, classes)] tp = sum(comb(np.bincount(A[A[:, 0] == i, 1]), 2).sum() for i in set(clusters)) fp = comb(np.bincount(clusters), 2).sum() - tp fn = comb(np.bincount(classes), 2).sum() - tp tn = comb(len(A), 2) - tp - fp - fn return (tp + tn) / (tp + fp + fn + tn) # In[448]: print('rand index of kmeans', rand_index_score(kmeans.predict(),Y)) # ## Gaussian Mixture Model # In[449]: print('purity index: ', np.sum(gmm.predict() == Y)/len(Y)) # In[450]: print('rand index', rand_index_score(gmm.predict(),Y)) # #### Part 3: # # Use the following cell in order to create new Datasets. Afterwards, try to execute mentioned algorithms on new Dataset and eventually compare the recent results with the help of visualization(there is no problem for using relevant python libraries like `matplotlib`). Consider two clusters for this part. # In[496]: X, Y = make_classification(n_samples=700, n_features=2, n_informative=2, n_redundant=0, n_classes=2) # In[497]: k=2 kmeans=KMeans(k,max_iter=10000,runs=20) centroids,kmeans_items=kmeans.fit(X,Y) color_s =["green","blue","navy","maroon",'orange'] for i in range(k): plt.scatter(kmeans_items[kmeans_items[:,2]==i,0] , kmeans_items[kmeans_items[:,2]==i,1] ,s=100, label = "cluster "+str(i), color =color_s[i]) plt.scatter(centroids[:,0] , centroids[:,1] , s = 300, color = 'red') plt.title('Our clusters') plt.show(); # In[498]: gmm=GaussianMixModel(X,k) gmm.initialize_means(np.asmatrix(centroids)) gmm.fit(); gmm_result = gmm.predict() data=pd.DataFrame(X) data['Predicted'] = gmm_result for i in range(k): plt.scatter(data[data['Predicted']==i][0], data[data['Predicted']==i][1] ,s=100, label = "cluster "+str(i), color =color_s[i]) plt.scatter(np.array(gmm.mean_arr[:,0]).flatten() , np.array(gmm.mean_arr[:,1]).flatten() , s = 300, color = 'red') plt.show(); # In[499]: X, Y = make_moons(n_samples=700, noise=0.2) # In[500]: k=2 kmeans=KMeans(k,max_iter=10000,runs=20) centroids,kmeans_items=kmeans.fit(X,Y) color_s =["green","blue","navy","maroon",'orange'] for i in range(k): plt.scatter(kmeans_items[kmeans_items[:,2]==i,0] , kmeans_items[kmeans_items[:,2]==i,1] ,s=100, label = "cluster "+str(i), color =color_s[i]) plt.scatter(centroids[:,0] , centroids[:,1] , s = 300, color = 'red') plt.title('Our clusters') plt.show(); # In[501]: gmm=GaussianMixModel(X,k) gmm.initialize_means(np.asmatrix(centroids)) gmm.fit(); gmm_result = gmm.predict() data=pd.DataFrame(X) data['Predicted'] = gmm_result for i in range(k): plt.scatter(data[data['Predicted']==i][0], data[data['Predicted']==i][1] ,s=100, label = "cluster "+str(i), color =color_s[i]) plt.scatter(np.array(gmm.mean_arr[:,0]).flatten() , np.array(gmm.mean_arr[:,1]).flatten() , s = 300, color = 'red') plt.show(); # In[505]: X, Y = make_circles(n_samples=700, noise=0.2) # In[506]: k=2 kmeans=KMeans(k,max_iter=10000,runs=20) centroids,kmeans_items=kmeans.fit(X,Y) color_s =["green","blue","navy","maroon",'orange'] for i in range(k): plt.scatter(kmeans_items[kmeans_items[:,2]==i,0] , kmeans_items[kmeans_items[:,2]==i,1] ,s=100, label = "cluster "+str(i), color =color_s[i]) plt.scatter(centroids[:,0] , centroids[:,1] , s = 300, color = 'red') plt.title('Our clusters') plt.show(); # In[507]: gmm=GaussianMixModel(X,k) gmm.initialize_means(np.asmatrix(centroids)) gmm.fit(); gmm_result = gmm.predict() data=
pd.DataFrame(X)
pandas.DataFrame
import datetime import os import pandas as pd import sys import time import localmodule # Define constants. dataset_name = localmodule.get_dataset_name() models_dir = localmodule.get_models_dir() oldbird_model_dir = os.path.join(models_dir, "oldbird") units = localmodule.get_units() clip_suppressor_modes = ["no-clip-suppressor", "clip-suppressor"] n_thresholds = 100 # Print header. start_time = int(time.time()) print(str(datetime.datetime.now()) + " Start.") print("Merge Tseep and Thrush predictions in " + dataset_name + ".") print('pandas version: {:s}'.format(pd.__version__)) print("") # Loop over units. for unit_str in units: unit_dir = os.path.join(oldbird_model_dir, unit_str) # Loop over clip suppressor modes. for clip_suppressor_str in clip_suppressor_modes: prediction_name = "_".join(["predictions", clip_suppressor_str]) prediction_dir = os.path.join(unit_dir, prediction_name) # Loop over thresholds. for threshold_id in range(n_thresholds): threshold_str = "th-" + str(threshold_id).zfill(2) # Load Thrush prediction. thrush_components_list = [ dataset_name, "oldbird", "thrush", unit_str, threshold_str, "predictions" ] if clip_suppressor_str == "clip-suppressor": thrush_components_list.append(clip_suppressor_str) thrush_prediction_name = "_".join(thrush_components_list) thrush_prediction_path = os.path.join( prediction_dir, thrush_prediction_name + ".csv") thrush_df = pd.read_csv(thrush_prediction_path) # Load Tseep prediction. tseep_components_list = thrush_components_list tseep_components_list[2] = "tseep" tseep_prediction_name = "_".join(tseep_components_list) tseep_prediction_path = os.path.join( prediction_dir, tseep_prediction_name + ".csv") tseep_df =
pd.read_csv(tseep_prediction_path)
pandas.read_csv
import requests from dateutil.parser import parse import pandas as pd from datetime import datetime import functools from io import StringIO class WTD(object): ''' Simple class to pull data from the World Trading Data into preferred data structure. ''' class WTDException(Exception): pass class WTDDecorators(object): '''holds decorators for python-wtd''' @classmethod def confirm_api_key(cls,f): ''' confirms that the given api key is at least not in ['',None] ''' @functools.wraps(f) def decorated_function(*args,**kwargs): if args[0].api_key in ['',None]: raise WTD.WTDException('No API key specified') return f(*args,**kwargs) return decorated_function def __init__(self,api_key=''): self.api_key = api_key self.API = 'https://www.worldtradingdata.com/api/v1' # historical @WTDDecorators.confirm_api_key def historical(self,ticker,output='pandas',**kwargs): ''' get historical data for <ticker> or each stock in <ticker> with args if output is 'pandas', returns DataFrame of output if output is 'dict', returns a dictionary representation of the data other parameters: sort: 'newest', 'oldest', 'desc', 'asc' date_from: date_to formatted: 'true','false' (def False) ''' if not output in ['dict','pandas']: raise WTD.WTDException('WTD.historical: output must be one of "pandas","dict"') # ensure date params are correct #params = self._process_date_params( params = { 'symbol':ticker, 'api_token':self.api_key, # **kwargs } #) data = requests.get(self.API + '/history', params=params) data = data.json() data = data['history'] if output=='dict': pass else: data = pd.DataFrame.from_dict(data, orient='index') data.index =
pd.to_datetime(data.index)
pandas.to_datetime
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar =
Series([1, 2])
pandas.Series
# pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import os import operator import unittest import cStringIO as StringIO import nose from numpy import nan import numpy as np import numpy.ma as ma from pandas import Index, Series, TimeSeries, DataFrame, isnull, notnull from pandas.core.index import MultiIndex import pandas.core.datetools as datetools from pandas.util import py3compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm #------------------------------------------------------------------------------- # Series test cases JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class CheckNameIntegration(object): def test_scalarop_preserve_name(self): result = self.ts * 2 self.assertEquals(result.name, self.ts.name) def test_copy_name(self): result = self.ts.copy() self.assertEquals(result.name, self.ts.name) # def test_copy_index_name_checking(self): # # don't want to be able to modify the index stored elsewhere after # # making a copy # self.ts.index.name = None # cp = self.ts.copy() # cp.index.name = 'foo' # self.assert_(self.ts.index.name is None) def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) self.assertEquals(result.name, self.ts.name) def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts self.assertEquals(result.name, self.ts.name) result = self.ts * self.ts[:-2] self.assertEquals(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'something else' result = self.ts + cp self.assert_(result.name is None) def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) self.assertEquals(result.name, self.ts.name) def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] self.assertEquals(result.name, self.ts.name) result = self.ts[[0, 2, 4]] self.assertEquals(result.name, self.ts.name) result = self.ts[5:10] self.assertEquals(result.name, self.ts.name) def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(range(0,len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth"] expected = "\n".join(expected) self.assertEquals(repr(s), expected) def test_multilevel_preserve_name(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(np.random.randn(len(index)), index=index, name='sth') result = s['foo'] result2 = s.ix['foo'] self.assertEquals(result.name, s.name) self.assertEquals(result2.name, s.name) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) # test big series (diff code path) s = Series(range(0,1000)) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) def test_pickle_preserve_name(self): unpickled = self._pickle_roundtrip(self.ts) self.assertEquals(unpickled.name, self.ts.name) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() self.assertEquals(result.name, self.ts.name) def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) self.assertEquals(result.name, self.ts.name) def test_to_sparse_pass_name(self): result = self.ts.to_sparse() self.assertEquals(result.name, self.ts.name) class SafeForSparse(object): pass class TestSeries(unittest.TestCase, CheckNameIntegration): def setUp(self): self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty = Series([], index=[]) def test_constructor(self): # Recognize TimeSeries self.assert_(isinstance(self.ts, TimeSeries)) # Pass in Series derived = Series(self.ts) self.assert_(isinstance(derived, TimeSeries)) self.assert_(tm.equalContents(derived.index, self.ts.index)) # Ensure new index is not created self.assertEquals(id(self.ts.index), id(derived.index)) # Pass in scalar scalar = Series(0.5) self.assert_(isinstance(scalar, float)) # Mixed type Series mixed = Series(['hello', np.NaN], index=[0, 1]) self.assert_(mixed.dtype == np.object_) self.assert_(mixed[1] is np.NaN) self.assert_(not isinstance(self.empty, TimeSeries)) self.assert_(not isinstance(Series({}), TimeSeries)) self.assertRaises(Exception, Series, np.random.randn(3, 3), index=np.arange(3)) def test_constructor_empty(self): empty = Series() empty2 = Series([]) assert_series_equal(empty, empty2) empty = Series(index=range(10)) empty2 = Series(np.nan, index=range(10)) assert_series_equal(empty, empty2) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([nan, nan, nan]) assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0.0, nan, 2.0], index=index) assert_series_equal(result, expected) def test_constructor_default_index(self): s = Series([0, 1, 2]) assert_almost_equal(s.index, np.arange(3)) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) self.assert_(isinstance(s, Series)) def test_constructor_cast(self): self.assertRaises(ValueError, Series, ['a', 'b', 'c'], dtype=float) def test_constructor_dict(self): d = {'a' : 0., 'b' : 1., 'c' : 2.} result = Series(d, index=['b', 'c', 'd', 'a']) expected = Series([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) assert_series_equal(result, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) self.assertEqual(list(s), data) def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) self.assertEqual(tuple(s), data) def test_fromDict(self): data = {'a' : 0, 'b' : 1, 'c' : 2, 'd' : 3} series = Series(data) self.assert_(tm.is_sorted(series.index)) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : datetime.now()} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : '3'} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : '0', 'b' : '1'} series = Series(data, dtype=float) self.assert_(series.dtype == np.float64) def test_setindex(self): # wrong type series = self.series.copy() self.assertRaises(TypeError, setattr, series, 'index', None) # wrong length series = self.series.copy() self.assertRaises(AssertionError, setattr, series, 'index', np.arange(len(series) - 1)) # works series = self.series.copy() series.index = np.arange(len(series)) self.assert_(isinstance(series.index, Index)) def test_array_finalize(self): pass def test_fromValue(self): nans = Series(np.NaN, index=self.ts.index) self.assert_(nans.dtype == np.float_) self.assertEqual(len(nans), len(self.ts)) strings = Series('foo', index=self.ts.index) self.assert_(strings.dtype == np.object_) self.assertEqual(len(strings), len(self.ts)) d = datetime.now() dates = Series(d, index=self.ts.index) self.assert_(dates.dtype == np.object_) self.assertEqual(len(dates), len(self.ts)) def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts) def test_pickle(self): unp_series = self._pickle_roundtrip(self.series) unp_ts = self._pickle_roundtrip(self.ts) assert_series_equal(unp_series, self.series) assert_series_equal(unp_ts, self.ts) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assert_(self.series.get(-1) is None) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - datetools.bday self.assertRaises(KeyError, self.ts.__getitem__, d) def test_iget(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) for i in range(len(s)): result = s.iget(i) exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iget(slice(1, 3)) expected = s.ix[2:4] assert_series_equal(result, expected) def test_getitem_regression(self): s = Series(range(5), index=range(5)) result = s[range(5)] assert_series_equal(result, s) def test_getitem_slice_bug(self): s = Series(range(10), range(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1,2,3]] slice2 = self.objSeries[[1,2,3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_(np.array_equal(result.index, s.index[mask])) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem cop = s.copy() cop[omask] = 5 s[mask] = 5 assert_series_equal(cop, s) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, offset=datetools.bday) > ts.median() self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assert_((s[:4] == 0).all()) self.assert_(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) def test_getitem_box_float64(self): value = self.ts[5] self.assert_(isinstance(value, np.float64)) def test_getitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_setitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__setitem__, 1, 5) self.assertRaises(KeyError, s.ix.__setitem__, 1, 5) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assert_(self.series.index[9] not in numSlice.index) self.assert_(self.objSeries.index[9] not in objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assert_(tm.equalContents(numSliceEnd, np.array(self.series)[-10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assert_((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) result = s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1,2,17]] = np.NaN self.ts[6] = np.NaN self.assert_(np.isnan(self.ts[6])) self.assert_(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assert_(not np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assert_((series[::2] == 0).all()) # set item that's not contained self.assertRaises(Exception, self.series.__setitem__, 'foobar', 1) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assert_(res is self.ts) self.assertEqual(self.ts[idx], 0) res = self.series.set_value('foobar', 0) self.assert_(res is not self.series) self.assert_(res.index[-1] == 'foobar') self.assertEqual(res['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertEqual(len(sl.index.indexMap), len(sl.index)) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] self.assertRaises(Exception, self.ts.__getitem__, (slice(None, None), 2)) self.assertRaises(Exception, self.ts.__setitem__, (slice(None, None), 2), 2) # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) def test_ix_getitem(self): inds = self.series.index[[3,4,7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEquals(self.ts.ix[d1], self.ts[d1]) self.assertEquals(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][::-1] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assert_((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assert_((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s[::-1] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_ix_setitem(self): inds = self.series.index[[3,4,7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3,4,7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEquals(self.series[d1], 4) self.assertEquals(self.series[d2], 6) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.order() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_repr(self): str(self.ts) str(self.series) str(self.series.astype(int)) str(self.objSeries) str(Series(tm.randn(1000), index=np.arange(1000))) str(Series(tm.randn(1000), index=np.arange(1000, 0, step=-1))) # empty str(self.empty) # with NaNs self.series[5:7] = np.NaN str(self.series) # tuple name, e.g. from hierarchical index self.series.name = ('foo', 'bar', 'baz') repr(self.series) biggie = Series(tm.randn(1000), index=np.arange(1000), name=('foo', 'bar', 'baz')) repr(biggie) def test_to_string(self): from cStringIO import StringIO buf = StringIO() s = self.ts.to_string() retval = self.ts.to_string(buf=buf) self.assert_(retval is None) self.assertEqual(buf.getvalue().strip(), s) # pass float_format format = '%.4f'.__mod__ result = self.ts.to_string(float_format=format) result = [x.split()[1] for x in result.split('\n')] expected = [format(x) for x in self.ts] self.assertEqual(result, expected) # empty string result = self.ts[:0].to_string() self.assertEqual(result, '') result = self.ts[:0].to_string(length=0) self.assertEqual(result, '') # name and length cp = self.ts.copy() cp.name = 'foo' result = cp.to_string(length=True, name=True) last_line = result.split('\n')[-1].strip() self.assertEqual(last_line, "Name: foo, Length: %d" % len(cp)) def test_to_string_mixed(self): s = Series(['foo', np.nan, -1.23, 4.56]) result = s.to_string() expected = ('0 foo\n' '1 NaN\n' '2 -1.23\n' '3 4.56') self.assertEqual(result, expected) # but don't count NAs as floats s = Series(['foo', np.nan, 'bar', 'baz']) result = s.to_string() expected = ('0 foo\n' '1 NaN\n' '2 bar\n' '3 baz') self.assertEqual(result, expected) s = Series(['foo', 5, 'bar', 'baz']) result = s.to_string() expected = ('0 foo\n' '1 5\n' '2 bar\n' '3 baz') self.assertEqual(result, expected) def test_to_string_float_na_spacing(self): s = Series([0., 1.5678, 2., -3., 4.]) s[::2] = np.nan result = s.to_string() expected = ('0 NaN\n' '1 1.568\n' '2 NaN\n' '3 -3.000\n' '4 NaN') self.assertEqual(result, expected) def test_iter(self): for i, val in enumerate(self.series): self.assertEqual(val, self.series[i]) for i, val in enumerate(self.ts): self.assertEqual(val, self.ts[i]) def test_keys(self): # HACK: By doing this in two stages, we avoid 2to3 wrapping the call # to .keys() in a list() getkeys = self.ts.keys self.assert_(getkeys() is self.ts.index) def test_values(self): self.assert_(np.array_equal(self.ts, self.ts.values)) def test_iteritems(self): for idx, val in self.series.iteritems(): self.assertEqual(val, self.series[idx]) for idx, val in self.ts.iteritems(): self.assertEqual(val, self.ts[idx]) def test_sum(self): self._check_stat_op('sum', np.sum) def test_sum_inf(self): s = Series(np.random.randn(10)) s2 = s.copy() s[5:8] = np.inf s2[5:8] = np.nan assert_almost_equal(s.sum(), s2.sum()) import pandas.core.nanops as nanops arr = np.random.randn(100, 100).astype('f4') arr[:, 2] = np.inf res = nanops.nansum(arr, axis=1) expected = nanops._nansum(arr, axis=1) assert_almost_equal(res, expected) def test_mean(self): self._check_stat_op('mean', np.mean) def test_median(self): self._check_stat_op('median', np.median) # test with integers, test failure int_ts = TimeSeries(np.ones(10, dtype=int), index=range(10)) self.assertAlmostEqual(np.median(int_ts), int_ts.median()) def test_prod(self): self._check_stat_op('prod', np.prod) def test_min(self): self._check_stat_op('min', np.min, check_objects=True) def test_max(self): self._check_stat_op('max', np.max, check_objects=True) def test_std(self): alt = lambda x: np.std(x, ddof=1) self._check_stat_op('std', alt) def test_var(self): alt = lambda x: np.var(x, ddof=1) self._check_stat_op('var', alt) def test_skew(self): from scipy.stats import skew alt =lambda x: skew(x, bias=False) self._check_stat_op('skew', alt) def test_argsort(self): self._check_accum_op('argsort') argsorted = self.ts.argsort() self.assert_(issubclass(argsorted.dtype.type, np.integer)) def test_cumsum(self): self._check_accum_op('cumsum') def test_cumprod(self): self._check_accum_op('cumprod') def _check_stat_op(self, name, alternate, check_objects=False): from pandas import DateRange import pandas.core.nanops as nanops def testit(): f = getattr(Series, name) # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assert_(notnull(f(self.series))) self.assert_(isnull(f(self.series, skipna=False))) # check the result is correct nona = self.series.dropna() assert_almost_equal(f(nona), alternate(nona)) allna = self.series * nan self.assert_(np.isnan(f(allna))) # dtype=object with None, it works! s = Series([1, 2, 3, None, 5]) f(s) # check DateRange if check_objects: s = Series(DateRange('1/1/2000', periods=10)) res = f(s) exp = alternate(s) self.assertEqual(res, exp) testit() try: import bottleneck as bn nanops._USE_BOTTLENECK = False testit() nanops._USE_BOTTLENECK = True except ImportError: pass def _check_accum_op(self, name): func = getattr(np, name) self.assert_(np.array_equal(func(self.ts), func(np.array(self.ts)))) # with missing values ts = self.ts.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.valid())) self.assert_(np.array_equal(result, expected)) def test_round(self): # numpy.round doesn't preserve metadata, probably a numpy bug, # re: GH #314 result = np.round(self.ts, 2) expected = Series(np.round(self.ts.values, 2), index=self.ts.index) assert_series_equal(result, expected) self.assertEqual(result.name, self.ts.name) def test_prod_numpy16_bug(self): s = Series([1., 1., 1.] , index=range(3)) result = s.prod() self.assert_(not isinstance(result, Series)) def test_quantile(self): from scipy.stats import scoreatpercentile q = self.ts.quantile(0.1) self.assertEqual(q, scoreatpercentile(self.ts.valid(), 10)) q = self.ts.quantile(0.9) self.assertEqual(q, scoreatpercentile(self.ts.valid(), 90)) def test_describe(self): _ = self.series.describe() _ = self.ts.describe() def test_describe_objects(self): s = Series(['a', 'b', 'b', np.nan, np.nan, np.nan, 'c', 'd', 'a', 'a']) result = s.describe() expected = Series({'count' : 7, 'unique' : 4, 'top' : 'a', 'freq' : 3}, index=result.index) assert_series_equal(result, expected) def test_append(self): appendedSeries = self.series.append(self.ts) for idx, value in appendedSeries.iteritems(): if idx in self.series.index: self.assertEqual(value, self.series[idx]) elif idx in self.ts.index: self.assertEqual(value, self.ts[idx]) else: self.fail("orphaned index!") self.assertRaises(Exception, self.ts.append, self.ts) def test_append_many(self): pieces = [self.ts[:5], self.ts[5:10], self.ts[10:]] result = pieces[0].append(pieces[1:]) assert_series_equal(result, self.ts) def test_all_any(self): np.random.seed(12345) ts = tm.makeTimeSeries() bool_series = ts > 0 self.assert_(not bool_series.all()) self.assert_(bool_series.any()) def test_operators(self): series = self.ts other = self.ts[::2] def _check_op(other, op, pos_only=False): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_almost_equal(cython_or_numpy, python) def check(other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'gt', 'ge', 'lt', 'le'] for opname in simple_ops: _check_op(other, getattr(operator, opname)) _check_op(other, operator.pow, pos_only=True) _check_op(other, lambda x, y: operator.add(y, x)) _check_op(other, lambda x, y: operator.sub(y, x)) _check_op(other, lambda x, y: operator.truediv(y, x)) _check_op(other, lambda x, y: operator.floordiv(y, x)) _check_op(other, lambda x, y: operator.mul(y, x)) _check_op(other, lambda x, y: operator.pow(y, x), pos_only=True) check(self.ts * 2) check(self.ts * 0) check(self.ts[::2]) check(5) def check_comparators(other): _check_op(other, operator.gt) _check_op(other, operator.ge) _check_op(other, operator.eq) _check_op(other, operator.lt) _check_op(other, operator.le) check_comparators(5) check_comparators(self.ts + 1) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x' : 0.}) # it works! _ = s1 * s2 # NumPy limitiation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= self.ts <= 0.5 # expected = (self.ts >= -0.5) & (self.ts <= 0.5) # assert_series_equal(selector, expected) def test_idxmin(self): # test idxmin # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmin()], self.series.min()) self.assert_(isnull(self.series.idxmin(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmin()], nona.min()) self.assertEqual(nona.index.values.tolist().index(nona.idxmin()), nona.values.argmin()) # all NaNs allna = self.series * nan self.assert_(isnull(allna.idxmin())) def test_idxmax(self): # test idxmax # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmax()], self.series.max()) self.assert_(isnull(self.series.idxmax(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmax()], nona.max()) self.assertEqual(nona.index.values.tolist().index(nona.idxmax()), nona.values.argmax()) # all NaNs allna = self.series * nan self.assert_(isnull(allna.idxmax())) def test_operators_date(self): result = self.objSeries + timedelta(1) result = self.objSeries - timedelta(1) def test_operators_corner(self): series = self.ts empty = Series([], index=Index([])) result = series + empty self.assert_(np.isnan(result).all()) result = empty + Series([], index=Index([])) self.assert_(len(result) == 0) # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = self.ts.astype(int)[:-5] added = self.ts + int_ts expected = self.ts.values[:-5] + int_ts.values self.assert_(np.array_equal(added[:-5], expected)) def test_operators_reverse_object(self): # GH 56 arr = Series(np.random.randn(10), index=np.arange(10), dtype=object) def _check_op(arr, op): result = op(1., arr) expected = op(1., arr.astype(float)) assert_series_equal(result.astype(float), expected) _check_op(arr, operator.add) _check_op(arr, operator.sub) _check_op(arr, operator.mul) _check_op(arr, operator.truediv) _check_op(arr, operator.floordiv) def test_series_frame_radd_bug(self): from pandas.util.testing import rands import operator # GH 353 vals = Series([rands(5) for _ in xrange(10)]) result = 'foo_' + vals expected = vals.map(lambda x: 'foo_' + x) assert_series_equal(result, expected) frame = DataFrame({'vals' : vals}) result = 'foo_' + frame expected = DataFrame({'vals' : vals.map(lambda x: 'foo_' + x)}) tm.assert_frame_equal(result, expected) # really raise this time self.assertRaises(TypeError, operator.add, datetime.now(), self.ts) def test_operators_frame(self): # rpow does not work with DataFrame df = DataFrame({'A' : self.ts}) tm.assert_almost_equal(self.ts + self.ts, (self.ts + df)['A']) tm.assert_almost_equal(self.ts ** self.ts, (self.ts ** df)['A']) def test_operators_combine(self): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask = isnull(a) bmask = isnull(b) exp_values = [] for i in range(len(exp_index)): if amask[i]: if bmask[i]: exp_values.append(nan) continue exp_values.append(op(fill_value, b[i])) elif bmask[i]: if amask[i]: exp_values.append(nan) continue exp_values.append(op(a[i], fill_value)) else: exp_values.append(op(a[i], b[i])) result = meth(a, b, fill_value=fill_value) expected = Series(exp_values, exp_index) assert_series_equal(result, expected) a = Series([nan, 1., 2., 3., nan], index=np.arange(5)) b = Series([nan, 1, nan, 3, nan, 4.], index=np.arange(6)) ops = [Series.add, Series.sub, Series.mul, Series.div] equivs = [operator.add, operator.sub, operator.mul] if py3compat.PY3: equivs.append(operator.truediv) else: equivs.append(operator.div) fillvals = [0, 0, 1, 1] for op, equiv_op, fv in zip(ops, equivs, fillvals): result = op(a, b) exp = equiv_op(a, b) assert_series_equal(result, exp) _check_fill(op, equiv_op, a, b, fill_value=fv) def test_combine_first(self): values = tm.makeIntIndex(20).values.astype(float) series = Series(values, index=tm.makeIntIndex(20)) series_copy = series * 2 series_copy[::2] = np.NaN # nothing used from the input combined = series.combine_first(series_copy) self.assert_(np.array_equal(combined, series)) # Holes filled from input combined = series_copy.combine_first(series) self.assert_(np.isfinite(combined).all()) self.assert_(np.array_equal(combined[::2], series[::2])) self.assert_(np.array_equal(combined[1::2], series_copy[1::2])) # mixed types index = tm.makeStringIndex(20) floats = Series(tm.randn(20), index=index) strings = Series(tm.makeStringIndex(10), index=index[::2]) combined = strings.combine_first(floats) tm.assert_dict_equal(strings, combined, compare_keys=False) tm.assert_dict_equal(floats[1::2], combined, compare_keys=False) # corner case s = Series([1., 2, 3], index=[0, 1, 2]) result = s.combine_first(Series([], index=[])) assert_series_equal(s, result) def test_corr(self): import scipy.stats as stats # full overlap self.assertAlmostEqual(self.ts.corr(self.ts), 1) # partial overlap self.assertAlmostEqual(self.ts[:15].corr(self.ts[5:]), 1) # No overlap self.assert_(np.isnan(self.ts[::2].corr(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assert_(isnull(cp.corr(cp))) A = tm.makeTimeSeries() B = tm.makeTimeSeries() result = A.corr(B) expected, _ = stats.pearsonr(A, B) self.assertAlmostEqual(result, expected) def test_corr_rank(self): import scipy import scipy.stats as stats # kendall and spearman A = tm.makeTimeSeries() B = tm.makeTimeSeries() A[-5:] = A[:5] result = A.corr(B, method='kendall') expected = stats.kendalltau(A, B)[0] self.assertAlmostEqual(result, expected) result = A.corr(B, method='spearman') expected = stats.spearmanr(A, B)[0] self.assertAlmostEqual(result, expected) # these methods got rewritten in 0.8 if int(scipy.__version__.split('.')[1]) < 9: raise nose.SkipTest # results from R A = Series([-0.89926396, 0.94209606, -1.03289164, -0.95445587, 0.76910310, -0.06430576, -2.09704447, 0.40660407, -0.89926396, 0.94209606]) B = Series([-1.01270225, -0.62210117, -1.56895827, 0.59592943, -0.01680292, 1.17258718, -1.06009347, -0.10222060, -0.89076239, 0.89372375]) kexp = 0.4319297 sexp = 0.5853767 self.assertAlmostEqual(A.corr(B, method='kendall'), kexp) self.assertAlmostEqual(A.corr(B, method='spearman'), sexp) def test_cov(self): # full overlap self.assertAlmostEqual(self.ts.cov(self.ts), self.ts.std()**2) # partial overlap self.assertAlmostEqual(self.ts[:15].cov(self.ts[5:]), self.ts[5:15].std()**2) # No overlap self.assert_(np.isnan(self.ts[::2].cov(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assert_(isnull(cp.cov(cp))) def test_copy(self): ts = self.ts.copy() ts[::2] = np.NaN # Did not modify original Series self.assertFalse(np.isnan(self.ts[0])) def test_count(self): self.assertEqual(self.ts.count(), len(self.ts)) self.ts[::2] = np.NaN self.assertEqual(self.ts.count(), np.isfinite(self.ts).sum()) def test_value_counts_nunique(self): s = Series(['a', 'b', 'b', 'b', 'b', 'a', 'c', 'd', 'd', 'a']) hist = s.value_counts() expected = Series([4, 3, 2, 1], index=['b', 'a', 'd', 'c']) assert_series_equal(hist, expected) self.assertEquals(s.nunique(), 4) # handle NA's properly s[5:7] = np.nan hist = s.value_counts() expected = s.dropna().value_counts() assert_series_equal(hist, expected) s = Series({}) hist = s.value_counts() expected = Series([]) assert_series_equal(hist, expected) def test_sort(self): ts = self.ts.copy() ts.sort() self.assert_(np.array_equal(ts, self.ts.order())) self.assert_(np.array_equal(ts.index, self.ts.order().index)) def test_sort_index(self): import random rindex = list(self.ts.index) random.shuffle(rindex) random_order = self.ts.reindex(rindex) sorted_series = random_order.sort_index() assert_series_equal(sorted_series, self.ts) # descending sorted_series = random_order.sort_index(ascending=False) assert_series_equal(sorted_series, self.ts.reindex(self.ts.index[::-1])) def test_order(self): ts = self.ts.copy() ts[:5] = np.NaN vals = ts.values result = ts.order() self.assert_(np.isnan(result[-5:]).all()) self.assert_(np.array_equal(result[:-5], np.sort(vals[5:]))) result = ts.order(na_last=False) self.assert_(np.isnan(result[:5]).all()) self.assert_(np.array_equal(result[5:], np.sort(vals[5:]))) # something object-type ser = Series(['A', 'B'], [1, 2]) # no failure ser.order() # ascending=False ordered = ts.order(ascending=False) expected = np.sort(ts.valid().values)[::-1] assert_almost_equal(expected, ordered.valid().values) ordered = ts.order(ascending=False, na_last=False) assert_almost_equal(expected, ordered.valid().values) def test_rank(self): from scipy.stats import rankdata self.ts[::2] = np.nan self.ts[:10][::3] = 4. ranks = self.ts.rank() oranks = self.ts.astype('O').rank() assert_series_equal(ranks, oranks) mask = np.isnan(self.ts) filled = self.ts.fillna(np.inf) exp = rankdata(filled) exp[mask] = np.nan assert_almost_equal(ranks, exp) def test_from_csv(self): self.ts.to_csv('_foo') ts = Series.from_csv('_foo') assert_series_equal(self.ts, ts) self.series.to_csv('_foo') series = Series.from_csv('_foo') assert_series_equal(self.series, series) outfile = open('_foo', 'w') outfile.write('1998-01-01|1.0\n1999-01-01|2.0') outfile.close() series = Series.from_csv('_foo',sep='|') checkseries = Series({datetime(1998,1,1): 1.0, datetime(1999,1,1): 2.0}) assert_series_equal(checkseries, series) series = Series.from_csv('_foo',sep='|',parse_dates=False) checkseries = Series({'1998-01-01': 1.0, '1999-01-01': 2.0}) assert_series_equal(checkseries, series) os.remove('_foo') def test_to_csv(self): self.ts.to_csv('_foo') lines = open('_foo', 'U').readlines() assert(lines[1] != '\n') os.remove('_foo') def test_to_dict(self): self.assert_(np.array_equal(Series(self.ts.to_dict()), self.ts)) def test_clip(self): val = self.ts.median() self.assertEqual(self.ts.clip_lower(val).min(), val) self.assertEqual(self.ts.clip_upper(val).max(), val) self.assertEqual(self.ts.clip(lower=val).min(), val) self.assertEqual(self.ts.clip(upper=val).max(), val) result = self.ts.clip(-0.5, 0.5) expected = np.clip(self.ts, -0.5, 0.5) assert_series_equal(result, expected) self.assert_(isinstance(expected, Series)) def test_valid(self): ts = self.ts.copy() ts[::2] = np.NaN result = ts.valid() self.assertEqual(len(result), ts.count()) tm.assert_dict_equal(result, ts, compare_keys=False) def test_isnull(self): ser = Series([0,5.4,3,nan,-0.001]) assert_series_equal(ser.isnull(), Series([False,False,False,True,False])) ser = Series(["hi","",nan]) assert_series_equal(ser.isnull(), Series([False,False,True])) def test_notnull(self): ser = Series([0,5.4,3,nan,-0.001]) assert_series_equal(ser.notnull(), Series([True,True,True,False,True])) ser = Series(["hi","",nan]) assert_series_equal(ser.notnull(), Series([True,True,False])) def test_shift(self): shifted = self.ts.shift(1) unshifted = shifted.shift(-1) tm.assert_dict_equal(unshifted.valid(), self.ts, compare_keys=False) offset = datetools.bday shifted = self.ts.shift(1, offset=offset) unshifted = shifted.shift(-1, offset=offset) assert_series_equal(unshifted, self.ts) unshifted = self.ts.shift(0, offset=offset) assert_series_equal(unshifted, self.ts) shifted = self.ts.shift(1, timeRule='WEEKDAY') unshifted = shifted.shift(-1, timeRule='WEEKDAY') assert_series_equal(unshifted, self.ts) # corner case unshifted = self.ts.shift(0) assert_series_equal(unshifted, self.ts) def test_shift_int(self): ts = self.ts.astype(int) shifted = ts.shift(1) expected = ts.astype(float).shift(1) assert_series_equal(shifted, expected) def test_truncate(self): offset = datetools.bday ts = self.ts[::3] start, end = self.ts.index[3], self.ts.index[6] start_missing, end_missing = self.ts.index[2], self.ts.index[7] # neither specified truncated = ts.truncate() assert_series_equal(truncated, ts) # both specified expected = ts[1:3] truncated = ts.truncate(start, end) assert_series_equal(truncated, expected) truncated = ts.truncate(start_missing, end_missing) assert_series_equal(truncated, expected) # start specified expected = ts[1:] truncated = ts.truncate(before=start) assert_series_equal(truncated, expected) truncated = ts.truncate(before=start_missing) assert_series_equal(truncated, expected) # end specified expected = ts[:3] truncated = ts.truncate(after=end) assert_series_equal(truncated, expected) truncated = ts.truncate(after=end_missing) assert_series_equal(truncated, expected) # corner case, empty series returned truncated = ts.truncate(after=self.ts.index[0] - offset) assert(len(truncated) == 0) truncated = ts.truncate(before=self.ts.index[-1] + offset) assert(len(truncated) == 0) self.assertRaises(Exception, ts.truncate, before=self.ts.index[-1] + offset, after=self.ts.index[0] - offset) def test_asof(self): self.ts[5:10] = np.NaN self.ts[15:20] = np.NaN val1 = self.ts.asof(self.ts.index[7]) val2 = self.ts.asof(self.ts.index[19]) self.assertEqual(val1, self.ts[4]) self.assertEqual(val2, self.ts[14]) # accepts strings val1 = self.ts.asof(str(self.ts.index[7])) self.assertEqual(val1, self.ts[4]) # in there self.assertEqual(self.ts.asof(self.ts.index[3]), self.ts[3]) # no as of value d = self.ts.index[0] - datetools.bday self.assert_(np.isnan(self.ts.asof(d))) def test_map(self): index, data = tm.getMixedTypeDict() source = Series(data['B'], index=data['C']) target = Series(data['C'][:4], index=data['D'][:4]) merged = target.map(source) for k, v in merged.iteritems(): self.assertEqual(v, source[target[k]]) # input could be a dict merged = target.map(source.to_dict()) for k, v in merged.iteritems(): self.assertEqual(v, source[target[k]]) # function result = self.ts.map(lambda x: x * 2) self.assert_(np.array_equal(result, self.ts * 2)) def test_map_int(self): left = Series({'a' : 1., 'b' : 2., 'c' : 3., 'd' : 4}) right = Series({1 : 11, 2 : 22, 3 : 33}) self.assert_(left.dtype == np.float_) self.assert_(issubclass(right.dtype.type, np.integer)) merged = left.map(right) self.assert_(merged.dtype == np.float_) self.assert_(isnull(merged['d'])) self.assert_(not isnull(merged['c'])) def test_map_decimal(self): from decimal import Decimal result = self.series.map(lambda x: Decimal(str(x))) self.assert_(result.dtype == np.object_) self.assert_(isinstance(result[0], Decimal)) def test_apply(self): assert_series_equal(self.ts.apply(np.sqrt), np.sqrt(self.ts)) # elementwise-apply import math assert_series_equal(self.ts.apply(math.exp), np.exp(self.ts)) # does not return Series result = self.ts.apply(lambda x: x.values * 2) assert_series_equal(result, self.ts * 2) def test_align(self): def _check_align(a, b, how='left'): aa, ab = a.align(b, join=how) join_index = a.index.join(b.index, how=how) ea = a.reindex(join_index) eb = b.reindex(join_index) assert_series_equal(aa, ea) assert_series_equal(ab, eb) for kind in JOIN_TYPES: _check_align(self.ts[2:], self.ts[:-5]) # empty left _check_align(self.ts[:0], self.ts[:-5]) # empty right _check_align(self.ts[:-5], self.ts[:0]) # both empty _check_align(self.ts[:0], self.ts[:0]) def test_align_nocopy(self): b = self.ts[:5].copy() # do copy a = self.ts.copy() ra, _ = a.align(b, join='left') ra[:5] = 5 self.assert_(not (a[:5] == 5).any()) # do not copy a = self.ts.copy() ra, _ = a.align(b, join='left', copy=False) ra[:5] = 5 self.assert_((a[:5] == 5).all()) # do copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right') rb[:3] = 5 self.assert_(not (b[:3] == 5).any()) # do not copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right', copy=False) rb[:2] = 5 self.assert_((b[:2] == 5).all()) def test_align_sameindex(self): a, b = self.ts.align(self.ts, copy=False) self.assert_(a.index is self.ts.index) self.assert_(b.index is self.ts.index) # a, b = self.ts.align(self.ts, copy=True) # self.assert_(a.index is not self.ts.index) # self.assert_(b.index is not self.ts.index) def test_reindex(self): identity = self.series.reindex(self.series.index) self.assertEqual(id(self.series.index), id(identity.index)) subIndex = self.series.index[10:20] subSeries = self.series.reindex(subIndex) for idx, val in subSeries.iteritems(): self.assertEqual(val, self.series[idx]) subIndex2 = self.ts.index[10:20] subTS = self.ts.reindex(subIndex2) for idx, val in subTS.iteritems(): self.assertEqual(val, self.ts[idx]) stuffSeries = self.ts.reindex(subIndex) self.assert_(np.isnan(stuffSeries).all()) # This is extremely important for the Cython code to not screw up nonContigIndex = self.ts.index[::2] subNonContig = self.ts.reindex(nonContigIndex) for idx, val in subNonContig.iteritems(): self.assertEqual(val, self.ts[idx]) def test_reindex_corner(self): # (don't forget to fix this) I think it's fixed reindexed_dep = self.empty.reindex(self.ts.index, method='pad') # corner case: pad empty series reindexed = self.empty.reindex(self.ts.index, method='pad') # pass non-Index reindexed = self.ts.reindex(list(self.ts.index)) assert_series_equal(self.ts, reindexed) # bad fill method ts = self.ts[::2] self.assertRaises(Exception, ts.reindex, self.ts.index, method='foo') def test_reindex_pad(self): s = Series(np.arange(10), np.arange(10)) s2 = s[::2] reindexed = s2.reindex(s.index, method='pad') reindexed2 = s2.reindex(s.index, method='ffill') assert_series_equal(reindexed, reindexed2) expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10)) assert_series_equal(reindexed, expected) def test_reindex_backfill(self): pass def test_reindex_int(self): ts = self.ts[::2] int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index) # this should work fine reindexed_int = int_ts.reindex(self.ts.index) # if NaNs introduced self.assert_(reindexed_int.dtype == np.float_) # NO NaNs introduced reindexed_int = int_ts.reindex(int_ts.index[::2]) self.assert_(reindexed_int.dtype == np.int_) def test_reindex_bool(self): # A series other than float, int, string, or object ts = self.ts[::2] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) # this should work fine reindexed_bool = bool_ts.reindex(self.ts.index) # if NaNs introduced self.assert_(reindexed_bool.dtype == np.object_) # NO NaNs introduced reindexed_bool = bool_ts.reindex(bool_ts.index[::2]) self.assert_(reindexed_bool.dtype == np.bool_) def test_reindex_bool_pad(self): # fail ts = self.ts[5:] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) filled_bool = bool_ts.reindex(self.ts.index, method='pad') self.assert_(isnull(filled_bool[:5]).all()) def test_reindex_like(self): other = self.ts[::2] assert_series_equal(self.ts.reindex(other.index), self.ts.reindex_like(other)) def test_rename(self): renamer = lambda x: x.strftime('%Y%m%d') renamed = self.ts.rename(renamer) self.assertEqual(renamed.index[0], renamer(self.ts.index[0])) # dict rename_dict = dict(zip(self.ts.index, renamed.index)) renamed2 = self.ts.rename(rename_dict) assert_series_equal(renamed, renamed2) # partial dict s = Series(np.arange(4), index=['a', 'b', 'c', 'd']) renamed = s.rename({'b' : 'foo', 'd' : 'bar'}) self.assert_(np.array_equal(renamed.index, ['a', 'foo', 'c', 'bar'])) def test_preserveRefs(self): seq = self.ts[[5,10,15]] seq[1] = np.NaN self.assertFalse(np.isnan(self.ts[10])) def test_ne(self): ts = TimeSeries([3, 4, 5, 6, 7], [3, 4, 5, 6, 7], dtype=float) expected = [True, True, False, True, True] self.assert_(tm.equalContents(ts.index != 5, expected)) self.assert_(tm.equalContents(~(ts.index == 5), expected)) def test_pad_nan(self): x = TimeSeries([np.nan, 1., np.nan, 3., np.nan], ['z', 'a', 'b', 'c', 'd'], dtype=float) x = x.fillna(method='pad') expected = TimeSeries([np.nan, 1.0, 1.0, 3.0, 3.0], ['z', 'a', 'b', 'c', 'd'], dtype=float) assert_series_equal(x[1:], expected[1:]) self.assert_(np.isnan(x[0]), np.isnan(expected[0])) def test_unstack(self): from numpy import nan from pandas.util.testing import assert_frame_equal index = MultiIndex(levels=[['bar', 'foo'], ['one', 'three', 'two']], labels=[[1, 1, 0, 0], [0, 1, 0, 2]]) s = Series(np.arange(4.), index=index) unstacked = s.unstack() expected = DataFrame([[2., nan, 3.], [0., 1., nan]], index=['bar', 'foo'], columns=['one', 'three', 'two'])
assert_frame_equal(unstacked, expected)
pandas.util.testing.assert_frame_equal
""" Estimate results, inc. economic impacts. Written by <NAME>. February 2022. """ import os import configparser import pandas as pd from tqdm import tqdm import numpy as np import geopandas as gpd import rasterio import random from misc import params, technologies, get_countries, get_regions, get_scenarios CONFIG = configparser.ConfigParser() CONFIG.read(os.path.join(os.path.dirname(__file__), 'script_config.ini')) BASE_PATH = CONFIG['file_locations']['base_path'] DATA_RAW = os.path.join(BASE_PATH, 'raw') DATA_PROCESSED = os.path.join(BASE_PATH, 'processed') RESULTS = os.path.join(BASE_PATH, '..', 'results') def query_hazard_layers(country, regions, technologies, scenarios): """ Query each hazard layer and estimate fragility. """ iso3 = country['iso3'] name = country['country'] regional_level = country['lowest'] gid_level = 'GID_{}'.format(regional_level) filename = 'fragility_curve.csv' path_fragility = os.path.join(DATA_RAW, filename) f_curve = pd.read_csv(path_fragility) f_curve = f_curve.to_dict('records') for scenario in scenarios: # if not scenario == 'data\processed\MWI\hazards\inunriver_rcp8p5_MIROC-ESM-CHEM_2080_rp01000.tif': # continue for technology in technologies: output = [] for idx, region in regions.iterrows(): gid_id = region[gid_level] scenario_name = os.path.basename(scenario) # if not gid_id == 'MWI.13.12_1': # continue filename = '{}_{}_{}.shp'.format(gid_id, technology, scenario_name) folder_out = os.path.join(DATA_PROCESSED, iso3, 'regional_data', gid_id, 'scenarios', scenario_name) path_output = os.path.join(folder_out, filename) if os.path.exists(path_output): continue filename = '{}_{}.shp'.format(technology, gid_id) folder = os.path.join(DATA_PROCESSED, iso3, 'regional_data', gid_id, 'sites') path = os.path.join(folder, filename) if not os.path.exists(path): continue sites = gpd.read_file(path, crs='epsg:4326')#[:1] failures = 0 for idx, site in sites.iterrows(): with rasterio.open(scenario) as src: src.kwargs = {'nodata':255} coords = [(site['geometry'].x, site['geometry'].y)] depth = [sample[0] for sample in src.sample(coords)][0] fragility = query_fragility_curve(f_curve, depth) failure_prob = random.uniform(0, 1) failed = (1 if failure_prob < fragility else 0) if fragility > 0: failures += 1 output.append({ 'type': 'Feature', 'geometry': site['geometry'], 'properties': { 'radio': site['radio'], 'mcc': site['mcc'], 'net': site['net'], 'area': site['area'], 'cell': site['cell'], 'gid_level': gid_level, 'gid_id': region[gid_level], 'depth': depth, 'scenario': scenario_name, 'fragility': fragility, 'fail_prob': failure_prob, 'failure': failed, 'cost_usd': round(100000 * fragility), # 'cell_id': site['cell_id'], }, }) if len(output) == 0: return if not os.path.exists(folder_out): os.makedirs(folder_out) output = gpd.GeoDataFrame.from_features(output, crs='epsg:4326') output.to_file(path_output, crs='epsg:4326') return def query_fragility_curve(f_curve, depth): """ Query the fragility curve. """ if depth < 0: return 0 for item in f_curve: if item['depth_lower_m'] <= depth < item['depth_upper_m']: return item['fragility'] else: continue print('fragility curve failure: {}'.format(depth)) return 0 def econ_interim_impacts(country, technologies, scenarios): """ Estimate economic impacts. Aqueduct flood scenarios as structured as follows: floodtype_climatescenario_subsidence_year_returnperiod_projection """ iso3 = country['iso3'] filename = 'econ_interim_{}.csv'.format(iso3) folder_out = os.path.join(RESULTS) path_output = os.path.join(folder_out, filename) # if os.path.exists(path_output): # return output = [] for scenario in tqdm(scenarios): for technology in technologies: scenario = os.path.basename(scenario) filename = 'sites_{}_{}.csv'.format(technology, scenario) folder = os.path.join(DATA_PROCESSED, country['iso3'], 'failed_sites') path = os.path.join(folder, filename) data = pd.read_csv(path) data = data.to_dict('records')#[:10000] ### floodtype_climatescenario_subsidence_year_returnperiod_projection floodtype = scenario.split('_')[0] climatescenario = scenario.split('_')[1] subsidence = scenario.split('_')[2] year = scenario.split('_')[3] returnperiod = scenario.split('_')[4].strip('.tif') projection = scenario.split('_')[5:] #not all same length if floodtype == 'inuncoast': #deal with differences between climate scenarios projection = '_'.join(projection) elif floodtype == 'inunriver': projection = 'inunriver' else: print('Did not recognize floodtype') projection = projection.strip('.tif') affected_sites = 0 cost = 0 for item in data: if item['scenario'] == scenario: if item['fragility'] > 0: affected_sites += 1 cost += (100000 * item['fragility']) output.append({ 'floodtype': floodtype, 'climatescenario': climatescenario, 'subsidence': subsidence, 'year': year, 'returnperiod': returnperiod, 'projection': projection, 'technology': technology, 'affected_sites': affected_sites, 'cost': cost, 'scenario': scenario, }) output = pd.DataFrame(output) output = output.drop_duplicates() if not os.path.exists(folder_out): os.mkdir(folder_out) output.to_csv(path_output, index=False) return def econ_final_impacts(country): """ Compare economic impacts against historical. Aqueduct flood scenarios as structured as follows: floodtype_climatescenario_subsidence_year_returnperiod_projection """ iso3 = country['iso3'] filename = 'econ_interim_{}.csv'.format(iso3) folder_in = os.path.join(RESULTS) path_in = os.path.join(folder_in, filename) if not os.path.exists(path_in): return data = pd.read_csv(path_in) data = process_edit_return_periods(data) data = add_model_average(data, 'cost') ### Add hist baseline to inuncoast inuncoast = data.loc[data['floodtype'] == 'inuncoast'] historical = inuncoast.loc[inuncoast['climatescenario'] == 'historical'] scenarios = inuncoast.loc[inuncoast['climatescenario'] != 'historical'] historical = historical[['returnperiod', 'technology', 'affected_sites', 'cost']].reset_index() historical = historical.rename({'affected_sites': 'hist_affected_sites', 'cost': 'hist_cost'}, axis=1) historical.drop('index', axis=1, inplace=True) inuncoast = pd.merge(scenarios, historical, how='left', on=['returnperiod', 'technology']) ### Add hist baseline to inunriver inunriver = data.loc[data['floodtype'] == 'inunriver'] historical = inunriver.loc[inunriver['climatescenario'] == 'historical'] scenarios = inunriver.loc[inunriver['climatescenario'] != 'historical'] historical = historical[['returnperiod', 'technology', 'affected_sites', 'cost']].reset_index() historical = historical.rename({'affected_sites': 'hist_affected_sites', 'cost': 'hist_cost'}, axis=1) historical.drop('index', axis=1, inplace=True) inunriver = pd.merge(scenarios, historical, how='left', on=['returnperiod', 'technology']) output = pd.concat([inuncoast, inunriver]) output['sites_difference'] = output['affected_sites'] - output['hist_affected_sites'] output['cost_difference'] = output['cost'] - output['hist_cost'] filename = 'econ_final_{}.csv'.format(iso3) folder_out = os.path.join(RESULTS) path_output = os.path.join(folder_out, filename) output.to_csv(path_output, index=False) return def process_edit_return_periods(data): """ Correct differences in the return period text. """ output = [] for idx, item in data.iterrows(): rn_name = item['returnperiod'] if rn_name == 'rp01000' or rn_name == 'rp1000': item['returnperiod'] = '1000-year' elif rn_name == 'rp00500' or rn_name == 'rp0500': item['returnperiod'] = '500-year' elif rn_name == 'rp00250' or rn_name == 'rp0250': item['returnperiod'] = '250-year' elif rn_name == 'rp00100' or rn_name == 'rp0100': item['returnperiod'] = '100-year' else: print('Return period not recognized') output.append(item) output = pd.DataFrame(output) return output def add_model_average(data, metric): """ Take the model average for inunriver. """ inuncoast = data.loc[data['floodtype'] == 'inuncoast'] inunriver = data.loc[data['floodtype'] == 'inunriver'] historical = inunriver.loc[data['climatescenario'] == 'historical'] inunriver = inunriver.loc[data['climatescenario'] != 'historical'] scenarios = inunriver['climatescenario'].unique() years = inunriver['year'].unique() returnperiods = inunriver['returnperiod'].unique() technologies = inunriver['technology'].unique() models = inunriver['subsidence'].unique() output = [] for scenario in scenarios: subset_scenarios = inunriver.loc[inunriver['climatescenario'] == scenario] for year in years: subset_year = subset_scenarios.loc[subset_scenarios['year'] == year] for returnperiod in returnperiods: subset_rp = subset_year.loc[subset_year['returnperiod'] == returnperiod] if len(subset_rp) == 0: continue for technology in technologies: subset_tech = subset_rp.loc[subset_rp['technology'] == technology] if len(subset_tech) == 0: continue # affected_sites = [] mean_list = [] for model in models: subset_model = subset_tech.loc[subset_tech['subsidence'] == model] if len(subset_model) == 0: continue # affected_sites.append(subset_model['affected_sites'].values[0]) mean_list.append(subset_model[metric].values[0]) output.append({ 'floodtype': 'inunriver', 'climatescenario': scenario, 'subsidence': 'model_mean', 'year': year, 'returnperiod': returnperiod, 'projection': 'nunriver', 'technology': technology, # 'affected_sites': int(round(np.mean(affected_sites))), metric: int(round(np.mean(mean_list))), 'scenario': 'model_mean', }) output = pd.DataFrame(output) output = pd.concat([inuncoast, historical, inunriver, output]) output = output.drop_duplicates() return output def coverage_interim_impacts(country, regions, technologies, scenarios): """ Estimate coverage. Aqueduct flood scenarios as structured as follows: floodtype_climatescenario_subsidence_year_returnperiod_projection """ iso3 = country['iso3'] filename = 'coverage_interim_{}.csv'.format(iso3) folder_out = os.path.join(RESULTS) path_output = os.path.join(folder_out, filename) # if os.path.exists(path_output): # return output = [] for scenario in tqdm(scenarios): scenario = os.path.basename(scenario) ### floodtype_climatescenario_subsidence_year_returnperiod_projection floodtype = scenario.split('_')[0] climatescenario = scenario.split('_')[1] subsidence = scenario.split('_')[2] year = scenario.split('_')[3] returnperiod = scenario.split('_')[4].strip('.tif') projection = scenario.split('_')[5:] #not all same length if floodtype == 'inuncoast': #deal with differences between climate scenarios projection = '_'.join(projection) elif floodtype == 'inunriver': projection = 'inunriver' else: print('Did not recognize floodtype') projection = projection.strip('.tif') for technology in tqdm(technologies): population_covered = 0 for idx, region in regions.iterrows(): regional_level = country['gid_region'] gid_level = 'GID_{}'.format(regional_level) gid_id = region[gid_level] filename = 'covered_{}_{}_{}.csv'.format(gid_id, technology, scenario) folder_out = os.path.join(DATA_PROCESSED, iso3, 'regional_data', gid_id, technology) path_in = os.path.join(folder_out, filename) if not os.path.exists(path_in): continue data = pd.read_csv(path_in) pop = data['population'].sum() if pop > 0: population_covered += pop output.append({ 'floodtype': floodtype, 'climatescenario': climatescenario, 'subsidence': subsidence, 'year': year, 'returnperiod': returnperiod, 'projection': projection, 'covered_population': population_covered, 'technology': technology, 'scenario': scenario, }) output = pd.DataFrame(output) output = output.drop_duplicates() if not os.path.exists(folder_out): os.mkdir(folder_out) output.to_csv(path_output, index=False) return def coverage_final_impacts(country): """ Compare coverage impacts against historical. Aqueduct flood scenarios as structured as follows: floodtype_climatescenario_subsidence_year_returnperiod_projection """ iso3 = country['iso3'] filename = 'coverage_interim_{}.csv'.format(iso3) folder_in = os.path.join(RESULTS) path_in = os.path.join(folder_in, filename) if not os.path.exists(path_in): return data =
pd.read_csv(path_in)
pandas.read_csv
def secondary_market_monthly(file_path): from IPython.display import display import numpy as np import pandas as pd pd.set_option('display.unicode.ambiguous_as_wide', True) pd.set_option('display.unicode.east_asian_width', True) df = pd.read_excel(file_path) check = ['满懿(上海)房地产', '上海搜房房天下房地产'] for a in df['中介公司']: if a in check: print('recheck agency!', a) break num = df['中介公司'].count() avg_price = df['总价'].mean() avg_area = df['面积'].mean() total_amount = df['总价'].sum() agency = ['上海中原物业', '上海汉宇房地产', '上海我爱我家房地产', '上海太平洋房屋', '德佑房地产', '上海云房数据', '上海易居房地产', '上海志远房地产'] dict1 = {} for a in agency: dict1[a] = [df['总价'][df['中介公司'] == a].count()/num, df['总价'][df['中介公司'] == a].sum()/total_amount] result1 = pd.DataFrame(dict1, index = ['单数市占', '金额市占']) x = [1, 6, 7, 8, 10, 11] y = ['宝原', '链家', '搜房', '满懿', '房多多', '房好多'] for x1, y1 in zip(x, y): result1.insert(x1, y1, [0, 0]) dict2 = {'成交套数': num, '套均价格': avg_price/10000, '套均面积': avg_area} result2 = pd.DataFrame(dict2, index = [file_path[2:4]]) writer =
pd.ExcelWriter('result.xlsx')
pandas.ExcelWriter
# ---------------------------------------------------------------------------- # Copyright (c) 2019, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import dendropy import unittest import pandas as pd import tempfile import numpy as np from time import time import os from .logger import * CUR_PATH = os.path.dirname(os.path.abspath(__file__)) if 'TMPDIR' in os.environ: tmpdir = os.environ['TMPDIR'] else: tmpdir = tempfile.gettempdir() def isNotEmpty(s): return bool(s and s.strip()) class Data(): def __init__(self, seed_num, logger, generate_strategy, tmp_dir, xgen, n_beta, n_binom, var_method, stat_method, prior_weight, coef, exponent, pseudo, pseudo_cnt, normalized): if tmp_dir is None: tmp_dir = tempfile.mkdtemp(dir=tmpdir) self.tmp_dir = tmp_dir if logger is not None: self.logger_ins = logger else: self.log_fp = tempfile.mktemp(dir=tmp_dir, prefix='logfile.log') print(self.log_fp) log = LOG(self.log_fp) self.logger_ins = log.get_logger('generator') self.logger_ins.info("The seed number is set to", seed_num) np.random.seed(seed_num) self.logger_ins.info("The generate_strategy is", generate_strategy) self.logger_ins.info("The xgen is", xgen) self.logger_ins.info("The n_beta is", n_beta) self.logger_ins.info("The n_binom is", n_binom) self.logger_ins.info("The var_method is", var_method) self.logger_ins.info("The stat_method is", stat_method) self.logger_ins.info("The prior_weight is", prior_weight) self.logger_ins.info("The coef is", coef) self.logger_ins.info("The exponent is", exponent) self.logger_ins.info("The pseudo is", pseudo) self.logger_ins.info("The pseudo_cnt is", pseudo_cnt) self.logger_ins.info("The normalized is", normalized) if generate_strategy is not None: # generate_strategy: generation strategy, it could be "augmentation" meaning we are just augmenting data # without trying to balance out labels. Alternatively, "balancing" meaning we are balancing out labels self.generate_strategy = generate_strategy # stat_method: defines the generative procedure. options are "binom" , "beta_binom", "beta". We don't # recommend using beta. The default is binom self.stat_method = stat_method # prior_weight: defines the weight for per class parameter estimation. Default is 0 meaning we only use per individual parameter estimations self.prior_weight = prior_weight # coef: The penalty in the tree based variance formula. Default is 200. Larger numbers cause less variance self.coef = coef # exponent: The exponent in the tree based variance formula. Default is 1/2. Meaning self.exponent = exponent self.pseudo = pseudo self.xgen = xgen self.n_beta = n_beta self.n_binom = n_binom self.pseudo_cnt = pseudo_cnt # var_method: options are "br_penalized": priors are estimated based on the tree, or # "class": priors are estimated based on method of moments (cluster wise). self.var_method = var_method # normalized: If normalize biom table at the end or not. Default is False self.normalized = normalized if tmp_dir is not None: self.dirpath = tmp_dir else: self.dirpath = tempfile.mkdtemp(dir=tmpdir) self.logger_ins.info("Temporary directory path is", self.dirpath) if self.generate_strategy == "augmentation": self.most_freq_class = None self.freq_classes = None def _set_data(self, table, y, tree, sampling_strategy): t0 = time() self._load_tree(tree) self.logger_ins.info("loading the tree took", time() - t0, "seconds") t0 = time() table = self._prune_table(table, min_samples=0) self._set_table(table) self.logger_ins.info("biom table loaded in", time() - t0, "seconds") self.logger_ins.info("Number of sOTUs is ", len(self.obs)) self.logger_ins.info("Number of samples is ", len(self.samples)) self._prune_phylo() if len(set([x.taxon.label for x in self.tree.leaf_nodes()]) - set(self.obs)) != 0: raise ValueError( "The set of leaf labels is not the same as observations from biom table" ) t0 = time() self._set_labels(y) self.logger_ins.info("Meta data loaded in", time() - t0, "seconds") self._set_num_to_select(sampling_strategy) self._add_pseudo() self._init_gen() def _add_pseudo(self): ''' adds pseudo count to each feature for the training data to avoid zero count self.pseudo_cnt should be an integer, where we divide it between all features. ''' self.pseudo_cnt /= self.num_leaves self.table += self.pseudo_cnt def _prune_phylo(self): to_delete_set = set([x.taxon.label for x in self.tree.leaf_nodes()]) - set(self.obs) if len(to_delete_set) > 0: self.logger_ins.info("The set of features in the phylogeny and the table are not the same.", len(to_delete_set), "features will be pruned from the tree.") self.tree.prune_taxa_with_labels(to_delete_set) else: self.logger_ins.info("The set of features in the phylogeny and the table are the same. " "No feature will be pruned from the tree.") return def _prune_table(self, table, min_samples: int = 1): filter_fn = lambda val, id_, md: np.sum(val) >= min_samples return table.filter(filter_fn, axis='observation', inplace=False) def _set_num_to_select(self, sampling_strategy=None): ''' This function sets the number of samples to be drawn for each class self.n_samples_to_select: key: class label, values: number of samples to be selected from each class :return: ''' # If self.most_freq_class is None or self.freq_classes is None, then we are just augmenting, no need to # set up n_samples_to_select self.class_sizes = None if sampling_strategy: try: sampling_strategy_pd = pd.read_csv(sampling_strategy, sep="\t", low_memory=False, index_col='#GroupID') self.class_sizes = sampling_strategy_pd.iloc[:, 0] except ValueError: print( "The first column for the sampling strategy TSV (tab-delimited) file should be '#GroupID', and " "first column correspond to group sizes. Please note that your group IDs should match those " "in metadata file" ) exit(1) if self.generate_strategy == 'augmentation': self.n_binom_extra = {'all': 0} else: self.n_binom_extra = dict() self.n_samples_to_select = dict() for c in self.freq_classes: # n_all: after augmentation, all classes should have n_all + self.most_freq_class number of samples n_all = self.most_freq_class * (self.xgen) # check if our logic was correct if n_all + self.most_freq_class - self.freq_classes[c] < 0: raise ValueError( "Please choose a non negative xgen number!" ) # number of samples to generate equals n_total_samples_to_gen n_total_samples_to_gen = np.max(n_all + self.most_freq_class - self.freq_classes[c], 0) if self.class_sizes is not None: try: self.logger_ins.info("Reading the total samples to generate for class", c, "from", sampling_strategy) n_total_samples_to_gen = np.max(self.class_sizes[c] - self.freq_classes[c], 0) except KeyError: print( "The first column for the sampling strategy TSV (tab-delimited) file should be " "'#GroupID', and first column correspond to group sizes. Please note that your group IDs " "should match those in metadata file. Your class labels from meta data file are", set(self.freq_classes.keys()), "but your class labels in your sampling strategy TSV " "file are", set(self.class_sizes.index) ) exit(1) self.logger_ins.info("Will generate", n_total_samples_to_gen, "for the class", c) # per each sample we generate self.n_binom*self.n_beta samples. Thus, the number of samples to select is self.n_samples_to_select[c] = np.max( (n_total_samples_to_gen) // (self.n_binom * self.n_beta), 0) # per each sample we generate self.n_binom*self.n_beta samples. If # n_total_samples_to_gen % (self.n_binom * self.n_beta) != 0, then we need some extra augmentation self.n_binom_extra[c] = max( n_total_samples_to_gen - self.n_samples_to_select[c] * self.n_binom * self.n_beta, 0) self.logger_ins.info("class", c, "Generating", self.n_samples_to_select[c], "samples", "with", "n_binom:", self.n_binom, "and n_beta:", self.n_beta, "and n_binom_extra", self.n_binom_extra[c]) def _set_labels(self, labels): ''' :param labels: labels creates a data frame from the labels using self.__set_meta_clusters(labels) Then finds the most frequent class, an store the frequency in self.most_freq_class Finally sets clusters, a dictionary with keys: class labels, values: sample IDs :return: ''' self.meta, self.labels, self.classes, counts = self._set_meta_clusters(labels) self.freq_classes = dict() max_cnt = 0 for i, cls in enumerate(self.classes): self.freq_classes[cls] = counts[i] if self.freq_classes[cls] > max_cnt: max_cnt = self.freq_classes[cls] self.most_freq_class = max_cnt self.samples = np.asarray(self.samples) self._set_clusters() def _set_meta_clusters(self, labels): ''' :param labels: phenotype labels creates a data frame from the labels, and fills the missing labels with a label "-1" by default. :return: data frame (meta), labels, classes: set of labels, counts: number of samples corresponding to each class ''' labels = np.asarray(labels).ravel() meta =
pd.DataFrame(index=self.samples, columns=['label'], data=labels)
pandas.DataFrame
import pandas as pd import requests import argparse from datetime import datetime from time import sleep from bs4 import BeautifulSoup sortFilters = { "LowPrice": {"data": "Prices", "asc": True}, "Alpha": {"data": "Titles", "asc": True}, "LocationAlpha": {"data": "Locations", "asc": True}, "Newest": {"data": "Dates", "asc": False} } defaultSort = "LowPrice" def cl_search(keywords, filterTypes=None, filterLocationData=None, filterPriceData=None, sort=defaultSort, filterFree=False, DEBUG=False): ### RETRIEVE RSS FILE FROM CRAIGSLIST SEARCH #url_base = 'http://vancouver.craigslist.org/search/sss?format=rss&query=' url_base = "https://vancouver.craigslist.org/search/msa?query=" url_search_base = "https://vancouver.craigslist.org" if keywords: searchTerms = keywords else: searchTerms = "synthesizer" titles = [] locations = [] dates = [] prices = [] descriptions = [] urls = [] urls.append(url_base + searchTerms) ### RECURSIVELY SCRAPE ALL PAGES while len(urls) > 0: #wait 1 second in between each new url request sleep(1) url = urls.pop(0) rsp = requests.get(url) soup = BeautifulSoup(rsp.text,"lxml") next_url = soup.find('a', class_= "button next") if next_url: if next_url['href']: urls.append(url_search_base + next_url['href']) #return all listings listings = soup.find_all('li', attrs={'class': 'result-row'}) for listing in listings: titles.append(listing.find('a', {'class': ["result-title"]}).text.lstrip().rstrip()) date = datetime.strptime(listing.find('time', {'class': ["result-date"]}).text.lstrip().rstrip(), '%b %d') dates.append(date) try: prices.append(int(listing.find('span', {'class': "result-price"}).text.lstrip().rstrip().strip("$"))) except: prices.append(-1) try: locations.append(listing.find('span', {'class': "result-hood"}).text.lstrip().rstrip().strip("(").strip(")").upper()) except: locations.append('zzz_missing') #write findings to a dataframa listings_df =
pd.DataFrame({"Dates": dates, "Locations": locations, "Titles": titles, "Prices": prices})
pandas.DataFrame
""" Purpose: Date created: 2021-07-19 Contributor(s): <NAME>. """ from io import StringIO import urllib.parse as upars import urllib.request as ureq import orjson import requests import pandas as pd from io import StringIO import urllib.request as ureq import orjson import pandas as pd base_url = "https://www.census.gov/naics/resources/js/data/naics-sector-descriptions.json" with ureq.urlopen(base_url) as resp: bdata = resp.read() # data = StringIO(resp.read().decode("utf-8")) if bdata: dd = orjson.loads(bdata) # dd.get("naicsRef")[0].get("table") # dd.get("naicsRef")[0].get("table").keys() # dd.get("naicsRef")[0].get("table").get("tableRow") # orjson.dumps(dd.get("naicsRef")) # orjson.dumps(dd.get("naicsRef")[0]) df = pd.read_json(orjson.dumps(dd.get("naicsRef")[0].get("table").get("tableRow"))) dfe = df.loc[:, "sectorCode"].str.split("-").explode().reset_index() pd.merge(dfe, df, how="left", left_on = "sectorCode", right_on = "sectorCode") pd.merge(dfe, df, how="left", left_index = True, right_index = True) subsection_base_url = "https://www.census.gov/naics/resources/model/dataHandler.php" agri_url_sample = "https://www.census.gov/naics/resources/model/dataHandler.php?input=11&chart=2017&search=Y" qq = upars.urlparse(agri_url_sample) qq_qry = dict(upars.parse_qsl(qq.query)) argi_subsect_sample = "https://www.census.gov/naics/resources/model/dataHandler.php?=&year=2017&code=11&search=true" yy = upars.urlparse(argi_subsect_sample) yy_qry = dict(upars.parse_qsl(yy.query)) code_111111_url = "https://www.census.gov/naics/resources/model/dataHandler.php?=&year=2017&code=11111&search=true" with ureq.urlopen(base_url) as resp: data = StringIO(resp.read().decode("utf-8")) dfs =
pd.read_json(data)
pandas.read_json
#!/usr/bin/env python3 import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State import dash_table import plotly.graph_objs as go import pandas as pd import numpy as np import os import math from scipy.stats import mannwhitneyu, ttest_ind from nutris import nutris BASEPATH = "/data" app = dash.Dash(__name__) app.config['suppress_callback_exceptions']=True def combine_all_data(): print("getting new data") survey_df = pd.DataFrame() #tracking_files = {} machineLayouts = pd.DataFrame() timings = pd.DataFrame() for filename in os.listdir(BASEPATH): if ".csv" in filename: if "machineLayout" in filename: user_id = filename.split("_")[0] task = filename.split("_")[1] #the machinelayout is the same for all tasks no need to store it multiple times #extract the machine layout machinelayout_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), sep=';') machinelayout_df_tmp["user_id"] = user_id machinelayout_df_tmp["task"] = task machineLayouts = machineLayouts.append(machinelayout_df_tmp, ignore_index=True) if "_trackings_" in filename: user_id = filename.split("_")[0] task = filename.split("_")[1] timings_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), sep=',') timings = timings.append({"user_id":user_id, "task":task, "time":timings_df_tmp.iloc[-1]["timestamp"] / 1000}, ignore_index=True) for filename in os.listdir(BASEPATH): if ".csv" in filename and not "BAK" in filename: if "_evaluation_" in filename: survey_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), index_col="user_id", sep=';') survey_df = survey_df_tmp.combine_first(survey_df) elif "_basic_" in filename: survey_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), index_col="user_id", sep=';') survey_df = survey_df_tmp.combine_first(survey_df) elif "_guess_" in filename: survey_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), index_col="user_id", sep=';') survey_df = survey_df_tmp.combine_first(survey_df) elif "_task_" in filename: #extract the nutriscore & label from machine layout if available survey_df_tmp = pd.read_csv(os.path.join(BASEPATH, filename), index_col="user_id", sep=';') user_id = str(survey_df_tmp.index[0]) #assuming there is only one row in the survey_task.csv, which is fine if data from typeform for taskNr in range(1,5): try: product = machineLayouts[ (machineLayouts["user_id"] == user_id) & \ (machineLayouts["BoxNr"] == int(survey_df_tmp["t_{}".format(taskNr)].iloc[0])) ].iloc[0] survey_df_tmp["nutri_label_{}".format(taskNr)] = product["ProductNutriLabel"] survey_df_tmp["nutri_score_{}".format(taskNr)] = product["ProductNutriScore"] survey_df_tmp["energy_{}".format(taskNr)] = nutris[product["ProductId"]]["energy"] survey_df_tmp["sugar_{}".format(taskNr)] = nutris[product["ProductId"]]["sugar"] survey_df_tmp["sat_fat_{}".format(taskNr)] = nutris[product["ProductId"]]["sat_fat"] survey_df_tmp["natrium_{}".format(taskNr)] = nutris[product["ProductId"]]["natrium"] survey_df_tmp["protein_{}".format(taskNr)] = nutris[product["ProductId"]]["protein"] survey_df_tmp["fiber_{}".format(taskNr)]= nutris[product["ProductId"]]["fiber"] survey_df_tmp["health_percentage_{}".format(taskNr)] = nutris[product["ProductId"]]["health_percentage"] survey_df_tmp["time_{}".format(taskNr)] = timings.loc[(timings["user_id"]==user_id) & (timings["task"]==str(taskNr)),"time"].iloc[0] except: survey_df_tmp["nutri_label_{}".format(taskNr)] = None survey_df_tmp["nutri_score_{}".format(taskNr)] = None survey_df_tmp["energy_{}".format(taskNr)] = None survey_df_tmp["sugar_{}".format(taskNr)] = None survey_df_tmp["sat_fat_{}".format(taskNr)] = None survey_df_tmp["natrium_{}".format(taskNr)] = None survey_df_tmp["protein_{}".format(taskNr)] = None survey_df_tmp["fiber_{}".format(taskNr)]= None survey_df_tmp["health_percentage_{}".format(taskNr)] = None survey_df_tmp["time_{}".format(taskNr)] = None survey_df = survey_df_tmp.combine_first(survey_df) age_classes = { 0: "0.) < 19yrs", 1: "1.) 20 - 29 yrs", 2: "2.) 30 - 49 yrs", 3: "2.) 30 - 49 yrs", 4: "3.) 50 - 65 yrs", 5: "4.) > 65 yrs", 6: "4.) > 65 yrs"} survey_df["age_class"] = survey_df["age"].apply(lambda x: safe_dict(x, age_classes)) ages = { 0: 18, 1: 25, 2: 35, 2: 45, 3: 57, 4: 72, 5: 85 } survey_df["age"] = survey_df["age"].apply(lambda x: safe_dict(x, ages)) weights = { "39-": 35, "40-49": 45, "50-59": 55, "60-69": 65, "70-79": 75, "80-89": 85, "90-99": 95, "100-109": 105, "110-119": 115, "120-129": 125, "130-139": 135, "140-149": 145, "150+": 155 } survey_df["weight"] = survey_df["weight"].apply(lambda x: safe_dict(x, weights, False)) heights = { "139-": 1.35, "140-149": 1.45, "150-159": 1.55, "160-169": 1.65, "170-179": 1.75, "180-189": 1.85, "190-199": 1.95, "200-209": 2.05, "210+": 2.15 } survey_df["height"] = survey_df["height"].apply(lambda x: safe_dict(x, heights, False)) genders = { "male": "0.) Male", "female": "1.)Female" } survey_df["gender"] = survey_df["gender"].apply(lambda x: safe_dict(x, genders, False)) survey_df["bmi"] = survey_df["weight"] / (survey_df["height"] * survey_df["height"]) survey_df["bmi_class"] = survey_df["bmi"].apply(bmi_class) diets = { "No I don't follow a certain diet": "None", "Nein, ich folge keiner bestimmten Diät": "None", "I avoid certain foods because of an allergy or food intolerance": "Allergy / Intolerance", "Ich vermeide bestimmte Lebensmittel wegen Allergie oder Unverträglichkeit": "Allergy / Intolerance", "I eat vegetarian": "Vegiatrian / Vegan", "Ich esse vegetarisch (ovo-lacto-vegetarisch, lacto-vegetarisch)": "Vegiatrian / Vegan", "I eat vegan": "Vegiatrian / Vegan", "Ich esse vegan": "Vegiatrian / Vegan", "I avoid certain foods for ethical/cultural/religious reasons": "Cultural / Ethnical", "Ich vermeide bestimmte Lebensmittel aus ethischen, kulturellen oder religiösen Gründen": "Cultural / Ethnical", "I follow a high carbohydrate diet": "High Carb", "Ich esse kohlenhydratreich": "High Carb", "I follow a diet low in carbohydrates": "Low Carb", "Ich esse kohlenhydrat-arm": "Low Carb", "I follow a low fat or cholosterol diet": "Low Fat", "Ich esse fettarm oder cholesterin-arm": "Low Fat", "I follow a diet with reduced salt consumption": "Low Salt", "Ich esse salz-reduziert": "Low Salt", "I follow a diet low in protein": "Low Protein", "Ich esse protein-arm": "Low Protein", "I follow a diet rich in protein": "High Protein", "Ich esse protein-reich": "High Protein", "I follow an environmentally friendly / sustainable diet": "Sustainable", "Ich ernähre mich umweltreundlich und nachhaltig": "Sustainable", } survey_df["diet"] = survey_df["diet"].apply(lambda x: safe_dict(x, diets, False)) educations = { "Manditory School": "0:) primary education", "Middle school": "0:) primary education", "High school": "1.) secondary education", "Vocational school": "1.) secondary education", "master's diploma": "2.) tertiary education", "College / University": "2.) tertiary education", "Obligatorische Schule": "0:) primary education", "Weiterführende Schule": "0:) primary education", "Matura": "1.) secondary education", "Berufsschule": "1.) secondary education", "Meister- / eidg. Diplom": "2.) tertiary education", "Studium": "2.) tertiary education", } survey_df["education"] = survey_df["education"].apply(lambda x: safe_dict(x, educations, False)) snack_frequencies = { "sehr selten bis nie": "0.) never", "never":"0.) never", "once or twice per year":"0.) never", "ca. monatlich":"1.) monthly", "monthly":"1.) monthly", "ca. wöchentlich":"2.) weekly", "weekly":"2.) weekly", "ca. 2-3 mal pro Woche":"2.) weekly", "ca. 4-5 mal pro Woche":"3.) almost daily", "daily":"3.) almost daily", "ca. täglich":"3.) almost daily", } snack_frequencies_int = { "sehr selten bis nie": 0, "never":0, "once or twice per year":0, "ca. monatlich":1, "monthly":1, "ca. wöchentlich":4, "weekly":4, "ca. 2-3 mal pro Woche":10, "ca. 4-5 mal pro Woche":20, "daily":31, "ca. täglich":31, } survey_df["snack_frequency_int"] = survey_df["snack_frequency"].apply(lambda x: safe_dict(x, snack_frequencies_int, False)) survey_df["snack_frequency"] = survey_df["snack_frequency"].apply(lambda x: safe_dict(x, snack_frequencies, False)) ar_frequencies = { "Never used":"0.) Never", "Noch nie benutz":"0.) Never", "Tried once or twice":"1.) Few Times", "Schon ein oder zwei Mal benutzt":"1.) Few Times", "I use it sometimes":"2.) Sometimes", "Ich benutze es hin und wieder privat":"2.) Sometimes", "I worked with it on a project":"3.) Regularly", "Ich habe an einem Projekt damit gearbeitet":"3.) Regularly", "I use it regularly for private purpose":"3.) Regularly", "Ich benutze es regelmäßig privat":"3.) Regularly", "It is part of my job on a regular basis":"3.) Regularly", "Ich komme auf der Arbeit regelmäßig damit in Kontakt":"3.) Regularly", "I am an expert / developer in the field":"4.) Expert", "Ich bin ein Experte / Entwickler auf dem Feld":"4.) Expert", } ar_frequencies_int = { "Never used":0, "Noch nie benutz":0, "Tried once or twice":1, "Schon ein oder zwei Mal benutzt":1, "I use it sometimes":2, "Ich benutze es hin und wieder privat":2, "I worked with it on a project":3, "Ich habe an einem Projekt damit gearbeitet":3, "I use it regularly for private purpose":3, "Ich benutze es regelmäßig privat":3, "It is part of my job on a regular basis":3, "Ich komme auf der Arbeit regelmäßig damit in Kontakt":3, "I am an expert / developer in the field":4, "Ich bin ein Experte / Entwickler auf dem Feld":4, } survey_df["ar_frequency_int"] = survey_df["ar_frequency"].apply(lambda x: safe_dict(x, ar_frequencies_int, False)) survey_df["ar_frequency"] = survey_df["ar_frequency"].apply(lambda x: safe_dict(x, ar_frequencies, False)) survey_df["BI_avg"] = survey_df[["BI1", "BI2","BI3"]].mean(axis=1, numeric_only=True) survey_df["EE_avg"] = survey_df[["EE1", "EE2","EE3"]].mean(axis=1, numeric_only=True) survey_df["FL_avg"] = survey_df[["FL2","FL3"]].mean(axis=1, numeric_only=True) survey_df["HM_avg"] = survey_df[["HM1", "HM2"]].mean(axis=1, numeric_only=True) survey_df["IE_avg"] = survey_df[["IE1", "IE2"]].mean(axis=1, numeric_only=True) survey_df["PE_avg"] = survey_df[["PE1", "PE2","PE3"]].mean(axis=1, numeric_only=True) survey_df["PI_avg"] = survey_df[["PI1", "PI2","PI3"]].mean(axis=1, numeric_only=True) survey_df["SI_avg"] = survey_df[["SI1", "SI2","SI3"]].mean(axis=1, numeric_only=True) survey_df.fillna(value=pd.np.nan, inplace=True) return survey_df def render_box_per_col(col, survey_df): is_test = survey_df["group"] == "Test" is_control = survey_df["group"] == "Control" data = [] data.append(go.Box( x = survey_df[col][is_test], name="test", marker = dict( color = 'rgb(7,40,89)'), line = dict( color = 'rgb(7,40,89)') )) data.append(go.Box( x = survey_df[col][is_control], name="control", marker = dict( color = 'rgb(107,174,214)'), line = dict( color = 'rgb(107,174,214)') )) graph = dcc.Graph( figure = go.Figure( data = data, layout = go.Layout( showlegend=True, legend=go.layout.Legend( x=0, y=1.0 ), margin=go.layout.Margin(l=40, r=0, t=40, b=30) ) ), style={'height': 150}, id='box_{}'.format(col) ) graph_div = html.Div([graph], style={'padding-top': '20', 'padding-bottom': '20'}) return graph_div def data_per_col(col, survey_df): is_test = survey_df["group"] == "Test" is_control = survey_df["group"] == "Control" data = [ go.Histogram( x = survey_df[col][is_test].sort_values(), name="test", opacity=0.75, marker = dict( color = 'rgb(7,40,89)'), ), go.Histogram( x = survey_df[col][is_control].sort_values(), name="control", opacity=0.75, marker = dict( color = 'rgb(107,174,214)'), ) ] return data def render_hist_per_col(col, survey_df): data = data_per_col(col, survey_df) graph = dcc.Graph( figure = go.Figure( data = data, layout = go.Layout( showlegend=True, legend=go.layout.Legend( x=0, y=1.0 ), margin=go.layout.Margin(l=40, r=0, t=40, b=30) ) ), style={'height': 300} ) graph_div = html.Div([graph], style={'padding-top': '20', 'padding-bottom': '20'}) return graph_div def render_table(survey_df): table = dash_table.DataTable( id='table', columns=[{"name": i, "id": i} for i in survey_df.columns], data=survey_df.to_dict("rows"), ) return table #def load_user_tracking(user_id, task_id): # filename = tracking_files[user_id][task_id] def calc_p_whitney(col, s, ns): Rg = col.rank() nt = col[s].count() nc = col[ns].count() if (Rg == Rg.iloc[0]).all(): return Rg[s].sum() - nt * (nt + 1) / 2, 0.5, nt, nc u, p = stats.mannwhitneyu(Rg[s], Rg[ns]) return p # def calc_p_whitney(colname, survey_df): # col = survey_df[colname] # istest = survey_df["group"]=="Test" # iscontrol = survey_df["group"]=="Control" # Rg = col.rank() # # nt = col[istest].count() # nc = col[iscontrol].count() # # if (Rg == Rg.iloc[0]).all(): # return Rg[istest].sum() - nt * (nt + 1) / 2, 0.5, nt, nc # # u, p = mannwhitneyu(Rg[istest], Rg[iscontrol]) # return u, p, nt, nc def calc_p_t(colname, survey_df): col = survey_df[colname] istest = survey_df["group"]=="Test" iscontrol = survey_df["group"]=="Control" t, p = ttest_ind(col[istest].values, col[iscontrol].values, axis=0, nan_policy='omit') return t, p def table_group(task_nr, survey_df, header): istest = survey_df["group"] == "Test" iscontrol = survey_df["group"] == "Control" isoverweight = survey_df["bmi"] > 25 isnormal = survey_df["bmi"] <= 25 iseducated = survey_df["bmi"] > 25 isliterate = survey_df["FL_avg"] > 4.5 isilliterate = survey_df["FL_avg"] <= 4.5 cols = ["nutri_score", "energy", "sat_fat", "sugar", "natrium", "protein", "fiber", "health_percentage", "time"] data = pd.DataFrame() for col in cols: col_name = "{}_{}".format(col, task_nr) data.loc[col, "N Total"] = "[{}]".format(int(data.loc[col, "N Test"] + data.loc[col, "N Control"])) data.loc[col, "mean Total"] = "{:.2f}".format(survey_df[col_name].mean()) data.loc[col, "SD Total"] = "({:.2f})".format(survey_df[col_name].std()) p = calc_p_whitney(survey_df["group"], istest, iscontrol) data.loc[col, "p group"] = "{:.4f}".format(p) data.loc[col, "N Test"] = "[{}]".format(int(len(survey_df[istest]))) data.loc[col, "mean Test"] = "{:.2f}".format(survey_df[col_name][istest].mean()) data.loc[col, "SD Test"] = "({:.2f})".format(survey_df[col_name][istest].std()) data.loc[col, "N Control"] = "[{}]".format(int(len(survey_df[iscontrol]))) data.loc[col, "mean Control"] = "{:.2f}".format(survey_df[col_name][iscontrol].mean()) data.loc[col, "SD Control"] = "({:.2f})".format(survey_df[col_name][iscontrol].std()) p = calc_p_whitney(survey_df["FL_avg"], isliterate, isilliterate) data.loc[col, "p FL"] = "{:.4f}".format(p) data.loc[col, "N FL>4.5"] = "[{}]".format(int(len(survey_df[isliterate]))) data.loc[col, "mean FL>4.5"] = "{:.2f}".format(survey_df[col_name][isliterate].mean()) data.loc[col, "SD FL>4.5"] = "({:.2f})".format(survey_df[col_name][isliterate].std()) data.loc[col, "N FL<=4.5"] = "[{}]".format(int(len(survey_df[isilliterate]))) data.loc[col, "mean FL<=4.5"] = "{:.2f}".format(survey_df[col_name][isilliterate].mean()) data.loc[col, "SD FL<=4.5"] = "({:.2f})".format(survey_df[col_name][isilliterate].std()) p = calc_p_whitney(survey_df["FL_avg"], isliterate, isilliterate) data.loc[col, "p FL"] = "{:.4f}".format(p) data.loc[col, "N FL>4.5"] = "[{}]".format(int(len(survey_df[isliterate]))) data.loc[col, "mean FL>4.5"] = "{:.2f}".format(survey_df[col_name][isliterate].mean()) data.loc[col, "SD FL>4.5"] = "({:.2f})".format(survey_df[col_name][isliterate].std()) data.loc[col, "N FL<=4.5"] = "[{}]".format(int(len(survey_df[isilliterate]))) data.loc[col, "mean FL<=4.5"] = "{:.2f}".format(survey_df[col_name][isilliterate].mean()) data.loc[col, "SD FL<=4.5"] = "({:.2f})".format(survey_df[col_name][isilliterate].std()) data["index"] = data.index data_dict = data.to_dict("rows") table = dash_table.DataTable( id='table', columns=[ {"name": "", "id": "index"}, {"name": "u", "id": "u"}, {"name": "p", "id": "p"}, {"name": "Total mean", "id": "mean Total"}, {"name": "(SD)", "id": "SD Total"}, {"name": "[N]", "id": "Total N"}, {"name": "Test mean", "id": "mean Test"}, {"name": "(SD)", "id": "SD Test"}, {"name": "[N]", "id": "Test N"}, {"name": "Control mean", "id": "mean Control"}, {"name": "(SD)", "id": "SD Control"}, {"name": "[N]", "id": "Control N"}], data=data_dict, style_as_list_view=True, style_cell={'padding': '5px'}, style_header={ 'backgroundColor': 'white', 'fontWeight': 'bold' }, style_cell_conditional=[ { 'if': {'column_id': c}, 'textAlign': 'left' } for c in ['index','SD Total', 'SD Test', 'SD Control', 'Total N', 'Test N', 'Control N'] ], ) ret_div = html.Div([ html.H1("Task {}".format(task_nr)), html.H2(header), html.Div( [table], style={ 'padding-top': '10', 'padding-bottom': '30', 'padding-left': '30', 'padding-right': '5'}), render_box_per_col("nutri_score_{}".format(task_nr), survey_df), render_hist_per_col("nutri_label_{}".format(task_nr), survey_df.sort_values(by="nutri_label_{}".format(task_nr))) ]) return ret_div def creat_mean_desc(col, survey_df, header = None): data = pd.DataFrame() istest = survey_df["group"] == "Test" iscontrol = survey_df["group"] == "Control" if isinstance(header, str): title = html.H3(header) else: title = html.H3(col) ret_div = html.Div([title, html.P("Total mean (SD) \t\t {:.2f} ({:.2f})".format(survey_df[col].mean(), survey_df[col].std())), html.P("Test mean (SD) \t\t {:.2f} ({:.2f})".format(survey_df[col][istest].mean(), survey_df[col][istest].std())), html.P("Control mean (SD) \t\t {:.2f} ({:.2f})".format(survey_df[col][iscontrol].mean(), survey_df[col][iscontrol].std())), render_box_per_col(col, survey_df)]) return ret_div def create_count_desc(col, survey_df, header=None): data = pd.DataFrame() istest = survey_df["group"] == "Test" iscontrol = survey_df["group"] == "Control" survey_df.loc[survey_df[col].isna(),col] = "Missing" data["count Total"] = survey_df[col].value_counts() data["% Total"] = (data["count Total"] / data["count Total"].sum() * 100).apply(lambda x : "({:.1f}%)".format(x)) data.loc["Total", "count Total"] = data["count Total"].sum() data["count Test"] = survey_df[col][istest].value_counts() data["% Test"] = (data["count Test"] / data["count Test"].sum() * 100).apply(lambda x : "({:.1f}%)".format(x)) data.loc["Total", "count Test"] = data["count Test"].sum() data["count Control"] = survey_df[col][iscontrol].value_counts() data["% Control"] = (data["count Control"] / data["count Control"].sum() * 100).apply(lambda x : "({:.1f}%)".format(x)) data.loc["Total", "count Control"] = data["count Control"].sum() data.loc["Total", ["% Total","% Test","% Control"]] = "" data["index"] = data.index data = data.sort_index() data_dict = data.to_dict("rows") table = dash_table.DataTable( id='table', columns=[ {"name": "", "id": "index"}, {"name": "Total N", "id": "count Total"}, {"name": "(%)", "id": "% Total"}, {"name": "Test N", "id": "count Test"}, {"name": "(%)", "id": "% Test"}, {"name": "Control N", "id": "count Control"}, {"name": "(%)", "id": "% Control"},], data=data_dict, style_as_list_view=True, style_cell={'padding': '5px'}, style_header={ 'backgroundColor': 'white', 'fontWeight': 'bold' }, style_cell_conditional=[ { 'if': {'column_id': c}, 'textAlign': 'left' } for c in ['index', '% Total', '% Test', '% Control'] ], ) if isinstance(header, str): title = html.H3(header) else: title = html.H3(col) ret_div = html.Div([title, html.Div( [table], style={ 'padding-top': '10', 'padding-bottom': '30', 'padding-left': '30', 'padding-right': '5'}), render_hist_per_col(col, survey_df), ]) return ret_div def get_question_text_save(col, questions_df, question_ids): try: question_text = questions_df[" question.text,"][question_ids[col]] except: question_text = "Error: Question wasn't found" return question_text def create_survey(cols, survey_df, header): questionsfile = os.path.join(BASEPATH, "questionlayout-evaluation.csv") questions_df = pd.read_csv(questionsfile, sep=";", index_col="question.id") questions_df["time_1"] = "task 1" questions_df["time_2"] = "task 2" questions_df["time_3"] = "task 3" questions_df["time_4"] = "task 4" question_ids = { "IE1":"jcruLQD1jtsb", "IE2":"eaTgLd8mTqIl", "PE1":"q0mA3PRRFjx7", "PE2":"sBItcnzLbeab", "PE3":"HNBvOMYBB0aG", "EE1":"MEMNKBeL1Yx1", "EE2":"erPaRi4mPyPG", "EE3":"QVMeswBQSWAi", "SI1":"xdCMMXgxnem1", "SI2":"wfA9uqPz8cRt", "SI3":"xUlfUW6JGEav", "HM1":"JYEh0RF8Fm8b", "HM2":"DuGG9VdyhxCd", "PI1":"Y4v77TAeZzKs", "PI2":"QVzNIkgWgGxB", "PI3":"BQXqCdJgdxle", "BI1":"b4YNQSqEHFaE", "BI2":"GfV0SwI2TmuK", "BI3":"PEWOeMEEayNA", "FL1":"Wiq2wP97n7RO", "FL2":"zDVqi1Ti9Nwq", "FL3":"WeELc4DWjE6P", "time_1":"time_1", "time_2":"time_2", "time_3":"time_3", "time_4":"time_4", } question_texts = {col: get_question_text_save(col, questions_df, question_ids) for col in cols} question_texts["Average"] = "--- Average ---" survey_df_tmp = survey_df.loc[:,cols] survey_df_tmp.loc[:,"Average"] = survey_df_tmp.mean(axis=1,numeric_only=True) survey_df_tmp.loc[:,"group"] = survey_df.loc[:,"group"] cols.append("Average") data =
pd.DataFrame()
pandas.DataFrame
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result =
concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"])
pandas.concat
import os.path from glob import glob import pandas as pd data_dir = 'data' lang_files = sorted(glob(os.path.join('..', data_dir, '*_data.csv'))) marker_files = sorted(glob(os.path.join('..', data_dir, '*_markers.csv'))) # Файлов для языков должно быть столько же, сколько файлов для маркеров assert len(lang_files) == len( marker_files), "Количество файлов для языков и маркеров не совпадает" # Наборы полей (столбцов) во всех файлах типа languagename_data должны быть идентичны lang_field_reference = [] for i, lang_file in enumerate(lang_files): lang_df = pd.read_csv(lang_file, sep='\t', encoding='utf-8') lang_fields = lang_df.columns.tolist() if i == 0: lang_field_reference = lang_fields else: if lang_field_reference != lang_fields: print( f"Наборы полей (столбцов) в языковых файлах не совпадают: {lang_file} и {lang_files[0]}") # Наборы полей (столбцов) во всех файлах типа languagename_markers должны быть идентичны marker_field_reference = [] for i, marker_file in enumerate(marker_files): marker_df = pd.read_csv(marker_file, sep='\t', encoding='utf-8') marker_fields = marker_df.columns.tolist() if i == 0: marker_field_reference = marker_fields else: if marker_field_reference != marker_fields: print( f"Наборы полей (столбцов) в файлах с маркерами не совпадают: {marker_file} и {marker_files[0]}") sentences = pd.read_csv(os.path.join( '..', data_dir, '03_sentences.csv'), sep='\t') languages = pd.read_csv(os.path.join( '..', data_dir, '01_languages.csv'), sep='\t') # В файлах типа languagename_data в столбце “stimulus_no” всегда стоит какое-то целое число в интервале от 1 до 54 for lang_file in lang_files: lang_df = pd.read_csv(lang_file, sep='\t', encoding='utf-8') for stimulus_no in lang_df.stimulus_no: if stimulus_no not in range(1, 55): print( f"В файле {lang_file} неверное занчение в столбце stimulus_no: {stimulus_no} (должно быть целое число в интервале от 1 до 54)") # В файлах типа languagename_data в столбце “status” всегда либо main, либо alternate for lang_file in lang_files: lang_df = pd.read_csv(lang_file, sep='\t', encoding='utf-8') for status in lang_df.status: if status not in {'main', 'alternate'}: print( f"В файле {lang_file} неверное занчение в столбце status: {status} (должно быть main или alternate)") # В файлах типа languagename_data на каждую пару language_no & stimulus_no должна быть ровно одна строка, где status = “main” for lang_file in lang_files: lang_df = pd.read_csv(lang_file, sep='\t', encoding='utf-8') for stimulus_nos in lang_df.stimulus_no.unique(): lang_df_subset = lang_df[lang_df.stimulus_no == stimulus_nos] if lang_df_subset.status.value_counts()['main'] != 1: print( f"В файле {lang_file} стимул {stimulus_nos} имеет больше или меньше одной строки с status = main") # В файлах типа languagename_data в каждой строке в столбце “causal marker” должно что-то быть for lang_file in lang_files: lang_df = pd.read_csv(lang_file, sep='\t', encoding='utf-8') for i, causal_marker in enumerate(lang_df.causal_marker): if causal_marker == '' or pd.isnull(causal_marker): print( f"В файле {lang_file} нет заполнения в столбце causal_marker в строке {i + 1}") # В файлах типа languagename_data, если в них есть больше одной строки с одинаковой парой language_no & stimulus_no, # то во всех этих строках должны быть разные записи в столбце “causal marker” (исключение: запись “n.a.”) for lang_file in lang_files: lang_df =
pd.read_csv(lang_file, sep='\t', encoding='utf-8')
pandas.read_csv
import requests import pandas as pd import collections import logging from pathlib import Path log = logging.getLogger(Path(__file__).stem) class WorldBank: def __init__(self): self.name = 'world_bank' self.table = 'country_full' self.data = None self.steps = None def get_data(self): base_url = 'http://api.worldbank.org/v2/countries/all/indicators/' series_codes = ['NY.ADJ.NNTY.PC.CD', 'NY.ADJ.DKAP.CD', 'NY.ADJ.AEDU.CD', 'NY.ADJ.NNAT.CD', 'AG.LND.AGRI.ZS', 'VC.BTL.DETH', 'GC.DOD.TOTL.GD.ZS', 'SP.REG.BRTH.RU.ZS', 'SP.REG.BRTH.UR.ZS', 'FP.CPI.TOTL', 'per_si_allsi.cov_pop_tot', 'per_sa_allsa.cov_pop_tot', 'SH.XPD.CHEX.GD.ZS', 'IC.BUS.EASE.XQ', 'SE.TER.CUAT.BA.ZS', 'SL.EMP.TOTL.SP.MA.ZS', 'NE.EXP.GNFS.ZS', 'BX.KLT.DINV.WD.GD.ZS', 'AG.LND.FRST.ZS', 'NY.GDP.PCAP.KD', 'NY.GDP.MKTP.CD', 'NY.GDP.PCAP.PP.CD', 'SI.DST.10TH.10', 'IT.NET.USER.ZS', 'SL.TLF.ACTI.ZS', 'SE.ADT.LITR.MA.ZS', 'MS.MIL.XPND.GD.ZS', 'SH.STA.BASS.ZS', 'SP.POP.TOTL.MA.ZS' ] params = { 'format': "json", 'page': 1, 'date': '2015:2015' } full_df = pd.DataFrame(columns=['indicator', 'country', 'value']) for code in series_codes: r = requests.get(base_url + code, params=params, verify=False) json = r.json()[1] meta = r.json()[0] log.info(f'retrieving {code}: {meta["pages"]} to go') data = [self.flatten(i) for i in json] df =
pd.DataFrame(data)
pandas.DataFrame
#<EMAIL> import os import sys import time import yaml import pandas as pd from tqdm import tqdm from collections import OrderedDict import cv2 from torch import torch, optim, utils torch.backends.cudnn.benchmark = True device = torch.device("cuda:0") import arch import utilx trainmap = 'Tr2' #Tr1 Tr2 valmap = 'Va1' #Va1 Va2 config = { 'data_dir' : ['dataset/'+trainmap[:-1]+'Set/', 'dataset/'+valmap[:-1]+'Set/'], 'data_info' : ['dataset/'+trainmap+'/data_infon.yml', 'dataset/'+valmap+'/data_infon.yml'], 'input' : ['dvs_f', 'dvs_l', 'dvs_ri', 'dvs_r', 'rgb_f', 'rgb_l', 'rgb_ri', 'rgb_r'], 'task' : ['depth_f', 'depth_l', 'depth_ri', 'depth_r', 'segmentation_f_min', 'segmentation_l_min', 'segmentation_ri_min', 'segmentation_r_min'], 'mod_dir' : 'model/', 'arch' : 'A0', #A0 or A1 } #load data info with open(config['data_info'][0], 'r') as g: info = yaml.load(g, Loader=yaml.FullLoader) with open(config['data_info'][1], 'r') as g: info_val = yaml.load(g, Loader=yaml.FullLoader) #directory to save the model config['mod_dir'] += config['arch'] os.makedirs(config['mod_dir'], exist_ok=True) def train(batches, model, lossf, metricf, optimizer): #training mode model.train() #variable to save the scores score = {'total_loss': utilx.AverageMeter(), 'total_metric': utilx.AverageMeter(), 'tot_DE_loss': utilx.AverageMeter(), 'tot_DE_metric': utilx.AverageMeter(), 'tot_SS_loss': utilx.AverageMeter(), 'tot_SS_metric': utilx.AverageMeter()} #for visualization prog_bar = tqdm(total=len(batches)) for batch_X, batch_Y_true, _ in batches: #move inputs and GT to the same device as the model for i in range(len(batch_X)): batch_X[i] = batch_X[i].double().to(device) for i in range(len(batch_Y_true)): batch_Y_true[i] = batch_Y_true[i].double().to(device) #forward pass batch_Y_pred = model(batch_X) #Loss and Metric calculation tot_DE_loss = lossf(batch_Y_pred[0], batch_Y_true[0]) tot_DE_loss = torch.add(tot_DE_loss, lossf(batch_Y_pred[1], batch_Y_true[1])) tot_DE_loss = torch.add(tot_DE_loss, lossf(batch_Y_pred[2], batch_Y_true[2])) tot_DE_loss = torch.div(torch.add(tot_DE_loss, lossf(batch_Y_pred[3], batch_Y_true[3])), 4) #average across 4 views tot_DE_metric = metricf(batch_Y_pred[0], batch_Y_true[0]) tot_DE_metric = torch.add(tot_DE_metric, metricf(batch_Y_pred[1], batch_Y_true[1])) tot_DE_metric = torch.add(tot_DE_metric, metricf(batch_Y_pred[2], batch_Y_true[2])) tot_DE_metric = torch.div(torch.add(tot_DE_metric, metricf(batch_Y_pred[3], batch_Y_true[3])), 4) #average across 4 views tot_SS_loss = lossf(batch_Y_pred[4], batch_Y_true[4]) tot_SS_loss = torch.add(tot_SS_loss, lossf(batch_Y_pred[5], batch_Y_true[5])) tot_SS_loss = torch.add(tot_SS_loss, lossf(batch_Y_pred[6], batch_Y_true[6])) tot_SS_loss = torch.div(torch.add(tot_SS_loss, lossf(batch_Y_pred[7], batch_Y_true[7])), 4) #dirata-rata dari 4 view tot_SS_metric = metricf(batch_Y_pred[4], batch_Y_true[4]) tot_SS_metric = torch.add(tot_SS_metric, metricf(batch_Y_pred[5], batch_Y_true[5])) tot_SS_metric = torch.add(tot_SS_metric, metricf(batch_Y_pred[6], batch_Y_true[6])) tot_SS_metric = torch.div(torch.add(tot_SS_metric, metricf(batch_Y_pred[7], batch_Y_true[7])), 4) #dirata-rata dari 4 view total_loss = torch.add(tot_DE_loss, tot_SS_loss) total_metric = torch.add(tot_DE_metric, torch.sub(1,tot_SS_metric)) #update weights optimizer.zero_grad() total_loss.backward() optimizer.step() #to be saved score['total_loss'].update(total_loss.item(), 1) score['total_metric'].update(total_metric.item(), 1) score['tot_DE_loss'].update(tot_DE_loss.item(), 1) score['tot_DE_metric'].update(tot_DE_metric.item(), 1) score['tot_SS_loss'].update(tot_SS_loss.item(), 1) score['tot_SS_metric'].update(tot_SS_metric.item(), 1) postfix = OrderedDict([('t_total_l', score['total_loss'].avg), ('t_total_m', score['total_metric'].avg), ('t_DE_l', score['tot_DE_loss'].avg), ('t_DE_m', score['tot_DE_metric'].avg), ('t_SS_l', score['tot_SS_loss'].avg), ('t_SS_m', score['tot_SS_metric'].avg)]) prog_bar.set_postfix(postfix) prog_bar.update(1) prog_bar.close() return postfix def validate(batches, model, lossf, metricf): #validation mode model.eval() #variable to save the scores score = {'total_loss': utilx.AverageMeter(), 'total_metric': utilx.AverageMeter(), 'tot_DE_loss': utilx.AverageMeter(), 'tot_DE_metric': utilx.AverageMeter(), 'tot_SS_loss': utilx.AverageMeter(), 'tot_SS_metric': utilx.AverageMeter()} #for visualization prog_bar = tqdm(total=len(batches)) with torch.no_grad(): for batch_X, batch_Y_true, _ in batches: #move inputs and GT to the same device as the model for i in range(len(batch_X)): batch_X[i] = batch_X[i].double().to(device) for i in range(len(batch_Y_true)): batch_Y_true[i] = batch_Y_true[i].double().to(device) #forward pass batch_Y_pred = model(batch_X) #Loss and Metric calculation tot_DE_loss = lossf[0](batch_Y_pred[0], batch_Y_true[0]) tot_DE_loss = torch.add(tot_DE_loss, lossf[0](batch_Y_pred[1], batch_Y_true[1])) tot_DE_loss = torch.add(tot_DE_loss, lossf[0](batch_Y_pred[2], batch_Y_true[2])) tot_DE_loss = torch.div(torch.add(tot_DE_loss, lossf[0](batch_Y_pred[3], batch_Y_true[3])), 4) #average across 4 views tot_DE_metric = metricf[0](batch_Y_pred[0], batch_Y_true[0]) tot_DE_metric = torch.add(tot_DE_metric, metricf[0](batch_Y_pred[1], batch_Y_true[1])) tot_DE_metric = torch.add(tot_DE_metric, metricf[0](batch_Y_pred[2], batch_Y_true[2])) tot_DE_metric = torch.div(torch.add(tot_DE_metric, metricf[0](batch_Y_pred[3], batch_Y_true[3])), 4) #average across 4 views tot_SS_loss = lossf[1](batch_Y_pred[4], batch_Y_true[4]) tot_SS_loss = torch.add(tot_SS_loss, lossf[1](batch_Y_pred[5], batch_Y_true[5])) tot_SS_loss = torch.add(tot_SS_loss, lossf[1](batch_Y_pred[6], batch_Y_true[6])) tot_SS_loss = torch.div(torch.add(tot_SS_loss, lossf[1](batch_Y_pred[7], batch_Y_true[7])), 4) #dirata-rata dari 4 view tot_SS_metric = metricf[1](batch_Y_pred[4], batch_Y_true[4]) tot_SS_metric = torch.add(tot_SS_metric, metricf[1](batch_Y_pred[5], batch_Y_true[5])) tot_SS_metric = torch.add(tot_SS_metric, metricf[1](batch_Y_pred[6], batch_Y_true[6])) tot_SS_metric = torch.div(torch.add(tot_SS_metric, metricf[1](batch_Y_pred[7], batch_Y_true[7])), 4) #dirata-rata dari 4 view total_loss = torch.add(tot_DE_loss, tot_SS_loss) total_metric = torch.add(tot_DE_metric, torch.sub(1,tot_SS_metric)) #to be saved score['total_loss'].update(total_loss.item(), 1) score['total_metric'].update(total_metric.item(), 1) score['tot_DE_loss'].update(tot_DE_loss.item(), 1) score['tot_DE_metric'].update(tot_DE_metric.item(), 1) score['tot_SS_loss'].update(tot_SS_loss.item(), 1) score['tot_SS_metric'].update(tot_SS_metric.item(), 1) postfix = OrderedDict([('v_total_l', score['total_loss'].avg), ('v_total_m', score['total_metric'].avg), ('v_DE_l', score['tot_DE_loss'].avg), ('v_DE_m', score['tot_DE_metric'].avg), ('v_SS_l', score['tot_SS_loss'].avg), ('v_SS_m', score['tot_SS_metric'].avg)]) prog_bar.set_postfix(postfix) prog_bar.update(1) prog_bar.close() return postfix #MAIN FUNCTION def main(): #IMPORT MODEL ARCHITECTURE if config['arch'] == 'A0': model = arch0.A0() elif config['arch'] == 'A1': model = arch0.A1() else: sys.exit("ARCH NOT FOUND............................") model.double().to(device) #load model ke CUDA chace memory #loss and metric function lossf = [utilx.HuberLoss().to(device), utilx.BCEDiceLoss().to(device)] metricf = [utilx.L1Loss().to(device), utilx.IOUScore().to(device)] #optimizer and learning rate scheduler params = filter(lambda p: p.requires_grad, model.parameters()) optima = optim.SGD(params, lr=0.1, momentum=0.9, weight_decay=0.0001) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optima, mode='min', factor=0.5, patience=5, min_lr=0.00001) #create batch of train and val data train_dataset = utilx.datagen(file_ids=info['train_idx'], config=config, data_info=info, input_dir=config['data_dir'][0]) train_batches = utils.data.DataLoader(train_dataset, batch_size=config['tensor_dim'][0], shuffle=True, num_workers=4, drop_last=False) val_dataset = utilx.datagen(file_ids=info_val['val_idx'], config=config, data_info=info_val, input_dir=config['data_dir'][1]) val_batches = utils.data.DataLoader(val_dataset, batch_size=config['tensor_dim'][0], shuffle=False, num_workers=4, drop_last=False) #create training log log = OrderedDict([ ('epoch', []), ('lrate', []), ('train_total_loss', []), ('val_total_loss', []), ('train_total_metric', []), ('val_total_metric', []), ('train_depth_loss', []), ('val_depth_loss', []), ('train_depth_metric', []), ('val_depth_metric', []), ('train_seg_loss', []), ('val_seg_loss', []), ('train_seg_metric', []), ('val_seg_metric', []), ('best_model', []), ('stop_counter', []), ('elapsed_time', []), ]) #LOOP lowest_monitored_score = float('inf') stop_count = 35 while True: print('\n=======---=======---=======Epoch:%.4d=======---=======---=======' % (epoch)) print("current lr: ", optima.param_groups[0]['lr']) #train - val start_time = time.time() train_log = train(batches=train_batches, model=model, lossf=lossf, metricf=metricf, optimizer=optima) val_log = validate(batches=val_batches, model=model, lossf=lossf, metricf=metricf) elapsed_time = time.time() - start_time #update learning rate scheduler.step(val_log['v_total_m']) #parameter acuan reduce LR adalah val_total_metric log['epoch'].append(epoch+1) log['lrate'].append(current_lr) log['train_total_loss'].append(train_log['t_total_l']) log['val_total_loss'].append(val_log['v_total_l']) log['train_total_metric'].append(train_log['t_total_m']) log['val_total_metric'].append(val_log['v_total_m']) log['train_depth_loss'].append(train_log['t_DE_l']) log['val_depth_loss'].append(val_log['v_DE_l']) log['train_depth_metric'].append(train_log['t_DE_m']) log['val_depth_metric'].append(val_log['v_DE_m']) log['train_seg_loss'].append(train_log['t_SS_l']) log['val_seg_loss'].append(val_log['v_SS_l']) log['train_seg_metric'].append(train_log['t_SS_m']) log['val_seg_metric'].append(val_log['v_SS_m']) log['elapsed_time'].append(elapsed_time) print('| t_total_l: %.4f | t_total_m: %.4f | t_DE_l: %.4f | t_DE_m: %.4f | t_SS_l: %.4f | t_SS_m: %.4f |' % (train_log['t_total_l'], train_log['t_total_m'], train_log['t_DE_l'], train_log['t_DE_m'], train_log['t_SS_l'], train_log['t_SS_m'])) print('| v_total_l: %.4f | v_total_m: %.4f | v_DE_l: %.4f | v_DE_m: %.4f | v_SS_l: %.4f | v_SS_m: %.4f |' % (val_log['v_total_l'], val_log['v_total_m'], val_log['v_DE_l'], val_log['v_DE_m'], val_log['v_SS_l'], val_log['v_SS_m'])) print('elapsed time: %.4f sec' % (elapsed_time)) #save the best model only if val_log['v_total_m'] < lowest_monitored_score: print("v_total_m: %.4f < previous lowest: %.4f" % (val_log['v_total_m'], lowest_monitored_score)) print("model saved!") torch.save(model.state_dict(), config['mod_dir']+'/model_weights.pth') lowest_monitored_score = val_log['v_total_m'] #reset stop counter stop_count = 35 print("stop counter reset: ", stop_count) log['best_model'].append("BEST") else: stop_count -= 1 print("v_total_m: %.4f >= previous lowest: %.4f, training stop in %d epoch" % (val_log['v_total_m'], lowest_monitored_score, stop_count)) log['best_model'].append("") #update stop counter log['stop_counter'].append(stop_count) #paste to csv file
pd.DataFrame(log)
pandas.DataFrame
import unittest import pandas as pd import numpy as np from tickcounter.questionnaire import Encoder, MultiEncoder from pandas.testing import assert_frame_equal, assert_series_equal class TestMultiEncoder(unittest.TestCase): @classmethod def setUpClass(cls): super(TestMultiEncoder, cls).setUpClass() cls.original = pd.read_csv("test/test_data/mental_health/data.csv") cls.scale_1 = {"No": -1, "Yes": 1, "Don't know": 0, "Some of them": 0, "Not sure": 0, "Maybe": 0} cls.scale_2 = {"1-5": 1, "6-25": 2, "26-100": 3, "100-500": 4, "500-1000": 5, "More than 1000": 6} cls.scale_3 = {"Very difficult": -2, "Somewhat difficult": -1, "Don't know": 0, "Somewhat easy": 1, "Very easy": 2} cls.scale_4 = {"Never": 1, "Rarely": 2, "Sometimes": 3, "Often": 4} cls.e1 = Encoder({"No": -1, "Yes": 1, "Don't know": 0, "Some of them": 0, "Not sure": 0, "Maybe": 0}, default=0, neutral=0) cls.e2 = Encoder({"1-5": 1, "6-25": 2, "26-100": 3, "100-500": 4, "500-1000": 5, "More than 1000": 6}) cls.e3 = Encoder({"Very difficult": -2, "Somewhat difficult": -1, "Don't know": 0, "Somewhat easy": 1, "Very easy": 2}, default=0) cls.e4 = Encoder({"Never": 1, "Rarely": 2, "Sometimes": 3, "Often": 4}, neutral=3) cls.col_1 = ['self_employed', 'family_history', 'treatment', 'remote_work', 'tech_company', 'benefits', 'care_options', 'wellness_program', 'seek_help', 'anonymity', 'mental_health_consequence', 'phys_health_consequence', 'coworkers', 'supervisor', 'mental_health_interview', 'phys_health_interview', 'mental_vs_physical', 'obs_consequence'] cls.col_2 = ['no_employees'] cls.col_3 = ['leave'] cls.col_4 = ['work_interfere'] cls.me1 = MultiEncoder([TestMultiEncoder.e1, TestMultiEncoder.e2, TestMultiEncoder.e3, TestMultiEncoder.e4, ]) cls.me2 = MultiEncoder(TestMultiEncoder.e3) cls.me3 = MultiEncoder(TestMultiEncoder.e1) def setUp(self): self.df = TestMultiEncoder.original.copy() def test_transform_default_ss(self): result_1 = TestMultiEncoder.me2.transform(self.df['self_employed']) result_2 = TestMultiEncoder.me1.transform(self.df['self_employed']) assert_frame_equal(self.df, TestMultiEncoder.original) expected_1 = self.df['self_employed'] expected_2 = self.df['self_employed'].replace(TestMultiEncoder.scale_1) expected_2 = expected_2.fillna(0) assert_series_equal(result_1, expected_1, check_dtype=False) assert_series_equal(result_2, expected_2, check_dtype=False) def test_transform_default_df(self): result = TestMultiEncoder.me1.transform(self.df) assert_frame_equal(self.df, TestMultiEncoder.original) expected = self.df.copy() expected[TestMultiEncoder.col_1] = expected[TestMultiEncoder.col_1].replace(TestMultiEncoder.scale_1) expected[TestMultiEncoder.col_1] = expected[TestMultiEncoder.col_1].fillna(0) expected[TestMultiEncoder.col_2] = expected[TestMultiEncoder.col_2].replace(TestMultiEncoder.scale_2) expected[TestMultiEncoder.col_3] = expected[TestMultiEncoder.col_3].replace(TestMultiEncoder.scale_3) expected[TestMultiEncoder.col_3] = expected[TestMultiEncoder.col_3].fillna(0) expected[TestMultiEncoder.col_4] = expected[TestMultiEncoder.col_4].replace(TestMultiEncoder.scale_4) assert_frame_equal(result, expected, check_dtype=False) def test_transform_rule_map(self): pass def test_transform_ignore_list(self): ignore_list = ['self_employed', 'family_history', 'benefits', 'work_interfere'] result = TestMultiEncoder.me1.transform(self.df, ignore_list = ignore_list) assert_frame_equal(self.df, TestMultiEncoder.original) expected = self.df.copy() expected[TestMultiEncoder.col_1] = expected[TestMultiEncoder.col_1].replace(TestMultiEncoder.scale_1) expected[TestMultiEncoder.col_1] = expected[TestMultiEncoder.col_1].fillna(0) expected[TestMultiEncoder.col_2] = expected[TestMultiEncoder.col_2].replace(TestMultiEncoder.scale_2) expected[TestMultiEncoder.col_3] = expected[TestMultiEncoder.col_3].replace(TestMultiEncoder.scale_3) expected[TestMultiEncoder.col_3] = expected[TestMultiEncoder.col_3].fillna(0) expected[TestMultiEncoder.col_4] = expected[TestMultiEncoder.col_4].replace(TestMultiEncoder.scale_4) expected[ignore_list] = self.df[ignore_list] assert_frame_equal(result, expected, check_dtype=False) def test_transform_return_rules(self): result, rule = TestMultiEncoder.me2.transform(self.df, return_rule=True) assert_frame_equal(self.df, TestMultiEncoder.original) expected = self.df.copy() expected[TestMultiEncoder.col_3] = expected[TestMultiEncoder.col_3].replace(TestMultiEncoder.scale_3) expected[TestMultiEncoder.col_3] = expected[TestMultiEncoder.col_3].fillna(0) expected_rule = pd.Series(index=self.df.columns, dtype=str) expected_rule[TestMultiEncoder.col_3] = TestMultiEncoder.e3.name assert_frame_equal(result, expected, check_dtype=False) assert_series_equal(rule, expected_rule) def test_transform_mode(self): result_1 = TestMultiEncoder.me1.transform(self.df, mode='any') result_2, rule = TestMultiEncoder.me1.transform(self.df, mode='strict', return_rule=True) assert_frame_equal(self.df, TestMultiEncoder.original) expected_1 = self.df.copy() expected_1[TestMultiEncoder.col_1] = expected_1[TestMultiEncoder.col_1].replace(TestMultiEncoder.scale_1) expected_1[TestMultiEncoder.col_1] = expected_1[TestMultiEncoder.col_1].fillna(0) expected_1[TestMultiEncoder.col_2] = expected_1[TestMultiEncoder.col_2].replace(TestMultiEncoder.scale_2) expected_1[TestMultiEncoder.col_3] = expected_1[TestMultiEncoder.col_3].replace(TestMultiEncoder.scale_3) expected_1[TestMultiEncoder.col_3] = expected_1[TestMultiEncoder.col_3].fillna(0) expected_1[TestMultiEncoder.col_4] = expected_1[TestMultiEncoder.col_4].replace(TestMultiEncoder.scale_4) expected_2 = expected_1.copy() expected_2[TestMultiEncoder.col_1] = TestMultiEncoder.original[TestMultiEncoder.col_1] expected_rule = pd.Series(index=self.df.columns, dtype=str) expected_rule[TestMultiEncoder.col_2] = TestMultiEncoder.e2.name expected_rule[TestMultiEncoder.col_3] = TestMultiEncoder.e3.name expected_rule[TestMultiEncoder.col_4] = TestMultiEncoder.e4.name assert_frame_equal(result_1, expected_1, check_dtype=False) assert_frame_equal(result_2, expected_2, check_dtype=False) assert_series_equal(rule, expected_rule) def test_transform_mix(self): # Test when column and ignore list are used together. # Test when column, ignore list and return rules are used together pass def test_transform_columns(self): # TODO this in code. pass def test_count_neutral_ss(self): # On non-matching series, should return None as there is no matching encoder. # We cannot assume that we will encode series, unlike single encoder, because we don't know which encoder to use. result_1 = TestMultiEncoder.me3.count_neutral(self.df[TestMultiEncoder.col_2[0]]) # On matching series result_2 = TestMultiEncoder.me1.count_neutral(self.df[TestMultiEncoder.col_1[0]]) # On series with no neutral matching with self.assertWarns(UserWarning): result_3 = TestMultiEncoder.me2.count_neutral(self.df[TestMultiEncoder.col_3[0]]) assert_frame_equal(self.df, TestMultiEncoder.original) expected_2 = (self.df[TestMultiEncoder.col_1[0]] == "Don't know") | (self.df[TestMultiEncoder.col_1[0]].isna()) expected_2 = expected_2.astype(int) expected_2.rename("Neutral count", inplace=True) self.assertIsNone(result_1)
assert_series_equal(result_2, expected_2, check_dtype=False)
pandas.testing.assert_series_equal
import pandas as pd import math from .power import main def test_int_int(): assert main(base=2, exponent=4)["power"] == 16 def test_series_int(): assert main( base=pd.Series( { "2019-08-01T15:20:12": 4, "2019-08-01T15:44:12": None, "2019-08-03T16:20:15": 2, "2019-08-05T12:00:34": 8, } ), exponent=-1, )["power"].equals( pd.Series( { "2019-08-01T15:20:12": 0.25, "2019-08-01T15:44:12": None, "2019-08-03T16:20:15": 0.5, "2019-08-05T12:00:34": 0.125, } ) ) def test_series_series(): assert main( base=pd.Series( { "2019-08-01T15:20:12": 1, "2019-08-01T15:44:12": None, "2019-08-03T16:20:15": 2, "2019-08-05T12:00:34": 4, } ), exponent=pd.Series( { "2019-08-01T15:20:12": 2, "2019-08-01T15:44:12": 4, "2019-08-03T16:20:15": 0, "2019-08-05T12:00:34": 2, } ), )["power"].equals( pd.Series( { "2019-08-01T15:20:12": 1, "2019-08-01T15:44:12": None, "2019-08-03T16:20:15": 1, "2019-08-05T12:00:34": 16, } ) ) def test_df_df(): assert main( base=pd.DataFrame( { "a": { "2019-08-01T15:20:12": 3, "2019-08-01T15:44:12": 7, "2019-08-03T16:20:15": 0, "2019-08-05T12:00:34": 2, }, "b": { "2019-08-01T15:20:12": 0, "2019-08-01T15:44:12": 4, "2019-08-03T16:20:15": 5, "2019-08-05T12:00:34": 7, }, } ), exponent=pd.DataFrame( { "a": { "2019-08-01T15:20:12": 1, "2019-08-01T15:44:12": 2, "2019-08-03T16:20:15": 3, "2019-08-05T12:00:34": 2, }, "b": { "2019-08-01T15:20:12": 1, "2019-08-01T15:44:12": 3, "2019-08-03T16:20:15": 2, "2019-08-05T12:00:34": 0, }, } ), )["power"].equals( pd.DataFrame( { "a": { "2019-08-01T15:20:12": 3, "2019-08-01T15:44:12": 49, "2019-08-03T16:20:15": 0, "2019-08-05T12:00:34": 4, }, "b": { "2019-08-01T15:20:12": 0, "2019-08-01T15:44:12": 64, "2019-08-03T16:20:15": 25, "2019-08-05T12:00:34": 1, }, } ) ) def test_empty_series_series(): assert ( math.isnan( main( base=pd.Series(dtype=float), exponent=pd.Series( { "2019-08-01T15:20:12": 1.0, "2019-08-01T15:44:12": 27, "2019-08-03T16:20:15": 3.6, "2019-08-05T12:00:34": 17, } ), )["power"][0] ) and math.isnan( main( base=pd.Series(dtype=float), exponent=pd.Series( { "2019-08-01T15:20:12": 1.0, "2019-08-01T15:44:12": 27, "2019-08-03T16:20:15": 3.6, "2019-08-05T12:00:34": 17, } ), )["power"][1] ) and math.isnan( main( base=pd.Series(dtype=float), exponent=pd.Series( { "2019-08-01T15:20:12": 1.0, "2019-08-01T15:44:12": 27, "2019-08-03T16:20:15": 3.6, "2019-08-05T12:00:34": 17, } ), )["power"][2] ) and math.isnan( main( base=
pd.Series(dtype=float)
pandas.Series
#%% import pandas as pd import glob import numpy as np import math #%% def parse_single(year): PUS_start = pd.DataFrame() useful_cols = [ "WAGP", "SEX", "AGEP", "DECADE", "RAC2P", "RAC1P", "SCHL", "WKW", "WKHP", "OCCP", "POWSP", "ST", "HISP", ] path = "data/data_raw/%s" % year PUS_start = pd.concat( [pd.read_csv(f, usecols=useful_cols) for f in glob.glob(path + "/*.csv")], ignore_index=True, ) return PUS_start def mapping_features(df): # entry date df["RACE"] = df["RAC2P"].map( lambda y: "White" if y == 1 else "Black" if y == 2 else "American Indian" if y <= 29 else "Native Alaskan" if y <= 37 else y if y <= 58 else "Hispanic" if y == 70 else np.nan ) df["DECADE"] = df["DECADE"].replace(np.nan, 0) df["DECADE"] = df["DECADE"].map( lambda y: "Born in US" if y == 0 else "Before 1950" if y == 1 else "1950 - 1959" if y == 2 else "1960 - 1969" if y == 3 else "1970 - 1979" if y == 4 else "1980 - 1989" if y == 5 else "1990 - 1999" if y == 6 else "2000 - 2009" if y == 7 else "2010 or later" if y == 8 else np.nan ) # Race df["RAC2P"] = np.where(df["HISP"] == 1, df["RAC2P"], 70) df["RACE"] = df["RAC2P"].map( lambda y: "White" if y == 1 else "Black" if y == 2 else "American Indian" if y <= 29 else "Native Alaskan" if y <= 37 else y if y <= 58 else "Hispanic" if y == 70 else np.nan ) df["RAC2P"] = np.where(df["HISP"] == 1, df["RAC2P"], 70) df["RACE2"] = df["RAC2P"].map( lambda y: "White" if y == 1 else "Black" if y == 2 else "American Indian" if y <= 29 else "Native Alaskan" if y <= 37 else "Asian" if y <= 58 else "Hispanic" if y == 70 else np.nan ) # Sex df["SEX"] = df["SEX"].map( lambda y: "Male" if y == 1 else "Female" if y == 2 else "na" ) # AGE df["AGE"] = df["AGEP"].map( lambda y: "0-17" if y <= 18 else "18-24" if y <= 24 else "25-54" if y <= 54 else "55-64" if y <= 64 else "65+" ) # Education df["EDU"] = df["SCHL"].map( lambda y: "No_Highschool" if y <= 15 else "Highschool" if y <= 17 else "Some_College" if y <= 19 else "Some_College" if y == 20 else "B.S._Degree" if y == 21 else "M.S._Degree" if y == 22 else "PhD_or_Prof" if y <= 24 else np.nan ) # Occupation df["JOB"] = df["OCCP"].map( lambda y: "Business" if y <= 960 else "Science" if y <= 1980 else "Art" if y <= 2970 else "Healthcare" if y <= 3550 else "Services" if y <= 4655 else "Sales" if y <= 5940 else "Maintenance" if y <= 7640 else "Production" if y <= 8990 else "Transport" if y <= 9760 else "Military" if y <= 9830 else np.nan ) return df # %% df_raw = parse_single(2018) #%% df_raw = parse_single(2018) df = mapping_features(df_raw) groupby_col = ["RACE", "DECADE"] agg_df = df.groupby(groupby_col).count().reset_index() agg_df = agg_df.iloc[:, 0 : len(groupby_col) + 1] coding_df = pd.read_csv("data/data_raw/race_coding.csv") result = pd.merge(agg_df, coding_df, how="left", on="RACE") result["% Total Pop"] = result["ST"] / result["ST"].sum() asian_result = result.dropna() asian_result["% Asian Pop"] = asian_result["ST"] / asian_result["ST"].sum() recomb_df = pd.DataFrame() for race in asian_result["Asian"].unique(): subset_df = asian_result[asian_result["Asian"] == race] subset_df = asian_result[asian_result["Asian"] == race] asian_result.iloc[:, 1] != "na" subset_df["% Race Pop"] = subset_df["ST"] / subset_df["ST"].sum() recomb_df = pd.concat([recomb_df, subset_df]) def panda_strip(x): r = [] for y in x: if isinstance(y, str): y = y.strip() r.append(y) return pd.Series(r) recomb_df = recomb_df.apply(lambda x: panda_strip(x)) recomb_df[["Asian"]] = recomb_df[["Asian"]].apply(lambda x: x.str.split().str[0]) wide_format = recomb_df.pivot( index="Asian", columns="DECADE", values="% Race Pop" ).reset_index() wide_format = wide_format[ [ "Asian", "Born in US", "Before 1950", "1950 - 1959", "1960 - 1969", "1970 - 1979", "1980 - 1989", "1990 - 1999", "2000 - 2009", "2010 or later", ] ] wide_format["% Immigrated"] = 1 - wide_format["Born in US"] wide_format = wide_format.rename(columns={"Asian": "RACE2"}) wide_format = wide_format.replace(np.nan, 0) wide_format.to_csv("data/data_output/imm_output.csv") # %% df_raw = parse_single(2018) df = mapping_features(df_raw) groupby_col = ["RACE2", "DECADE"] agg_df = df.groupby(groupby_col).count().reset_index() agg_df = agg_df.iloc[:, 0 : len(groupby_col) + 1] recomb_df2 = pd.DataFrame() for race in agg_df["RACE2"].unique(): subset_df = agg_df[agg_df["RACE2"] == race] subset_df.iloc[:, 1] != "na" subset_df["% Race Pop"] = subset_df["ST"] / subset_df["ST"].sum() recomb_df2 = pd.concat([recomb_df2, subset_df]) wide_format2 = recomb_df2.pivot( index="RACE2", columns="DECADE", values="% Race Pop" ).reset_index() wide_format2 = wide_format2[ [ "RACE2", "Born in US", "Before 1950", "1950 - 1959", "1960 - 1969", "1970 - 1979", "1980 - 1989", "1990 - 1999", "2000 - 2009", "2010 or later", ] ] wide_format2["% Immigrated"] = 1 - wide_format2["Born in US"] wide_format2.to_csv("data/data_output/imm_all_output.csv") wide_format_comb = pd.concat([wide_format, wide_format2]) for col in wide_format_comb: if col != "RACE2": wide_format_comb[col] = wide_format_comb[col].astype(float).map("{:.2%}".format) wide_format_comb.to_csv("data/data_output/imm_comb_output.csv") recomb_df = recomb_df.rename(columns={"Asian": "RACE2"}) recomb_df["% Race Pop"] = recomb_df["% Race Pop"].astype(float).map("{:.2%}".format) recomb_df2["% Race Pop"] = recomb_df2["% Race Pop"].astype(float).map("{:.2%}".format) recomb_full = pd.concat([recomb_df, recomb_df2]) recomb_full.to_csv("data/data_output/imm_long.csv") recomb_df.to_csv("data/data_output/imm_long1.csv") recomb_df2.to_csv("data/data_output/imm_long2.csv") #%% df_raw = parse_single(2018) df = mapping_features(df_raw) groupby_col = ["RACE", "EDU"] agg_df = df[df["AGE"] != "0-17"] agg_df = agg_df.groupby(groupby_col).count().reset_index() agg_df = agg_df.iloc[:, 0 : len(groupby_col) + 1] coding_df = pd.read_csv("data/data_raw/race_coding.csv") result = pd.merge(agg_df, coding_df, how="left", on="RACE") result["% Total Pop"] = result["ST"] / result["ST"].sum() asian_result = result.dropna() asian_result["% Asian Pop"] = asian_result["ST"] / asian_result["ST"].sum() recomb_df = pd.DataFrame() for race in asian_result["Asian"].unique(): subset_df = asian_result[asian_result["Asian"] == race] subset_df = asian_result[asian_result["Asian"] == race] asian_result.iloc[:, 1] != "na" subset_df["% Race Pop"] = subset_df["ST"] / subset_df["ST"].sum() recomb_df = pd.concat([recomb_df, subset_df]) def panda_strip(x): r = [] for y in x: if isinstance(y, str): y = y.strip() r.append(y) return pd.Series(r) recomb_df = recomb_df.apply(lambda x: panda_strip(x)) recomb_df[["Asian"]] = recomb_df[["Asian"]].apply(lambda x: x.str.split().str[0]) wide_format = recomb_df.pivot( index="Asian", columns="EDU", values="% Race Pop" ).reset_index() wide_format.loc[wide_format["Asian"] == "", "Asian"] = ( wide_format["Asian"].str.split().str.get(0) ) wide_format = wide_format[ [ "Asian", "No_Highschool", "Highschool", "Some_College", "B.S._Degree", "M.S._Degree", "PhD_or_Prof", ] ] wide_format["B.S. Degree +"] = ( 1 - wide_format["No_Highschool"] - wide_format["Highschool"] - wide_format["Some_College"] ) wide_format["% Completed Highschool"] = 1 - wide_format["No_Highschool"] wide_format = wide_format.rename(columns={"Asian": "RACE2"}) wide_format.to_csv("data/data_output/edu_output.csv") # %% df_raw = parse_single(2018) df = mapping_features(df_raw) groupby_col = ["RACE2", "EDU"] agg_df = df[df["AGE"] != "0-17"] agg_df = agg_df.groupby(groupby_col).count().reset_index() agg_df = agg_df.iloc[:, 0 : len(groupby_col) + 1] recomb_df2 = pd.DataFrame() for race in agg_df["RACE2"].unique(): subset_df = agg_df[agg_df["RACE2"] == race] subset_df.iloc[:, 1] != "na" subset_df["% Race Pop"] = subset_df["ST"] / subset_df["ST"].sum() recomb_df2 = pd.concat([recomb_df2, subset_df]) wide_format2 = recomb_df2.pivot( index="RACE2", columns="EDU", values="% Race Pop" ).reset_index() wide_format2 = wide_format2[ [ "RACE2", "No_Highschool", "Highschool", "Some_College", "B.S._Degree", "M.S._Degree", "PhD_or_Prof", ] ] wide_format2["B.S. Degree +"] = ( 1 - wide_format2["No_Highschool"] - wide_format2["Highschool"] - wide_format2["Some_College"] ) wide_format2["% Completed Highschool"] = 1 - wide_format2["No_Highschool"] wide_format2.to_csv("data/data_output/edu_all_output.csv") wide_format_comb = pd.concat([wide_format, wide_format2]) for col in wide_format_comb: if col != "RACE2": wide_format_comb[col] = wide_format_comb[col].astype(float).map("{:.2%}".format) wide_format_comb.to_csv("data/data_output/edu_comb_output.csv") recomb_df = recomb_df.rename(columns={"Asian": "RACE2"}) recomb_df["% Race Pop"] = recomb_df["% Race Pop"].astype(float).map("{:.2%}".format) recomb_df2["% Race Pop"] = recomb_df2["% Race Pop"].astype(float).map("{:.2%}".format) recomb_full = pd.concat([recomb_df, recomb_df2]) recomb_full.to_csv("data/data_output/edu_long.csv") recomb_df.to_csv("data/data_output/edu_long1.csv") recomb_df2.to_csv("data/data_output/edu_long2.csv") # %% ##### # OCCUPATION df_raw = parse_single(2018) df = mapping_features(df_raw) groupby_col = ["RACE", "JOB"] agg_df = df[df["AGE"] != "0-17"] agg_df = agg_df.groupby(groupby_col).count().reset_index() agg_df = agg_df.iloc[:, 0 : len(groupby_col) + 1] coding_df = pd.read_csv("data/data_raw/race_coding.csv") result = pd.merge(agg_df, coding_df, how="left", on="RACE") result["% Total Pop"] = result["ST"] / result["ST"].sum() asian_result = result.dropna() asian_result["% Asian Pop"] = asian_result["ST"] / asian_result["ST"].sum() recomb_df = pd.DataFrame() for race in asian_result["Asian"].unique(): subset_df = asian_result[asian_result["Asian"] == race] subset_df = asian_result[asian_result["Asian"] == race] asian_result.iloc[:, 1] != "na" subset_df["% Race Pop"] = subset_df["ST"] / subset_df["ST"].sum() recomb_df = pd.concat([recomb_df, subset_df]) recomb_df = recomb_df.apply(lambda x: panda_strip(x)) recomb_df[["Asian"]] = recomb_df[["Asian"]].apply(lambda x: x.str.split().str[0]) wide_format = recomb_df.pivot( index="Asian", columns="JOB", values="% Race Pop" ).reset_index() wide_format.loc[wide_format["Asian"] == "", "Asian"] = ( wide_format["Asian"].str.split().str.get(0) ) wide_format["% STEM"] = wide_format["Science"] + wide_format["Healthcare"] wide_format = wide_format.rename(columns={"Asian": "RACE2"}) wide_format.to_csv("data/data_output/JOB_output.csv") # %% df_raw = parse_single(2018) df = mapping_features(df_raw) groupby_col = ["RACE2", "JOB"] agg_df = df[df["AGE"] != "0-17"] agg_df = agg_df.groupby(groupby_col).count().reset_index() agg_df = agg_df.iloc[:, 0 : len(groupby_col) + 1] recomb_df2 = pd.DataFrame() for race in agg_df["RACE2"].unique(): subset_df = agg_df[agg_df["RACE2"] == race] subset_df.iloc[:, 1] != "na" subset_df["% Race Pop"] = subset_df["ST"] / subset_df["ST"].sum() recomb_df2 = pd.concat([recomb_df2, subset_df]) wide_format2 = recomb_df2.pivot( index="RACE2", columns="JOB", values="% Race Pop" ).reset_index() wide_format2["% STEM"] = wide_format2["Science"] + wide_format2["Healthcare"] wide_format2.to_csv("data/data_output/JOB_all_output.csv") wide_format_comb = pd.concat([wide_format, wide_format2]) for col in wide_format_comb: if col != "RACE2": wide_format_comb[col] = wide_format_comb[col].astype(float).map("{:.2%}".format) wide_format_comb.to_csv("data/data_output/JOB_comb_output.csv") recomb_df = recomb_df.rename(columns={"Asian": "RACE2"}) recomb_df["% Race Pop"] = recomb_df["% Race Pop"].astype(float).map("{:.2%}".format) recomb_df2["% Race Pop"] = recomb_df2["% Race Pop"].astype(float).map("{:.2%}".format) recomb_full = pd.concat([recomb_df, recomb_df2]) recomb_full.to_csv("data/data_output/job_long.csv") recomb_df.to_csv("data/data_output/job_long1.csv") recomb_df2.to_csv("data/data_output/job_long2.csv") # %% ##### # WAGE def full_time_detect(df): df = df.loc[df.WKW < 4].copy() # more than 40 weeks a year is considered full time df = df.loc[df.WKHP >= 35].copy() # >=35 hr a week is considered full time df = df.loc[df.AGEP >= 18].copy() # lower limit age df = df.loc[df.AGEP <= 70].copy() # upper limit age return df # determine who is considered an outlier def outlier_wage(df): # wage_iqr = np.percentile(df.WAGP, 75) - np.percentile(df.WAGP, 25) # wage_upper = np.percentile(df.WAGP, 75) + wage_iqr * 3 df = df.loc[df.WAGP >= 12500].copy() # used because 12500 is poverty line df = df.loc[df.WAGP <= 400000].copy() # used as ~1% wage US population return df df_raw = parse_single(2018) df = mapping_features(df_raw) other = full_time_detect(df) other = outlier_wage(other) other = other[["RACE", "WAGP", "RACE2"]] other.to_csv("data/data_output/wage_raw.csv") #%% agg_df = ( other.groupby("RACE") .agg(count=("WAGP", "size"), mean=("WAGP", "mean"), median=("WAGP", "median")) .reset_index() ) agg_df2 = ( other.groupby("RACE2") .agg(count=("WAGP", "size"), mean=("WAGP", "mean"), median=("WAGP", "median")) .reset_index() ) agg_df2["RACE"] = agg_df2["RACE2"] agg_df3 = agg_df2[agg_df2["RACE"] != "Asian"] coding_df = pd.read_csv("data/data_raw/race_coding.csv") result = pd.merge(agg_df, coding_df, how="left", on="RACE") result = result.apply(lambda x: panda_strip(x)) result[["Asian"]] = result[["Asian"]].apply(lambda x: x.str.split().str[0]) asian = result[0:21].rename(columns={"Asian": "RACE2"}) asian["RACE"] = "Asian" # other_race = result[21:26].rename(columns={"RACE": "RACE2"}) wage_result = pd.concat([asian, agg_df2]) wage_result.to_csv("data/data_output/wage_asian_output.csv") wage_result = pd.concat([asian, agg_df3]) wage_result.to_csv("data/data_output/wage_no_asian_output.csv") #%% df_raw = parse_single(2018) df = mapping_features(df_raw) other = full_time_detect(df) other = outlier_wage(other) other = other[["RACE", "WAGP", "RACE2"]] other.to_csv("data/data_output/wage_raw.csv") #%% df_raw = parse_single(2018) df = mapping_features(df_raw) other = full_time_detect(df) other = outlier_wage(other) other = other[["RACE", "WAGP", "RACE2"]] other.to_csv("data/data_output/wage_raw.csv") agg_df = ( other.groupby("RACE") .agg(count=("WAGP", "size"), mean=("WAGP", "mean"), median=("WAGP", "median")) .reset_index() ) agg_df2 = ( other.groupby("RACE2") .agg(count=("WAGP", "size"), mean=("WAGP", "mean"), median=("WAGP", "median")) .reset_index() ) agg_df2["RACE"] = agg_df2["RACE2"] agg_df3 = agg_df2[agg_df2["RACE"] != "Asian"] coding_df = pd.read_csv("data/data_raw/race_coding.csv") result = pd.merge(agg_df, coding_df, how="left", on="RACE") result = result.apply(lambda x: panda_strip(x)) result[["Asian"]] = result[["Asian"]].apply(lambda x: x.str.split().str[0]) asian = result[0:21].rename(columns={"Asian": "RACE2"}) asian["RACE"] = "Asian" # other_race = result[21:26].rename(columns={"RACE": "RACE2"}) wage_result = pd.concat([asian, agg_df2]) wage_result.to_csv("data/data_output/wage_asian_output.csv") wage_result = pd.concat([asian, agg_df3]) wage_result.to_csv("data/data_output/wage_no_asian_output.csv") #%% long2 = pd.read_csv("data/data_output/edu_long2.csv") long2 = long2.groupby("RACE2").sum().reset_index() long2["% Pop"] = long2["ST"] / long2["ST"].sum() long2["% Pop"] = long2["% Pop"].astype(float).map("{:.2%}".format) long2["Race1"] = long2["RACE2"] + " (" + long2["% Pop"] + ")" long2["Race2"] = long2["RACE2"] + " (" + long2["% Pop"] + ")" long2 = long2[long2["RACE2"] != "Asian"] long2 # %% long1 = pd.read_csv("data/data_output/edu_long1.csv") long1 = long1.groupby("RACE2").sum().reset_index() long1["% Pop"] = long1["ST"] / long1["ST"].sum() long1["% Pop"] = long1["% Pop"].astype(float).map("{:.2%}".format) long1["Race1"] = "Asian (5.42%)" long1["Race2"] = long1["RACE2"] + " (" + long1["% Pop"] + ")" long1 # %% long_combo =
pd.concat([long2, long1])
pandas.concat
""" <NAME>, 2019 Class to scrape realtime data from NDBC Buoys -- https://www.ndbc.noaa.gov/realtime.shtml Creates pandas dataframe objects for specific data types for the last 45 days. Options to return or pickle dataframes. Notes: * Realtime data contains some information that historical data doesnt, for example, Separation Frequencies in the data_spec dtype. * You can run 'scrape_all_dtypes' once every 45 days to keep accumulatine realtime data. """ import pandas as pd from .buoy_data_scraper import BuoyDataScraper class RealtimeScraper(BuoyDataScraper): DTYPES = {"stdmet": {"url_code":"txt", "name":"Standard Meteorological Data"}, "adcp": {"url_code":"adcp", "name":"Acoustic Doppler Current Profiler Data"}, "cwind": {"url_code":"cwind", "name":"Continuous Winds Data"}, "supl": {"url_code":"supl", "name":"Supplemental Measurements Data"}, "spec": {"url_code":"spec", "name":"Spectral Wave Summary Data"}, "data_spec":{"url_code":"data_spec", "name":"Raw Spectral Wave Data"}, "swdir": {"url_code":"swdir", "name":"Spectral Wave Data (alpha1)"}, "swdir2": {"url_code":"swdir2", "name":"Spectral Wave Data (alpha2)"}, "swr1": {"url_code":"swr1", "name":"Spectral Wave Data (r1)"}, "swr2": {"url_code":"swr2", "name":"Spectral Wave Data (r2)"}, "ocean": {"url_code":"ocean", "name":"Oceanographic"}, "srad": {"url_code":"srad", "name":"Solar Radiation"}, } BASE_URL = "https://www.ndbc.noaa.gov/data/realtime2/{}.{}" def __init__(self, buoy_id, data_dir="buoydata/"): super().__init__(buoy_id) self.data_dir = "{}{}/realtime/".format(data_dir, buoy_id) def get_available_dtypes(self, dtypes=DTYPES): ''' Returns list of available realtime data types for this buoy. ''' available_types = [] for dtype in dtypes: if self._url_valid(self._make_url(dtype)): available_types.append(dtype) return available_types def scrape_dtypes(self, dtypes=None): ''' Scrapes and saves all data types for this buoy for realtime data (the last 45 days). Input : dtypes : Optional, list of dtype strings. Default is all available dtypes. Output : saves all dtypes available for this buoy as pandas dataframe pickles. dtypes with previously saved pickles in data_dir will be updated with new data. ''' self._create_dir_if_not_exists(self.data_dir) if not dtypes: dtypes=self.DTYPES for dtype in self.get_available_dtypes(dtypes): self.scrape_dtype(dtype, save=True) def scrape_dtype(self, dtype, save=False, save_path=None): ''' Scrapes data for a given data type. Calls helper function to scrape specific dtype. See helper functions below for columns and units of each dtype. More info at: https://www.ndbc.noaa.gov/measdes.shtml Inputs : dtype : string, must be an available data type for this buoy. save_path (optional) : string representing path to save dataframe to as pickle. Will update pickle if it already exists. Output : pandas dataframe. If save_path is specified, also saves pickled dataframe to save_path. ''' url = self._make_url(dtype) if self._url_valid(url): df = getattr(self, dtype)(url) if save: if not save_path: self._create_dir_if_not_exists(self.data_dir) save_path="{}{}.pkl".format(self.data_dir, dtype) self._update_pickle(df, save_path) else: return df else: return pd.DataFrame() def stdmet(self, url): ''' Standard Meteorological Data dtype: "stdmet" index: datetime64[ns, UTC] columns: WDIR WSPD GST WVHT DPD APD MWD PRES ATMP WTMP DEWP VIS PTDY TIDE units: degT m/s m/s m sec sec degT hPa degC degC degC nmi hPa ft ''' NA_VALS = ['MM'] return self._scrape_norm(url, na_vals=NA_VALS) def adcp(self, url): ''' Acoustic Doppler Current Profiler Data dtype: "adcp" index: datetime64[ns, UTC] columns: DEP01 DIR01 SPD01 units: m degT cm/s ''' NA_VALS = ['MM'] df = self._scrape_norm(url, na_vals=NA_VALS) return df.iloc[:,0:3].astype('float') def cwind(self, url): ''' Continuous Winds Data dtype: "cwind" index: datetime64[ns, UTC] columns: WDIR WSPD GDR GST GTIME units: degT m/s degT m/s hhmm ''' NA_VALS = ['MM', 99.0, 999, 9999] return self._scrape_norm(url, na_vals=NA_VALS).astype('float') def supl(self, url): ''' Supplemental Measurements Data dtype: "supl" index: datetime64[ns, UTC] columns: PRES PTIME WSPD WDIR WTIME units: hPa hhmm m/s degT hhmm ''' NA_VALS = ['MM'] return self._scrape_norm(url, na_vals=NA_VALS).astype('float') def spec(self, url): ''' Spectral Wave Summary Data dtype: "spec" index: datetime64[ns, UTC] columns: WVHT SwH SwP WWH WWP SwD WWD STEEPNESS APD MWD units: m m sec m sec - degT - sec degT ''' NA_VALS = ['MM', -99] return self._scrape_norm(url, na_vals=NA_VALS) def data_spec(self, url): ''' Raw Spectral Wave Data dtype: "data_spec" index: datetime64[ns, UTC] columns: sep_freq 0.033 0.038 0.043 ... 0.445 0.465 0.485 (frequencies in Hz) units: frequency (Hz) Spectral Wave Density/Energy in m^2/Hz for each frequency bin Note: "sep_freq" (Separation Frequency) is the frequency that separates wind waves (WWH, WWP, WWD) from swell waves (SWH, SWP,SWD). ''' NA_VALS = ['MM', 9.999] # combine the first five date columns YY MM DD hh mm and make index df = pd.read_csv(url, header=None, na_values=NA_VALS, delim_whitespace=True, skiprows=1, parse_dates={'datetime':[0,1,2,3,4]}, index_col=0) df.index =
pd.to_datetime(df.index,format="%Y %m %d %H %M")
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Mon May 10 08:46:30 2021 @author: niven """ import os import glob from pathlib import Path import shutil import datetime import imageio import pandas as pd import geopandas as gpd import numpy as np from scipy import stats from shapely.geometry import Point, Polygon, LineString from shapely import speedups import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.patches as mpatches from matplotlib.collections import LineCollection import matplotlib.cm as cm from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.axes_grid1.inset_locator import inset_axes from src.definitions import ROOT_DIR, filter_Prot, dict_Sale2Yr, cols_prebid, cols_bid, cols_company2 from src.definitions import cols_borehole_pos, cols_borehole from src.definitions import dict_Brent from src.data.utils import concatenate_files, df_col2dict, dryhole_label # %% bid data directories path_bid_data = ROOT_DIR /'src/data' assert path_bid_data.exists() path_scra = ROOT_DIR/'src/data/scra' if path_scra.exists() == False: path_scra.mkdir() # %% block geometry path_activelease = ROOT_DIR/'src/data/shape_files/activelease' path_protractions = ROOT_DIR/'src/data/shape_files/protclip' path_blocks = ROOT_DIR/'src/data/shape_files/blocks' path_bath = ROOT_DIR/'src/data/shape_files/bathymetry' gpd_ActiveLease = gpd.read_file(path_activelease/'al_20210201.shp') gpd_Prot = gpd.read_file(path_protractions/'protclip.shp') gpd_Blocks = gpd.read_file(path_blocks/'blocks.shp') gpd_Bath500ft = gpd.read_file(path_bath/'contours_noaa_500ft.shp') gpd_Blocks['Lon'] = gpd_Blocks.centroid.x gpd_Blocks['Lat'] = gpd_Blocks.centroid.y # %% List of Ewave filter_Ewave = ['KC330','GB740','GB830','GC57','GC66','EW951','EW957','GC31','GC76','GC164','GC390','WR23','WR24', 'WR112','SE129','SE116','KC903','KC560','KC556','KC330'] df_filter = gpd_Blocks.loc[gpd_Blocks['AC_LAB'].isin(filter_Ewave) ].copy() sorterIndex = dict(zip(filter_Ewave, range(len(filter_Ewave)))) df_filter['Order'] = df_filter['AC_LAB'].map(sorterIndex) # % Order polygon points df_filter.sort_values(by=['Order'], ascending = [True], inplace = True) df_filter.set_index('Order', inplace = True) df_filter = pd.concat([df_filter, df_filter.iloc[0:1] ], ignore_index=True ) # % extract centroid (block corner estimate) df_filter['X'] = df_filter.centroid.x df_filter['Y'] = df_filter.centroid.y + .02 # .02 about 1/2 block shift poly = Polygon(list(zip(df_filter.X, df_filter.Y))) # in Python 3.x d = {'Survey': 'Ewave', 'geometry':poly} # gdf_Ewave = gpd.GeoDataFrame(d, index=[0], crs=4267) del d, df_filter, poly, filter_Ewave # %% Borehole data path_boreholes = ROOT_DIR / 'src/data/5010.DAT' assert path_boreholes.exists() df_Boreholes = pd.read_fwf(path_boreholes, colspecs=cols_borehole_pos, header=None) df_Boreholes.columns = cols_borehole # Clean Borehole Dataframe df_Boreholes['BottomLon'] = df_Boreholes['BottomLon'].apply(lambda x: pd.to_numeric(x, errors='coerce')) df_Boreholes['BottomLat'] = df_Boreholes['BottomLat'].apply(lambda x: pd.to_numeric(x, errors='coerce')) df_Boreholes['MD'] = df_Boreholes['MD'].apply(lambda x:
pd.to_numeric(x, errors='coerce')
pandas.to_numeric
from concurrent import futures import json import argparse import time import random import itertools import numpy as np import os.path import sys import pandas as pd import requests import requests.exceptions import re import logging from datetime import datetime LOGGER_NAME = 'fetch_cnpj' TEMP_DATASET_PATH = os.path.join('data', 'companies-partial.xz') INFO_DATASET_PATH = os.path.join('data', '{0}-{1}-{2}-companies.xz') global logger, cnpj_list, num_threads, proxies_list # source files mapped for extract cnpj with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'table_config.json')) as json_file: json_config = json.load(json_file) datasets_cols = json_config['cnpj_cpf'] def configure_logger(verbosity): logger = logging.getLogger(LOGGER_NAME) logger.setLevel(verbosity) ch = logging.StreamHandler(sys.stdout) ch.setLevel(verbosity) logger.addHandler(ch) return logger def transform_and_translate_data(json_data): """ Transform main activity, secondary activity and partners list in multi columns and translate column names. """ try: data = pd.DataFrame(columns=['atividade_principal', 'data_situacao', 'tipo', 'nome', 'telefone', 'atividades_secundarias', 'situacao', 'bairro', 'logradouro', 'numero', 'cep', 'municipio', 'uf', 'abertura', 'natureza_juridica', 'fantasia', 'cnpj', 'ultima_atualizacao', 'status', 'complemento', 'email', 'efr', 'motivo_situacao', 'situacao_especial', 'data_situacao_especial', 'qsa']) data = data.append(json_data, ignore_index=True) except Exception as e: logger.error("Error trying to transform and translate data:") logger.error(json_data) raise e def decompose_main_activity(value): struct = value if struct: return pd.Series(struct[0]). \ rename_axis({'code': 'main_activity_code', 'text': 'main_activity'}) else: return pd.Series({}, index=['main_activity_code', 'main_activity']) def decompose_secondary_activities(value): struct = value if struct and struct[0].get('text') != 'Não informada': new_attributes = [
pd.Series(activity)
pandas.Series
#!/usr/bin/env python """Script for generating figures of catalog statistics. Run `QCreport.py -h` for command line usage. """ import os import sys import errno import argparse from datetime import date, datetime from math import sqrt, radians, cos import markdown import numpy as np import pandas as pd import cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap from matplotlib.patches import Polygon from obspy.geodetics.base import gps2dist_azimuth # Python 2 try: from urllib2 import urlopen, HTTPError # Python 3 except ImportError: from urllib.request import urlopen, HTTPError import QCutils as qcu from decorators import retry, printstatus ############################################################################### ############################################################################### ############################################################################### @printstatus('Creating basic catalog summary') def basic_cat_sum(catalog, dirname, dup1, dup2, timewindow, distwindow): """Gather basic catalog summary statistics.""" lines = [] lines.append('Catalog name: %s\n\n' % dirname[:-9].upper()) lines.append('First date in catalog: %s\n' % catalog['time'].min()) lines.append('Last date in catalog: %s\n\n' % catalog['time'].max()) lines.append('Total number of events: %s\n\n' % len(catalog)) lines.append('Minimum latitude: %s\n' % catalog['latitude'].min()) lines.append('Maximum latitude: %s\n' % catalog['latitude'].max()) lines.append('Minimum longitude: %s\n' % catalog['longitude'].min()) lines.append('Maximum longitude: %s\n\n' % catalog['longitude'].max()) lines.append('Minimum depth: %s\n' % catalog['depth'].min()) lines.append('Maximum depth: %s\n' % catalog['depth'].max()) lines.append('Number of 0 km depth events: %s\n' % len(catalog[catalog['depth'] == 0])) lines.append('Number of NaN depth events: %s\n\n' % len(catalog[pd.isnull(catalog['depth'])])) lines.append('Minimum magnitude: %s\n' % catalog['mag'].min()) lines.append('Maximum magnitude: %s\n' % catalog['mag'].max()) lines.append('Number of 0 magnitude events: %s\n' % len(catalog[catalog['mag'] == 0])) lines.append('Number of NaN magnitude events: %s\n\n' % len(catalog[pd.isnull(catalog['mag'])])) lines.append('Number of possible duplicates (%ss and %skm threshold): %d\n' % (timewindow, distwindow, dup1)) lines.append('Number of possible duplicates (16s and 100km threshold): %d' % dup2) with open('%s_catalogsummary.txt' % dirname, 'w') as sumfile: for line in lines: sumfile.write(line) def largest_ten(catalog, dirname): """Make a list of the 10 events with largest magnitude.""" catalog = catalog.sort_values(by='mag', ascending=False) topten = catalog.head(n=10) topten = topten[['time', 'id', 'latitude', 'longitude', 'depth', 'mag']] with open('%s_largestten.txt' % dirname, 'w') as magfile: for event in topten.itertuples(): line = ' '.join([str(x) for x in event[1:]]) + '\n' magfile.write(line) @printstatus('Finding possible duplicates') def list_duplicates(catalog, dirname, timewindow=2, distwindow=15, magwindow=None, minmag=-5, locfilter=None): """Make a list of possible duplicate events.""" catalog.loc[:, 'convtime'] = [' '.join(x.split('T')) for x in catalog['time'].tolist()] catalog.loc[:, 'convtime'] = catalog['convtime'].astype('datetime64[ns]') catalog = catalog[catalog['mag'] >= minmag] if locfilter: catalog = catalog[catalog['place'].str.contains(locfilter, na=False)] cat = catalog[['time', 'convtime', 'id', 'latitude', 'longitude', 'depth', 'mag']].copy() cat.loc[:, 'time'] = [qcu.to_epoch(x) for x in cat['time']] duplines1 = [('Possible duplicates using %ss time threshold and %skm ' 'distance threshold\n') % (timewindow, distwindow), '***********************\n' 'date time id latitude longitude depth magnitude ' '(distance) (Δ time) (Δ magnitude)\n'] duplines2 = [('\n\nPossible duplicates using 16s time threshold and 100km ' 'distance threshold\n'), '***********************\n' 'date time id latitude longitude depth magnitude ' '(distance) (Δ time) (Δ magnitude)\n'] sep = '-----------------------\n' thresh1dupes, thresh2dupes = 0, 0 for event in cat.itertuples(): trimdf = cat[cat['convtime'].between(event.convtime, event.convtime + pd.Timedelta(seconds=16), inclusive=False)] if len(trimdf) != 0: for tevent in trimdf.itertuples(): dist = gps2dist_azimuth(event.latitude, event.longitude, tevent.latitude, tevent.longitude)[0] / 1000. if dist < 100: dtime = (event.convtime - tevent.convtime).total_seconds() dmag = event.mag - tevent.mag diffs = map('{:.2f}'.format, [dist, dtime, dmag]) dupline1 = ' '.join([str(x) for x in event[1:]]) + ' ' +\ ' '.join(diffs) + '\n' dupline2 = ' '.join([str(x) for x in tevent[1:]]) + '\n' duplines2.extend((sep, dupline1, dupline2)) thresh2dupes += 1 if (dist < distwindow) and (abs(dtime) < timewindow): duplines1.extend((sep, dupline1, dupline2)) thresh1dupes += 1 continue with open('%s_duplicates.txt' % dirname, 'w') as dupfile: for dupline in duplines1: dupfile.write(dupline) for dupline in duplines2: dupfile.write(dupline) return thresh1dupes, thresh2dupes @printstatus('Mapping earthquake locations') def map_detecs(catalog, dirname, minmag=-5, mindep=-50, title=''): """Make scatter plot of detections with magnitudes (if applicable).""" catalog = catalog[(catalog['mag'] >= minmag) & (catalog['depth'] >= mindep)].copy() if len(catalog) == 0: print('\nCatalog contains no events deeper than %s.' % mindep) return # define map bounds lllat, lllon, urlat, urlon, _, _, _, clon = qcu.get_map_bounds(catalog) plt.figure(figsize=(12, 7)) mplmap = plt.axes(projection=ccrs.PlateCarree(central_longitude=clon)) mplmap.set_extent([lllon, urlon, lllat, urlat], ccrs.PlateCarree()) mplmap.coastlines('50m', facecolor='none') # if catalog has magnitude data if not catalog['mag'].isnull().all(): bins = [0, 5, 6, 7, 8, 15] binnames = ['< 5', '5-6', '6-7', '7-8', r'$\geq$8'] binsizes = [10, 25, 50, 100, 400] bincolors = ['g', 'b', 'y', 'r', 'r'] binmarks = ['o', 'o', 'o', 'o', '*'] catalog.loc[:, 'maggroup'] = pd.cut(catalog['mag'], bins, labels=binnames) for i, label in enumerate(binnames): mgmask = catalog['maggroup'] == label rcat = catalog[mgmask] lons, lats = list(rcat['longitude']), list(rcat['latitude']) if len(lons) > 0: mplmap.scatter(lons, lats, s=binsizes[i], marker=binmarks[i], c=bincolors[i], label=binnames[i], alpha=0.8, zorder=10, transform=ccrs.PlateCarree()) plt.legend(loc='lower left', title='Magnitude') # if catalog does not have magnitude data else: lons, lats = list(catalog['longitude']), list(catalog['latitude']) mplmap.scatter(lons, lats, s=15, marker='x', c='r', zorder=10) mplmap.add_feature(cfeature.NaturalEarthFeature('cultural', 'admin_1_states_provinces_lines', '50m', facecolor='none', edgecolor='k', zorder=9)) mplmap.add_feature(cfeature.BORDERS) plt.title(title, fontsize=20) plt.subplots_adjust(left=0.05, right=0.95, top=0.95, bottom=0.05) if mindep != -50: plt.savefig('%s_morethan%sdetecs.png' % (dirname, mindep), dpi=300) else: plt.savefig('%s_mapdetecs.png' % dirname, dpi=300) plt.close() @printstatus('Mapping earthquake density') def map_detec_nums(catalog, dirname, title='', numcolors=16, rmin=77, rmax=490, minmag=-5, pltevents=True): """Map detections and a grid of detection density. rmax=510 is white, rmin=0 is black. """ # generate bounds for map mask = catalog['mag'] >= minmag lllat, lllon, urlat, urlon, gridsize, hgridsize, _, clon = \ qcu.get_map_bounds(catalog[mask]) catalog = qcu.add_centers(catalog, gridsize) groupedlatlons, _, cmax = qcu.group_lat_lons(catalog, minmag=minmag) # print message if there are no detections with magnitudes above minmag if cmax == 0: print("No detections over magnitude %s" % minmag) # create color gradient from light red to dark red colors = qcu.range2rgb(rmin, rmax, numcolors) # put each center into its corresponding color group colorgroups = list(np.linspace(0, cmax, numcolors)) groupedlatlons.loc[:, 'group'] = np.digitize(groupedlatlons['count'], colorgroups) # create map plt.figure(figsize=(12, 7)) mplmap = plt.axes(projection=ccrs.PlateCarree(central_longitude=clon)) mplmap.set_extent([lllon, urlon, lllat, urlat], ccrs.PlateCarree()) mplmap.coastlines('50m') mplmap.add_feature(cfeature.BORDERS) mplmap.add_feature(cfeature.NaturalEarthFeature('cultural', 'admin_1_states_provinces_lines', '50m', facecolor='none', edgecolor='k', zorder=9)) plt.title(title, fontsize=20) plt.subplots_adjust(left=0.01, right=0.9, top=0.95, bottom=0.05) # create color map based on rmin and rmax cmap = LinearSegmentedColormap.from_list('CM', colors)._resample(numcolors) # make dummy plot for setting color bar colormesh = mplmap.pcolormesh(colors, colors, colors, cmap=cmap, alpha=1, vmin=0, vmax=cmax) # format color bar cbticks = [x for x in np.linspace(0, cmax, numcolors+1)] cbar = plt.colorbar(colormesh, ticks=cbticks) cbar.ax.set_yticklabels([('%.0f' % x) for x in cbticks]) cbar.set_label('# of detections', rotation=270, labelpad=15) # plot rectangles with color corresponding to number of detections for center, _, cgroup in groupedlatlons.itertuples(): minlat, maxlat = center[0]-hgridsize, center[0]+hgridsize minlon, maxlon = center[1]-hgridsize, center[1]+hgridsize glats = [minlat, maxlat, maxlat, minlat] glons = [minlon, minlon, maxlon, maxlon] color = colors[cgroup-1] qcu.draw_grid(glats, glons, color, alpha=0.8) # if provided, plot detection epicenters if pltevents and not catalog['mag'].isnull().all(): magmask = catalog['mag'] >= minmag lons = list(catalog['longitude'][magmask]) lats = list(catalog['latitude'][magmask]) mplmap.scatter(lons, lats, c='k', s=7, marker='x', zorder=5) elif catalog['mag'].isnull().all(): lons = list(catalog['longitude']) lats = list(catalog['latitude']) mplmap.scatter(lons, lats, c='k', s=7, marker='x', zorder=5) plt.savefig('%s_eqdensity.png' % dirname, dpi=300) plt.close() @printstatus('Making histogram of given parameter') def make_hist(catalog, param, binsize, dirname, title='', xlabel='', countlabel=False, maxval=None): """Plot histogram grouped by some parameter.""" paramlist = catalog[pd.notnull(catalog[param])][param].tolist() minparam, maxparam = min(paramlist), max(paramlist) paramdown = qcu.round2bin(minparam, binsize, 'down') paramup = qcu.round2bin(maxparam, binsize, 'up') numbins = int((paramup-paramdown) / binsize) labelbuff = float(paramup-paramdown) / numbins * 0.5 diffs = [abs(paramlist[i+1]-paramlist[i]) for i in range(len(paramlist)) if i+1 < len(paramlist)] diffs = [round(x, 1) for x in diffs if x > 0] plt.figure(figsize=(10, 6)) plt.title(title, fontsize=20) plt.xlabel(xlabel, fontsize=14) plt.ylabel('Count', fontsize=14) if param == 'ms': parambins = np.linspace(paramdown, paramup, numbins+1) plt.xlim(paramdown, paramup) else: parambins = np.linspace(paramdown, paramup+binsize, numbins+2) - binsize/2. plt.xlim(paramdown-binsize/2., paramup+binsize/2.) phist = plt.hist(paramlist, parambins, alpha=0.7, color='b', edgecolor='k') maxbarheight = max([phist[0][x] for x in range(numbins)] or [0]) labely = maxbarheight / 50. plt.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.11) if maxval: plt.xlim(xmax=maxval) plt.ylim(0, maxbarheight*1.1+0.1) # put count numbers above the bars if countlabel=True if countlabel: for i in range(numbins): plt.text(phist[1][i]+labelbuff, phist[0][i]+labely, '%0.f' % phist[0][i], size=12, ha='center') if maxval: plt.savefig('%s_zoom%shistogram.png' % (dirname, param), dpi=300) else: plt.savefig('%s_%shistogram.png' % (dirname, param), dpi=300) plt.close() @printstatus('Making histogram of given time duration') def make_time_hist(catalog, timelength, dirname, title=''): """Make histogram either by hour of the day or by date.""" timelist = catalog['time'] plt.figure(figsize=(10, 6)) plt.title(title, fontsize=20) plt.ylabel('Count', fontsize=14) if timelength == 'hour': lons = np.linspace(-180, 180, 25).tolist() hours = np.linspace(-12, 12, 25).tolist() tlonlist = catalog.loc[:, ['longitude', 'time']] tlonlist.loc[:, 'rLon'] = qcu.round2lon(tlonlist['longitude']) tlonlist.loc[:, 'hour'] = [int(x.split('T')[1].split(':')[0]) for x in tlonlist['time']] tlonlist.loc[:, 'rhour'] = [x.hour + hours[lons.index(x.rLon)] for x in tlonlist.itertuples()] tlonlist.loc[:, 'rhour'] = [x+24 if x < 0 else x-24 if x > 23 else x for x in tlonlist['rhour']] hourlist = tlonlist.rhour.tolist() hourbins = np.linspace(-0.5, 23.5, 25) plt.hist(hourlist, hourbins, alpha=1, color='b', edgecolor='k') plt.xlabel('Hour of the Day', fontsize=14) plt.xlim(-0.5, 23.5) elif timelength == 'day': daylist = [x.split('T')[0] for x in timelist] daydf = pd.DataFrame({'date': daylist}) daydf['date'] = daydf['date'].astype('datetime64[ns]') daydf = daydf.groupby([daydf['date'].dt.year, daydf['date'].dt.month, daydf['date'].dt.day]).count() eqdates = daydf.index.tolist() counts = daydf.date.tolist() eqdates = [date(x[0], x[1], x[2]) for x in eqdates] minday, maxday = min(eqdates), max(eqdates) plt.bar(eqdates, counts, alpha=1, color='b', width=1) plt.xlabel('Date', fontsize=14) plt.xlim(minday, maxday) plt.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.11) plt.savefig('%s_%shistogram.png' % (dirname, timelength), dpi=300) plt.close() @printstatus('Graphing mean time separation') def graph_time_sep(catalog, dirname): """Make bar graph of mean time separation between events by date.""" catalog.loc[:, 'convtime'] = [' '.join(x.split('T')).split('.')[0] for x in catalog['time'].tolist()] catalog.loc[:, 'convtime'] = catalog['convtime'].astype('datetime64[ns]') catalog.loc[:, 'dt'] = catalog.convtime.diff().astype('timedelta64[ns]') catalog.loc[:, 'dtmin'] = catalog['dt'] / pd.Timedelta(minutes=1) mindate = catalog['convtime'].min() maxdate = catalog['convtime'].max() fig = plt.figure(figsize=(10, 6)) axfull = fig.add_subplot(111) axfull.set_ylabel('Time separation (min)', fontsize=14, labelpad=20) axfull.spines['top'].set_color('none') axfull.spines['bottom'].set_color('none') axfull.spines['left'].set_color('none') axfull.spines['right'].set_color('none') axfull.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off') if maxdate - mindate < pd.Timedelta(days=1460): # time separation between events fig.add_subplot(311) plt.plot(catalog['convtime'], catalog['dtmin'], alpha=1, color='b') plt.xlabel('Date') plt.title('Time separation between events') plt.xlim(mindate, maxdate) plt.ylim(0) # maximum monthly time separation fig.add_subplot(312) month_max = catalog.resample('1M', on='convtime').max()['dtmin'] months = month_max.index.map(lambda x: x.strftime('%Y-%m')).tolist() months = [date(int(x[:4]), int(x[-2:]), 1) for x in months] plt.bar(months, month_max.tolist(), color='b', alpha=1, width=31, edgecolor='k') plt.xlabel('Month') plt.title('Maximum event separation by month') plt.xlim(mindate - pd.Timedelta(days=15), maxdate - pd.Timedelta(days=16)) # median monthly time separation fig.add_subplot(313) month_med = catalog.resample('1M', on='convtime').median()['dtmin'] plt.bar(months, month_med.tolist(), color='b', alpha=1, width=31, edgecolor='k') plt.xlabel('Month') plt.title('Median event separation by month') plt.tight_layout() plt.xlim(mindate - pd.Timedelta(days=15), maxdate - pd.Timedelta(days=16)) else: # time separation between events fig.add_subplot(311) plt.plot(catalog['convtime'], catalog['dtmin'], alpha=1, color='b') plt.xlabel('Date') plt.title('Time separation between events') plt.xlim(mindate, maxdate) plt.ylim(0) # maximum yearly time separation fig.add_subplot(312) year_max = catalog.resample('1Y', on='convtime').max()['dtmin'] years = year_max.index.map(lambda x: x.strftime('%Y')).tolist() years = [date(int(x[:4]), 1, 1) for x in years] plt.bar(years, year_max.tolist(), color='b', alpha=1, width=365, edgecolor='k') plt.xlabel('Year') plt.title('Maximum event separation by year') plt.xlim(mindate - pd.Timedelta(days=183), maxdate - pd.Timedelta(days=183)) # median yearly time separation fig.add_subplot(313) year_med = catalog.resample('1Y', on='convtime').median()['dtmin'] plt.bar(years, year_med.tolist(), color='b', alpha=1, width=365, edgecolor='k') plt.xlabel('Year') plt.title('Median event separation by year') plt.tight_layout() plt.xlim(mindate - pd.Timedelta(days=183), maxdate - pd.Timedelta(days=183)) plt.savefig('%s_timeseparation.png' % dirname, dpi=300) plt.close() @printstatus('Graphing median magnitude by time') def med_mag(catalog, dirname): """Make a bar graph of median event magnitude by year.""" catalog.loc[:, 'convtime'] = [' '.join(x.split('T')).split('.')[0] for x in catalog['time'].tolist()] catalog.loc[:, 'convtime'] = catalog['convtime'].astype('datetime64[ns]') mindate = catalog['convtime'].min() maxdate = catalog['convtime'].max() if maxdate - mindate < pd.Timedelta(days=1460): month_max = catalog.resample('1M', on='convtime').max()['mag'] months = month_max.index.map(lambda x: x.strftime('%Y-%m')).tolist() months = [date(int(x[:4]), int(x[-2:]), 1) for x in months] month_medmag = catalog.resample('1M', on='convtime').median()['mag'] fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(111) ax.tick_params(bottom='off') plt.bar(months, month_medmag.tolist(), color='b', edgecolor='k', alpha=1, width=31) plt.xlabel('Month', fontsize=14) plt.ylabel('Magnitude', fontsize=14) plt.title('Monthly Median Magnitude', fontsize=20) plt.xlim(min(months) - pd.Timedelta(days=15), max(months) + pd.Timedelta(days=15)) else: year_max = catalog.resample('1Y', on='convtime').max()['mag'] years = year_max.index.map(lambda x: x.strftime('%Y')).tolist() years = [date(int(x[:4]), 1, 1) for x in years] year_medmag = catalog.resample('1Y', on='convtime').median()['mag'] fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(111) ax.tick_params(bottom='off') plt.bar(years, year_medmag.tolist(), color='b', edgecolor='k', alpha=1, width=365) plt.xlabel('Year', fontsize=14) plt.ylabel('Magnitude', fontsize=14) plt.title('Yearly Median Magnitude', fontsize=20) plt.xlim(min(years) - pd.Timedelta(days=183), max(years) - pd.Timedelta(days=183)) plt.savefig('%s_medianmag' % dirname, dpi=300) plt.close() @printstatus('Graphing magnitude completeness') def cat_mag_comp(catalog, dirname, magbin=0.1): """Plot catalog magnitude completeness.""" catalog = catalog[pd.notnull(catalog['mag'])] mags = np.array(catalog['mag']) mags = np.around(mags, 1) minmag, maxmag = min(min(mags), 0), max(mags) mag_centers = np.arange(minmag, maxmag + 2*magbin, magbin) cdf = np.zeros(len(mag_centers)) for idx in range(len(cdf)): cdf[idx] = np.count_nonzero( ~np.isnan(mags[mags >= mag_centers[idx]-0.001])) mag_edges = np.arange(minmag - magbin/2., maxmag+magbin, magbin) g_r, _ = np.histogram(mags, mag_edges) idx = list(g_r).index(max(g_r)) mc_est = mag_centers[idx] try: mc_est, bvalue, avalue, lval, mc_bins, std_dev = qcu.WW2000(mc_est, mags, magbin) except: mc_est = mc_est + 0.3 mc_bins = np.arange(0, maxmag + magbin/2., magbin) bvalue = np.log10(np.exp(1))/(np.average(mags[mags >= mc_est]) - (mc_est-magbin/2.)) avalue = np.log10(len(mags[mags >= mc_est])) + bvalue*mc_est log_l = avalue-bvalue*mc_bins lval = 10.**log_l std_dev = bvalue/sqrt(len(mags[mags >= mc_est])) plt.figure(figsize=(8, 6)) plt.scatter(mag_centers[:len(g_r)], g_r, edgecolor='r', marker='o', facecolor='none', label='Incremental') plt.scatter(mag_centers, cdf, c='k', marker='+', label='Cumulative') plt.axvline(mc_est, c='r', linestyle='--', label='Mc = %2.1f' % mc_est) plt.plot(mc_bins, lval, c='k', linestyle='--', label='B = %1.3f%s%1.3f' % (bvalue, u'\u00B1', std_dev)) ax1 = plt.gca() ax1.set_yscale('log') max_count = np.amax(cdf) + 100000 ax1.set_xlim([minmag, maxmag]) ax1.set_ylim([1, max_count]) plt.title('Frequency-Magnitude Distribution', fontsize=18) plt.xlabel('Magnitude', fontsize=14) plt.ylabel('Log10 Count', fontsize=14) plt.legend(numpoints=1) plt.savefig('%s_catmagcomp.png' % dirname, dpi=300) plt.close() @printstatus('Graphing magnitude versus time for each earthquake') def graph_mag_time(catalog, dirname): """Plot magnitudes vs. origin time.""" catalog = catalog[pd.notnull(catalog['mag'])] catalog.loc[:, 'convtime'] = [' '.join(x.split('T')).split('.')[0] for x in catalog['time'].tolist()] catalog.loc[:, 'convtime'] = catalog['convtime'].astype('datetime64[ns]') times = catalog['time'].copy() mags = catalog['mag'].copy() plt.figure(figsize=(10, 6)) plt.xlabel('Date', fontsize=14) plt.ylabel('Magnitude', fontsize=14) plt.plot_date(times, mags, alpha=0.7, markersize=2, c='b') plt.xlim(min(times), max(times)) plt.title('Magnitude vs. Time', fontsize=20) plt.savefig('%s_magvtime.png' % dirname, dpi=300) plt.close() @printstatus('Graphing event count by date and magnitude') def graph_mag_count(catalog, dirname): """Graph event count grouped by magnitude and by date.""" catalog.loc[:, 'convtime'] = [' '.join(x.split('T')).split('.')[0] for x in catalog['time'].tolist()] catalog.loc[:, 'convtime'] = catalog['convtime'].astype('datetime64[ns]') mindate, maxdate = catalog['convtime'].min(), catalog['convtime'].max() bincond = maxdate - mindate < pd.Timedelta(days=1460) barwidth = 31 if bincond else 365 timedelt = pd.Timedelta(days=barwidth/2.) minbin = qcu.round2bin(catalog['mag'].min()-0.1, 1, 'down') maxbin = qcu.round2bin(catalog['mag'].max()+0.1, 1, 'up') bins = np.arange(minbin, maxbin+0.1, 1) catalog.loc[:, 'magbin'] = pd.cut(catalog['mag'], bins=bins, right=True) maggroups = catalog['magbin'].sort_values().unique() fig, axlist = plt.subplots(len(maggroups), sharex=True) fig.set_size_inches(10, 14, forward=True) for i, mbin in enumerate(maggroups): trimcat = catalog[catalog['magbin'] == mbin] if len(trimcat) == 0: continue datelist = [x.split('T')[0] for x in trimcat['time']] datedf = pd.DataFrame({'date': datelist}) datedf['date'] = datedf['date'].astype('datetime64[ns]') datedf = datedf.groupby([datedf['date'].dt.year, datedf['date'].dt.month]).count() if bincond\ else datedf.groupby([datedf['date'].dt.year]).count() evdates = datedf.index.tolist() counts = datedf.date.tolist() evdates = [date(x[0], x[1], 1) if bincond else date(x, 1, 1) for x in evdates] axlist[i].bar(evdates, counts, alpha=1, color='b', width=barwidth, edgecolor='k') axlist[i].set_ylabel('%d-%d' % (bins[i], bins[i+1]), fontsize=10) plt.xlim(mindate - timedelt, maxdate - timedelt) plt.ylim(0, max(counts)) axlist[i].get_yaxis().set_label_coords(-0.1, 0.5) plt.xlabel('Date', fontsize=14) for ax in axlist[:-1]: ax.xaxis.set_ticks_position('none') plt.savefig('%s_magtimecount.png' % dirname, dpi=300) plt.close() @printstatus('Graphing cumulative moment release') def cumul_moment_release(catalog, dirname): """Graph cumulative moment release.""" catalog = catalog[
pd.notnull(catalog['mag'])
pandas.notnull
import matplotlib.pyplot as plt import pandas as pd from powersimdata.network.model import ModelImmutables, area_to_loadzone from powersimdata.scenario.scenario import Scenario from postreise.analyze.generation.capacity import sum_capacity_by_type_zone from postreise.analyze.generation.summarize import sum_generation_by_type_zone def plot_bar_generation_vs_capacity( areas, area_types=None, scenario_ids=None, scenario_names=None, time_range=None, time_zone=None, custom_data=None, resource_types=None, resource_labels=None, horizontal=False, ): """Plot any number of scenarios as bar or horizontal bar charts with two columns per scenario - generation and capacity. :param list/str areas: list of area(s), each area is one of *loadzone*, *state*, *state abbreviation*, *interconnect*, *'all'*. :param list/str area_types: list of area_type(s), each area_type is one of *'loadzone'*, *'state'*, *'state_abbr'*, *'interconnect'*, defaults to None. :param int/list/str scenario_ids: list of scenario id(s), defaults to None. :param list/str scenario_names: list of scenario name(s) of same len as scenario ids, defaults to None. :param tuple time_range: [start_timestamp, end_timestamp] where each time stamp is pandas.Timestamp/numpy.datetime64/datetime.datetime. If None, the entire time range is used for the given scenario. :param str time_zone: new time zone, defaults to None, which uses UTC. :param list custom_data: list of dictionaries with each element being hand-generated data as returned by :func:`make_gen_cap_custom_data`, defaults to None. :param list/str resource_types: list of resource type(s) to show, defaults to None, which shows all available resources in the area of the corresponding scenario. :param dict resource_labels: a dictionary with keys being resource_types and values being labels to show in the plots, defaults to None, which uses resource_types as labels. :param bool horizontal: display bars horizontally, default to False. """ if isinstance(areas, str): areas = [areas] if isinstance(area_types, str): area_types = [area_types] if not area_types: area_types = [None] * len(areas) if len(areas) != len(area_types): raise ValueError( "ERROR: if area_types are provided, it should have the same number of entries with areas." ) if not scenario_ids: scenario_ids = [] if isinstance(scenario_ids, (int, str)): scenario_ids = [scenario_ids] if isinstance(scenario_names, str): scenario_names = [scenario_names] if scenario_names and len(scenario_names) != len(scenario_ids): raise ValueError( "ERROR: if scenario names are provided, number of scenario names must match number of scenario ids" ) if not custom_data: custom_data = {} if len(scenario_ids) + len(custom_data) <= 1: raise ValueError( "ERROR: must include at least two scenario ids and/or custom data" ) if isinstance(resource_types, str): resource_types = [resource_types] if not resource_labels: resource_labels = dict() if not isinstance(resource_labels, dict): raise TypeError("ERROR: resource_labels should be a dictionary") all_loadzone_data = {} scenario_data = {} for i, sid in enumerate(scenario_ids): scenario = Scenario(sid) mi = ModelImmutables(scenario.info["grid_model"]) all_loadzone_data[sid] = { "gen": sum_generation_by_type_zone(scenario, time_range, time_zone).rename( columns=mi.zones["id2loadzone"] ), "cap": sum_capacity_by_type_zone(scenario).rename( columns=mi.zones["id2loadzone"] ), } scenario_data[sid] = { "name": scenario_names[i] if scenario_names else scenario.info["name"], "grid_model": mi.model, "gen": {"label": "Generation", "unit": "TWh", "data": {}}, "cap": {"label": "Capacity", "unit": "GW", "data": {}}, } for area, area_type in zip(areas, area_types): for sid in scenario_ids: loadzone_set = area_to_loadzone( scenario_data[sid]["grid_model"], area, area_type ) scenario_data[sid]["gen"]["data"][area] = ( all_loadzone_data[sid]["gen"][loadzone_set] .sum(axis=1) .divide(1e6) .astype("float") .round(2) .to_dict() ) scenario_data[sid]["cap"]["data"][area] = ( all_loadzone_data[sid]["cap"][loadzone_set] .sum(axis=1) .divide(1e3) .astype("float") .round(2) .to_dict() ) for c_data in custom_data: scenario_data[c_data["name"]] = c_data for area in areas: if not resource_types: area_resource_types = sorted( set( r for sd in scenario_data.values() for side in ["gen", "cap"] for r, v in sd[side]["data"][area].items() if v > 0 ) ) else: area_resource_types = resource_types ax_data_list = [] for side in ["gen", "cap"]: ax_data = {} for sd in scenario_data.values(): # If we don't have data for a resource type, set it to 0 ax_data[sd["name"]] = [ sd[side]["data"][area].get(r, 0) for r in area_resource_types ] ax_data_list.append( { "title": f"""{sd[side]["label"]} ({sd[side]["unit"]})""", "labels": [resource_labels.get(r, r) for r in area_resource_types], "values": ax_data, "unit": sd[side]["unit"], } ) if horizontal: _construct_hbar_visuals(area, ax_data_list) else: _construct_bar_visuals(area, ax_data_list) def _construct_bar_visuals(zone, ax_data_list): """Plot bar chart based on formatted data. :param str zone: the zone name :param list ax_data_list: a list of labels and values for each axis of the plot """ num_scenarios = len(ax_data_list[0]["values"].keys()) num_resource_types = len(ax_data_list[0]["labels"]) fig, axes = plt.subplots( 1, 2, figsize=(1.5 * num_scenarios * num_resource_types, 6) ) plt.suptitle(zone, fontsize=30, verticalalignment="bottom") plt.subplots_adjust(wspace=3 / (num_scenarios * num_resource_types)) for ax_data, ax in zip(ax_data_list, axes): df = pd.DataFrame(ax_data["values"], index=ax_data["labels"]) df.plot(kind="bar", ax=ax, edgecolor="white", linewidth=2) ax.set_title(ax_data["title"], fontsize=25) ax.tick_params(axis="both", which="both", labelsize=20) ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) ax.set_xlabel("") ax.set_xticklabels( ax.get_xticklabels(), rotation=45, horizontalalignment="right" ) ax.set_yticks([]) ax.set_ylim(top=1.3 * ax.get_ylim()[1]) ax.legend(bbox_to_anchor=(-0.03, -0.4), loc="upper left", fontsize=16) for p in ax.patches: b = p.get_bbox() ax.annotate( _get_bar_display_val(b.y1), ((b.x1 + b.x0) / 2, b.y1 + 0.02 * ax.get_ylim()[1]), fontsize=10, rotation="horizontal", horizontalalignment="center", ) axes[1].get_legend().remove() plt.show() def _construct_hbar_visuals(zone, ax_data_list): """Plot horizontal bar chart based on formatted data. :param str zone: the zone name. :param list ax_data_list: a list of labels and values for each axis of the plot """ num_scenarios = len(ax_data_list[0]["values"].keys()) num_resource_types = len(ax_data_list[0]["labels"]) fig, axes = plt.subplots( 1, 2, figsize=(20, 0.7 * num_scenarios * num_resource_types) ) plt.suptitle(zone, fontsize=30, verticalalignment="bottom") plt.subplots_adjust(wspace=1) for ax_data, ax in zip(ax_data_list, axes): df =
pd.DataFrame(ax_data["values"], index=ax_data["labels"])
pandas.DataFrame
#!/usr/bin/python # _*_coding:utf-8_*_ # Import modules import numpy as np import pandas as pd from collections import defaultdict from scipy.stats import f_oneway, shapiro, chi2_contingency from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier # Custom modules from utils import numeric, categorical from models import forest_cv_rfe # Normality test def normality_test(df, variable, alpha=0.03): """ Calculate Shapiro - Wilks normality test.""" stat, p = shapiro(df.loc[:, [variable]]) if p < alpha: print("\t- {} looks Gaussian, fail to reject H0.".format(variable)) else: print("\t- {} doesn't look Gaussian, reject H0.".format(variable)) return None # Anova test def anova_test2(df, v_cat, v_num): # Remove nulls df = df.loc[df[v_num].notnull(), [v_cat, v_num]].copy() # Calculate the classes classes = set(df[v_cat]) # Create the lists obs = [list(df.loc[df[v_cat] == i, v_num]) for i in classes] # Calculate anova try: anova = f_oneway(*obs)[1] except TypeError: # Error: df slice with no nulls values there is only on class of the categorical variable. anova = 0 return anova def chisquare_test(df, object_variable='Survived', verbosity=False): # Define the numerical columns to study cols_list = categorical(df, remove_ov=False) # Calculate chitest for each categorical variable if verbosity: print("Chi-square test is performed with {} for each other categorical variables.".format(object_variable)) print("The results obtained are the following:") # Result Dictionary result_dict = {} # For each other colum in dataset calculate the chi-square test for col in cols_list: # Get the survived and not survived freq = df.groupby([col, object_variable]).size().unstack(fill_value=0).stack() # Calculate the matrix of frequencies for each class: v_index = set(df[object_variable]) total_obs = [list(freq[freq.index.get_level_values(1) == i]) for i in v_index] # Chisquare test crosstab = np.array(total_obs) chi_test = chi2_contingency(crosstab) # V Cramer obs = np.sum(crosstab) mini = min(crosstab.shape)-1 # Return results result_dict[col] = chi_test[0]/(obs*mini) if verbosity: print("\t- {}: The p-value is {}".format(col, chi_test[0]/(obs*mini))) return result_dict def chisquare_matrix(df): # Define empty dictionary matrix = {} # Determine the categorical variables of the dataframe categorical_variables = categorical(df, remove_ov=False) # For each variable calculate the Cramer's V test and add it to dictionary for column in categorical_variables: matrix[column] = chisquare_test(df, column) # Convert dictionary of all test into a dataframe matrix =
pd.DataFrame.from_dict(matrix)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """Deployment Response controller.""" import os import uuid import pandas as pd import requests from projects import models from projects.controllers.utils import uuid_alpha BROKER_URL = os.getenv("BROKER_URL", "http://default-broker.anonymous.svc.cluster.local") class ResponseController: def __init__(self, session): self.session = session def create_response(self, project_id: str, deployment_id: str, body: dict): """ Creates a response entry in logs file. Parameters ---------- project_id : str deployment_id : str body : dict """ if "data" in body: ndarray = pd.DataFrame(body["data"]["ndarray"]) if "names" in body["data"]: names = body["data"]["names"] ndarray.columns = names body = ndarray.to_dict(orient="records") if isinstance(body, dict): body = [body] responses = [] for record in body: responses.append( models.Response( uuid=uuid_alpha(), deployment_id=deployment_id, body=record, ) ) self.session.bulk_save_objects(responses) self.session.commit() responses = self.session.query(models.Response) \ .filter_by(deployment_id=deployment_id) \ .order_by(models.Response.created_at.asc()) \ .all() d = [] if len(responses) > 0: for response in responses: d.append(response.body) data =
pd.DataFrame(d)
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(
StringIO(data)
pandas.compat.StringIO
import pandas as pd import numpy as np from math import isnan from sklearn import svm from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_score from sklearn.metrics import roc_curve from evaluator import confusion_metric_drawer from matplotlib import pyplot as plt clipData = pd.read_csv('../data/clipTrainPure.csv', index_col=0) trainSet = clipData[['nx', 'ny', 'rsx', 'rsy', 'lsx', 'lsy', 'rhx', 'rhy', 'lhx', 'lhy', 'rkx', 'rky', 'lkx', 'lky']] labelTrain = clipData['label'] # print(np.array(labelTrain).tolist()) svc = svm.SVC(kernel='rbf') svc.fit(trainSet, labelTrain) testDf =
pd.read_csv('../data/clipTestPure.csv', index_col=0)
pandas.read_csv
import GoH.utilities import json import os import pandas as pd def queue_docs(base_dir, test, model_scheme, period): """ base_dir, model_scheme, period """ corpus_index = os.path.join(base_dir, 'corpora/{}/{}.txt'.format(model_scheme, period)) dtm = os.path.join(base_dir, 'dataframes/{}/{}-{}_dtm.csv'.format(test, model_scheme, period)) topic_labels = os.path.join(base_dir, 'dataframes/{}/{}-{}_topicLabels.csv'.format(test, model_scheme, period)) metadata = os.path.join(base_dir,'2017-05-corpus-stats/2017-05-Composite-OCR-statistics.csv') return (corpus_index, dtm, topic_labels, metadata) def doc_list(index_filename): """ """ with open(index_filename) as data_file: data = json.load(data_file) docs =
pd.DataFrame.from_dict(data, orient='index')
pandas.DataFrame.from_dict
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/10/15 0015 # @Author : justin.郑 <EMAIL> # @File : movie.py # @Desc : 影视数据 # EBOT艺恩票房智库 https://www.endata.com.cn import json import os import pandas as pd import requests import execjs from gopup.movie.cons import headers from gopup.utils.date_utils import today, day_last_date def realtime_boxoffice(): """ 获取实时电影票房数据 数据来源:EBOT艺恩票房智库 https://www.endata.com.cn/BoxOffice :return: DataFrame BoxOffice 实时票房(万) Irank 排名 MovieName 影片名 boxPer 票房占比 (%) movieDay 上映天数 sumBoxOffice 累计票房(万) default_url 影片海报 """ try: url = "https://www.endata.com.cn/API/GetData.ashx" data = { "tdate": today(), "MethodName": "BoxOffice_GetHourBoxOffice" } r = requests.post(url=url, data=data, headers=headers) js = get_js('webDES.js') docjs = execjs.compile(js) res = docjs.call("webInstace.shell", r.text) res_dict = json.loads(res) if res_dict['Status'] == 1: tmp = res_dict['Data']['Table1'] res_pd = pd.DataFrame(tmp) res_pd = res_pd.drop(columns=['moblie_url', 'larger_url', 'mId', 'MovieImg']) return res_pd except Exception as e: return None def day_boxoffice(date=None): """ 获取单日电影票房数据 数据来源:EBOT艺恩票房智库 https://www.endata.com.cn/BoxOffice :param date: 日期 :return: DataFrame Irank 排名 MovieName 影片名 BoxOffice 单日票房(万) BoxOffice_Up 环比变化 SumBoxOffice 累计票房(万) default_url 影片海报 AvgPrice 平均票价 AvpPeoPle 场均人次 RapIndex 口碑指数 MovieDay 上映天数 """ try: if date == None: edate = today() else: edate = date sdate = day_last_date(edate, days=1) url = "https://www.endata.com.cn/API/GetData.ashx" data = { "sdate": sdate, "edate": edate, "MethodName": "BoxOffice_GetDayBoxOffice" } r = requests.post(url=url, data=data, headers=headers) js = get_js('webDES.js') docjs = execjs.compile(js) res = docjs.call("webInstace.shell", r.text) res_dict = json.loads(res) if res_dict['Status'] == 1: tmp = res_dict['Data']['Table'] res_pd = pd.DataFrame(tmp) res_pd = res_pd.drop(columns=['MovieImg', 'moblie_url', 'larger_url', 'MovieID', 'Director', 'BoxOffice1', 'IRank_pro', 'RapIndex']) return res_pd except Exception as e: return None def day_cinema(date=None): """ 获取单日影院票房 :param date: :return: DataFrame RowNum 排名 CinemaName 影院名称 TodayBox 单日票房(元) TodayShowCount 单日场次 AvgPeople 场均人次 price 场均票价(元) Attendance 上座率 """ try: url = "https://www.endata.com.cn/API/GetData.ashx" data = { "date": date, "rowNum1": 1, "rowNum2": 100, "MethodName": "BoxOffice_GetCinemaDayBoxOffice" } r = requests.post(url=url, data=data, headers=headers) js = get_js('webDES.js') docjs = execjs.compile(js) res = docjs.call("webInstace.shell", r.text) res_dict = json.loads(res) if res_dict['Status'] == 1: tmp = res_dict['Data']['Table'] res_pd =
pd.DataFrame(tmp)
pandas.DataFrame
import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, ) import pandas._testing as tm dt_data = [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timestamp("2011-01-03"), ] tz_data = [ pd.Timestamp("2011-01-01", tz="US/Eastern"), pd.Timestamp("2011-01-02", tz="US/Eastern"), pd.Timestamp("2011-01-03", tz="US/Eastern"), ] td_data = [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days"), ] period_data = [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2011-03", freq="M"), ] data_dict = { "bool": [True, False, True], "int64": [1, 2, 3], "float64": [1.1, np.nan, 3.3], "category": Categorical(["X", "Y", "Z"]), "object": ["a", "b", "c"], "datetime64[ns]": dt_data, "datetime64[ns, US/Eastern]": tz_data, "timedelta64[ns]": td_data, "period[M]": period_data, } class TestConcatAppendCommon: """ Test common dtype coercion rules between concat and append. """ @pytest.fixture(params=sorted(data_dict.keys())) def item(self, request): key = request.param return key, data_dict[key] item2 = item def _check_expected_dtype(self, obj, label): """ Check whether obj has expected dtype depending on label considering not-supported dtypes """ if isinstance(obj, Index): assert obj.dtype == label elif isinstance(obj, Series): if label.startswith("period"): assert obj.dtype == "Period[M]" else: assert obj.dtype == label else: raise ValueError def test_dtypes(self, item): # to confirm test case covers intended dtypes typ, vals = item self._check_expected_dtype(Index(vals), typ) self._check_expected_dtype(Series(vals), typ) def test_concatlike_same_dtypes(self, item): # GH 13660 typ1, vals1 = item vals2 = vals1 vals3 = vals1 if typ1 == "category": exp_data = Categorical(list(vals1) + list(vals2)) exp_data3 = Categorical(list(vals1) + list(vals2) + list(vals3)) else: exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append res = Index(vals1).append(Index(vals2)) exp = Index(exp_data) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3) tm.assert_index_equal(res, exp) # index.append name mismatch i1 = Index(vals1, name="x") i2 = Index(vals2, name="y") res = i1.append(i2) exp = Index(exp_data) tm.assert_index_equal(res, exp) # index.append name match i1 = Index(vals1, name="x") i2 = Index(vals2, name="x") res = i1.append(i2) exp = Index(exp_data, name="x") tm.assert_index_equal(res, exp) # cannot append non-index with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append(vals2) with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append([Index(vals2), vals3]) # ----- Series ----- # # series.append res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) # concat res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True) exp = Series(exp_data3) tm.assert_series_equal(res, exp) res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) # name mismatch s1 = Series(vals1, name="x") s2 = Series(vals2, name="y") res = s1._append(s2, ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # name match s1 = Series(vals1, name="x") s2 = Series(vals2, name="x") res = s1._append(s2, ignore_index=True) exp = Series(exp_data, name="x") tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # cannot append non-index msg = ( r"cannot concatenate object of type '.+'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): Series(vals1)._append(vals2) with pytest.raises(TypeError, match=msg): Series(vals1)._append([Series(vals2), vals3]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), vals2]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), Series(vals2), vals3]) def test_concatlike_dtypes_coercion(self, item, item2, request): # GH 13660 typ1, vals1 = item typ2, vals2 = item2 vals3 = vals2 # basically infer exp_index_dtype = None exp_series_dtype = None if typ1 == typ2: # same dtype is tested in test_concatlike_same_dtypes return elif typ1 == "category" or typ2 == "category": # The `vals1 + vals2` below fails bc one of these is a Categorical # instead of a list; we have separate dedicated tests for categorical return warn = None # specify expected dtype if typ1 == "bool" and typ2 in ("int64", "float64"): # series coerces to numeric based on numpy rule # index doesn't because bool is object dtype exp_series_dtype = typ2 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif typ2 == "bool" and typ1 in ("int64", "float64"): exp_series_dtype = typ1 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif ( typ1 == "datetime64[ns, US/Eastern]" or typ2 == "datetime64[ns, US/Eastern]" or typ1 == "timedelta64[ns]" or typ2 == "timedelta64[ns]" ): exp_index_dtype = object exp_series_dtype = object exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Index(vals1).append(Index(vals2)) exp = Index(exp_data, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # ----- Series ----- # # series._append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data, dtype=exp_series_dtype) tm.assert_series_equal(res, exp, check_index_type=True) # concat with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append( [Series(vals2), Series(vals3)], ignore_index=True ) exp = Series(exp_data3, dtype=exp_series_dtype) tm.assert_series_equal(res, exp) with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) def test_concatlike_common_coerce_to_pandas_object(self): # GH 13626 # result must be Timestamp/Timedelta, not datetime.datetime/timedelta dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"]) tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ] ) res = dti.append(tdi) tm.assert_index_equal(res, exp) assert isinstance(res[0], pd.Timestamp) assert isinstance(res[-1], pd.Timedelta) dts = Series(dti) tds = Series(tdi) res = dts._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) res = pd.concat([dts, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) def test_concatlike_datetimetz(self, tz_aware_fixture): tz = tz_aware_fixture # GH 7795 dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz=tz) exp = pd.DatetimeIndex( ["2011-01-01", "2011-01-02", "2012-01-01", "2012-01-02"], tz=tz ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) @pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo", "EST5EDT"]) def test_concatlike_datetimetz_short(self, tz): # GH#7795 ix1 = pd.date_range(start="2014-07-15", end="2014-07-17", freq="D", tz=tz) ix2 = pd.DatetimeIndex(["2014-07-11", "2014-07-21"], tz=tz) df1 = DataFrame(0, index=ix1, columns=["A", "B"]) df2 = DataFrame(0, index=ix2, columns=["A", "B"]) exp_idx = pd.DatetimeIndex( ["2014-07-15", "2014-07-16", "2014-07-17", "2014-07-11", "2014-07-21"], tz=tz, ) exp = DataFrame(0, index=exp_idx, columns=["A", "B"]) tm.assert_frame_equal(df1._append(df2), exp) tm.assert_frame_equal(pd.concat([df1, df2]), exp) def test_concatlike_datetimetz_to_object(self, tz_aware_fixture): tz = tz_aware_fixture # GH 13660 # different tz coerces to object dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"]) exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-02"), ], dtype=object, ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # different tz dti3 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz="US/Pacific") exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01", tz="US/Pacific"), pd.Timestamp("2012-01-02", tz="US/Pacific"), ], dtype=object, ) res = dti1.append(dti3) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts3 = Series(dti3) res = dts1._append(dts3) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts3]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period(self): # GH 13660 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01", "2012-02"], freq="M") exp = pd.PeriodIndex(["2011-01", "2011-02", "2012-01", "2012-02"], freq="M") res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_diff_freq_to_object(self): # GH 13221 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01-01", "2012-02-01"], freq="D") exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2012-01-01", freq="D"), pd.Period("2012-02-01", freq="D"), ], dtype=object, ) res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_mixed_dt_to_object(self): # GH 13221 # different datetimelike pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ], dtype=object, ) res = pi1.append(tdi) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = ps1._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # inverse exp = Index( [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), ], dtype=object, ) res = tdi.append(pi1) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = tds._append(ps1) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([tds, ps1]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concat_categorical(self): # GH 13524 # same categories -> category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2], dtype="category") exp = Series([1, 2, np.nan, 2, 1, 2], dtype="category") tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # partially different categories => not-category s1 = Series([3, 2], dtype="category") s2 = Series([2, 1], dtype="category") exp = Series([3, 2, 2, 1]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # completely different categories (same dtype) => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series([np.nan, 1, 3, 2], dtype="category") exp =
Series([10, 11, np.nan, np.nan, 1, 3, 2], dtype=np.float64)
pandas.Series
######################################################################################################################## # |||||||||||||||||||||||||||||||||||||||||||||||||| AQUITANIA ||||||||||||||||||||||||||||||||||||||||||||||||||||||| # # |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| # # |||| To be a thinker means to go by the factual evidence of a case, not by the judgment of others |||||||||||||||||| # # |||| As there is no group stomach to digest collectively, there is no group mind to think collectively. |||||||||||| # # |||| Each man must accept responsibility for his own life, each must be sovereign by his own judgment. ||||||||||||| # # |||| If a man believes a claim to be true, then he must hold to this belief even though society opposes him. ||||||| # # |||| Not only know what you want, but be willing to break all established conventions to accomplish it. |||||||||||| # # |||| The merit of a design is the only credential that you require. |||||||||||||||||||||||||||||||||||||||||||||||| # # |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| # ######################################################################################################################## """ .. moduleauthor:: <NAME> This class was created on late December 2017, that was when I started working with AI using only Random Forest algorithms. Going through a big refactor on 17th February 2018, create AbstractModel class, removed a lot of content inside of this class, it was almost doing everything alone, now I moved out a lot of its functionality, and it is being designed to be a piece of a whole system of models and predictors. """ import pandas as pd from sklearn.ensemble import RandomForestClassifier from aquitania.brains.models.abstract_model import AbstractModel class RandomForestClf(AbstractModel): """ RandomForest class gets a list of currencies a signal and exits and creates an algorithm to predict patterns. """ def __init__(self, **kwargs): if len(kwargs) == 0: kwargs = {'n_jobs': -1, 'max_features': .5, 'n_estimators': 25, 'min_samples_leaf': 25} self.kwargs = kwargs super().__init__(RandomForestClassifier(**kwargs)) def fit(self, X, y): self.clf.fit(X, y) self.importance_of_columns = self.clf.feature_importances_ super().fit(X, y) def predict(self, X): return self.clf.predict_proba(X).T[1] def get_feature_importance(self): return
pd.Series(self.importance_of_columns, index=self.features)
pandas.Series
# ms_mint/io.py import pandas as pd import numpy as np import io import logging import pymzml from pathlib import Path as P from datetime import date from pyteomics import mzxml, mzml from functools import lru_cache try: from pyteomics import mzmlb MZMLB_AVAILABLE = True except: logging.warning('Cound not import pyteomics.mzmlb') MZMLB_AVAILABLE = False MS_FILE_COLUMNS = ['scan_id', 'ms_level', 'polarity', 'scan_time_min', 'mz', 'intensity'] @lru_cache(100) def ms_file_to_df(fn, read_only:bool=False, time_unit='seconds'): assert time_unit in ['minutes', 'seconds'] fn = str(fn) if fn.lower().endswith('.mzxml'): df = mzxml_to_df(fn, read_only=read_only) elif fn.lower().endswith('.mzml'): df = mzml_to_df(fn, read_only=read_only, time_unit=time_unit) elif fn.lower().endswith('hdf'): df =
pd.read_hdf(fn)
pandas.read_hdf
from tqdm import tqdm from functools import partial import multiprocessing import pandas as pd import numpy as np import argparse import os def step0_extract(filename): df = pd.read_csv(filename, low_memory=False) print('Total size:\t\t\t\t\t', len(df)) df = df[df['TransactionType'] == 'FI-InvoicedDocument'] print('Total size (transaction type filter):\t\t', len(df)) df = df[['DocumentKey', 'CustomerKey', 'DocumentDate', 'DueDate', 'ClearingDate', 'InvoicedAmount']].dropna() print('Total size (dropna filter):\t\t\t', len(df)) for col in ['DocumentKey']: df[col] = df[col].apply(lambda x: x.split('|')[2]) for col in ['DocumentDate', 'DueDate', 'ClearingDate']: df[col] = pd.to_datetime(df[col]) for col in ['DocumentKey', 'CustomerKey', 'InvoicedAmount']: df[col] = pd.to_numeric(df[col]) df = df[(df['DocumentDate'] < df['DueDate']) & (df['DocumentDate'] < df['ClearingDate'])] df = df[df['InvoicedAmount'] >= 1000] print('Total size (Date and Invoice Amount filters):\t', len(df), '\n') return df def step1_organize(filename): def group(x): return x.groupby(['CustomerKey', 'DueDate']) def order(x): return x.sort_values(by=['DueDate'], ascending=True, ignore_index=True) def merge(x1, x2): return pd.merge(order(x1), order(x2), how='left', on=['CustomerKey', 'DueDate']) df = pd.read_csv(filename, parse_dates=['DocumentDate', 'DueDate', 'ClearingDate'], low_memory=False) df['OS'] = ((df['ClearingDate'] - (df['DueDate'] - pd.to_timedelta(arg=df['DueDate'].dt.weekday, unit='D'))) .astype('timedelta64[D]') > 0).astype(int) df_doc = order(group(df)['DocumentDate'].min().reset_index()) df_cle = order(group(df)['ClearingDate'].max().reset_index()) df_gp = pd.DataFrame({ 'CustomerKey': df_doc['CustomerKey'].values, 'DocumentDate': df_doc['DocumentDate'].values, 'DueDate': df_doc['DueDate'].values, 'ClearingDate': df_cle['ClearingDate'].values, }) df_gp = merge(df_gp, group(df).size().reset_index(name='InvoiceCount')) df_gp = merge(df_gp, group(df[df['OS'] == 1]).size().reset_index(name='OSInvoiceCount')) df_gp['OSInvoiceCount'] = df_gp['OSInvoiceCount'].fillna(0).astype(int) df_gp['R_OSInvoiceCount'] = df_gp['OSInvoiceCount'] / df_gp['InvoiceCount'] df_gp['R_OSInvoiceCount'] = df_gp['R_OSInvoiceCount'].fillna(0) df_gp = merge(df_gp, group(df)['InvoicedAmount'].sum().reset_index(name='InvoiceAmount')) df_gp = merge(df_gp, group(df[df['OS'] == 1])['InvoicedAmount'].sum().reset_index(name='OSInvoiceAmount')) df_gp['OSInvoiceAmount'] = df_gp['OSInvoiceAmount'].fillna(0) df_gp['R_OSInvoiceAmount'] = df_gp['OSInvoiceAmount'] / df_gp['InvoiceAmount'] df_gp['R_OSInvoiceAmount'] = df_gp['R_OSInvoiceAmount'].fillna(0) return df_gp def step2_generate(filename): df = pd.read_csv(filename, parse_dates=['DocumentDate', 'DueDate', 'ClearingDate'], low_memory=False) df['DaysToEndMonth'] = ((df['DueDate'] + pd.offsets.MonthEnd(0)) - df['DueDate']).dt.days df['DaysLate'] = ((df['ClearingDate'] - df['DueDate']).dt.days).clip(lower=0) df['DaysLateAM'] = (df['DaysLate'] - df['DaysToEndMonth']).clip(lower=0) df['PaymentCategory'] = 0 df.loc[(df['DaysLate'] > 0) & (df['DaysLateAM'] <= 0), 'PaymentCategory'] = 1 df.loc[(df['DaysLate'] > 0) & (df['DaysLateAM'] > 0), 'PaymentCategory'] = 2 features = [] with multiprocessing.Pool(multiprocessing.cpu_count()) as pool: for x in tqdm(pool.imap(partial(_historic), df[['CustomerKey', 'DueDate']].values), total=len(df)): features.append(x) pool.close() pool.join() df = pd.merge(df,
pd.DataFrame(features)
pandas.DataFrame
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (is_platform_32bit() or is_platform_windows()) and not dtype and orient != "split" ): # TODO: see what is causing roundtrip dtype loss expected = expected.astype(np.int32) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [None, np.float64, np.int, "U3"]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_str_axes(self, orient, convert_axes, numpy, dtype): df = DataFrame( np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)], dtype=dtype, ) # TODO: do we even need to support U3 dtypes? if numpy and dtype == "U3" and orient != "split": pytest.xfail("Can't decode directly to array") data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = df.copy() if not dtype: expected = expected.astype(np.int64) # index columns, and records orients cannot fully preserve the string # dtype for axes as the index and column labels are used as keys in # JSON objects. JSON keys are by definition strings, so there's no way # to disambiguate whether those keys actually were strings or numeric # beforehand and numeric wins out. # TODO: Split should be able to support this if convert_axes and (orient in ("split", "index", "columns")): expected.columns = expected.columns.astype(np.int64) expected.index = expected.index.astype(np.int64) elif orient == "records" and convert_axes: expected.columns = expected.columns.astype(np.int64) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_categorical(self, orient, convert_axes, numpy): # TODO: create a better frame to test with and improve coverage if orient in ("index", "columns"): pytest.xfail(f"Can't have duplicate index values for orient '{orient}')") data = self.categorical.to_json(orient=orient) if numpy and orient in ("records", "values"): pytest.xfail(f"Orient {orient} is broken with numpy=True") result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.categorical.copy() expected.index = expected.index.astype(str) # Categorical not preserved expected.index.name = None # index names aren't preserved in JSON if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_empty(self, orient, convert_axes, numpy, empty_frame): data = empty_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = empty_frame.copy() # TODO: both conditions below are probably bugs if convert_axes: expected.index = expected.index.astype(float) expected.columns = expected.columns.astype(float) if numpy and orient == "values": expected = expected.reindex([0], axis=1).reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_timestamp(self, orient, convert_axes, numpy): # TODO: improve coverage with date_format parameter data = self.tsframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.tsframe.copy() if not convert_axes: # one off for ts handling # DTI gets converted to epoch values idx = expected.index.astype(np.int64) // 1000000 if orient != "split": # TODO: handle consistently across orients idx = idx.astype(str) expected.index = idx assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_mixed(self, orient, convert_axes, numpy): if numpy and orient != "split": pytest.xfail("Can't decode directly to array") index = pd.Index(["a", "b", "c", "d", "e"]) values = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": [True, False, True, False, True], } df = DataFrame(data=values, index=index) data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = df.copy() expected = expected.assign(**expected.select_dtypes("number").astype(np.int64)) if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize( "data,msg,orient", [ ('{"key":b:a:d}', "Expected object or value", "columns"), # too few indices ( '{"columns":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"Shape of passed values is \(3, 2\), indices imply \(2, 2\)", "split", ), # too many columns ( '{"columns":["A","B","C"],' '"index":["1","2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', "3 columns passed, passed data had 2 columns", "split", ), # bad key ( '{"badkey":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"unexpected key\(s\): badkey", "split", ), ], ) def test_frame_from_json_bad_data_raises(self, data, msg, orient): with pytest.raises(ValueError, match=msg): read_json(StringIO(data), orient=orient) @pytest.mark.parametrize("dtype", [True, False]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_frame_from_json_missing_data(self, orient, convert_axes, numpy, dtype): num_df = DataFrame([[1, 2], [4, 5, 6]]) result = read_json( num_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) assert np.isnan(result.iloc[0, 2]) obj_df = DataFrame([["1", "2"], ["4", "5", "6"]]) result = read_json( obj_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) if not dtype: # TODO: Special case for object data; maybe a bug? assert result.iloc[0, 2] is None else: assert np.isnan(result.iloc[0, 2]) @pytest.mark.parametrize("inf", [np.inf, np.NINF]) @pytest.mark.parametrize("dtype", [True, False]) def test_frame_infinity(self, orient, inf, dtype): # infinities get mapped to nulls which get mapped to NaNs during # deserialisation df = DataFrame([[1, 2], [4, 5, 6]]) df.loc[0, 2] = inf result = read_json(df.to_json(), dtype=dtype) assert np.isnan(result.iloc[0, 2]) @pytest.mark.skipif( is_platform_32bit(), reason="not compliant on 32-bit, xref #15865" ) @pytest.mark.parametrize( "value,precision,expected_val", [ (0.95, 1, 1.0), (1.95, 1, 2.0), (-1.95, 1, -2.0), (0.995, 2, 1.0), (0.9995, 3, 1.0), (0.99999999999999944, 15, 1.0), ], ) def test_frame_to_json_float_precision(self, value, precision, expected_val): df = pd.DataFrame([dict(a_float=value)]) encoded = df.to_json(double_precision=precision) assert encoded == f'{{"a_float":{{"0":{expected_val}}}}}' def test_frame_to_json_except(self): df = DataFrame([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): df.to_json(orient="garbage") def test_frame_empty(self): df = DataFrame(columns=["jim", "joe"]) assert not df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) # GH 7445 result = pd.DataFrame({"test": []}, index=[]).to_json(orient="columns") expected = '{"test":{}}' assert result == expected def test_frame_empty_mixedtype(self): # mixed type df = DataFrame(columns=["jim", "joe"]) df["joe"] = df["joe"].astype("i8") assert df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) def test_frame_mixedtype_orient(self): # GH10289 vals = [ [10, 1, "foo", 0.1, 0.01], [20, 2, "bar", 0.2, 0.02], [30, 3, "baz", 0.3, 0.03], [40, 4, "qux", 0.4, 0.04], ] df = DataFrame( vals, index=list("abcd"), columns=["1st", "2nd", "3rd", "4th", "5th"] ) assert df._is_mixed_type right = df.copy() for orient in ["split", "index", "columns"]: inp = df.to_json(orient=orient) left = read_json(inp, orient=orient, convert_axes=False) tm.assert_frame_equal(left, right) right.index = np.arange(len(df)) inp = df.to_json(orient="records") left = read_json(inp, orient="records", convert_axes=False) tm.assert_frame_equal(left, right) right.columns = np.arange(df.shape[1]) inp = df.to_json(orient="values") left = read_json(inp, orient="values", convert_axes=False) tm.assert_frame_equal(left, right) def test_v12_compat(self, datapath): df = DataFrame( [ [1.56808523, 0.65727391, 1.81021139, -0.17251653], [-0.2550111, -0.08072427, -0.03202878, -0.17581665], [1.51493992, 0.11805825, 1.629455, -1.31506612], [-0.02765498, 0.44679743, 0.33192641, -0.27885413], [0.05951614, -2.69652057, 1.28163262, 0.34703478], ], columns=["A", "B", "C", "D"], index=pd.date_range("2000-01-03", "2000-01-07"), ) df["date"] = pd.Timestamp("19920106 18:21:32.12") df.iloc[3, df.columns.get_loc("date")] = pd.Timestamp("20130101") df["modified"] = df["date"] df.iloc[1, df.columns.get_loc("modified")] = pd.NaT dirpath = datapath("io", "json", "data") v12_json = os.path.join(dirpath, "tsframe_v012.json") df_unser = pd.read_json(v12_json) tm.assert_frame_equal(df, df_unser) df_iso = df.drop(["modified"], axis=1) v12_iso_json = os.path.join(dirpath, "tsframe_iso_v012.json") df_unser_iso = pd.read_json(v12_iso_json) tm.assert_frame_equal(df_iso, df_unser_iso) def test_blocks_compat_GH9037(self): index = pd.date_range("20000101", periods=10, freq="H") df_mixed = DataFrame( OrderedDict( float_1=[ -0.92077639, 0.77434435, 1.25234727, 0.61485564, -0.60316077, 0.24653374, 0.28668979, -2.51969012, 0.95748401, -1.02970536, ], int_1=[ 19680418, 75337055, 99973684, 65103179, 79373900, 40314334, 21290235, 4991321, 41903419, 16008365, ], str_1=[ "78c608f1", "64a99743", "13d2ff52", "ca7f4af2", "97236474", "bde7e214", "1a6bde47", "b1190be5", "7a669144", "8d64d068", ], float_2=[ -0.0428278, -1.80872357, 3.36042349, -0.7573685, -0.48217572, 0.86229683, 1.08935819, 0.93898739, -0.03030452, 1.43366348, ], str_2=[ "14f04af9", "d085da90", "4bcfac83", "81504caf", "2ffef4a9", "08e2f5c4", "07e1af03", "addbd4a7", "1f6a09ba", "4bfc4d87", ], int_2=[ 86967717, 98098830, 51927505, 20372254, 12601730, 20884027, 34193846, 10561746, 24867120, 76131025, ], ), index=index, ) # JSON deserialisation always creates unicode strings df_mixed.columns = df_mixed.columns.astype("unicode") df_roundtrip = pd.read_json(df_mixed.to_json(orient="split"), orient="split") tm.assert_frame_equal( df_mixed, df_roundtrip, check_index_type=True, check_column_type=True, by_blocks=True, check_exact=True, ) def test_frame_nonprintable_bytes(self): # GH14256: failing column caused segfaults, if it is not the last one class BinaryThing: def __init__(self, hexed): self.hexed = hexed self.binary = bytes.fromhex(hexed) def __str__(self) -> str: return self.hexed hexed = "574b4454ba8c5eb4f98a8f45" binthing = BinaryThing(hexed) # verify the proper conversion of printable content df_printable = DataFrame({"A": [binthing.hexed]}) assert df_printable.to_json() == f'{{"A":{{"0":"{hexed}"}}}}' # check if non-printable content throws appropriate Exception df_nonprintable = DataFrame({"A": [binthing]}) msg = "Unsupported UTF-8 sequence length when encoding string" with pytest.raises(OverflowError, match=msg): df_nonprintable.to_json() # the same with multiple columns threw segfaults df_mixed = DataFrame({"A": [binthing], "B": [1]}, columns=["A", "B"]) with pytest.raises(OverflowError): df_mixed.to_json() # default_handler should resolve exceptions for non-string types result = df_nonprintable.to_json(default_handler=str) expected = f'{{"A":{{"0":"{hexed}"}}}}' assert result == expected assert ( df_mixed.to_json(default_handler=str) == f'{{"A":{{"0":"{hexed}"}},"B":{{"0":1}}}}' ) def test_label_overflow(self): # GH14256: buffer length not checked when writing label result = pd.DataFrame({"bar" * 100000: [1], "foo": [1337]}).to_json() expected = f'{{"{"bar" * 100000}":{{"0":1}},"foo":{{"0":1337}}}}' assert result == expected def test_series_non_unique_index(self): s = Series(["a", "b"], index=[1, 1]) msg = "Series index must be unique for orient='index'" with pytest.raises(ValueError, match=msg): s.to_json(orient="index") tm.assert_series_equal( s, read_json(s.to_json(orient="split"), orient="split", typ="series") ) unser = read_json(s.to_json(orient="records"), orient="records", typ="series") tm.assert_numpy_array_equal(s.values, unser.values) def test_series_default_orient(self, string_series): assert string_series.to_json() == string_series.to_json(orient="index") @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_simple(self, orient, numpy, string_series): data = string_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = string_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [False, None]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_object(self, orient, numpy, dtype, object_series): data = object_series.to_json(orient=orient) result = pd.read_json( data, typ="series", orient=orient, numpy=numpy, dtype=dtype ) expected = object_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_empty(self, orient, numpy, empty_series): data = empty_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = empty_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) else: expected.index = expected.index.astype(float) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_timeseries(self, orient, numpy, datetime_series): data = datetime_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = datetime_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [np.float64, np.int]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_numeric(self, orient, numpy, dtype): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"]) data = s.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = s.copy() if orient in ("values", "records"): expected = expected.reset_index(drop=True) tm.assert_series_equal(result, expected) def test_series_to_json_except(self): s = Series([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): s.to_json(orient="garbage") def test_series_from_json_precise_float(self): s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", precise_float=True) tm.assert_series_equal(result, s, check_index_type=False) def test_series_with_dtype(self): # GH 21986 s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", dtype=np.int64) expected = Series([4] * 3) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dtype,expected", [ (True, Series(["2000-01-01"], dtype="datetime64[ns]")), (False, Series([946684800000])), ], ) def test_series_with_dtype_datetime(self, dtype, expected): s = Series(["2000-01-01"], dtype="datetime64[ns]") data = s.to_json() result = pd.read_json(data, typ="series", dtype=dtype) tm.assert_series_equal(result, expected) def test_frame_from_json_precise_float(self): df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]]) result = read_json(df.to_json(), precise_float=True) tm.assert_frame_equal( result, df, check_index_type=False, check_column_type=False ) def test_typ(self): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"], dtype="int64") result = read_json(s.to_json(), typ=None) tm.assert_series_equal(result, s) def test_reconstruction_index(self): df = DataFrame([[1, 2, 3], [4, 5, 6]]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["A", "B", "C"]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) def test_path(self, float_frame): with tm.ensure_clean("test.json") as path: for df in [ float_frame, self.intframe, self.tsframe, self.mixed_frame, ]: df.to_json(path) read_json(path) def test_axis_dates(self, datetime_series): # frame json = self.tsframe.to_json() result = read_json(json) tm.assert_frame_equal(result, self.tsframe) # series json = datetime_series.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, datetime_series, check_names=False) assert result.name is None def test_convert_dates(self, datetime_series): # frame df = self.tsframe.copy() df["date"] = Timestamp("20130101") json = df.to_json() result =
read_json(json)
pandas.read_json
""" Responsible for handling requests for pages from the website and delegating the analysis and visualisation as required. """ from collections import defaultdict from operator import pos from typing import Iterable from numpy import isnan import pandas as pd from cachetools import func from django.shortcuts import render from django.http import Http404 from django.contrib.auth.decorators import login_required from app.messages import warning from app.models import ( timing, user_watchlist, cached_all_stocks_cip, valid_quotes_only, all_stocks, Timeframe, validate_user, stocks_by_sector, ) from app.data import ( cache_plot, make_pe_trends_eps_df, make_pe_trends_positive_pe_df, pe_trends_df, ) from app.plots import ( plot_heatmap, plot_series, plot_market_wide_sector_performance, plot_market_cap_distribution, plot_sector_field, plot_sector_top_eps_contributors, plot_sector_monthly_mean_returns, ) from lazydict import LazyDictionary def bin_market_cap(row): mc = row[ 0 ] # NB: expressed in millions $AUD already (see plot_market_cap_distribution() below) if mc < 2000: return "small" elif mc > 10000: return "large" elif mc is not None: return "med" else: return "NA" def make_quote_df(quotes, asx_codes: Iterable[str], prefix: str): df = pd.DataFrame.from_dict( { q.asx_code: (q.market_cap / (1000 * 1000), q.last_price, q.number_of_shares) for q in quotes if q.market_cap is not None and q.asx_code in asx_codes }, orient="index", columns=["market_cap", "last_price", "shares"], ) if len(df) == 0: raise Http404(f"No data present in {len(quotes)} quotes.") df["bin"] = df.apply(bin_market_cap, axis=1) df["market"] = prefix return df @login_required def market_sentiment(request, n_days=21, n_top_bottom=20, sector_n_days=365): validate_user(request.user) assert n_days > 0 assert n_top_bottom > 0 def market_cap_data_factory(ld: LazyDictionary) -> pd.DataFrame: dates = ld["sector_timeframe"].all_dates() # print(dates) assert len(dates) > 90 result_df = None adjusted_dates = [] for the_date in [dates[0], dates[-1], dates[-30], dates[-90]]: quotes, actual_trading_date = valid_quotes_only( the_date, ensure_date_has_data=True ) df = make_quote_df(quotes, ld["asx_codes"], actual_trading_date) result_df = df if result_df is None else result_df.append(df) if the_date != actual_trading_date: adjusted_dates.append(the_date) if len(adjusted_dates) > 0: warning( request, "Some dates were not trading days, adjusted: {}".format(adjusted_dates), ) return result_df ld = LazyDictionary() ld["asx_codes"] = lambda ld: all_stocks() ld["sector_timeframe"] = lambda ld: Timeframe(past_n_days=sector_n_days) ld["timeframe"] = lambda ld: Timeframe(past_n_days=n_days) ld["sector_df"] = lambda ld: cached_all_stocks_cip(ld["sector_timeframe"]) ld["sector_cumsum_df"] = lambda ld: ld["sector_df"].cumsum(axis=1) ld["cip_df"] = lambda ld: ld["sector_df"].filter( items=ld["timeframe"].all_dates(), axis=1 ) ld["market_cap_df"] = lambda ld: market_cap_data_factory(ld) ld["stocks_by_sector"] = lambda ld: stocks_by_sector() sentiment_plot = cache_plot( f"market-sentiment-{ld['timeframe'].description}", lambda ld: plot_heatmap(ld["timeframe"], ld), datasets=ld, ) sector_descr = ld["sector_timeframe"].description sector_performance_plot = cache_plot( f"sector-performance-{sector_descr}", lambda ld: plot_market_wide_sector_performance(ld), datasets=ld, ) market_cap_dist_plot = cache_plot( f"market-cap-dist-{sector_descr}", lambda ld: plot_market_cap_distribution(ld), datasets=ld, ) df = ld["sector_cumsum_df"].transpose() df.index = pd.to_datetime(df.index, format="%Y-%m-%d") df = ( df.resample( "BM", ) .asfreq() .diff(periods=1) ) ld["monthly_returns_by_stock"] = df # print(df) context = { "sentiment_uri": sentiment_plot, "n_days": ld["timeframe"].n_days, "n_stocks_plotted": len(ld["asx_codes"]), "n_top_bottom": n_top_bottom, "watched": user_watchlist(request.user), "sector_performance_uri": sector_performance_plot, "sector_timeframe": ld["sector_timeframe"], "sector_performance_title": "Cumulative sector avg. performance: {}".format( ld["sector_timeframe"].description ), "title": "Market sentiment", "market_cap_distribution_uri": market_cap_dist_plot, "monthly_sector_mean_returns": plot_sector_monthly_mean_returns(ld), } return render(request, "market_sentiment_view.html", context=context) @login_required def show_pe_trends(request): """ Display a plot of per-sector PE trends across stocks in each sector ref: https://www.commsec.com.au/education/learn/choosing-investments/what-is-price-to-earnings-pe-ratio.html """ validate_user(request.user) def make_pe_trends_market_avg_df(ld: LazyDictionary) -> pd.DataFrame: df = ld["data_df"] ss = ld["stocks_by_sector"] pe_pos_df, _ = make_pe_trends_positive_pe_df(df, ss) market_avg_pe_df = pe_pos_df.mean(axis=0, numeric_only=True).to_frame( name="market_pe" ) # avg P/E by date series market_avg_pe_df["date"] = pd.to_datetime(market_avg_pe_df.index) return market_avg_pe_df def sector_eps_data_factory(ld: LazyDictionary) -> pd.DataFrame: df = ld["data_df"] n_stocks = df["asx_code"].nunique() pe_df, positive_pe_stocks = ld["positive_pe_tuple"] eps_df = ld["eps_df"] ss = ld["stocks_by_sector"] # print(positive_pe_stocks) eps_stocks = set(eps_df.index) ss_dict = {row.asx_code: row.sector_name for row in ss.itertuples()} # print(ss_dict) trading_dates = set(pe_df.columns) trading_dates.remove("sector_name") sector_counts_all_stocks = ss["sector_name"].value_counts() all_sectors = set(ss["sector_name"].unique()) breakdown_by_sector_pe_pos_stocks_only = pe_df["sector_name"].value_counts() # print(breakdown_by_sector_pe_pos_stocks_only) sector_counts_pe_pos_stocks_only = { s[0]: s[1] for s in breakdown_by_sector_pe_pos_stocks_only.items() } # print(sector_counts_pe_pos_stocks_only) # print(sector_counts_all_stocks) # print(sector_counts_pe_pos_stocks_only) records = [] for ymd in filter( lambda d: d in trading_dates, ld["timeframe"].all_dates() ): # needed to avoid KeyError raised during DataFrame.at[] calls below sum_pe_per_sector = defaultdict(float) sum_eps_per_sector = defaultdict(float) for stock in filter(lambda code: code in ss_dict, positive_pe_stocks): sector = ss_dict[stock] assert isinstance(sector, str) if stock in eps_stocks: eps = eps_df.at[stock, ymd] if isnan(eps): continue sum_eps_per_sector[sector] += eps if stock in positive_pe_stocks: pe = pe_df.at[stock, ymd] if isnan(pe): continue assert pe >= 0.0 sum_pe_per_sector[sector] += pe # print(len(sector_counts_all_stocks)) # print(len(sum_eps_per_sector)) assert len(sector_counts_pe_pos_stocks_only) >= len(sum_pe_per_sector) assert len(sector_counts_all_stocks) >= len(sum_eps_per_sector) for sector in all_sectors: pe_sum = sum_pe_per_sector.get(sector, None) n_pe = sector_counts_pe_pos_stocks_only.get(sector, None) pe_mean = pe_sum / n_pe if pe_sum is not None else None eps_sum = sum_eps_per_sector.get(sector, None) records.append( { "date": ymd, "sector": sector, "mean_pe": pe_mean, "sum_pe": pe_sum, "sum_eps": eps_sum, "n_stocks": n_stocks, "n_sector_stocks_pe_only": n_pe, } ) df =
pd.DataFrame.from_records(records)
pandas.DataFrame.from_records
import warnings import numpy as np import pandas as pd from pandas.api.types import ( is_categorical_dtype, is_datetime64tz_dtype, is_interval_dtype, is_period_dtype, is_scalar, is_sparse, union_categoricals, ) from ..utils import is_arraylike, typename from ._compat import PANDAS_GT_100 from .core import DataFrame, Index, Scalar, Series, _Frame from .dispatch import ( categorical_dtype_dispatch, concat, concat_dispatch, get_parallel_type, group_split_dispatch, hash_object_dispatch, is_categorical_dtype_dispatch, make_meta, make_meta_obj, meta_nonempty, tolist_dispatch, union_categoricals_dispatch, ) from .extensions import make_array_nonempty, make_scalar from .utils import ( _empty_series, _nonempty_scalar, _scalar_from_dtype, is_categorical_dtype, is_float_na_dtype, is_integer_na_dtype, ) ########## # Pandas # ########## @make_scalar.register(np.dtype) def _(dtype): return _scalar_from_dtype(dtype) @make_scalar.register(pd.Timestamp) @make_scalar.register(pd.Timedelta) @make_scalar.register(pd.Period) @make_scalar.register(pd.Interval) def _(x): return x @make_meta.register((pd.Series, pd.DataFrame)) def make_meta_pandas(x, index=None): return x.iloc[:0] @make_meta.register(pd.Index) def make_meta_index(x, index=None): return x[0:0] meta_object_types = (pd.Series, pd.DataFrame, pd.Index, pd.MultiIndex) try: import scipy.sparse as sp meta_object_types += (sp.spmatrix,) except ImportError: pass @make_meta_obj.register(meta_object_types) def make_meta_object(x, index=None): """Create an empty pandas object containing the desired metadata. Parameters ---------- x : dict, tuple, list, pd.Series, pd.DataFrame, pd.Index, dtype, scalar To create a DataFrame, provide a `dict` mapping of `{name: dtype}`, or an iterable of `(name, dtype)` tuples. To create a `Series`, provide a tuple of `(name, dtype)`. If a pandas object, names, dtypes, and index should match the desired output. If a dtype or scalar, a scalar of the same dtype is returned. index : pd.Index, optional Any pandas index to use in the metadata. If none provided, a `RangeIndex` will be used. Examples -------- >>> make_meta([('a', 'i8'), ('b', 'O')]) # doctest: +SKIP Empty DataFrame Columns: [a, b] Index: [] >>> make_meta(('a', 'f8')) # doctest: +SKIP Series([], Name: a, dtype: float64) >>> make_meta('i8') # doctest: +SKIP 1 """ if is_arraylike(x) and x.shape: return x[:0] if index is not None: index = make_meta(index) if isinstance(x, dict): return pd.DataFrame( {c: _empty_series(c, d, index=index) for (c, d) in x.items()}, index=index ) if isinstance(x, tuple) and len(x) == 2: return _empty_series(x[0], x[1], index=index) elif isinstance(x, (list, tuple)): if not all(isinstance(i, tuple) and len(i) == 2 for i in x): raise ValueError( "Expected iterable of tuples of (name, dtype), got {0}".format(x) ) return pd.DataFrame( {c: _empty_series(c, d, index=index) for (c, d) in x}, columns=[c for c, d in x], index=index, ) elif not hasattr(x, "dtype") and x is not None: # could be a string, a dtype object, or a python type. Skip `None`, # because it is implictly converted to `dtype('f8')`, which we don't # want here. try: dtype = np.dtype(x) return _scalar_from_dtype(dtype) except Exception: # Continue on to next check pass if is_scalar(x): return _nonempty_scalar(x) raise TypeError("Don't know how to create metadata from {0}".format(x)) @meta_nonempty.register(object) def meta_nonempty_object(x): """Create a nonempty pandas object from the given metadata. Returns a pandas DataFrame, Series, or Index that contains two rows of fake data. """ if is_scalar(x): return _nonempty_scalar(x) else: raise TypeError( "Expected Pandas-like Index, Series, DataFrame, or scalar, " "got {0}".format(typename(type(x))) ) @meta_nonempty.register(pd.DataFrame) def meta_nonempty_dataframe(x): idx = meta_nonempty(x.index) dt_s_dict = dict() data = dict() for i, c in enumerate(x.columns): series = x.iloc[:, i] dt = series.dtype if dt not in dt_s_dict: dt_s_dict[dt] = _nonempty_series(x.iloc[:, i], idx=idx) data[i] = dt_s_dict[dt] res = pd.DataFrame(data, index=idx, columns=np.arange(len(x.columns))) res.columns = x.columns if PANDAS_GT_100: res.attrs = x.attrs return res _numeric_index_types = (pd.Int64Index, pd.Float64Index, pd.UInt64Index) @meta_nonempty.register(pd.Index) def _nonempty_index(idx): typ = type(idx) if typ is pd.RangeIndex: return pd.RangeIndex(2, name=idx.name) elif typ in _numeric_index_types: return typ([1, 2], name=idx.name) elif typ is pd.Index: return pd.Index(["a", "b"], name=idx.name) elif typ is pd.DatetimeIndex: start = "1970-01-01" # Need a non-monotonic decreasing index to avoid issues with # partial string indexing see https://github.com/dask/dask/issues/2389 # and https://github.com/pandas-dev/pandas/issues/16515 # This doesn't mean `_meta_nonempty` should ever rely on # `self.monotonic_increasing` or `self.monotonic_decreasing` try: return pd.date_range( start=start, periods=2, freq=idx.freq, tz=idx.tz, name=idx.name ) except ValueError: # older pandas versions data = [start, "1970-01-02"] if idx.freq is None else None return pd.DatetimeIndex( data, start=start, periods=2, freq=idx.freq, tz=idx.tz, name=idx.name ) elif typ is pd.PeriodIndex: return pd.period_range( start="1970-01-01", periods=2, freq=idx.freq, name=idx.name ) elif typ is pd.TimedeltaIndex: start = np.timedelta64(1, "D") try: return pd.timedelta_range( start=start, periods=2, freq=idx.freq, name=idx.name ) except ValueError: # older pandas versions start = np.timedelta64(1, "D") data = [start, start + 1] if idx.freq is None else None return pd.TimedeltaIndex( data, start=start, periods=2, freq=idx.freq, name=idx.name ) elif typ is pd.CategoricalIndex: if len(idx.categories) == 0: data = pd.Categorical(_nonempty_index(idx.categories), ordered=idx.ordered) else: data = pd.Categorical.from_codes( [-1, 0], categories=idx.categories, ordered=idx.ordered ) return pd.CategoricalIndex(data, name=idx.name) elif typ is pd.MultiIndex: levels = [_nonempty_index(l) for l in idx.levels] codes = [[0, 0] for i in idx.levels] try: return pd.MultiIndex(levels=levels, codes=codes, names=idx.names) except TypeError: # older pandas versions return pd.MultiIndex(levels=levels, labels=codes, names=idx.names) raise TypeError( "Don't know how to handle index of type {0}".format(typename(type(idx))) ) @meta_nonempty.register(pd.Series) def _nonempty_series(s, idx=None): # TODO: Use register dtypes with make_array_nonempty if idx is None: idx = _nonempty_index(s.index) dtype = s.dtype if len(s) > 0: # use value from meta if provided data = [s.iloc[0]] * 2 elif is_datetime64tz_dtype(dtype): entry = pd.Timestamp("1970-01-01", tz=dtype.tz) data = [entry, entry] elif is_categorical_dtype(dtype): if len(s.cat.categories): data = [s.cat.categories[0]] * 2 cats = s.cat.categories else: data = _nonempty_index(s.cat.categories) cats = s.cat.categories[:0] data = pd.Categorical(data, categories=cats, ordered=s.cat.ordered) elif is_integer_na_dtype(dtype): data = pd.array([1, None], dtype=dtype) elif is_float_na_dtype(dtype): data = pd.array([1.0, None], dtype=dtype) elif is_period_dtype(dtype): # pandas 0.24.0+ should infer this to be Series[Period[freq]] freq = dtype.freq data = [pd.Period("2000", freq), pd.Period("2001", freq)] elif is_sparse(dtype): entry = _scalar_from_dtype(dtype.subtype) if PANDAS_GT_100: data = pd.array([entry, entry], dtype=dtype) else: data = pd.SparseArray([entry, entry], dtype=dtype) elif is_interval_dtype(dtype): entry = _scalar_from_dtype(dtype.subtype) data = pd.array([entry, entry], dtype=dtype) elif type(dtype) in make_array_nonempty._lookup: data = make_array_nonempty(dtype) else: entry = _scalar_from_dtype(dtype) data = np.array([entry, entry], dtype=dtype) out = pd.Series(data, name=s.name, index=idx) if PANDAS_GT_100: out.attrs = s.attrs return out @union_categoricals_dispatch.register( (pd.DataFrame, pd.Series, pd.Index, pd.Categorical) ) def union_categoricals_pandas(to_union, sort_categories=False, ignore_order=False): return pd.api.types.union_categoricals( to_union, sort_categories=sort_categories, ignore_order=ignore_order ) @get_parallel_type.register(pd.Series) def get_parallel_type_series(_): return Series @get_parallel_type.register(pd.DataFrame) def get_parallel_type_dataframe(_): return DataFrame @get_parallel_type.register(pd.Index) def get_parallel_type_index(_): return Index @get_parallel_type.register(_Frame) def get_parallel_type_frame(o): return get_parallel_type(o._meta) @get_parallel_type.register(object) def get_parallel_type_object(_): return Scalar @hash_object_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def hash_object_pandas( obj, index=True, encoding="utf8", hash_key=None, categorize=True ): return pd.util.hash_pandas_object( obj, index=index, encoding=encoding, hash_key=hash_key, categorize=categorize ) @group_split_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def group_split_pandas(df, c, k, ignore_index=False): indexer, locations = pd._libs.algos.groupsort_indexer( c.astype(np.int64, copy=False), k ) df2 = df.take(indexer) locations = locations.cumsum() parts = [ df2.iloc[a:b].reset_index(drop=True) if ignore_index else df2.iloc[a:b] for a, b in zip(locations[:-1], locations[1:]) ] return dict(zip(range(k), parts)) @concat_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def concat_pandas( dfs, axis=0, join="outer", uniform=False, filter_warning=True, ignore_index=False, **kwargs ): ignore_order = kwargs.pop("ignore_order", False) if axis == 1: return
pd.concat(dfs, axis=axis, join=join, **kwargs)
pandas.concat
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import pytest from mars import opcodes from mars.config import options, option_context from mars.core import OutputType, tile from mars.core.operand import OperandStage from mars.dataframe import eval as mars_eval, cut, to_numeric from mars.dataframe.base import to_gpu, to_cpu, astype from mars.dataframe.core import DATAFRAME_TYPE, SERIES_TYPE, SERIES_CHUNK_TYPE, \ INDEX_TYPE, CATEGORICAL_TYPE, CATEGORICAL_CHUNK_TYPE from mars.dataframe.datasource.dataframe import from_pandas as from_pandas_df from mars.dataframe.datasource.series import from_pandas as from_pandas_series from mars.dataframe.datasource.index import from_pandas as from_pandas_index from mars.tensor.core import TENSOR_TYPE def test_to_gpu(): # test dataframe data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) df = from_pandas_df(data) cdf = to_gpu(df) assert df.index_value == cdf.index_value assert df.columns_value == cdf.columns_value assert cdf.op.gpu is True pd.testing.assert_series_equal(df.dtypes, cdf.dtypes) df, cdf = tile(df, cdf) assert df.nsplits == cdf.nsplits assert df.chunks[0].index_value == cdf.chunks[0].index_value assert df.chunks[0].columns_value == cdf.chunks[0].columns_value assert cdf.chunks[0].op.gpu is True pd.testing.assert_series_equal(df.chunks[0].dtypes, cdf.chunks[0].dtypes) assert cdf is to_gpu(cdf) # test series sdata = data.iloc[:, 0] series = from_pandas_series(sdata) cseries = to_gpu(series) assert series.index_value == cseries.index_value assert cseries.op.gpu is True series, cseries = tile(series, cseries) assert series.nsplits == cseries.nsplits assert series.chunks[0].index_value == cseries.chunks[0].index_value assert cseries.chunks[0].op.gpu is True assert cseries is to_gpu(cseries) def test_to_cpu(): data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) df = from_pandas_df(data) cdf = to_gpu(df) df2 = to_cpu(cdf) assert df.index_value == df2.index_value assert df.columns_value == df2.columns_value assert df2.op.gpu is False pd.testing.assert_series_equal(df.dtypes, df2.dtypes) df, df2 = tile(df, df2) assert df.nsplits == df2.nsplits assert df.chunks[0].index_value == df2.chunks[0].index_value assert df.chunks[0].columns_value == df2.chunks[0].columns_value assert df2.chunks[0].op.gpu is False pd.testing.assert_series_equal(df.chunks[0].dtypes, df2.chunks[0].dtypes) assert df2 is to_cpu(df2) def test_rechunk(): raw = pd.DataFrame(np.random.rand(10, 10)) df = from_pandas_df(raw, chunk_size=3) df2 = tile(df.rechunk(4)) assert df2.shape == (10, 10) assert len(df2.chunks) == 9 assert df2.chunks[0].shape == (4, 4) pd.testing.assert_index_equal(df2.chunks[0].index_value.to_pandas(), pd.RangeIndex(4)) pd.testing.assert_index_equal(df2.chunks[0].columns_value.to_pandas(), pd.RangeIndex(4)) pd.testing.assert_series_equal(df2.chunks[0].dtypes, raw.dtypes[:4]) assert df2.chunks[2].shape == (4, 2) pd.testing.assert_index_equal(df2.chunks[2].index_value.to_pandas(), pd.RangeIndex(4)) pd.testing.assert_index_equal(df2.chunks[2].columns_value.to_pandas(), pd.RangeIndex(8, 10)) pd.testing.assert_series_equal(df2.chunks[2].dtypes, raw.dtypes[-2:]) assert df2.chunks[-1].shape == (2, 2) pd.testing.assert_index_equal(df2.chunks[-1].index_value.to_pandas(), pd.RangeIndex(8, 10)) pd.testing.assert_index_equal(df2.chunks[-1].columns_value.to_pandas(), pd.RangeIndex(8, 10)) pd.testing.assert_series_equal(df2.chunks[-1].dtypes, raw.dtypes[-2:]) for c in df2.chunks: assert c.shape[1] == len(c.dtypes) assert len(c.columns_value.to_pandas()) == len(c.dtypes) columns = [np.random.bytes(10) for _ in range(10)] index = np.random.randint(-100, 100, size=(4,)) raw = pd.DataFrame(np.random.rand(4, 10), index=index, columns=columns) df = from_pandas_df(raw, chunk_size=3) df2 = tile(df.rechunk(6)) assert df2.shape == (4, 10) assert len(df2.chunks) == 2 assert df2.chunks[0].shape == (4, 6) pd.testing.assert_index_equal(df2.chunks[0].index_value.to_pandas(), df.index_value.to_pandas()) pd.testing.assert_index_equal(df2.chunks[0].columns_value.to_pandas(), pd.Index(columns[:6])) pd.testing.assert_series_equal(df2.chunks[0].dtypes, raw.dtypes[:6]) assert df2.chunks[1].shape == (4, 4) pd.testing.assert_index_equal(df2.chunks[1].index_value.to_pandas(), df.index_value.to_pandas()) pd.testing.assert_index_equal(df2.chunks[1].columns_value.to_pandas(), pd.Index(columns[6:])) pd.testing.assert_series_equal(df2.chunks[1].dtypes, raw.dtypes[-4:]) for c in df2.chunks: assert c.shape[1] == len(c.dtypes) assert len(c.columns_value.to_pandas()) == len(c.dtypes) # test Series rechunk series = from_pandas_series(pd.Series(np.random.rand(10,)), chunk_size=3) series2 = tile(series.rechunk(4)) assert series2.shape == (10,) assert len(series2.chunks) == 3 pd.testing.assert_index_equal(series2.index_value.to_pandas(), pd.RangeIndex(10)) assert series2.chunk_shape == (3,) assert series2.nsplits == ((4, 4, 2), ) assert series2.chunks[0].shape == (4,) pd.testing.assert_index_equal(series2.chunks[0].index_value.to_pandas(), pd.RangeIndex(4)) assert series2.chunks[1].shape == (4,) pd.testing.assert_index_equal(series2.chunks[1].index_value.to_pandas(), pd.RangeIndex(4, 8)) assert series2.chunks[2].shape == (2,) pd.testing.assert_index_equal(series2.chunks[2].index_value.to_pandas(), pd.RangeIndex(8, 10)) series2 = tile(series.rechunk(1)) assert series2.shape == (10,) assert len(series2.chunks) == 10 pd.testing.assert_index_equal(series2.index_value.to_pandas(), pd.RangeIndex(10)) assert series2.chunk_shape == (10,) assert series2.nsplits == ((1,) * 10, ) assert series2.chunks[0].shape == (1,) pd.testing.assert_index_equal(series2.chunks[0].index_value.to_pandas(), pd.RangeIndex(1)) # no need to rechunk series2 = tile(series.rechunk(3)) series = tile(series) assert series2.chunk_shape == series.chunk_shape assert series2.nsplits == series.nsplits def test_data_frame_apply(): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 df = from_pandas_df(df_raw, chunk_size=5) def df_func_with_err(v): assert len(v) > 2 return v.sort_values() with pytest.raises(TypeError): df.apply(df_func_with_err) r = df.apply(df_func_with_err, output_type='dataframe', dtypes=df_raw.dtypes) assert r.shape == (np.nan, df.shape[-1]) assert r.op._op_type_ == opcodes.APPLY assert r.op.output_types[0] == OutputType.dataframe assert r.op.elementwise is False r = df.apply('ffill') assert r.op._op_type_ == opcodes.FILL_NA r = tile(df.apply(np.sqrt)) assert all(v == np.dtype('float64') for v in r.dtypes) is True assert r.shape == df.shape assert r.op._op_type_ == opcodes.APPLY assert r.op.output_types[0] == OutputType.dataframe assert r.op.elementwise is True r = tile(df.apply(lambda x: pd.Series([1, 2]))) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == (np.nan, df.shape[1]) assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (np.nan, 1) assert r.chunks[0].inputs[0].shape[0] == df_raw.shape[0] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE assert r.op.elementwise is False r = tile(df.apply(np.sum, axis='index')) assert np.dtype('int64') == r.dtype assert r.shape == (df.shape[1],) assert r.op.output_types[0] == OutputType.series assert r.chunks[0].shape == (20 // df.shape[0],) assert r.chunks[0].inputs[0].shape[0] == df_raw.shape[0] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE assert r.op.elementwise is False r = tile(df.apply(np.sum, axis='columns')) assert np.dtype('int64') == r.dtype assert r.shape == (df.shape[0],) assert r.op.output_types[0] == OutputType.series assert r.chunks[0].shape == (20 // df.shape[1],) assert r.chunks[0].inputs[0].shape[1] == df_raw.shape[1] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE assert r.op.elementwise is False r = tile(df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == (df.shape[0], np.nan) assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (20 // df.shape[1], np.nan) assert r.chunks[0].inputs[0].shape[1] == df_raw.shape[1] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE assert r.op.elementwise is False r = tile(df.apply(lambda x: [1, 2], axis=1, result_type='expand')) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == (df.shape[0], np.nan) assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (20 // df.shape[1], np.nan) assert r.chunks[0].inputs[0].shape[1] == df_raw.shape[1] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE assert r.op.elementwise is False r = tile(df.apply(lambda x: list(range(10)), axis=1, result_type='reduce')) assert np.dtype('object') == r.dtype assert r.shape == (df.shape[0],) assert r.op.output_types[0] == OutputType.series assert r.chunks[0].shape == (20 // df.shape[1],) assert r.chunks[0].inputs[0].shape[1] == df_raw.shape[1] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE assert r.op.elementwise is False r = tile(df.apply(lambda x: list(range(10)), axis=1, result_type='broadcast')) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == (df.shape[0], np.nan) assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (20 // df.shape[1], np.nan) assert r.chunks[0].inputs[0].shape[1] == df_raw.shape[1] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE assert r.op.elementwise is False finally: options.chunk_store_limit = old_chunk_store_limit raw = pd.DataFrame({'a': [np.array([1, 2, 3]), np.array([4, 5, 6])]}) df = from_pandas_df(raw) df2 = df.apply(lambda x: x['a'].astype(pd.Series), axis=1, output_type='dataframe', dtypes=pd.Series([np.dtype(float)] * 3)) assert df2.ndim == 2 def test_series_apply(): idxes = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idxes) series = from_pandas_series(s_raw, chunk_size=5) r = tile(series.apply('add', args=(1,))) assert r.op._op_type_ == opcodes.ADD r = tile(series.apply(np.sqrt)) assert np.dtype('float64') == r.dtype assert r.shape == series.shape assert r.op._op_type_ == opcodes.APPLY assert r.op.output_types[0] == OutputType.series assert r.chunks[0].shape == (5,) assert r.chunks[0].inputs[0].shape == (5,) r = tile(series.apply('sqrt')) assert np.dtype('float64') == r.dtype assert r.shape == series.shape assert r.op._op_type_ == opcodes.APPLY assert r.op.output_types[0] == OutputType.series assert r.chunks[0].shape == (5,) assert r.chunks[0].inputs[0].shape == (5,) r = tile(series.apply(lambda x: [x, x + 1], convert_dtype=False)) assert np.dtype('object') == r.dtype assert r.shape == series.shape assert r.op._op_type_ == opcodes.APPLY assert r.op.output_types[0] == OutputType.series assert r.chunks[0].shape == (5,) assert r.chunks[0].inputs[0].shape == (5,) s_raw2 = pd.Series([np.array([1, 2, 3]), np.array([4, 5, 6])]) series = from_pandas_series(s_raw2) r = series.apply(np.sum) assert r.dtype == np.dtype(object) r = series.apply(lambda x: pd.Series([1]), output_type='dataframe') expected = s_raw2.apply(lambda x: pd.Series([1])) pd.testing.assert_series_equal(r.dtypes, expected.dtypes) dtypes = pd.Series([np.dtype(float)] * 3) r = series.apply(pd.Series, output_type='dataframe', dtypes=dtypes) assert r.ndim == 2 pd.testing.assert_series_equal(r.dtypes, dtypes) assert r.shape == (2, 3) r = series.apply(pd.Series, output_type='dataframe', dtypes=dtypes, index=pd.RangeIndex(2)) assert r.ndim == 2 pd.testing.assert_series_equal(r.dtypes, dtypes) assert r.shape == (2, 3) with pytest.raises(AttributeError, match='abc'): series.apply('abc') with pytest.raises(TypeError): # dtypes not provided series.apply(lambda x: x.tolist(), output_type='dataframe') def test_transform(): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) df = from_pandas_df(df_raw, chunk_size=5) idxes = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idxes) series = from_pandas_series(s_raw, chunk_size=5) def rename_fn(f, new_name): f.__name__ = new_name return f old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 # DATAFRAME CASES # test transform with infer failure def transform_df_with_err(v): assert len(v) > 2 return v.sort_values() with pytest.raises(TypeError): df.transform(transform_df_with_err) r = tile(df.transform(transform_df_with_err, dtypes=df_raw.dtypes)) assert r.shape == df.shape assert r.op._op_type_ == opcodes.TRANSFORM assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (df.shape[0], 20 // df.shape[0]) assert r.chunks[0].inputs[0].shape[0] == df_raw.shape[0] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE # test transform scenarios on data frames r = tile(df.transform(lambda x: list(range(len(x))))) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == df.shape assert r.op._op_type_ == opcodes.TRANSFORM assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (df.shape[0], 20 // df.shape[0]) assert r.chunks[0].inputs[0].shape[0] == df_raw.shape[0] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE r = tile(df.transform(lambda x: list(range(len(x))), axis=1)) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == df.shape assert r.op._op_type_ == opcodes.TRANSFORM assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (20 // df.shape[1], df.shape[1]) assert r.chunks[0].inputs[0].shape[1] == df_raw.shape[1] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE r = tile(df.transform(['cumsum', 'cummax', lambda x: x + 1])) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == (df.shape[0], df.shape[1] * 3) assert r.op._op_type_ == opcodes.TRANSFORM assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (df.shape[0], 20 // df.shape[0] * 3) assert r.chunks[0].inputs[0].shape[0] == df_raw.shape[0] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE r = tile(df.transform({'A': 'cumsum', 'D': ['cumsum', 'cummax'], 'F': lambda x: x + 1})) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == (df.shape[0], 4) assert r.op._op_type_ == opcodes.TRANSFORM assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (df.shape[0], 1) assert r.chunks[0].inputs[0].shape[0] == df_raw.shape[0] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE # test agg scenarios on series r = tile(df.transform(lambda x: x.iloc[:-1], _call_agg=True)) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == (np.nan, df.shape[1]) assert r.op._op_type_ == opcodes.TRANSFORM assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (np.nan, 1) assert r.chunks[0].inputs[0].shape[0] == df_raw.shape[0] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE r = tile(df.transform(lambda x: x.iloc[:-1], axis=1, _call_agg=True)) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == (df.shape[0], np.nan) assert r.op._op_type_ == opcodes.TRANSFORM assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (2, np.nan) assert r.chunks[0].inputs[0].shape[1] == df_raw.shape[1] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE fn_list = [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)] r = tile(df.transform(fn_list, _call_agg=True)) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == (np.nan, df.shape[1] * 2) assert r.op._op_type_ == opcodes.TRANSFORM assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (np.nan, 2) assert r.chunks[0].inputs[0].shape[0] == df_raw.shape[0] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE r = tile(df.transform(lambda x: x.sum(), _call_agg=True)) assert r.dtype == np.dtype('int64') assert r.shape == (df.shape[1],) assert r.op._op_type_ == opcodes.TRANSFORM assert r.op.output_types[0] == OutputType.series assert r.chunks[0].shape == (20 // df.shape[0],) assert r.chunks[0].inputs[0].shape[0] == df_raw.shape[0] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE fn_dict = { 'A': rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), 'D': [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)], 'F': lambda x: x.iloc[:-1].reset_index(drop=True), } r = tile(df.transform(fn_dict, _call_agg=True)) assert all(v == np.dtype('int64') for v in r.dtypes) is True assert r.shape == (np.nan, 4) assert r.op._op_type_ == opcodes.TRANSFORM assert r.op.output_types[0] == OutputType.dataframe assert r.chunks[0].shape == (np.nan, 1) assert r.chunks[0].inputs[0].shape[0] == df_raw.shape[0] assert r.chunks[0].inputs[0].op._op_type_ == opcodes.CONCATENATE # SERIES CASES # test transform scenarios on series r = tile(series.transform(lambda x: x + 1)) assert np.dtype('int64') == r.dtype assert r.shape == series.shape assert r.op._op_type_ == opcodes.TRANSFORM assert r.op.output_types[0] == OutputType.series assert r.chunks[0].shape == (5,) assert r.chunks[0].inputs[0].shape == (5,) finally: options.chunk_store_limit = old_chunk_store_limit def test_string_method(): s = pd.Series(['a', 'b', 'c'], name='s') series = from_pandas_series(s, chunk_size=2) with pytest.raises(AttributeError): _ = series.str.non_exist r = series.str.contains('c') assert r.dtype == np.bool_ assert r.name == s.name pd.testing.assert_index_equal(r.index_value.to_pandas(), s.index) assert r.shape == s.shape r = tile(r) for i, c in enumerate(r.chunks): assert c.index == (i,) assert c.dtype == np.bool_ assert c.name == s.name pd.testing.assert_index_equal(c.index_value.to_pandas(), s.index[i * 2: (i + 1) * 2]) assert c.shape == (2,) if i == 0 else (1,) r = series.str.split(',', expand=True, n=1) assert r.op.output_types[0] == OutputType.dataframe assert r.shape == (3, 2) pd.testing.assert_index_equal(r.index_value.to_pandas(), s.index) pd.testing.assert_index_equal(r.columns_value.to_pandas(), pd.RangeIndex(2)) r = tile(r) for i, c in enumerate(r.chunks): assert c.index == (i, 0) pd.testing.assert_index_equal(c.index_value.to_pandas(), s.index[i * 2: (i + 1) * 2]) pd.testing.assert_index_equal(c.columns_value.to_pandas(), pd.RangeIndex(2)) assert c.shape == (2, 2) if i == 0 else (1, 2) with pytest.raises(TypeError): _ = series.str.cat([['1', '2']]) with pytest.raises(ValueError): _ = series.str.cat(['1', '2']) with pytest.raises(ValueError): _ = series.str.cat(',') with pytest.raises(TypeError): _ = series.str.cat({'1', '2', '3'}) r = series.str.cat(sep=',') assert r.op.output_types[0] == OutputType.scalar assert r.dtype == s.dtype r = tile(r) assert len(r.chunks) == 1 assert r.chunks[0].op.output_types[0] == OutputType.scalar assert r.chunks[0].dtype == s.dtype r = series.str.extract(r'[ab](\d)', expand=False) assert r.op.output_types[0] == OutputType.series assert r.dtype == s.dtype r = tile(r) for i, c in enumerate(r.chunks): assert c.index == (i,) assert c.dtype == s.dtype assert c.name == s.name pd.testing.assert_index_equal(c.index_value.to_pandas(), s.index[i * 2: (i + 1) * 2]) assert c.shape == (2,) if i == 0 else (1,) r = series.str.extract(r'[ab](\d)', expand=True) assert r.op.output_types[0] == OutputType.dataframe assert r.shape == (3, 1) pd.testing.assert_index_equal(r.index_value.to_pandas(), s.index) pd.testing.assert_index_equal(r.columns_value.to_pandas(), pd.RangeIndex(1)) r = tile(r) for i, c in enumerate(r.chunks): assert c.index == (i, 0) pd.testing.assert_index_equal(c.index_value.to_pandas(), s.index[i * 2: (i + 1) * 2]) pd.testing.assert_index_equal(c.columns_value.to_pandas(), pd.RangeIndex(1)) assert c.shape == (2, 1) if i == 0 else (1, 1) assert 'lstrip' in dir(series.str) def test_datetime_method(): s = pd.Series([pd.Timestamp('2020-1-1'), pd.Timestamp('2020-2-1'), pd.Timestamp('2020-3-1')], name='ss') series = from_pandas_series(s, chunk_size=2) r = series.dt.year assert r.dtype == s.dt.year.dtype pd.testing.assert_index_equal(r.index_value.to_pandas(), s.index) assert r.shape == s.shape assert r.op.output_types[0] == OutputType.series assert r.name == s.dt.year.name r = tile(r) for i, c in enumerate(r.chunks): assert c.index == (i,) assert c.dtype == s.dt.year.dtype assert c.op.output_types[0] == OutputType.series assert r.name == s.dt.year.name pd.testing.assert_index_equal(c.index_value.to_pandas(), s.index[i * 2: (i + 1) * 2]) assert c.shape == (2,) if i == 0 else (1,) with pytest.raises(AttributeError): _ = series.dt.non_exist assert 'ceil' in dir(series.dt) def test_series_isin(): # one chunk in multiple chunks a = from_pandas_series(
pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
pandas.Series
""" Author: <NAME>. Date: 02/11/2020. File to create a the files for K-Fold validation. The dataset is expected to be in a folder following the structure: data/ cross_validation/ (The folder you're currently in) dataset/ 0/ 1/ preprocessing/ You must change the logic to read your dataset in case it follows another structure. The bottom section of this code expects a list with the absoulte path to the images and a list with their labels. """ import glob import pandas as pd from sklearn.model_selection import KFold #! /////////// Change code to read your dataset ////// SPLIT_CHAR = '/' # Change for \\ if you're using Windows DATASET_FOLDER = '..' + SPLIT_CHAR + 'dataset' + SPLIT_CHAR # Change '..' for an absolute path IMAGE_EXTENSION = '*.png' # Change for the extension of your images print('Reading Dataset...') # Get absolute paths to all images in dataset images = glob.glob(DATASET_FOLDER + '*' + SPLIT_CHAR + IMAGE_EXTENSION) # Get labels per image labels = [int(img.split(SPLIT_CHAR)[-2]) for img in images] print("Splitting dataset...") # Split dataset NUMBER_0F_FOLDS = 5 kfolds = KFold(n_splits=NUMBER_0F_FOLDS, shuffle=True) for fold, (train_ids, test_ids) in enumerate(kfolds.split(images)): train_x = [images[id] for id in train_ids] test_x = [images[id] for id in test_ids] train_y = [labels[id] for id in train_ids] test_y = [labels[id] for id in test_ids] print("Saving dataset "+str(fold)+"...") # Save the splits on csv files train_df =
pd.DataFrame({'ID_IMG':train_x, 'LABEL': train_y})
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ NAME: Bayt Data Scrapper AUTHOR: showmethedata.wiki DESCRIPTION: Scrap Bayt data in regular interval and store in structured format CONTENTS: The following APIs are public: - get_data() NOTES: This program can be run either as a Python module (importable) or as a shell script from terminal. """ import requests from bs4 import BeautifulSoup from collections import namedtuple from datetime import datetime import logging from time import time import time import functools from pandas import DataFrame from typing import List, NamedTuple import argparse import sys # create and configure logger LOG_FORMAT = "%(levelname)s %(asctime)s - %(message)s" logging.basicConfig(filename=f'../logs/logging_scrap_bayt.log', level=logging.DEBUG, format=LOG_FORMAT, filemode='w') logger = logging.getLogger() class ScrapBayt: COUNTRY_ISO_MAP = dict(zip( ["united-arab-emirate", "qatar", "saudi-arabia"], ["uae", "qatar", "saudi-arabia"])) HEADERS = { 'authority': 'www.bayt.com', 'cache-control': 'max-age=0', 'sec-ch-ua': '" Not A;Brand";v="99", "Chromium";v="96", "Google Chrome";v="96"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Linux"', 'upgrade-insecure-requests': '1', 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.93 Safari/537.36', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'sec-fetch-site': 'none', 'sec-fetch-mode': 'navigate', 'sec-fetch-user': '?1', 'sec-fetch-dest': 'document', 'accept-language': 'en-US,en;q=0.9,de;q=0.8'} SLEEP = 10 # delay between requests by page def __init__(self, job_title: str, location: str) -> None: """Scrap jobs from Indeed website. Args: job_title (str): Search term location (str): Country of interest. Can be either [`united-arab-emirate`, `qatar`, `saudi-arabia`] for now, however it could be extended in future with API calls to ISO country codes. debug (bool, optional): [Enable logging to a log file for quick debugging access]. Defaults to True. """ assert isinstance(job_title, str) assert isinstance(location, str) and location in self.COUNTRY_ISO_MAP self.job_title = job_title self.location = location self._session = requests.Session() def __repr__(self) -> str: return f"{ScrapBayt}" def get_data(self, save: bool = False) -> DataFrame: job_ids, soups = list(), list() page = 1 # Get job ids from all pages # while True: url = self.__get_url(page) time.sleep(self.SLEEP) soup = self.__extract(url) logger.info(f'Created a soup for page: {page}') latest_job_ids = self.__get_jobs_id(soup) logger.info(f'Found {len(latest_job_ids)} jobs for page => {page}') if job_ids: # stop iteration after pagination is complete. if job_ids[-1] == latest_job_ids: break job_ids.append(latest_job_ids) page += 1 total_jobs = sum([len(jobs) for jobs in job_ids]) logger.info(f'Total jobs found: {total_jobs}') logger.info(f'Total job ids: {job_ids}') # Extract all jobs # # Exit if no joubs were found if not job_ids[0]: logging.warning(f'No matching jobs were found!') sys.exit(0) cnt = 0 urls = list() for page in range(0, len(job_ids)): cnt += 1 page += 1 for job_id in job_ids[page]: url = f"{self.__get_url(page)}&jobId={job_id}" logger.info(f'Making API request for job url => {url}') urls.append(url) time.sleep(self.SLEEP) soups.append(self.__extract(url)) logger.info( f'Completed extraction of {cnt} out of {total_jobs} jobs') print(f'Extracted job {cnt} out of {total_jobs}') cnt += 1 # Transform # data = self.__transform(soups, links=urls) # Load # return self.__load(data) def __get_url(self, page: int, /) -> str: # indeed specific for dealing with white space in job title if len(self.job_title.split()) > 1: self.job_title = self.job_title.split( )[0] + "-" + self.job_title.split()[1] return f"https://www.bayt.com/en/{self.COUNTRY_ISO_MAP[self.location]}/jobs/{self.job_title}-jobs/?page={page}" @functools.lru_cache def __extract(self, url: str) -> BeautifulSoup: return BeautifulSoup(self._session.get(url, headers=self.HEADERS).text, 'html.parser') def __get_jobs_id(self, soup: BeautifulSoup, /) -> List[int]: return [element.get('data-job-id') for element in soup.find('div', {'id': 'results_inner_card', 'class': 'card-content'}).find_all('li', {"data-job-id": True})] def __transform(self, data: List[BeautifulSoup], /, *, links: List[str]) -> List[NamedTuple]: Parsed = namedtuple( 'Parsed', 'title company_name description post_date link') jobs_parsed = list() for i, job in enumerate(data): try: p = Parsed(title=job.h2.text, company_name=job.find('a', class_='is-black').text, description=job.find( class_="card-content t-small bt p20").text.strip(), post_date='-'.join( job.find('span', class_='p20l-d p10y-m u-block-m').text.strip().split()[-2:]), link=links[i]) except: logger.error( f'Failed to transform and bypassed for job: {i+1}') else: jobs_parsed.append(p) logger.info( f'Transformation successfully done for job => {i+1}') return jobs_parsed def __load(self, data: List[NamedTuple], /, *, save: bool = True) -> DataFrame: try: data =
DataFrame.from_records(data, columns=data[0]._fields)
pandas.DataFrame.from_records
""" Module for sleep periods from accelerometer """ import datetime import numpy as np import pandas as pd import LAMP from ..feature_types import primary_feature, log from ..raw.accelerometer import accelerometer @primary_feature( name="cortex.feature.sleep_periods", dependencies=[accelerometer] ) def sleep_periods(attach=True, **kwargs): """ Generate sleep periods with given data Args: attach (boolean): **kwargs: id (string): The participant's LAMP id. Required. start (int): The initial UNIX timestamp (in ms) of the window for which the feature is being generated. Required. end (int): The last UNIX timestamp (in ms) of the window for which the feature is being generated. Required. Returns: """ def _expected_sleep_period(accelerometer_data_reduced): """ Return the expected sleep period for a set of accelerometer data :param accelerometer_data (list) :return _sleep_period_expted (dict): list bed/wake timestamps and mean accel. magnitude for expected bedtime """ df = pd.DataFrame.from_dict(accelerometer_data_reduced) # If we have data, we filter to remove duplicates here if 'timestamp' in df.columns: df = df[df['timestamp'] != df['timestamp'].shift()] # Creating possible times for expected sleep period, which will be checked times = [(datetime.time(hour=h, minute=m), (datetime.datetime.combine(datetime.date.today(), datetime.time(hour=h, minute=m)) + datetime.timedelta(hours=8, minutes=0)).time()) for h in range(18, 24) for m in [0, 30] ] + [(datetime.time(hour=h, minute=m), (datetime.datetime.combine(datetime.date.today(), datetime.time(hour=h, minute=m)) + datetime.timedelta(hours=8, minutes=0)).time()) for h in range(0, 4) for m in [0, 30]] mean_activity = float('inf') for t0, t1 in times: if datetime.time(hour=18, minute=0) <= t0 <= datetime.time(hour=23, minute=30): selection = pd.concat([df.loc[t0 <= df.time, :], df.loc[df.time <= t1, :]]) else: selection = df.loc[(t0 <= df.time) & (df.time <= t1), :] if len(selection) == 0 or selection['count'].sum() == 0: continue nonnan_ind = np.where(np.logical_not(np.isnan(selection['magnitude'])))[0] nonnan_sel = selection.iloc[nonnan_ind] sel_act = np.average(nonnan_sel['magnitude'], weights=nonnan_sel['count']) if sel_act < mean_activity: mean_activity = sel_act _sleep_period_expected = {'bed': t0, 'wake': t1, 'accelerometer_magnitude': sel_act} if mean_activity == float('inf'): _sleep_period_expected = {'bed': None, 'wake': None, 'accelerometer_magnitude': None} return _sleep_period_expected # Data reduction try: reduced_data = LAMP.Type.get_attachment(kwargs['id'], 'cortex.sleep_periods.reduced')['data'] for i, x in enumerate(reduced_data['data']): reduced_data['data'][i]['time'] = datetime.time(x['time']['hour'], x['time']['minute']) log.info("Using saved reduced data...") except Exception: reduced_data = {'end':0, 'data':[]} log.info("No saved reduced data found, starting new...") reduced_data_end = reduced_data['end'] if reduced_data_end < kwargs['end']: # update reduced data # Accel binning _accelerometer = accelerometer(**{**kwargs, 'start': reduced_data_end})['data'] if len(_accelerometer) > 0: reduce_df = pd.DataFrame.from_dict(_accelerometer) reduce_df.loc[:, 'Time'] = pd.to_datetime(reduce_df['timestamp'], unit='ms') reduce_df.loc[:, 'magnitude'] = reduce_df.apply(lambda row: np.linalg.norm([row['x'], row['y'], row['z']]), axis=1) # Get mean accel readings of 10min bins for participant new_reduced_data = [] for s, t in reduce_df.groupby(pd.Grouper(key='Time', freq='10min')): res_10min = {'time': s.time(), 'magnitude': t['magnitude'].abs().mean(), 'count': len(t)} # Update new reduced data found = False for accel_bin in reduced_data['data']: if accel_bin['time'] == res_10min['time']: accel_bin['magnitude'] = np.mean([accel_bin['magnitude']] * accel_bin['count'] + [res_10min['magnitude']] * res_10min['count']) accel_bin['count'] = accel_bin['count'] + res_10min['count'] new_reduced_data.append(accel_bin) found = True break if not found: # if time not found, initialize it new_reduced_data.append(res_10min) # convert to time dicts for saving save_reduced_data = [] for x in new_reduced_data: if x['magnitude'] and x['count']: save_reduced_data.append({'time': {'hour': x['time'].hour, 'minute': x['time'].minute}, 'magnitude': x['magnitude'], 'count': x['count']}) reduced_data = {'end': kwargs['end'], 'data': new_reduced_data} # set attachment LAMP.Type.set_attachment(kwargs['id'], 'me', attachment_key='cortex.sleep_periods.reduced', body={'end': int(kwargs['end']), 'data': save_reduced_data}) log.info("Saving reduced data...") accelerometer_data = accelerometer(**kwargs)['data'] if len(accelerometer_data) == 0: return {'data': [], 'has_raw_data': 0} # Calculate sleep periods _sleep_period_expected = _expected_sleep_period(reduced_data['data']) if _sleep_period_expected['bed'] is None: return {'data': [], 'has_raw_data': 1} accel_df = pd.DataFrame.from_dict(accelerometer_data) accel_df = accel_df[accel_df['timestamp'] != accel_df['timestamp'].shift()] accel_df.loc[:, 'Time'] = pd.to_datetime(accel_df['timestamp'], unit='ms') accel_df.loc[:, 'magnitude'] = accel_df.apply(lambda row: np.linalg.norm([row['x'], row['y'], row['z']]), axis=1) # Get mean accel readings of 10min bins for participant df10min = pd.DataFrame.from_dict(reduced_data['data']).sort_values(by='time') bed_time, wake_time = _sleep_period_expected['bed'], _sleep_period_expected['wake'] # Calculate sleep sleep_start, sleep_start_flex = bed_time, (datetime.datetime.combine(datetime.date.today(), bed_time) - datetime.timedelta(hours=2)).time() sleep_end, sleep_end_flex = wake_time, (datetime.datetime.combine(datetime.date.today(), wake_time) + datetime.timedelta(hours=2)).time() # We need to shift times so that the day begins a midnight # (and thus is on the same day) sleep start flex begins on accel_df.loc[:, "Shifted Time"] = pd.to_datetime(accel_df['Time']) - \ (datetime.datetime.combine(datetime.date.min, sleep_end_flex) - datetime.datetime.min) accel_df.loc[:, "Shifted Day"] =
pd.to_datetime(accel_df['Shifted Time'])
pandas.to_datetime
import os from collections import Counter from flask import Flask, request, redirect, url_for, send_from_directory,render_template import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import io import base64 from pylab import rcParams from sklearn.externals import joblib from sklearn.preprocessing import LabelEncoder UPLOAD_FOLDER = 'flask-upload-test' ALLOWED_EXTENSIONS = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif','csv']) app = Flask(__name__) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER data_file = 'flask-upload-test/data.csv' df = pd.read_csv(data_file) enc_df = pd.read_csv(data_file) label_encoder = LabelEncoder() cat_columns = df.dtypes.pipe(lambda x: x[x == 'object']).index for col in cat_columns: df[col] = label_encoder.fit_transform(df[col]) loaded_model = joblib.load('pickle_model.pkl') result = loaded_model.predict(df) pred_series = pd.Series(result.tolist()) pred_series = pred_series.rename('Predicated Value') final_df = enc_df.merge(pred_series.to_frame(), left_index=True, right_index=True) def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS @app.route('/', methods=['GET', 'POST']) def upload_file(): if request.method == 'POST': # check if the post request has the file part if 'file' not in request.files: print ('no file') return redirect(request.url) file = request.files['file'] # if user does not select file, browser also # submit a empty part without filename if file.filename == '': print ('no filename') return redirect(request.url) if file and allowed_file(file.filename): filename = "data.csv" # secure_filename(file.filename) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) return redirect(url_for('uploaded_file', filename=filename)) return render_template("index.html") @app.route('/uploads/<filename>') def uploaded_file(filename): return send_from_directory(app.config['UPLOAD_FOLDER'], filename) @app.route('/show', methods=['GET']) def show_df(): data_file = 'flask-upload-test/data.csv' df = pd.read_csv(data_file) to_html = "<!doctype html><title>Show DF</title>"+df.to_html() return to_html @app.route('/html', methods=['GET']) def html(): global my_list return ''' <!doctype html> <title>HTML</title> <h1>CSS</h1> <p> dfsifgdsifds </p> ''' @app.route('/plot', methods=['GET']) def plot(): data_file = 'flask-upload-test/data.csv' df = pd.read_csv(data_file) img = io.BytesIO() a, x = plt.subplots(figsize=(16, 10)) sns.countplot(x="Topic", data=df, palette="muted") plt.title('Correlation between different features', y=1.03, size=18) plt.savefig(img, format='png') img.seek(0) plot_url_count = base64.b64encode(img.getvalue()).decode() return render_template("plot.html",plot_url_count = plot_url_count) @app.route('/abs', methods=['Get']) def plot_count(): img = io.BytesIO() sns.countplot(x='StudentAbsenceDays', data=final_df, hue='Predicated Value', palette='dark') plt.savefig(img, format='png') img.seek(0) # rewind to beginning of file plot_url = base64.b64encode(img.getvalue()).decode() return render_template("plot.html") #render_template("plot.html",plot_url = plot_url) @app.route('/encode', methods=['GET']) def encode(): data_file = 'flask-upload-test/data.csv' df = pd.read_csv(data_file) label_encoder = LabelEncoder() cat_columns = df.dtypes.pipe(lambda x: x[x == 'object']).index for col in cat_columns: df[col] = label_encoder.fit_transform(df[col]) to_html_predict = "<!doctype html><title>Show Encoded DataFrame Values </title>" + df.to_html() return to_html_predict @app.route('/predict', methods=['GET']) def predict(): data_file = 'flask-upload-test/data.csv' df = pd.read_csv(data_file) enc_df = pd.read_csv(data_file) label_encoder = LabelEncoder() cat_columns = df.dtypes.pipe(lambda x: x[x == 'object']).index for col in cat_columns: df[col] = label_encoder.fit_transform(df[col]) loaded_model = joblib.load('pickle_model.pkl') result = loaded_model.predict(df) pred_series = pd.Series(result.tolist()) pred_series = pred_series.rename('Predicated Value') final_df = enc_df.merge(pred_series.to_frame(), left_index=True, right_index=True) letter_counts = Counter(result) df = pd.DataFrame.from_dict(letter_counts, orient='index') ax = df.plot(kind='bar', color=tuple(["g", "b", "r"]), legend=False,figsize=(15,8)) patches, labels = ax.get_legend_handles_labels() ax.legend(patches, labels, loc='best') img = io.BytesIO() plt.savefig(img, format='png') img.seek(0) plot_url = base64.b64encode(img.getvalue()).decode() return '<h1> if you to see all the dataset with the predicted values press here </h1> <a href="/predictDF"> <input type="button" value="Predict"></a> <p> </p><img src="data:image/png;base64,{}">'.format(plot_url) @app.route('/predictDF', methods=['GET']) def predict_df(): data_file = 'flask-upload-test/data.csv' df =
pd.read_csv(data_file)
pandas.read_csv
from datetime import datetime from decimal import Decimal from io import StringIO import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv import pandas._testing as tm from pandas.core.base import SpecificationError import pandas.core.common as com def test_repr(): # GH18203 result = repr(pd.Grouper(key="A", level="B")) expected = "Grouper(key='A', level='B', axis=0, sort=False)" assert result == expected @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand tm.assert_series_equal(agged, grouped.mean()) tm.assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 tm.assert_series_equal(transformed, expected) value_grouped = data.groupby(data) tm.assert_series_equal( value_grouped.aggregate(np.mean), agged, check_index_type=False ) # complex agg agged = grouped.aggregate([np.mean, np.std]) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped.aggregate({"one": np.mean, "two": np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases msg = "Must produce aggregated value" # exception raised is type Exception with pytest.raises(Exception, match=msg): grouped.aggregate(lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.codes[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype("O")).sum() tm.assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df["value"] = range(len(df)) def max_value(group): return group.loc[group["value"].idxmax()] applied = df.groupby("A").apply(max_value) result = applied.dtypes expected = Series( [np.dtype("object")] * 2 + [np.dtype("float64")] * 2 + [np.dtype("int64")], index=["A", "B", "C", "D", "value"], ) tm.assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=["X", "Y"]) with tm.assert_produces_warning(FutureWarning): result = df.groupby("X", squeeze=False).count() assert isinstance(result, DataFrame) def test_inconsistent_return_type(): # GH5592 # inconsistent return type df = DataFrame( dict( A=["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], B=Series(np.arange(7), dtype="int64"), C=date_range("20130101", periods=7), ) ) def f(grp): return grp.iloc[0] expected = df.groupby("A").first()[["B"]] result = df.groupby("A").apply(f)[["B"]] tm.assert_frame_equal(result, expected) def f(grp): if grp.name == "Tiger": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Tiger"] = np.nan tm.assert_frame_equal(result, e) def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Pony"] = np.nan tm.assert_frame_equal(result, e) # 5592 revisited, with datetimes def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["C"]] e = df.groupby("A").first()[["C"]] e.loc["Pony"] = pd.NaT tm.assert_frame_equal(result, e) # scalar outputs def f(grp): if grp.name == "Pony": return None return grp.iloc[0].loc["C"] result = df.groupby("A").apply(f) e = df.groupby("A").first()["C"].copy() e.loc["Pony"] = np.nan e.name = None tm.assert_series_equal(result, e) def test_pass_args_kwargs(ts, tsframe): def f(x, q=None, axis=0): return np.percentile(x, q, axis=axis) g = lambda x: np.percentile(x, 80, axis=0) # Series ts_grouped = ts.groupby(lambda x: x.month) agg_result = ts_grouped.agg(np.percentile, 80, axis=0) apply_result = ts_grouped.apply(np.percentile, 80, axis=0) trans_result = ts_grouped.transform(np.percentile, 80, axis=0) agg_expected = ts_grouped.quantile(0.8) trans_expected = ts_grouped.transform(g) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) agg_result = ts_grouped.agg(f, q=80) apply_result = ts_grouped.apply(f, q=80) trans_result = ts_grouped.transform(f, q=80) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) # DataFrame df_grouped = tsframe.groupby(lambda x: x.month) agg_result = df_grouped.agg(np.percentile, 80, axis=0) apply_result = df_grouped.apply(DataFrame.quantile, 0.8) expected = df_grouped.quantile(0.8) tm.assert_frame_equal(apply_result, expected, check_names=False) tm.assert_frame_equal(agg_result, expected) agg_result = df_grouped.agg(f, q=80) apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) tm.assert_frame_equal(agg_result, expected) tm.assert_frame_equal(apply_result, expected, check_names=False) def test_len(): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) assert len(grouped) == len(df) grouped = df.groupby([lambda x: x.year, lambda x: x.month]) expected = len({(x.year, x.month) for x in df.index}) assert len(grouped) == expected # issue 11016 df = pd.DataFrame(dict(a=[np.nan] * 3, b=[1, 2, 3])) assert len(df.groupby(("a"))) == 0 assert len(df.groupby(("b"))) == 3 assert len(df.groupby(["a", "b"])) == 3 def test_basic_regression(): # regression result = Series([1.0 * x for x in list(range(1, 10)) * 10]) data = np.random.random(1100) * 10.0 groupings = Series(data) grouped = result.groupby(groupings) grouped.mean() @pytest.mark.parametrize( "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"] ) def test_with_na_groups(dtype): index = Index(np.arange(10)) values = Series(np.ones(10), index, dtype=dtype) labels = Series( [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], index=index, ) # this SHOULD be an int grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) # assert issubclass(agged.dtype.type, np.integer) # explicitly return a float from my function def f(x): return float(len(x)) agged = grouped.agg(f) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) assert issubclass(agged.dtype.type, np.dtype(dtype).type) def test_indices_concatenation_order(): # GH 2808 def f1(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) res = DataFrame(columns=["a"], index=multiindex) return res else: y = y.set_index(["b", "c"]) return y def f2(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: return DataFrame() else: y = y.set_index(["b", "c"]) return y def f3(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex( levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] ) res = DataFrame(columns=["a", "b"], index=multiindex) return res else: return y df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) # correct result result1 = df.groupby("a").apply(f1) result2 = df2.groupby("a").apply(f1) tm.assert_frame_equal(result1, result2) # should fail (not the same number of levels) msg = "Cannot concat indices that do not have the same number of levels" with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f2) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f2) # should fail (incorrect shape) with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f3) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f3) def test_attr_wrapper(ts): grouped = ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) tm.assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {name: gp.describe() for name, gp in grouped} expected = DataFrame(expected).T tm.assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) # make sure raises error msg = "'SeriesGroupBy' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): getattr(grouped, "foo") def test_frame_groupby(tsframe): grouped = tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == 5 assert len(aggregated.columns) == 4 # by string tscopy = tsframe.copy() tscopy["weekday"] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby("weekday").aggregate(np.mean) tm.assert_frame_equal(stragged, aggregated, check_names=False) # transform grouped = tsframe.head(30).groupby(lambda x: x.weekday()) transformed = grouped.transform(lambda x: x - x.mean()) assert len(transformed) == 30 assert len(transformed.columns) == 4 # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) # iterate for weekday, group in grouped: assert group.index[0].weekday() == weekday # groups / group_indices groups = grouped.groups indices = grouped.indices for k, v in groups.items(): samething = tsframe.index.take(indices[k]) assert (samething == v).all() def test_frame_groupby_columns(tsframe): mapping = {"A": 0, "B": 0, "C": 1, "D": 1} grouped = tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == len(tsframe) assert len(aggregated.columns) == 2 # transform tf = lambda x: x - x.mean() groupedT = tsframe.T.groupby(mapping, axis=0) tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: assert len(v.columns) == 2 def test_frame_set_name_single(df): grouped = df.groupby("A") result = grouped.mean() assert result.index.name == "A" result = df.groupby("A", as_index=False).mean() assert result.index.name != "A" result = grouped.agg(np.mean) assert result.index.name == "A" result = grouped.agg({"C": np.mean, "D": np.std}) assert result.index.name == "A" result = grouped["C"].mean() assert result.index.name == "A" result = grouped["C"].agg(np.mean) assert result.index.name == "A" result = grouped["C"].agg([np.mean, np.std]) assert result.index.name == "A" msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"foo": np.mean, "bar": np.std}) def test_multi_func(df): col1 = df["A"] col2 = df["B"] grouped = df.groupby([col1.get, col2.get]) agged = grouped.mean() expected = df.groupby(["A", "B"]).mean() # TODO groupby get drops names tm.assert_frame_equal( agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False ) # some "groups" with no data df = DataFrame( { "v1": np.random.randn(6), "v2": np.random.randn(6), "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), }, index=["one", "two", "three", "four", "five", "six"], ) # only verify that it works for now grouped = df.groupby(["k1", "k2"]) grouped.agg(np.sum) def test_multi_key_multiple_functions(df): grouped = df.groupby(["A", "B"])["C"] agged = grouped.agg([np.mean, np.std]) expected = DataFrame({"mean": grouped.agg(np.mean), "std": grouped.agg(np.std)}) tm.assert_frame_equal(agged, expected) def test_frame_multi_key_function_list(): data = DataFrame( { "A": [ "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar", "foo", "foo", "foo", ], "B": [ "one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one", ], "C": [ "dull", "dull", "shiny", "dull", "dull", "shiny", "shiny", "dull", "shiny", "shiny", "shiny", ], "D": np.random.randn(11), "E": np.random.randn(11), "F": np.random.randn(11), } ) grouped = data.groupby(["A", "B"]) funcs = [np.mean, np.std] agged = grouped.agg(funcs) expected = pd.concat( [grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)], keys=["D", "E", "F"], axis=1, ) assert isinstance(agged.index, MultiIndex) assert isinstance(expected.index, MultiIndex) tm.assert_frame_equal(agged, expected) @pytest.mark.parametrize("op", [lambda x: x.sum(), lambda x: x.mean()]) def test_groupby_multiple_columns(df, op): data = df grouped = data.groupby(["A", "B"]) result1 = op(grouped) keys = [] values = [] for n1, gp1 in data.groupby("A"): for n2, gp2 in gp1.groupby("B"): keys.append((n1, n2)) values.append(op(gp2.loc[:, ["C", "D"]])) mi = MultiIndex.from_tuples(keys, names=["A", "B"]) expected = pd.concat(values, axis=1).T expected.index = mi # a little bit crude for col in ["C", "D"]: result_col = op(grouped[col]) pivoted = result1[col] exp = expected[col] tm.assert_series_equal(result_col, exp) tm.assert_series_equal(pivoted, exp) # test single series works the same result = data["C"].groupby([data["A"], data["B"]]).mean() expected = data.groupby(["A", "B"]).mean()["C"] tm.assert_series_equal(result, expected) def test_as_index_select_column(): # GH 5764 df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) result = df.groupby("A", as_index=False)["B"].get_group(1) expected = pd.Series([2, 4], name="B") tm.assert_series_equal(result, expected) result = df.groupby("A", as_index=False)["B"].apply(lambda x: x.cumsum()) expected = pd.Series( [2, 6, 6], name="B", index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)]) ) tm.assert_series_equal(result, expected) def test_groupby_as_index_select_column_sum_empty_df(): # GH 35246 df = DataFrame(columns=["A", "B", "C"]) left = df.groupby(by="A", as_index=False)["B"].sum() assert type(left) is DataFrame assert left.to_dict() == {"A": {}, "B": {}} def test_groupby_as_index_agg(df): grouped = df.groupby("A", as_index=False) # single-key result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) grouped = df.groupby("A", as_index=True) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"Q": np.sum}) # multi-key grouped = df.groupby(["A", "B"], as_index=False) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) expected3 = grouped["C"].sum() expected3 = DataFrame(expected3).rename(columns={"C": "Q"}) result3 = grouped["C"].agg({"Q": np.sum}) tm.assert_frame_equal(result3, expected3) # GH7115 & GH8112 & GH8582 df = DataFrame(np.random.randint(0, 100, (50, 3)), columns=["jim", "joe", "jolie"]) ts = Series(np.random.randint(5, 10, 50), name="jim") gr = df.groupby(ts) gr.nth(0) # invokes set_selection_from_grouper internally tm.assert_frame_equal(gr.apply(sum), df.groupby(ts).apply(sum)) for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]: gr = df.groupby(ts, as_index=False) left = getattr(gr, attr)() gr = df.groupby(ts.values, as_index=True) right = getattr(gr, attr)().reset_index(drop=True) tm.assert_frame_equal(left, right) def test_ops_not_as_index(reduction_func): # GH 10355, 21090 # Using as_index=False should not modify grouped column if reduction_func in ("corrwith",): pytest.skip("Test not applicable") if reduction_func in ("nth", "ngroup",): pytest.skip("Skip until behavior is determined (GH #5755)") df = DataFrame(np.random.randint(0, 5, size=(100, 2)), columns=["a", "b"]) expected = getattr(df.groupby("a"), reduction_func)() if reduction_func == "size": expected = expected.rename("size") expected = expected.reset_index() g = df.groupby("a", as_index=False) result = getattr(g, reduction_func)() tm.assert_frame_equal(result, expected) result = g.agg(reduction_func) tm.assert_frame_equal(result, expected) result = getattr(g["b"], reduction_func)() tm.assert_frame_equal(result, expected) result = g["b"].agg(reduction_func) tm.assert_frame_equal(result, expected) def test_as_index_series_return_frame(df): grouped = df.groupby("A", as_index=False) grouped2 = df.groupby(["A", "B"], as_index=False) result = grouped["C"].agg(np.sum) expected = grouped.agg(np.sum).loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].agg(np.sum) expected2 = grouped2.agg(np.sum).loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) result = grouped["C"].sum() expected = grouped.sum().loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].sum() expected2 = grouped2.sum().loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) def test_as_index_series_column_slice_raises(df): # GH15072 grouped = df.groupby("A", as_index=False) msg = r"Column\(s\) C already selected" with pytest.raises(IndexError, match=msg): grouped["C"].__getitem__("D") def test_groupby_as_index_cython(df): data = df # single-key grouped = data.groupby("A", as_index=False) result = grouped.mean() expected = data.groupby(["A"]).mean() expected.insert(0, "A", expected.index) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) # multi-key grouped = data.groupby(["A", "B"], as_index=False) result = grouped.mean() expected = data.groupby(["A", "B"]).mean() arrays = list(zip(*expected.index.values)) expected.insert(0, "A", arrays[0]) expected.insert(1, "B", arrays[1]) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) def test_groupby_as_index_series_scalar(df): grouped = df.groupby(["A", "B"], as_index=False) # GH #421 result = grouped["C"].agg(len) expected = grouped.agg(len).loc[:, ["A", "B", "C"]] tm.assert_frame_equal(result, expected) def test_groupby_as_index_corner(df, ts): msg = "as_index=False only valid with DataFrame" with pytest.raises(TypeError, match=msg): ts.groupby(lambda x: x.weekday(), as_index=False) msg = "as_index=False only valid for axis=0" with pytest.raises(ValueError, match=msg): df.groupby(lambda x: x.lower(), as_index=False, axis=1) def test_groupby_multiple_key(df): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) agged = grouped.sum() tm.assert_almost_equal(df.values, agged.values) grouped = df.T.groupby( [lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1 ) agged = grouped.agg(lambda x: x.sum()) tm.assert_index_equal(agged.index, df.columns) tm.assert_almost_equal(df.T.values, agged.values) agged = grouped.agg(lambda x: x.sum()) tm.assert_almost_equal(df.T.values, agged.values) def test_groupby_multi_corner(df): # test that having an all-NA column doesn't mess you up df = df.copy() df["bad"] = np.nan agged = df.groupby(["A", "B"]).mean() expected = df.groupby(["A", "B"]).mean() expected["bad"] = np.nan tm.assert_frame_equal(agged, expected) def test_omit_nuisance(df): grouped = df.groupby("A") result = grouped.mean() expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean() tm.assert_frame_equal(result, expected) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) df = df.loc[:, ["A", "C", "D"]] df["E"] = datetime.now() grouped = df.groupby("A") result = grouped.agg(np.sum) expected = grouped.sum() tm.assert_frame_equal(result, expected) # won't work with axis = 1 grouped = df.groupby({"A": 0, "C": 0, "D": 1, "E": 1}, axis=1) msg = "reduction operation 'sum' not allowed for this dtype" with pytest.raises(TypeError, match=msg): grouped.agg(lambda x: x.sum(0, numeric_only=False)) def test_omit_nuisance_python_multiple(three_group): grouped = three_group.groupby(["A", "B"]) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) def test_empty_groups_corner(mframe): # handle empty groups df = DataFrame( { "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), "k3": ["foo", "bar"] * 3, "v1": np.random.randn(6), "v2": np.random.randn(6), } ) grouped = df.groupby(["k1", "k2"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) grouped = mframe[3:5].groupby(level=0) agged = grouped.apply(lambda x: x.mean()) agged_A = grouped["A"].apply(np.mean) tm.assert_series_equal(agged["A"], agged_A) assert agged.index.name == "first" def test_nonsense_func(): df = DataFrame([0]) msg = r"unsupported operand type\(s\) for \+: 'int' and 'str'" with pytest.raises(TypeError, match=msg): df.groupby(lambda x: x + "foo") def test_wrap_aggregated_output_multindex(mframe): df = mframe.T df["baz", "two"] = "peekaboo" keys = [np.array([0, 0, 1]), np.array([0, 0, 1])] agged = df.groupby(keys).agg(np.mean) assert isinstance(agged.columns, MultiIndex) def aggfun(ser): if ser.name == ("foo", "one"): raise TypeError else: return ser.sum() agged2 = df.groupby(keys).aggregate(aggfun) assert len(agged2.columns) + 1 == len(df.columns) def test_groupby_level_apply(mframe): result = mframe.groupby(level=0).count() assert result.index.name == "first" result = mframe.groupby(level=1).count() assert result.index.name == "second" result = mframe["A"].groupby(level=0).count() assert result.index.name == "first" def test_groupby_level_mapper(mframe): deleveled = mframe.reset_index() mapper0 = {"foo": 0, "bar": 0, "baz": 1, "qux": 1} mapper1 = {"one": 0, "two": 0, "three": 1} result0 = mframe.groupby(mapper0, level=0).sum() result1 = mframe.groupby(mapper1, level=1).sum() mapped_level0 = np.array([mapper0.get(x) for x in deleveled["first"]]) mapped_level1 = np.array([mapper1.get(x) for x in deleveled["second"]]) expected0 = mframe.groupby(mapped_level0).sum() expected1 = mframe.groupby(mapped_level1).sum() expected0.index.name, expected1.index.name = "first", "second" tm.assert_frame_equal(result0, expected0) tm.assert_frame_equal(result1, expected1) def test_groupby_level_nonmulti(): # GH 1313, GH 13901 s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name="foo")) expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name="foo")) result = s.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[0]).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=-1).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[-1]).sum() tm.assert_series_equal(result, expected) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=1) with pytest.raises(ValueError, match=msg): s.groupby(level=-2) msg = "No group keys passed!" with pytest.raises(ValueError, match=msg): s.groupby(level=[]) msg = "multiple levels only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 0]) with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 1]) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[1]) def test_groupby_complex(): # GH 12902 a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1]) expected = Series((1 + 2j, 5 + 10j)) result = a.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = a.sum(level=0) tm.assert_series_equal(result, expected) def test_groupby_series_indexed_differently(): s1 = Series( [5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7], index=Index(["a", "b", "c", "d", "e", "f", "g"]), ) s2 = Series( [1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(["a", "b", "d", "f", "g", "h"]) ) grouped = s1.groupby(s2) agged = grouped.mean() exp = s1.groupby(s2.reindex(s1.index).get).mean() tm.assert_series_equal(agged, exp) def test_groupby_with_hier_columns(): tuples = list( zip( *[ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] ) ) index = MultiIndex.from_tuples(tuples) columns = MultiIndex.from_tuples( [("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog")] ) df = DataFrame(np.random.randn(8, 4), index=index, columns=columns) result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).mean() tm.assert_index_equal(result.index, df.index) result = df.groupby(level=0).agg(np.mean) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0).apply(lambda x: x.mean()) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).agg(lambda x: x.mean(1)) tm.assert_index_equal(result.columns, Index(["A", "B"])) tm.assert_index_equal(result.index, df.index) # add a nuisance column sorted_columns, _ = columns.sortlevel(0) df["A", "foo"] = "bar" result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, df.columns[:-1]) def test_grouping_ndarray(df): grouped = df.groupby(df["A"].values) result = grouped.sum() expected = df.groupby("A").sum() tm.assert_frame_equal( result, expected, check_names=False ) # Note: no names when grouping by value def test_groupby_wrong_multi_labels(): data = """index,foo,bar,baz,spam,data 0,foo1,bar1,baz1,spam2,20 1,foo1,bar2,baz1,spam3,30 2,foo2,bar2,baz1,spam2,40 3,foo1,bar1,baz2,spam1,50 4,foo3,bar1,baz2,spam1,60""" data = read_csv(StringIO(data), index_col=0) grouped = data.groupby(["foo", "bar", "baz", "spam"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) def test_groupby_series_with_name(df): result = df.groupby(df["A"]).mean() result2 = df.groupby(df["A"], as_index=False).mean() assert result.index.name == "A" assert "A" in result2 result = df.groupby([df["A"], df["B"]]).mean() result2 = df.groupby([df["A"], df["B"]], as_index=False).mean() assert result.index.names == ("A", "B") assert "A" in result2 assert "B" in result2 def test_seriesgroupby_name_attr(df): # GH 6265 result = df.groupby("A")["C"] assert result.count().name == "C" assert result.mean().name == "C" testFunc = lambda x: np.sum(x) * 2 assert result.agg(testFunc).name == "C" def test_consistency_name(): # GH 12363 df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "two", "two", "two", "one", "two"], "C": np.random.randn(8) + 1.0, "D": np.arange(8), } ) expected = df.groupby(["A"]).B.count() result = df.B.groupby(df.A).count() tm.assert_series_equal(result, expected) def test_groupby_name_propagation(df): # GH 6124 def summarize(df, name=None): return Series({"count": 1, "mean": 2, "omissions": 3}, name=name) def summarize_random_name(df): # Provide a different name for each Series. In this case, groupby # should not attempt to propagate the Series name since they are # inconsistent. return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"]) metrics = df.groupby("A").apply(summarize) assert metrics.columns.name is None metrics = df.groupby("A").apply(summarize, "metrics") assert metrics.columns.name == "metrics" metrics = df.groupby("A").apply(summarize_random_name) assert metrics.columns.name is None def test_groupby_nonstring_columns(): df = DataFrame([np.arange(10) for x in range(10)]) grouped = df.groupby(0) result = grouped.mean() expected = df.groupby(df[0]).mean() tm.assert_frame_equal(result, expected) def test_groupby_mixed_type_columns(): # GH 13432, unorderable types in py3 df = DataFrame([[0, 1, 2]], columns=["A", "B", 0]) expected = DataFrame([[1, 2]], columns=["B", 0], index=Index([0], name="A")) result = df.groupby("A").first() tm.assert_frame_equal(result, expected) result = df.groupby("A").sum() tm.assert_frame_equal(result, expected) # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:Mean of:RuntimeWarning") def test_cython_grouper_series_bug_noncontig(): arr = np.empty((100, 100)) arr.fill(np.nan) obj = Series(arr[:, 0]) inds = np.tile(range(10), 10) result = obj.groupby(inds).agg(Series.median) assert result.isna().all() def test_series_grouper_noncontig_index(): index = Index(tm.rands_array(10, 100)) values = Series(np.random.randn(50), index=index[::2]) labels = np.random.randint(0, 5, 50) # it works! grouped = values.groupby(labels) # accessing the index elements causes segfault f = lambda x: len(set(map(id, x.index))) grouped.agg(f) def test_convert_objects_leave_decimal_alone(): s = Series(range(5)) labels = np.array(["a", "b", "c", "d", "e"], dtype="O") def convert_fast(x): return Decimal(str(x.mean())) def convert_force_pure(x): # base will be length 0 assert len(x.values.base) > 0 return Decimal(str(x.mean())) grouped = s.groupby(labels) result = grouped.agg(convert_fast) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) def test_groupby_dtype_inference_empty(): # GH 6733 df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")}) assert df["x"].dtype == np.float64 result = df.groupby("x").first() exp_index = Index([], name="x", dtype=np.float64) expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")}) tm.assert_frame_equal(result, expected, by_blocks=True) def test_groupby_list_infer_array_like(df): result = df.groupby(list(df["A"])).mean() expected = df.groupby(df["A"]).mean() tm.assert_frame_equal(result, expected, check_names=False) with pytest.raises(KeyError, match=r"^'foo'$"): df.groupby(list(df["A"][:-1])) # pathological case of ambiguity df = DataFrame({"foo": [0, 1], "bar": [3, 4], "val": np.random.randn(2)}) result = df.groupby(["foo", "bar"]).mean() expected = df.groupby([df["foo"], df["bar"]]).mean()[["val"]] def test_groupby_keys_same_size_as_index(): # GH 11185 freq = "s" index = pd.date_range( start=pd.Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq ) df = pd.DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index) result = df.groupby([pd.Grouper(level=0, freq=freq), "metric"]).mean() expected = df.set_index([df.index, "metric"]) tm.assert_frame_equal(result, expected) def test_groupby_one_row(): # GH 11741 msg = r"^'Z'$" df1 = pd.DataFrame(np.random.randn(1, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df1.groupby("Z") df2 = pd.DataFrame(np.random.randn(2, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df2.groupby("Z") def test_groupby_nat_exclude(): # GH 6992 df = pd.DataFrame( { "values": np.random.randn(8), "dt": [ np.nan, pd.Timestamp("2013-01-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-01-01"), ], "str": [np.nan, "a", np.nan, "a", np.nan, "a", np.nan, "b"], } ) grouped = df.groupby("dt") expected = [pd.Index([1, 7]), pd.Index([3, 5])] keys = sorted(grouped.groups.keys()) assert len(keys) == 2 for k, e in zip(keys, expected): # grouped.groups keys are np.datetime64 with system tz # not to be affected by tz, only compare values tm.assert_index_equal(grouped.groups[k], e) # confirm obj is not filtered tm.assert_frame_equal(grouped.grouper.groupings[0].obj, df) assert grouped.ngroups == 2 expected = { Timestamp("2013-01-01 00:00:00"): np.array([1, 7], dtype=np.intp), Timestamp("2013-02-01 00:00:00"): np.array([3, 5], dtype=np.intp), } for k in grouped.indices: tm.assert_numpy_array_equal(grouped.indices[k], expected[k]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-01-01")), df.iloc[[1, 7]]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-02-01")), df.iloc[[3, 5]]) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) nan_df = DataFrame( {"nan": [np.nan, np.nan, np.nan], "nat": [pd.NaT, pd.NaT, pd.NaT]} ) assert nan_df["nan"].dtype == "float64" assert nan_df["nat"].dtype == "datetime64[ns]" for key in ["nan", "nat"]: grouped = nan_df.groupby(key) assert grouped.groups == {} assert grouped.ngroups == 0 assert grouped.indices == {} with pytest.raises(KeyError, match=r"^nan$"): grouped.get_group(np.nan) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) def test_groupby_2d_malformed(): d = DataFrame(index=range(2)) d["group"] = ["g1", "g2"] d["zeros"] = [0, 0] d["ones"] = [1, 1] d["label"] = ["l1", "l2"] tmp = d.groupby(["group"]).mean() res_values = np.array([[0, 1], [0, 1]], dtype=np.int64) tm.assert_index_equal(tmp.columns, Index(["zeros", "ones"])) tm.assert_numpy_array_equal(tmp.values, res_values) def test_int32_overflow(): B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000))) A = np.arange(25000) df = DataFrame({"A": A, "B": B, "C": A, "D": B, "E": np.random.randn(25000)}) left = df.groupby(["A", "B", "C", "D"]).sum() right = df.groupby(["D", "C", "B", "A"]).sum() assert len(left) == len(right) def test_groupby_sort_multi(): df = DataFrame( { "a": ["foo", "bar", "baz"], "b": [3, 2, 1], "c": [0, 1, 2], "d": np.random.randn(3), } ) tups = [tuple(row) for row in df[["a", "b", "c"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["a", "b", "c"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) tups = [tuple(row) for row in df[["c", "a", "b"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["c", "a", "b"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups) tups = [tuple(x) for x in df[["b", "c", "a"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["b", "c", "a"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) df = DataFrame( {"a": [0, 1, 2, 0, 1, 2], "b": [0, 0, 0, 1, 1, 1], "d": np.random.randn(6)} ) grouped = df.groupby(["a", "b"])["d"] result = grouped.sum() def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): tups = [tuple(row) for row in df[keys].values] tups = com.asarray_tuplesafe(tups) expected = f(df.groupby(tups)[field]) for k, v in expected.items(): assert result[k] == v _check_groupby(df, result, ["a", "b"], "d") def test_dont_clobber_name_column(): df = DataFrame( {"key": ["a", "a", "a", "b", "b", "b"], "name": ["foo", "bar", "baz"] * 2} ) result = df.groupby("key").apply(lambda x: x) tm.assert_frame_equal(result, df) def test_skip_group_keys(): tsf = tm.makeTimeDataFrame() grouped = tsf.groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values(by="A")[:3]) pieces = [group.sort_values(by="A")[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_frame_equal(result, expected) grouped = tsf["A"].groupby(lambda x: x.month, group_keys=False) result = grouped.apply(lambda x: x.sort_values()[:3]) pieces = [group.sort_values()[:3] for key, group in grouped] expected = pd.concat(pieces) tm.assert_series_equal(result, expected) def test_no_nonsense_name(float_frame): # GH #995 s = float_frame["C"].copy() s.name = None result = s.groupby(float_frame["A"]).agg(np.sum) assert result.name is None def test_multifunc_sum_bug(): # GH #1065 x = DataFrame(np.arange(9).reshape(3, 3)) x["test"] = 0 x["fl"] = [1.3, 1.5, 1.6] grouped = x.groupby("test") result = grouped.agg({"fl": "sum", 2: "size"}) assert result["fl"].dtype == np.float64 def test_handle_dict_return_value(df): def f(group): return {"max": group.max(), "min": group.min()} def g(group): return Series({"max": group.max(), "min": group.min()}) result = df.groupby("A")["C"].apply(f) expected = df.groupby("A")["C"].apply(g) assert isinstance(result, Series) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("grouper", ["A", ["A", "B"]]) def test_set_group_name(df, grouper): def f(group): assert group.name is not None return group def freduce(group): assert group.name is not None return group.sum() def foo(x): return freduce(x) grouped = df.groupby(grouper) # make sure all these work grouped.apply(f) grouped.aggregate(freduce) grouped.aggregate({"C": freduce, "D": freduce}) grouped.transform(f) grouped["C"].apply(f) grouped["C"].aggregate(freduce) grouped["C"].aggregate([freduce, foo]) grouped["C"].transform(f) def test_group_name_available_in_inference_pass(): # gh-15062 df = pd.DataFrame({"a": [0, 0, 1, 1, 2, 2], "b": np.arange(6)}) names = [] def f(group): names.append(group.name) return group.copy() df.groupby("a", sort=False, group_keys=False).apply(f) expected_names = [0, 1, 2] assert names == expected_names def test_no_dummy_key_names(df): # see gh-1291 result = df.groupby(df["A"].values).sum() assert result.index.name is None result = df.groupby([df["A"].values, df["B"].values]).sum() assert result.index.names == (None, None) def test_groupby_sort_multiindex_series(): # series multiindex groupby sort argument was not being passed through # _compress_group_index # GH 9444 index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0]], names=["a", "b"], ) mseries = Series([0, 1, 2, 3, 4, 5], index=index) index = MultiIndex( levels=[[1, 2], [1, 2]], codes=[[0, 0, 1], [1, 0, 0]], names=["a", "b"] ) mseries_result = Series([0, 2, 4], index=index) result = mseries.groupby(level=["a", "b"], sort=False).first() tm.assert_series_equal(result, mseries_result) result = mseries.groupby(level=["a", "b"], sort=True).first() tm.assert_series_equal(result, mseries_result.sort_index()) def test_groupby_reindex_inside_function(): periods = 1000 ind = date_range(start="2012/1/1", freq="5min", periods=periods) df = DataFrame({"high": np.arange(periods), "low": np.arange(periods)}, index=ind) def agg_before(hour, func, fix=False): """ Run an aggregate func on the subset of data. """ def _func(data): d = data.loc[data.index.map(lambda x: x.hour < 11)].dropna() if fix: data[data.index[0]] if len(d) == 0: return None return func(d) return _func def afunc(data): d = data.select(lambda x: x.hour < 11).dropna() return np.max(d) grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day)) closure_bad = grouped.agg({"high": agg_before(11, np.max)}) closure_good = grouped.agg({"high": agg_before(11, np.max, True)}) tm.assert_frame_equal(closure_bad, closure_good) def test_groupby_multiindex_missing_pair(): # GH9049 df = DataFrame( { "group1": ["a", "a", "a", "b"], "group2": ["c", "c", "d", "c"], "value": [1, 1, 1, 5], } ) df = df.set_index(["group1", "group2"]) df_grouped = df.groupby(level=["group1", "group2"], sort=True) res = df_grouped.agg("sum") idx = MultiIndex.from_tuples( [("a", "c"), ("a", "d"), ("b", "c")], names=["group1", "group2"] ) exp = DataFrame([[2], [1], [5]], index=idx, columns=["value"]) tm.assert_frame_equal(res, exp) def test_groupby_multiindex_not_lexsorted(): # GH 11640 # define the lexsorted version lexsorted_mi = MultiIndex.from_tuples( [("a", ""), ("b1", "c1"), ("b2", "c2")], names=["b", "c"] ) lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi) assert lexsorted_df.columns.is_lexsorted() # define the non-lexsorted version not_lexsorted_df = DataFrame( columns=["a", "b", "c", "d"], data=[[1, "b1", "c1", 3], [1, "b2", "c2", 4]] ) not_lexsorted_df = not_lexsorted_df.pivot_table( index="a", columns=["b", "c"], values="d" ) not_lexsorted_df = not_lexsorted_df.reset_index() assert not not_lexsorted_df.columns.is_lexsorted() # compare the results tm.assert_frame_equal(lexsorted_df, not_lexsorted_df) expected = lexsorted_df.groupby("a").mean() with tm.assert_produces_warning(PerformanceWarning): result = not_lexsorted_df.groupby("a").mean() tm.assert_frame_equal(expected, result) # a transforming function should work regardless of sort # GH 14776 df = DataFrame( {"x": ["a", "a", "b", "a"], "y": [1, 1, 2, 2], "z": [1, 2, 3, 4]} ).set_index(["x", "y"]) assert not df.index.is_lexsorted() for level in [0, 1, [0, 1]]: for sort in [False, True]: result = df.groupby(level=level, sort=sort).apply(DataFrame.drop_duplicates) expected = df tm.assert_frame_equal(expected, result) result = ( df.sort_index() .groupby(level=level, sort=sort) .apply(DataFrame.drop_duplicates) ) expected = df.sort_index() tm.assert_frame_equal(expected, result) def test_index_label_overlaps_location(): # checking we don't have any label/location confusion in the # the wake of GH5375 df = DataFrame(list("ABCDE"), index=[2, 0, 2, 1, 1]) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) # ... and again, with a generic Index of floats df.index = df.index.astype(float) g = df.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = df.iloc[[1, 3, 4]] tm.assert_frame_equal(actual, expected) ser = df[0] g = ser.groupby(list("ababb")) actual = g.filter(lambda x: len(x) > 2) expected = ser.take([1, 3, 4]) tm.assert_series_equal(actual, expected) def test_transform_doesnt_clobber_ints(): # GH 7972 n = 6 x = np.arange(n) df = DataFrame({"a": x // 2, "b": 2.0 * x, "c": 3.0 * x}) df2 = DataFrame({"a": x // 2 * 1.0, "b": 2.0 * x, "c": 3.0 * x}) gb = df.groupby("a") result = gb.transform("mean") gb2 = df2.groupby("a") expected = gb2.transform("mean") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "sort_column", ["ints", "floats", "strings", ["ints", "floats"], ["ints", "strings"]], ) @pytest.mark.parametrize( "group_column", ["int_groups", "string_groups", ["int_groups", "string_groups"]] ) def test_groupby_preserves_sort(sort_column, group_column): # Test to ensure that groupby always preserves sort order of original # object. Issue #8588 and #9651 df = DataFrame( { "int_groups": [3, 1, 0, 1, 0, 3, 3, 3], "string_groups": ["z", "a", "z", "a", "a", "g", "g", "g"], "ints": [8, 7, 4, 5, 2, 9, 1, 1], "floats": [2.3, 5.3, 6.2, -2.4, 2.2, 1.1, 1.1, 5], "strings": ["z", "d", "a", "e", "word", "word2", "42", "47"], } ) # Try sorting on different types and with different group types df = df.sort_values(by=sort_column) g = df.groupby(group_column) def test_sort(x): tm.assert_frame_equal(x, x.sort_values(by=sort_column)) g.apply(test_sort) def test_group_shift_with_null_key(): # This test is designed to replicate the segfault in issue #13813. n_rows = 1200 # Generate a moderately large dataframe with occasional missing # values in column `B`, and then group by [`A`, `B`]. This should # force `-1` in `labels` array of `g.grouper.group_info` exactly # at those places, where the group-by key is partially missing. df = DataFrame( [(i % 12, i % 3 if i % 3 else np.nan, i) for i in range(n_rows)], dtype=float, columns=["A", "B", "Z"], index=None, ) g = df.groupby(["A", "B"]) expected = DataFrame( [(i + 12 if i % 3 and i < n_rows - 12 else np.nan) for i in range(n_rows)], dtype=float, columns=["Z"], index=None, ) result = g.shift(-1) tm.assert_frame_equal(result, expected) def test_group_shift_with_fill_value(): # GH #24128 n_rows = 24 df = DataFrame( [(i % 12, i % 3, i) for i in range(n_rows)], dtype=float, columns=["A", "B", "Z"], index=None, ) g = df.groupby(["A", "B"]) expected = DataFrame( [(i + 12 if i < n_rows - 12 else 0) for i in range(n_rows)], dtype=float, columns=["Z"], index=None, ) result = g.shift(-1, fill_value=0)[["Z"]] tm.assert_frame_equal(result, expected) def test_group_shift_lose_timezone(): # GH 30134 now_dt = pd.Timestamp.utcnow() df = DataFrame({"a": [1, 1], "date": now_dt}) result = df.groupby("a").shift(0).iloc[0] expected = Series({"date": now_dt}, name=result.name) tm.assert_series_equal(result, expected) def test_pivot_table_values_key_error(): # This test is designed to replicate the error in issue #14938 df = pd.DataFrame( { "eventDate": pd.date_range(datetime.today(), periods=20, freq="M").tolist(), "thename": range(0, 20), } ) df["year"] = df.set_index("eventDate").index.year df["month"] = df.set_index("eventDate").index.month with pytest.raises(KeyError, match="'badname'"): df.reset_index().pivot_table( index="year", columns="month", values="badname", aggfunc="count" ) def test_empty_dataframe_groupby(): # GH8093 df = DataFrame(columns=["A", "B", "C"]) result = df.groupby("A").sum() expected = DataFrame(columns=["B", "C"], dtype=np.float64) expected.index.name = "A" tm.assert_frame_equal(result, expected) def test_tuple_as_grouping(): # https://github.com/pandas-dev/pandas/issues/18314 df = pd.DataFrame( { ("a", "b"): [1, 1, 1, 1], "a": [2, 2, 2, 2], "b": [2, 2, 2, 2], "c": [1, 1, 1, 1], } ) with pytest.raises(KeyError, match=r"('a', 'b')"): df[["a", "b", "c"]].groupby(("a", "b")) result = df.groupby(("a", "b"))["c"].sum() expected = pd.Series([4], name="c", index=pd.Index([1], name=("a", "b"))) tm.assert_series_equal(result, expected) def test_tuple_correct_keyerror(): # https://github.com/pandas-dev/pandas/issues/18798 df = pd.DataFrame( 1, index=range(3), columns=pd.MultiIndex.from_product([[1, 2], [3, 4]]) ) with pytest.raises(KeyError, match=r"^\(7, 8\)$"): df.groupby((7, 8)).mean() def test_groupby_agg_ohlc_non_first(): # GH 21716 df = pd.DataFrame( [[1], [1]], columns=["foo"], index=pd.date_range("2018-01-01", periods=2, freq="D"), ) expected = pd.DataFrame( [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], columns=pd.MultiIndex.from_tuples( ( ("foo", "sum", "foo"), ("foo", "ohlc", "open"), ("foo", "ohlc", "high"), ("foo", "ohlc", "low"), ("foo", "ohlc", "close"), ) ), index=pd.date_range("2018-01-01", periods=2, freq="D"), ) result = df.groupby(pd.Grouper(freq="D")).agg(["sum", "ohlc"]) tm.assert_frame_equal(result, expected) def test_groupby_multiindex_nat(): # GH 9236 values = [ (pd.NaT, "a"), (datetime(2012, 1, 2), "a"), (datetime(2012, 1, 2), "b"), (datetime(2012, 1, 3), "a"), ] mi = pd.MultiIndex.from_tuples(values, names=["date", None]) ser = pd.Series([3, 2, 2.5, 4], index=mi) result = ser.groupby(level=1).mean() expected = pd.Series([3.0, 2.5], index=["a", "b"]) tm.assert_series_equal(result, expected) def test_groupby_empty_list_raises(): # GH 5289 values = zip(range(10), range(10)) df = DataFrame(values, columns=["apple", "b"]) msg = "Grouper and axis must be same length" with pytest.raises(ValueError, match=msg): df.groupby([[]]) def test_groupby_multiindex_series_keys_len_equal_group_axis(): # GH 25704 index_array = [["x", "x"], ["a", "b"], ["k", "k"]] index_names = ["first", "second", "third"] ri = pd.MultiIndex.from_arrays(index_array, names=index_names) s = pd.Series(data=[1, 2], index=ri) result = s.groupby(["first", "third"]).sum() index_array = [["x"], ["k"]] index_names = ["first", "third"] ei = pd.MultiIndex.from_arrays(index_array, names=index_names) expected = pd.Series([3], index=ei) tm.assert_series_equal(result, expected) def test_groupby_groups_in_BaseGrouper(): # GH 26326 # Test if DataFrame grouped with a pandas.Grouper has correct groups mi = pd.MultiIndex.from_product([["A", "B"], ["C", "D"]], names=["alpha", "beta"]) df = pd.DataFrame({"foo": [1, 2, 1, 2], "bar": [1, 2, 3, 4]}, index=mi) result = df.groupby([pd.Grouper(level="alpha"), "beta"]) expected = df.groupby(["alpha", "beta"]) assert result.groups == expected.groups result = df.groupby(["beta", pd.Grouper(level="alpha")]) expected = df.groupby(["beta", "alpha"]) assert result.groups == expected.groups @pytest.mark.parametrize("group_name", ["x", ["x"]]) def test_groupby_axis_1(group_name): # GH 27614 df = pd.DataFrame( np.arange(12).reshape(3, 4), index=[0, 1, 0], columns=[10, 20, 10, 20] ) df.index.name = "y" df.columns.name = "x" results = df.groupby(group_name, axis=1).sum() expected = df.T.groupby(group_name).sum().T tm.assert_frame_equal(results, expected) # test on MI column iterables = [["bar", "baz", "foo"], ["one", "two"]] mi = pd.MultiIndex.from_product(iterables=iterables, names=["x", "x1"]) df = pd.DataFrame(np.arange(18).reshape(3, 6), index=[0, 1, 0], columns=mi) results = df.groupby(group_name, axis=1).sum() expected = df.T.groupby(group_name).sum().T tm.assert_frame_equal(results, expected) @pytest.mark.parametrize( "op, expected", [ ( "shift", { "time": [ None, None, Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), None, None, ] }, ), ( "bfill", { "time": [ Timestamp("2019-01-01 12:00:00"), Timestamp("2019-01-01 12:30:00"), Timestamp("2019-01-01 14:00:00"), Timestamp("2019-01-01 14:30:00"), Timestamp("2019-01-01 14:00:00"), Timestamp("2019-01-01 14:30:00"), ] }, ), ( "ffill", { "time": [
Timestamp("2019-01-01 12:00:00")
pandas.Timestamp
from pyetltools import get_default_logger from pyetltools.core.env_manager import get_env_manager from pyetltools.tools.misc import RetryDecorator from pyetltools.core.cache import CachedDecorator import pandas as pd import re env = get_env_manager() def get_databases_cached(db_con, force_reload_from_source=False, days_in_cache=999999): cache_key = ("DB_DATABASES_CACHE_" + db_con.key + "_" + db_con.data_source) @RetryDecorator(manual_retry=False, fail_on_error=False) @CachedDecorator(cache_key=cache_key, force_reload_from_source=force_reload_from_source, days_in_cache=days_in_cache) def get_databases(db_con): df=db_con.get_databases() return df return get_databases(db_con) def get_objects(db_con): df=db_con.get_objects() if df is None: raise Exception("No objects found") return df @RetryDecorator(manual_retry=False, auto_retry=0, fail_on_error=False) @CachedDecorator() def get_objects_cached(db_con, **kwargs): return get_objects(db_con) def get_objects_for_multiple_dbs_cached(db_con, db_name_regex=".*", **kwargs): ret=[] dbs=[db for db in get_databases_cached(db_con, **kwargs) if re.match(db_name_regex, db)] if len(dbs)==0: get_default_logger().warn("No databases found.") return None for db in dbs: df = get_objects_cached(db_con.with_data_source(db), **kwargs) if df is None: get_default_logger().warn("No objects found in "+db) else: df["DATABASE_NAME"]=db ret.append(df) if len(ret)==0: get_default_logger().warn("No objects found") return None else: return pd.concat(ret) def get_objects_by_name_cached(db_con, object_name_regex=".*", db_name_regex=".*", **kwargs): if db_name_regex: df = get_objects_for_multiple_dbs_cached(db_con, db_name_regex, **kwargs) else: df= get_objects_cached(db_con, **kwargs) if df is not None: return df.query(f"NAME.str.upper()==('{object_name_regex.upper()}')") def get_objects_by_name_regex_cached(db_con, object_name_regex, db_name_regex=".*", **kwargs): df = get_objects_for_multiple_dbs_cached(db_con, db_name_regex, **kwargs) if df is not None: return df.query(f"NAME.str.upper().str.match('{object_name_regex.upper()}')") # def get_objects(db_con, db_regex, force_reload_from_source=False): # cache_key = ("DB_OBJECT_CACHE_"+db_con.key+"_"+db_con.data_source + "_" + db_regex) # def get_objects(): # df=db_con.get_objects_for_databases([db for db in db_con.get_databases() if re.match(db_regex, db)]) # if df is None: # print("No databases found for regex: "+db_regex) # return df # # return get_cache().get_from_cache(cache_key, retriever=get_objects, force_reload_from_source= force_reload_from_source) def get_columns(db_con): df = db_con.get_columns_all_objects() if df is None: print("No columns found") else: df.columns = map(str.upper, df.columns) return df @RetryDecorator(manual_retry=False, fail_on_error=False) @CachedDecorator() def get_columns_cached(db_con, **kwargs): return get_columns(db_con) def get_columns_for_multiple_dbs_cached(db_con, db_name_regex=".*", **kwargs): ret=[] dbs=[db for db in get_databases_cached(db_con, **kwargs) if re.match(db_name_regex, db)] if len(dbs)==0: get_default_logger().warn("No databases found.") return None for db in dbs: df = get_columns_cached(db_con.with_data_source(db), **kwargs) if df is None: get_default_logger().warn("No columns found in "+db) else: df["DATABASE_NAME"]=db ret.append(df) if len(ret)==0: get_default_logger().warn("No columns found.") return None else: return pd.concat(ret) @CachedDecorator() def get_columns_by_object_name_cached_multiple_dbs(db_con, object_name, db_name_regex=".*", **kwargs): df= get_columns_for_multiple_dbs_cached(db_con, db_name_regex, **kwargs) return df.query(f"TABLE_NAME.str.upper()== '{object_name.upper()}'").sort_values("ORDINAL_POSITION") @CachedDecorator() def get_columns_by_object_name_cached(db_con, object_name, **kwargs): df= get_columns_cached(db_con, **kwargs) return df.query(f"TABLE_NAME.str.upper()== '{object_name.upper()}'").sort_values("ORDINAL_POSITION") def get_columns_by_object_name_regex_cached(db_con, object_name_regex, db_name_regex=".*", **kwargs): df= get_columns_for_multiple_dbs_cached(db_con, db_name_regex, **kwargs) return df.query(f"TABLE_NAME.str.upper().str.match('{object_name_regex.upper()}')").sort_values("ORDINAL_POSITION") def get_tables_metadata(db_con, tables, input_columns=["TABLE_NAME_REGEX","DB_NAME_REGEX"], output_columns=["NAME","SCHEMA","DATABASE_NAME"]): """ Searches for metadata for tables, input tables data frame should contains fields: table_name_regex and DB_NAME_REGEX Result of the search will be added to the input dataframe in columns: NAME, SCHEMA, DATABASE_NAME """ if any(col in tables.columns for col in output_columns): raise Exception("Output column name already in data frame") if len(output_columns)!=3: raise Exception("output_columns parameters should contain 3 values: for name, schema and database name") def add_db_meta(db_con): def get_db_meta(df): r=df.iloc[0] db = r[df.columns.get_loc(input_columns[1])] table_name = r[df.columns.get_loc(input_columns[0])] get_default_logger().info("Getting table meta for: "+table_name + " db:" + db) meta = db_con.get_objects_by_name_regex_cached(f"{table_name}", db) if meta is None or len(meta) == 0: print("Not found") r[output_columns[0]] = None r[output_columns[1]] = None r[output_columns[2]] = None return pd.DataFrame([r]) else: if len(meta)>1: print("Find multiple matches") res=[] for m in meta.itertuples(): r_cp=r.copy() r_cp[output_columns[0]] = m.NAME r_cp[output_columns[1]] = m.SCHEMA r_cp[output_columns[2]] = m.DATABASE_NAME res.append(r_cp) return pd.DataFrame(res) return get_db_meta return tables.groupby(tables.columns.tolist(), group_keys=False).apply(add_db_meta(db_con)) def get_table_counts(db_con, tables, agg_queries=True): # Parameters: # db_con(DBConnector): database connector # tables(list): list of tuples # tuple fields: # db schema table_name table_type condition group_by_fields def escape_sql(s): if s: return s.replace("'", "''") else: return "" sqls = [] ret=[] if len(tables)==0: ret= pd.DataFrame(columns=["DATABASE_NAME","SCHEMA","NAME","WHERE_COND","CNT"]) for r in tables.itertuples(): cond=None if "CONDITION" in tables: cond = r.CONDITION group_by=None if "GROUP_BY" in tables: group_by=r.GROUP_BY sql=f"""SELECT '{r.DATABASE_NAME}' DATABASE_NAME, '{r.SCHEMA}' "SCHEMA", '{r.NAME}' NAME, '{escape_sql(cond)}' WHERE_COND {(","+group_by) if group_by else ''}, count(*) CNT FROM {r.DATABASE_NAME}.{r.SCHEMA}.{r.NAME} WHERE {cond if cond else '1=1'} {(" GROUP BY "+group_by) if group_by else ''}""" if not agg_queries: ret.append(db_con.query_pandas(sql)) else: sqls.append(sql) if agg_queries: sql = " UNION ALL \n".join(sqls) ret=[db_con.query_pandas(sql)] return
pd.concat(ret)
pandas.concat
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import pmagpy.pmag as pmag import pmagpy.ipmag as ipmag import pmagpy.pmagplotlib as pmagplotlib def make_plot(arch_df,edited_df,sect_depths,hole,\ gad_inc,depth_min,depth_max,labels,spec_df=[], fignum=1, agemin=0,agemax=0): """ Makes a downhole plot of IODP data. Parameters ___________ arch_df : Pandas DataFrame dataframe of SRM archive measurements edited_df : Panas DataFrame dataframe of edited SRM archive measurements sect_depths : NumPy array array containing section depths of sections for plotting hole : str name of hole gad_inc : float inclination expected at the site from a GAD field depth_min : float minimum depth for plot depth_max : float maximum depth for plot labels : Pandas Series series containing section names (e.g., 1H-2) spec_df : Pandas DataFrame dataframe of specimen data for plotting agemin : float if desired, minimum age for time scale plot agemax : float if non-zero an time scale plot will be generated """ arch_df=arch_df[arch_df['core_depth']>depth_min] arch_df=arch_df[arch_df['core_depth']<=depth_max] edited_df=edited_df[edited_df['core_depth']>depth_min] edited_df=edited_df[edited_df['core_depth']<=depth_max] if len(spec_df)>0: spec_df=spec_df[spec_df['core_depth']>depth_min] spec_df=spec_df[spec_df['core_depth']<=depth_max] plot_spec=True else: plot_spec=False max_depth=arch_df.core_depth.max() min_depth=arch_df.core_depth.min() plot=1 if agemax: col=5 fig=plt.figure(fignum,(14,16)) else: col=3 fig=plt.figure(fignum,(8,20)) ax=plt.subplot(1,col,plot) for d in sect_depths: if d<max_depth and d>min_depth: plt.axhline(d,color='black',linestyle='dashed',linewidth=.75) plot+=1 plt.plot(np.log10(edited_df['magn_volume']*1e3),edited_df['core_depth'],\ 'co',markeredgecolor='grey') plt.plot(np.log10(arch_df['magn_volume']*1e3),arch_df['core_depth'],'k.',markersize=1) plt.ylabel('Depth (mbsf)') plt.xlabel('Log Intensity (mA/m)') plt.ylim(depth_max,depth_min) ax=plt.subplot(1,col,plot) for d in sect_depths: if d<max_depth and d>min_depth: plt.axhline(d,color='black',linestyle='dashed',linewidth=.75) plot+=1 plt.plot(edited_df['dir_dec'],edited_df['core_depth'],'co',markeredgecolor='grey') plt.plot(arch_df['dir_dec'],arch_df['core_depth'],'k.',markersize=1) if plot_spec: plt.plot(spec_df['dir_dec'],spec_df['core_depth'],'r*',markersize=10) plt.axvline(180,color='red') plt.xlabel('Declination') plt.ylim(depth_max,depth_min) plt.ylim(depth_max,depth_min) plt.title(hole) ax=plt.subplot(1,col,plot) for d in sect_depths: if d<max_depth and d>min_depth: plt.axhline(d,color='black',linestyle='dashed',linewidth=.75) plot+=1 plt.plot(edited_df['dir_inc'],edited_df['core_depth'],'co',markeredgecolor='grey') plt.plot(arch_df['dir_inc'],arch_df['core_depth'],'k.',markersize=1) if plot_spec: plt.plot(spec_df['dir_inc'],spec_df['core_depth'],'r*',markersize=10) plt.xlabel('Inclination') plt.axvline(gad_inc,color='blue',linestyle='dotted') plt.axvline(-gad_inc,color='blue',linestyle='dotted') plt.axvline(0,color='red') plt.xlim(-90,90) for k in range(len(labels.values)): if sect_depths[k]<max_depth and sect_depths[k]>=min_depth: plt.text(100,sect_depths[k],labels.values[k],verticalalignment='top') plt.ylim(depth_max,depth_min); if agemax: ax=plt.subplot(1,col,plot) ax.axis('off') ax=plt.subplot(1,col,plot+1) pmagplotlib.plot_ts(ax,agemin,agemax) plt.savefig('Figures/'+hole+'_'+str(fignum)+'.pdf') print ('Plot saved in', 'Figures/'+hole+'_'+str(fignum)+'.pdf') def inc_hist(df,inc_key='dir_inc'): """ Makes a histogram of inclination data from a data frame with 'dir_inc' as the inclination key Parameters __________ df : Pandas DataFrame dataframe with inclination data in "inc_key" column """ plt.figure(figsize=(12,5)) plt.subplot(121) plt.ylabel('Number of inclinations') sns.distplot(df[inc_key],kde=False,bins=24) plt.xlabel('Inclination') plt.xlim(-90,90) plt.subplot(122) plt.ylabel('Fraction of inclinations') sns.distplot(df[inc_key],bins=24) plt.xlabel('Inclination') plt.xlim(-90,90) def demag_step(magic_dir,hole,demag_step,meas_file='srm_arch_measurements.txt', site_file='srm_arch_sites.txt',depth_key='core_depth',verbose=True): """ Selects the desired demagnetization step, and puts the core/section/offset information into the returned data frame Parameters ___________ magic_dir : str directory of the MagIC formatted files hole : str IODP Hole demag_step : float desired demagnetization step in tesla meas_file : str input measurement.txt format file for IODP measurements site_file : str input sites.txt format file for sites. verbose : boolean if True, announce return of dataframe Returns ___________ DataFrame with selected step and additional metadata """ arch_data=pd.read_csv(magic_dir+'/'+meas_file,sep='\t',header=1) depth_data=pd.read_csv(magic_dir+'/'+site_file,sep='\t',header=1) depth_data['specimen']=depth_data['site'] depth_data=depth_data[['specimen',depth_key]] depth_data.sort_values(by='specimen') arch_data=pd.merge(arch_data,depth_data,on='specimen') arch_demag_step=arch_data[arch_data['treat_ac_field']==demag_step] pieces=arch_demag_step.specimen.str.split('-',expand=True) pieces.columns=['exp','hole','core','sect','A/W','offset'] arch_demag_step['core_sects']=pieces['core'].astype('str')+'-'+pieces['sect'].astype('str') arch_demag_step['offset']=pieces['offset'].astype('float') arch_demag_step['core']=pieces['core'] arch_demag_step['section']=pieces['sect'] arch_demag_step['hole']=hole arch_demag_step.drop_duplicates(inplace=True) arch_demag_step.to_csv(hole+'/'+hole+'_arch_demag_step.csv',index=False) if verbose: print ("Here's your demagnetization step DataFrame") return arch_demag_step def remove_ends(arch_demag_step,hole,core_top=80,section_ends=10): """ takes an archive measurement DataFrame and peels off the section ends and core tops Parameters __________ arch_demag_step : Pandas DataFrame data frame filtered by iodp_funcs.demag_step hole : str IODP hole core_top : float cm to remove from the core top section_ends : float cm to remove from the section ends Returns _______ noends : DataFrame filtered data frame """ noends=pd.DataFrame(columns=arch_demag_step.columns) core_sects=arch_demag_step.core_sects.unique() for core_sect in core_sects: cs_df=arch_demag_step[arch_demag_step['core_sects'].str.contains(core_sect)] if '-1' in core_sect: cs_df=cs_df[cs_df.offset>cs_df['offset'].min()+core_top] # top 80cm else: cs_df=cs_df[cs_df.offset>cs_df['offset'].min()+section_ends] # top 10 cm cs_df=cs_df[cs_df.offset<cs_df['offset'].max()-10] noends=pd.concat([noends,cs_df]) noends.drop_duplicates(inplace=True) noends.fillna("",inplace=True) noends.to_csv(hole+'/'+hole+'_noends.csv',index=False) print ("Here's your no end DataFrame") return noends def remove_disturbance(noends,hole): """ takes an archive measurement DataFrame and removes disturbed intervals using DescLogic files Parameters __________ noends : Pandas DataFrame data frame filtered by iodp_funcs.remove_ends hole : str IODP hole Returns _______ nodist : DataFrame filtered data frame """ disturbance_file=hole+'/'+hole+'_disturbances.xlsx' disturbance_df=pd.read_excel(disturbance_file) disturbance_df.dropna(subset=['Drilling disturbance intensity'],inplace=True) disturbance_df=disturbance_df[disturbance_df['Drilling disturbance intensity'].str.contains('high')] disturbance_df=disturbance_df[['Top Depth [m]','Bottom Depth [m]']] disturbance_df.reset_index(inplace=True) nodist=noends.copy(deep=True) for k in disturbance_df.index.tolist(): top=disturbance_df.loc[k]['Top Depth [m]'] bottom=disturbance_df.loc[k]['Bottom Depth [m]'] nodist=nodist[(nodist['core_depth']<top) | (nodist['core_depth']>bottom)] nodist.sort_values(by='core_depth',inplace=True) nodist.drop_duplicates(inplace=True) nodist.fillna("",inplace=True) # save for later nodist.to_csv(hole+'/'+hole+'_nodisturbance.csv',index=False) print ("Here's your no DescLogic disturbance DataFrame") return nodist def no_xray_disturbance(nodist,hole): """ takes an archive measurement DataFrame and removes disturbed intervals using XRAY disturbance files Parameters __________ nodist : Pandas DataFrame data frame filtered by iodp_funcs.remove_disturbance hole : str IODP hole Returns _______ no_xray_df : DataFrame filtered data frame """ disturbance_file=hole+'/'+hole+'_disturbances.xlsx' disturbance_df=pd.read_excel(disturbance_file) disturbance_df.dropna(subset=['Drilling disturbance intensity'],inplace=True) disturbance_df=disturbance_df[disturbance_df['Drilling disturbance intensity'].str.contains('high')] xray_file=hole+'/'+hole+'_xray_disturbance.xlsx' xray_df=pd.read_excel(xray_file,header=2) no_xray_df=pd.DataFrame(columns=nodist.columns) xray_df=xray_df[['Core','Section','interval (offset cm)']] xray_df.dropna(inplace=True) if type(xray_df.Section)!='str': xray_df.Section=xray_df.Section.astype('int64') xray_df.reset_index(inplace=True) xray_df['core_sect']=xray_df['Core']+'-'+xray_df['Section'].astype('str') xr_core_sects=xray_df['core_sect'].tolist() nd_core_sects=nodist['core_sects'].tolist() used=[] # put in undisturbed cores for coresect in nd_core_sects: if coresect not in used and coresect not in xr_core_sects: core_df=nodist[nodist['core_sects'].str.match(coresect)] no_xray_df=pd.concat([no_xray_df,core_df]) used.append(coresect) # take out disturbed bits for coresect in xr_core_sects: core_df=nodist[(nodist['core_sects'].str.match(coresect))] x_core_df=xray_df[xray_df['core_sect']==coresect] core_sect_intervals=x_core_df['interval (offset cm)'].tolist() for core_sect_interval in core_sect_intervals: interval=core_sect_interval.split('-') top=int(interval[0]) bottom=int(interval[1]) # remove disturbed bit core_df=core_df[(core_df['offset']<top) | (core_df['offset']>bottom)] # add undisturbed bit to no_xray_df no_xray_df=pd.concat([no_xray_df,core_df]) no_xray_df.sort_values(by='core_depth',inplace=True) # save for later no_xray_df.drop_duplicates(inplace=True) no_xray_df.fillna("",inplace=True) no_xray_df.to_csv(hole+'/'+hole+'_noXraydisturbance.csv',index=False) #meas_dicts = no_xray_df.to_dict('records') #pmag.magic_write(magic_dir+'/no_xray_measurements.txt', meas_dicts, 'measurements') print ('Here is your DataFrame with no Xray identified disturbances') return no_xray_df def adj_dec(df,hole): """ takes an archive measurement DataFrame and adjusts the average declination by hole to 90 for "normal" Parameters __________ df : Pandas DataFrame data frame of archive measurement data hole : str IODP hole Returns _______ adj_dec_df : DataFrame adjusted declination data frame core_dec_adj : dict dictionary of cores and the average declination """ cores=df.core.unique() adj_dec_df=pd.DataFrame(columns=df.columns) core_dec_adj={} for core in cores: core_df=df[df['core']==core] di_block=core_df[['dir_dec','dir_inc']].values ppars=pmag.doprinc(di_block) if ppars['inc']>0: # take the antipode ppars['dec']=ppars['dec']-180 core_dec_adj[core]=ppars['dec'] core_df['adj_dec']=(core_df['dir_dec']-ppars['dec'])%360 core_df['dir_dec']=(core_df['adj_dec']+90)%360 # set mean normal to 90 for plottingh adj_dec_df=
pd.concat([adj_dec_df,core_df])
pandas.concat
import copy import re from textwrap import dedent import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, MultiIndex, ) import pandas._testing as tm jinja2 = pytest.importorskip("jinja2") from pandas.io.formats.style import ( # isort:skip Styler, ) from pandas.io.formats.style_render import ( _get_level_lengths, _get_trimming_maximums, maybe_convert_css_to_tuples, non_reducing_slice, ) @pytest.fixture def mi_df(): return DataFrame( [[1, 2], [3, 4]], index=MultiIndex.from_product([["i0"], ["i1_a", "i1_b"]]), columns=MultiIndex.from_product([["c0"], ["c1_a", "c1_b"]]), dtype=int, ) @pytest.fixture def mi_styler(mi_df): return Styler(mi_df, uuid_len=0) @pytest.fixture def mi_styler_comp(mi_styler): # comprehensively add features to mi_styler mi_styler = mi_styler._copy(deepcopy=True) mi_styler.css = {**mi_styler.css, **{"row": "ROW", "col": "COL"}} mi_styler.uuid_len = 5 mi_styler.uuid = "abcde" mi_styler.set_caption("capt") mi_styler.set_table_styles([{"selector": "a", "props": "a:v;"}]) mi_styler.hide(axis="columns") mi_styler.hide([("c0", "c1_a")], axis="columns", names=True) mi_styler.hide(axis="index") mi_styler.hide([("i0", "i1_a")], axis="index", names=True) mi_styler.set_table_attributes('class="box"') mi_styler.format(na_rep="MISSING", precision=3) mi_styler.format_index(precision=2, axis=0) mi_styler.format_index(precision=4, axis=1) mi_styler.highlight_max(axis=None) mi_styler.applymap_index(lambda x: "color: white;", axis=0) mi_styler.applymap_index(lambda x: "color: black;", axis=1) mi_styler.set_td_classes( DataFrame( [["a", "b"], ["a", "c"]], index=mi_styler.index, columns=mi_styler.columns ) ) mi_styler.set_tooltips( DataFrame( [["a2", "b2"], ["a2", "c2"]], index=mi_styler.index, columns=mi_styler.columns, ) ) return mi_styler @pytest.mark.parametrize( "sparse_columns, exp_cols", [ ( True, [ {"is_visible": True, "attributes": 'colspan="2"', "value": "c0"}, {"is_visible": False, "attributes": "", "value": "c0"}, ], ), ( False, [ {"is_visible": True, "attributes": "", "value": "c0"}, {"is_visible": True, "attributes": "", "value": "c0"}, ], ), ], ) def test_mi_styler_sparsify_columns(mi_styler, sparse_columns, exp_cols): exp_l1_c0 = {"is_visible": True, "attributes": "", "display_value": "c1_a"} exp_l1_c1 = {"is_visible": True, "attributes": "", "display_value": "c1_b"} ctx = mi_styler._translate(True, sparse_columns) assert exp_cols[0].items() <= ctx["head"][0][2].items() assert exp_cols[1].items() <= ctx["head"][0][3].items() assert exp_l1_c0.items() <= ctx["head"][1][2].items() assert exp_l1_c1.items() <= ctx["head"][1][3].items() @pytest.mark.parametrize( "sparse_index, exp_rows", [ ( True, [ {"is_visible": True, "attributes": 'rowspan="2"', "value": "i0"}, {"is_visible": False, "attributes": "", "value": "i0"}, ], ), ( False, [ {"is_visible": True, "attributes": "", "value": "i0"}, {"is_visible": True, "attributes": "", "value": "i0"}, ], ), ], ) def test_mi_styler_sparsify_index(mi_styler, sparse_index, exp_rows): exp_l1_r0 = {"is_visible": True, "attributes": "", "display_value": "i1_a"} exp_l1_r1 = {"is_visible": True, "attributes": "", "display_value": "i1_b"} ctx = mi_styler._translate(sparse_index, True) assert exp_rows[0].items() <= ctx["body"][0][0].items() assert exp_rows[1].items() <= ctx["body"][1][0].items() assert exp_l1_r0.items() <= ctx["body"][0][1].items() assert exp_l1_r1.items() <= ctx["body"][1][1].items() def test_mi_styler_sparsify_options(mi_styler): with pd.option_context("styler.sparse.index", False): html1 = mi_styler.to_html() with pd.option_context("styler.sparse.index", True): html2 = mi_styler.to_html() assert html1 != html2 with pd.option_context("styler.sparse.columns", False): html1 = mi_styler.to_html() with pd.option_context("styler.sparse.columns", True): html2 = mi_styler.to_html() assert html1 != html2 @pytest.mark.parametrize( "rn, cn, max_els, max_rows, max_cols, exp_rn, exp_cn", [ (100, 100, 100, None, None, 12, 6), # reduce to (12, 6) < 100 elements (1000, 3, 750, None, None, 250, 3), # dynamically reduce rows to 250, keep cols (4, 1000, 500, None, None, 4, 125), # dynamically reduce cols to 125, keep rows (1000, 3, 750, 10, None, 10, 3), # overwrite above dynamics with max_row (4, 1000, 500, None, 5, 4, 5), # overwrite above dynamics with max_col (100, 100, 700, 50, 50, 25, 25), # rows cols below given maxes so < 700 elmts ], ) def test_trimming_maximum(rn, cn, max_els, max_rows, max_cols, exp_rn, exp_cn): rn, cn = _get_trimming_maximums( rn, cn, max_els, max_rows, max_cols, scaling_factor=0.5 ) assert (rn, cn) == (exp_rn, exp_cn) @pytest.mark.parametrize( "option, val", [ ("styler.render.max_elements", 6), ("styler.render.max_rows", 3), ], ) def test_render_trimming_rows(option, val): # test auto and specific trimming of rows df = DataFrame(np.arange(120).reshape(60, 2)) with pd.option_context(option, val): ctx = df.style._translate(True, True) assert len(ctx["head"][0]) == 3 # index + 2 data cols assert len(ctx["body"]) == 4 # 3 data rows + trimming row assert len(ctx["body"][0]) == 3 # index + 2 data cols @pytest.mark.parametrize( "option, val", [ ("styler.render.max_elements", 6), ("styler.render.max_columns", 2), ], ) def test_render_trimming_cols(option, val): # test auto and specific trimming of cols df = DataFrame(np.arange(30).reshape(3, 10)) with pd.option_context(option, val): ctx = df.style._translate(True, True) assert len(ctx["head"][0]) == 4 # index + 2 data cols + trimming col assert len(ctx["body"]) == 3 # 3 data rows assert len(ctx["body"][0]) == 4 # index + 2 data cols + trimming col def test_render_trimming_mi(): midx = MultiIndex.from_product([[1, 2], [1, 2, 3]]) df = DataFrame(np.arange(36).reshape(6, 6), columns=midx, index=midx) with pd.option_context("styler.render.max_elements", 4): ctx = df.style._translate(True, True) assert len(ctx["body"][0]) == 5 # 2 indexes + 2 data cols + trimming row assert {"attributes": 'rowspan="2"'}.items() <= ctx["body"][0][0].items() assert {"class": "data row0 col_trim"}.items() <= ctx["body"][0][4].items() assert {"class": "data row_trim col_trim"}.items() <= ctx["body"][2][4].items() assert len(ctx["body"]) == 3 # 2 data rows + trimming row assert len(ctx["head"][0]) == 5 # 2 indexes + 2 column headers + trimming col assert {"attributes": 'colspan="2"'}.items() <= ctx["head"][0][2].items() def test_render_empty_mi(): # GH 43305 df = DataFrame(index=MultiIndex.from_product([["A"], [0, 1]], names=[None, "one"])) expected = dedent( """\ > <thead> <tr> <th class="index_name level0" >&nbsp;</th> <th class="index_name level1" >one</th> </tr> </thead> """ ) assert expected in df.style.to_html() @pytest.mark.parametrize("comprehensive", [True, False]) @pytest.mark.parametrize("render", [True, False]) @pytest.mark.parametrize("deepcopy", [True, False]) def test_copy(comprehensive, render, deepcopy, mi_styler, mi_styler_comp): styler = mi_styler_comp if comprehensive else mi_styler styler.uuid_len = 5 s2 = copy.deepcopy(styler) if deepcopy else copy.copy(styler) # make copy and check assert s2 is not styler if render: styler.to_html() excl = [ "na_rep", # deprecated "precision", # deprecated "cellstyle_map", # render time vars.. "cellstyle_map_columns", "cellstyle_map_index", "template_latex", # render templates are class level "template_html", "template_html_style", "template_html_table", ] if not deepcopy: # check memory locations are equal for all included attributes for attr in [a for a in styler.__dict__ if (not callable(a) and a not in excl)]: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) else: # check memory locations are different for nested or mutable vars shallow = [ "data", "columns", "index", "uuid_len", "uuid", "caption", "cell_ids", "hide_index_", "hide_columns_", "hide_index_names", "hide_column_names", "table_attributes", ] for attr in shallow: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) for attr in [ a for a in styler.__dict__ if (not callable(a) and a not in excl and a not in shallow) ]: if getattr(s2, attr) is None: assert id(getattr(s2, attr)) == id(getattr(styler, attr)) else: assert id(getattr(s2, attr)) != id(getattr(styler, attr)) def test_clear(mi_styler_comp): # NOTE: if this test fails for new features then 'mi_styler_comp' should be updated # to ensure proper testing of the 'copy', 'clear', 'export' methods with new feature # GH 40675 styler = mi_styler_comp styler._compute() # execute applied methods clean_copy = Styler(styler.data, uuid=styler.uuid) excl = [ "data", "index", "columns", "uuid", "uuid_len", # uuid is set to be the same on styler and clean_copy "cell_ids", "cellstyle_map", # execution time only "cellstyle_map_columns", # execution time only "cellstyle_map_index", # execution time only "precision", # deprecated "na_rep", # deprecated "template_latex", # render templates are class level "template_html", "template_html_style", "template_html_table", ] # tests vars are not same vals on obj and clean copy before clear (except for excl) for attr in [a for a in styler.__dict__ if not (callable(a) or a in excl)]: res = getattr(styler, attr) == getattr(clean_copy, attr) assert not (all(res) if (hasattr(res, "__iter__") and len(res) > 0) else res) # test vars have same vales on obj and clean copy after clearing styler.clear() for attr in [a for a in styler.__dict__ if not (callable(a))]: res = getattr(styler, attr) == getattr(clean_copy, attr) assert all(res) if hasattr(res, "__iter__") else res def test_export(mi_styler_comp, mi_styler): exp_attrs = [ "_todo", "hide_index_", "hide_index_names", "hide_columns_", "hide_column_names", "table_attributes", "table_styles", "css", ] for attr in exp_attrs: check = getattr(mi_styler, attr) == getattr(mi_styler_comp, attr) assert not ( all(check) if (hasattr(check, "__iter__") and len(check) > 0) else check ) export = mi_styler_comp.export() used = mi_styler.use(export) for attr in exp_attrs: check = getattr(used, attr) == getattr(mi_styler_comp, attr) assert all(check) if (hasattr(check, "__iter__") and len(check) > 0) else check used.to_html() def test_hide_raises(mi_styler): msg = "`subset` and `level` cannot be passed simultaneously" with pytest.raises(ValueError, match=msg): mi_styler.hide(axis="index", subset="something", level="something else") msg = "`level` must be of type `int`, `str` or list of such" with pytest.raises(ValueError, match=msg): mi_styler.hide(axis="index", level={"bad": 1, "type": 2}) @pytest.mark.parametrize("level", [1, "one", [1], ["one"]]) def test_hide_index_level(mi_styler, level): mi_styler.index.names, mi_styler.columns.names = ["zero", "one"], ["zero", "one"] ctx = mi_styler.hide(axis="index", level=level)._translate(False, True) assert len(ctx["head"][0]) == 3 assert len(ctx["head"][1]) == 3 assert len(ctx["head"][2]) == 4 assert ctx["head"][2][0]["is_visible"] assert not ctx["head"][2][1]["is_visible"] assert ctx["body"][0][0]["is_visible"] assert not ctx["body"][0][1]["is_visible"] assert ctx["body"][1][0]["is_visible"] assert not ctx["body"][1][1]["is_visible"] @pytest.mark.parametrize("level", [1, "one", [1], ["one"]]) @pytest.mark.parametrize("names", [True, False]) def test_hide_columns_level(mi_styler, level, names): mi_styler.columns.names = ["zero", "one"] if names: mi_styler.index.names = ["zero", "one"] ctx = mi_styler.hide(axis="columns", level=level)._translate(True, False) assert len(ctx["head"]) == (2 if names else 1) @pytest.mark.parametrize("method", ["applymap", "apply"]) @pytest.mark.parametrize("axis", ["index", "columns"]) def test_apply_map_header(method, axis): # GH 41893 df = DataFrame({"A": [0, 0], "B": [1, 1]}, index=["C", "D"]) func = { "apply": lambda s: ["attr: val" if ("A" in v or "C" in v) else "" for v in s], "applymap": lambda v: "attr: val" if ("A" in v or "C" in v) else "", } # test execution added to todo result = getattr(df.style, f"{method}_index")(func[method], axis=axis) assert len(result._todo) == 1 assert len(getattr(result, f"ctx_{axis}")) == 0 # test ctx object on compute result._compute() expected = { (0, 0): [("attr", "val")], } assert getattr(result, f"ctx_{axis}") == expected @pytest.mark.parametrize("method", ["apply", "applymap"]) @pytest.mark.parametrize("axis", ["index", "columns"]) def test_apply_map_header_mi(mi_styler, method, axis): # GH 41893 func = { "apply": lambda s: ["attr: val;" if "b" in v else "" for v in s], "applymap": lambda v: "attr: val" if "b" in v else "", } result = getattr(mi_styler, f"{method}_index")(func[method], axis=axis)._compute() expected = {(1, 1): [("attr", "val")]} assert getattr(result, f"ctx_{axis}") == expected def test_apply_map_header_raises(mi_styler): # GH 41893 with pytest.raises(ValueError, match="No axis named bad for object type DataFrame"): mi_styler.applymap_index(lambda v: "attr: val;", axis="bad")._compute() class TestStyler: def setup_method(self, method): np.random.seed(24) self.s = DataFrame({"A": np.random.permutation(range(6))}) self.df = DataFrame({"A": [0, 1], "B": np.random.randn(2)}) self.f = lambda x: x self.g = lambda x: x def h(x, foo="bar"): return pd.Series(f"color: {foo}", index=x.index, name=x.name) self.h = h self.styler = Styler(self.df) self.attrs = DataFrame({"A": ["color: red", "color: blue"]}) self.dataframes = [ self.df, DataFrame( {"f": [1.0, 2.0], "o": ["a", "b"], "c": pd.Categorical(["a", "b"])} ), ] self.blank_value = "&nbsp;" def test_init_non_pandas(self): msg = "``data`` must be a Series or DataFrame" with pytest.raises(TypeError, match=msg): Styler([1, 2, 3]) def test_init_series(self): result = Styler(pd.Series([1, 2])) assert result.data.ndim == 2 def test_repr_html_ok(self): self.styler._repr_html_() def test_repr_html_mathjax(self): # gh-19824 / 41395 assert "tex2jax_ignore" not in self.styler._repr_html_() with pd.option_context("styler.html.mathjax", False): assert "tex2jax_ignore" in self.styler._repr_html_() def test_update_ctx(self): self.styler._update_ctx(self.attrs) expected = {(0, 0): [("color", "red")], (1, 0): [("color", "blue")]} assert self.styler.ctx == expected def test_update_ctx_flatten_multi_and_trailing_semi(self): attrs = DataFrame({"A": ["color: red; foo: bar", "color:blue ; foo: baz;"]}) self.styler._update_ctx(attrs) expected = { (0, 0): [("color", "red"), ("foo", "bar")], (1, 0): [("color", "blue"), ("foo", "baz")], } assert self.styler.ctx == expected def test_render(self): df = DataFrame({"A": [0, 1]}) style = lambda x: pd.Series(["color: red", "color: blue"], name=x.name) s = Styler(df, uuid="AB").apply(style) s.to_html() # it worked? def test_multiple_render(self): # GH 39396 s = Styler(self.df, uuid_len=0).applymap(lambda x: "color: red;", subset=["A"]) s.to_html() # do 2 renders to ensure css styles not duplicated assert ( '<style type="text/css">\n#T__row0_col0, #T__row1_col0 {\n' " color: red;\n}\n</style>" in s.to_html() ) def test_render_empty_dfs(self): empty_df = DataFrame() es = Styler(empty_df) es.to_html() # An index but no columns DataFrame(columns=["a"]).style.to_html() # A column but no index DataFrame(index=["a"]).style.to_html() # No IndexError raised? def test_render_double(self): df = DataFrame({"A": [0, 1]}) style = lambda x: pd.Series( ["color: red; border: 1px", "color: blue; border: 2px"], name=x.name ) s = Styler(df, uuid="AB").apply(style) s.to_html() # it worked? def test_set_properties(self): df = DataFrame({"A": [0, 1]}) result = df.style.set_properties(color="white", size="10px")._compute().ctx # order is deterministic v = [("color", "white"), ("size", "10px")] expected = {(0, 0): v, (1, 0): v} assert result.keys() == expected.keys() for v1, v2 in zip(result.values(), expected.values()): assert sorted(v1) == sorted(v2) def test_set_properties_subset(self): df = DataFrame({"A": [0, 1]}) result = ( df.style.set_properties(subset=pd.IndexSlice[0, "A"], color="white") ._compute() .ctx ) expected = {(0, 0): [("color", "white")]} assert result == expected def test_empty_index_name_doesnt_display(self): # https://github.com/pandas-dev/pandas/pull/12090#issuecomment-180695902 df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.style._translate(True, True) assert len(result["head"]) == 1 expected = { "class": "blank level0", "type": "th", "value": self.blank_value, "is_visible": True, "display_value": self.blank_value, } assert expected.items() <= result["head"][0][0].items() def test_index_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.set_index("A").style._translate(True, True) expected = { "class": "index_name level0", "type": "th", "value": "A", "is_visible": True, "display_value": "A", } assert expected.items() <= result["head"][1][0].items() def test_multiindex_name(self): # https://github.com/pandas-dev/pandas/issues/11655 df = DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) result = df.set_index(["A", "B"]).style._translate(True, True) expected = [ { "class": "index_name level0", "type": "th", "value": "A", "is_visible": True, "display_value": "A", }, { "class": "index_name level1", "type": "th", "value": "B", "is_visible": True, "display_value": "B", }, { "class": "blank col0", "type": "th", "value": self.blank_value, "is_visible": True, "display_value": self.blank_value, }, ] assert result["head"][1] == expected def test_numeric_columns(self): # https://github.com/pandas-dev/pandas/issues/12125 # smoke test for _translate df = DataFrame({0: [1, 2, 3]}) df.style._translate(True, True) def test_apply_axis(self): df = DataFrame({"A": [0, 0], "B": [1, 1]}) f = lambda x: [f"val: {x.max()}" for v in x] result = df.style.apply(f, axis=1) assert len(result._todo) == 1 assert len(result.ctx) == 0 result._compute() expected = { (0, 0): [("val", "1")], (0, 1): [("val", "1")], (1, 0): [("val", "1")], (1, 1): [("val", "1")], } assert result.ctx == expected result = df.style.apply(f, axis=0) expected = { (0, 0): [("val", "0")], (0, 1): [("val", "1")], (1, 0): [("val", "0")], (1, 1): [("val", "1")], } result._compute() assert result.ctx == expected result = df.style.apply(f) # default result._compute() assert result.ctx == expected @pytest.mark.parametrize("axis", [0, 1]) def test_apply_series_return(self, axis): # GH 42014 df = DataFrame([[1, 2], [3, 4]], index=["X", "Y"], columns=["X", "Y"]) # test Series return where len(Series) < df.index or df.columns but labels OK func = lambda s: pd.Series(["color: red;"], index=["Y"]) result = df.style.apply(func, axis=axis)._compute().ctx assert result[(1, 1)] == [("color", "red")] assert result[(1 - axis, axis)] == [("color", "red")] # test Series return where labels align but different order func = lambda s: pd.Series(["color: red;", "color: blue;"], index=["Y", "X"]) result = df.style.apply(func, axis=axis)._compute().ctx assert result[(0, 0)] == [("color", "blue")] assert result[(1, 1)] == [("color", "red")] assert result[(1 - axis, axis)] == [("color", "red")] assert result[(axis, 1 - axis)] == [("color", "blue")] @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("columns", [False, True]) def test_apply_dataframe_return(self, index, columns): # GH 42014 df = DataFrame([[1, 2], [3, 4]], index=["X", "Y"], columns=["X", "Y"]) idxs = ["X", "Y"] if index else ["Y"] cols = ["X", "Y"] if columns else ["Y"] df_styles = DataFrame("color: red;", index=idxs, columns=cols) result = df.style.apply(lambda x: df_styles, axis=None)._compute().ctx assert result[(1, 1)] == [("color", "red")] # (Y,Y) styles always present assert (result[(0, 1)] == [("color", "red")]) is index # (X,Y) only if index assert (result[(1, 0)] == [("color", "red")]) is columns # (Y,X) only if cols assert (result[(0, 0)] == [("color", "red")]) is (index and columns) # (X,X) @pytest.mark.parametrize( "slice_", [ pd.IndexSlice[:], pd.IndexSlice[:, ["A"]], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ["A"]], pd.IndexSlice[:2, ["A", "B"]], ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_apply_subset(self, slice_, axis): result = ( self.df.style.apply(self.h, axis=axis, subset=slice_, foo="baz") ._compute() .ctx ) expected = { (r, c): [("color", "baz")] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns } assert result == expected @pytest.mark.parametrize( "slice_", [ pd.IndexSlice[:], pd.IndexSlice[:, ["A"]], pd.IndexSlice[[1], :], pd.IndexSlice[[1], ["A"]], pd.IndexSlice[:2, ["A", "B"]], ], ) def test_applymap_subset(self, slice_): result = ( self.df.style.applymap(lambda x: "color:baz;", subset=slice_)._compute().ctx ) expected = { (r, c): [("color", "baz")] for r, row in enumerate(self.df.index) for c, col in enumerate(self.df.columns) if row in self.df.loc[slice_].index and col in self.df.loc[slice_].columns } assert result == expected @pytest.mark.parametrize( "slice_", [ pd.IndexSlice[:, pd.IndexSlice["x", "A"]], pd.IndexSlice[:, pd.IndexSlice[:, "A"]], pd.IndexSlice[:, pd.IndexSlice[:, ["A", "C"]]], # missing col element pd.IndexSlice[pd.IndexSlice["a", 1], :], pd.IndexSlice[pd.IndexSlice[:, 1], :], pd.IndexSlice[pd.IndexSlice[:, [1, 3]], :], # missing row element pd.IndexSlice[:, ("x", "A")], pd.IndexSlice[("a", 1), :], ], ) def test_applymap_subset_multiindex(self, slice_): # GH 19861 # edited for GH 33562 warn = None msg = "indexing on a MultiIndex with a nested sequence of labels" if ( isinstance(slice_[-1], tuple) and isinstance(slice_[-1][-1], list) and "C" in slice_[-1][-1] ): warn = FutureWarning elif ( isinstance(slice_[0], tuple) and isinstance(slice_[0][1], list) and 3 in slice_[0][1] ): warn = FutureWarning idx = MultiIndex.from_product([["a", "b"], [1, 2]]) col = MultiIndex.from_product([["x", "y"], ["A", "B"]]) df = DataFrame(np.random.rand(4, 4), columns=col, index=idx) with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False): df.style.applymap(lambda x: "color: red;", subset=slice_).to_html() def test_applymap_subset_multiindex_code(self): # https://github.com/pandas-dev/pandas/issues/25858 # Checks styler.applymap works with multindex when codes are provided codes = np.array([[0, 0, 1, 1], [0, 1, 0, 1]]) columns = MultiIndex( levels=[["a", "b"], ["%", "#"]], codes=codes, names=["", ""] ) df = DataFrame( [[1, -1, 1, 1], [-1, 1, 1, 1]], index=["hello", "world"], columns=columns ) pct_subset = pd.IndexSlice[:, pd.IndexSlice[:, "%":"%"]] def color_negative_red(val): color = "red" if val < 0 else "black" return f"color: {color}" df.loc[pct_subset] df.style.applymap(color_negative_red, subset=pct_subset) def test_empty(self): df = DataFrame({"A": [1, 0]}) s = df.style s.ctx = {(0, 0): [("color", "red")], (1, 0): [("", "")]} result = s._translate(True, True)["cellstyle"] expected = [ {"props": [("color", "red")], "selectors": ["row0_col0"]}, {"props": [("", "")], "selectors": ["row1_col0"]}, ] assert result == expected def test_duplicate(self): df = DataFrame({"A": [1, 0]}) s = df.style s.ctx = {(0, 0): [("color", "red")], (1, 0): [("color", "red")]} result = s._translate(True, True)["cellstyle"] expected = [ {"props": [("color", "red")], "selectors": ["row0_col0", "row1_col0"]} ] assert result == expected def test_init_with_na_rep(self): # GH 21527 28358 df = DataFrame([[None, None], [1.1, 1.2]], columns=["A", "B"]) ctx = Styler(df, na_rep="NA")._translate(True, True) assert ctx["body"][0][1]["display_value"] == "NA" assert ctx["body"][0][2]["display_value"] == "NA" def test_caption(self): styler = Styler(self.df, caption="foo") result = styler.to_html() assert all(["caption" in result, "foo" in result]) styler = self.df.style result = styler.set_caption("baz") assert styler is result assert styler.caption == "baz" def test_uuid(self): styler = Styler(self.df, uuid="abc123") result = styler.to_html() assert "abc123" in result styler = self.df.style result = styler.set_uuid("aaa") assert result is styler assert result.uuid == "aaa" def test_unique_id(self): # See https://github.com/pandas-dev/pandas/issues/16780 df = DataFrame({"a": [1, 3, 5, 6], "b": [2, 4, 12, 21]}) result = df.style.to_html(uuid="test") assert "test" in result ids = re.findall('id="(.*?)"', result) assert np.unique(ids).size == len(ids) def test_table_styles(self): style = [{"selector": "th", "props": [("foo", "bar")]}] # default format styler = Styler(self.df, table_styles=style) result = " ".join(styler.to_html().split()) assert "th { foo: bar; }" in result styler = self.df.style result = styler.set_table_styles(style) assert styler is result assert styler.table_styles == style # GH 39563 style = [{"selector": "th", "props": "foo:bar;"}] # css string format styler = self.df.style.set_table_styles(style) result = " ".join(styler.to_html().split()) assert "th { foo: bar; }" in result def test_table_styles_multiple(self): ctx = self.df.style.set_table_styles( [ {"selector": "th,td", "props": "color:red;"}, {"selector": "tr", "props": "color:green;"}, ] )._translate(True, True)["table_styles"] assert ctx == [ {"selector": "th", "props": [("color", "red")]}, {"selector": "td", "props": [("color", "red")]}, {"selector": "tr", "props": [("color", "green")]}, ] def test_table_styles_dict_multiple_selectors(self): # GH 44011 result = self.df.style.set_table_styles( [{"selector": "th,td", "props": [("border-left", "2px solid black")]}] )._translate(True, True)["table_styles"] expected = [ {"selector": "th", "props": [("border-left", "2px solid black")]}, {"selector": "td", "props": [("border-left", "2px solid black")]}, ] assert result == expected def test_maybe_convert_css_to_tuples(self): expected = [("a", "b"), ("c", "d e")] assert maybe_convert_css_to_tuples("a:b;c:d e;") == expected assert maybe_convert_css_to_tuples("a: b ;c: d e ") == expected expected = [] assert maybe_convert_css_to_tuples("") == expected def test_maybe_convert_css_to_tuples_err(self): msg = "Styles supplied as string must follow CSS rule formats" with pytest.raises(ValueError, match=msg): maybe_convert_css_to_tuples("err") def test_table_attributes(self): attributes = 'class="foo" data-bar' styler = Styler(self.df, table_attributes=attributes) result = styler.to_html() assert 'class="foo" data-bar' in result result = self.df.style.set_table_attributes(attributes).to_html() assert 'class="foo" data-bar' in result def test_apply_none(self): def f(x): return DataFrame( np.where(x == x.max(), "color: red", ""), index=x.index, columns=x.columns, ) result = DataFrame([[1, 2], [3, 4]]).style.apply(f, axis=None)._compute().ctx assert result[(1, 1)] == [("color", "red")] def test_trim(self): result = self.df.style.to_html() # trim=True assert result.count("#") == 0 result = self.df.style.highlight_max().to_html() assert result.count("#") == len(self.df.columns) def test_export(self): f = lambda x: "color: red" if x > 0 else "color: blue" g = lambda x, z: f"color: {z}" if x > 0 else f"color: {z}" style1 = self.styler style1.applymap(f).applymap(g, z="b").highlight_max()._compute() # = render result = style1.export() style2 = self.df.style style2.use(result) assert style1._todo == style2._todo style2.to_html() def test_bad_apply_shape(self): df = DataFrame([[1, 2], [3, 4]], index=["A", "B"], columns=["X", "Y"]) msg = "resulted in the apply method collapsing to a Series." with pytest.raises(ValueError, match=msg): df.style._apply(lambda x: "x") msg = "created invalid {} labels" with pytest.raises(ValueError, match=msg.format("index")): df.style._apply(lambda x: [""]) with pytest.raises(ValueError, match=msg.format("index")): df.style._apply(lambda x: ["", "", "", ""]) with pytest.raises(ValueError, match=msg.format("index")): df.style._apply(lambda x: pd.Series(["a:v;", ""], index=["A", "C"]), axis=0) with pytest.raises(ValueError, match=msg.format("columns")): df.style._apply(lambda x: ["", "", ""], axis=1) with pytest.raises(ValueError, match=msg.format("columns")): df.style._apply(lambda x: pd.Series(["a:v;", ""], index=["X", "Z"]), axis=1) msg = "returned ndarray with wrong shape" with pytest.raises(ValueError, match=msg): df.style._apply(lambda x: np.array([[""], [""]]), axis=None) def test_apply_bad_return(self): def f(x): return "" df = DataFrame([[1, 2], [3, 4]]) msg = ( "must return a DataFrame or ndarray when passed to `Styler.apply` " "with axis=None" ) with pytest.raises(TypeError, match=msg): df.style._apply(f, axis=None) @pytest.mark.parametrize("axis", ["index", "columns"]) def test_apply_bad_labels(self, axis): def f(x): return DataFrame(**{axis: ["bad", "labels"]}) df = DataFrame([[1, 2], [3, 4]]) msg = f"created invalid {axis} labels." with pytest.raises(ValueError, match=msg): df.style._apply(f, axis=None) def test_get_level_lengths(self): index = MultiIndex.from_product([["a", "b"], [0, 1, 2]]) expected = { (0, 0): 3, (0, 3): 3, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1, (1, 4): 1, (1, 5): 1, } result = _get_level_lengths(index, sparsify=True, max_index=100) tm.assert_dict_equal(result, expected) expected = { (0, 0): 1, (0, 1): 1, (0, 2): 1, (0, 3): 1, (0, 4): 1, (0, 5): 1, (1, 0): 1, (1, 1): 1, (1, 2): 1, (1, 3): 1, (1, 4): 1, (1, 5): 1, } result = _get_level_lengths(index, sparsify=False, max_index=100)
tm.assert_dict_equal(result, expected)
pandas._testing.assert_dict_equal