prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import numpy as np, pandas as pd, dask.bag as db from scipy.stats import normaltest import time def test_normality(x,alpha = 0.05): '''performs D'Agostino and Pearson's omnibus test for normality. Returns p, True if significantly different from normal distribution''' _, p = normaltest(x) is_significant = p < alpha return p, is_significant def print_test_normality(x,alpha = 0.05): _, p = normaltest(x) is_significant = p < alpha print(f"p = {p:.10g}") if is_significant: # null hypothesis: x comes from a normal distribution print("\tThe null hypothesis can be rejected. The data is significantly different from the normal distribution.") else: print("\tThe null hypothesis cannot be rejected. The data is not significantly different from the normal distribution.") def bootstrap_mean(x,num_samples=1000): mean_values=np.zeros(num_samples) sizex=x.shape[0] for i in range(num_samples): randint_values=np.random.randint(low=0, high=sizex, size=sizex, dtype=int) x_bootstrap=x[randint_values] mean_values[i]=np.mean(x_bootstrap) return mean_values def bootstrap_stdev_of_mean(x,num_samples=1000): mean_values=bootstrap_mean(x,num_samples=num_samples) sig=np.std(mean_values) return sig def bootstrap_95CI_Delta_mean(x,num_samples=1000): mean_values=bootstrap_mean(x,num_samples=num_samples) sig=np.std(mean_values) _, p = normaltest(mean_values) Delta_mean=1.96*sig return Delta_mean,p def bin_and_bootstrap_xy_values(x,y,xlabel,ylabel,bins='auto',min_numobs=None,num_bootstrap_samples=1000,npartitions=1,**kwargs): '''see docstring for bin_and_bootstrap_xy_values_parallel''' type_in=type(np.ndarray([])) if type(x)!=type_in: raise "InputError: x and y must have type np.ndarray!" if type(y)!=type_in: raise "InputError: x and y must have type np.ndarray!" R_values=x dRdt_values=y num_samples=num_bootstrap_samples #implement measure of dRdt that explicitely bins by radius counts,r_edges=np.histogram(R_values,bins=bins) range_values=r_edges if min_numobs is None: min_numobs=np.mean(counts)/8 r_lst=[];drdt_lst=[];Delta_r_lst=[];Delta_drdt_lst=[]; count_lst=[];p_r_lst=[];p_drdt_lst=[] if npartitions==1: #for a single core in base python for j in range(r_edges.shape[0]-1): numobs=counts[j] if numobs>min_numobs: boo=(R_values>=r_edges[j])&(R_values<r_edges[j+1]) r_values=R_values[boo] drdt_values=dRdt_values[boo] #compute mean values in bin r=np.mean(r_values) drdt=np.mean(drdt_values) # compute 95% CI for mean Delta_r,p_r=bootstrap_95CI_Delta_mean(r_values, num_samples=num_samples) Delta_drdt,p_drdt=bootstrap_95CI_Delta_mean(drdt_values, num_samples=num_samples) #append results to list r_lst.append(r) drdt_lst.append(drdt) Delta_r_lst.append(Delta_r) Delta_drdt_lst.append(Delta_drdt) p_r_lst.append(p_r) p_drdt_lst.append(p_drdt) count_lst.append(numobs) r_values=np.array(r_lst) drdt_values=np.array(drdt_lst) Delta_r_values=np.array(Delta_r_lst) Delta_drdt_values=np.array(Delta_drdt_lst) p_r_values=np.array(p_r_lst) p_drdt_values=np.array(p_drdt_lst) count_values=np.array(count_lst) dict_out={ xlabel:r_values, ylabel:drdt_values, f'Delta_{xlabel}':Delta_r_values, f'Delta_{ylabel}':Delta_drdt_values, f'p_{xlabel}':p_r_values, f'p_{ylabel}':p_drdt_values, 'counts':count_values } return pd.DataFrame(dict_out) else: #perform in parallel on multiple cores return bin_and_bootstrap_xy_values_parallel(x, y, xlabel, ylabel, bins=bins, min_numobs=min_numobs, num_bootstrap_samples=num_bootstrap_samples, npartitions=npartitions,**kwargs) ########################################### # Parallel implementation on multiple cores ########################################### def get_routine_bootstrap_bin(x_values,y_values,x_bin_edges,counts,num_samples=100,min_numobs=100,**kwargs): '''x_values,y_values,x_bin_edges are 1 dimensional numpy arrays. returns the function, routine_bootstrap_bin.''' type_in=type(np.ndarray([])) if type(x_values)!=type_in: raise "InputError: x and y must have type np.ndarray!" if type(y_values)!=type_in: raise "InputError: x and y must have type np.ndarray!" R_values=x_values dRdt_values=y_values r_edges=x_bin_edges def routine_bootstrap_bin(bin_id): j=bin_id numobs=counts[j] if numobs>min_numobs: boo=(R_values>=r_edges[j])&(R_values<r_edges[j+1]) r_values=R_values[boo] drdt_values=dRdt_values[boo] #compute mean values in bin r=np.mean(r_values) drdt=np.mean(drdt_values) # compute 95% CI for mean Delta_r,p_r=bootstrap_95CI_Delta_mean(r_values, num_samples=num_samples) Delta_drdt,p_drdt=bootstrap_95CI_Delta_mean(drdt_values, num_samples=num_samples) return np.array((r,drdt,Delta_r,Delta_drdt,p_r,p_drdt,numobs)) else: return None return routine_bootstrap_bin def bin_and_bootstrap_xy_values_parallel(x, y, xlabel='x', ylabel='y', bins='auto', min_numobs=None, num_bootstrap_samples=1000, npartitions=1, use_test=True, test_val=0,printing=False,**kwargs): ''' bin_and_bootstrap_xy_values_parallel returns a pandas.DataFrame instance with the following columns columns=[xlabel,ylabel,f'Delta_{xlabel}',f'Delta_{ylabel}',f'p_{xlabel}',f'p_{ylabel}','counts'] Output Field for a given x bin include: - y : the simple mean value of y - Delta_y : difference between the mean value and the edge of the 95% confidence interval of the mean value - p_y : p value estimating the liklihood to reject the null hypothesis which claims the boostrapped distribution is normally distributed. - counts : the number of observations in this bin Arguments x and y are assumed to be 1 dimensional numpy.array instances. If p_y reliably has values less than 0.05, then consider increasing num_bootstrap_samples bin_and_bootstrap_xy_values_parallel passes the kwarg, bins, to numpy.histogram to generate x bins, it then passes each x bin to npartitions dask workers, each of which selects the y values that correspond to the x values within its respective bin. With these x and y values in hand, that worker bootstraps num_bootstrap_samples samples of approximations of the mean value for those x and y values. A bin is ignored if it contains no more than min_numobs observations. If min_numobs=None, then min_numobs=np.mean(counts)/8, where counts is the array of counts in each bin. ''' x_values=x y_values=y num_samples=num_bootstrap_samples counts,x_bin_edges=np.histogram(x_values,bins=bins) bin_id_lst=list(range(x_bin_edges.shape[0]-1)) if min_numobs is None: min_numobs=np.mean(counts)/8 #bake method to bootstrap 95%CI of mean of y conditioned on x being within a given bin routine_bootstrap_bin=get_routine_bootstrap_bin(x_values,y_values,x_bin_edges,counts,num_samples=num_samples,min_numobs=min_numobs) def routine(input_val): try: return routine_bootstrap_bin(input_val) except Exception as e: return f"Warning: something went wrong, {e}" #optionally test the routine if use_test: retval=routine(test_val) #all CPU version b = db.from_sequence(bin_id_lst, npartitions=npartitions).map(routine) start = time.time() retval = list(b) if printing: print(f"run time for bootstrapping was {time.time()-start:.2f} seconds.") array_out=np.stack([x for x in retval if x is not None]) columns=[xlabel,ylabel,f'Delta_{xlabel}',f'Delta_{ylabel}',f'p_{xlabel}',f'p_{ylabel}','counts'] # columns=['r','drdt','Delta_r','Delta_drdt','p_r','p_drdt','counts'] df=
pd.DataFrame(data=array_out,columns=columns)
pandas.DataFrame
from __future__ import division #brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) # #find parent directory and import model # parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # sys.path.append(parent_dir) from ..trex_exe import Trex test = {} class TestTrex(unittest.TestCase): """ Unit tests for T-Rex model. """ print("trex unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for trex unit tests. :return: """ pass # setup the test as needed # e.g. pandas to open trex qaqc csv # Read qaqc csv and create pandas DataFrames for inputs and expected outputs def tearDown(self): """ Teardown routine for trex unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_trex_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty trex object trex_empty = Trex(df_empty, df_empty) return trex_empty def test_app_rate_parsing(self): """ unittest for function app_rate_testing: method extracts 1st and maximum from each list in a series of lists of app rates """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([], dtype="object") result = pd.Series([], dtype="object") expected_results = [[0.34, 0.78, 2.34], [0.34, 3.54, 2.34]] try: trex_empty.app_rates = pd.Series([[0.34], [0.78, 3.54], [2.34, 1.384, 2.22]], dtype='object') # trex_empty.app_rates = ([[0.34], [0.78, 3.54], [2.34, 1.384, 2.22]]) # parse app_rates Series of lists trex_empty.app_rate_parsing() result = [trex_empty.first_app_rate, trex_empty.max_app_rate] npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial(self): """ unittest for function conc_initial: conc_0 = (app_rate * self.frac_act_ing * food_multiplier) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = [12.7160, 9.8280, 11.2320] try: # specify an app_rates Series (that is a series of lists, each list representing # a set of application rates for 'a' model simulation) trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='float') trex_empty.food_multiplier_init_sg = pd.Series([110., 15., 240.], dtype='float') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') for i in range(len(trex_empty.frac_act_ing)): result[i] = trex_empty.conc_initial(i, trex_empty.app_rates[i][0], trex_empty.food_multiplier_init_sg[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_timestep(self): """ unittest for function conc_timestep: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = [6.25e-5, 0.039685, 7.8886e-30] try: trex_empty.foliar_diss_hlife = pd.Series([.25, 0.75, 0.01], dtype='float') conc_0 = pd.Series([0.001, 0.1, 10.0]) for i in range(len(conc_0)): result[i] = trex_empty.conc_timestep(i, conc_0[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_percent_to_frac(self): """ unittest for function percent_to_frac: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([.04556, .1034, .9389], dtype='float') try: trex_empty.percent_incorp = pd.Series([4.556, 10.34, 93.89], dtype='float') result = trex_empty.percent_to_frac(trex_empty.percent_incorp) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_inches_to_feet(self): """ unittest for function inches_to_feet: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([0.37966, 0.86166, 7.82416], dtype='float') try: trex_empty.bandwidth = pd.Series([4.556, 10.34, 93.89], dtype='float') result = trex_empty.inches_to_feet(trex_empty.bandwidth) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_at_bird(self): """ unittest for function at_bird: adjusted_toxicity = self.ld50_bird * (aw_bird / self.tw_bird_ld50) ** (self.mineau_sca_fact - 1) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([69.17640, 146.8274, 56.00997], dtype='float') try: trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') # following variable is unique to at_bird and is thus sent via arg list trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') for i in range(len(trex_empty.aw_bird_sm)): result[i] = trex_empty.at_bird(i, trex_empty.aw_bird_sm[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_at_bird1(self): """ unittest for function at_bird1; alternative approach using more vectorization: adjusted_toxicity = self.ld50_bird * (aw_bird / self.tw_bird_ld50) ** (self.mineau_sca_fact - 1) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([69.17640, 146.8274, 56.00997], dtype='float') try: trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') # for i in range(len(trex_empty.aw_bird_sm)): # result[i] = trex_empty.at_bird(i, trex_empty.aw_bird_sm[i]) result = trex_empty.at_bird1(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_fi_bird(self): """ unittest for function fi_bird: food_intake = (0.648 * (aw_bird ** 0.651)) / (1 - mf_w_bird) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([4.19728, 22.7780, 59.31724], dtype='float') try: #?? 'mf_w_bird_1' is a constant (i.e., not an input whose value changes per model simulation run); thus it should #?? be specified here as a constant and not a pd.series -- if this is correct then go ahead and change next line trex_empty.mf_w_bird_1 = pd.Series([0.1, 0.8, 0.9], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.fi_bird(trex_empty.aw_bird_sm, trex_empty.mf_w_bird_1) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_sc_bird(self): """ unittest for function sc_bird: m_s_a_r = ((self.app_rate * self.frac_act_ing) / 128) * self.density * 10000 # maximum seed application rate=application rate*10000 risk_quotient = m_s_a_r / self.noaec_bird """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([6.637969, 77.805, 34.96289, np.nan], dtype='float') try: trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4], [3.]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.frac_act_ing = pd.Series([0.15, 0.20, 0.34, np.nan], dtype='float') trex_empty.density = pd.Series([8.33, 7.98, 6.75, np.nan], dtype='float') trex_empty.noaec_bird = pd.Series([5., 1.25, 12., np.nan], dtype='float') result = trex_empty.sc_bird() npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_sa_bird_1(self): """ # unit test for function sa_bird_1 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm = pd.Series([0.228229, 0.704098, 0.145205], dtype = 'float') expected_results_md = pd.Series([0.126646, 0.540822, 0.052285], dtype = 'float') expected_results_lg = pd.Series([0.037707, 0.269804, 0.01199], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='float') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_bird_md = pd.Series([115., 120., 130.], dtype='float') trex_empty.aw_bird_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_bird_1 = 0.1 trex_empty.nagy_bird_coef_sm = 0.02 trex_empty.nagy_bird_coef_md = 0.1 trex_empty.nagy_bird_coef_lg = 1.0 result_sm = trex_empty.sa_bird_1("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_bird_1("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_bird_1("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sa_bird_2(self): """ # unit test for function sa_bird_2 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([0.018832, 0.029030, 0.010483], dtype = 'float') expected_results_md = pd.Series([2.774856e-3, 6.945353e-3, 1.453192e-3], dtype = 'float') expected_results_lg =pd.Series([2.001591e-4, 8.602729e-4, 8.66163e-5], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') trex_empty.max_seed_rate = pd.Series([33.19, 20.0, 45.6]) # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_bird_md = pd.Series([115., 120., 130.], dtype='float') trex_empty.aw_bird_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.nagy_bird_coef_sm = 0.02 trex_empty.nagy_bird_coef_md = 0.1 trex_empty.nagy_bird_coef_lg = 1.0 result_sm = trex_empty.sa_bird_2("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_bird_2("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_bird_2("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sa_mamm_1(self): """ # unit test for function sa_mamm_1 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([0.022593, 0.555799, 0.010178], dtype = 'float') expected_results_md = pd.Series([0.019298, 0.460911, 0.00376], dtype = 'float') expected_results_lg =pd.Series([0.010471, 0.204631, 0.002715], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.tw_mamm = pd.Series([350., 225., 390.], dtype='float') trex_empty.ld50_mamm = pd.Series([321., 100., 400.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_mamm_md = pd.Series([35., 45., 25.], dtype='float') trex_empty.aw_mamm_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_bird_1 = 0.1 trex_empty.nagy_mamm_coef_sm = 0.015 trex_empty.nagy_mamm_coef_md = 0.035 trex_empty.nagy_mamm_coef_lg = 1.0 result_sm = trex_empty.sa_mamm_1("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_mamm_1("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_mamm_1("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sa_mamm_2(self): """ # unit test for function sa_mamm_2 """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([2.46206e-3, 3.103179e-2, 1.03076e-3], dtype = 'float') expected_results_md = pd.Series([1.304116e-3, 1.628829e-2, 4.220702e-4], dtype = 'float') expected_results_lg =pd.Series([1.0592147e-4, 1.24391489e-3, 3.74263186e-5], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') trex_empty.max_seed_rate = pd.Series([33.19, 20.0, 45.6]) # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.tw_mamm = pd.Series([350., 225., 390.], dtype='float') trex_empty.ld50_mamm = pd.Series([321., 100., 400.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_mamm_md = pd.Series([35., 45., 25.], dtype='float') trex_empty.aw_mamm_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_mamm_1 = 0.1 trex_empty.nagy_mamm_coef_sm = 0.015 trex_empty.nagy_mamm_coef_md = 0.035 trex_empty.nagy_mamm_coef_lg = 1.0 result_sm = trex_empty.sa_mamm_2("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sa_mamm_2("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sa_mamm_2("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_sc_mamm(self): """ # unit test for function sc_mamm """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result_sm = pd.Series([], dtype = 'float') result_md = pd.Series([], dtype = 'float') result_lg = pd.Series([], dtype = 'float') expected_results_sm =pd.Series([2.90089, 15.87995, 8.142130], dtype = 'float') expected_results_md = pd.Series([2.477926, 13.16889, 3.008207], dtype = 'float') expected_results_lg =pd.Series([1.344461, 5.846592, 2.172211], dtype = 'float') try: trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'first_app_rate' per model simulation run trex_empty.density = pd.Series([8.33, 7.98, 6.75], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.tw_mamm = pd.Series([350., 225., 390.], dtype='float') trex_empty.noael_mamm = pd.Series([2.5, 3.5, 0.5], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.aw_mamm_md = pd.Series([35., 45., 25.], dtype='float') trex_empty.aw_mamm_lg = pd.Series([1015., 1020., 1030.], dtype='float') #reitierate constants here (they have been set in 'trex_inputs'; repeated here for clarity) trex_empty.mf_w_mamm_1 = 0.1 trex_empty.nagy_mamm_coef_sm = 0.015 trex_empty.nagy_mamm_coef_md = 0.035 trex_empty.nagy_mamm_coef_lg = 1.0 result_sm = trex_empty.sc_mamm("small") npt.assert_allclose(result_sm,expected_results_sm,rtol=1e-4, atol=0, err_msg='', verbose=True) result_md = trex_empty.sc_mamm("medium") npt.assert_allclose(result_md,expected_results_md,rtol=1e-4, atol=0, err_msg='', verbose=True) result_lg = trex_empty.sc_mamm("large") npt.assert_allclose(result_lg,expected_results_lg,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab_sm = [result_sm, expected_results_sm] tab_md = [result_md, expected_results_md] tab_lg = [result_lg, expected_results_lg] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab_sm, headers='keys', tablefmt='rst')) print(tabulate(tab_md, headers='keys', tablefmt='rst')) print(tabulate(tab_lg, headers='keys', tablefmt='rst')) return def test_ld50_rg_bird(self): """ # unit test for function ld50_rg_bird (LD50ft-2 for Row/Band/In-furrow granular birds) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([346.4856, 25.94132, np.nan], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Liquid'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'max app rate' per model simulation run trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') trex_empty.row_spacing = pd.Series([20., 32., 50.], dtype = 'float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_rg_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, equal_nan=True, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_rg_bird1(self): """ # unit test for function ld50_rg_bird1 (LD50ft-2 for Row/Band/In-furrow granular birds) this is a duplicate of the 'test_ld50_rg_bird' method using a more vectorized approach to the calculations; if desired other routines could be modified similarly --comparing this method with 'test_ld50_rg_bird' it appears (for this test) that both run in the same time --but I don't think this would be the case when 100's of model simulation runs are executed (and only a small --number of the application_types apply to this method; thus I conclude we continue to use the non-vectorized --approach -- should be revisited when we have a large run to execute """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([346.4856, 25.94132, np.nan], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Liquid'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.app_rate_parsing() #get 'max app rate' per model simulation run trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') trex_empty.row_spacing = pd.Series([20., 32., 50.], dtype = 'float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_rg_bird1(trex_empty.aw_bird_sm) npt.assert_allclose(result, expected_results, rtol=1e-4, atol=0, equal_nan=True, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_bl_bird(self): """ # unit test for function ld50_bl_bird (LD50ft-2 for broadcast liquid birds) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([46.19808, 33.77777, np.nan], dtype='float') try: # following parameter values are unique for ld50_bl_bird trex_empty.application_type = pd.Series(['Broadcast-Liquid', 'Broadcast-Liquid', 'Non-Broadcast'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_bl_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_bg_bird(self): """ # unit test for function ld50_bg_bird (LD50ft-2 for broadcast granular) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([46.19808, np.nan, 0.4214033], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Broadcast-Granular', 'Broadcast-Liquid', 'Broadcast-Granular'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_bg_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_rl_bird(self): """ # unit test for function ld50_rl_bird (LD50ft-2 for Row/Band/In-furrow liquid birds) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([np.nan, 2.20701, 0.0363297], dtype='float') try: # following parameter values are unique for ld50_bg_bird trex_empty.application_type = pd.Series(['Broadcast-Granular', 'Row/Band/In-furrow-Liquid', 'Row/Band/In-furrow-Liquid'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') # following parameter values are needed for internal call to "test_at_bird" # results from "test_at_bird" test using these values are [69.17640, 146.8274, 56.00997] trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') trex_empty.aw_bird_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_rl_bird(trex_empty.aw_bird_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_at_mamm(self): """ unittest for function at_mamm: adjusted_toxicity = self.ld50_mamm * ((self.tw_mamm / aw_mamm) ** 0.25) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([705.5036, 529.5517, 830.6143], dtype='float') try: trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') for i in range(len(trex_empty.ld50_mamm)): result[i] = trex_empty.at_mamm(i, trex_empty.aw_mamm_sm[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_anoael_mamm(self): """ unittest for function anoael_mamm: adjusted_toxicity = self.noael_mamm * ((self.tw_mamm / aw_mamm) ** 0.25) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([5.49457, 9.62821, 2.403398], dtype='float') try: trex_empty.noael_mamm = pd.Series([2.5, 5.0, 1.25], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.anoael_mamm(trex_empty.aw_mamm_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_fi_mamm(self): """ unittest for function fi_mamm: food_intake = (0.621 * (aw_mamm ** 0.564)) / (1 - mf_w_mamm) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([3.17807, 16.8206, 42.28516], dtype='float') try: trex_empty.mf_w_mamm_1 = pd.Series([0.1, 0.8, 0.9], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.fi_mamm(trex_empty.aw_mamm_sm, trex_empty.mf_w_mamm_1) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_bl_mamm(self): """ # unit test for function ld50_bl_mamm (LD50ft-2 for broadcast liquid) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([4.52983, 9.36547, np.nan], dtype='float') try: # following parameter values are unique for ld50_bl_mamm trex_empty.application_type = pd.Series(['Broadcast-Liquid', 'Broadcast-Liquid', 'Non-Broadcast'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') # following parameter values are needed for internal call to "test_at_mamm" # results from "test_at_mamm" test using these values are [705.5036, 529.5517, 830.6143] trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_bl_mamm(trex_empty.aw_mamm_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_bg_mamm(self): """ # unit test for function ld50_bg_mamm (LD50ft-2 for broadcast granular) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([4.52983, 9.36547, np.nan], dtype='float') try: # following parameter values are unique for ld50_bl_mamm trex_empty.application_type = pd.Series(['Broadcast-Granular', 'Broadcast-Granular', 'Broadcast-Liquid'], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') # following parameter values are needed for internal call to "at_mamm" # results from "test_at_mamm" test using these values are [705.5036, 529.5517, 830.6143] trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') result = trex_empty.ld50_bg_mamm(trex_empty.aw_mamm_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_rl_mamm(self): """ # unit test for function ld50_rl_mamm (LD50ft-2 for Row/Band/In-furrow liquid mammals) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([np.nan, 0.6119317, 0.0024497], dtype='float') try: # following parameter values are unique for ld50_bl_mamm trex_empty.application_type = pd.Series(['Broadcast-Granular', 'Row/Band/In-furrow-Liquid', 'Row/Band/In-furrow-Liquid',], dtype='object') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') # following parameter values are needed for internal call to "at_mamm" # results from "test_at_mamm" test using these values are [705.5036, 529.5517, 830.6143] trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm = pd.Series([350., 275., 410.], dtype='float') trex_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') result = trex_empty.ld50_rl_mamm(trex_empty.aw_mamm_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True, equal_nan=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_ld50_rg_mamm(self): """ # unit test for function ld50_rg_mamm """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([33.9737, 7.192681, np.nan], dtype='float') try: # following parameter values are unique for ld50_bl_mamm trex_empty.application_type = pd.Series(['Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Granular', 'Row/Band/In-furrow-Liquid',], dtype='object') trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='object') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') trex_empty.frac_incorp = pd.Series([0.25, 0.76, 0.05], dtype= 'float') trex_empty.bandwidth = pd.Series([2., 10., 30.], dtype = 'float') trex_empty.row_spacing = pd.Series([20., 32., 50.], dtype = 'float') # following parameter values are needed for internal call to "at_mamm" # results from "test_at_mamm" test using these values are [705.5036, 529.5517, 830.6143] trex_empty.ld50_mamm = pd.Series([321., 275., 432.], dtype='float') trex_empty.tw_mamm =
pd.Series([350., 275., 410.], dtype='float')
pandas.Series
""" Applying Box-Jenkins Forecasting Methodology to Predict Massachusetts Cannabis Data Copyright (c) 2021 Cannlytics and the Cannabis Data Science Meetup Group Authors: <NAME> <<EMAIL>> Created: 10/6/2021 Updated: 11/3/2021 License: MIT License <https://opensource.org/licenses/MIT> References: - Time Series forecasting using Auto ARIMA in Python https://towardsdatascience.com/time-series-forecasting-using-auto-arima-in-python-bb83e49210cd Data Sources: MA Cannabis Control Commission - Retail Sales by Date and Product Type: https://dev.socrata.com/foundry/opendata.mass-cannabis-control.com/xwf2-j7g9 - Approved Massachusetts Licensees: https://dev.socrata.com/foundry/opendata.mass-cannabis-control.com/hmwt-yiqy - Average Monthly Price per Ounce for Adult-Use Cannabis: https://dev.socrata.com/foundry/opendata.mass-cannabis-control.com/rqtv-uenj - Plant Activity and Volume: https://dev.socrata.com/foundry/opendata.mass-cannabis-control.com/j3q7-3usu - Weekly sales by product type: https://dev.socrata.com/foundry/opendata.mass-cannabis-control.com/87rp-xn9v Fed Fred - MA Gross Domestic Product: https://fred.stlouisfed.org/series/MANQGSP - MA Civilian Labor Force: https://fred.stlouisfed.org/series/MALF - MA All Employees: https://fred.stlouisfed.org/series/MANA - MA Avg. Weekly Wage: https://fred.stlouisfed.org/series/LES1252881600Q - MA Minimum Wage: https://fred.stlouisfed.org/series/STTMINWGMA - MA Population: https://fred.stlouisfed.org/series/MAPOP """ from dotenv import dotenv_values import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter import pandas as pd import pmdarima as pm import requests import seaborn as sns # Internal imports from utils import ( forecast_arima, format_millions, reverse_dataframe, set_training_period, ) #-------------------------------------------------------------------------- # Get MA public cannabis data. #-------------------------------------------------------------------------- # Setup Socrata API, get the App Token, and define the headers. config = dotenv_values('../.env') app_token = config.get('APP_TOKEN', None) headers = {'X-App-Token': app_token} base = 'https://opendata.mass-cannabis-control.com/resource' # Get production stats (total employees, total plants, etc.) j3q7-3usu url = f'{base}/j3q7-3usu.json' params = {'$limit': 2000, '$order': 'activitysummarydate DESC'} response = requests.get(url, headers=headers, params=params) production = pd.DataFrame(response.json(), dtype=float) production = reverse_dataframe(production) # Calculate sales difference. production['sales'] = production['salestotal'].diff() # FIX: Fix outlier that appears to have an extra 0. outlier = production.loc[production.sales >= 10000000] production.at[outlier.index, 'sales'] = 0 # FIX: Remove negative values. negatives = production.loc[production.sales < 0] production.at[negatives.index, 'sales'] = 0 # Aggregate daily production data into monthly and quarterly averages. production['date'] = pd.to_datetime(production['activitysummarydate']) production.set_index('date', inplace=True) monthly_avg_production = production.resample('M').mean() quarterly_avg_production = production.resample('Q').mean() monthly_total_production = production.resample('M').sum() quarterly_total_production = production.resample('Q').sum() # Get licensees data. url = f'{base}/hmwt-yiqy.json' params = {'$limit': 10000, '$order': 'app_create_date DESC'} response = requests.get(url, headers=headers, params=params) licensees = pd.DataFrame(response.json(), dtype=float) # Get the monthly average price per ounce. url = f'{base}/rqtv-uenj.json' params = {'$limit': 10000, '$order': 'date DESC'} response = requests.get(url, headers=headers, params=params) prices = pd.DataFrame(response.json(), dtype=float) prices = reverse_dataframe(prices) prices.set_index('date', inplace=True) # Calculate the average price per specific quantity. price_per_gram = prices.avg_1oz.astype(float).divide(28).round(2) price_per_teenth = prices.avg_1oz.astype(float).divide(16).round(2) price_per_eighth = prices.avg_1oz.astype(float).divide(8).round(2) price_per_quarter = prices.avg_1oz.astype(float).divide(4).round(2) # Get the products. url = f'{base}/xwf2-j7g9.json' params = {'$limit': 10000, '$order': 'saledate DESC'} response = requests.get(url, headers=headers, params=params) products = pd.DataFrame(response.json(), dtype=float) products = reverse_dataframe(products) products.set_index('saledate', inplace=True) # Plot sales by product type. product_types = list(products.productcategoryname.unique()) for product_type in product_types: print(product_type) products.loc[products.productcategoryname == product_type].dollartotal.plot() #-------------------------------------------------------------------------- # Estimate sales, plants, employees in 2021 and 2022, #-------------------------------------------------------------------------- # Specifiy training time periods. train_start = '2020-06-01' train_end = '2021-10-25' # Create weekly series. weekly_sales = production.sales.resample('W-SUN').sum() weekly_plants = production.total_planttrackedcount.resample('W-SUN').mean() weekly_employees = production.total_employees.resample('W-SUN').mean() # Define forecast horizon. forecast_horizon = pd.date_range( pd.to_datetime(train_end), periods=60, freq='w' ) # Create month fixed effects (dummy variables), # excluding 1 month (January) for comparison. month_effects = pd.get_dummies(weekly_sales.index.month) month_effects.index = weekly_sales.index month_effects = set_training_period(month_effects, train_start, train_end) forecast_month_effects = pd.get_dummies(forecast_horizon.month) del month_effects[1] try: del forecast_month_effects[1] except: pass # Estimate sales forecasting model. model = pm.auto_arima( set_training_period(weekly_sales, train_start, train_end), X=month_effects, start_p=0, d=0, start_q=0, max_p=6, max_d=6, max_q=6, seasonal=True, start_P=0, D=0, start_Q=0, max_P=6, max_D=6, max_Q=6, information_criterion='bic', alpha=0.2, ) print(model.summary()) # Make sales forecasts. sales_forecast, sales_conf = forecast_arima(model, forecast_horizon, X=month_effects) #-------------------------------------------------------------------------- # Visualize the forecasts. #-------------------------------------------------------------------------- # Define the plot style. plt.style.use('fivethirtyeight') plt.rcParams['font.family'] = 'Times New Roman' palette = sns.color_palette('tab10') primary_color = palette[0] secondary_color = palette[-1] # Plot sales forecast. fig, ax = plt.subplots(figsize=(15, 5)) weekly_sales[-25:-1].plot(ax=ax, color=primary_color, label='Historic') sales_forecast.plot(ax=ax, color=secondary_color, style='--', label='Forecast') plt.fill_between( sales_forecast.index, sales_conf[:, 0], sales_conf[:, 1], alpha=0.1, color=secondary_color, ) plt.legend(loc='lower left', fontsize=18) plt.title('Massachusetts Cannabis Sales Forecast', fontsize=24, pad=10) yaxis_format = FuncFormatter(format_millions) ax.yaxis.set_major_formatter(yaxis_format) plt.setp(ax.get_yticklabels()[0], visible=False) plt.xlabel('') plt.xticks(fontsize=18) plt.yticks(fontsize=18) plt.show() #-------------------------------------------------------------------------- # Estimate sales per retialer, plants per cultivator, # and employees per licensee. #-------------------------------------------------------------------------- # Find total retailers and cultivators. retailers = licensees.loc[licensees.license_type == 'Marijuana Retailer'] cultivators = licensees.loc[licensees.license_type == 'Marijuana Cultivator'] total_retailers = len(retailers) total_cultivators = len(cultivators) total_licensees = len(licensees) # Create total licensees series. production['total_retailers'] = 0 production['total_cultivators'] = 0 production['total_licensees'] = 0 for index, _ in production.iterrows(): timestamp = index.isoformat() production.at[index, 'total_retailers'] = len(licensees.loc[ (licensees.license_type == 'Marijuana Retailer') & (licensees.app_create_date <= timestamp) ]) production.at[index, 'total_cultivators'] = len(licensees.loc[ (licensees.license_type == 'Marijuana Cultivator') & (licensees.app_create_date <= timestamp) ]) production.at[index, 'total_licensees'] = len(licensees.loc[ (licensees.app_create_date <= timestamp) ]) # Create weekly averages. weekly_total_retailers = production['total_retailers'].resample('W-SUN').mean() weekly_total_cultivators = production['total_cultivators'].resample('W-SUN').mean() weekly_total_licensees = production['total_licensees'].resample('W-SUN').mean() # Plot sales per retailer. sales_per_retailer = weekly_sales / weekly_total_retailers sales_per_retailer.plot() plt.show() # Plot plants per cultivator. plants_per_cultivator = weekly_plants / weekly_total_cultivators plants_per_cultivator.plot() plt.show() # Plot employees per licensee. employees_per_license = weekly_employees / weekly_total_licensees employees_per_license.plot() plt.show() #-------------------------------------------------------------------------- # Forecast sales, plants grown, and employees using Box-Jenkins methodology. # Optional: Also forecast total retailers, total cultivators, and total licensees. # Optional: Attempt to forecast with daily series with day-of-the-week fixed effects. # Attempt to forecast with weekly series with month fixed effects. #-------------------------------------------------------------------------- # Estimate plants forecasting model and make plant forecasts. model = pm.auto_arima( weekly_plants[73:-1], X=month_effects[73:-1], start_p=0, d=0, start_q=0, max_p=6, max_d=6, max_q=6, seasonal=True, start_P=0, D=0, start_Q=0, max_P=6, max_D=6, max_Q=6, information_criterion='bic', alpha=0.2, # m=12, ) print(model.summary()) plants_forecast, plants_conf = model.predict( n_periods=len(forecast_horizon), return_conf_int=True, X=forecast_month_effects, ) plants_forecast = pd.Series(plants_forecast) plants_forecast.index = forecast_horizon weekly_plants[73:-1].plot() plants_forecast.plot() plt.show() # Estimate employees forecasting model and make employees forecasts. model = pm.auto_arima( weekly_employees[73:-1], X=month_effects[73:-1], start_p=0, d=1, start_q=0, max_p=6, max_d=6, max_q=6, seasonal=True, start_P=0, D=0, start_Q=0, max_P=6, max_D=6, max_Q=6, information_criterion='bic', alpha=0.2, # m=12, ) print(model.summary()) employees_forecast, plants_conf = model.predict( n_periods=len(forecast_horizon), return_conf_int=True, X=forecast_month_effects, ) employees_forecast =
pd.Series(employees_forecast)
pandas.Series
#%% Imports from sklearn import datasets from sklearn import metrics from sklearn import model_selection from sklearn import tree from os.path import dirname, abspath import os import xgboost as xgb import pandas as pd import numpy as np from sklearn import linear_model d = dirname(dirname(abspath(__file__))) os.chdir(d) import starboost_up path_data = r'E:\datasetsDART' from pathlib import Path import pickle #%% Create data def load_data(data_name = 'breast_cancer', drop = True, path_data = r'E:\datasetsDART'): """ Options for data_name: - breast_cancer - iris - wine - CT - student """ if data_name == 'breast_cancer': X, y = datasets.load_breast_cancer(return_X_y=True) problem_type = 'classification' elif data_name == 'iris': X, y = datasets.load_iris(return_X_y=True) problem_type = 'multi_classification' elif data_name == 'wine': X, y = datasets.load_wine(return_X_y=True) X = X[y<2,:] y = y[y<2] problem_type = 'classification' elif data_name == 'CT': data_all = pd.read_csv(path_data+ '\slice_localization_data_regression\slice_localization_data.csv') y = data_all['reference'] cols = data_all.describe().columns remove_cols = [col for col in cols if col not in ('reference','patientId')] X = data_all[remove_cols] split_id = data_all['patientId'] #X = pd.concat([X, data_all_patient], 1) problem_type = 'regression' return X,y, problem_type, split_id elif data_name == 'student': data_all = pd.read_csv(path_data+ '\student\student-mat.csv', sep=';') cols = data_all.describe().columns remove_cols = [col for col in cols if col not in ['G1','G2','G3']] y = data_all['G3'] X = pd.get_dummies(data_all[remove_cols], drop_first= drop) problem_type = 'regression' elif data_name == 'mushroom': data_all = pd.read_csv(path_data+ '\MushroomDataset\MushroomDataset\secondary_data.csv', sep=';') cols = data_all.describe().columns remove_cols = [col for col in cols if col != 'class'] y = pd.get_dummies(data_all['class'] , drop_first = True) X = pd.get_dummies(data_all[remove_cols], drop_first= drop) problem_type = 'classification' else: raise NameError('Unknown data') return X,y, problem_type data_type = input('data type (or def)') if data_type == 'def': X,y, problem_type = load_data( 'breast_cancer', True , path_data) elif data_type == 'CT': X,y, problem_type, split_id = load_data(data_type, True , path_data) else: X,y, problem_type = load_data(data_type, True , path_data) #X, y = datasets.load_breast_cancer(return_X_y=True) #%% funmctions def micro_f1_score(y_true, y_pred): """ Calculate micro_f1_score """ return metrics.f1_score(y_true, y_pred, average='micro') def rmse(y_true, y_pred): """ Calculate RMSE """ return metrics.mean_squared_error(y_true, y_pred) ** 0.5 def create_inner_path(list_path): if isinstance(list_path, list): real_path = '' for el in list_path: real_path = real_path + '/' + str(el) else: real_path = list_path Path(real_path).mkdir(parents=True, exist_ok=True) return real_path def split_train_test_val(X,y, test_ratio = 0.2, val_ratio = 0, split_id = None, rand_seed = 0): """ A function to split train and test, with an option to use an id column for reference (for instace, in case of different subjects etc.) X: data: [samples X features matrix] y: labels vector: [samples] test_ratio, val_ratio = ratios of the test set and validation set. If no val -> val_ratio =0 split_id: id to split according to. [samples] """ np.random.seed(0) if val_ratio > 0 and test_ratio == 0: val_ratio, test_ratio = test_ratio, val_ratio if test_ratio + val_ratio > 1: raise ValueError('Test and Val ratios should be <1') if split_id: n_test = int(np.floor(test_ratio *len(np.unique(split_id)))) choose_test = np.random.choice(np.unique(split_id), n_test) X_test = X[[spl for spl in split_id if spl in choose_test] ,:] y_test = y[[spl for spl in split_id if spl in choose_test]] remained_id = [id_val for id_val in np.unique(split_id) if id_val not in choose_test] if val_ratio > 0: n_val = int(np.floor(val_ratio * len(np.unique(split_id)))) choose_val = np.random.choice(np.unique(remained_id), n_val) X_val = X[[spl for spl in split_id if spl in choose_val] ,:] y_val = y[[spl for spl in split_id if spl in choose_val]] remained_id = [id_val for id_val in np.unique(remained_id) if id_val not in choose_val] X_train = X[[spl for spl in split_id if spl in remained_id] ,:] y_train = y[[spl for spl in split_id if spl in remained_id]] choose_train = remained_id if val_ratio > 0: return X_train, y_train , X_val, y_val, X_test, y_test, choose_train, choose_val,choose_test else: X_train, y_train , X_test, y_test, choose_train,choose_test else: if val_ratio == 0: X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=test_ratio, random_state=42) return X_train, y_train , X_test, y_test else: X_train, X_test_val, y_train, y_test_val = model_selection.train_test_split(X, y, test_size=test_ratio + val_ratio, random_state=42) X_test, X_val, y_test, y_val = model_selection.train_test_split(X_test_val, y_test_val, test_size = val_ratio /(test_ratio + val_ratio), random_state=42) return X_train, y_train , X_val, y_val, X_test, y_test def run_model(X_fit, y_fit, X_val, y_val, type_model = 'classification', max_depth = 1, n_estimators = 50, learning_rate = 0.1, early_stopping_rounds = False, col_sampling = 0.8, is_DART = True, DART_params = {'n_drop':1, 'dist_drop': 'random' , 'min_1':True, 'weights_list' : None}, limit_type = False, ): """ """ if type_model == 'classification': model = starboost_up.boosting.BoostingClassifier(loss=starboost_up.losses.LogLoss(), base_estimator= xgb.XGBRegressor(max_depth = 1), base_estimator_is_tree=True, n_estimators=n_estimators, init_estimator=starboost_up.init.LogOddsEstimator(), learning_rate= learning_rate, row_sampling=0.8, col_sampling=col_sampling, eval_metric=micro_f1_score, early_stopping_rounds=early_stopping_rounds, random_state=42, type_class ='classification', is_DART = is_DART, DART_params = DART_params ) elif type_model == 'regression': model = starboost_up.boosting.BoostingRegressor( loss=sb.losses.L2Loss(), base_estimator=tree.DecisionTreeRegressor(max_depth= max_depth), base_estimator_is_tree=True, n_estimators=n_estimators, init_estimator=linear_model.LinearRegression(), learning_rate= learning_rate, row_sampling=0.8, col_sampling=col_sampling, eval_metric=rmse, early_stopping_rounds=early_stopping_rounds, random_state=42 , is_DART = is_DART, DART_params = DART_params) else: raise NameError('Unknown problem type') # model = model.fit(X_fit, y_fit, eval_set=(X_val, y_val)) y_pred = model.predict(X_val)#_proba # if type_model == 'regression': eva = rmse(y_val, y_pred) else: eva = metrics.roc_auc_score(y_val, y_pred) evas = {}; inter_predictions = {} for ib_num, ib in enumerate(model.iter_predict(X_val)): inter_predictions[ib_num] = ib if type_model == 'regression': evas[ib_num] = rmse(y_val,ib) else: evas[ib_num] = metrics.roc_auc_score(y_val,ib) return model, y_pred, eva, evas, inter_predictions def run_model_x_y(X, y , test_ratio = 0.2, split_id = None, type_model = 'classification', max_depth = 1, n_estimators = 50, learning_rate = 0.1, early_stopping_rounds = False, col_sampling = 0.8, is_DART = True, DART_params = {'n_drop':1, 'dist_drop': 'random' , 'min_1':True, 'weights_list' : None}, limit_type = False): if split_id: X_fit, y_fit , X_val, y_val, choose_train, choose_test = split_train_test_val(X,y, test_ratio = test_ratio, val_ratio = 0, split_id = split_id, rand_seed = 0) else: X_fit, y_fit , X_val, y_val = split_train_test_val(X,y, test_ratio = test_ratio, val_ratio = 0, split_id = None, rand_seed = 0) model, y_pred, eva, evas, inter_predictions = run_model(X_fit, y_fit, X_val, y_val, type_model = type_model, max_depth = max_depth, n_estimators = n_estimators, learning_rate = learning_rate, early_stopping_rounds = early_stopping_rounds, col_sampling = col_sampling, is_DART = is_DART, DART_params = DART_params) return X_fit, X_val, y_fit, y_val, model, y_pred, eva, evas, inter_predictions #%% isdart = bool(input('is dart?') ) ndrop = float(input('ndrop')) params = {'isdart':isdart, 'n_estimators':150, 'ndrop': ndrop,'min_1' : False, 'limit_type' : False } if ndrop == 1: ndrop = int(ndrop) X_fit, X_val, y_fit, y_val, model, y_pred, eva, evas, inter_predictions = run_model_x_y(X, y, is_DART =isdart , n_estimators= n_estimators, DART_params = {'n_drop':ndrop,'min_1':params['min_1']}) real_path = create_inner_path([params['isdart'], params['n_estimators'], params['ndrop'], params['min_1'],params['limit_type']], ['isdart', 'n_estimators', 'ndrop', 'min_1','limit_type']) def make_file(array_to_save, path='',file_name ='', to_rewrite= False, type_file = '.npy') : """ This function creates a an npy or jpg or png file array_to_save - numpy array to save path - path to save file_name - name of saved file to_rewrite - If file already exist -> whether to rewrite it. type_file = '.npy' or 'jpg' or 'png' """ if not type_file.startswith('.'): type_file = '.' + type_file if not file_name.endswith(type_file): file_name = file_name +type_file my_file = Path('%s\%s'%(path,file_name)) if not my_file.is_file() or to_rewrite: if len(array_to_save) > 0: if type_file == '.npy': np.save(my_file, array_to_save) elif type_file == '.png' or type_file == '.jpg': print('Fig. saved') array_to_save.savefig(my_file, dpi=300) else: plt.savefig(my_file) #%% plt.plot(
pd.DataFrame(evas,index =[0])
pandas.DataFrame
import matplotlib.pyplot as plt import pandas as pd from epimargin.estimators import box_filter, analytical_MPVS from epimargin.plots import plot_RR_est, plot_T_anomalies from epimargin.utils import cwd from etl import download_data, get_time_series, load_all_data # model details CI = 0.99 smoothing = 5 root = cwd() data = root/"data" figs = root/"figs/comparison/kaggle" states = ["Maharashtra"]#, "Bihar", "Delhi", "Andhra Pradesh", "Telangana", "Tamil Nadu", "Madhya Pradesh"] kaggle =
pd.read_csv(data/"covid_19_india.csv", parse_dates=[1], dayfirst=True)
pandas.read_csv
# Mar21, 2022 ## #--------------------------------------------------------------------- # SERVER only input all files (.bam and .fa) output MeH matrix in .csv # August 3, 2021 clean # FINAL github #--------------------------------------------------------------------- import random import math import pysam import csv import sys import pandas as pd import numpy as np import datetime import time as t from collections import Counter, defaultdict, OrderedDict #--------------------------------------- # Functions definition #--------------------------------------- def open_log(fname): open_log.logfile = open(fname, 'w', 1) def logm(message): log_message = "[%s] %s\n" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), message) print(log_message), open_log.logfile.write(log_message) def close_log(): open_log.logfile.close() # Count # of windows with enough reads for complete/impute def coverage(methbin,complete,w): count=0 tot = 0 meth=methbin.iloc[:,methbin.columns!='Qname'] if len(meth.columns)>=w: for i in range(len(meth.columns)-w+1): # extract a window temp = meth.iloc[:,i:i+w].copy() #print(temp) tot = tot+1 if (enough_reads(window=temp,complete=complete,w=w)): count=count+1 #toprint=temp.notnull().sum(axis=1)>=w #print(toprint.sum()) #print(count) #print(tot) return count/tot*100 else: return 0 # Check whether a window has enough reads for complete/impute def enough_reads(window,w,complete): temp=np.isnan(window).sum(axis=1)==0 if complete: # For heterogeneity estimation return temp.sum()>=2**w else: # for imputation tempw1=np.isnan(window).sum(axis=1)==1 return temp.sum()>=2**(w-2) and tempw1.sum()>0 def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) #print("win_part i =",window[part_ind[i],pos]) #print("s = ",np.float64(s)) return window def getcomplete(window,w): temp=np.isnan(window).sum(axis=1)==0 mat=window[np.where(temp)[0],:] #temp=window.notnull().sum(axis=1)>=w #mat=window.iloc[np.where(temp)[0],:] #else: # temp=mat.notnull().sum(axis=1)>=w-1 return mat def PattoDis(mat,dist=1): s=mat.shape[0] dis=np.zeros((s,s)) for i in range(s): for j in range(s): if j<i: if dist==1: d=Ham_d(mat.iloc[i,],mat.iloc[j,]) else: d=WDK_d(mat.iloc[i,],mat.iloc[j,]) dis[i,j]=dis[j,i]=d return dis def Ham_d(pat1,pat2): return (pat1!=pat2).sum() def WDK_d(pat1,pat2): d=0 w=pat1.shape[0] for i in range(w): # k-1 for j in range(w-i): # starting pos s=(w-i-1)*(1-np.all(pat1[j:j+i+1]==pat2[j:j+i+1])) d+=s return d # input a window of w CGs and output a list of proportions with starting genomic location and genomic distance across def window_summ(pat,start,dis,chrom): m=np.shape(pat)[0] d=np.shape(pat)[1] all_pos=np.zeros((2**d,d)) for i in range(d): all_pos[:,i]=np.linspace(0,2**d-1,2**d)%(2**(i+1))//(2**i) #print(all_pos) prob=np.zeros((2**d,1)) #print(prob) for i in range(2**d): count = 0 for j in range(m): if (all_pos[i,:]==pat.iloc[j,:]).sum()==d: count += 1 #print(count) prob[i]=count if d==3: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'dis':dis}) if d==4: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'dis':dis}) if d==5: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'dis':dis}) if d==6: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'p33':prob[32],'p34':prob[33],'p35':prob[34],\ 'p36':prob[35],'p37':prob[36],'p38':prob[37],'p39':prob[38],'p40':prob[39],\ 'p41':prob[40],'p42':prob[41],'p43':prob[42],'p44':prob[43],'p45':prob[44],\ 'p46':prob[45],'p47':prob[46],'p48':prob[47],'p49':prob[48],'p50':prob[49],\ 'p51':prob[50],'p52':prob[51],'p53':prob[52],'p54':prob[53],'p55':prob[54],\ 'p56':prob[55],'p57':prob[56],'p58':prob[57],'p59':prob[58],'p60':prob[59],\ 'p61':prob[60],'p62':prob[61],'p63':prob[62],'p64':prob[63],'dis':dis}) return out def MeHperwindow(pat,start,dis,chrom,D,w,optional,MeH=2,dist=1,strand='f'): count=np.zeros((2**w,1)) m=np.shape(pat)[0] pat=np.array(pat) if w==2: pat = Counter([str(i[0])+str(i[1]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00','10','01','11']]) if w==3: pat = Counter([str(i[0])+str(i[1])+str(i[2]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000','100','010','110','001','101','011','111']]) if w==4: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['0000','1000','0100','1100','0010','1010','0110','1110','0001',\ '1001','0101','1101','0011','1011','0111','1111']]) if w==5: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00000','10000','01000','11000','00100','10100','01100','11100','00010',\ '10010','01010','11010','00110','10110','01110','11110','00001','10001','01001','11001','00101',\ '10101','01101','11101','00011','10011','01011','11011','00111','10111','01111','11111']]) if w==6: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4])+str(i[5]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000000','100000','010000','110000','001000','101000','011000','111000','000100',\ '100100','010100','110100','001100','101100','011100','111100','000010','100010','010010','110010','001010',\ '101010','011010','111010','000110', '100110','010110','110110','001110','101110','011110','111110',\ '000001','100001','010001','110001','001001','101001','011001','111001','000101',\ '100101','010101','110101','001101','101101','011101','111101','000011','100011','010011','110011','001011',\ '101011','011011','111011','000111', '100111','010111','110111','001111','101111','011111','111111']]) if MeH==1: # Abundance based score=(((count/m)**2).sum(axis=0))**(-1) elif MeH==2: # PWS based interaction=np.multiply.outer(count/m,count/m).reshape((2**w,2**w)) Q=sum(sum(D*interaction)) #print("Q =",Q) if Q==0: score=0 else: score=(sum(sum(D*(interaction**2)))/(Q**2))**(-0.5) elif MeH==3: #Phylogeny based count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if dist==1 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(0.5,16)),np.repeat(0.25,6)),[0.5]),np.repeat(0.25,6)) #phylotree=np.repeat(0,1).append(np.repeat(0.5,16)).append(np.repeat(0.25,6)).append(0.5).append(np.repeat(0.25,6)) countn=np.zeros(30) #count<-rep(0,29) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[4]+countn[7] countn[18]=countn[9]+countn[12] countn[19]=countn[1]+countn[2] countn[20]=countn[3]+countn[6] countn[21]=countn[17]+countn[18] countn[22]=countn[19]+countn[20] countn[23]=countn[21]+countn[22] countn[24]=countn[5]+countn[8] countn[25]=countn[10]+countn[13] countn[26]=countn[24]+countn[25] countn[27]=countn[23]+countn[26] countn[28]=countn[11]+countn[14] countn[29]=countn[27]+countn[28] #Q=sum(sum(phylotree*count)) if dist==2 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(3,16)),np.repeat(1.5,6)),[3.2,0.8]),np.repeat(2,3),np.repeat(1.5,2)) #phylotree=c(rep(3,16),rep(1.5,6),3.2,0.8,rep(2,3),1.5,1.5) countn=np.zeros(30) #print(count) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[1]+countn[2] countn[18]=countn[5]+countn[8] countn[19]=countn[3]+countn[6] countn[20]=countn[10]+countn[13] countn[21]=countn[4]+countn[7] countn[22]=countn[11]+countn[14] countn[23]=countn[17]+countn[18] countn[24]=countn[21]+countn[22] countn[25]=countn[19]+countn[20] countn[26]=countn[23]+countn[24] countn[27]=countn[25]+countn[26] countn[28]=countn[9]+countn[12] countn[29]=countn[27]+countn[28] #Q=sum(phylotree*count) if dist==2 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(1.5,8)),np.repeat(0.75,3)),np.repeat(1.5,0.75)) #phylotree=np.array(0).append(np.repeat(1.5,8)).append(np.repeat(0.75,3)).append(1.5,0.75) #phylotree=c(rep(1.5,8),rep(0.75,3),1.5,0.75) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #Q=sum(phylotree*count) if dist==1 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(0.5,8)),np.repeat(0.25,3)),[0.5,0.25]) #phylotree=np.array(0).append(np.repeat(0.5,8)).append(np.repeat(0.25,3)).append(0.5,0.25) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #print("count = ",count) #print("phylotree = ",phylotree) Q=sum(phylotree*countn) score=sum(phylotree*((countn/Q)**2))**(-1) elif MeH==4: #Entropy score=0 for i in count: if i>0: score-=(i/m)*np.log2(i/m)/w elif MeH==5: #Epipoly score=1-((count/m)**2).sum(axis=0) if optional: if MeH!=3: count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if w==3: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==4: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==5: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==6: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'p33':count[33],'p34':count[34],'p35':count[35],\ 'p36':count[36],'p37':count[37],'p38':count[38],'p39':count[39],'p40':count[40],\ 'p41':count[41],'p42':count[42],'p43':count[43],'p44':count[44],'p45':count[45],\ 'p46':count[46],'p47':count[47],'p48':count[48],'p49':count[49],'p50':count[50],\ 'p51':count[51],'p52':count[52],'p53':count[53],'p54':count[54],'p55':count[55],\ 'p56':count[56],'p57':count[57],'p58':count[58],'p59':count[59],'p60':count[60],\ 'p61':count[61],'p62':count[62],'p63':count[63],'p64':count[64],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out, opt else: out=pd.DataFrame({'chrom':chrom,'pos':start,'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) return window def CGgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 # load bamfile samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") # load reference genome fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) # initialise data frame for genome screening (load C from bam file) aggreR = aggreC = pd.DataFrame(columns=['Qname']) # initialise data frame for output ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','strand','depth']) # if user wants to output compositions of methylation patterns at every eligible window, initialise data frame if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True # all methylation patterns for Methylation heterogeneity evaluation all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) # distance matrix, also for Methylation heterogeneity evaluation D=PattoDis(pd.DataFrame(all_pos),dist=dist) # 1:Hamming distance, 2: WDK start=datetime.datetime.now() # vector for saving methylation statuses before imputation MU=np.zeros((2,w)) # screen bamfile by column for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now(),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # Forward strand, check if 'CG' in reference genome if (fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+2)=='CG'): cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) # append reads in the column for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) temp=temp.append(df2, ignore_index=True) if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['G'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) # merge with other columns if (not temp.empty): aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # Reverse strand, check if 'CG' in reference genome if pileupcolumn.pos>1: if (fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos+1)=='CG'): cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} dfr2 = pd.DataFrame(data=dr) tempr=tempr.append(dfr2, ignore_index=True) if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['C'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() # Impute and estimate, if there are 2w-1 columns if never and aggreC.shape[1] == (2*w): # C/G to 1, rest to 0, N to NA never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC meth = methbin.copy() # remove read ID meth = meth.drop('Qname',axis=1) # back up for imputation if imp: methtemp = meth.copy() # imputation by sliding window of 1 C for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # save methylation statuses before imputation # check if eligible for imputation, impute if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values # overwrite imputed window meth = methtemp.copy() # Evaluate methylation level and methylation heterogeneity and append to result for i in range(0,w,1): # w windows window = meth.iloc[:,range(i,i+w)].values # check if enough complete patterns for evaluating MeH if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) # if need to output methylation patterns if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) # evaluate and output MeH else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) # remove 1 column aggreC = aggreC.drop(meth.columns[0:1],axis=1) # drop rows with no values aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # Reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): #for i in range(0,meth.shape[1]-w+1,1): #if i>w-2 and i<2*w: window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w # reverse if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CG' print("Done CG for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) #samfile.close() def CHHgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 #directory = "Outputs/" + str(sample) + '.csv' #original filename of .bams samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) aggreR = aggreC = pd.DataFrame(columns=['Qname']) ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','depth','strand']) if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True #chr_lengths = fastafile.get_reference_length(chrom) all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) D=PattoDis(pd.DataFrame(all_pos),dist=dist) #1:Hamming distance start=datetime.datetime.now() MU=np.zeros((2,w)) for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CHH %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # forward if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='C' and fastafile.fetch(chrom,pileupcolumn.pos+1,pileupcolumn.pos+2)!='G' and fastafile.fetch(chrom,pileupcolumn.pos+2,pileupcolumn.pos+3)!='G': cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() temp=temp.append(df2, ignore_index=True) #temp.head() if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['T'],0) temp2 = temp2.replace(['A','G','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not temp.empty): #temp.head() aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # reverse if pileupcolumn.pos>2: if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='G' and fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos)!='C' and fastafile.fetch(chrom,pileupcolumn.pos-2,pileupcolumn.pos-1)!='C': cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() tempr=tempr.append(df2, ignore_index=True) #temp.head() if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['A'],0) temp2 = temp2.replace(['C','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() if never and aggreC.shape[1] == (2*w): never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values # MeH eligibility if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) aggreC = aggreC.drop(meth.columns[0:1],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values #if enough_reads(window,w,complete=True): if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['N','G','A'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values # MeH eligibility if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHH. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','T','C'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHH. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CHH' print("Done CHH for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) def CHGgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] #directory = "Outputs/" + str(sample) + '.csv' #original filename of .bams samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) coverage = cov_context = 0 aggreR = aggreC = pd.DataFrame(columns=['Qname']) ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','depth','strand']) if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True #chr_lengths = fastafile.get_reference_length(chrom) all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) D=PattoDis(pd.DataFrame(all_pos),dist=dist) #1:Hamming distance MU=np.zeros((2,w)) start=datetime.datetime.now() for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CHG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='C' and fastafile.fetch(chrom,pileupcolumn.pos+1,pileupcolumn.pos+2)!='G' and fastafile.fetch(chrom,pileupcolumn.pos+2,pileupcolumn.pos+3)=='G': cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() temp=temp.append(df2, ignore_index=True) #temp.head() if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['T'],0) temp2 = temp2.replace(['A','G'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/float(MC+UC)}, index=[0]) ResML=ResML.append(toappend) if (not temp.empty): #temp.head() aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # reverse if pileupcolumn.pos>2: if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='G' and fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos)!='C' and fastafile.fetch(chrom,pileupcolumn.pos-2,pileupcolumn.pos-1)=='C': cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # G dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2r = pd.DataFrame(data=dr) #df2.head() tempr=tempr.append(df2r, ignore_index=True) #temp.head() if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['A'],0) temp2 = temp2.replace(['C','T'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/float(MC+UC)}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): #temp.head() aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() if never and aggreC.shape[1] == (2*w): never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','G','N'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(
pd.DataFrame(matforMH)
pandas.DataFrame
import psycopg2 import pandas as pd import db.db_access as access from datetime import timedelta, datetime from sqlalchemy import create_engine """ part for the normal keyword twitter pipeline""" CONST_SQL_GET_MAIN_COMPANY = 'SELECT * FROM maincompany' CONST_SQL_UPDATE_EMPTY_COMPANY_TABLE = "UPDATE company SET twitter_keyword = NULL WHERE twitter_keyword ='';" CONST_SQL_LAST_DATE_TWEET = 'SELECT MAX(date) FROM tweet WHERE company_id = {COMPANY_ID};' CONST_SQL_GET_TWEET_LIST = 'Select id from tweet' CONST_SQL_GET_TWEET_LIST_FOR_SENTIMENT = "SELECT id, tweet, date, timezone FROM tweet WHERE date_utc is null and timezone <> 'UTC' limit 1000" CONST_SQL_GET_TWEET_SPECIFIC = 'Select * from tweet WHERE id = {TWEET_ID}' CONST_SQL_UPDATE_SENTIMENT_DATE = 'UPDATE tweet SET date_utc=%s, sentiment_score_textblob=%s, sentiment_score_vader=%s WHERE id = %s' CONST_SQL_MIN_DATE_TWEET = 'SELECT MIN(date) FROM tweet WHERE company_id = {COMPANY_ID};' CONST_SQL_UPDATE_UTC_TIMEZONE = """UPDATE tweet SET timezone = '+0000' WHERE timezone = 'UTC';""" CONST_SQL_GET_TICKER_WITH_COMPANY_ID = 'SELECT c.id, c.main_company_id, m.ticker FROM company c LEFT JOIN maincompany m ON c.main_company_id = m.id' CONST_SQL_GET_TWEET_SPECIFIC_DATE = """Select * from tweet WHERE company_id = {COMPANY_ID} AND date >= '{DATE}' AND date < '{DATE2}'""" CONST_SQL_GET_ID_LAST_TWEET = """SELECT id FROM tweet WHERE company_id = {COMPANY_ID} AND date = '{DATE}' """ CONST_SQL_GET_LIST_DATE = """Select to_char(t.date, 'yyyy-mm-dd'::text) AS date from tweet t WHERE company_id = {COMPANY_ID} group by to_char(t.date, 'yyyy-mm-dd'::text) order by date""" """part for the cashtag twitter pipeline""" CONST_SQL_GET_MAIN_COMPANY = 'SELECT * FROM maincompany' CONST_SQL_UPDATE_EMPTY_COMPANY_TABLE_CASHTAG = "UPDATE company SET twitter_cashtag = NULL WHERE twitter_cashtag ='';" CONST_SQL_LAST_DATE_TWEET_CASHTAG = 'SELECT MAX(date) FROM tweet_cashtag WHERE company_id = {COMPANY_ID};' CONST_SQL_MIN_DATE_TWEET_CASHTAG = 'SELECT MIN(date) FROM tweet_cashtag WHERE company_id = {COMPANY_ID};' CONST_SQL_GET_TWEET_LIST_CASHTAG = 'Select id from tweet' CONST_SQL_GET_TWEET_LIST_FOR_SENTIMENT_CASHTAG = "SELECT id, tweet, date, timezone FROM tweet_cashtag WHERE date_utc is null and timezone <> 'UTC' limit 1000" CONST_SQL_GET_TWEET_SPECIFIC_CASHTAG = 'Select * from tweet_cashtag WHERE id = {TWEET_ID}' CONST_SQL_UPDATE_SENTIMENT_DATE_CASHTAG = 'UPDATE tweet_cashtag SET date_utc=%s, sentiment_score_textblob=%s, sentiment_score_vader=%s WHERE id = %s' CONST_SQL_UPDATE_UTC_TIMEZONE_CASHTAG = """UPDATE tweet_cashtag SET timezone = '+0000' WHERE timezone = 'UTC';""" CONST_SQL_GET_TWEET_SPECIFIC_DATE_CASHTAG = """Select * from tweet_cashtag WHERE company_id = {COMPANY_ID} AND date >= '{DATE}' AND date < '{DATE2}'""" CONST_SQL_GET_ID_LAST_TWEET_CASHTAG = """SELECT id FROM tweet_cashtag WHERE company_id = {COMPANY_ID} AND date = '{DATE}'""" CONST_SQL_GET_LIST_DATE_CASGTAG = """Select to_char(t.date, 'yyyy-mm-dd'::text) AS date from tweet_cashtag t WHERE company_id = {COMPANY_ID} group by to_char(t.date, 'yyyy-mm-dd'::text) order by date""" #for daily twitter webservice CONST_SQL_GET_QUARTER_ENDS = """SELECT * FROM "public"."parsing_twitter_cashtag" t WHERE t.search = {CASHTAG} AND TO_CHAR(t.date, 'yyyy-mm-dd')= + {DATE}""" """part for the old parser with more columns""" CONST_SQL_INSERT_TWEET = """ INSERT INTO tweet(tweet_id, conversation_id, date, timezone, tweet, hashtags, cashtags, user_id_str, username, nlikes, nreplies, nretweets, quote_url, reply_to, date_update, company_id, link) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""" CONST_SQL_INSERT_TWEET_CASHTAG =""" INSERT INTO tweet_cashtag(tweet_id, conversation_id, date, timezone, tweet, hashtags, cashtags, user_id_str, username, nlikes, nreplies, nretweets, quote_url, reply_to, date_update, company_id, link) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""" """ this part is for the tweet long parsing""" CONST_SQL_LAST_DATE_TWEET_LONG = 'SELECT MAX(date) FROM parsing_twitter WHERE company_id = {COMPANY_ID};' CONST_SQL_ALL_CASHTAG_TWEET = 'SELECT * FROM parsing_twitter_cashtag LIMIT 1000' DELETE_SQL_ALLCASHTAG_TWEET = 'DELETE FROM parsing_twitter_cashtag WHERE tweet_id = {TWEET_ID};' CONST_SQL_LAST_DATE_TWEET_CASHTAG_LONG = 'SELECT MAX(date) FROM parsing_twitter_cashtag WHERE company_id = {COMPANY_ID};' CONST_SQL_INSERT_PARSING_TWITTER_LONG = """ INSERT INTO parsing_twitter(tweet_id, conversation_id, created_at, date, timezone, place, tweet, hashtags, cashtags, user_id, user_id_str, username, name, day, hour, link, retweet, nlikes , nreplies, nretweets, quote_url, search, near, geo, source, user_rt_id, user_rt, retweet_id, reply_to, retweet_date, translate, trans_src, trans_dest, date_update, company_id) VALUES (%s , %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""" CONST_SQL_INSERT_PARSING_TWITTER_CASHTAG_LONG = """ INSERT INTO parsing_twitter_cashtag(tweet_id, conversation_id, created_at, date, timezone, place, tweet, hashtags, cashtags, user_id, user_id_str, username, name, day, hour, link, retweet, nlikes , nreplies, nretweets, quote_url, search, near, geo, source, user_rt_id, user_rt, retweet_id, reply_to, retweet_date, translate, trans_src, trans_dest, date_update, company_id) VALUES (%s , %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""" CONST_SQL_REFRESH_KEYWORD_MAT_VIEW = """REFRESH MATERIALIZED VIEW day_keyword_materialised;""" CONST_SQL_REFRESH_KEYWORD_MAT_VIEW_WITH_FILTER = """REFRESH MATERIALIZED VIEW day_keyword_like_filter_materialised;""" CONST_SQL_REFRESH_CASHTAG_MAT_VIEW = """REFRESH MATERIALIZED VIEW day_cashtag_materialised;""" CONST_SQL_REFRESH_CASHTAG_MAT_VIEW_WITH_FILTER = """REFRESH MATERIALIZED VIEW day_CASHTAG_like_filter_materialised;""" CONST_SQL_REMOVE_DUPLICATES = """DELETE FROM tweet a USING tweet b WHERE a.id < b.id AND a.tweet_id = b.tweet_id AND a.company_id = b.company_id;""" CONST_SQL_REMOVE_DUPLICATES_CASHTAG = """DELETE FROM tweet_cashtag a USING tweet b WHERE a.id < b.id AND a.tweet_id = b.tweet_id AND a.company_id = b.company_id;""" CONST_SQL_REMOVE_OLD_TWEET = """DELETE FROM tweet WHERE date <='{DATE}' """ CONST_SQL_REMOVE_OLD_TWEET_CASHTAG = """DELETE FROM tweet_cashtag WHERE date <='{DATE}' """ def first_column(array_2d): return list(zip(*array_2d))[0] def get_ticker_from_company_id(): host, port, database, user, password = access.postgre_access_google_cloud() cnx = psycopg2.connect(host=host, port=port, database=database, user=user, password=password) cur = cnx.cursor() cur.execute(CONST_SQL_GET_TICKER_WITH_COMPANY_ID) result = cur.fetchall() result =
pd.DataFrame.from_records(result, columns=[x[0] for x in cur.description])
pandas.DataFrame.from_records
import numpy as np import pandas as pd from sklearn.base import TransformerMixin, BaseEstimator class FunctionTransformer(TransformerMixin, BaseEstimator): def __init__(self, func, **kwargs): self.func = func self.func_kwargs = kwargs def fit(self, X, y=None): return self def transform(self, X): return self.func(X, **self.func_kwargs) def get_params(self, deep=True): return {'func': self.func, **self.func_kwargs} class FeatureSelector(TransformerMixin, BaseEstimator): def __init__(self, feats_to_drop=None): if feats_to_drop is None: feats_to_drop = [] self.feats_to_drop = feats_to_drop def fit(self, X, y=None): self.feats_to_drop = [feat for feat in self.feats_to_drop if feat in X.columns.tolist()] return self def transform(self, y): return y.drop(self.feats_to_drop, axis=1) def get_params(self, deep=True): return {'feats_to_drop': self.feats_to_drop} class TypeSelector(TransformerMixin, BaseEstimator): def __init__(self, dtype): self.dtype = dtype def fit(self, X, y=None): return self def transform(self, y): return y.select_dtypes(include=self.dtype).copy() def get_params(self, deep=True): return {'dtype': self.dtype} class Imputer(TransformerMixin, BaseEstimator): CONST_METHOD = 'const' MEAN_METHOD = 'mean' MEDIAN_METHOD = 'median' MODE_METHOD = 'mode' def __init__(self, features, method='const', value=None): self.features = features self.method = method self.impute_values = [value] * len(features) self.simple_value = value def fit(self, X, y=None): self.features = [feat for feat in self.features if feat in X.columns.tolist()] self.impute_values = (self._compute_fill_values(X)).iloc[0] return self def transform(self, y): return y.fillna(self.impute_values) def get_params(self, deep=True): return {'data_preparation': self.features, 'method': self.method, 'value': self.simple_value} def _compute_fill_values(self, X): if self.method == Imputer.CONST_METHOD: impute_values = pd.DataFrame([self.simple_value] * len(self.features), index=self.features).transpose() elif self.method == Imputer.MEAN_METHOD: impute_values = X[self.features].mean(axis=0) elif self.method == Imputer.MEDIAN_METHOD: impute_values = X[self.features].median(axis=1) elif self.method == Imputer.MODE_METHOD: impute_values = X[self.features].mode(axis=0) else: raise ValueError(self.method + ' not in available imputing methods') return impute_values class DummyEncoder(TransformerMixin, BaseEstimator): def __init__(self, drop_first=False): self.drop_first = drop_first def fit_transform(self, X, y=None, **fit_params): X = pd.get_dummies(X, drop_first=self.drop_first) self.dummied_features = X.columns return X def fit(self, X, y=None): self.dummied_features = pd.get_dummies(X, drop_first=self.drop_first).columns return self def transform(self, y, *_): y =
pd.get_dummies(y, drop_first=self.drop_first)
pandas.get_dummies
"""figures of merit is a collection of financial calculations for energy. This module contains financial calculations based on solar power and batteries in a given network. The networks used are defined as network objects (see evolve parsers). TODO: Add inverters: Inverters are not considered at the moment and Improve Nan Handeling """ import numpy import pandas as pd from c3x.data_cleaning import unit_conversion #Todo: #Add inverters: Inverters are not considered at the moment #Improve Nan Handeling def meter_power(meas_dict: dict, meter: int, axis: int = 0, column: int = 0) -> pd.Series: """ calculates the power for a meter of individual measurement points by summing load, solar and battery power Args: meas_dict (dict): dict with measurement for one or multiple nodes. meter(int): Id for a meter axis (int): how data is concatenated for results column (int): column index to be used return: meter_p (pd.Series): combined power (solar, battery, load) """ meter_p = pd.DataFrame() if meas_dict[meter]: meter_p = pd.DataFrame() for meas in meas_dict[meter]: if 'load' in meas: meter_p = pd.concat([meter_p, meas_dict[meter][meas].iloc[:,column]], axis=axis) elif 'solar' in meas: meter_p = pd.concat([meter_p, meas_dict[meter][meas].iloc[:,column]], axis=axis) elif 'batteries' in meas: meter_p = pd.concat([meter_p, meas_dict[meter][meas].iloc[:,column]], axis=axis) meter_p = meter_p.sum(axis=1) return meter_p def financial(meter_p: pd.Series, import_tariff: pd.Series, export_tariff: pd.Series) -> pd.Series: """ Evaluate the financial outcome for a customer. A conversion from kW to kWh is handled internally Note: assumes constant step size in timestamps (use forth index beforehand) Args: meter_p (pd.Series ): Power of a node import_tariff (pd.Series): Expects this to be in $/kWh. export_tariff (pd.Series): Expects this to be in $/kWh. Returns: cost (pd.Series): cost per measurement point, using import and export tariffs """ # Note: need to ensure meter data is converted to kWh timestep = numpy.timedelta64(meter_p.index[1] - meter_p.index[0]) meter = unit_conversion.convert_watt_to_watt_hour(meter_p, timedelta=timestep) import_power_cost = meter.where(meter >= 0).fillna(value=0.0) export_power_revenue = meter.where(meter < 0).fillna(value=0.0) cost = import_power_cost * import_tariff + export_power_revenue*export_tariff return cost def customer_financial(meas_dict: dict, node_keys: list = None, tariff: dict = None) -> dict: """ Evaluate the financial outcome for a selected customer or for all customers. Note: not currently setup to handle missing data (eg NANs) #TODO: consider inverters and how to avoid double counting with solar, batteries Args: meas_dict (dict): dict with measurement for one or multiple nodes. node_keys (list): list nodes for which financials are calculated. tariff (dict): nodes tariff data. Expects this to be in $/kWh. Returns: results_dict: cost per node and the average cost over all nodes """ results_dict = {} average = [] nodes = node_keys if node_keys else meas_dict.keys() for key in nodes: if type(key) == int: key = str(key) if meas_dict[key]: if key in tariff: meter_p = meter_power(meas_dict, key, axis=1) meter_p_cost = financial(meter_p, tariff[key]['import_tariff'], tariff[key]['export_tariff']) results_dict[key] = meter_p_cost initiate = 0 for node in results_dict.values(): average = node if initiate == 0 else average.append(node) initiate = 1 average = numpy.nanmean(average) results_dict["average"] = average return results_dict def customer_cost_financial(tariff: dict, energy_grid_load: pd.Series, energy_solar_grid: pd.Series, energy_battery_load: pd.Series, energy_solar_battery: pd.Series, energy_solar_load: pd.Series) -> pd.Series: """ evaluates the customers cost Args: tariff: specifies tariffs to be applied to aggregation of customers. energy_grid_load: specifies the energy flow between grid and load energy_solar_grid: specifies the energy flow between solar and gird energy_battery_load: specifies the energy flow between battery and load energy_solar_battery: specifies the energy flow between solar and battery energy_solar_load: specifies the energy flow between solar and load Returns: customer_cost (pd.Series): """ customer_cost = financial(energy_grid_load, tariff['re_import_tariff'], 0) customer_cost += financial(energy_grid_load, tariff['rt_import_tariff'], 0) customer_cost += financial(energy_battery_load, tariff['le_import_tariff'], 0) customer_cost += financial(energy_battery_load, tariff['lt_import_tariff'], 0) customer_cost -= financial(energy_solar_grid, tariff['re_export_tariff'], 0) customer_cost += financial(energy_solar_grid, tariff['rt_export_tariff'], 0) customer_cost -= financial(energy_solar_battery, tariff['le_export_tariff'], 0) customer_cost += financial(energy_solar_battery, tariff['lt_export_tariff'], 0) customer_cost -= financial(energy_solar_battery, tariff['le_export_tariff'], 0) customer_cost += financial(energy_solar_load, tariff['lt_import_tariff'], 0) customer_cost += financial(energy_solar_load, tariff['lt_export_tariff'], 0) return customer_cost def battery_cost_financial(tariff: dict, energy_grid_battery: pd.Series, energy_battery_grid: pd.Series, energy_battery_load: pd.Series, energy_solar_battery: pd.Series) -> pd.Series: """ evaluates the battery cost Args: tariff (dict): specifies tariffs to be applied to aggregation of customers. energy_grid_battery (pd.Series): specifies the energy flow between grid and battery energy_battery_grid (pd.Series): specifies the energy flow between battery and gird energy_battery_load (pd.Series): specifies the energy flow between battery and load energy_solar_battery (pd.Series): specifies the energy flow between solar and battery Returns: battery_cost (pd.Series): """ battery_cost = financial(energy_solar_battery, tariff['le_import_tariff'], 0) battery_cost += financial(energy_solar_battery, tariff['lt_import_tariff'], 0) battery_cost -= financial(energy_battery_load, tariff['le_export_tariff'], 0) battery_cost += financial(energy_battery_load, tariff['lt_export_tariff'], 0) battery_cost += financial(energy_grid_battery, tariff['re_import_tariff'], 0) battery_cost += financial(energy_grid_battery, tariff['rt_import_tariff'], 0) battery_cost -= financial(energy_battery_grid, tariff['re_export_tariff'], 0) battery_cost += financial(energy_battery_grid, tariff['rt_export_tariff'], 0) return battery_cost def network_cost_financial(tariff: dict, energy_grid_load: pd.Series, energy_grid_battery: pd.Series, energy_battery_grid: pd.Series, energy_battery_load: pd.Series, energy_solar_battery: pd.Series, energy_solar_load: pd.Series) -> pd.Series: """ evaluates the network cost Args: tariff (dict): specifies tariffs to be applied to aggregation of customers. energy_grid_load (pd.Series): specifies the energy flow between grid and load energy_grid_battery (pd.Series): specifies the energy flow between grid and battery energy_battery_grid (pd.Series): specifies the energy flow between battery and grid energy_battery_load (pd.Series): specifies the energy flow between battery and solar energy_solar_battery (pd.Series) : specifies the energy flow between solar and battery energy_solar_load (pd.Series): specifies the energy flow between solar and load Returns: network_cost(pd.Series) """ network_cost = -financial(energy_grid_load, tariff['rt_import_tariff'], 0) network_cost -= financial(energy_battery_load, tariff['lt_import_tariff'], 0) network_cost -= financial(energy_battery_load, tariff['lt_export_tariff'], 0) network_cost -= financial(energy_solar_battery, tariff['lt_import_tariff'], 0) network_cost -= financial(energy_solar_battery, tariff['lt_export_tariff'], 0) network_cost -= financial(energy_grid_battery, tariff['rt_import_tariff'], 0) network_cost -= financial(energy_battery_grid, tariff['rt_export_tariff'], 0) network_cost -= financial(energy_solar_load, tariff['lt_import_tariff'], 0) network_cost -= financial(energy_solar_load, tariff['lt_export_tariff'], 0) return network_cost def lem_financial(customer_tariffs, energy_grid_load, energy_grid_battery, energy_solar_grid, energy_battery_grid, energy_battery_load, energy_solar_battery, energy_solar_load, battery_tariffs=None): """ evaluate the cost for the local energy model Args: customer_tariffs: specifies tariffs to be applied to aggregation of customers. energy_grid_load (pd.series): specifies the energy flow between grid and load energy_grid_battery: specifies the energy flow between grid and battery energy_solar_grid: specifies the energy flow between solar and grid energy_battery_grid: specifies the energy flow between battery and grid energy_battery_load: specifies the energy flow between battery and solar energy_solar_battery: specifies the energy flow between solar and battery energy_solar_load: specifies the energy flow between solar and load battery_tariffs: specifies tariffs to be applied to aggregation of battery. (if none given customer_tariffs ware used) Returns: customer_cost, battery_cost, network_cost """ customer_cost = customer_cost_financial(customer_tariffs, energy_grid_load, energy_solar_grid, energy_battery_load, energy_solar_battery, energy_solar_load) bt_choice = battery_tariffs if battery_tariffs else customer_tariffs battery_cost = battery_cost_financial(bt_choice, energy_grid_battery, energy_battery_grid, energy_battery_load, energy_solar_battery) network_cost = network_cost_financial(customer_tariffs, energy_grid_load, energy_grid_battery, energy_battery_grid, energy_battery_load, energy_solar_battery, energy_solar_load) return customer_cost, battery_cost, network_cost def peak_powers(meas_dict: dict, node_keys: list = None) -> dict: """ Calculate the peak power flows into and out of the network. #TODO: consider selecting peak powers per phase #TODO: consider inverters and how to avoid double counting with solar, batteries Args: meas_dict (dict): dict with measurement for one or multiple nodes. node_keys (list): list of Node.names in Network.nodes. Returns: results_dict (dict): dictionary of peak power into and out of network in kW, and in kW/connection point. """ nodes = node_keys if node_keys else meas_dict.keys() sum_meter_power = pd.DataFrame([]) for key in nodes: if type(key) == int: key = str(key) if meas_dict[key]: meter_p = meter_power(meas_dict, key, axis=1) if sum_meter_power.empty: sum_meter_power = meter_p.copy() else: sum_meter_power = pd.concat([sum_meter_power, meter_p], axis=1, sort=True) sum_power = sum_meter_power.sum(axis=1) aver_power = numpy.nanmean(sum_meter_power, axis=1) return {"peak_power_import": numpy.max(sum_power), "peak_power_export": numpy.min(sum_power), "peak_power_import_av": numpy.max(aver_power), "peak_power_export_av": numpy.min(aver_power), "peak_power_import_index": sum_power.idxmax(), "peak_power_export_index": sum_power.idxmax()} def self_sufficiency(load_p: pd.DataFrame, solar_p: pd.DataFrame, battery_p: pd.DataFrame): """ Self-sufficiency = 1 - imports / consumption Note: the function expects a full index #TODO: consider inverters and how to avoid double counting with solar, batteries Args: load_p (pd.dataframe): measurement data for load of a s single node. solar_p (pd.dataframe): measurement data for solar of a s single node. battery_p(pd.dataframe): measurement data for battery of a s single node. Returns: results_dict: self_consumption_solar, self_consumption_batteries """ self_sufficiency_solar = numpy.nan self_sufficiency_battery = numpy.nan if not load_p.empty: net_load_solar = pd.concat((load_p, solar_p), axis=1).sum(axis=1) net_load_solar_battery =
pd.concat((load_p, solar_p, battery_p), axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 """ This script joins the following datasets`claim_vehicle_employee_line.csv`, `Preventable and Non Preventable_tabDelimited.txt` and `employee_experience_V2.csv` to create a CSV file that contains the required information for the interactive plot. It also cleans the resulting CSV file to get a successful result from the Google Maps API. Assumes `get-data.py` is run before. Usage: prepare_data.py --claims_file_path=<claims_file_path> --collisions_file_path=<collisions_file_path> --employee_file_path=<employee_file_path> --output_file_path=<output_file_path> Options: --claims_file_path=<claims_file_path> A file path for claims dataset that contains information about the claims. --collisions_file_path=<collisions_file_path> A file path for collisions dataset that contains information about the collisions. --employee_file_path=<employee_file_path> A file path for employees dataset that contains information about the employees. --output_file_path=<output_file_path> A file path for resulting joined dataset. Example: python src/interactive_map/prepare_data.py \ --claims_file_path "data/TransLink Raw Data/claim_vehicle_employee_line.csv" \ --collisions_file_path "data/TransLink Raw Data/Preventable and Non Preventable_tabDelimited.txt"\ --employee_file_path "data/TransLink Raw Data/employee_experience_V2.csv"\ --output_file_path "results/processed_data/collision_with_claim_and_employee_info.csv" """ import pandas as pd import numpy as np from docopt import docopt import glob import os import googlemaps from pathlib import Path import math opt = docopt(__doc__) def create_dirs_if_not_exists(file_path_list): """ It creates directories if they don't already exist. Parameters: file_path_list (list): A list of paths to be created if they don't exist. """ for path in file_path_list: Path(os.path.dirname(path)).mkdir(parents=True, exist_ok=True) def compare_loss_date(row): """ A helper function to be used in the main function to take non null values for the loss_date. """ if (row['loss_date_x'] is not pd.NaT) & (row['loss_date_y'] is pd.NaT): val = row.loss_date_x else: val = row.loss_date_y return val def get_experience_in_months(row): """ A helper function to be used in the main functon. It creates the experiences of the operators in terms of months by using the incident date and the operators' hiring date. """ difference = row['loss_date']- row['hire_date'] return round(difference.days / 30,0) def main(claims_file_path, collisions_file_path, employee_file_path, output_file_path): #read the collisions dataset collision =
pd.read_csv(collisions_file_path, delimiter="\t")
pandas.read_csv
import os from model import NN import torch import pandas as pd class DataStore(): def __init__(self, part, Learning_r, Layer_s ): """ Class that trains, saves the predicted dimesnions and saves/loads the network states. Inputs: part - number of the part in k-fold splitting. Learning_r - learning rate of the Neural Network Layer_s - number of nodes in each of all of the layers """ super().__init__() #Values that are later passed to MATLAB for faster computations self.part = part self.Learning_r = Learning_r self.Layer_s = Layer_s # Folders self.results_dir = 'Results' self.part_number = 'Part_Number_' + str(self.part) self.folder_name = self.part_number + '_lr_' + str(self.Learning_r) + '_layer_size_'+str(self.Layer_s) #|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| self.part_dir = os.path.join( self.results_dir, self.part_number) self.checkpoint_dir = os.path.join( self.part_dir, self.folder_name) os.makedirs(self.part_dir, exist_ok = True) os.makedirs(self.checkpoint_dir, exist_ok = True) def net_saver(self, model_to_save): model_name = self.part_number + '_model_lr_' + str(self.Learning_r) + '_layer_size_' + str(self.Layer_s) + '.pt' model_path = os.path.join(self.checkpoint_dir, model_name) torch.save(model_to_save.state_dict(), model_path) print(model_name, 'Was saved successfully \t\t\t[saved]') def net_loader(self, path = None): testm = NN(self.Layer_s).to(device) if path is None: model_name = self.part_number + '_model_lr_' + str(self.Learning_r) + '_layer_size_' + str(self.Layer_s) + '.pt' path = os.path.join(self.checkpoint_dir, model_name) testm.load_state_dict(torch.load(path)) print(model_name,' Was loaded successfully loaded.\t\t\t [loaded]') else: testm.load_state_dict(torch.load(path)) print(model_name,' Was loaded successfully loaded from the path.\t\t\t [loaded from Path]') return testm def records_saver(self, records): self.records = records self.name_records = 'Part_Number_' + str(self.part) + '_records.csv' self.records.to_csv(os.path.join(self.checkpoint_dir, name_records),index = True,header = True) def dimensions_saver(self, d_values, threshold): """ Method that saves the predicted dimesnion and thresholds of constant scattering values Inputs: split - number of the split in k-fold splitting. Learning_r - learning rate of the Neural Network Layer_s - number of nodes in each of all of the layers """ #used in MATLAB self.vals_matlab =
pd.DataFrame(d_values)
pandas.DataFrame
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2020/01/02 17:37 Desc: 获取交易法门-工具: https://www.jiaoyifamen.com/tools/ 交易法门首页: https://www.jiaoyifamen.com/ # 交易法门-工具-套利分析 交易法门-工具-套利分析-跨期价差(自由价差) 交易法门-工具-套利分析-自由价比 交易法门-工具-套利分析-多腿组合 交易法门-工具-套利分析-FullCarry 交易法门-工具-套利分析-套利价差矩阵 # 交易法门-工具-资讯汇总 交易法门-工具-资讯汇总-研报查询 交易法门-工具-资讯汇总-交易日历 # 交易法门-工具-持仓分析 交易法门-工具-持仓分析-期货持仓 交易法门-工具-持仓分析-席位持仓 交易法门-工具-持仓分析-持仓季节性 # 交易法门-工具-资金分析 交易法门-工具-资金分析-资金流向 交易法门-工具-资金分析-沉淀资金 交易法门-工具-资金分析-资金季节性 交易法门-工具-资金分析-成交排名 # 交易法门-工具-席位分析 交易法门-工具-席位分析-持仓结构 交易法门-工具-席位分析-持仓成本 交易法门-工具-席位分析-建仓过程 # 交易法门-工具-仓单分析 交易法门-工具-仓单分析-仓单日报 交易法门-工具-仓单分析-仓单查询 交易法门-工具-仓单分析-虚实盘比日报 交易法门-工具-仓单分析-虚实盘比查询 # 交易法门-工具-期限分析 交易法门-工具-期限分析-基差日报 交易法门-工具-期限分析-基差分析 交易法门-工具-期限分析-期限结构 交易法门-工具-期限分析-价格季节性 # 交易法门-工具-行情分析 交易法门-工具-行情分析-行情数据 # 交易法门-工具-交易规则 交易法门-工具-交易规则-限仓规定 交易法门-工具-交易规则-仓单有效期 交易法门-工具-交易规则-品种手册 """ import time import matplotlib.pyplot as plt import pandas as pd import requests from mssdk.futures_derivative.cons import ( csa_payload, csa_url_spread, csa_url_ratio, csa_url_customize, ) from mssdk.futures_derivative.jyfm_login_func import jyfm_login # pd.set_option('display.max_columns', None) # 交易法门-工具-套利分析 def jyfm_tools_futures_spread( type_1="RB", type_2="RB", code_1="01", code_2="05", headers="", plot=True ): """ 交易法门-工具-套利分析-跨期价差(自由价差) :param type_1: str :param type_2: str :param code_1: str :param code_2: str :param plot: Bool :return: pandas.Series or pic """ csa_payload_his = csa_payload.copy() csa_payload_his.update({"type1": type_1}) csa_payload_his.update({"type2": type_2}) csa_payload_his.update({"code1": code_1}) csa_payload_his.update({"code2": code_2}) res = requests.get(csa_url_spread, params=csa_payload_his, headers=headers) data_json = res.json() data_df = pd.DataFrame([data_json["category"], data_json["value"]]).T data_df.index = pd.to_datetime(data_df.iloc[:, 0]) data_df = data_df.iloc[:, 1] data_df.name = "value" if plot: data_df.plot() plt.legend(loc="best") plt.xlabel("date") plt.ylabel("value") plt.show() return data_df else: return data_df def jyfm_tools_futures_ratio( type_1="RB", type_2="RB", code_1="01", code_2="05", headers="", plot=True ): """ 交易法门-工具-套利分析-自由价比 :param type_1: str :param type_2: str :param code_1: str :param code_2: str :param plot: Bool :return: pandas.Series or pic 2013-01-04 -121 2013-01-07 -124 2013-01-08 -150 2013-01-09 -143 2013-01-10 -195 ... 2019-10-21 116 2019-10-22 126 2019-10-23 123 2019-10-24 126 2019-10-25 134 """ csa_payload_his = csa_payload.copy() csa_payload_his.update({"type1": type_1}) csa_payload_his.update({"type2": type_2}) csa_payload_his.update({"code1": code_1}) csa_payload_his.update({"code2": code_2}) res = requests.get(csa_url_ratio, params=csa_payload_his, headers=headers) data_json = res.json() data_df = pd.DataFrame([data_json["category"], data_json["value"]]).T data_df.index = pd.to_datetime(data_df.iloc[:, 0]) data_df = data_df.iloc[:, 1] data_df.name = "value" if plot: data_df.plot() plt.legend(loc="best") plt.xlabel("date") plt.ylabel("value") plt.show() return data_df else: return data_df def jyfm_tools_futures_customize( formula="RB01-1.6*I01-0.5*J01-1200", headers="", plot=True ): """ 交易法门-工具-套利分析-多腿组合 :param formula: str :param plot: Bool :return: pandas.Series or pic """ params = {"formula": formula} res = requests.get(csa_url_customize, params=params, headers=headers) data_json = res.json() data_df = pd.DataFrame([data_json["category"], data_json["value"]]).T data_df.index = pd.to_datetime(data_df.iloc[:, 0]) data_df = data_df.iloc[:, 1] data_df.name = "value" if plot: data_df.plot() plt.legend(loc="best") plt.xlabel("date") plt.ylabel("value") plt.show() return data_df else: return data_df def jyfm_tools_futures_full_carry( begin_code="05", end_code="09", ratio="4", headers="" ): """ 交易法门-工具-套利分析-FullCarry https://www.jiaoyifamen.com/tools/future/full/carry?beginCode=05&endCode=09&ratio=4 注: 正向转抛成本主要是仓储费和资金成本,手续费占比很小,故忽略。增值税不确定,故也未列入计算。使用该表时注意仓单有效期问题、升贴水问题以及生鲜品种其他较高费用的问题。实际Full Carry水平要略高于这里的测算水平。 :param begin_code: 开始月份 :type begin_code: str :param end_code: 结束月份 :type end_code: str :param ratio: 百分比, 这里输入绝对值 :type ratio: str :param headers: 请求头 :type headers: dict :return: 正向市场转抛成本估算 :rtype: pandas.DataFrame """ url = "https://www.jiaoyifamen.com/tools/future/full/carry" params = { "beginCode": begin_code, "endCode": end_code, "ratio": ratio, } res = requests.get(url, params=params, headers=headers) return pd.DataFrame(res.json()["table_data"]) def jyfm_tools_futures_arbitrage_matrix( category="1", type1="RB", type2="RB", headers="" ): """ 交易法门-工具-套利分析-跨期价差矩阵 https://www.jiaoyifamen.com/tools/future/arbitrage/matrix :param category: 1: 跨期价差; 2: 自由价差; 3: 自由价比 :type category: str :param type1: 种类一 :type type1: str :param type2: 种类二 :type type2: str :param headers: 请求头 :type headers: dict :return: 对应的矩阵 :rtype: pandas.DataFrame """ url = "https://www.jiaoyifamen.com/tools/future/arbitrage/matrix" params = { "category": category, "type1": type1, "type2": type2, "_": "1583846468579", } res = requests.get(url, params=params, headers=headers) return pd.DataFrame(res.json()["data"]) def jyfm_exchange_symbol_dict(): jyfm_exchange_symbol_dict_inner = { "中国金融期货交易所": { "TF": "五债", "T": "十债", "IC": "中证500", "IF": "沪深300", "IH": "上证50", "TS": "二债", }, "郑州商品交易所": { "FG": "玻璃", "RS": "菜籽", "CF": "棉花", "LR": "晚稻", "CJ": "红枣", "JR": "粳稻", "ZC": "动力煤", "TA": "PTA", "SA": "纯碱", "AP": "苹果", "WH": "强麦", "SF": "硅铁", "MA": "甲醇", "CY": "棉纱", "RI": "早稻", "OI": "菜油", "SM": "硅锰", "RM": "菜粕", "UR": "尿素", "PM": "普麦", "SR": "白糖", }, "大连商品交易所": { "PP": "PP", "RR": "粳米", "BB": "纤板", "A": "豆一", "EG": "乙二醇", "B": "豆二", "C": "玉米", "JM": "焦煤", "I": "铁矿", "J": "焦炭", "L": "塑料", "M": "豆粕", "P": "棕榈", "CS": "淀粉", "V": "PVC", "Y": "豆油", "JD": "鸡蛋", "FB": "胶板", "EB": "苯乙烯", }, "上海期货交易所": { "SS": "不锈钢", "RU": "橡胶", "AG": "沪银", "AL": "沪铝", "FU": "燃油", "RB": "螺纹", "CU": "沪铜", "PB": "沪铅", "BU": "沥青", "AU": "沪金", "ZN": "沪锌", "SN": "沪锡", "HC": "热卷", "NI": "沪镍", "WR": "线材", "SP": "纸浆", }, "上海国际能源交易中心": {"SC": "原油", "NR": "20号胶"}, } return jyfm_exchange_symbol_dict_inner # 交易法门-工具-资讯汇总 def jyfm_tools_research_query(limit="100", headers=""): """ 交易法门-工具-资讯汇总-研报查询 https://www.jiaoyifamen.com/tools/research/qryPageList :param limit: 返回条数 :type limit: str :return: 返回研报信息数据 :rtype: pandas.DataFrame """ url = "https://www.jiaoyifamen.com/tools/research/qryPageList" params = { "page": "1", "limit": limit, } res = requests.get(url, params=params, headers=headers) return pd.DataFrame(res.json()["data"]) def jyfm_tools_trade_calendar(trade_date="2020-01-03", headers=""): """ 交易法门-工具-资讯汇总-交易日历 此函数可以返回未来的交易日历数据 https://www.jiaoyifamen.com/tools/trade-calendar/events :param trade_date: 指定交易日 :type trade_date: str :return: 返回指定交易日的交易日历数据 :rtype: pandas.DataFrame """ url = "https://www.jiaoyifamen.com/tools/trade-calendar/events" params = { "page": "1", "limit": "1000", "day": trade_date, } res = requests.get(url, params=params, headers=headers) return pd.DataFrame(res.json()["data"]) # 交易法门-工具-持仓分析 def jyfm_tools_position_detail( symbol="JM", code="jm2005", trade_date="2020-01-03", headers="" ): """ 交易法门-工具-持仓分析-期货持仓 :param symbol: 指定品种 :type symbol: str :param code: 指定合约 :type code: str :param trade_date: 指定交易日 :type trade_date: str :param headers: headers with cookies :type headers:dict :return: 指定品种的指定合约的指定交易日的期货持仓数据 :rtype: pandas.DataFrame """ url = f"https://www.jiaoyifamen.com/tools/position/details/{symbol}?code={code}&day={trade_date}&_=1578040551329" res = requests.get(url, headers=headers) return pd.DataFrame(res.json()["short_rank_table"]) def jyfm_tools_position_seat(seat="永安期货", trade_date="2020-01-03", headers=""): """ 交易法门-工具-持仓分析-持仓分析-席位持仓 :param seat: 指定期货公司 :type seat: str :param trade_date: 具体交易日 :type trade_date: str :param headers: headers with cookies :type headers: dict :return: 指定期货公司指定交易日的席位持仓数据 :rtype: pandas.DataFrame """ url = "https://www.jiaoyifamen.com/tools/position/seat" params = { "seat": seat, "day": trade_date, "type": "", "_": "1578040989932", } res = requests.get(url, params=params, headers=headers) return pd.DataFrame(res.json()["data"]) def jyfm_tools_position_season(symbol="RB", code="05", headers=""): """ 交易法门-工具-持仓分析-持仓分析-持仓季节性 https://www.jiaoyifamen.com/tools/position/season :param symbol: 具体品种 :type symbol: str :param code: 具体合约月份 :type code: str :param headers: headers with cookies :type headers: dict :return: 合约持仓季节性规律 :rtype: pandas.DataFrame """ url = "https://www.jiaoyifamen.com/tools/position/season" params = { "type": symbol, "code": code, } res = requests.get(url, params=params, headers=headers) data_json = res.json() temp_df = pd.DataFrame( [ data_json["year2013"], data_json["year2014"], data_json["year2015"], data_json["year2016"], data_json["year2017"], data_json["year2018"], data_json["year2019"], data_json["year2020"], ], columns=data_json["dataCategory"], ).T temp_df.columns = ["2013", "2014", "2015", "2016", "2017", "2018", "2019", "2020"] return temp_df # 交易法门-工具-资金分析 def jyfm_tools_position_fund_direction( trade_date="2020-02-24", indicator="期货品种资金流向排名", headers="" ): """ 交易法门-工具-资金分析-资金流向 https://www.jiaoyifamen.com/tools/position/fund/?day=2020-01-08 :param trade_date: 指定交易日 :type trade_date: str :param indicator: "期货品种资金流向排名" or "期货主力合约资金流向排名" :type indicator: str :param headers: headers with cookies :type headers: dict :return: 指定交易日的资金流向数据 :rtype: pandas.DataFrame """ params = { "day": trade_date, } url = "https://www.jiaoyifamen.com/tools/position/fund/" r = requests.get(url, params=params, headers=headers) data_json = r.json() if indicator == "期货品种资金流向排名": return pd.DataFrame( [ [data_json["tradingDay"]] * len(data_json["flowCategory"]), data_json["flowCategory"], data_json["flowValue"], ], index=["date", "symbol", "fund"], ).T else: return pd.DataFrame( [ [data_json["tradingDay"]] * len(data_json["dominantFlowCategory"]), data_json["dominantFlowCategory"], data_json["dominantFlowValue"], ], index=["date", "symbol", "fund"], ).T def jyfm_tools_position_fund_down( trade_date="2020-02-24", indicator="期货品种沉淀资金排名", headers="" ): """ 交易法门-工具-资金分析-沉淀资金 https://www.jiaoyifamen.com/tools/position/fund/?day=2020-01-08 :param trade_date: 指定交易日 :type trade_date: str :param indicator: "期货品种沉淀资金排名" or "期货主力合约沉淀资金排名" :type indicator: str :param headers: headers with cookies :type headers: dict :return: 指定交易日的沉淀资金 :rtype: pandas.DataFrame """ params = { "day": trade_date, } url = "https://www.jiaoyifamen.com/tools/position/fund/" r = requests.get(url, params=params, headers=headers) data_json = r.json() if indicator == "期货品种沉淀资金排名": return pd.DataFrame( [ [data_json["tradingDay"]] * len(data_json["precipitationCategory"]), data_json["precipitationCategory"], data_json["precipitationValue"], ], index=["date", "symbol", "fund"], ).T else: return pd.DataFrame( [ [data_json["tradingDay"]] * len(data_json["dominantPrecipitationCategory"]), data_json["dominantPrecipitationCategory"], data_json["dominantPrecipitationValue"], ], index=["date", "symbol", "fund"], ).T def jyfm_tools_position_fund_season(symbol="RB", code="05", headers=""): """ 交易法门-工具-资金分析-资金季节性 https://www.jiaoyifamen.com/tools/position/fund/?day=2020-01-08 :param symbol: 指定品种 :type symbol: str :param code: 合约到期月 :type code: str :param headers: headers with cookies :type headers: dict :return: 指定交易日的资金资金季节性 :rtype: pandas.DataFrame """ params = { "type": symbol, "code": code, } url = "https://www.jiaoyifamen.com/tools/position/fund/season" r = requests.get(url, params=params, headers=headers) data_json = r.json() data_df = pd.DataFrame( [ data_json["dataCategory"], data_json["year2013"], data_json["year2014"], data_json["year2015"], data_json["year2016"], data_json["year2017"], data_json["year2018"], data_json["year2019"], data_json["year2020"], ], index=["date", "2013", "2014", "2015", "2016", "2017", "2018", "2019", "2020"], ).T return data_df def jyfm_tools_position_fund_deal( trade_date="2020-02-24", indicator="期货品种成交量排名", headers="" ): """ 交易法门-工具-资金分析-成交排名 https://www.jiaoyifamen.com/tools/position/fund/?day=2020-01-08 :param trade_date: 指定交易日 :type trade_date: str :param indicator: "期货品种成交量排名" or "期货主力合约成交量排名" :type indicator: str :param headers: headers with cookies :type headers: dict :return: 指定交易日的资金成交排名 :rtype: pandas.DataFrame """ params = { "day": trade_date, } url = "https://www.jiaoyifamen.com/tools/position/fund/" r = requests.get(url, params=params, headers=headers) data_json = r.json() if indicator == "期货品种成交量排名": return pd.DataFrame( [ [data_json["tradingDay"]] * len(data_json["turnOverCategory"]), data_json["turnOverCategory"], data_json["turnOverValue"], ], index=["date", "symbol", "fund"], ).T else: return pd.DataFrame( [ [data_json["tradingDay"]] * len(data_json["dominantTurnOverCategory"]), data_json["dominantTurnOverCategory"], data_json["dominantTurnOverValue"], ], index=["date", "symbol", "fund"], ).T # 交易法门-工具-席位分析-持仓结构 def jyfm_tools_position_structure( trade_date="2020-03-02", seat="永安期货", indicator="持仓变化", headers="" ): """ 交易法门-工具-席位分析-持仓结构 https://www.jiaoyifamen.com/tools/position/seat :param trade_date: 指定交易日 :type trade_date: str :param seat: broker name, e.g., seat="永安期货" :type seat: str :param indicator: 持仓变化,净持仓分布,总持仓分布; 持仓变化总,净持仓分布总,总持仓分布总 :type indicator: str :param headers: headers with cookies :type headers: dict :return: 指定交易日指定机构的持仓结构 :rtype: pandas.DataFrame """ indicator_dict = {"持仓变化": 1, "净持仓分布": 2, "总持仓分布": 3} params = { "seat": seat, "day": trade_date, "type": indicator_dict[indicator], "_": int(time.time() * 1000), } url = "https://www.jiaoyifamen.com/tools/position/struct" r = requests.get(url, params=params, headers=headers) data_json = r.json() if indicator == "持仓变化": return pd.DataFrame(data_json["varieties"]) if indicator == "净持仓分布": return pd.DataFrame(data_json["varieties"]) if indicator == "总持仓分布": return
pd.DataFrame(data_json["varieties"])
pandas.DataFrame
############### # # Transform R to Python Copyright (c) 2019 <NAME> Released under the MIT license # ############### import os import numpy as np import pystan import pandas import pickle import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder fish_num_climate_4 = pandas.read_csv('4-3-1-fish-num-4.csv') print(fish_num_climate_4.head()) print(fish_num_climate_4.describe()) sns.scatterplot( x='temperature', y='fish_num', hue='human', data=fish_num_climate_4 ) plt.show() fish_num_climate_4_d = pandas.get_dummies(fish_num_climate_4, columns=["human"]) print(fish_num_climate_4_d.head()) fish_num = fish_num_climate_4_d['fish_num'] sample_num = len(fish_num) temperature = fish_num_climate_4_d['temperature'] # creating teamID le = LabelEncoder() le = le.fit(fish_num_climate_4['human']) fish_num_climate_4['human'] = le.transform(fish_num_climate_4['human']) sns.scatterplot( x='temperature', y='fish_num', hue='human', legend="full", data=fish_num_climate_4 ) plt.show() human_id = fish_num_climate_4['human'].values human_num = len(np.unique(human_id)) human_id = (human_id + 1) print(human_id) stan_data = { 'N': sample_num, 'fish_num': fish_num, 'temp': temperature, 'human_id': human_id } if os.path.exists('4-3-1-poisson-glmm.pkl'): sm = pickle.load(open('4-3-1-poisson-glmm.pkl', 'rb')) # sm = pystan.StanModel(file='4-3-1-poisson-glmm.stan') else: # a model using prior for mu and sigma. sm = pystan.StanModel(file='4-3-1-poisson-glmm.stan') mcmc_result = sm.sampling( data=stan_data, seed=1, chains=4, iter=2000, warmup=1000, thin=1 ) print(mcmc_result) mcmc_result.plot() plt.show() # saving compiled model if not os.path.exists('4-3-1-poisson-glmm.pkl'): with open('4-3-1-poisson-glmm.pkl', 'wb') as f: pickle.dump(sm, f) mcmc_sample = mcmc_result.extract() print(mcmc_sample) # visualization label_temp = np.arange(10,21) df =
pandas.DataFrame(mcmc_sample, columns=['Intercept', 'b_temp', 'b_human', 'b_temp_human'])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """Import OptionMetrics data. """ from __future__ import print_function, division import os import zipfile import numpy as np import pandas as pd import datetime as dt from scipy.interpolate import interp1d from impvol import lfmoneyness, delta, vega from datastorage.quandlweb import load_spx path = os.getenv("HOME") + '/Dropbox/Research/data/OptionMetrics/data/' # __location__ = os.path.realpath(os.path.join(os.getcwd(), # os.path.dirname(__file__))) # path = os.path.join(__location__, path + 'OptionMetrics/data/') def convert_dates(string): return dt.datetime.strptime(string, '%d-%m-%Y') def import_dividends(): """Import dividends. """ zf = zipfile.ZipFile(path + 'SPX_dividend.zip', 'r') name = zf.namelist()[0] dividends = pd.read_csv(zf.open(name), converters={'date': convert_dates}) dividends.set_index('date', inplace=True) dividends.sort_index(inplace=True) print(dividends.head()) dividends.to_hdf(path + 'dividends.h5', 'dividends') def import_yield_curve(): """Import zero yield curve. """ zf = zipfile.ZipFile(path + 'yield_curve.zip', 'r') name = zf.namelist()[0] yields = pd.read_csv(zf.open(name), converters={'date': convert_dates}) # Remove weird observations yields = yields[yields['rate'] < 10] # Fill in the blanks in the yield curve # yields = interpolate_curve(yields) yields.rename(columns={'rate': 'riskfree'}, inplace=True) yields.set_index(['date', 'days'], inplace=True) yields.sort_index(inplace=True) print(yields.head()) yields.to_hdf(path + 'yields.h5', 'yields') def interpolate_curve_group(group): """Interpolate yields for one day. """ y = np.array(group.riskfree) x = np.array(group.days) a = group.days.min() b = group.days.max() new_x = np.linspace(a, b, b-a+1).astype(int) try: new_y = interp1d(x, y, kind='cubic')(new_x) except: new_y = interp1d(x, y, kind='linear')(new_x) group = pd.DataFrame(new_y, index=pd.Index(new_x, name='days')) return group def interpolate_curve(yields): """Fill in the blanks in the yield curve. """ yields.reset_index(inplace=True) yields = yields.groupby('date').apply(interpolate_curve_group) yields = yields.unstack('days') yields.fillna(method='ffill', axis=1, inplace=True) yields.fillna(method='bfill', axis=1, inplace=True) yields = yields.stack('days') yields.rename(columns={0: 'riskfree'}, inplace=True) return yields def import_riskfree(): """Take the last value of the yield curve as a risk-free rate. Saves annualized rate in percentage points. """ yields = load_yields() riskfree = yields.groupby(level='date').last() print(riskfree.head()) riskfree.to_hdf(path + 'riskfree.h5', 'riskfree') def import_standard_options(): """Import standardized options. """ zf = zipfile.ZipFile(path + 'SPX_standard_options.zip', 'r') name = zf.namelist()[0] data = pd.read_csv(zf.open(name), converters={'date': convert_dates}) cols = {'forward_price': 'forward', 'impl_volatility': 'imp_vol'} data.rename(columns=cols, inplace=True) data = data.set_index(['cp_flag', 'date', 'days']).sort_index() print(data.head()) data.to_hdf(path + 'std_options.h5', 'std_options') def import_vol_surface(): """Import volatility surface. Infer risk-free rate directly from data. """ zf = zipfile.ZipFile(path + 'SPX_surface.zip', 'r') name = zf.namelist()[0] df = pd.read_csv(zf.open(name), converters={'date': convert_dates}) df.loc[:, 'weekday'] = df['date'].apply(lambda x: x.weekday()) # Apply some filters df = df[df['weekday'] == 2] df = df[df['days'] <= 365] df = df.drop('weekday', axis=1) surface = df#.set_index(['cp_flag', 'date', 'days']).sort_index() cols = {'impl_volatility': 'imp_vol', 'impl_strike': 'strike', 'impl_premium': 'premium'} surface.rename(columns=cols, inplace=True) # TODO : who term structure should be imported and merged! riskfree = load_riskfree().reset_index() dividends = load_dividends().reset_index() spx = load_spx().reset_index() surface = pd.merge(surface, riskfree) surface = pd.merge(surface, spx) surface = pd.merge(surface, dividends) # Adjust riskfree by dividend yield surface['riskfree'] -= surface['rate'] # Remove percentage point surface['riskfree'] /= 100 # Replace 'cp_flag' with True/False 'call' variable surface.loc[:, 'call'] = True surface.loc[surface['cp_flag'] == 'P', 'call'] = False # Normalize maturity to being a share of the year surface['maturity'] = surface['days'] / 365 # Rename columns surface.rename(columns={'spx': 'price'}, inplace=True) # Compute lf-moneyness surface['moneyness'] = lfmoneyness(surface['price'], surface['strike'], surface['riskfree'], surface['maturity']) # Compute option Delta normalized by current price surface['delta'] = delta(surface['moneyness'], surface['maturity'], surface['imp_vol'], surface['call']) # Compute option Vega normalized by current price surface['vega'] = vega(surface['moneyness'], surface['maturity'], surface['imp_vol']) # Sort index surface.sort_index(by=['date', 'maturity', 'moneyness'], inplace=True) print(surface.head()) surface.to_hdf(path + 'surface.h5', 'surface') def import_vol_surface_simple(): """Import volatility surface. Simple version. """ zf = zipfile.ZipFile(path + 'SPX_surface.zip', 'r') name = zf.namelist()[0] df = pd.read_csv(zf.open(name), converters={'date': convert_dates}) df.loc[:, 'weekday'] = df['date'].apply(lambda x: x.weekday()) # Apply some filters df = df[df['weekday'] == 2] df = df[df['days'] <= 365] surface = df.drop('weekday', axis=1) cols = {'impl_volatility': 'imp_vol', 'impl_strike': 'strike', 'impl_premium': 'premium'} surface.rename(columns=cols, inplace=True) spx = load_spx().reset_index() standard_options = load_standard_options()[['forward']].reset_index() surface = pd.merge(surface, standard_options) surface = pd.merge(surface, spx) # Normalize maturity to being a share of the year surface['maturity'] = surface['days'] / 365 surface['riskfree'] = np.log(surface['forward'] / surface['spx']) surface['riskfree'] /= surface['maturity'] # Remove percentage point # Replace 'cp_flag' with True/False 'call' variable surface.loc[:, 'call'] = True surface.loc[surface['cp_flag'] == 'P', 'call'] = False # Rename columns surface.rename(columns={'spx': 'price'}, inplace=True) # Compute lf-moneyness surface['moneyness'] = lfmoneyness(surface['price'], surface['strike'], surface['riskfree'], surface['maturity']) # Compute option Delta normalized by current price surface['delta'] = delta(surface['moneyness'], surface['maturity'], surface['imp_vol'], surface['call']) # Compute option Vega normalized by current price surface['vega'] = vega(surface['moneyness'], surface['maturity'], surface['imp_vol']) # Take out-of-the-money options calls = surface['call'] & (surface['moneyness'] >= 0) puts = np.logical_not(surface['call']) & (surface['moneyness'] < 0) surface = pd.concat([surface[calls], surface[puts]]) # Sort index surface.sort_index(by=['date', 'maturity', 'moneyness'], inplace=True) print(surface.head()) surface.to_hdf(path + 'surface.h5', 'surface') def load_dividends(): """Load dividends from the disk (annualized, percentage points). Typical output: rate date 1996-01-04 2.460 1996-01-05 2.492 1996-01-08 2.612 1996-01-09 2.455 1996-01-10 2.511 """ return pd.read_hdf(path + 'dividends.h5', 'dividends') def load_yields(): """Load zero yield curve from the disk (annualized, percentage points). Typical output: riskfree date days 1996-01-02 9 5.763 15 5.746 50 5.673 78 5.609 169 5.474 """ return pd.read_hdf(path + 'yields.h5', 'yields') def load_riskfree(): """Load risk-free rate (annualized, percentage points). Returns ------- DataFrame Annualized rate in percentage points Typical output: riskfree date 1996-01-02 6.138 1996-01-03 6.125 1996-01-04 6.142 1996-01-05 6.219 1996-01-08 6.220 """ return pd.read_hdf(path + 'riskfree.h5', 'riskfree') def load_standard_options(): """Load standardized options from the disk. Typical output: forward premium imp_vol cp_flag date days C 1996-01-04 30 619.345 7.285 0.103 60 620.935 10.403 0.105 91 622.523 12.879 0.105 122 624.080 16.156 0.114 152 625.545 18.259 0.116 """ return pd.read_hdf(path + 'std_options.h5', 'std_options') def load_vol_surface(): """Load volatility surface from the disk. Typical output: date days imp_vol strike premium cp_flag forward price 12 1996-01-10 30 0.175 576.030 3.431 P 600.043 598.480 11 1996-01-10 30 0.165 581.866 4.336 P 600.043 598.480 10 1996-01-10 30 0.157 586.685 5.257 P 600.043 598.480 9 1996-01-10 30 0.150 590.755 6.230 P 600.043 598.480 8 1996-01-10 30 0.146 594.303 7.299 P 600.043 598.480 maturity riskfree call moneyness delta vega 12 0.082 0.032 False -0.041 -0.200 0.080 11 0.082 0.032 False -0.031 -0.251 0.091 10 0.082 0.032 False -0.023 -0.301 0.100 9 0.082 0.032 False -0.016 -0.351 0.106 8 0.082 0.032 False -0.010 -0.401 0.111 """ return
pd.read_hdf(path + 'surface.h5', 'surface')
pandas.read_hdf
import streamlit as st import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from plotly import express def accept_user_data(): duration = st.text_input("Enter the duration: ") start_station = st.text_input("Enter the start area: ") end_station = st.text_input("Enter the end station: ") return np.array([duration, start_station, end_station]).reshape(1,-1) # =================== ML Models Below ================= @st.cache(suppress_st_warning=True) def decisionTree(X_train, X_test, Y_train, Y_test): # training the model tree = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0) tree.fit(X_train, Y_train) Y_pred = tree.predict(X_test) score = accuracy_score(Y_test, Y_pred) * 100 report = classification_report(Y_test, Y_pred) return score, report, tree @st.cache(suppress_st_warning=True) def neuralNet(X_train, X_test, Y_train, Y_test): # scaling data scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) # start classifier clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5,2), random_state=1) clf.fit(X_train, Y_train) Y_pred = clf.predict(X_test) score = accuracy_score(Y_test, Y_pred) * 100 report = classification_report(Y_test, Y_pred) return score, report, clf @st.cache def Knn_Classifier(X_train, X_test, Y_train, Y_test): clf = KNeighborsClassifier(n_neighbors=5) clf.fit(X_train, Y_train) Y_pred = clf.predict(X_test) score = accuracy_score(Y_test, Y_pred) * 100 report = classification_report(Y_test, Y_pred) return score, report, clf # =================== ML Models End ================= @st.cache def showMap(): plotData = pd.read_csv('dataset-2010-latlong.csv') data = pd.DataFrame() data['lat'] = plotData['lat'] data['lon'] = plotData['lon'] return data # enable st caching @st.cache def loadData(): return
pd.read_csv('dataset-2010.csv')
pandas.read_csv
from copy import Error import os from typing import Type from ase.parallel import paropen, parprint, world from ase.db import connect from ase.io import read from glob import glob import numpy as np from gpaw import restart import BASIC.optimizer as opt import sys from ase.constraints import FixAtoms,FixedLine import pandas as pd from BASIC.utils import detect_cluster def pbc_checker(slab): anlges_arg=[angle != 90.0000 for angle in np.round(slab.cell.angles(),decimals=4)[:2]] if np.any(anlges_arg): slab.pbc=[1,1,1] else: slab.pbc=[1,1,0] # def detect_cluster(slab,tol=0.1): # n=len(slab) # dist_matrix=np.zeros((n, n)) # slab_c=np.sort(slab.get_positions()[:,2]) # for i, j in itertools.combinations(list(range(n)), 2): # if i != j: # cdist = np.abs(slab_c[i] - slab_c[j]) # dist_matrix[i, j] = cdist # dist_matrix[j, i] = cdist # condensed_m = squareform(dist_matrix) # z = linkage(condensed_m) # clusters = fcluster(z, tol, criterion="distance") # return slab_c,list(clusters) def apply_magmom(opt_slab_magmom,ads_slab,adatom=1): if adatom == 1: magmom_ls=np.append(opt_slab_magmom,0) elif adatom == 2: magmom_ls=np.append(opt_slab_magmom,0) magmom_ls=np.append(magmom_ls,0) ads_slab.set_initial_magnetic_moments(magmom_ls) return ads_slab def get_clean_slab(element, miller_index, report_location, target_dir, size, fix_layer, solver_fmax, solver_maxstep, gpaw_calc): f = paropen(report_location,'a') parprint('Start clean slab calculation: ', file=f) if size != '1x1': clean_slab_gpw_path=target_dir+'/clean_slab/slab.gpw' if os.path.isfile(clean_slab_gpw_path): opt_slab, pre_calc = restart(clean_slab_gpw_path) pre_kpts=list(pre_calc.__dict__['parameters']['kpts']) set_kpts=list(gpaw_calc.__dict__['parameters']['kpts']) if pre_kpts == set_kpts: parprint('\t'+size+' clean slab is pre-calculated with kpts matched.',file=f) else: parprint('\t'+size+' clean slab pre-calculated has different kpts. Clean slab needs to re-calculate.', file=f) parprint('\t'+'Calculating '+size+' clean slab...',file=f) clean_slab=read(target_dir+'/clean_slab/input.traj') opt_slab=clean_slab_calculator(clean_slab,fix_layer,gpaw_calc,target_dir,solver_fmax,solver_maxstep) else: parprint('\t'+size+' clean slab is not pre-calculated.',file=f) parprint('\t'+'Calculating '+size+' clean slab...',file=f) interm_gpw=target_dir+'/clean_slab/slab_interm.gpw' if os.path.isfile(interm_gpw): clean_slab, gpaw_calc=restart(interm_gpw) else: clean_slab=read(target_dir+'/clean_slab/input.traj') opt_slab=clean_slab_calculator(clean_slab,fix_layer,gpaw_calc,target_dir,solver_fmax,solver_maxstep) else: parprint('\tslab size is 1x1. Clean slab calculation is skipped.', file=f) opt_slab=connect('final_database'+'/'+'surf.db').get_atoms(simple_name=element+'_'+miller_index) parprint(' ',file=f) f.close() return opt_slab.get_potential_energy(), opt_slab.get_magnetic_moments() def clean_slab_calculator(clean_slab, fix_layer, gpaw_calc, target_dir, solver_fmax, solver_maxstep, fix_option='bottom'): pbc_checker(clean_slab) calc_dict=gpaw_calc.__dict__['parameters'] if calc_dict['spinpol']: clean_slab.set_initial_magnetic_moments([0]*len(clean_slab)) slab_c_coord,cluster=detect_cluster(clean_slab) if fix_option == 'bottom': unique_cluster_index=sorted(set(cluster), key=cluster.index)[fix_layer-1] max_height_fix=max(slab_c_coord[cluster==unique_cluster_index]) fix_mask=clean_slab.positions[:,2]<(max_height_fix+0.05) #add 0.05 Ang to make sure all bottom fixed fixed_atom_constrain=FixAtoms(mask=fix_mask) clean_slab.set_constraint(fixed_atom_constrain) clean_slab.set_calculator(gpaw_calc) opt.relax(clean_slab,target_dir+'/clean_slab',fmax=solver_fmax,maxstep=solver_maxstep) return clean_slab def adsorption_energy_calculator(traj_file, report_location, opt_slab_energy, adatom_pot_energy, opt_slab_magmom, gpaw_calc, solver_fmax, solver_maxstep, calc_type, fix_layer, fix_option = 'bottom'): interm_gpw='/'.join(traj_file.split('/')[:-1]+['slab_interm.gpw']) if os.path.isfile(interm_gpw): ads_slab, gpaw_calc=restart(interm_gpw) else: ads_slab=read(traj_file) pbc_checker(ads_slab) calc_dict=gpaw_calc.__dict__['parameters'] if calc_dict['spinpol']: ads_slab=apply_magmom(opt_slab_magmom,ads_slab) fixed_line_constrain=FixedLine(a=-1,direction=[0,0,1]) slab_c_coord,cluster=detect_cluster(ads_slab) if fix_option == 'bottom': unique_cluster_index=sorted(set(cluster), key=cluster.index)[fix_layer-1] max_height_fix=max(slab_c_coord[cluster==unique_cluster_index]) fix_mask=ads_slab.positions[:,2]<(max_height_fix+0.05) #add 0.05 Ang to make sure all bottom fixed if calc_type == 'grid': fixed_atom_constrain=FixAtoms(mask=fix_mask) ads_slab.set_constraint([fixed_atom_constrain,fixed_line_constrain]) elif calc_type == 'normal' and fix_option == 'bottom': fixed_atom_constrain=FixAtoms(mask=fix_mask) ads_slab.set_constraint(fixed_atom_constrain) ads_slab.set_calculator(gpaw_calc) location='/'.join(traj_file.split('/')[:-1]) f=paropen(report_location,'a') parprint('Calculating '+('/'.join(location.split('/')[-2:]))+' adsorption site...',file=f) f.close() opt.relax(ads_slab,location,fmax=solver_fmax,maxstep=solver_maxstep) init_ads_site=traj_file.split('/')[-2] E_slab_ads=ads_slab.get_potential_energy() opt_slab_energy=opt_slab_energy adsorption_energy=E_slab_ads-(opt_slab_energy+adatom_pot_energy) final_ads_site=list(np.round(ads_slab.get_positions()[-1][:2],decimals=3)) final_ads_site_str='_'.join([str(i) for i in final_ads_site]) return init_ads_site, adsorption_energy, final_ads_site_str def skip_ads_calculated(report_location, all_gpw_files, init_adsorbates_site_lst, adsorption_energy_lst, final_adsorbates_site_lst, opt_slab_energy, adatom_pot_energy): f = paropen(report_location,'a') parprint('Restarting...',file=f) for gpw_file in all_gpw_files: location='/'.join(gpw_file.split('/')[:-1]) parprint('Skipping '+('/'.join(location.split('/')[-2:]))+' adsorption site...',file=f) atoms=restart(gpw_file)[0] init_adsorbates_site_lst.append(gpw_file.split('/')[-2]) E_slab_ads=atoms.get_potential_energy() adsorption_energy=E_slab_ads-(opt_slab_energy+adatom_pot_energy) adsorption_energy_lst.append(adsorption_energy) final_ads_site=list(np.round(atoms.get_positions()[-1][:2],decimals=3)) final_ads_site_str='_'.join([str(i) for i in final_ads_site]) final_adsorbates_site_lst.append(final_ads_site_str) parprint(' ',file=f) f.close() return init_adsorbates_site_lst,adsorption_energy_lst,final_adsorbates_site_lst def initialize_report(report_location,gpaw_calc): calc_dict=gpaw_calc.__dict__['parameters'] if world.rank==0 and os.path.isfile(report_location): os.remove(report_location) f = paropen(report_location,'a') parprint('Initial Parameters:', file=f) parprint('\t'+'xc: '+calc_dict['xc'],file=f) parprint('\t'+'h: '+str(calc_dict['h']),file=f) parprint('\t'+'kpts: '+str(calc_dict['kpts']),file=f) parprint('\t'+'sw: '+str(calc_dict['occupations']),file=f) parprint('\t'+'spin polarized: '+str(calc_dict['spinpol']),file=f) if calc_dict['spinpol']: parprint('\t'+'magmom: initialize magnetic moment from slab calculation.',file=f) parprint(' ',file=f) f.close() class ads_auto_select: def __init__(self, element, miller_index_tight, gpaw_calc, ads, adatom_pot_energy, solver_fmax, solver_max_step, restart_calc, size=(1,1), #xy size fix_layer=2, fix_option='bottom'): #initalize variable size_xy=str(size[0])+'x'+str(size[1]) target_dir='results/'+element+'/'+'ads/'+size_xy+'/'+miller_index_tight report_location=target_dir+'_autocat_results_report.txt' all_ads_file_loc=target_dir+'/'+'adsorbates/'+str(ads)+'/' ## TO-DO: need to figure out how to calculate adsorption energy for larger system # self.gpaw_calc=gpaw_calc # self.calc_dict=self.gpaw_calc.__dict__['parameters'] # self.ads=ads # self.all_ads_file_loc=self.target_dir+'/'+'adsorbates/'+str(self.ads)+'/' # self.adatom_pot_energy=adatom_pot_energy ##generate report initialize_report(report_location, gpaw_calc) ##compute clean slab energy opt_slab_energy, opt_slab_magmom=get_clean_slab(element, miller_index_tight, report_location, target_dir,size_xy, fix_layer,solver_fmax,solver_max_step, gpaw_calc) #opt_slab=self.get_clean_slab() ##start adsorption calculation adsorption_energy_dict={} init_adsorbates_site_lst=[] final_adsorbates_site_lst=[] adsorption_energy_lst=[] all_bridge_traj_files=glob(all_ads_file_loc+'bridge/*/input.traj') all_ontop_traj_files=glob(all_ads_file_loc+'ontop/*/input.traj') all_hollow_traj_files=glob(all_ads_file_loc+'hollow/*/input.traj') all_traj_files=all_bridge_traj_files+all_ontop_traj_files+all_hollow_traj_files all_bridge_gpw_files=glob(all_ads_file_loc+'bridge/*/slab.gpw') all_ontop_gpw_files=glob(all_ads_file_loc+'ontop/*/slab.gpw') all_hollow_gpw_files=glob(all_ads_file_loc+'hollow/*/slab.gpw') all_gpw_files=all_bridge_gpw_files+all_ontop_gpw_files+all_hollow_gpw_files ## restart if restart_calc==True and len(all_gpw_files)>=1: init_adsorbates_site_lst,adsorption_energy_lst,final_adsorbates_site_lst=skip_ads_calculated(report_location, all_gpw_files, init_adsorbates_site_lst, adsorption_energy_lst, final_adsorbates_site_lst, opt_slab_energy, adatom_pot_energy) all_gpw_files_ads_site=['/'.join(i.split('/')[:-1]) for i in all_gpw_files] all_traj_files=[i for i in all_traj_files if '/'.join(i.split('/')[:-1]) not in all_gpw_files_ads_site] for traj_file in all_traj_files: #init_adsobates_site, adsorption_energy, final_adsorbates_site=self.adsorption_energy_calculator(traj_file,opt_slab) output_lst=adsorption_energy_calculator(traj_file,report_location, opt_slab_energy,adatom_pot_energy, opt_slab_magmom,gpaw_calc, solver_fmax,solver_max_step, calc_type='normal', fix_layer=fix_layer,fix_option = fix_option, ) init_adsorbates_site_lst.append(output_lst[0]) adsorption_energy_lst.append(output_lst[1]) final_adsorbates_site_lst.append(output_lst[2]) adsorption_energy_dict['init_sites[x_y](Ang)']=init_adsorbates_site_lst adsorption_energy_dict['final_sites[x_y](Ang)']=final_adsorbates_site_lst adsorption_energy_dict['adsorption_energy(eV)']=adsorption_energy_lst ads_df=
pd.DataFrame(adsorption_energy_dict)
pandas.DataFrame
import pandas as pd from pandas import Period, offsets from pandas.util import testing as tm from pandas.tseries.frequencies import _period_code_map class TestFreqConversion(tm.TestCase): "Test frequency conversion of date objects" def test_asfreq_corner(self): val = Period(freq='A', year=2007) result1 = val.asfreq('5t') result2 = val.asfreq('t') expected = Period('2007-12-31 23:59', freq='t') self.assertEqual(result1.ordinal, expected.ordinal) self.assertEqual(result1.freqstr, '5T') self.assertEqual(result2.ordinal, expected.ordinal) self.assertEqual(result2.freqstr, 'T') def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq='A', year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq='Q', year=2007, quarter=1) ival_A_to_Q_end = Period(freq='Q', year=2007, quarter=4) ival_A_to_M_start = Period(freq='M', year=2007, month=1) ival_A_to_M_end = Period(freq='M', year=2007, month=12) ival_A_to_W_start = Period(freq='W', year=2007, month=1, day=1) ival_A_to_W_end = Period(freq='W', year=2007, month=12, day=31) ival_A_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_A_to_B_end = Period(freq='B', year=2007, month=12, day=31) ival_A_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_A_to_D_end = Period(freq='D', year=2007, month=12, day=31) ival_A_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_A_to_T_end = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_A_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_A_to_S_end = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_AJAN_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq='D', year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq='D', year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq='D', year=2006, month=12, day=1) self.assertEqual(ival_A.asfreq('Q', 'S'), ival_A_to_Q_start) self.assertEqual(ival_A.asfreq('Q', 'e'), ival_A_to_Q_end) self.assertEqual(ival_A.asfreq('M', 's'), ival_A_to_M_start) self.assertEqual(ival_A.asfreq('M', 'E'), ival_A_to_M_end) self.assertEqual(ival_A.asfreq('W', 'S'), ival_A_to_W_start) self.assertEqual(ival_A.asfreq('W', 'E'), ival_A_to_W_end) self.assertEqual(ival_A.asfreq('B', 'S'), ival_A_to_B_start) self.assertEqual(ival_A.asfreq('B', 'E'), ival_A_to_B_end) self.assertEqual(ival_A.asfreq('D', 'S'), ival_A_to_D_start) self.assertEqual(ival_A.asfreq('D', 'E'), ival_A_to_D_end) self.assertEqual(ival_A.asfreq('H', 'S'), ival_A_to_H_start) self.assertEqual(ival_A.asfreq('H', 'E'), ival_A_to_H_end) self.assertEqual(ival_A.asfreq('min', 'S'), ival_A_to_T_start) self.assertEqual(ival_A.asfreq('min', 'E'), ival_A_to_T_end) self.assertEqual(ival_A.asfreq('T', 'S'), ival_A_to_T_start) self.assertEqual(ival_A.asfreq('T', 'E'), ival_A_to_T_end) self.assertEqual(ival_A.asfreq('S', 'S'), ival_A_to_S_start) self.assertEqual(ival_A.asfreq('S', 'E'), ival_A_to_S_end) self.assertEqual(ival_AJAN.asfreq('D', 'S'), ival_AJAN_to_D_start) self.assertEqual(ival_AJAN.asfreq('D', 'E'), ival_AJAN_to_D_end) self.assertEqual(ival_AJUN.asfreq('D', 'S'), ival_AJUN_to_D_start) self.assertEqual(ival_AJUN.asfreq('D', 'E'), ival_AJUN_to_D_end) self.assertEqual(ival_ANOV.asfreq('D', 'S'), ival_ANOV_to_D_start) self.assertEqual(ival_ANOV.asfreq('D', 'E'), ival_ANOV_to_D_end) self.assertEqual(ival_A.asfreq('A'), ival_A) def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq='Q', year=2007, quarter=1) ival_Q_end_of_year = Period(freq='Q', year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq='A', year=2007) ival_Q_to_M_start = Period(freq='M', year=2007, month=1) ival_Q_to_M_end = Period(freq='M', year=2007, month=3) ival_Q_to_W_start = Period(freq='W', year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq='W', year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq='B', year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq='D', year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq='H', year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_Q_to_T_end = Period(freq='Min', year=2007, month=3, day=31, hour=23, minute=59) ival_Q_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_Q_to_S_end = Period(freq='S', year=2007, month=3, day=31, hour=23, minute=59, second=59) ival_QEJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq='D', year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq='D', year=2006, month=9, day=30) self.assertEqual(ival_Q.asfreq('A'), ival_Q_to_A) self.assertEqual(ival_Q_end_of_year.asfreq('A'), ival_Q_to_A) self.assertEqual(ival_Q.asfreq('M', 'S'), ival_Q_to_M_start) self.assertEqual(ival_Q.asfreq('M', 'E'), ival_Q_to_M_end) self.assertEqual(ival_Q.asfreq('W', 'S'), ival_Q_to_W_start) self.assertEqual(ival_Q.asfreq('W', 'E'), ival_Q_to_W_end) self.assertEqual(ival_Q.asfreq('B', 'S'), ival_Q_to_B_start) self.assertEqual(ival_Q.asfreq('B', 'E'), ival_Q_to_B_end) self.assertEqual(ival_Q.asfreq('D', 'S'), ival_Q_to_D_start) self.assertEqual(ival_Q.asfreq('D', 'E'), ival_Q_to_D_end) self.assertEqual(ival_Q.asfreq('H', 'S'), ival_Q_to_H_start) self.assertEqual(ival_Q.asfreq('H', 'E'), ival_Q_to_H_end) self.assertEqual(ival_Q.asfreq('Min', 'S'), ival_Q_to_T_start) self.assertEqual(ival_Q.asfreq('Min', 'E'), ival_Q_to_T_end) self.assertEqual(ival_Q.asfreq('S', 'S'), ival_Q_to_S_start) self.assertEqual(ival_Q.asfreq('S', 'E'), ival_Q_to_S_end) self.assertEqual(ival_QEJAN.asfreq('D', 'S'), ival_QEJAN_to_D_start) self.assertEqual(ival_QEJAN.asfreq('D', 'E'), ival_QEJAN_to_D_end) self.assertEqual(ival_QEJUN.asfreq('D', 'S'), ival_QEJUN_to_D_start) self.assertEqual(ival_QEJUN.asfreq('D', 'E'), ival_QEJUN_to_D_end) self.assertEqual(ival_Q.asfreq('Q'), ival_Q) def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq='M', year=2007, month=1) ival_M_end_of_year = Period(freq='M', year=2007, month=12) ival_M_end_of_quarter = Period(freq='M', year=2007, month=3) ival_M_to_A = Period(freq='A', year=2007) ival_M_to_Q = Period(freq='Q', year=2007, quarter=1) ival_M_to_W_start = Period(freq='W', year=2007, month=1, day=1) ival_M_to_W_end = Period(freq='W', year=2007, month=1, day=31) ival_M_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_M_to_B_end = Period(freq='B', year=2007, month=1, day=31) ival_M_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_M_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_M_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_M_to_H_end = Period(freq='H', year=2007, month=1, day=31, hour=23) ival_M_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_M_to_T_end = Period(freq='Min', year=2007, month=1, day=31, hour=23, minute=59) ival_M_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_M_to_S_end = Period(freq='S', year=2007, month=1, day=31, hour=23, minute=59, second=59) self.assertEqual(ival_M.asfreq('A'), ival_M_to_A) self.assertEqual(ival_M_end_of_year.asfreq('A'), ival_M_to_A) self.assertEqual(ival_M.asfreq('Q'), ival_M_to_Q) self.assertEqual(ival_M_end_of_quarter.asfreq('Q'), ival_M_to_Q) self.assertEqual(ival_M.asfreq('W', 'S'), ival_M_to_W_start) self.assertEqual(ival_M.asfreq('W', 'E'), ival_M_to_W_end) self.assertEqual(ival_M.asfreq('B', 'S'), ival_M_to_B_start) self.assertEqual(ival_M.asfreq('B', 'E'), ival_M_to_B_end) self.assertEqual(ival_M.asfreq('D', 'S'), ival_M_to_D_start) self.assertEqual(ival_M.asfreq('D', 'E'), ival_M_to_D_end) self.assertEqual(ival_M.asfreq('H', 'S'), ival_M_to_H_start) self.assertEqual(ival_M.asfreq('H', 'E'), ival_M_to_H_end) self.assertEqual(ival_M.asfreq('Min', 'S'), ival_M_to_T_start) self.assertEqual(ival_M.asfreq('Min', 'E'), ival_M_to_T_end) self.assertEqual(ival_M.asfreq('S', 'S'), ival_M_to_S_start) self.assertEqual(ival_M.asfreq('S', 'E'), ival_M_to_S_end) self.assertEqual(ival_M.asfreq('M'), ival_M) def test_conv_weekly(self): # frequency conversion tests: from Weekly Frequency ival_W = Period(freq='W', year=2007, month=1, day=1) ival_WSUN = Period(freq='W', year=2007, month=1, day=7) ival_WSAT = Period(freq='W-SAT', year=2007, month=1, day=6) ival_WFRI = Period(freq='W-FRI', year=2007, month=1, day=5) ival_WTHU = Period(freq='W-THU', year=2007, month=1, day=4) ival_WWED = Period(freq='W-WED', year=2007, month=1, day=3) ival_WTUE = Period(freq='W-TUE', year=2007, month=1, day=2) ival_WMON = Period(freq='W-MON', year=2007, month=1, day=1) ival_WSUN_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_WSUN_to_D_end = Period(freq='D', year=2007, month=1, day=7) ival_WSAT_to_D_start = Period(freq='D', year=2006, month=12, day=31) ival_WSAT_to_D_end = Period(freq='D', year=2007, month=1, day=6) ival_WFRI_to_D_start =
Period(freq='D', year=2006, month=12, day=30)
pandas.Period
"""Tests for the sdv.constraints.tabular module.""" import uuid import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, UniqueCombinations) def dummy_transform(): pass def dummy_reverse_transform(): pass def dummy_is_valid(): pass class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid' # Run instance = CustomConstraint( transform=dummy_transform, reverse_transform=dummy_reverse_transform, is_valid=is_valid_fqn ) # Assert assert instance.transform == dummy_transform assert instance.reverse_transform == dummy_reverse_transform assert instance.is_valid == dummy_is_valid class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c'].items()] except ValueError: assert False def test_transform_non_string(self): """Test the ``UniqueCombinations.transform`` method with non strings. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns as UUIDs. Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a') pd.testing.assert_series_equal(expected_out_a, out['a']) try: [uuid.UUID(u) for c, u in out['b#c#d'].items()] except ValueError: assert False def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_non_string(self): """Test the ``UniqueCombinations.reverse_transform`` method with a non string column. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run transformed_data = instance.transform(table_data) out = instance.reverse_transform(transformed_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test___init___strict_false(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is False assert instance._high_is_scalar is None assert instance._low_is_scalar is None assert instance._drop is None def test___init___all_parameters_passed(self): """Test the ``GreaterThan.__init__`` method. The passed arguments should be stored as attributes. Input: - low = 'a' - high = 'b' - strict = True - drop = 'high' - high_is_scalar = True - low_is_scalar = False Side effects: - instance._low == 'a' - instance._high == 'b' - instance._stric == True - instance._drop = 'high' - instance._high_is_scalar = True - instance._low_is_scalar = False """ # Run instance = GreaterThan(low='a', high='b', strict=True, drop='high', high_is_scalar=True, low_is_scalar=False) # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is True assert instance._high_is_scalar is True assert instance._low_is_scalar is False assert instance._drop == 'high' def test_fit__low_is_scalar_is_none_determined_as_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if low is a scalar if ``_low_is_scalar`` is None. Input: - Table without ``low`` in columns. Side Effect: - ``_low_is_scalar`` should be set to ``True``. """ # Setup instance = GreaterThan(low=3, high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._low_is_scalar is True def test_fit__low_is_scalar_is_none_determined_as_column(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if low is a column name if ``_low_is_scalar`` is None. Input: - Table with ``low`` in columns. Side Effect: - ``_low_is_scalar`` should be set to ``False``. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._low_is_scalar is False def test_fit__high_is_scalar_is_none_determined_as_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if high is a scalar if ``_high_is_scalar`` is None. Input: - Table without ``high`` in columns. Side Effect: - ``_high_is_scalar`` should be set to ``True``. """ # Setup instance = GreaterThan(low='a', high=3) # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._high_is_scalar is True def test_fit__high_is_scalar_is_none_determined_as_column(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should figure out if high is a column name if ``_high_is_scalar`` is None. Input: - Table with ``high`` in columns. Side Effect: - ``_high_is_scalar`` should be set to ``False``. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._high_is_scalar is False def test_fit__high_is_scalar__low_is_scalar_raises_error(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should raise an error if `_low_is_scalar` and `_high_is_scalar` are true. Input: - Table with one column. Side Effect: - ``TypeError`` is raised. """ # Setup instance = GreaterThan(low=1, high=2) # Run / Asserts table_data = pd.DataFrame({'a': [1, 2, 3]}) with pytest.raises(TypeError): instance.fit(table_data) def test_fit__column_to_reconstruct_drop_high(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to ``instance._high`` if ``instance_drop`` is `high`. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b', drop='high') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'b' def test_fit__column_to_reconstruct_drop_low(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to ``instance._low`` if ``instance_drop`` is `low`. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', drop='low') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'a' def test_fit__column_to_reconstruct_default(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to `high` by default. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._high`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'b' def test_fit__column_to_reconstruct_high_is_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_column_to_reconstruct`` to `low` if ``instance._high_is_scalar`` is ``True``. Input: - Table with two columns. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b', high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._column_to_reconstruct == 'a' def test_fit__diff_column_one_column(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_diff_column`` to the one column in ``instance.constraint_columns`` plus a token if there is only one column in that set. Input: - Table with one column. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high=3, high_is_scalar=True) # Run table_data = pd.DataFrame({'a': [1, 2, 3]}) instance.fit(table_data) # Asserts assert instance._diff_column == 'a#' def test_fit__diff_column_multiple_columns(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should set ``_diff_column`` to the two columns in ``instance.constraint_columns`` separated by a token if there both columns are in that set. Input: - Table with two column. Side Effect: - ``_column_to_reconstruct`` is ``instance._low`` """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance.fit(table_data) # Asserts assert instance._diff_column == 'a#b' def test_fit_int(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of integers. Side Effect: - The _dtype attribute gets `int` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'i' def test_fit_float(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns with the high one being made of float values. Side Effect: - The _dtype attribute gets `float` as the value even if the low column has a different dtype. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_fit_datetime(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should only learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` and ``high_is_scalar`` are ``False``. Input: - Table that contains two constrained columns of datetimes. Side Effect: - The _dtype attribute gets `datetime` as the value. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01']), 'b': pd.to_datetime(['2020-01-02']) }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'M' def test_fit_type__high_is_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should learn and store the ``dtype`` of the ``low`` column as the ``_dtype`` attribute if ``_high_is_scalar`` is ``True``. Input: - Table that contains two constrained columns with the low one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low='a', high=3) # Run table_data = pd.DataFrame({ 'a': [1., 2., 3.], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_fit_type__low_is_scalar(self): """Test the ``GreaterThan.fit`` method. The ``GreaterThan.fit`` method should learn and store the ``dtype`` of the ``high`` column as the ``_dtype`` attribute if ``_low_is_scalar`` is ``True``. Input: - Table that contains two constrained columns with the high one being made of floats. Side Effect: - The _dtype attribute gets `float` as the value. """ # Setup instance = GreaterThan(low=3, high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts assert instance._dtype.kind == 'f' def test_is_valid_strict_false(self): """Test the ``GreaterThan.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - False should be returned for the strictly invalid row and True for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=False) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``GreaterThan.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a strictly valid row, a strictly invalid row and a row that has the same value for both high and low. Output: - True should be returned for the strictly valid row and False for the other two. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_low_is_scalar_high_is_column(self): """Test the ``GreaterThan.is_valid`` method. If low is a scalar, and high is a column name, then the values in that column should all be higher than ``instance._low``. Input: - Table with values above and below low. Output: - True should be returned for the rows where the high column is above low. """ # Setup instance = GreaterThan(low=3, high='b', strict=False, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False], name='b') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_high_is_scalar_low_is_column(self): """Test the ``GreaterThan.is_valid`` method. If high is a scalar, and low is a column name, then the values in that column should all be lower than ``instance._high``. Input: - Table with values above and below high. Output: - True should be returned for the rows where the low column is below high. """ # Setup instance = GreaterThan(low='a', high=2, strict=False, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False], name='a') pd.testing.assert_series_equal(expected_out, out) def test_transform_int_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_int_drop_high(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the high column. Setup: - ``_drop`` is set to ``high``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the high column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_int_drop_low(self): """Test the ``GreaterThan.transform`` method passing a high column of type int. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. It should also drop the low column. Setup: - ``_drop`` is set to ``low``. Input: - Table with two columns two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4) and the low column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_float_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type float. The ``GreaterThan.transform`` method is expected to compute the distance between the high and low columns and create a diff column with the logarithm of the distance + 1. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with two constrained columns at a constant distance of exactly 3 and one additional dummy column. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_column = 'a#b' # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4., 5., 6.], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_datetime_drop_none(self): """Test the ``GreaterThan.transform`` method passing a high column of type datetime. If the columns are of type datetime, ``transform`` is expected to convert the timedelta distance into numeric before applying the +1 and logarithm. Setup: - ``_drop`` is set to ``None``, so all original columns will be in output. Input: - Table with values at a distance of exactly 1 second. Output: - Same table with a diff column of the logarithms of the dinstance in nanoseconds + 1, which is np.log(1_000_000_001). """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._diff_column = 'a#b' instance._is_datetime = True # Run table_data = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_not_all_columns_provided(self): """Test the ``GreaterThan.transform`` method. If some of the columns needed for the transform are missing, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, fit_columns_model=False) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame({'a': ['a', 'b', 'c']})) def test_transform_high_is_scalar(self): """Test the ``GreaterThan.transform`` method with high as scalar. The ``GreaterThan.transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_high_is_scalar`` is ``True``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low='a', high=5, strict=True, high_is_scalar=True) instance._diff_column = 'a#b' instance.constraint_columns = ['a'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(5), np.log(4), np.log(3)], }) pd.testing.assert_frame_equal(out, expected_out) def test_transform_low_is_scalar(self): """Test the ``GreaterThan.transform`` method with high as scalar. The ``GreaterThan.transform`` method is expected to compute the distance between the high scalar value and the low column and create a diff column with the logarithm of the distance + 1. Setup: - ``_high`` is set to 5 and ``_high_is_scalar`` is ``True``. Input: - Table with one low column and two dummy columns. Output: - Same table with a diff column of the logarithms of the distances + 1, which is np.log(4). """ # Setup instance = GreaterThan(low=2, high='b', strict=True, low_is_scalar=True) instance._diff_column = 'a#b' instance.constraint_columns = ['b'] # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(3), np.log(4), np.log(5)], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._diff_column = 'a#b' instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'c': [7, 8, 9], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_float_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype float. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column - convert the output to float values - add back the dropped column Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the high column replaced by the low one + 3, as float values and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = np.dtype('float') instance._diff_column = 'a#b' instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1.1, 2.2, 3.3], 'c': [7, 8, 9], 'b': [4.1, 5.2, 6.3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_high(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column - convert the output to datetimes Setup: - ``_drop`` is set to ``high``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the high column replaced by the low one + one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='high') instance._dtype = np.dtype('<M8[ns]') instance._diff_column = 'a#b' instance._is_datetime = True instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'c': [1, 2], 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high column - convert the output to integers - add back the dropped column Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(4). Output: - Same table with the low column replaced by the high one - 3, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._diff_column = 'a#b' instance._column_to_reconstruct = 'a' # Run transformed = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'c': [7, 8, 9], 'a': [1, 2, 3], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_low(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - subtract from the high column - convert the output to datetimes Setup: - ``_drop`` is set to ``low``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). Output: - Same table with the low column replaced by the high one - one second and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True, drop='low') instance._dtype = np.dtype('<M8[ns]') instance._diff_column = 'a#b' instance._is_datetime = True instance._column_to_reconstruct = 'a' # Run transformed = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2], 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']) }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_int_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype int. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low column when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._diff_column = 'a#b' instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_datetime_drop_none(self): """Test the ``GreaterThan.reverse_transform`` method for dtype datetime. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - convert the distance to a timedelta - add the low column when the row is invalid - convert the output to datetimes Setup: - ``_drop`` is set to ``None``. Input: - Table with a diff column that contains the constant np.log(1_000_000_001). The table should have one invalid row where the low column is higher than the high column. Output: - Same table with the high column replaced by the low one + one second for all invalid rows, and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high='b', strict=True) instance._dtype = np.dtype('<M8[ns]') instance._diff_column = 'a#b' instance._is_datetime = True instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-01T00:00:01']), 'c': [1, 2], 'a#b': [np.log(1_000_000_001), np.log(1_000_000_001)], }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': pd.to_datetime(['2020-01-01T00:00:00', '2020-01-02T00:00:00']), 'b': pd.to_datetime(['2020-01-01T00:00:01', '2020-01-02T00:00:01']), 'c': [1, 2] }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_low_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with low as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - add the low value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_low`` is set to an int and ``_low_is_scalar`` is ``True``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low value is higher than the high column. Output: - Same table with the high column replaced by the low value + 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low=3, high='b', strict=True, low_is_scalar=True) instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._diff_column = 'a#b' instance._column_to_reconstruct = 'b' # Run transformed = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 1, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 6, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform_high_is_scalar(self): """Test the ``GreaterThan.reverse_transform`` method with high as a scalar. The ``GreaterThan.reverse_transform`` method is expected to: - apply an exponential to the input - subtract 1 - subtract from the high value when the row is invalid - convert the output to integers Setup: - ``_drop`` is set to ``None``. - ``_high`` is set to an int and ``_high_is_scalar`` is ``True``. Input: - Table with a diff column that contains the constant np.log(4). The table should have one invalid row where the low column is higher than the high value. Output: - Same table with the low column replaced by the high one - 3 for all invalid rows, as int and the diff column dropped. """ # Setup instance = GreaterThan(low='a', high=3, strict=True, high_is_scalar=True) instance._dtype = pd.Series([1]).dtype # exact dtype (32 or 64) depends on OS instance._diff_column = 'a#b' instance._column_to_reconstruct = 'a' # Run transformed = pd.DataFrame({ 'a': [1, 2, 4], 'b': [4, 5, 6], 'c': [7, 8, 9], 'a#b': [np.log(4)] * 3, }) out = instance.reverse_transform(transformed) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 0], 'b': [4, 5, 6], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) class TestPositive(): def test__init__(self): """ Test the ``Positive.__init__`` method. The method is expected to set the ``_low`` instance variable to 0, the ``_low_is_scalar`` variable to ``True`` and the ``_high_is_scalar`` variable to ``False``. The rest of the parameters should be passed. Input: - strict = True - high = 'a' - drop = None Side effects: - instance._low == 0 - instance._high == 'a' - instance._strict == True - instance._high_is_scalar = False - instance._low_is_scalar = True - instance._drop = None """ # Run instance = Positive(high='a', strict=True, drop=None) # Asserts assert instance._low == 0 assert instance._high == 'a' assert instance._strict is True assert instance._high_is_scalar is False assert instance._low_is_scalar is True assert instance._drop is None class TestNegative(): def test__init__(self): """ Test the ``Negative.__init__`` method. The method is expected to set the ``_high`` instance variable to 0, the ``_high_is_scalar`` variable to ``True`` and the ``_low_is_scalar`` variable to ``False``. The rest of the parameters should be passed. Input: - strict = True - low = 'a' - drop = None Side effects: - instance._low == 'a' - instance._high == 0 - instance._strict == True - instance._high_is_scalar = True - instance._low_is_scalar = False - instance._drop = None """ # Run instance = Negative(low='a', strict=True, drop=None) # Asserts assert instance._low == 'a' assert instance._high == 0 assert instance._strict is True assert instance._high_is_scalar is True assert instance._low_is_scalar is False assert instance._drop is None def new_column(data): """Formula to be used for the ``TestColumnFormula`` class.""" return data['a'] + data['b'] class TestColumnFormula(): def test___init__(self): """Test the ``ColumnFormula.__init__`` method. It is expected to create a new Constraint instance and import the formula to use for the computation. Input: - column = 'c' - formula = new_column """ # Setup column = 'c' # Run instance = ColumnFormula(column=column, formula=new_column) # Assert assert instance._column == column assert instance._formula == new_column def test_is_valid_valid(self): """Test the ``ColumnFormula.is_valid`` method for a valid data. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_valid(self): """Test the ``ColumnFormula.is_valid`` method for a non-valid data. If the data does not fulfill the formula, result is a series of ``False`` values. Input: - Table data not fulfilling the formula (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 2, 3] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``ColumnFormula.transform`` method. It is expected to drop the indicated column from the table. Input: - Table data (pandas.DataFrame) Output: - Table data without the indicated column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform(self): """Test the ``ColumnFormula.reverse_transform`` method. It is expected to compute the indicated column by applying the given formula. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 1, 1] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) pd.testing.assert_frame_equal(expected_out, out) class TestRounding(): def test___init__(self): """Test the ``Rounding.__init__`` method. It is expected to create a new Constraint instance and set the rounding args. Input: - columns = ['b', 'c'] - digits = 2 """ # Setup columns = ['b', 'c'] digits = 2 # Run instance = Rounding(columns=columns, digits=digits) # Assert assert instance._columns == columns assert instance._digits == digits def test___init__invalid_digits(self): """Test the ``Rounding.__init__`` method with an invalid argument. Pass in an invalid ``digits`` argument, and expect a ValueError. Input: - columns = ['b', 'c'] - digits = 20 """ # Setup columns = ['b', 'c'] digits = 20 # Run with pytest.raises(ValueError): Rounding(columns=columns, digits=digits) def test___init__invalid_tolerance(self): """Test the ``Rounding.__init__`` method with an invalid argument. Pass in an invalid ``tolerance`` argument, and expect a ValueError. Input: - columns = ['b', 'c'] - digits = 2 - tolerance = 0.1 """ # Setup columns = ['b', 'c'] digits = 2 tolerance = 0.1 # Run with pytest.raises(ValueError): Rounding(columns=columns, digits=digits, tolerance=tolerance) def test_is_valid_positive_digits(self): """Test the ``Rounding.is_valid`` method for a positive digits argument. Input: - Table data with desired decimal places (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup columns = ['b', 'c'] digits = 2 tolerance = 1e-3 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.12, 5.51, None, 6.941, 1.129], 'c': [5.315, 7.12, 1.12, 9.131, 12.329], 'd': ['a', 'b', 'd', 'e', None], 'e': [123.31598, -1.12001, 1.12453, 8.12129, 1.32923] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, True, False, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_negative_digits(self): """Test the ``Rounding.is_valid`` method for a negative digits argument. Input: - Table data with desired decimal places (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup columns = ['b'] digits = -2 tolerance = 1 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [401, 500, 6921, 799, None], 'c': [5.3134, 7.1212, 9.1209, 101.1234, None], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False, True, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_zero_digits(self): """Test the ``Rounding.is_valid`` method for a zero digits argument. Input: - Table data not with the desired decimal places (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup columns = ['b', 'c'] digits = 0 tolerance = 1e-4 instance = Rounding(columns=columns, digits=digits, tolerance=tolerance) # Run table_data = pd.DataFrame({ 'a': [1, 2, None, 3, 4], 'b': [4, 5.5, 1.2, 6.0001, 5.99999], 'c': [5, 7.12, 1.31, 9.00001, 4.9999], 'd': ['a', 'b', None, 'd', 'e'], 'e': [2.1254, 17.12123, 124.12, 123.0112, -9.129434] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_reverse_transform_positive_digits(self): """Test the ``Rounding.reverse_transform`` method with positive digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b', 'c'] digits = 3 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, None, 4], 'b': [4.12345, None, 5.100, 6.0001, 1.7999], 'c': [1.1, 1.234, 9.13459, 4.3248, 6.1312], 'd': ['a', 'b', 'd', 'e', None] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, None, 4], 'b': [4.123, None, 5.100, 6.000, 1.800], 'c': [1.100, 1.234, 9.135, 4.325, 6.131], 'd': ['a', 'b', 'd', 'e', None] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_negative_digits(self): """Test the ``Rounding.reverse_transform`` method with negative digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b'] digits = -3 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [41234.5, None, 5000, 6001, 5928], 'c': [1.1, 1.23423, 9.13459, 12.12125, 18.12152], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [41000.0, None, 5000.0, 6000.0, 6000.0], 'c': [1.1, 1.23423, 9.13459, 12.12125, 18.12152], 'd': ['a', 'b', 'd', 'e', 'f'] }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_zero_digits(self): """Test the ``Rounding.reverse_transform`` method with zero digits. Expect that the columns are rounded to the specified integer digit. Input: - Table data with the column with incorrect values (pandas.DataFrame) Output: - Table data with the computed column (pandas.DataFrame) """ # Setup columns = ['b', 'c'] digits = 0 instance = Rounding(columns=columns, digits=digits) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.12345, None, 5.0, 6.01, 7.9], 'c': [1.1, 1.0, 9.13459, None, 8.89], 'd': ['a', 'b', 'd', 'e', 'f'] }) out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3, 4, 5], 'b': [4.0, None, 5.0, 6.0, 8.0], 'c': [1.0, 1.0, 9.0, None, 9.0], 'd': ['a', 'b', 'd', 'e', 'f'] }) pd.testing.assert_frame_equal(expected_out, out) def transform(data, low, high): """Transform to be used for the TestBetween class.""" data = (data - low) / (high - low) * 0.95 + 0.025 return np.log(data / (1.0 - data)) class TestBetween(): def test_transform_scalar_scalar(self): """Test the ``Between.transform`` method by passing ``low`` and ``high`` as scalars. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [4, 5, 6], }) instance.fit(table_data) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [4, 5, 6], 'a#0.0#1.0': transform(table_data[column], low, high) }) pd.testing.assert_frame_equal(expected_out, out) def test_transform_scalar_column(self): """Test the ``Between.transform`` method with ``low`` as scalar and ``high`` as a column. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0.5, 1, 6], }) instance.fit(table_data) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0.5, 1, 6], 'a#0.0#b': transform(table_data[column], low, table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test_transform_column_scalar(self): """Test the ``Between.transform`` method with ``low`` as a column and ``high`` as scalar. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0, -1, 0.5], }) instance.fit(table_data) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0, -1, 0.5], 'a#b#1.0': transform(table_data[column], table_data[low], high) }) pd.testing.assert_frame_equal(expected_out, out) def test_transform_column_column(self): """Test the ``Between.transform`` method by passing ``low`` and ``high`` as columns. It is expected to create a new column similar to the constraint ``column``, and then scale and apply a logit function to that column. Input: - Table data (pandas.DataFrame) Output: - Table data with an extra column containing the transformed ``column`` (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0, -1, 0.5], 'c': [0.5, 1, 6] }) instance.fit(table_data) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_scalar_scalar(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as scalars. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [4, 5, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [4, 5, 6], 'a#0.0#1.0': transform(table_data[column], low, high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_scalar_column(self): """Test ``Between.reverse_transform`` with ``low`` as scalar and ``high`` as a column. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) table_data = pd.DataFrame({ 'b': [0.5, 1, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0.5, 1, 6], 'a#0.0#b': transform(table_data[column], low, table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_scalar(self): """Test ``Between.reverse_transform`` with ``low`` as a column and ``high`` as scalar. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 1.0 instance = Between(column=column, low=low, high=high, high_is_scalar=True) table_data = pd.DataFrame({ 'b': [0, -1, 0.5], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0, -1, 0.5], 'a#b#1.0': transform(table_data[column], table_data[low], high) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_reverse_transform_column_column(self): """Test ``Between.reverse_transform`` with ``low`` and ``high`` as columns. It is expected to recover the original table which was transformed, but with different column order. It does so by applying a sigmoid to the transformed column and then scaling it back to the original space. It also replaces the transformed column with an equal column but with the original name. Input: - Transformed table data (pandas.DataFrame) Output: - Original table data, without necessarily keepying the column order (pandas.DataFrame) """ # Setup column = 'a' low = 'b' high = 'c' instance = Between(column=column, low=low, high=high) table_data = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a': [0.1, 0.5, 0.9] }) # Run instance.fit(table_data) transformed = pd.DataFrame({ 'b': [0, -1, 0.5], 'c': [0.5, 1, 6], 'a#b#c': transform(table_data[column], table_data[low], table_data[high]) }) out = instance.reverse_transform(transformed) # Assert expected_out = table_data pd.testing.assert_frame_equal(expected_out, out) def test_is_valid_strict_true(self): """Test the ``Between.is_valid`` method with strict True. If strict is True, equal values should count as invalid. Input: - Table with a valid row, a strictly invalid row and an invalid row. (pandas.DataFrame) Output: - True should be returned for the valid row and False for the other two. (pandas.Series) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, strict=True, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 1, 3], }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, False, False]) pd.testing.assert_series_equal(expected_out, out, check_names=False) def test_is_valid_strict_false(self): """Test the ``Between.is_valid`` method with strict False. If strict is False, equal values should count as valid. Input: - Table with a valid row, a strictly invalid row and an invalid row. (pandas.DataFrame) Output: - True should be returned for the first two rows, and False for the last one (pandas.Series) """ # Setup column = 'a' low = 0.0 high = 1.0 instance = Between(column=column, low=low, high=high, strict=False, high_is_scalar=True, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 1, 3], }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, False]) pd.testing.assert_series_equal(expected_out, out, check_names=False) def test_is_valid_scalar_column(self): """Test the ``Between.is_valid`` method with ``low`` as scalar and ``high`` as a column. Is expected to return whether the constraint ``column`` is between the ``low`` and ``high`` values. Input: - Table data where the last value is greater than ``high``. (pandas.DataFrame) Output: - True should be returned for the two first rows, False for the last one. (pandas.Series) """ # Setup column = 'a' low = 0.0 high = 'b' instance = Between(column=column, low=low, high=high, low_is_scalar=True) # Run table_data = pd.DataFrame({ 'a': [0.1, 0.5, 0.9], 'b': [0.5, 1, 0.6], }) instance.fit(table_data) out = instance.is_valid(table_data) # Assert expected_out =
pd.Series([True, True, False])
pandas.Series
""" This module contains all of the code needed to update the CBO baseline projections and documentation and instructions automatically. This code assumes that format of the websites, spreadsheets, and API we access don't change. If there is a bug, it's probably because that assumption no longer holds true. When this happens, modify the code as needed to account for this. """ import re import requests import pandas as pd from requests_html import HTMLSession from pathlib import Path from datetime import datetime from jinja2 import Template CUR_PATH = Path(__file__).resolve().parent def update_cpim(baseline, text_args): """ Update the CPI-M values in the CBO baseline using the BLS API Parameters ---------- baseline: CBO baseline we're updaint text_args: Dictionary containing the arguments that will be passed to the documentation template Returns ------- baseline: Updated baseline numbers text_args: Updated dictionary with text aruments to fill in the template """ print("Updating CPI-M Values") url = "https://api.bls.gov/publicAPI/v1/timeseries/data/CUSR0000SAM" # fetch BLS data from about url r = requests.get(url) # raise and error if the request fails assert r.status_code == 200 result_json = r.json() # raise error if request was not successful assert result_json["status"] == "REQUEST_SUCCEEDED" # extract the data from the results data = result_json["Results"]["series"][0]["data"] df = pd.DataFrame(data) # convert the values to floats so that the groupby mean only returns # the mean for the value df["value"] = df["value"].astype(float) cpi_mean = df.groupby("year").mean().transpose().round(1) cpi_mean.index = ["CPIM"] # open the current baseline to replace the values for the years pulled # from BLS baseline.update(cpi_mean) # find the average difference between CPIM and CPIU for available years last_year = max(cpi_mean.columns) first_year = min(baseline.columns) # retrieve subset of the DataFrame containing actual CPIM values split_col = int(last_year) - int(first_year) + 1 sub_baseline = baseline[baseline.columns[:split_col]] # find the difference mean_diff = (sub_baseline.loc["CPIM"] - sub_baseline.loc["CPIU"]).mean() # update the future values to reflect the difference between new_vals = {} for col in baseline.columns[split_col:]: cpiu = baseline[col].loc["CPIU"] new_val = cpiu + mean_diff new_vals[col] = [new_val] future_df =
pd.DataFrame(new_vals, index=["CPIM"])
pandas.DataFrame
from collections import namedtuple from pathlib import Path from typing import List import arcpy import numpy as np import pandas as pd def create_county_key(name): """Creates a properly-formatted county key from name. May rename to match current county names. Args: name (str): Name from either the boundaries shapefile's ID field or the district's name field Returns: str: name stripped from any prepended 'xyz_', whitespace, and periods. """ cleaned_name = name.split('_')[-1].casefold().replace(' ', '').replace('.', '') if cleaned_name == 'richland': cleaned_name = 'rich' return cleaned_name def nulls_to_nones(row): """Replace any pandas null values in a list with None Args: row (List): Row of data as a list of arbitrary objects Returns: List: List of data appropriately cleaned. """ new_row = [] for item in row: if pd.isnull(item): new_row.append(None) else: new_row.append(item) return new_row def pairwise(iterable): """Yields an item and the item after it in an iterable Args: iterable (iterable): The collection to iterate over Yields: tuple: An item and the next item """ it = iter(iterable) a = next(it, None) for b in it: yield (a, b) a = b def _fix_change_end_dates(change_end_date, shape_key, shape_end, district_end): #: Change end date scenarios: #: District exists before shape, shape then changes before district does (Duchesne/dagget) #: change date should be when shape is created, not when district changes #: captured properly in existing change end date is next change date - 1 #: Extinct counties: Last record should have a change end date that is max(shp end date, district end date) #: not captured by change end date is next change date - 1 because there is no next date #: Shape exists before district #: captured properly in existing change end date is next change date - 1 because next date is usually #: district creation date #: Extant counties: Shape ends at 2003, district does not have an end date #: captured properly in existing change end date is next change date - 1 because there isn't a next #: so it gets NaT # self.change_dates_df['change_end_date'] = self.change_dates_df['change_date'].shift(-1) - pd.Timedelta(days=1) #: If it's an extinct county (utt in shape name) with a NaT end time, return the latest of the shape or district end #: utt_richland should pass because it's change_date shouldn't be null due to there being a row after for uts_rich if pd.isnull(change_end_date) and 'utt_' in shape_key: return max(shape_end, district_end) #: Otherwise, just return the original date return change_end_date class ChangeDate: """Holds information about unique dates when either shape or district change Attributes: date (datetime): The start date for a new shape or district version county_name (str): Name of the county, cleaned. county_version (str): County join key, 'uts_<name>_S<version>' district_number (str): District number (includes '1S' and '1N') district_version (str): District join key, '<name>_D<version>' """ def __init__(self, date): self.date = date self.county_name = 'n/a' self.county_version = 'n/a' self.district_number = 'n/a' self.district_version = 'n/a' def __repr__(self): return ', '.join([ str(self.date), self.county_name, self.county_version, str(self.district_number), self.district_version ]) class State: """Contains statewide data and methods to operate over all counties. Attributes: counties_df (pd.DataFrame): Dataframe of the historic boundaries shapefile. districts_df (pd.DataFrame): Counties and their assigned districts over time. counties (List[County]): Objects for each unique county in districts_df. combined_change_df (pd.DataFrame): Change dates from all the different counties. output_df (pd.DataFrame): Final data with geometries and other info from counties_df/districts_df merged into change dates. """ def __init__(self): self.all_shapes_df = None self.all_districts_df = None self.counties: List[County] = [] self.combined_change_df = None self.output_df = None self.districts: List[District] = [] self.district_versions_dict = {} self.district_versions_df: pd.DataFrame def load_counties(self, counties_shp): """Read historical boundaries shapefile into counties_df Calculates a key based on ID and VERSION fields. Args: counties_shp (str): Path to the historical boundaries shapefile """ #: Read counties shapefile in as dict, transform dict to dataframe print(f'Loading counties from {counties_shp}...') counties_list = [] county_fields = [f.name for f in arcpy.ListFields(counties_shp)] county_fields.append('SHAPE@') #: Get the geometry so we can create a new feature class with arcpy.da.SearchCursor(counties_shp, county_fields) as search_cursor: for row in search_cursor: counties_list.append(dict(zip(county_fields, row))) self.all_shapes_df = pd.DataFrame(counties_list) #: Create shape key- name_Sx self.all_shapes_df['shape_key'] = self.all_shapes_df['ID'] + '_S' + self.all_shapes_df['VERSION'].astype(str) #: Create county key self.all_shapes_df['county_key'] = self.all_shapes_df['ID'].apply(create_county_key) def load_districts(self, districts_csv): """Read historical district info into districts_df. Cleans name with clean_name(), parses dates, and calculates district key from CountyName and Version fields. Args: districts_csv (str): Path to the historical districts data """ print(f'Loading districts from {districts_csv}...') self.all_districts_df = pd.read_csv(districts_csv) #: Create ID column to better match the county shapefile id self.all_districts_df['county_key'] = self.all_districts_df['CountyName'].apply(create_county_key) #: Clean up dates self.all_districts_df['StartDate'] = pd.to_datetime(self.all_districts_df['StartDate']) self.all_districts_df['EndDate'] = pd.to_datetime(self.all_districts_df['EndDate']) #: Create district key- name_Dx self.all_districts_df['district_key'] = ( self.all_districts_df['CountyName'].str.casefold() + '_D' + self.all_districts_df['Version'].astype(str) ) def setup_counties(self): """Get a list of counties from districts_df and load them in as County objects. """ county_names = self.all_districts_df['county_key'].unique() for name in county_names: print(f'Setting up {name}...') county = County(name) county.setup(self.all_shapes_df, self.all_districts_df) self.counties.append(county) def verify_counties(self): """Run verification code against shapes and districts """ for county in self.counties: print(f'\n--- {county.name} ---') county.verify_county_districts() county.verify_county_shapes() def calc_counties(self): """Calculate unique change dates for each county """ for county in self.counties: county.calc_change_dates() def combine_change_dfs(self, out_path=None): """Combine all individual county change dates into one dataframe. Args: out_path (str, optional): Path to save master change dates dataframe as csv if desired. """ self.combined_change_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/python3 __author__ = "<NAME>" import argparse, os, subprocess, sys import pandas as pd from joblib import Parallel, delayed from datetime import datetime import multiprocessing # Mapping the field names between the submitted user metadata spreadsheet and the manifest file fields spreadsheet_column_mapping = {'study_accession': 'study', 'sample_accession': 'sample', 'experiment_name': 'name', 'sequencing_platform': 'platform', 'sequencing_instrument': 'instrument', 'library_description': 'description'} def get_args(): """ Handle script arguments :return: Script arguments """ parser = argparse.ArgumentParser(prog='bulk_webincli.py', formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" + =========================================================== + | ENA Webin-CLI Bulk Submission Tool: | | Python script to handle bulk submission of data through | | Webin-CLI. | + =========================================================== + """) parser.add_argument('-w', '--webinCliPath', help='Full path to Webin-CLI jar file. Default: "/webin-cli.jar" (for Docker)', default="/webin-cli.jar", type=str) parser.add_argument('-u', '--username', help='Webin submission account username (e.g. Webin-XXXXX)', type=str, required=True) parser.add_argument('-p', '--password', help='password for Webin submission account', type=str, required=True) parser.add_argument('-g', '--geneticContext', help='Context for submission, options: genome, transcriptome, sequence, reads, taxrefset', choices=['genome', 'transcriptome', 'sequence', 'reads', 'taxrefset'], nargs='?', required=True) parser.add_argument('-s', '--spreadsheet', help='name of spreadsheet with metadata', type=str, required=True) parser.add_argument('-d', '--directory', help='parent directory of data files', type=str, required=False) parser.add_argument('-c', '--centerName', help='FOR BROKER ACCOUNTS ONLY - provide center name', type=str, required=False) parser.add_argument('-m', '--mode', type=str, help='options for mode are validate/submit', choices=['validate', 'submit'], nargs='?', required=False) parser.add_argument('-pc', '--parallel', help='Run submissions in parallel and specify the number of cores/threads to use, maximum cores/threads=10', type=int, required=False) parser.add_argument('-t', '--test', help='specify usage of test submission services', action='store_true') parser.add_argument('-a', '--ascp', help='Use Aspera (ascp needs to be in path) instead of FTP when uploading files.', action='store_true') args = parser.parse_args() if args.mode is None: args.mode = "validate" # If no mode is provided, default to Webin-CLI validate mode if args.directory is None: args.directory="" if args.centerName is None: args.centerName="" if args.parallel is None: args.parallel = False elif not 0 < args.parallel <= 10: print('> ERROR: Invalid number of cores/threads provided. This value should be between 1 and 10 (inclusive).') sys.exit() if os.path.exists(args.webinCliPath) is False: print('> ERROR: Cannot find the Webin CLI jar file. Please set the path to the Webin CLI jar file (--webinCliPath)') sys.exit() return args def spreadsheet_format(spreadsheet_file): """ Open the spreadsheet depending on the file-type :param spreadsheet_file: Path to spreadsheet :return: spreadsheet: Spreadsheet as a data frame to be manipulated """ if spreadsheet_file.endswith(".xlsx") or spreadsheet_file.endswith(".xls"): spreadsheet =
pd.read_excel(spreadsheet_file, header=0, index_col=False)
pandas.read_excel
# -*- coding: utf-8 -*- """ Created on Fri Dec 13 15:21:55 2019 @author: raryapratama """ #%% #Step (1): Import Python libraries, set land conversion scenarios general parameters import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad import seaborn as sns import pandas as pd #DL_FP Scenario ##Set parameters #Parameters for primary forest initAGB = 233 #source: van Beijma et al. (2018) initAGB_min = 233-72 initAGB_max = 233 + 72 #parameters for timber plantation. Source: Khasanah et al. (2015) tf = 201 a = 0.082 b = 2.53 #%% #Step (2_1): C loss from the harvesting/clear cut df2_Ac7 = pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_S2_Ac_7y') df2_Ac18 = pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_S2_Ac_18y') df2_Tgr40 = pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_S2_Tgr_40y') df2_Tgr60 = pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_S2_Tgr_60y') dfE2_Hbr40 = pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_E2_Hbr_40y') t = range(0,tf,1) c_firewood_energy_S2_Ac7 = df2_Ac7['Firewood_other_energy_use'].values c_firewood_energy_S2_Ac18 = df2_Ac18['Firewood_other_energy_use'].values c_firewood_energy_S2_Tgr40 = df2_Tgr40['Firewood_other_energy_use'].values c_firewood_energy_S2_Tgr60 = df2_Tgr60['Firewood_other_energy_use'].values c_firewood_energy_E2_Hbr40 = dfE2_Hbr40['Firewood_other_energy_use'].values #%% #Step (2_2): C loss from the harvesting/clear cut as wood pellets dfE2 = pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_E2_Hbr_40y') c_pellets_Hbr_40y = dfE2['Wood_pellets'].values #%% #Step (3): Aboveground biomass (AGB) decomposition #S2_Ac_7y df = pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_S2_Ac_7y') tf = 201 t = np.arange(tf) def decomp_S2_Ac_7y(t,remainAGB_S2_Ac_7y): return (1-(1-np.exp(-a*t))**b)*remainAGB_S2_Ac_7y #set zero matrix output_decomp_S2_Ac_7y = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_S2_Ac_7y in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_S2_Ac_7y[i:,i] = decomp_S2_Ac_7y(t[:len(t)-i],remain_part_S2_Ac_7y) print(output_decomp_S2_Ac_7y[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_S2_Ac_7y = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_S2_Ac_7y[:,i] = np.diff(output_decomp_S2_Ac_7y[:,i]) i = i + 1 print(subs_matrix_S2_Ac_7y[:,:4]) print(len(subs_matrix_S2_Ac_7y)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_S2_Ac_7y = subs_matrix_S2_Ac_7y.clip(max=0) print(subs_matrix_S2_Ac_7y[:,:4]) #make the results as absolute values subs_matrix_S2_Ac_7y = abs(subs_matrix_S2_Ac_7y) print(subs_matrix_S2_Ac_7y[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_S2_Ac_7y = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_S2_Ac_7y) subs_matrix_S2_Ac_7y = np.vstack((zero_matrix_S2_Ac_7y, subs_matrix_S2_Ac_7y)) print(subs_matrix_S2_Ac_7y[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_S2_Ac_7y = (tf,1) decomp_tot_S2_Ac_7y = np.zeros(matrix_tot_S2_Ac_7y) i = 0 while i < tf: decomp_tot_S2_Ac_7y[:,0] = decomp_tot_S2_Ac_7y[:,0] + subs_matrix_S2_Ac_7y[:,i] i = i + 1 print(decomp_tot_S2_Ac_7y[:,0]) #S2_Ac_18y df = pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_S2_Ac_18y') tf = 201 t = np.arange(tf) def decomp_S2_Ac_18y(t,remainAGB_S2_Ac_18y): return (1-(1-np.exp(-a*t))**b)*remainAGB_S2_Ac_18y #set zero matrix output_decomp_S2_Ac_18y = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_S2_Ac_18y in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_S2_Ac_18y[i:,i] = decomp_S2_Ac_18y(t[:len(t)-i],remain_part_S2_Ac_18y) print(output_decomp_S2_Ac_18y[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_S2_Ac_18y = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_S2_Ac_18y[:,i] = np.diff(output_decomp_S2_Ac_18y[:,i]) i = i + 1 print(subs_matrix_S2_Ac_18y[:,:4]) print(len(subs_matrix_S2_Ac_18y)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_S2_Ac_18y = subs_matrix_S2_Ac_18y.clip(max=0) print(subs_matrix_S2_Ac_18y[:,:4]) #make the results as absolute values subs_matrix_S2_Ac_18y = abs(subs_matrix_S2_Ac_18y) print(subs_matrix_S2_Ac_18y[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_S2_Ac_18y = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_S2_Ac_18y) subs_matrix_S2_Ac_18y = np.vstack((zero_matrix_S2_Ac_18y, subs_matrix_S2_Ac_18y)) print(subs_matrix_S2_Ac_18y[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_S2_Ac_18y = (tf,1) decomp_tot_S2_Ac_18y = np.zeros(matrix_tot_S2_Ac_18y) i = 0 while i < tf: decomp_tot_S2_Ac_18y[:,0] = decomp_tot_S2_Ac_18y[:,0] + subs_matrix_S2_Ac_18y[:,i] i = i + 1 print(decomp_tot_S2_Ac_18y[:,0]) #S2_Tgr_40y df = pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_S2_Tgr_40y') tf = 201 t = np.arange(tf) def decomp_S2_Tgr_40y(t,remainAGB_S2_Tgr_40y): return (1-(1-np.exp(-a*t))**b)*remainAGB_S2_Tgr_40y #set zero matrix output_decomp_S2_Tgr_40y = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_S2_Tgr_40y in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_S2_Tgr_40y[i:,i] = decomp_S2_Tgr_40y(t[:len(t)-i],remain_part_S2_Tgr_40y) print(output_decomp_S2_Tgr_40y[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_S2_Tgr_40y = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_S2_Tgr_40y[:,i] = np.diff(output_decomp_S2_Tgr_40y[:,i]) i = i + 1 print(subs_matrix_S2_Tgr_40y[:,:4]) print(len(subs_matrix_S2_Tgr_40y)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_S2_Tgr_40y = subs_matrix_S2_Tgr_40y.clip(max=0) print(subs_matrix_S2_Tgr_40y[:,:4]) #make the results as absolute values subs_matrix_S2_Tgr_40y = abs(subs_matrix_S2_Tgr_40y) print(subs_matrix_S2_Tgr_40y[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_S2_Tgr_40y = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_S2_Tgr_40y) subs_matrix_S2_Tgr_40y = np.vstack((zero_matrix_S2_Tgr_40y, subs_matrix_S2_Tgr_40y)) print(subs_matrix_S2_Tgr_40y[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_S2_Tgr_40y = (tf,1) decomp_tot_S2_Tgr_40y = np.zeros(matrix_tot_S2_Tgr_40y) i = 0 while i < tf: decomp_tot_S2_Tgr_40y[:,0] = decomp_tot_S2_Tgr_40y[:,0] + subs_matrix_S2_Tgr_40y[:,i] i = i + 1 print(decomp_tot_S2_Tgr_40y[:,0]) #S2_Tgr_60y df = pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_S1_Tgr_60y') tf = 201 t = np.arange(tf) def decomp_S2_Tgr_60y(t,remainAGB_S2_Tgr_60y): return (1-(1-np.exp(-a*t))**b)*remainAGB_S2_Tgr_60y #set zero matrix output_decomp_S2_Tgr_60y = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_S2_Tgr_60y in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_S2_Tgr_60y[i:,i] = decomp_S2_Tgr_60y(t[:len(t)-i],remain_part_S2_Tgr_60y) print(output_decomp_S2_Tgr_60y[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_S2_Tgr_60y = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_S2_Tgr_60y[:,i] = np.diff(output_decomp_S2_Tgr_60y[:,i]) i = i + 1 print(subs_matrix_S2_Tgr_60y[:,:4]) print(len(subs_matrix_S2_Tgr_60y)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_S2_Tgr_60y = subs_matrix_S2_Tgr_60y.clip(max=0) print(subs_matrix_S2_Tgr_60y[:,:4]) #make the results as absolute values subs_matrix_S2_Tgr_60y = abs(subs_matrix_S2_Tgr_60y) print(subs_matrix_S2_Tgr_60y[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_S2_Tgr_60y = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_S2_Tgr_60y) subs_matrix_S2_Tgr_60y = np.vstack((zero_matrix_S2_Tgr_60y, subs_matrix_S2_Tgr_60y)) print(subs_matrix_S2_Tgr_60y[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_S2_Tgr_60y = (tf,1) decomp_tot_S2_Tgr_60y = np.zeros(matrix_tot_S2_Tgr_60y) i = 0 while i < tf: decomp_tot_S2_Tgr_60y[:,0] = decomp_tot_S2_Tgr_60y[:,0] + subs_matrix_S2_Tgr_60y[:,i] i = i + 1 print(decomp_tot_S2_Tgr_60y[:,0]) #E df = pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_E2_Hbr_40y') tf = 201 t = np.arange(tf) def decomp_E2_Hbr_40y(t,remainAGB_E2_Hbr_40y): return (1-(1-np.exp(-a*t))**b)*remainAGB_E2_Hbr_40y #set zero matrix output_decomp_E2_Hbr_40y = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_E2_Hbr_40y in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_E2_Hbr_40y[i:,i] = decomp_E2_Hbr_40y(t[:len(t)-i],remain_part_E2_Hbr_40y) print(output_decomp_E2_Hbr_40y[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_E2_Hbr_40y = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_E2_Hbr_40y[:,i] = np.diff(output_decomp_E2_Hbr_40y[:,i]) i = i + 1 print(subs_matrix_E2_Hbr_40y[:,:4]) print(len(subs_matrix_E2_Hbr_40y)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_E2_Hbr_40y = subs_matrix_E2_Hbr_40y.clip(max=0) print(subs_matrix_E2_Hbr_40y[:,:4]) #make the results as absolute values subs_matrix_E2_Hbr_40y = abs(subs_matrix_E2_Hbr_40y) print(subs_matrix_E2_Hbr_40y[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_E2_Hbr_40y = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_E2_Hbr_40y) subs_matrix_E2_Hbr_40y = np.vstack((zero_matrix_E2_Hbr_40y, subs_matrix_E2_Hbr_40y)) print(subs_matrix_E2_Hbr_40y[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_E2_Hbr_40y = (tf,1) decomp_tot_E2_Hbr_40y = np.zeros(matrix_tot_E2_Hbr_40y) i = 0 while i < tf: decomp_tot_E2_Hbr_40y[:,0] = decomp_tot_E2_Hbr_40y[:,0] + subs_matrix_E2_Hbr_40y[:,i] i = i + 1 print(decomp_tot_E2_Hbr_40y[:,0]) #plotting t = np.arange(0,tf) plt.plot(t,decomp_tot_S2_Ac_7y,label='Ac_7y') plt.plot(t,decomp_tot_S2_Ac_18y,label='Ac_18y') plt.plot(t,decomp_tot_S2_Tgr_40y,label='Tgr_40y') plt.plot(t,decomp_tot_S2_Tgr_60y,label='Tgr_60y') plt.plot(t,decomp_tot_E2_Hbr_40y,label='E_Hbr_40y') plt.xlim(0,200) plt.legend(bbox_to_anchor=(1.04,1), loc="upper left", frameon=False) plt.show() #%% #Step (4): Dynamic stock model of in-use wood materials from dynamic_stock_model import DynamicStockModel df2_Ac7 =
pd.read_excel('C:\\Work\\Programming\\Practice\\DL_FP.xlsx', 'DL_FP_S2_Ac_7y')
pandas.read_excel
import logging from typing import List, Union import pandas as pd from geopandas import GeoSeries from sklearn.base import TransformerMixin from tqdm import tqdm from coord2vec.common.itertools import flatten from coord2vec.common.parallel.multiproc_util import parmap from coord2vec.feature_extraction.feature import Feature from coord2vec.feature_extraction.feature_table import GEOM_WKT from coord2vec.feature_extraction.feature_utils import load_features_using_geoms, save_features_to_db from coord2vec.feature_extraction.osm.postgres_feature_factory import PostgresFeatureFactory class FeaturesBuilder(TransformerMixin): """ A data class for choosing the desired features """ def __init__(self, features: List[Union[Feature, List[Feature]]], cache_table: str = None): """ features to be used in this builder Args: features: a list of features cache_table: Optional, if specified will look/save calculated features in the cache """ self.features = flatten(features) self.cache_table = cache_table @property def all_feat_names(self) -> List[str]: return flatten([feat.feature_names for feat in self.features]) def transform(self, input_gs: GeoSeries, use_cache: bool = True) -> pd.DataFrame: """ extract the desired features on desired geometries Args: input_gs: a GeoSeries with the desired geometries use_cache: if set and self.cache_table is filled will load/save the features to the cache Returns: a pandas dataframe, with columns as features, and rows as the geometries in input_gs """ assert len(input_gs.apply(lambda p: p.wkt).unique()) == len( input_gs), "Shouldn't have duplicates when transform" required_feats, loaded_feats_dfs = self.features, [] if use_cache: logging.debug(f"Starting load from cache for {len(input_gs)} objects") required_feats, loaded_feats_dfs = self.load_from_cache(self.features, input_gs) if len(required_feats) == 0: logging.debug("loaded all from cache!") return pd.concat(loaded_feats_dfs, axis=1) # append by column else: logging.debug(f"loaded from cache {len(loaded_feats_dfs)}/{len(self.features)}") else: logging.debug(f"Don't load from cache") feature_factory = PostgresFeatureFactory(required_feats, input_gs=input_gs) with feature_factory: features_gs_list = parmap(lambda feature: feature.extract(input_gs), feature_factory.features, use_tqdm=True, desc=f"Calculating Features for {len(input_gs)} geoms", unit='feature', leave=False) # TODO: if want, extract_object_set all_features_df =
pd.concat(features_gs_list + loaded_feats_dfs, axis=1)
pandas.concat
import argparse import datetime import logging import os import re import shutil import subprocess import time import synapseclient import synapseutils import pandas as pd from . import process_functions from . import database_to_staging from . import create_case_lists from . import dashboard_table_updater logging.basicConfig() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) def storeFile(syn, filePath, parentId, anonymizeCenterDf, genie_version, name=None): #process.center_anon(filePath, anonymizeCenterDf) if name is None: name = os.path.basename(filePath) return(syn.store(synapseclient.File(filePath, name=name, parent = parentId, versionComment=genie_version))) #process.center_convert_back(filePath, anonymizeCenterDf) #This is the only filter that returns mutation columns to keep def commonVariantFilter(mafDf): mafDf['FILTER'] = mafDf['FILTER'].fillna("") toKeep = ["common_variant" not in i for i in mafDf['FILTER']] mafDf = mafDf[toKeep] return(mafDf) def consortiumToPublic(syn, processingDate, genie_version, releaseId, databaseSynIdMappingDf, publicReleaseCutOff=365, staging=False): ANONYMIZE_CENTER = syn.tableQuery('SELECT * FROM syn10170510') ANONYMIZE_CENTER_DF = ANONYMIZE_CENTER.asDataFrame() CNA_PATH = os.path.join(db_to_staging.GENIE_RELEASE_DIR,"data_CNA_%s.txt" % genie_version) CLINICAL_PATH = os.path.join(db_to_staging.GENIE_RELEASE_DIR,'data_clinical_%s.txt' % genie_version) CLINICAL_SAMPLE_PATH = os.path.join(db_to_staging.GENIE_RELEASE_DIR,'data_clinical_sample_%s.txt' % genie_version) CLINICAL_PATIENT_PATH = os.path.join(db_to_staging.GENIE_RELEASE_DIR,'data_clinical_patient_%s.txt' % genie_version) DATA_GENE_PANEL_PATH = os.path.join(db_to_staging.GENIE_RELEASE_DIR,'data_gene_matrix_%s.txt' % genie_version) MUTATIONS_PATH = os.path.join(db_to_staging.GENIE_RELEASE_DIR,'data_mutations_extended_%s.txt' % genie_version) FUSIONS_PATH = os.path.join(db_to_staging.GENIE_RELEASE_DIR,'data_fusions_%s.txt' % genie_version) SEG_PATH = os.path.join(db_to_staging.GENIE_RELEASE_DIR,'genie_public_data_cna_hg19_%s.seg' % genie_version) COMBINED_BED_PATH = os.path.join(db_to_staging.GENIE_RELEASE_DIR,'genie_combined_%s.bed' % genie_version) if not os.path.exists(db_to_staging.GENIE_RELEASE_DIR): os.mkdir(db_to_staging.GENIE_RELEASE_DIR) if not os.path.exists(db_to_staging.CASE_LIST_PATH): os.mkdir(db_to_staging.CASE_LIST_PATH) # if staging: # #public release staging # PUBLIC_RELEASE_PREVIEW = "syn7871696" # PUBLIC_RELEASE_PREVIEW_CASELIST = "syn9689659" # else: #public release preview PUBLIC_RELEASE_PREVIEW = databaseSynIdMappingDf['Id'][databaseSynIdMappingDf['Database'] == 'public'].values[0] PUBLIC_RELEASE_PREVIEW_CASELIST = db_to_staging.find_caselistid(syn, PUBLIC_RELEASE_PREVIEW) ############################################################################################################################## ## Sponsored projects filter ############################################################################################################################## ## if before release date -> go into staging consortium ## if after date -> go into public # sponsoredReleaseDate = syn.tableQuery('SELECT * FROM syn8545108') # sponsoredReleaseDateDf = sponsoredReleaseDate.asDataFrame() # sponsoredProjectSamples = syn.tableQuery('SELECT * FROM syn8545106') # sponsoredProjectSamplesDf = sponsoredProjectSamples.asDataFrame() # sponsoredProjectsDf = sponsoredProjectSamplesDf.merge(sponsoredReleaseDateDf, left_on="sponsoredProject", right_on="sponsoredProjects") # dates = sponsoredProjectsDf['releaseDate'].apply(lambda date: datetime.datetime.strptime(date, '%b-%Y')) # publicReleaseSamples = sponsoredProjectsDf['genieSampleId'][dates < processingDate] ############################################################################################################################## # SEQ_DATE filter # Jun-2015, given processing date (today) -> public release (processing date - Jun-2015 > 12 months) consortiumReleaseWalk = synapseutils.walk(syn, releaseId) consortiumRelease = next(consortiumReleaseWalk) clinical = [syn.get(synid, followLink=True) for filename, synid in consortiumRelease[2] if filename == "data_clinical.txt"][0] gene_matrix = [syn.get(synid, followLink=True) for filename, synid in consortiumRelease[2] if filename == "data_gene_matrix.txt"][0] clinicalDf = pd.read_csv(clinical.path, sep="\t", comment="#") gene_matrixdf = pd.read_csv(gene_matrix.path, sep="\t") removeForPublicSamples = process_functions.seqDateFilter(clinicalDf,processingDate,publicReleaseCutOff) #comment back in when public release filter back on #publicReleaseSamples = publicReleaseSamples.append(keepForPublicSamples) #Make sure all null oncotree codes are removed clinicalDf = clinicalDf[~clinicalDf['ONCOTREE_CODE'].isnull()] publicReleaseSamples = clinicalDf.SAMPLE_ID[~clinicalDf.SAMPLE_ID.isin(removeForPublicSamples)] logger.info("SEQ_DATES for public release: " + ", ".join(set(clinicalDf.SEQ_DATE[clinicalDf.SAMPLE_ID.isin(publicReleaseSamples)].astype(str)))) #Clinical release scope filter #If consortium -> Don't release to public clinicalReleaseScope = syn.tableQuery("SELECT * FROM syn8545211 where releaseScope = 'public'") publicRelease = clinicalReleaseScope.asDataFrame() allClin = clinicalDf[clinicalDf['SAMPLE_ID'].isin(publicReleaseSamples)] allClin.to_csv(CLINICAL_PATH, sep="\t", index=False) gene_matrixdf = gene_matrixdf[gene_matrixdf['SAMPLE_ID'].isin(publicReleaseSamples)] gene_matrixdf.to_csv(DATA_GENE_PANEL_PATH,sep="\t",index=False) storeFile(syn, DATA_GENE_PANEL_PATH, PUBLIC_RELEASE_PREVIEW, ANONYMIZE_CENTER_DF, genie_version, name="data_gene_matrix.txt") storeFile(syn, CLINICAL_PATH, PUBLIC_RELEASE_PREVIEW, ANONYMIZE_CENTER_DF, genie_version, name="data_clinical.txt") create_case_lists.main(CLINICAL_PATH, DATA_GENE_PANEL_PATH, db_to_staging.CASE_LIST_PATH, "genie_public") caseListFiles = os.listdir(db_to_staging.CASE_LIST_PATH) caseListEntities = [] for casePath in caseListFiles: casePath = os.path.join(db_to_staging.CASE_LIST_PATH, casePath) caseListEntities.append(storeFile(syn, casePath, PUBLIC_RELEASE_PREVIEW_CASELIST, ANONYMIZE_CENTER_DF, genie_version)) #Grab mapping table to fill in clinical headers mapping_table = syn.tableQuery('SELECT * FROM syn9621600') mapping = mapping_table.asDataFrame() genePanelEntities = [] for entName, entId in consortiumRelease[2]: if "data_linear" in entName or "meta_" in entName: continue elif entName == "data_clinical.txt": patientCols = publicRelease['fieldName'][publicRelease['level'] == "patient"].tolist() sampleCols = ["PATIENT_ID"] sampleCols.extend(publicRelease['fieldName'][publicRelease['level'] == "sample"].tolist()) #clinicalDf is defined on line 36 # clinicalDf['AGE_AT_SEQ_REPORT'] = [int(math.floor(int(float(i))/365.25)) if process.checkInt(i) else i for i in clinicalDf['AGE_AT_SEQ_REPORT']] # clinicalDf['AGE_AT_SEQ_REPORT'][clinicalDf['AGE_AT_SEQ_REPORT'] == ">32485"] = ">89" # clinicalDf['AGE_AT_SEQ_REPORT'][clinicalDf['AGE_AT_SEQ_REPORT'] == "<6570"] = "<18" clinicalDf = clinicalDf[clinicalDf['SAMPLE_ID'].isin(publicReleaseSamples)] #Delete columns that are private scope # for private in privateRelease: # del clinicalDf[private] process_functions.addClinicalHeaders(clinicalDf, mapping, patientCols, sampleCols, CLINICAL_SAMPLE_PATH, CLINICAL_PATIENT_PATH) storeFile(syn, CLINICAL_SAMPLE_PATH, PUBLIC_RELEASE_PREVIEW, ANONYMIZE_CENTER_DF, genie_version, name="data_clinical_sample.txt") storeFile(syn, CLINICAL_PATIENT_PATH, PUBLIC_RELEASE_PREVIEW, ANONYMIZE_CENTER_DF, genie_version, name="data_clinical_patient.txt") elif "mutation" in entName: mutation = syn.get(entId, followLink=True) mutationDf = pd.read_csv(mutation.path, sep="\t", comment="#") mutationDf = commonVariantFilter(mutationDf) mutationDf['FILTER'] = "PASS" mutationDf = mutationDf[mutationDf['Tumor_Sample_Barcode'].isin(publicReleaseSamples)] text = process_functions.removeFloat(mutationDf) with open(MUTATIONS_PATH, 'w') as f: f.write(text) storeFile(syn, MUTATIONS_PATH, PUBLIC_RELEASE_PREVIEW, ANONYMIZE_CENTER_DF, genie_version, name="data_mutations_extended.txt") elif "fusion" in entName: fusion = syn.get(entId, followLink=True) fusionDf =
pd.read_csv(fusion.path, sep="\t")
pandas.read_csv
#as duas bases estão nessa aplicação #import matplotlib #import matplotlib.mlab as mlab #import matplotlib.gridspec as gridspec #from scipy.misc import electrocardiogram #from scipy import stats import matplotlib.pyplot as plt from scipy.signal import find_peaks import pandas as pd import numpy as np from scipy.stats import kurtosis, skew #Funções #Média def media(lista): return (sum(lista)/len(lista)) def comportamento(s, lista_dif, lista_dif_index, peaks): for i in range(len(s)-1): sub = abs(s[i]-s[i+1]) sub_index = abs(peaks[i]-peaks[i+1]) lista_dif.append(sub) lista_dif_index.append(sub_index) def peaks(lista): #distancia = frequencia amostral peaks, _ = find_peaks(lista, distance=fs//2) np.diff(peaks) return peaks def num_peaks(lista, peaks): #número de picos num_peaks = np.zeros(len(peaks)-2) for i in range(len(peaks)-2): num_peaks[i]=lista[peaks[i]]-lista[peaks[i+1]] return num_peaks def plot_comport(lista, peaks): #plot de comportamento dos picos s = lista[peaks] lista_dif = [] lista_dif_index = [] return comportamento(s, lista_dif, lista_dif_index, peaks) # REFERENCIA # https://media.readthedocs.org/pdf/python-heart-rate-analysis-toolkit/latest/python-heart-rate-analysis-toolkit.pdf # x = electrocardiogram()#[2000:4000] data =
pd.read_csv('lista2.txt')
pandas.read_csv
# coding: utf-8 import pandas as pd import numpy as np import dateutil import requests import datetime from matplotlib import pyplot as plt def smape(actual, predicted): a = np.abs(np.array(actual) - np.array(predicted)) b = np.array(actual) + np.array(predicted) return 2 * np.mean(np.divide(a, b, out=np.zeros_like(a), where=b != 0, casting='unsafe')) from dateutil.parser import parse from datetime import date, timedelta def date_add_hours(start_date, hours): end_date = parse(start_date) + timedelta(hours=hours) end_date = end_date.strftime('%Y-%m-%d %H:%M:%S') return end_date def date_add_days(start_date, days): end_date = parse(start_date[:10]) + timedelta(days=days) end_date = end_date.strftime('%Y-%m-%d') return end_date def diff_of_hours(time1, time2): hours = (parse(time1) - parse(time2)).total_seconds() // 3600 return abs(hours) utc_date = date_add_hours(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), -8) print('现在是UTC时间:{}'.format(utc_date)) print('距离待预测时间还有{}个小时'.format(diff_of_hours(date_add_days(utc_date, 1), utc_date) + 1)) filename = "2018-05-31_ensemble_all_zhoujie" day = "2018-05-31" filepath = '../image/results/' + "".join(day.split("-")) + '/' + filename + '.csv' # 0514 # filepath = './0513commit/bag_55.csv' #0513 # filepath = './0513commit/api_concat_bag_55_6hours.csv' #0513api result =
pd.read_csv(filepath)
pandas.read_csv
# core import io import os import re import gc import time import pytz import glob import zipfile import datetime # installed import quandl import pandas as pd import requests as req from requests.adapters import HTTPAdapter from pytz import timezone from concurrent.futures import ProcessPoolExecutor import pandas_market_calendars as mcal # custom from file_utils import get_home_dir DEFAULT_STORAGE = '/home/nate/Dropbox/data/eod_data/' # get todays date for checking if files up-to-date MTN = timezone('America/Denver') TODAY = datetime.datetime.now(MTN) WEEKDAY = TODAY.weekday() HOUR = TODAY.hour HOME_DIR = get_home_dir() HEADERS = ['Ticker', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Dividend', 'Split', 'Adj_Open', 'Adj_High', 'Adj_Low', 'Adj_Close', 'Adj_Volume'] Q_KEY = os.environ.get('quandl_api') STOCKLIST = "../stockdata/goldstocks.txt" quandl.ApiConfig.api_key = Q_KEY def get_stocklist(): """ """ url = 'http://static.quandl.com/end_of_day_us_stocks/ticker_list.csv' df = pd.read_csv(url) return df def download_all_stocks_fast_csv(write_csv=False): """ """ zip_file_url = 'https://www.quandl.com/api/v3/databases/EOD/data?api_key=' + Q_KEY r = req.get(zip_file_url) z = zipfile.ZipFile(io.BytesIO(r.content)) z.extractall(path='../stockdata/') headers = update_all_stocks(return_headers=True) df = pd.read_csv('../stockdata/' + \ z.filelist[0].filename, names=headers, index_col=1, parse_dates=True) df.sort_index(inplace=True) if write_csv: # compression really slows it down...don't recommend df.to_csv('../stockdata/all_stocks.csv.gzip', compression='gzip') os.remove('../stockdata/' + z.filelist[0].filename) return df def download_entire_db(storage_path=DEFAULT_STORAGE, remove_previous=True, return_df=False, return_latest_date=False, write=['feather']): """ downloads entire database and saves to .h5, replacing old file :param storage_path: string, temporary location where to save the full csv file :param remove_previous: removes previous instance of the EOD dataset :param write: list of filetypes to write, can include 'feather' and 'hdf5' hdf5 can be compressed for about 1GB filesize saving, but feather is much faster and can be loaded in R as well """ # first check if we have the latest data if not os.path.exists(storage_path): splitpath = storage_path.split('/')[1:] # first entry is blank due to home dir / for i, p in enumerate(splitpath, 1): path = '/'.join(splitpath[:i]) if not os.path.exists(path): os.mkdir(path) zip_file_url = 'https://www.quandl.com/api/v3/databases/EOD/data?api_key=' + Q_KEY s = req.Session() s.mount('https', HTTPAdapter(max_retries=10)) r = s.get(zip_file_url) # another possible way to deal with retries # while True: # try: # r = req.get(zip_file_url, timeout=10) # break # except Exception as e: # print(e) z = zipfile.ZipFile(io.BytesIO(r.content)) z.extractall(path=storage_path) df = pd.read_csv(storage_path + \ z.filelist[0].filename, names=HEADERS, index_col=1, parse_dates=True, infer_datetime_format=True) latest_date = df.index.max().date().strftime('%Y%m%d') if 'hdf5' in write: df.to_hdf(storage_path + 'EOD_' + latest_date + '.h5', key='data', complib='blosc', complevel=9) # also write feather file so can read into R # have to reset the index because feather can't handle non-default index (maybe non-unique?) df.reset_index(inplace=True) if 'feather' in write: df.to_feather(storage_path + 'EOD_' + latest_date + '.ft') if remove_previous: for ext in ['h5', 'ft']: files = glob.glob(storage_path + 'EOD_*.' + ext) files = [f for f in files if len(f.split('/')[-1]) == 15] # don't want any of the small files, only full DBs print(sorted(files, key=os.path.getctime)) if len(files) > 1: previous_file = sorted(files, key=os.path.getctime)[-2] print('removing', previous_file) os.remove(previous_file) # delete downloaded zip file os.remove(storage_path + z.filelist[0].filename) if return_df: # set index back to normal for return_df df.set_index('Date', inplace=True) return df elif return_latest_date: return pd.to_datetime(df['Date'].max().date()) def check_market_status(): """ Checks to see if market is open today. Uses the pandas_market_calendars package as mcal """ today_ny = datetime.datetime.now(pytz.timezone('America/New_York')) ndq = mcal.get_calendar('NASDAQ') open_days = ndq.schedule(start_date=today_ny - pd.Timedelta('10 days'), end_date=today_ny) if today_ny.date() in open_days.index: return open_days else: return None def daily_download_entire_db(storage_path=DEFAULT_STORAGE): """ checks if it is a trading day today, and downloads entire db after it has been updated (930pm ET) need to refactor -- this is messy and touchy. Have to start before midnight UTC to work ideally """ latest_db_date = get_latest_db_date() while True: latest_close_date = get_latest_close_date() if latest_db_date is None: print('no database file exists, downloading...') latest_db_date = download_entire_db(return_latest_date=True) continue today_utc = pd.to_datetime('now') today_ny = datetime.datetime.now(pytz.timezone('America/New_York')) pd_today_ny = pd.to_datetime(today_ny.date()) if latest_db_date.date() != latest_close_date.date(): if (latest_close_date.date() - latest_db_date.date()) >= pd.Timedelta('1D'): if today_ny.hour > latest_close_date.hour: print('db more than 1 day out of date, downloading...') latest_db_date = download_entire_db(return_latest_date=True) elif pd_today_ny.date() == latest_close_date.date(): # if the market is open and the db isn't up to date with today... if today_ny.hour >= 22: print('downloading db with update from today...') latest_db_date = download_entire_db(return_latest_date=True) print('sleeping 1h...') time.sleep(3600) # old code...don't think I need this anymore # open_days = check_market_status() # if open_days is not None: # close_date = open_days.loc[today_utc.date()]['market_close'] # # TODO: add check if after closing time # if today_utc.dayofyear > close_date.dayofyear or today_utc.year > close_date.year: # if today_ny.hour > 10: # need to wait until it has been processed to download # last_scrape = today_ny.date() # print('downloading db...') # download_entire_db() # else: # # need to make it wait number of hours until close # print('waiting for market to close, waiting 1 hour...') # time.sleep(3600) # else: # # need to wait till market will be open then closed next # print('market closed today, waiting 1 hour...') # time.sleep(3600) # wait 1 hour # else: # # need to make this more intelligent so it waits until the next day # print('already scraped today, waiting 1 hour to check again...') # time.sleep(3600) def get_latest_db_date(storage_path=DEFAULT_STORAGE, filetype='feather'): """ gets the date of the last full scrape of the db """ if filetype == 'feather': files = glob.glob(storage_path + 'EOD_*.ft') elif filetype == 'hdf5': files = glob.glob(storage_path + 'EOD_*.h5') else: print("filetype must be one of ['feather', 'hdf5']") return None if len(files) > 0: files = [f for f in files if len(f.split('/')[-1]) == 15] # don't want any of the small files, only full DBs latest_file = sorted(files, key=os.path.getctime)[-1] last_date = pd.to_datetime(latest_file[-11:-3]) return last_date return None def get_latest_close_date(market='NASDAQ', return_time=False, last_close=False): """ gets the latest date the markets were open (NASDAQ), and returns the closing datetime if last_close is True, gets last datetime that market has closed (not in the future) """ # today = datetime.datetime.now(pytz.timezone('America/New_York')).date() # today_utc = pd.to_datetime('now').date() today_ny = datetime.datetime.now(pytz.timezone('America/New_York')) ndq = mcal.get_calendar(market) open_days = ndq.schedule(start_date=today_ny - pd.Timedelta('10 days'), end_date=today_ny) if last_close: past = open_days[open_days['market_close'] <= pd.to_datetime('now').tz_localize('UTC')] return past.iloc[-1]['market_close'] return open_days.iloc[-1]['market_close'] def check_market_status(): """ Checks to see if market is open today. Uses the pandas_market_calendars package as mcal """ # today = datetime.datetime.now(pytz.timezone('America/New_York')).date() today_utc = pd.to_datetime('now').date() ndq = mcal.get_calendar('NASDAQ') open_days = ndq.schedule(start_date=today_utc - pd.Timedelta('10 days'), end_date=today_utc) if today_utc in open_days.index: return open_days else: return None def update_all_stocks(return_headers=False, update_small_file=False): """ return_headers will just return the column names. update_small_file will just update the small file that starts on 1/1/2000 """ # 7-13-2017: 28788363 rows in full df zip_file_url = 'https://www.quandl.com/api/v3/databases/EOD/download?api_key=' + \ Q_KEY + '&download_type=partial' r = req.get(zip_file_url) z = zipfile.ZipFile(io.BytesIO(r.content)) z.extractall(path='../stockdata/') if return_headers: df = pd.read_csv('../stockdata/' + z.filelist[0].filename, parse_dates=True) df.set_index('Date', inplace=True) new_c = [re.sub('.\s', '_', c) for c in df.columns] return new_c df = pd.read_csv('../stockdata/' + z.filelist[0].filename) # it won't parse dates when it reads... df['Date'] =
pd.to_datetime(df['Date'])
pandas.to_datetime
# Data Preprocessing """ML_Workflow template with required libraries and function calls. @author:Varshtih """ import pandas as pd import numpy as np from autoimpute.imputations import MultipleImputer from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder from scipy import stats import sweetviz import seaborn as sns from pyod.models.feature_bagging import FeatureBagging # Load Input Files train_data = pd.read_csv(r"C:\Users\svvar\PycharmProjects\ml_workflow\Algorithims\Data Files\train.csv") test_data = pd.read_csv(r"C:\Users\svvar\PycharmProjects\ml_workflow\Algorithims\Data Files\test.csv") train_data.info() test_data.info() # Fill in required Inputs x_train = train_data.iloc[:, list(range(3, 11))] y_train = train_data.iloc[:, list(range(11,12))].values x_train_num = train_data.iloc[:, list(range(3, 9))] x_train_txt = train_data.iloc[:, list(range(9, 11))] x_train_txt_encode_split = 2 # Split at Column Number x_test = test_data.iloc[:, list(range(3, 11))] x_test_num = test_data.iloc[:, list(range(3, 9))] x_test_txt = test_data.iloc[:, list(range(9, 11))] x_test_txt_encode_split = 2 # Split at Column Number # Impute Missing values # Numerical Imputer imputer_num = MultipleImputer(strategy='stochastic', return_list=True, n=5, seed=101) x_train_num_avg = imputer_num.fit_transform(x_train_num) x_train_num_concat = x_train_num_avg[0][1] for i in range(len(x_train_num_avg)-1): x_train_num_concat =
pd.concat([x_train_num_concat,x_train_num_avg[i+1][1]], axis=1)
pandas.concat
# TODO move away from this test generator style since its we need to manage the generator file, # which is no longer in this project workspace, as well as the output test file. ## ## # # # THIS TEST WAS AUTOGENERATED BY groupby_test_generator.py # # # ## # TODO refactor this into table driven tests using pytest parameterize since each test body follows the same structure # and a single test body with multiple test tabe entries will be more readable and flexible. from .groupby_unit_test_parameters import * import pandas as pd import riptable as rt import unittest class autogenerated_gb_tests(unittest.TestCase): def safe_assert(self, ary1, ary2): for a, b in zip(ary1, ary2): if a == a and b == b: self.assertAlmostEqual(a, b, places=7) def test_multikey___aggs_median__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['median'] test_class = groupby_everything(1, 1, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['median'] test_class = groupby_everything(4, 1, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['median'] test_class = groupby_everything(7, 1, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_2__nkeycols_2(self): aggs = ['median'] test_class = groupby_everything(2, 2, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_5__nkeycols_2(self): aggs = ['median'] test_class = groupby_everything(5, 2, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_1__nkeycols_3(self): aggs = ['median'] test_class = groupby_everything(1, 3, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_4__nkeycols_3(self): aggs = ['median'] test_class = groupby_everything(4, 3, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_01__nvalcols_7__nkeycols_3(self): aggs = ['median'] test_class = groupby_everything(7, 3, 0.1, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_2__nkeycols_1(self): aggs = ['median'] test_class = groupby_everything(2, 1, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_5__nkeycols_1(self): aggs = ['median'] test_class = groupby_everything(5, 1, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_1__nkeycols_2(self): aggs = ['median'] test_class = groupby_everything(1, 2, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_4__nkeycols_2(self): aggs = ['median'] test_class = groupby_everything(4, 2, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_7__nkeycols_2(self): aggs = ['median'] test_class = groupby_everything(7, 2, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_2__nkeycols_3(self): aggs = ['median'] test_class = groupby_everything(2, 3, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median__symb_ratio_0300__nvalcols_5__nkeycols_3(self): aggs = ['median'] test_class = groupby_everything(5, 3, 0.30, ['median']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['median', 'min'] test_class = groupby_everything(1, 1, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['median', 'min'] test_class = groupby_everything(4, 1, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['median', 'min'] test_class = groupby_everything(7, 1, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_2__nkeycols_2(self): aggs = ['median', 'min'] test_class = groupby_everything(2, 2, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_5__nkeycols_2(self): aggs = ['median', 'min'] test_class = groupby_everything(5, 2, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_1__nkeycols_3(self): aggs = ['median', 'min'] test_class = groupby_everything(1, 3, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_4__nkeycols_3(self): aggs = ['median', 'min'] test_class = groupby_everything(4, 3, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_01__nvalcols_7__nkeycols_3(self): aggs = ['median', 'min'] test_class = groupby_everything(7, 3, 0.1, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_2__nkeycols_1(self): aggs = ['median', 'min'] test_class = groupby_everything(2, 1, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_5__nkeycols_1(self): aggs = ['median', 'min'] test_class = groupby_everything(5, 1, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_1__nkeycols_2(self): aggs = ['median', 'min'] test_class = groupby_everything(1, 2, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_4__nkeycols_2(self): aggs = ['median', 'min'] test_class = groupby_everything(4, 2, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_7__nkeycols_2(self): aggs = ['median', 'min'] test_class = groupby_everything(7, 2, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_2__nkeycols_3(self): aggs = ['median', 'min'] test_class = groupby_everything(2, 3, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_median_min__symb_ratio_0300__nvalcols_5__nkeycols_3(self): aggs = ['median', 'min'] test_class = groupby_everything(5, 3, 0.30, ['median', 'min']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(1, 1, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(4, 1, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(7, 1, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_2__nkeycols_2(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(2, 2, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_5__nkeycols_2(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(5, 2, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_1__nkeycols_3(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(1, 3, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_4__nkeycols_3(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(4, 3, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_01__nvalcols_7__nkeycols_3(self): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(7, 3, 0.1, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_2__nkeycols_1( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(2, 1, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_5__nkeycols_1( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(5, 1, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_1__nkeycols_2( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(1, 2, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_4__nkeycols_2( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(4, 2, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_7__nkeycols_2( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(7, 2, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_2__nkeycols_3( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(2, 3, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_mean_max__symb_ratio_0300__nvalcols_5__nkeycols_3( self, ): aggs = ['var', 'mean', 'max'] test_class = groupby_everything(5, 3, 0.30, ['var', 'mean', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_1__nkeycols_1( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(1, 1, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_4__nkeycols_1( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(4, 1, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_7__nkeycols_1( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(7, 1, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_2__nkeycols_2( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(2, 2, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_5__nkeycols_2( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(5, 2, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_1__nkeycols_3( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(1, 3, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_4__nkeycols_3( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(4, 3, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_01__nvalcols_7__nkeycols_3( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(7, 3, 0.1, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_2__nkeycols_1( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(2, 1, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_5__nkeycols_1( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(5, 1, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_1__nkeycols_2( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(1, 2, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_4__nkeycols_2( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(4, 2, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_7__nkeycols_2( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(7, 2, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_2__nkeycols_3( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(2, 3, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_max_sum_mean__symb_ratio_0300__nvalcols_5__nkeycols_3( self, ): aggs = ['var', 'max', 'sum', 'mean'] test_class = groupby_everything(5, 3, 0.30, ['var', 'max', 'sum', 'mean']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['max'] test_class = groupby_everything(1, 1, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['max'] test_class = groupby_everything(4, 1, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['max'] test_class = groupby_everything(7, 1, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_2__nkeycols_2(self): aggs = ['max'] test_class = groupby_everything(2, 2, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_5__nkeycols_2(self): aggs = ['max'] test_class = groupby_everything(5, 2, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_1__nkeycols_3(self): aggs = ['max'] test_class = groupby_everything(1, 3, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_4__nkeycols_3(self): aggs = ['max'] test_class = groupby_everything(4, 3, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_01__nvalcols_7__nkeycols_3(self): aggs = ['max'] test_class = groupby_everything(7, 3, 0.1, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_2__nkeycols_1(self): aggs = ['max'] test_class = groupby_everything(2, 1, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_5__nkeycols_1(self): aggs = ['max'] test_class = groupby_everything(5, 1, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_1__nkeycols_2(self): aggs = ['max'] test_class = groupby_everything(1, 2, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_4__nkeycols_2(self): aggs = ['max'] test_class = groupby_everything(4, 2, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_7__nkeycols_2(self): aggs = ['max'] test_class = groupby_everything(7, 2, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_2__nkeycols_3(self): aggs = ['max'] test_class = groupby_everything(2, 3, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max__symb_ratio_0300__nvalcols_5__nkeycols_3(self): aggs = ['max'] test_class = groupby_everything(5, 3, 0.30, ['max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['min', 'sum'] test_class = groupby_everything(1, 1, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['min', 'sum'] test_class = groupby_everything(4, 1, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['min', 'sum'] test_class = groupby_everything(7, 1, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_2__nkeycols_2(self): aggs = ['min', 'sum'] test_class = groupby_everything(2, 2, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_5__nkeycols_2(self): aggs = ['min', 'sum'] test_class = groupby_everything(5, 2, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_1__nkeycols_3(self): aggs = ['min', 'sum'] test_class = groupby_everything(1, 3, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_4__nkeycols_3(self): aggs = ['min', 'sum'] test_class = groupby_everything(4, 3, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_01__nvalcols_7__nkeycols_3(self): aggs = ['min', 'sum'] test_class = groupby_everything(7, 3, 0.1, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_2__nkeycols_1(self): aggs = ['min', 'sum'] test_class = groupby_everything(2, 1, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_5__nkeycols_1(self): aggs = ['min', 'sum'] test_class = groupby_everything(5, 1, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_1__nkeycols_2(self): aggs = ['min', 'sum'] test_class = groupby_everything(1, 2, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_4__nkeycols_2(self): aggs = ['min', 'sum'] test_class = groupby_everything(4, 2, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_7__nkeycols_2(self): aggs = ['min', 'sum'] test_class = groupby_everything(7, 2, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_2__nkeycols_3(self): aggs = ['min', 'sum'] test_class = groupby_everything(2, 3, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_sum__symb_ratio_0300__nvalcols_5__nkeycols_3(self): aggs = ['min', 'sum'] test_class = groupby_everything(5, 3, 0.30, ['min', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_1__nkeycols_1( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(1, 1, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_4__nkeycols_1( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(4, 1, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_7__nkeycols_1( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(7, 1, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_2__nkeycols_2( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(2, 2, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_5__nkeycols_2( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(5, 2, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_1__nkeycols_3( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(1, 3, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_4__nkeycols_3( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(4, 3, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_01__nvalcols_7__nkeycols_3( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(7, 3, 0.1, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_0300__nvalcols_2__nkeycols_1( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(2, 1, 0.30, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_0300__nvalcols_5__nkeycols_1( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(5, 1, 0.30, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_0300__nvalcols_1__nkeycols_2( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(1, 2, 0.30, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_0300__nvalcols_4__nkeycols_2( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(4, 2, 0.30, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_0300__nvalcols_7__nkeycols_2( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(7, 2, 0.30, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_0300__nvalcols_2__nkeycols_3( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(2, 3, 0.30, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_var_median_sum__symb_ratio_0300__nvalcols_5__nkeycols_3( self, ): aggs = ['var', 'median', 'sum'] test_class = groupby_everything(5, 3, 0.30, ['var', 'median', 'sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_01__nvalcols_1__nkeycols_1( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(1, 1, 0.1, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_01__nvalcols_4__nkeycols_1( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(4, 1, 0.1, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_01__nvalcols_7__nkeycols_1( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(7, 1, 0.1, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_01__nvalcols_2__nkeycols_2( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(2, 2, 0.1, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_01__nvalcols_5__nkeycols_2( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(5, 2, 0.1, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_01__nvalcols_1__nkeycols_3( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(1, 3, 0.1, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_01__nvalcols_4__nkeycols_3( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(4, 3, 0.1, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_01__nvalcols_7__nkeycols_3( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(7, 3, 0.1, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_0300__nvalcols_2__nkeycols_1( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(2, 1, 0.30, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_0300__nvalcols_5__nkeycols_1( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(5, 1, 0.30, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_0300__nvalcols_1__nkeycols_2( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(1, 2, 0.30, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_0300__nvalcols_4__nkeycols_2( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(4, 2, 0.30, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_0300__nvalcols_7__nkeycols_2( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(7, 2, 0.30, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_0300__nvalcols_2__nkeycols_3( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(2, 3, 0.30, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_max_median_mean_var__symb_ratio_0300__nvalcols_5__nkeycols_3( self, ): aggs = ['max', 'median', 'mean', 'var'] test_class = groupby_everything(5, 3, 0.30, ['max', 'median', 'mean', 'var']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['sum'] test_class = groupby_everything(1, 1, 0.1, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['sum'] test_class = groupby_everything(4, 1, 0.1, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['sum'] test_class = groupby_everything(7, 1, 0.1, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_01__nvalcols_2__nkeycols_2(self): aggs = ['sum'] test_class = groupby_everything(2, 2, 0.1, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_01__nvalcols_5__nkeycols_2(self): aggs = ['sum'] test_class = groupby_everything(5, 2, 0.1, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_01__nvalcols_1__nkeycols_3(self): aggs = ['sum'] test_class = groupby_everything(1, 3, 0.1, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_01__nvalcols_4__nkeycols_3(self): aggs = ['sum'] test_class = groupby_everything(4, 3, 0.1, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_01__nvalcols_7__nkeycols_3(self): aggs = ['sum'] test_class = groupby_everything(7, 3, 0.1, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_0300__nvalcols_2__nkeycols_1(self): aggs = ['sum'] test_class = groupby_everything(2, 1, 0.30, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_0300__nvalcols_5__nkeycols_1(self): aggs = ['sum'] test_class = groupby_everything(5, 1, 0.30, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_0300__nvalcols_1__nkeycols_2(self): aggs = ['sum'] test_class = groupby_everything(1, 2, 0.30, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_0300__nvalcols_4__nkeycols_2(self): aggs = ['sum'] test_class = groupby_everything(4, 2, 0.30, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_0300__nvalcols_7__nkeycols_2(self): aggs = ['sum'] test_class = groupby_everything(7, 2, 0.30, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_0300__nvalcols_2__nkeycols_3(self): aggs = ['sum'] test_class = groupby_everything(2, 3, 0.30, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_sum__symb_ratio_0300__nvalcols_5__nkeycols_3(self): aggs = ['sum'] test_class = groupby_everything(5, 3, 0.30, ['sum']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_max__symb_ratio_01__nvalcols_1__nkeycols_1(self): aggs = ['min', 'max'] test_class = groupby_everything(1, 1, 0.1, ['min', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_max__symb_ratio_01__nvalcols_4__nkeycols_1(self): aggs = ['min', 'max'] test_class = groupby_everything(4, 1, 0.1, ['min', 'max']) pd_out = ( pd.DataFrame(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) sf_out = ( rt.Dataset(test_class.data) .groupby(KEY_COLUMN_NAMES[: test_class.key_columns]) .agg(test_class.aggregation_functions) ) for func in aggs: for i in range(0, test_class.val_columns): column = VAL_COLUMN_NAMES[i] self.safe_assert(pd_out[column][func], sf_out[func.title()][column]) def test_multikey___aggs_min_max__symb_ratio_01__nvalcols_7__nkeycols_1(self): aggs = ['min', 'max'] test_class = groupby_everything(7, 1, 0.1, ['min', 'max']) pd_out = (
pd.DataFrame(test_class.data)
pandas.DataFrame
# 14.5 Case Study: Multiple Linear Regression with the California Housing Dataset # 14.5.1 Loading the Dataset # Loading the Data from sklearn.datasets import fetch_california_housing california = fetch_california_housing() # Displaying the Dataset’s Description print(california.DESCR) california.data.shape california.target.shape california.feature_names # 14.5.2 Exploring the Data with Pandas import pandas as pd
pd.set_option('precision', 4)
pandas.set_option
# Copyright 2018-2020 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit test for data_frame_proto.""" from unittest.mock import patch import json import unittest import numpy as np import pandas as pd import pytest import streamlit.elements.data_frame_proto as data_frame_proto from google.protobuf import json_format from streamlit.proto.DataFrame_pb2 import AnyArray from streamlit.proto.DataFrame_pb2 import CSSStyle from streamlit.proto.DataFrame_pb2 import CellStyle from streamlit.proto.DataFrame_pb2 import CellStyleArray from streamlit.proto.DataFrame_pb2 import DataFrame from streamlit.proto.DataFrame_pb2 import Index from streamlit.proto.DataFrame_pb2 import Int32Array from streamlit.proto.DataFrame_pb2 import Table from streamlit.proto.Delta_pb2 import Delta from streamlit.proto.VegaLiteChart_pb2 import VegaLiteChart from streamlit.proto.NamedDataSet_pb2 import NamedDataSet def _css_style(prop, value): css_pb = CSSStyle() css_pb.property = prop css_pb.value = value return css_pb class DataFrameProtoTest(unittest.TestCase): """Test streamlit.data_frame_proto.""" def test_marshall_data_frame(self): """Test streamlit.data_frame_proto.marshall_data_frame. """ pass def test_is_pandas_styler(self): """Test streamlit.data_frame_proto._is_pandas_styler. Need to test the following: * object is of type pandas.io.formats.style.Styler """ pass def test_marshall_styles(self): """Test streamlit.data_frame_proto._marshall_styles. Need to test the following: * styler is: * None * not None * display_values is: * None * not None """ pass def test_get_css_styles(self): """Test streamlit.data_frame_proto._get_css_styles. Need to test the following: * cell_selector_regex isnt found * cell_style['props'] isn't a list * cell_style['props'] does not equal 2 * style has name and value * style does not have name and value """ pass def test_get_custom_display_values(self): """Test streamlit.data_frame_proto._get_custom_display_values. Need to test the following: * row_header regex is found * we find row header more than once. * cell_selector regex isn't found. * has_custom_display_values * true * false """ pass def test_marshall_index(self): """Test streamlit.data_frame_proto._marshall_index.""" df =
pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]})
pandas.DataFrame
#pylint: disable=line-too-long, too-many-public-methods, invalid-name #pylint: disable=maybe-no-member, too-few-public-methods, no-member from __future__ import absolute_import from argparse import Namespace from collections import OrderedDict import filecmp from io import StringIO import os import unittest import numpy import pandas as pd from testfixtures import TempDirectory import generollup.rollup as rollup #TODO: cgates: How about we fix the chained assigments and get rid of this warning suppression. pd.set_option('mode.chained_assignment', None) def dataframe(input_data, sep="|", dtype=None): return pd.read_csv(StringIO(input_data), sep=sep, header=0, dtype=dtype) class MockFormatRule(object): def __init__(self, format_df): self.format_df = format_df self.last_data_df = None self.last_format_df = None def format(self, data_df): self.last_data_df = data_df return self.format_df def style(self, format_df): self.last_format_df = format_df return self.format_df class GeneRollupTestCase(unittest.TestCase): def setUp(self): rollup._DBNSFP_COLUMN = 'dbNSFP_rollup_damaging' rollup._EFFECT_COLUMN = 'SNPEFF_TOP_EFFECT_IMPACT' rollup._GENE_SYMBOL = 'GENE_SYMBOL' def test_create_df(self): input_string =\ '''GENE_SYMBOL\tdbNSFP_rollup_damaging\tSNPEFF_TOP_EFFECT_IMPACT\tJQ_SUMMARY_SOM_COUNT|sampleA 1\t2\t3\t4\t5\t6\t7\t8''' args = Namespace(input_file="", output_file="", sample_genotype_column_regex='JQ_SUMMARY_SOM_COUNT\|(.*)', gene_column_name='GENE_SYMBOL', tsv=False) actual_df = rollup._create_df(StringIO(input_string), args) self.assertEquals(["GENE_SYMBOL", "dbNSFP_rollup_damaging", "SNPEFF_TOP_EFFECT_IMPACT", "JQ_SUMMARY_SOM_COUNT|sampleA"], list(actual_df.columns.values)) def test_create_df_missingDbnsfpAndSnpeffOkay(self): input_string =\ '''GENE_SYMBOL\theaderA\theaderB\tJQ_SUMMARY_SOM_COUNT|sampleA foo\t1\t2\t0''' args = Namespace(input_file="", output_file="", sample_genotype_column_regex='JQ_SUMMARY_SOM_COUNT\|(.*)', gene_column_name='GENE_SYMBOL', tsv=False) actual_df = rollup._create_df(StringIO(input_string), args) self.assertEquals(["GENE_SYMBOL", "headerA", "headerB", "JQ_SUMMARY_SOM_COUNT|sampleA"], list(actual_df.columns.values)) def test_create_df_missingDbNsfpOkay(self): input_string =\ '''GENE_SYMBOL\tSNPEFF_TOP_EFFECT_IMPACT\tJQ_SUMMARY_SOM_COUNT|sampleA|TUMOR 1\t2\t3''' args = Namespace(input_file="", output_file="", sample_genotype_column_regex='JQ_SUMMARY_SOM_COUNT\|(.*)\|TUMOR', gene_column_name='GENE_SYMBOL', effect_column_name='SNPEFF_TOP_EFFECT_IMPACT', tsv=False) actual_df = rollup._create_df(StringIO(input_string), args) self.assertEquals(["GENE_SYMBOL", "SNPEFF_TOP_EFFECT_IMPACT", "JQ_SUMMARY_SOM_COUNT|sampleA|TUMOR"], list(actual_df.columns.values)) def test_create_df_missingEffectOkay(self): input_string =\ '''GENE_SYMBOL\tdbNSFP_rollup_damaging\tJQ_SUMMARY_SOM_COUNT|sampleA|TUMOR 1\t2\t3''' args = Namespace(input_file="", output_file="", sample_genotype_column_regex='JQ_SUMMARY_SOM_COUNT\|(.*)\|TUMOR', gene_column_name='GENE_SYMBOL', dbnsfp_column_name='dbNSFP_rollup_damaging', tsv=False) actual_df = rollup._create_df(StringIO(input_string), args) self.assertEquals(["GENE_SYMBOL", "dbNSFP_rollup_damaging", "JQ_SUMMARY_SOM_COUNT|sampleA|TUMOR"], list(actual_df.columns.values)) def test_create_df_missingSamples(self): input_string =\ '''GENE_SYMBOL\tdbNSFP_rollup_damaging\tSNPEFF_TOP_EFFECT_IMPACT 1\t2\t3 1\t2\t3''' args = Namespace(input_file="", output_file="", sample_genotype_column_regex='JQ_SUMMARY_SOM_COUNT\|(P.)\|TUMOR', gene_column_name='GENE_SYMBOL', dbnsfp_column_name='dbNSFP_rollup_damaging', effect_column_name='SNPEFF_TOP_EFFECT_IMPACT', tsv=False) self.assertRaisesRegexp(rollup.UsageError, "Cannot determine sample genotype columns with supplied regex.*", rollup._create_df, StringIO(input_string), args) #TODO: (jebene) I can't figure out how to initialize this as having null values def xtest_create_df_removesIntergenicVariants(self): input_string =\ '''GENE_SYMBOL\tSNPEFF_TOP_EFFECT_IMPACT\tJQ_SUMMARY_SOM_COUNT BRCA1\t2\t3 0\t4\t5 6\t7\t8''' input_string = input_string.replace("0", numpy.nan) args = Namespace(input_file="", output_file="", sample_genotype_column_regex='JQ_SUMMARY_SOM_COUNT\|(.*)\|TUMOR', gene_column_name="GENE_SYMBOL", tsv=False) actual_df = rollup._create_df(StringIO(input_string), args) self.assertEquals(["GENE_SYMBOL", "SNPEFF_TOP_EFFECT_IMPACT", "JQ_SUMMARY_SOM_COUNT"], list(actual_df.columns.values)) self.assertEquals(["BRCA1", "6"], list(actual_df["GENE_SYMBOL"].values)) def test_sort_by_dbnsfp_rank(self): input_string =\ '''gene_symbol\tJQ_SUMMARY_SOM_COUNT|P1|NORMAL\teffect_annotation|overall_effect_rank\tdbNSFP_annotation|overall_damaging_rank BRCA1\th\t7\t2 EGFR\tm\t4\t3 SON\tm\t5\t1 BRCA2\tm\t5\t1 CREBBP\thhh\t6\t1''' input_df = dataframe(input_string, sep="\t") sorted_df = rollup._sort_by_dbnsfp_rank(input_df) self.assertEquals(["BRCA2", "SON", "CREBBP", "BRCA1", "EGFR"], list(sorted_df["gene_symbol"].values)) self.assertEquals([1, 1, 1, 2, 3], list(sorted_df["dbNSFP_annotation|overall_damaging_rank"].values)) def test_combine_dfs(self): summary_string =\ '''GENE_SYMBOL\tJQ_SUMMARY_SOM_COUNT|P1|NORMAL BRCA1\t1 EGFR\t1 CREBBP\t1''' summary_df = dataframe(summary_string, sep="\t") summary_df = summary_df.set_index(["GENE_SYMBOL"]) dbNSFP_string =\ '''GENE_SYMBOL\tdbNSFP|P1|NORMAL BRCA1\t2 CREBBP\t4''' dbNSFP_df = dataframe(dbNSFP_string, sep="\t") dbNSFP_df = dbNSFP_df.set_index(["GENE_SYMBOL"]) snpEff_string =\ '''GENE_SYMBOL\tsnpEff|P1|NORMAL BRCA1\th CREBBP\thh''' snpEff_df = dataframe(snpEff_string, sep="\t") snpEff_df = snpEff_df.set_index(["GENE_SYMBOL"]) dfs = OrderedDict() dfs["summary"] = summary_df dfs["dbNSFP"] = dbNSFP_df dfs["snpEff"] = snpEff_df actual = rollup._combine_dfs(dfs) self.assertEquals(["BRCA1", "CREBBP"], list(actual.index.values)) def xtest_translate_to_excel(self): with TempDirectory() as output_dir: output_dir.write("output.xlsx", "") output_file = os.path.join(output_dir.path, "output.xlsx") data_string =\ '''gene symbol|PATIENT_A_SnpEff|PATIENT_A_dbNSFP|SnpEff_overall_impact_rank MOD|mml|12|2 NULL1||| HIGH|hhmlx|4|1''' data_df = dataframe(data_string) data_df.fillna("", inplace=True) style_string = \ '''gene symbol|PATIENT_A_SnpEff|PATIENT_A_dbNSFP|SnpEff_overall_impact_rank MOD||| HIGH||| NULL1|||''' style_df = dataframe(style_string) style_df["PATIENT_A_SnpEff"] = [{"font_size": "4", "bg_color": "#6699FF", "font_color": "#6699FF"}, "", {"font_size": "4", "bg_color": "#003366", "font_color": "#003366"}] style_df["PATIENT_A_dbNSFP"] = [{"font_size": "12", "bg_color": "#ffa500", "font_color": "#000000"}, "", {"font_size": "12", "bg_color": "white", "font_color": "#003366"}] style_df["SnpEff_overall_impact_rank"] = [{"font_size": "12", "bg_color": "white", "font_color": "#000000"}, "", {"font_size": "12", "bg_color": "red", "font_color": "#000000"}] style_df.fillna("", inplace=True) writer = pd.ExcelWriter(output_file, engine="xlsxwriter") rollup._translate_to_excel(data_df, style_df, writer) script_dir = os.path.dirname(os.path.realpath(__file__)) expected_output = os.path.join(script_dir, "functional_tests", "translate_to_excel", "expected_output.xlsx") self.assertEquals(True, filecmp.cmp(expected_output, output_file)) def test_reset_style_gene_values(self): data_string =\ '''gene_symbol|PATIENT_A_SnpEff BRCA1|{"foo": "bar"} TANK|{"foo": "bar"} CREBBP|{"foo": "bar"}''' data_df = dataframe(data_string) actual = rollup._reset_style_gene_values(data_df) actual = actual.applymap(str) expected_string =\ '''gene_symbol|PATIENT_A_SnpEff {}|{"foo": "bar"} {}|{"foo": "bar"} {}|{"foo": "bar"}''' expected = dataframe(expected_string) self.assertEquals(list(expected["gene_symbol"].values), list(actual["gene_symbol"].values)) self.assertEquals(list(expected["PATIENT_A_SnpEff"].values), list(actual["PATIENT_A_SnpEff"].values)) class dbNSFPTestCase(unittest.TestCase): def setUp(self): rollup._SAMPLENAME_REGEX = "JQ_SUMMARY_SOM_COUNT.*" rollup._GENE_SYMBOL = "GENE_SYMBOL" rollup._XLSX = False def tearDown(self): pass def test_remove_unnecessary_columns(self): FORMAT_DF = pd.DataFrame([[42] * 4] * 1) formatRule = MockFormatRule(FORMAT_DF) args = Namespace(input_file="", output_file="", sample_genotype_column_regex='JQ_SUMMARY_SOM_COUNT\|(.*)\|TUMOR', gene_column_name="GENE_SYMBOL", tsv=False) dbNSFP = rollup.dbNSFP([formatRule], args) input_string = \ '''GENE_SYMBOL\tdbNSFP_rollup_damaging\tBAZ\tJQ_SUMMARY_SOM_COUNT|P1|TUMOR\tJQ_SUMMARY_SOM_COUNT|P2|TUMOR\tFOO\tBAR''' input_df = dataframe(input_string, sep="\t") actual = dbNSFP._remove_unnecessary_columns(input_df) self.assertEquals(4, len(actual.columns)) self.assertNotIn("BAZ", actual.columns) self.assertNotIn("FOO", actual.columns) self.assertNotIn("BAR", actual.columns) def test_remove_invalid_rows(self): FORMAT_DF = pd.DataFrame([[42] * 4] * 2) formatRule = MockFormatRule(FORMAT_DF) args = Namespace(input_file="", output_file="", sample_genotype_column_regex='JQ_SUMMARY_SOM_COUNT\|(.*)\|TUMOR', ) dbNSFP = rollup.dbNSFP([formatRule], args) input_string =\ '''GENE_SYMBOL\tdbNSFP_rollup_damaging\tJQ_SUMMARY_SOM_COUNT|P1|TUMOR\tJQ_SUMMARY_SOM_COUNT|P2|TUMOR BRCA1\t2\t1\t1 BRCA1\t0\t.\t1 BRCA1\t\t1\t1 BRCA1\t.\t1\t1 CREBBP\t3\t0\t.''' input_df = dataframe(input_string, sep="\t") actual = dbNSFP._remove_invalid_rows(input_df) self.assertEquals(["2", "3"], list(actual["dbNSFP_rollup_damaging"].values)) self.assertEquals(["1", "0"], list(actual["JQ_SUMMARY_SOM_COUNT|P1|TUMOR"].values)) self.assertEquals(["1", "."], list(actual["JQ_SUMMARY_SOM_COUNT|P2|TUMOR"].values)) def test_summarize_dataMatrix(self): FORMAT_DF = pd.DataFrame([[42] * 4] * 2) formatRule = MockFormatRule(FORMAT_DF) args = Namespace(input_file="", output_file="", sample_genotype_column_regex='JQ_SUMMARY_SOM_COUNT\|(.*)\|TUMOR', gene_column_name=rollup._GENE_SYMBOL, input_gene_column_name=rollup._GENE_SYMBOL, tsv=False) dbNSFP = rollup.dbNSFP([formatRule], args) input_string =\ '''GENE_SYMBOL\tdbNSFP_rollup_damaging\tJQ_SUMMARY_SOM_COUNT|P1|TUMOR\tJQ_SUMMARY_SOM_COUNT|P2|TUMOR BRCA1\t2\t1\t1 BRCA1\t5\t.\t1 CREBBP\t3\t0\t.''' input_df = dataframe(input_string, sep="\t") input_df = input_df.applymap(str) (data_df, style_dfs) = dbNSFP.summarize(input_df) self.assertEquals(1, len(style_dfs)) self.assertEquals(data_df.shape, style_dfs[0].shape) data_df = data_df.applymap(str) expected_string =\ '''GENE_SYMBOL\tdbNSFP_annotation|overall_damaging_rank\tdbNSFP_annotation|damaging_total\tdbNSFP_annotation|damaging_votes|P1\tdbNSFP_annotation|damaging_votes|P2 BRCA1\t1\t9\t2\t7 CREBBP\t2\t0\t\t''' expected_df = dataframe(expected_string, sep="\t", dtype=str) expected_df = expected_df.set_index(["GENE_SYMBOL"]) expected_df.fillna("", inplace=True) expected_df = expected_df.applymap(str) self.assertEquals('\t'.join(expected_df.columns.values), '\t'.join(data_df.columns.values)) self.assertEquals([list(i) for i in expected_df.values], [list(i) for i in data_df.values]) def test_summarize_dataMatrixIgnoresNullOrZeroDamagingCounts(self): FORMAT_DF = pd.DataFrame([[42] * 4] * 1) formatRule = MockFormatRule(FORMAT_DF) args = Namespace(input_file="", output_file="", sample_genotype_column_regex='JQ_SUMMARY_SOM_COUNT\|(.*)\|TUMOR', gene_column_name=rollup._GENE_SYMBOL, input_gene_column_name=rollup._GENE_SYMBOL, tsv=False) dbNSFP = rollup.dbNSFP([formatRule], args) input_string =\ '''GENE_SYMBOL\tdbNSFP_rollup_damaging\tJQ_SUMMARY_SOM_COUNT|P1|TUMOR\tJQ_SUMMARY_SOM_COUNT|P2|TUMOR BRCA1\t0\t1\t1 BRCA1\t1\t.\t1 CREBBP\t.\t0\t.''' input_df = dataframe(input_string, sep="\t") input_df = input_df.applymap(str) (data_df, style_dfs) = dbNSFP.summarize(input_df) self.assertEquals(1, len(style_dfs)) self.assertEquals(data_df.shape, style_dfs[0].shape) data_df = data_df.applymap(str) expected_string =\ '''GENE_SYMBOL\tdbNSFP_annotation|overall_damaging_rank\tdbNSFP_annotation|damaging_total\tdbNSFP_annotation|damaging_votes|P1\tdbNSFP_annotation|damaging_votes|P2 BRCA1\t1\t1\t\t1''' expected_df = dataframe(expected_string, sep="\t", dtype=str) expected_df = expected_df.set_index(["GENE_SYMBOL"]) expected_df.fillna("", inplace=True) expected_df = expected_df.applymap(str) self.assertEquals('\t'.join(expected_df.columns.values), '\t'.join(data_df.columns.values)) self.assertEquals([list(i) for i in expected_df.values], [list(i) for i in data_df.values]) def test_summarize_formatMatrix(self): FORMAT_DF =
pd.DataFrame([[42] * 4] * 2)
pandas.DataFrame
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from collections import OrderedDict import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None from ....config import options, option_context from ....dataframe import DataFrame from ....tensor import arange, tensor from ....tensor.random import rand from ....tests.core import require_cudf from ....utils import lazy_import from ... import eval as mars_eval, cut, qcut from ...datasource.dataframe import from_pandas as from_pandas_df from ...datasource.series import from_pandas as from_pandas_series from ...datasource.index import from_pandas as from_pandas_index from .. import to_gpu, to_cpu from ..to_numeric import to_numeric from ..rebalance import DataFrameRebalance cudf = lazy_import('cudf', globals=globals()) @require_cudf def test_to_gpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) res = cdf.execute().fetch() assert isinstance(res, cudf.DataFrame) pd.testing.assert_frame_equal(res.to_pandas(), pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries) cseries = series.to_gpu() res = cseries.execute().fetch() assert isinstance(res, cudf.Series) pd.testing.assert_series_equal(res.to_pandas(), pseries) @require_cudf def test_to_cpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) df2 = to_cpu(cdf) res = df2.execute().fetch() assert isinstance(res, pd.DataFrame) pd.testing.assert_frame_equal(res, pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries, chunk_size=(13, 21)) cseries = to_gpu(series) series2 = to_cpu(cseries) res = series2.execute().fetch() assert isinstance(res, pd.Series) pd.testing.assert_series_equal(res, pseries) def test_rechunk_execution(setup): data = pd.DataFrame(np.random.rand(8, 10)) df = from_pandas_df(pd.DataFrame(data), chunk_size=3) df2 = df.rechunk((3, 4)) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) df = from_pandas_df(data) df2 = df.rechunk(5) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) # test Series rechunk execution. data = pd.Series(np.random.rand(10,)) series = from_pandas_series(data) series2 = series.rechunk(3) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) series2 = series.rechunk(1) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) # test index rechunk execution data = pd.Index(np.random.rand(10,)) index = from_pandas_index(data) index2 = index.rechunk(3) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) index2 = index.rechunk(1) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) # test rechunk on mixed typed columns data =
pd.DataFrame({0: [1, 2], 1: [3, 4], 'a': [5, 6]})
pandas.DataFrame
import tensorflow as tf import numpy as np import pandas as pd class TFRecordWriter: def __init__(self, **kwargs): self.__input_size = kwargs['input_size'] self.__output_size = kwargs['output_size'] self.__train_file_path = kwargs['train_file_path'] self.__validate_file_path = kwargs['validate_file_path'] self.__test_file_path = kwargs['test_file_path'] self.__binary_train_file_path = kwargs['binary_train_file_path'] self.__binary_validation_file_path = kwargs['binary_validation_file_path'] self.__binary_test_file_path = kwargs['binary_test_file_path'] # read the text data from text files def read_text_data(self): self.__list_of_training_inputs = [] self.__list_of_training_outputs = [] self.__list_of_validation_inputs = [] self.__list_of_validation_outputs =[] self.__list_of_validation_metadata = [] self.__list_of_test_inputs = [] self.__list_of_test_metadata = [] # Reading the training dataset. train_df = pd.read_csv(self.__train_file_path, nrows=10) float_cols = [c for c in train_df if train_df[c].dtype == "float64"] float32_cols = {c: np.float32 for c in float_cols} train_df = pd.read_csv(self.__train_file_path, sep=" ", header=None, engine='c', dtype=float32_cols) train_df = train_df.rename(columns={0: 'series'}) # Returns unique number of time series in the dataset. series = pd.unique(train_df['series']) # Construct input and output training tuples for each time series. for ser in series: one_series_df = train_df[train_df['series'] == ser] inputs_df = one_series_df.iloc[:, range(1, (self.__input_size + 1))] outputs_df = one_series_df.iloc[:, range((self.__input_size + 2), (self.__input_size + self.__output_size + 2))] self.__list_of_training_inputs.append(np.ascontiguousarray(inputs_df, dtype=np.float32)) self.__list_of_training_outputs.append(np.ascontiguousarray(outputs_df, dtype=np.float32)) # Reading the validation dataset. val_df = pd.read_csv(self.__validate_file_path, nrows=10) float_cols = [c for c in val_df if val_df[c].dtype == "float64"] float32_cols = {c: np.float32 for c in float_cols} val_df = pd.read_csv(self.__validate_file_path, sep=" ", header=None, engine='c', dtype=float32_cols) val_df = val_df.rename(columns={0: 'series'}) series = pd.unique(val_df['series']) for ser in series: one_series_df = val_df[val_df['series'] == ser] inputs_df_test = one_series_df.iloc[:, range(1, (self.__input_size + 1))] metadata_df = one_series_df.iloc[:, range((self.__input_size + self.__output_size + 3), one_series_df.shape[1])] outputs_df_test = one_series_df.iloc[:, range((self.__input_size + 2), (self.__input_size + self.__output_size + 2))] self.__list_of_validation_inputs.append(np.ascontiguousarray(inputs_df_test, dtype=np.float32)) self.__list_of_validation_outputs.append(np.ascontiguousarray(outputs_df_test, dtype=np.float32)) self.__list_of_validation_metadata.append(np.ascontiguousarray(metadata_df, dtype=np.float32)) # Reading the test file. test_df = pd.read_csv(self.__test_file_path, nrows=10) float_cols = [c for c in test_df if test_df[c].dtype == "float64"] float32_cols = {c: np.float32 for c in float_cols} test_df = pd.read_csv(self.__test_file_path, sep=" ", header=None, engine='c', dtype=float32_cols) test_df = test_df.rename(columns={0: 'series'}) series =
pd.unique(test_df['series'])
pandas.unique
"""Contains functions for preprocessing data Classes ------- Person Functions ---------- recurcive_append create_pedigree add_control prepare_data """ import logging import pandas as pd import numpy as np from pysnptools.snpreader import Bed from bgen_reader import open_bgen, read_bgen from config import nan_integer class Person: """Just a simple data structure representing individuals Args: id : str IID of the individual. fid : str FID of the individual. pid : str IID of the father of that individual. mid : str IID of the mother of that individual. """ def __init__(self, id, fid=None, pid=None, mid=None): self.id = id self.fid = fid self.pid = pid self.mid = mid def recurcive_append(dictionary, index, element): """Adds an element to value of all the keys that can be reached from index with using get recursively. Args: dictionary : dict A dictionary of objects to list index The start point element What should be added to values """ queue = {index} seen_so_far = set() while queue: current_index = queue.pop() seen_so_far.add(current_index) dictionary[current_index].add(element) queue = queue.union(dictionary[current_index]) queue = queue.difference(seen_so_far) def create_pedigree(king_address, agesex_address): """Creates pedigree table from agesex file and kinship file in KING format. Args: king_address : str Address of a kinship file in KING format. kinship file is a '\t' seperated csv with columns "FID1", "ID1", "FID2", "ID2, "InfType". Each row represents a relationship between two individuals. InfType column states the relationship between two individuals. The only relationships that matter for this script are full sibling and parent-offspring which are shown by 'FS' and 'PO' respectively. This file is used in creating a pedigree file and can be generated using KING. As fids starting with '_' are reserved for control there should be no fids starting with '_'. agesex_address : str Address of the agesex file. This is a " " seperated CSV with columns "FID", "IID", "FATHER_ID", "MOTHER_ID", "sex", "age". Each row contains the age and sex of one individual. Male and Female sex should be represented with 'M' and 'F'. Age column is used for distinguishing between parent and child in a parent-offspring relationship inferred from the kinship file. ID1 is a parent of ID2 if there is a 'PO' relationship between them and 'ID1' is at least 12 years older than ID2. Returns: pd.DataFrame: A pedigree table with 'FID', 'IID', 'FATHER_ID', 'MOTHER_ID'. Each row represents an individual. """ kinship = pd.read_csv(king_address, delimiter="\t").astype(str) logging.info("loaded kinship file") agesex =
pd.read_csv(agesex_address, delim_whitespace=True)
pandas.read_csv
from torch.utils.data.dataset import Dataset from torch.utils.data import DataLoader from PIL import Image import sys import os import random import numpy as np import pandas as pd class UltrasoundDataset(object): def __init__(self, data_path, val_size=0.2, random_seed=1): self.data_path = data_path self.dataset = os.path.basename(os.path.normpath(self.data_path)) self.dataset_table_path = self.dataset + '.csv' self.make_dataset_table() self.train_val_split(val_size, random_seed=random_seed) def make_dataset_table(self): print('dataset csv table creating...') data = [] if self.dataset not in ['Endocrinology', 'BUSI', 'BPUI']: print('The folder with the dataset must have one of these names: Endocrinology, BUSI, BPUI') sys.exit() if self.dataset == 'Endocrinology': classes_dict = {} for _, row in pd.read_csv(self.data_path + os.sep + 'TIRADS.txt').iterrows(): if classes_dict.get(row['Patient']) is None: classes_dict[row['Patient']] = {row['file']: row['TIRADS']} else: classes_dict[row['Patient']].update({row['file']: row['TIRADS']}) for patient_path in [os.path.join(self.data_path, patient_name) for patient_name in sorted(os.listdir(self.data_path)) if os.path.isdir(os.path.join(self.data_path, patient_name))]: images = [os.path.splitext(image_id)[0] for image_id in sorted(os.listdir(os.path.join(patient_path, 'Images')))] for image_id in images: image_path = os.path.join(patient_path, 'Images', '{}.tif'.format(image_id)) mask_path = os.path.join(patient_path, 'Masks', '{}.labels.tif'.format(image_id)) mask = Image.open(mask_path) frames = [frame for frame in range(mask.n_frames)] classes = [] for frame in frames: mask.seek(frame) if not np.array(mask).any(): classes.append(0) else: classes.append(classes_dict[os.path.split(patient_path)[-1]][image_id]) image_paths = [image_path for _ in range(len(frames))] mask_paths = [mask_path for _ in range(len(frames))] data.append(np.array([image_paths, mask_paths, frames, classes]).T) pd.DataFrame(np.concatenate(data), columns=['image', 'mask', 'frame', 'class']).to_csv(self.dataset_table_path, index=False) elif self.dataset == 'BUSI': classes = sorted([name for name in os.listdir(self.data_path)]) classes_dict = dict((class_type, index) for index, class_type in enumerate(classes)) for class_type in classes: class_type_path = os.path.join(self.data_path, class_type) image_paths = sorted([os.path.join(class_type_path, name) for name in os.listdir(class_type_path) if 'mask' not in name]) for image_path in image_paths: mask_path = ''.join([os.path.splitext(image_path)[0], '_mask.png']) data.append(np.array([[image_path, mask_path, classes_dict[class_type]]])) pd.DataFrame(np.concatenate(data), columns=['image', 'mask', 'class']).to_csv(self.dataset_table_path, index=False) elif self.dataset == 'BPUI': image_names = sorted([name for name in os.listdir(self.data_path) if 'mask' not in name]) for image_name in image_names: image_path = os.path.join(self.data_path, image_name) mask_path = os.path.join(self.data_path, ''.join([os.path.splitext(image_name)[0], '_mask.tif'])) data.append(np.array([[image_path, mask_path]])) pd.DataFrame(np.concatenate(data), columns=['image', 'mask']).to_csv(self.dataset_table_path, index=False) def train_val_split(self, val_size=0.2, random_seed=1): dataset_table =
pd.read_csv(self.dataset_table_path)
pandas.read_csv
import json import os import unittest, pandas as pd from prima.configuration import Experiment from prima.engine import ExecutionMode, ExecutionContext, Executor from testing.models import param_sweep, policy_aggregation exp = Experiment() sys_model_A_id = "sys_model_A" exp.append_model( model_id=sys_model_A_id, sim_configs=param_sweep.sim_config, initial_state=param_sweep.genesis_states, env_processes=param_sweep.env_process, partial_state_update_blocks=param_sweep.partial_state_update_blocks, ) sys_model_B_id = "sys_model_B" exp.append_model( model_id=sys_model_B_id, sim_configs=param_sweep.sim_config, initial_state=param_sweep.genesis_states, env_processes=param_sweep.env_process, partial_state_update_blocks=param_sweep.partial_state_update_blocks, ) sys_model_C_id = "sys_model_C" exp.append_model( model_id=sys_model_C_id, sim_configs=policy_aggregation.sim_config, initial_state=policy_aggregation.genesis_states, partial_state_update_blocks=policy_aggregation.partial_state_update_block, policy_ops=[lambda a, b: a + b, lambda y: y * 2], # Default: lambda a, b: a + b ) simulation = 3 model_A_sweeps = len(param_sweep.sim_config) model_B_sweeps = len(param_sweep.sim_config) model_C_sweeps = 1 # total_sweeps = model_A_sweeps + model_B_sweeps model_A_runs = param_sweep.sim_config[0]["N"] model_B_runs = param_sweep.sim_config[0]["N"] model_C_runs = policy_aggregation.sim_config["N"] # total_runs = model_A_runs + model_B_runs model_A_timesteps = len(param_sweep.sim_config[0]["T"]) model_B_timesteps = len(param_sweep.sim_config[0]["T"]) model_C_timesteps = len(policy_aggregation.sim_config["T"]) model_A_substeps = len(param_sweep.partial_state_update_blocks) model_B_substeps = len(param_sweep.partial_state_update_blocks) model_C_substeps = len(policy_aggregation.partial_state_update_block) # total_substeps = model_A_substeps + model_B_substeps model_A_init_rows = model_A_runs * model_A_sweeps model_B_init_rows = model_B_runs * model_B_sweeps model_C_init_rows = model_C_runs * 1 model_A_rows = model_A_init_rows + ( model_A_sweeps * (model_A_runs * model_A_timesteps * model_A_substeps) ) model_B_rows = model_B_init_rows + ( model_B_sweeps * (model_B_runs * model_B_timesteps * model_B_substeps) ) model_C_rows = model_C_init_rows + ( model_C_sweeps * (model_C_runs * model_C_timesteps * model_C_substeps) ) exec_mode = ExecutionMode() local_mode_ctx = ExecutionContext(context=exec_mode.local_mode) simulation = Executor(exec_context=local_mode_ctx, configs=exp.configs) raw_results, _, _ = simulation.execute() results_df =
pd.DataFrame(raw_results)
pandas.DataFrame
# -*- coding: utf-8 -*- import PyEMD import numpy as np import pandas as pd import matplotlib as mpl mpl.rcParams['font.sans-serif'] = ['SimHei'] mpl.rcParams['font.serif'] = ['SimHei'] mpl.rcParams['axes.unicode_minus'] = False import matplotlib.pyplot as plt def dec_emds(series, dec_type='EMD'): ''' 时间序列信号分解,基于emd的方法(使用EMD-signal库) series,时间序列信号数据,pd.Series dec_type,采用的分解算法类型,可选'EMD'、'EEMD'和'CEEMDAN'三种 返回modes,分解之后的成分表,pd.DataFrame格式,每列代表一个成分, modes中第一列为最高频成分,倒数第二列为最低频成分,最后一列为分解残差 ''' if dec_type == 'EMD': method = PyEMD.EMD() elif dec_type == 'EEMD': method = PyEMD.EEMD() elif dec_type == 'CEEMDAN': method = PyEMD.CEEMDAN() else: raise ValueError('分解方法请选择EMD、EEMD和CEEMDAN中的一种!') modes = method(np.array(series)) modes = pd.DataFrame(modes.transpose()) cols = ['imf_' + str(k) for k in range(1, modes.shape[1]+1)] modes.columns = cols modes.set_index(series.index, inplace=True) modes['dec_res'] = series-modes.transpose().sum() return modes def merge_high_modes(modes, high_num=3): ''' 合并时间序列分解后得到的成份数据中的高频成份 modes,pd.DataFrame,分解结果,高频在前面的列低频在后面的列 high_num,需要合并的高频成份个数 返回合并高频成分之后的IMFs,已经删除残差列(dec_res),每列一个成份,每行一个样本 ''' IMFs = modes.copy() merge_col_name = 'IMF1_' + str(high_num) IMFs[merge_col_name] = IMFs.iloc[:, 0:high_num].transpose().sum() IMFs.drop(list(IMFs.columns[0: high_num]), axis=1, inplace=True) IMFs.insert(0, merge_col_name, IMFs.pop(merge_col_name)) if 'dec_res' in IMFs.columns: IMFs.drop('dec_res', axis=1, inplace=True) return IMFs def plot_modes(modes, n_xticks=6, figsize=(10, 10)): ''' 对分解之后的modes进行绘图查看 modes,分解之后的数据表,pd.DataFrame格式,每行一个样本,每列一个成份 n_xticks设置x轴上显示的刻度个数 ''' Nplots = modes.shape[1] Nsamp = modes.shape[0] plt.figure(figsize=figsize) for k in range(0, Nplots): curr_plot = plt.subplot(Nplots, 1, k+1) curr_plot.plot(np.arange(Nsamp), modes.iloc[:,k]) x_pos = np.linspace(0, Nsamp-1, n_xticks).astype(int) plt.xticks(x_pos, list(modes.index[x_pos]), rotation=0) plt.tight_layout() plt.show() def SSD(series, lag=10): '''奇异值分解时间序列''' # 嵌入 seriesLen = len(series) K = seriesLen - lag + 1 X = np.zeros((lag, K)) for i in range(K): X[:, i] = series[i: i+lag] # svd分解,U和sigma已经按升序排序 U, sigma, VT = np.linalg.svd(X, full_matrices=False) for i in range(VT.shape[0]): VT[i, :] *= sigma[i] A = VT # 重组 rec = np.zeros((lag, seriesLen)) for i in range(lag): for j in range(lag-1): for m in range(j+1): rec[i, j] += A[i, j-m] * U[m, i] rec[i, j] /= (j+1) for j in range(lag-1, seriesLen - lag + 1): for m in range(lag): rec[i, j] += A[i, j-m] * U[m, i] rec[i, j] /= lag for j in range(seriesLen - lag + 1, seriesLen): for m in range(j-seriesLen+lag, lag): rec[i, j] += A[i, j - m] * U[m, i] rec[i, j] /= (seriesLen - j) rec =
pd.DataFrame(rec)
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/dev-01-retrieval.ipynb (unless otherwise specified). __all__ = ['query_API', 'dict_col_2_cols', 'clean_nested_dict_cols', 'set_dt_idx', 'create_df_dt_rng', 'clean_df_dts', 'retrieve_stream_df', 'check_streams', 'retrieve_streams_df', 'parse_A44_response', 'retreive_DAM_prices', 'parse_A75_response', 'retrieve_production'] # Cell import json import numpy as np import pandas as pd import os import requests import xmltodict from datetime import date from warnings import warn from itertools import product from dotenv import load_dotenv from entsoe import EntsoePandasClient, EntsoeRawClient # Cell def query_API(start_date:str, end_date:str, stream:str, time_group='30m'): """ 'Query API' makes the call to Electric Insights and returns the JSON response Parameters: start_date: Start date for data given as a string in the form '%Y-%m-%d' end_date: End date for data given as a string in the form '%Y-%m-%d' stream: One of 'prices_ahead', 'prices_ahead', 'prices', 'temperatures' or 'emissions' time_group: One of '30m', '1h', '1d' or '7d'. The default is '30m' """ # Checking stream is an EI endpoint possible_streams = ['prices_ahead', 'prices', 'temperatures', 'emissions', 'generation-mix'] assert stream in possible_streams, f"Stream must be one of {''.join([stream+', ' for stream in possible_streams])[:-2]}" # Checking time_group will be accepted by API possible_time_groups = ['30m', '1h', '1d', '7d'] assert time_group in possible_time_groups, f"Time group must be one of {''.join([time_group+', ' for time_group in possible_time_groups])[:-2]}" # Formatting dates format_dt = lambda dt: date.strftime(dt, '%Y-%m-%d') if isinstance(dt, date) else dt start_date = format_dt(start_date) end_date = format_dt(end_date) # Running query and parsing response response = requests.get(f'http://drax-production.herokuapp.com/api/1/{stream}?date_from={start_date}&date_to={end_date}&group_by={time_group}') r_json = response.json() return r_json # Cell def dict_col_2_cols(df:pd.DataFrame, value_col='value'): """Checks the `value_col`, if it contains dictionaries these are transformed into new columns which then replace it""" ## Checks the value col is found in the dataframe if value_col not in df.columns: return df if isinstance(df.loc[0, value_col], dict): df_values = pd.DataFrame(df[value_col].to_dict()).T df[df_values.columns] = df_values df = df.drop(columns=[value_col]) return df # Cell def clean_nested_dict_cols(df): """Unpacks columns contining nested dictionaries""" # Calculating columns that are still dictionaries s_types = df.iloc[0].apply(lambda val: type(val)) cols_with_dicts = s_types[s_types == dict].index while len(cols_with_dicts) > 0: for col_with_dicts in cols_with_dicts: # Extracting dataframes from dictionary columns df = dict_col_2_cols(df, col_with_dicts) # Recalculating columns that are still dictionaries s_types = df.iloc[0].apply(lambda val: type(val)) cols_with_dicts = s_types[s_types == dict].index return df # Cell def set_dt_idx(df:pd.DataFrame, idx_name='local_datetime'): """ Converts the start datetime to UK local time, then sets it as the index and removes the original datetime columns """ idx_dt = pd.DatetimeIndex(pd.to_datetime(df['start'], utc=True)).tz_convert('Europe/London') idx_dt.name = idx_name df.index = idx_dt df = df.drop(columns=['start', 'end']) return df def create_df_dt_rng(start_date, end_date, freq='30T', tz='Europe/London', dt_str_template='%Y-%m-%d'): """ Creates a dataframe mapping between local datetimes and electricity market dates/settlement periods """ # Creating localised datetime index s_dt_rng = pd.date_range(start_date, end_date, freq=freq, tz=tz) s_dt_SP_count = pd.Series(0, index=s_dt_rng).resample('D').count() # Creating SP column SPs = [] for num_SPs in list(s_dt_SP_count): SPs += list(range(1, num_SPs+1)) # Creating datetime dataframe df_dt_rng = pd.DataFrame(index=s_dt_rng) df_dt_rng.index.name = 'local_datetime' # Adding query call cols df_dt_rng['SP'] = SPs df_dt_rng['date'] = df_dt_rng.index.strftime(dt_str_template) return df_dt_rng def clean_df_dts(df): """Cleans the datetime index of the passed DataFrame""" df = set_dt_idx(df) df = df[~df.index.duplicated()] df_dt_rng = create_df_dt_rng(df.index.min(), df.index.max()) df = df.reindex(df_dt_rng.index) df['SP'] = df_dt_rng['SP'] # Adding settlement period designation return df # Cell def retrieve_stream_df(start_date:str, end_date:str, stream:str, time_group='30m', renaming_dict={}): """ Makes the call to Electric Insights and parses the response into a dataframe which is returned Parameters: start_date: Start date for data given as a string in the form '%Y-%m-%d' end_date: End date for data given as a string in the form '%Y-%m-%d' stream: One of 'prices_ahead', 'prices_ahead', 'prices', 'temperatures' or 'emissions' time_group: One of '30m', '1h', '1d' or '7d'. The default is '30m' renaming_dict: Mapping from old to new column names """ # Calling data and parsing into dataframe r_json = query_API(start_date, end_date, stream, time_group) df = pd.DataFrame.from_dict(r_json) # Handling entrys which are dictionarys df = clean_nested_dict_cols(df) # Setting index as localised datetime, reindexing with all intervals and adding SP df = clean_df_dts(df) # Renaming value col if 'value' in df.columns: df = df.rename(columns={'value':stream}) if 'referenceOnly' in df.columns: df = df.drop(columns=['referenceOnly']) df = df.rename(columns=renaming_dict) return df # Cell def check_streams(streams='*'): """ Checks that the streams given are a list containing only possible streams, or is all streams - '*'. """ possible_streams = ['prices_ahead', 'prices', 'temperatures', 'emissions', 'generation-mix'] if isinstance(streams, list): unrecognised_streams = list(set(streams) - set(possible_streams)) if len(unrecognised_streams) == 0: return streams else: unrecognised_streams_2_print = ''.join(["'"+stream+"', " for stream in unrecognised_streams])[:-2] raise ValueError(f"Streams {unrecognised_streams_2_print} could not be recognised, must be one of: {', '.join(possible_streams)}") elif streams=='*': return possible_streams else: raise ValueError(f"Streams could not be recognised, must be one of: {', '.join(possible_streams)}") # Cell def retrieve_streams_df(start_date:str, end_date:str, streams='*', time_group='30m', renaming_dict={}): """ Makes the calls to Electric Insights for the given streams and parses the responses into a dataframe which is returned Parameters: start_date: Start date for data given as a string in the form '%Y-%m-%d' end_date: End date for data given as a string in the form '%Y-%m-%d' streams: Contains 'prices_ahead', 'prices_ahead', 'prices', 'temperatures' or 'emissions', or is given as all, '*' time_group: One of '30m', '1h', '1d' or '7d'. The default is '30m' """ df = pd.DataFrame() streams = check_streams(streams) for stream in streams: df_stream = retrieve_stream_df(start_date, end_date, stream, renaming_dict=renaming_dict) df[df_stream.columns] = df_stream return df # Cell def parse_A44_response(r, freq='H', tz='UTC'): """Extracts the price time-series""" s_price = pd.Series(dtype=float) parsed_r = xmltodict.parse(r.text) for timeseries in parsed_r['Publication_MarketDocument']['TimeSeries']: dt_rng = pd.date_range(timeseries['Period']['timeInterval']['start'], timeseries['Period']['timeInterval']['end'], freq=freq, tz=tz)[:-1] s_dt_price = pd.DataFrame(timeseries['Period']['Point'])['price.amount'].astype(float) s_dt_price.index = dt_rng s_price = s_price.append(s_dt_price) assert s_price.index.duplicated().sum() == 0, 'There are duplicate date indexes' return s_price # Cell def retreive_DAM_prices(dt_pairs, domain='10Y1001A1001A63L'): """Retrieves and collates the day-ahead prices for the specified date ranges""" params = { 'documentType': 'A44', 'in_Domain': domain, 'out_Domain': domain } s_price = pd.Series(dtype=float) for dt_pair in track(dt_pairs): start = pd.Timestamp(dt_pair[0], tz='UTC') end = pd.Timestamp(dt_pair[1], tz='UTC') try: r = client._base_request(params=params, start=start, end=end) s_price_dt_rng = parse_A44_response(r) s_price = s_price.append(s_price_dt_rng) except: warn(f"{start.strftime('%Y-%m-%d')} - {end.strftime('%Y-%m-%d')} failed") return s_price # Cell def parse_A75_response(r, freq='15T', tz='UTC', warn_on_failure=False): """Extracts the production data by fuel-type from the JSON response""" psr_code_to_type = { 'A03': 'Mixed', 'A04': 'Generation', 'A05': 'Load', 'B01': 'Biomass', 'B02': 'Fossil Brown coal/Lignite', 'B03': 'Fossil Coal-derived gas', 'B04': 'Fossil Gas', 'B05': 'Fossil Hard coal', 'B06': 'Fossil Oil', 'B07': 'Fossil Oil shale', 'B08': 'Fossil Peat', 'B09': 'Geothermal', 'B10': 'Hydro Pumped Storage', 'B11': 'Hydro Run-of-river and poundage', 'B12': 'Hydro Water Reservoir', 'B13': 'Marine', 'B14': 'Nuclear', 'B15': 'Other renewable', 'B16': 'Solar', 'B17': 'Waste', 'B18': 'Wind Offshore', 'B19': 'Wind Onshore', 'B20': 'Other', 'B21': 'AC Link', 'B22': 'DC Link', 'B23': 'Substation', 'B24': 'Transformer' } parsed_r = xmltodict.parse(r.text) columns = [f'B{str(fuel_idx).zfill(2)}' for fuel_idx in np.arange(1, 24)] index = pd.date_range( parsed_r['GL_MarketDocument']['time_Period.timeInterval']['start'], parsed_r['GL_MarketDocument']['time_Period.timeInterval']['end'], freq=freq, tz=tz)[:-1] df_production = pd.DataFrame(dtype=float, columns=columns, index=index) for timeseries in parsed_r['GL_MarketDocument']['TimeSeries']: try: psr_type = timeseries['MktPSRType']['psrType'] dt_rng = pd.date_range(timeseries['Period']['timeInterval']['start'], timeseries['Period']['timeInterval']['end'], freq=freq, tz=tz)[:-1] s_psr_type = pd.DataFrame(timeseries['Period']['Point'])['quantity'].astype(float) s_psr_type.index = dt_rng df_production[psr_type] = s_psr_type except: if warn_on_failure == True: warn(f"{timeseries['Period']['timeInterval']['start']}-{timeseries['Period']['timeInterval']['start']} failed for {psr_type}") assert df_production.index.duplicated().sum() == 0, 'There are duplicate date indexes' df_production = df_production.dropna(how='all').dropna(how='all', axis=1) df_production = df_production.rename(columns=psr_code_to_type) return df_production def retrieve_production(dt_pairs, domain='10Y1001A1001A63L', warn_on_failure=False): """Retrieves and collates the production data for the specified date ranges""" params = { 'documentType': 'A75', 'processType': 'A16', 'in_Domain': domain } df_production =
pd.DataFrame(dtype=float)
pandas.DataFrame
from __future__ import division import pytest import numpy as np from pandas import (Interval, IntervalIndex, Index, isna, interval_range, Timestamp, Timedelta, compat) from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self): return IntervalIndex.from_breaks(np.arange(10)) def test_constructors(self): expected = self.index actual = IntervalIndex.from_breaks(np.arange(3), closed='right') assert expected.equals(actual) alternate = IntervalIndex.from_breaks(np.arange(3), closed='left') assert not expected.equals(alternate) actual = IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex([Interval(0, 1), Interval(1, 2)]) assert expected.equals(actual) actual = IntervalIndex.from_arrays(np.arange(2), np.arange(2) + 1, closed='right') assert expected.equals(actual) actual = Index([Interval(0, 1), Interval(1, 2)]) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) actual = Index(expected) assert isinstance(actual, IntervalIndex) assert expected.equals(actual) def test_constructors_other(self): # all-nan result = IntervalIndex.from_intervals([np.nan]) expected = np.array([np.nan], dtype=object)
tm.assert_numpy_array_equal(result.values, expected)
pandas.util.testing.assert_numpy_array_equal
""" Get Retailer Statistics for Illinois Cannabis Data Science Meetup Group Saturday Morning Statistics Copyright (c) 2021 Cannlytics Authors: <NAME> <<EMAIL>> Created: 11/17/2021 Updated: 11/27/2021 License: MIT License <https://opensource.org/licenses/MIT> Data Sources: - Licensed Adult Use Cannabis Dispensaries <https://www.idfpr.com/LicenseLookup/AdultUseDispensaries.pdf> - Illinois adult use cannabis monthly sales figures <https://www.idfpr.com/Forms/AUC/2021%2011%2002%20IDFPR%20monthly%20adult%20use%20cannabis%20sales.pdf> Resources: - Fed Fred API Keys <https://fred.stlouisfed.org/docs/api/api_key.html> Objective: Retrieve Illinois cannabis data, locked in public PDFs, to save the data and calculate interesting statistics, such as retailers per 100,000 people and sales per retailer. You will need a Fed Fred API Key saved in a .env file as a FRED_API_KEY variable. A `data` and `figure` folders are also expected. You will also need to install various Python dependencies, including fredapi and pdfplumber. `pip install fredapi pdfplumber` """ # Standard imports. from datetime import datetime # External imports. from dotenv import dotenv_values from fredapi import Fred import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter import pandas as pd import pdfplumber import requests import statsmodels.api as sm from statsmodels.graphics.regressionplots import abline_plot # Internal imports. from utils import ( end_of_period_timeseries, format_thousands, ) #----------------------------------------------------------------------------- # Download and parse the retailer licensee data. #----------------------------------------------------------------------------- # Download the licensees PDF. licensees_url = 'https://www.idfpr.com/LicenseLookup/AdultUseDispensaries.pdf' filename = './data/illinois_retailers.pdf' response = requests.get(licensees_url) with open(filename, 'wb') as f: f.write(response.content) # Read the licensees PDF. pdf = pdfplumber.open(filename) # Get all of the table data. table_data = [] for page in pdf.pages: table = page.extract_table() table_data += table # Remove the header. table_data = table_data[1:] # Create a DataFrame from the table data. licensee_columns = [ 'organization', 'trade_name', 'address', 'medical', 'license_issue_date', 'license_number', ] licensees = pd.DataFrame(table_data, columns=licensee_columns) # Clean the organization names. licensees['organization'] = licensees['organization'].str.replace('\n', '') # Separate address into 'street', 'city', 'state', 'zip_code', 'phone_number'. # FIXME: This could probably be done more elegantly and it's not perfect. streets, cities, states, zip_codes, phone_numbers = [], [], [], [], [] for index, row in licensees.iterrows(): parts = row.address.split(' \n') streets.append(parts[0]) phone_numbers.append(parts[-1]) locales = parts[1] city_locales = locales.split(', ') state_locales = city_locales[-1].split(' ') cities.append(city_locales[0]) states.append(state_locales[0]) zip_codes.append(state_locales[-1]) licensees['street'] = pd.Series(streets) licensees['city'] = pd.Series(cities) licensees['state'] = pd.Series(states) licensees['zip_code'] = pd.Series(zip_codes) licensees['phone_number'] =
pd.Series(phone_numbers)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jan 21 23:24:11 2021 @author: rayin """ import os, sys import pandas as pd import matplotlib.pyplot as plt import numpy as np import math import re import random from collections import Counter from pprint import pprint os.chdir("/Users/rayin/Google Drive/Harvard/5_data/UDN/work") case_gene_update = pd.read_csv("data/processed/variant_clean.csv", index_col=0) aa_variant = list(case_gene_update['\\12_Candidate variants\\09 Protein\\']) #pd.DataFrame(aa_variant).to_csv('aa_variant.csv') #aa_variant_update = pd.read_csv("data/processed/aa_variant_update.csv", index_col=0) #aa_variant_update = list(aa_variant_update['\\12_Candidate variants\\09 Protein\\']) amino_acid = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M', 'TER': 'X'} aa_3 = [] aa_1 = [] for i in amino_acid.keys(): aa_3.append(i) aa_1.append(amino_acid[i]) for i in range(0, len(aa_variant)): for j in range(len(aa_3)): if isinstance(aa_variant[i], float): break aa_variant[i] = str(aa_variant[i].upper()) if aa_3[j] in aa_variant[i]: aa_variant[i] = aa_variant[i].replace(aa_3[j], aa_1[j]) #extracting aa properties from aaindex #https://www.genome.jp/aaindex/ aa = ['A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G', 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V'] #RADA880108 polarity = [-0.06, -0.84, -0.48, -0.80, 1.36, -0.73, -0.77, -0.41, 0.49, 1.31, 1.21, -1.18, 1.27, 1.27, 0.0, -0.50, -0.27, 0.88, 0.33, 1.09] aa_polarity = pd.concat([pd.Series(aa), pd.Series(polarity)], axis=1) aa_polarity = aa_polarity.rename(columns={0:'amino_acid', 1: 'polarity_value'}) #KLEP840101 net_charge = [0, 1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] aa_net_charge = pd.concat([pd.Series(aa), pd.Series(net_charge)], axis=1) aa_net_charge = aa_net_charge.rename(columns={0:'amino_acid', 1: 'net_charge_value'}) #CIDH920103 hydrophobicity = [0.36, -0.52, -0.90, -1.09, 0.70, -1.05, -0.83, -0.82, 0.16, 2.17, 1.18, -0.56, 1.21, 1.01, -0.06, -0.60, -1.20, 1.31, 1.05, 1.21] aa_hydrophobicity = pd.concat([pd.Series(aa), pd.Series(hydrophobicity)], axis=1) aa_hydrophobicity = aa_hydrophobicity.rename(columns={0:'amino_acid', 1: 'hydrophobicity_value'}) #FAUJ880103 -- Normalized van der Waals volume normalized_vdw = [1.00, 6.13, 2.95, 2.78, 2.43, 3.95, 3.78, 0.00, 4.66, 4.00, 4.00, 4.77, 4.43, 5.89, 2.72, 1.60, 2.60, 8.08, 6.47, 3.00] aa_normalized_vdw = pd.concat([pd.Series(aa), pd.Series(normalized_vdw)], axis=1) aa_normalized_vdw = aa_normalized_vdw.rename(columns={0:'amino_acid', 1: 'normalized_vdw_value'}) #CHAM820101 polarizability = [0.046, 0.291, 0.134, 0.105, 0.128, 0.180, 0.151, 0.000, 0.230, 0.186, 0.186, 0.219, 0.221, 0.290, 0.131, 0.062, 0.108, 0.409, 0.298, 0.140] aa_polarizability = pd.concat([pd.Series(aa), pd.Series(polarizability)], axis=1) aa_polarizability = aa_polarizability.rename(columns={0:'amino_acid', 1: 'polarizability_value'}) #JOND750102 pK_COOH = [2.34, 1.18, 2.02, 2.01, 1.65, 2.17, 2.19, 2.34, 1.82, 2.36, 2.36, 2.18, 2.28, 1.83, 1.99, 2.21, 2.10, 2.38, 2.20, 2.32] aa_pK_COOH = pd.concat([pd.Series(aa), pd.Series(pK_COOH)], axis=1) aa_pK_COOH = aa_pK_COOH.rename(columns={0:'amino_acid', 1: 'pK_COOH_value'}) #FASG760104 pK_NH2 = [9.69, 8.99, 8.80, 9.60, 8.35, 9.13, 9.67, 9.78, 9.17, 9.68, 9.60, 9.18, 9.21, 9.18, 10.64, 9.21, 9.10, 9.44, 9.11, 9.62] aa_pK_NH2 = pd.concat([pd.Series(aa), pd.Series(pK_NH2)], axis=1) aa_pK_NH2 = aa_pK_NH2.rename(columns={0:'amino_acid', 1: 'pK_NH2_value'}) #ROBB790101 Hydration free energy hydration = [-1.0, 0.3, -0.7, -1.2, 2.1, -0.1, -0.7, 0.3, 1.1, 4.0, 2.0, -0.9, 1.8, 2.8, 0.4, -1.2, -0.5, 3.0, 2.1, 1.4] aa_hydration = pd.concat([pd.Series(aa), pd.Series(hydration)], axis=1) aa_hydration = aa_hydration.rename(columns={0:'amino_acid', 1: 'hydration_value'}) #FASG760101 molecular_weight = [89.09, 174.20, 132.12, 133.10, 121.15, 146.15, 147.13, 75.07, 155.16, 131.17, 131.17, 146.19, 149.21, 165.19, 115.13, 105.09, 119.12, 204.24, 181.19, 117.15] aa_molecular_weight = pd.concat([pd.Series(aa), pd.Series(molecular_weight)], axis=1) aa_molecular_weight = aa_molecular_weight.rename(columns={0:'amino_acid', 1: 'molecular_weight_value'}) #FASG760103 optical_rotation = [1.80, 12.50, -5.60, 5.05, -16.50, 6.30, 12.00, 0.00, -38.50, 12.40, -11.00, 14.60, -10.00, -34.50, -86.20, -7.50, -28.00, -33.70, -10.00, 5.63] aa_optical_rotation = pd.concat([pd.Series(aa), pd.Series(optical_rotation)], axis=1) aa_optical_rotation = aa_optical_rotation.rename(columns={0:'amino_acid', 1: 'optical_rotation_value'}) #secondary structure #LEVJ860101 #https://pybiomed.readthedocs.io/en/latest/_modules/CTD.html#CalculateCompositionSolventAccessibility #SecondaryStr = {'1': 'EALMQKRH', '2': 'VIYCWFT', '3': 'GNPSD'} # '1'stand for Helix; '2'stand for Strand, '3' stand for coil secondary_structure = [1, 1, 3, 3, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 3, 3, 2, 2, 2, 2] aa_secondary_structure = pd.concat([pd.Series(aa), pd.Series(secondary_structure)], axis=1) aa_secondary_structure = aa_secondary_structure.rename(columns={0:'amino_acid', 1: 'secondary_structure_value'}) #_SolventAccessibility = {'-1': 'ALFCGIVW', '1': 'RKQEND', '0': 'MPSTHY'} # '-1'stand for Buried; '1'stand for Exposed, '0' stand for Intermediate solvent_accessibility = [-1, 1, 1, 1, -1, 1, 1, -1, 0, -1, -1, 1, 0, -1, 0, 0, 0, -1, 0, -1] aa_solvent_accessibility = pd.concat([pd.Series(aa), pd.Series(solvent_accessibility)], axis=1) aa_solvent_accessibility = aa_solvent_accessibility.rename(columns={0:'amino_acid', 1: 'solvent_accessibility_value'}) ############################################################################################################################################ #CHAM820102 Free energy of solution in water free_energy_solution = [-0.368, -1.03, 0.0, 2.06, 4.53, 0.731, 1.77, -0.525, 0.0, 0.791, 1.07, 0.0, 0.656, 1.06, -2.24, -0.524, 0.0, 1.60, 4.91, 0.401] aa_free_energy_solution = pd.concat([pd.Series(aa), pd.Series(free_energy_solution)], axis=1) aa_free_energy_solution = aa_free_energy_solution.rename(columns={0:'amino_acid', 1: 'free_energy_solution_value'}) #FAUJ880109 Number of hydrogen bond donors number_of_hydrogen_bond = [0, 4, 2, 1, 0, 2, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 1, 1, 1, 0] aa_number_of_hydrogen_bond = pd.concat([pd.Series(aa), pd.Series(number_of_hydrogen_bond)], axis=1) aa_number_of_hydrogen_bond = aa_number_of_hydrogen_bond.rename(columns={0:'amino_acid', 1: 'number_of_hydrogen_bond_value'}) #PONJ960101 Average volumes of residues volumes_of_residues = [91.5, 196.1, 138.3, 135.2, 114.4, 156.4, 154.6, 67.5, 163.2, 162.6, 163.4, 162.5, 165.9, 198.8, 123.4, 102.0, 126.0, 209.8, 237.2, 138.4] aa_volumes_of_residues = pd.concat([pd.Series(aa), pd.Series(volumes_of_residues)], axis=1) aa_volumes_of_residues = aa_volumes_of_residues.rename(columns={0:'amino_acid', 1: 'volumes_of_residues_value'}) #JANJ790102 transfer_free_energy = [0.3, -1.4, -0.5, -0.6, 0.9, -0.7, -0.7, 0.3, -0.1, 0.7, 0.5, -1.8, 0.4, 0.5, -0.3, -0.1, -0.2, 0.3, -0.4, 0.6] aa_transfer_free_energy = pd.concat([pd.Series(aa), pd.Series(transfer_free_energy)], axis=1) aa_transfer_free_energy = aa_transfer_free_energy.rename(columns={0:'amino_acid', 1: 'transfer_free_energy_value'}) #WARP780101 amino acid side-chain interactions in 21 proteins side_chain_interaction = [10.04, 6.18, 5.63, 5.76, 8.89, 5.41, 5.37, 7.99, 7.49, 8.7, 8.79, 4.40, 9.15, 7.98, 7.79, 7.08, 7.00, 8.07, 6.90, 8.88] aa_side_chain_interaction = pd.concat([pd.Series(aa),
pd.Series(side_chain_interaction)
pandas.Series
import pandas as pd #import geopandas as gpd import numpy as np import os #from sqlalchemy import create_engine from scipy import stats from sklearn.preprocessing import MinMaxScaler import math #from shapely import wkt from datetime import datetime, timedelta, date import time from sklearn.ensemble import RandomForestRegressor from sklearn import metrics import requests from pyspark.sql import SparkSession from pyspark.sql.functions import substring, length, col, expr from pyspark.sql.types import * import matplotlib.pyplot as plt #import contextily as cx --> gives error? spark = SparkSession \ .builder \ .getOrCreate() def get_minio_herkomst_2020(): bucket = "gvb-gvb" data_key = "*/*/*/Datalab_Reis_Herkomst_Uur_*.csv" data_location = bucket + "/" + data_key schema_herkomst = StructType([StructField("Datum", StringType(), True), StructField("UurgroepOmschrijving (van vertrek)", StringType(), True), StructField("VertrekHalteCode", StringType(), True), StructField("VertrekHalteNaam", StringType(), True), StructField("HerkomstLat", StringType(), True), StructField("HerkomstLon", StringType(), True), StructField("AantalReizen", IntegerType(), True) ]) cols_herkomst = ["Datum","UurgroepOmschrijving (van vertrek)","VertrekHalteCode","VertrekHalteNaam","AantalReizen"] gvb_herkomst_raw_csv = spark.read.format("csv").option("header", "true").load(data_location, header = 'True', schema = schema_herkomst, sep = ";").select(*cols_herkomst) gvb_herkomst_raw_csv = gvb_herkomst_raw_csv.distinct() gvb_herkomst_raw_csv = gvb_herkomst_raw_csv.toPandas() return gvb_herkomst_raw_csv def get_minio_bestemming_2020 (): bucket = "gvb-gvb" data_key = "topics/gvb/*/*/*/Datalab_Reis_Bestemming_Uur_*.csv" data_location = f"s3a://{bucket}/{data_key}" schema_bestemming = StructType( [StructField("Datum", StringType(), True), StructField("UurgroepOmschrijving (van aankomst)", StringType(), True), StructField("AankomstHalteCode", StringType(), True), StructField("AankomstHalteNaam", StringType(), True), StructField("AankomstLat", StringType(), True), StructField("AankomstLon", StringType(), True), StructField("AantalReizen", IntegerType(), True) ]) cols_bestemming = ["Datum","UurgroepOmschrijving (van aankomst)","AankomstHalteCode","AankomstHalteNaam","AantalReizen"] gvb_bestemming_raw_csv = spark.read.format("csv").option("header", "true").load(data_location, header = 'True', schema = schema_bestemming, sep = ";").select(*cols_bestemming) gvb_bestemming_raw_csv = gvb_bestemming_raw_csv.distinct() gvb_bestemming_raw_csv = gvb_bestemming_raw_csv.toPandas() return gvb_bestemming_raw_csv def get_minio_herkomst_2021 (): bucket = "gvb-gvb" data_key = "topics/gvb/2021/*/*/Datalab_Reis_Herkomst_Uur_2021*.csv" data_location = f"s3a://{bucket}/{data_key}" schema_herkomst = StructType([StructField("Datum", StringType(), True), StructField("UurgroepOmschrijving (van vertrek)", StringType(), True), StructField("VertrekHalteCode", StringType(), True), StructField("VertrekHalteNaam", StringType(), True), StructField("HerkomstLat", StringType(), True), StructField("HerkomstLon", StringType(), True), StructField("AantalReizen", IntegerType(), True) ]) cols_herkomst = ["Datum","UurgroepOmschrijving (van vertrek)","VertrekHalteCode","VertrekHalteNaam","AantalReizen"] gvb_herkomst_raw_csv = spark.read.format("csv").option("header", "true").load(data_location, header = 'True', schema = schema_herkomst, sep =";").select(*cols_herkomst) gvb_herkomst_raw_csv = gvb_herkomst_raw_csv.distinct() gvb_herkomst_raw_csv = gvb_herkomst_raw_csv.toPandas() return gvb_herkomst_raw_csv def get_minio_bestemming_2021 (): bucket = "gvb-gvb" data_key = "topics/gvb/2021/*/*/Datalab_Reis_Bestemming_Uur_2021*.csv" data_location = f"s3a://{bucket}/{data_key}" schema_bestemming = StructType( [StructField("Datum", StringType(), True), StructField("UurgroepOmschrijving (van aankomst)", StringType(), True), StructField("AankomstHalteCode", StringType(), True), StructField("AankomstHalteNaam", StringType(), True), StructField("AankomstLat", StringType(), True), StructField("AankomstLon", StringType(), True), StructField("AantalReizen", IntegerType(), True) ]) cols_bestemming = ["Datum","UurgroepOmschrijving (van aankomst)","AankomstHalteCode","AankomstHalteNaam","AantalReizen"] gvb_bestemming_raw_csv = spark.read.format("csv").option("header", "true").load(data_location, header = 'True', schema = schema_bestemming, sep = ";").select(*cols_bestemming) gvb_bestemming_raw_csv = gvb_bestemming_raw_csv.distinct() gvb_bestemming_raw_csv = gvb_bestemming_raw_csv.toPandas() return gvb_bestemming_raw_csv def read_csv_dir(dir): read_csv_beta = pd.read_csv(dir,sep=';') return read_csv_beta def get_knmi_obs(): knmi_obs_schema = StructType([StructField("DD", StringType(), True), StructField("DR", StringType(), True), StructField("FF", StringType(), True), StructField("FH", StringType(), True), StructField("FX", StringType(), True), StructField("IX", StringType(), True), StructField("M", IntegerType(), True), StructField("N", IntegerType(), True), StructField("O", IntegerType(), True), StructField("P", IntegerType(), True), StructField("Q", IntegerType(), True), StructField("R", IntegerType(), True), StructField("RH", IntegerType(), True), StructField("S", IntegerType(), True), StructField("SQ", IntegerType(), True), StructField("T", IntegerType(), True), StructField("T10N", IntegerType(), True), StructField("TD", IntegerType(), True), StructField("U", IntegerType(), True), StructField("VV", IntegerType(), True), StructField("WW", IntegerType(), True), StructField("Y", IntegerType(), True), StructField("date", StringType(), True), StructField("hour", IntegerType(), True), StructField("station_code", IntegerType(), True) ]) knmi_obs = spark.read.format("json").option("header", "true").load("s3a://knmi-knmi/topics/knmi-observations/2021/*/*/*", schema=knmi_obs_schema) return knmi_obs def get_knmi_preds(): knmi_pred_schema = StructType([StructField("cape", IntegerType(), True), StructField("cond", StringType(), True), StructField("gr", StringType(), True), StructField("gr_w", StringType(), True), StructField("gust", StringType(), True), StructField("gustb", StringType(), True), StructField("gustkmh", StringType(), True), StructField("gustkt", StringType(), True), StructField("hw", StringType(), True), StructField("ico", StringType(), True), StructField("icoon", StringType(), True), StructField("loc", StringType(), True), StructField("luchtd", StringType(), True), StructField("luchtdinhg", StringType(), True), StructField("luchtdmmhg", StringType(), True), StructField("lw", StringType(), True), StructField("mw", StringType(), True), StructField("neersl", StringType(), True), StructField("offset", StringType(), True), StructField("rv", StringType(), True), StructField("samenv", IntegerType(), True), StructField("temp", StringType(), True), StructField("tijd", StringType(), True), StructField("tijd_nl", StringType(), True), StructField("tw", StringType(), True), StructField("vis", StringType(), True), StructField("windb", StringType(), True), StructField("windkmh", StringType(), True), StructField("windknp", StringType(), True), StructField("windr", StringType(), True), StructField("windrltr", StringType(), True), StructField("winds", StringType(), True) ]) knmi_pred_cols = ('cape', 'cond', 'gr', 'gr_w', 'gust', 'gustb', 'gustkmh', 'gustkt', 'hw', 'ico', 'icoon', 'loc', 'luchtd', 'luchtdinhg', 'luchtdmmhg', 'lw', 'mw', 'neersl', 'offset', 'rv', 'samenv', 'temp', 'tijd', 'tijd_nl', 'tw', 'vis', 'windb', 'windkmh', 'windknp', 'windr', 'windrltr', 'winds') knmi_pred = spark.read.format("json").option("header", "true").load("s3a://knmi-knmi/topics/knmi/2021/*/*/*.json.gz", schema=knmi_pred_schema).select(*knmi_pred_cols) return knmi_pred def get_prediction_df(): """ Return the prediction dataframe (date- and hours only) """ this_year = date.today().isocalendar()[0] this_week = date.today().isocalendar()[1] firstdayofweek = datetime.strptime(f'{this_year}-W{int(this_week )}-1', "%Y-W%W-%w").date() prediction_date_range = pd.date_range(first_date, periods=8, freq='D') prediction_date_range_hour = pd.date_range(prediction_date_range.min(), prediction_date_range.max(), freq='h').delete(-1) return prediction_date_range_hour def get_vacations(): """ Retrieves vacations in the Netherlands from the Government of the Netherlands (Rijksoverheid) and returns the list of dates that are vacation dates """ vacations_url = 'https://opendata.rijksoverheid.nl/v1/sources/rijksoverheid/infotypes/schoolholidays?output=json' vacations_raw = requests.get(url = vacations_url).json() df_vacations = pd.DataFrame(columns={'vacation', 'region', 'startdate', 'enddate'}) for x in range(0, len(vacations_raw)): # Iterate through all vacation years for y in range(0, len(vacations_raw[0]['content'][0]['vacations'])): # number of vacations in a year dates = pd.DataFrame(vacations_raw[x]['content'][0]['vacations'][y]['regions']) dates['vacation'] = vacations_raw[x]['content'][0]['vacations'][y]['type'].strip() # vacation name dates['school_year'] = vacations_raw[x]['content'][0]['schoolyear'].strip() # school year df_vacations = df_vacations.append(dates) filtered = df_vacations[(df_vacations['region']=='noord') | (df_vacations['region']=='heel Nederland')] vacations_date_only = pd.DataFrame(columns={'date'}) for x in range(0, len(filtered)): df_temporary = pd.DataFrame(data = {'date':pd.date_range(filtered.iloc[x]['startdate'], filtered.iloc[x]['enddate'], freq='D') + pd.Timedelta(days=1)}) vacations_date_only = vacations_date_only.append(df_temporary) vacations_date_only['date'] = vacations_date_only['date'].apply(lambda x: x.date) vacations_date_only['date'] = vacations_date_only['date'].astype('datetime64[ns]') # Since the data from Rijksoverheid starts from school year 2019-2020, add the rest of 2019 vacations manually! kerst_18 = pd.DataFrame(data = {'date': pd.date_range(date(2019, 1, 1), periods = 6, freq='1d')}) voorjaar_19 = pd.DataFrame(data = {'date': pd.date_range(date(2019, 2, 16), periods = 9, freq='1d')}) mei_19 = pd.DataFrame(data = {'date': pd.date_range(date(2019, 4, 27), periods = 9, freq='1d')}) zomer_19 = pd.DataFrame(data = {'date': pd.date_range(date(2019, 7, 13), periods = 7*6 + 2, freq='1d')}) vacations_date_only = vacations_date_only.append([kerst_18, voorjaar_19, mei_19, zomer_19]) return vacations_date_only def get_events(): """ Event data from static file. We can store events in the database in the near future. When possible, we can get it from an API. """ events = pd.read_excel('events_zuidoost.xlsx', sheet_name='Resultaat', header=1) # Clean events.dropna(how='all', inplace=True) events.drop(events.loc[events['Datum']=='Niet bijzonder evenementen zijn hierboven niet meegenomen.'].index, inplace=True) events.drop(events.loc[events['Locatie'].isna()].index, inplace=True) events.drop(events.loc[events['Locatie']=='Overig'].index, inplace=True) events['Datum'] = events['Datum'].astype('datetime64[ns]') # Fix location names events['Locatie'] = events['Locatie'].apply(lambda x: x.strip()) # Remove spaces events['Locatie'] = np.where(events['Locatie'] == 'Ziggo dome', 'Ziggo Dome', events['Locatie']) events['Locatie'] = np.where(events['Locatie'] == 'Ziggo Dome (2x)', 'Ziggo Dome', events['Locatie']) # Get events from 2019 from static file events = events[events['Datum'].dt.year>=2019].copy() events.reset_index(inplace=True) events.drop(columns=['index'], inplace=True) events # Add 2020-present events manually events = events.append({'Datum':datetime(2020, 1, 19)}, ignore_index=True) # Ajax - Sparta events = events.append({'Datum':datetime(2020, 2, 2)}, ignore_index=True) # Ajax - PSV events = events.append({'Datum':datetime(2020, 2, 16)}, ignore_index=True) # Ajax - RKC events = events.append({'Datum':datetime(2020, 1, 3)}, ignore_index=True) # Ajax - AZ # Euro 2021 events = events.append({'Datum':datetime(2021, 6, 13)}, ignore_index=True) # EURO 2020 Nederland- Oekraïne events = events.append({'Datum':datetime(2021, 6, 17)}, ignore_index=True) # EURO 2020 Nederland- Oostenrijk events = events.append({'Datum':datetime(2021, 6, 21)}, ignore_index=True) # EURO 2020 Noord-Macedonië - Nederland events = events.append({'Datum':datetime(2021, 6, 26)}, ignore_index=True) # EURO 2020 Wales - Denemarken return events def merge_csv_json(bestemming_csv, herkomst_csv, bestemming_json, herkomst_json): bestemming = pd.concat([bestemming_csv, bestemming_json]).copy() herkomst = pd.concat([herkomst_csv, herkomst_json]).copy() return [bestemming, herkomst] def merge_bestemming_herkomst(bestemming, herkomst): bestemming.rename(columns={'AantalReizen':'Uitchecks', 'UurgroepOmschrijving (van aankomst)':'UurgroepOmschrijving', 'AankomstHalteCode':'HalteCode', 'AankomstHalteNaam':'HalteNaam'}, inplace=True) herkomst.rename(columns={'AantalReizen':'Inchecks', 'UurgroepOmschrijving (van vertrek)':'UurgroepOmschrijving', 'VertrekHalteCode':'HalteCode', 'VertrekHalteNaam':'HalteNaam'}, inplace=True) merged = pd.merge(left=bestemming, right=herkomst, left_on=['Datum', 'UurgroepOmschrijving', 'HalteNaam'], right_on=['Datum', 'UurgroepOmschrijving', 'HalteNaam'], how='outer') return merged def preprocess_gvb_data_for_modelling(gvb_df, station): df = gvb_df[gvb_df['HalteNaam']==station].copy() # create datetime column df['datetime'] = df['Datum'].astype('datetime64[ns]') df['UurgroepOmschrijving'] = df['UurgroepOmschrijving'].astype(str) df['hour'] = df['UurgroepOmschrijving'].apply(lambda x: int(x[:2])) # add time indications df['week'] = df['datetime'].dt.isocalendar().week df['month'] = df['datetime'].dt.month df['year'] = df['datetime'].dt.year df['weekday'] = df['datetime'].dt.weekday hours = pd.get_dummies(df['hour'], prefix='hour') days = pd.get_dummies(df['weekday'], prefix='weekday') df = pd.concat([df, hours, days], axis=1) # drop duplicates and sort df_ok = df.drop_duplicates() # sort values and reset index df_ok = df_ok.sort_values(by = 'datetime') df_ok = df_ok.reset_index(drop = True) # drop unnecessary columns df_ok.drop(columns=['Datum', 'UurgroepOmschrijving', 'HalteNaam'], inplace=True) # rename columns df_ok.rename(columns={'Inchecks':'check-ins', 'Uitchecks':'check-outs'}, inplace=True) return df_ok def preprocess_knmi_data_hour(df_raw): """ Prepare the raw knmi data for modelling. We rename columns and resample from 60min to 15min data. Also, we will create a proper timestamp. Documentation: https://www.daggegevens.knmi.nl/klimatologie/uurgegevens """ # drop duplicates df_raw = df_raw.drop_duplicates() # rename columns df = df_raw.rename(columns={"DD": "wind_direction", "FH": "wind_speed_h", "FF": "wind_speed", "FX": "wind_gust", "T": "temperature", "T10N": "temperature_min", "TD": "dew_point_temperature", "SQ": "radiation_duration", "Q": "global_radiation", "DR": "precipitation_duration", "RH": "precipitation_h", "P": "pressure", "VV": "sight", "N": "cloud_cover", "U": "relative_humidity", "WW": "weather_code", "IX": "weather_index", "M": "fog", "R": "rain", "S": "snow", "O": "thunder", "Y": "ice" }) # get proper datetime column df["datetime"] = pd.to_datetime(df['date'], format='%Y%m%dT%H:%M:%S.%f') + pd.to_timedelta(df["hour"] - 1, unit = 'hours') df["datetime"] = df["datetime"].dt.tz_convert("Europe/Amsterdam") df = df.sort_values(by = "datetime", ascending = True) df = df.reset_index(drop = True) df['date'] = df['datetime'].dt.date df['date'] = df['date'].astype('datetime64[ns]') df['hour'] -= 1 # drop unwanted columns df = df.drop(['datetime', 'weather_code', 'station_code'], axis = 'columns') df = df.astype({'wind_speed':'float64', 'wind_gust':'float64','temperature':'float64','temperature_min':'float64', 'dew_point_temperature':'float64','radiation_duration':'float64','precipitation_duration':'float64', 'precipitation_h':'float64','pressure':'float64'}) # divide some columns by ten (because using 0.1 degrees C etc. as units) col10 = ["wind_speed", "wind_gust", "temperature", "temperature_min", "dew_point_temperature", "radiation_duration", "precipitation_duration", "precipitation_h", "pressure"] df[col10] = df[col10] / 10 return df def preprocess_metpre_data(df_raw): """ To be filled Documentation: https://www.meteoserver.nl/weersverwachting-API.php """ # rename columns df = df_raw.rename(columns={"windr": "wind_direction", "rv": "relative_humidity", "luchtd": "pressure", "temp": "temperature", "windb": "wind_force", "winds": "wind_speed", "gust": "wind_gust", "vis": "sight_m", "neersl": "precipitation_h", "gr": "global_radiation", "tw": "clouds" }) # drop duplicates df = df.drop_duplicates() # get proper datetime column df["datetime"] = pd.to_datetime(df['tijd'], unit='s', utc = True) df["datetime"] = df["datetime"] + pd.to_timedelta(1, unit = 'hours') ## klopt dan beter, maar waarom? df = df.sort_values(by = "datetime", ascending = True) df = df.reset_index(drop = True) df["datetime"] = df["datetime"].dt.tz_convert("Europe/Amsterdam") # new column: forecast created on df["offset_h"] = df["offset"].astype(float) #df["datetime_predicted"] = df["datetime"] - pd.to_timedelta(df["offset_h"], unit = 'hours') # select only data after starting datetime #df = df[df['datetime'] >= start_ds] # @me: move this to query later # select latest prediction # logisch voor prediction set, niet zozeer voor training set df = df.sort_values(by = ['datetime', 'offset_h']) df = df.drop_duplicates(subset = 'datetime', keep = 'first') # drop unwanted columns df = df.drop(['tijd', 'tijd_nl', 'loc', 'icoon', 'samenv', 'ico', 'cape', 'cond', 'luchtdmmhg', 'luchtdinhg', 'windkmh', 'windknp', 'windrltr', 'wind_force', 'gustb', 'gustkt', 'gustkmh', 'wind_gust', # deze zitten er niet in voor 14 juni 'hw', 'mw', 'lw', 'offset', 'offset_h', 'gr_w'], axis = 'columns', errors = 'ignore') # set datatypes of weather data to float df = df.set_index('datetime') df = df.astype('float64').reset_index() # cloud cover similar to observations (0-9) & sight, but not really the same thing df['cloud_cover'] = df['clouds'] / 12.5 df['sight'] = df['sight_m'] / 333 df.drop(['clouds', 'sight_m'], axis = 'columns') # go from hourly to quarterly values df_hour = df.set_index('datetime').resample('1h').ffill(limit = 11) # later misschien smoothen? lijkt nu niet te helpen voor voorspelling #df_smooth = df_15.apply(lambda x: savgol_filter(x,17,2)) #df_smooth = df_smooth.reset_index() df_hour = df_hour.reset_index() df_hour['date'] = df_hour['datetime'].dt.date df_hour['date'] = df_hour['date'].astype('datetime64[ns]') df_hour['hour'] = df_hour['datetime'].dt.hour return df_hour # df_smooth def preprocess_covid_data(df_raw): # Put data to dataframe df_raw_unpack = df_raw.T['NLD'].dropna() df = pd.DataFrame.from_records(df_raw_unpack) # Add datetime column df['datetime'] = pd.to_datetime(df['date_value']) # Select columns df_sel = df[['datetime', 'stringency']] # extend dataframe to 14 days in future (based on latest value) dates_future = pd.date_range(df['datetime'].iloc[-1], periods = 14, freq='1d') df_future = pd.DataFrame(data = {'datetime': dates_future, 'stringency': df['stringency'].iloc[-1]}) # Add together and set index df_final = df_sel.append(df_future.iloc[1:]) df_final = df_final.set_index('datetime') return df_final def preprocess_holiday_data(holidays): df = pd.DataFrame(holidays, columns=['Date', 'Holiday']) df['Date'] = df['Date'].astype('datetime64[ns]') return df def interpolate_missing_values(data_to_interpolate): df = data_to_interpolate.copy() random_state_value = 1 # Ensure reproducability # Train check-ins interpolator checkins_interpolator_cols = ['hour', 'year', 'weekday', 'month', 'stringency', 'holiday', 'check-outs'] checkins_interpolator_targets = ['check-ins'] X_train = df.dropna()[checkins_interpolator_cols] y_train = df.dropna()[checkins_interpolator_targets] checkins_interpolator = RandomForestRegressor(random_state=random_state_value) checkins_interpolator.fit(X_train, y_train) # Train check-outs interpolator checkouts_interpolator_cols = ['hour', 'year', 'weekday', 'month', 'stringency', 'holiday', 'check-ins'] checkouts_interpolator_targets = ['check-outs'] X_train = df.dropna()[checkouts_interpolator_cols] y_train = df.dropna()[checkouts_interpolator_targets] checkouts_interpolator = RandomForestRegressor(random_state=random_state_value) checkouts_interpolator.fit(X_train, y_train) # Select rows which need interpolation df_to_interpolate = df.drop(df.loc[(df['check-ins'].isna()==True) & (df['check-outs'].isna()==True)].index) # Interpolate check-ins checkins_missing = df_to_interpolate[(df_to_interpolate['check-outs'].isna()==False) & (df_to_interpolate['check-ins'].isna()==True)].copy() checkins_missing['stringency'] = checkins_missing['stringency'].replace(np.nan, 0) checkins_missing['check-ins'] = checkins_interpolator.predict(checkins_missing[['hour', 'year', 'weekday', 'month', 'stringency', 'holiday', 'check-outs']]) # Interpolate check-outs checkouts_missing = df_to_interpolate[(df_to_interpolate['check-ins'].isna()==False) & (df_to_interpolate['check-outs'].isna()==True)].copy() checkouts_missing['stringency'] = checkouts_missing['stringency'].replace(np.nan, 0) checkouts_missing['check-outs'] = checkouts_interpolator.predict(checkouts_missing[['hour', 'year', 'weekday', 'month', 'stringency', 'holiday', 'check-ins']]) # Insert interpolated values into main dataframe for index, row in checkins_missing.iterrows(): df.loc[df.index==index, 'check-ins'] = row['check-ins'] for index, row in checkouts_missing.iterrows(): df.loc[df.index==index, 'check-outs'] = row['check-outs'] return df def get_crowd_last_week(df, row): week_ago = row['datetime'] - timedelta(weeks=1) subset_with_hour = df[(df['datetime']==week_ago) & (df['hour']==row['hour'])] # If crowd from last week is not available at exact date- and hour combination, then get average crowd of last week. subset_week_ago = df[(df['year']==row['year']) & (df['week']==row['week']) & (df['hour']==row['hour'])] checkins_week_ago = 0 checkouts_week_ago = 0 if len(subset_with_hour) > 0: # return crowd from week ago at the same day/time (hour) checkins_week_ago = subset_with_hour['check-ins'].mean() checkouts_week_ago = subset_with_hour['check-outs'].mean() elif len(subset_week_ago) > 0: # return average crowd the hour group a week ago checkins_week_ago = subset_week_ago['check-ins'].mean() checkouts_week_ago = subset_week_ago['check-outs'].mean() return [checkins_week_ago, checkouts_week_ago] def get_train_test_split(df): """ Create train and test split for 1-week ahead models. This means that the last week of the data will be used as a test set and the rest will be the training set. """ most_recent_date = df['datetime'].max() last_week = pd.date_range(df.datetime.max()-pd.Timedelta(7, unit='D')+pd.DateOffset(1), df['datetime'].max()) train = df[df['datetime']<last_week.min()] test = df[(df['datetime']>=last_week.min()) & (df['datetime']<=last_week.max())] return [train, test] def get_train_val_test_split(df): """ Create train, validation, and test split for 1-week ahead models. This means that the last week of the data will be used as a test set, the second-last will be the validation set, and the rest will be the training set. """ most_recent_date = df['datetime'].max() last_week = pd.date_range(df.datetime.max()-pd.Timedelta(7, unit='D')+
pd.DateOffset(1)
pandas.DateOffset
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")] ) tm.assert_series_equal(result, expected) def test_datetime64_ops_nat(self): # GH#11349 datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") # subtraction tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + datetime_series tm.assert_series_equal( -NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + nat_series_dtype_timestamp # addition tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) # ------------------------------------------------------------- # Invalid Operations # TODO: this block also needs to be de-duplicated and parametrized @pytest.mark.parametrize( "dt64_series", [ Series([Timestamp("19900315"), Timestamp("19900315")]), Series([NaT, Timestamp("19900315")]), Series([NaT, NaT], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("one", [1, 1.0, np.array(1)]) def test_dt64_mul_div_numeric_invalid(self, one, dt64_series): # multiplication msg = "cannot perform .* with this index type" with pytest.raises(TypeError, match=msg): dt64_series * one with pytest.raises(TypeError, match=msg): one * dt64_series # division with pytest.raises(TypeError, match=msg): dt64_series / one with pytest.raises(TypeError, match=msg): one / dt64_series # TODO: parametrize over box def test_dt64_series_add_intlike(self, tz_naive_fixture): # GH#19123 tz = tz_naive_fixture dti = DatetimeIndex(["2016-01-02", "2016-02-03", "NaT"], tz=tz) ser = Series(dti) other = Series([20, 30, 40], dtype="uint8") msg = "|".join( [ "Addition/subtraction of integers and integer-arrays", "cannot subtract .* from ndarray", ] ) assert_invalid_addsub_type(ser, 1, msg) assert_invalid_addsub_type(ser, other, msg) assert_invalid_addsub_type(ser, np.array(other), msg) assert_invalid_addsub_type(ser, pd.Index(other), msg) # ------------------------------------------------------------- # Timezone-Centric Tests def test_operators_datetimelike_with_timezones(self): tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan assert td2._values.freq is None result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): td1[0] - dt1 result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz)
tm.assert_series_equal(result, exp)
pandas._testing.assert_series_equal
import os import pandas import numpy as np import nibabel as ni import itertools from glob import glob import statsmodels.distributions.empirical_distribution as ed import statsmodels.formula.api as smf import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px from scipy import stats from scipy.io import savemat,loadmat from nilearn import input_data, image from matplotlib import mlab from sklearn.utils import resample from sklearn.mixture import GaussianMixture from sklearn.preprocessing import MinMaxScaler from statsmodels.sandbox.stats.multicomp import multipletests #import matlab.engine import sys #eng = matlab.engine.start_matlab() #eng.addpath('../',nargout=0) def Extract_Values_from_Atlas(files_in, atlas, mask = None, mask_threshold = 0, blocking = 'one_at_a_time', labels = [], sids = [], output = None,): ''' This function will extract mean values from a set of images for each ROI from a given atlas. Returns a Subject x ROI pandas DataFrame (and csv file if output argument is set to a path). Use blocking argument according to memory capacity of your computer vis-a-vis memory requirements of loading all images. files_in: determines which images to extract values from. Input can be any of the following: -- a list of paths -- a path to a directory containing ONLY files to extract from -- a search string (with wild card) that would return all desired images. For example, doing ls [files_in] in a terminal would list all desired subjects -- a 4D Nifti image **NOTE** be aware of the order of file input, which relates to other arguments atlas: Path to an atlas, or a Nifti image or np.ndarry of desired atlas. Or, if doing native space analysis, instead, supply a list of paths to atlases that match each subject. NOTE: In this case, The order of this list should be the same order as subjects in files_in mask: Path to a binary inclusive mask image. Script will set all values to 0 for every image where mask voxels = 0. This process is done before extraction. If doing a native space analysis, instead, supply a list of paths to masks that match each subject and each atlas. mask_threshold: An integer that denotes the minimum acceptable size (in voxels) of an ROI after masking. This is to prevent tiny ROIs resulting from conservative masks that might have spuriously high or low mean values due to the low amount of information within. blocking: loading all images to memory at once may not be possible depending on your computer. Acceptable arguments are: -- 'one_at_a_time': will extract values from each image independently. Recommended for memories with poor memory capacity. Required for native space extraction. -- 'all_at_once': loads all images into memory at once. Provides a slight speed up for faster machines overe one_at_a_time, but is probably not faster than batching (see below). Only recommended for smaller datasets. ** WARNING ** Not recommended on very large datasets. Will crash computers with poor memory capacity. -- any integer: determines the number of images to be read to memory at once. Recommended for large datasets. labels: a list of string labels that represent the names of the ROIs from atlas. NOTE: ROIs are read consecutively from lowest to highest, and labels *must* match that order Default argument [] will use "ROI_x" for each ROI, where X corresponds to the actual ROI integer lael sids: a list of subject IDs in the same order as files_in. Default argument [] will list subjects with consecutive integers. output: if you wish the resulting ROI values to be written to file, provide a FULL path. Otherwise, leave as None (matrix will be returned) ''' if type(blocking) == str and blocking not in ['all_at_once','one_at_a_time']: raise IOError('blocking only accepts integers or argumennts of "all_at_once" or "one_at_a_time"') if type(atlas) == list: if blocking != 'one_at_a_time': print('WARNING: you have passed a list of atlases but blocking is not set to one_at_a_time') print('Lists of atlases are for native space situations where each subject has their own atlas') print('If you want to test multiple atlases, run the script multiple times with different atlases') raise IOError('you have passed a list of atlases but blocking is not set to one_at_a_time') if type(mask) != type(None): if type(atlas) != type(mask): raise IOError('for masking, list of masks must be passed that equals length of atlas list') elif type(mask) == list: if len(atlas) != len(mask): raise IOError('list of atlases (n=%s) and masks (n=%s) are unequal'%(len(atlases), len(masks))) if type(atlas) != list: if type(atlas) == str: try: atl = ni.load(atlas).get_data() except: raise IOError('could not find an atlas at the specified location: %s'%atlas) elif type(atlas) == ni.nifti1.Nifti1Image: atl = atlas.get_data() elif type(atlas) == np.ndarray: atl = atlas else: print('could not recognize atlas filetype. Please provide a path, a NiftiImage object, or an numpy ndarray') raise IOError('atlas type not recognized') if blocking == 'all_at_once': i4d = load_data(files_in, return_images=True).get_data() if i4d.shape[:-1] != atl.shape: raise IOError('image dimensions do not match atlas dimensions') if type(mask) != type(None): print('masking...') mask_data = ni.load(mask).get_data() mask_data = mask_atlas(mask_data, atl, mask_threshold) i4d = mask_image_data(i4d, mask_data) if len(sids) == 0: sids = range(i4d.shape[-1]) print('extracting values from atlas') roi_vals = generate_matrix_from_atlas(i4d, atl, labels, sids) else: image_paths = load_data(files_in, return_images = False) if blocking == 'one_at_a_time': catch = [] for i,image_path in enumerate(image_paths): if len(sids) > 0: sid = [sids[i]] else: sid = [i] print('working on subject %s'%sid[0]) img = ni.load(image_path).get_data() try: assert img.shape == atl.shape, 'fail' except: print('dimensions for subject %s (%s) image did not match atlas dimensions (%s)'%(sid, img.shape, atl.shape)) print('skipping subject %s'%sid[0]) continue if type(mask) != type(None): mask_data = ni.load(mask).get_data() mask_data = mask_atlas(mask_data, atl, mask_threshold) img = mask_image_data(img, mask_data) f_mat = generate_matrix_from_atlas(img, atl, labels, sid) catch.append(f_mat) roi_vals = pandas.concat(catch) elif type(blocking) == int: block_size = blocking if len(image_paths)%block_size == 0: blocks = int(len(image_paths)/block_size) remainder = False else: blocks = int((len(image_paths)/blocking) + 1) remainder = True catch = [] count = 0 if type(mask) != type(None): mask_data = ni.load(mask).get_data() mask_data = mask_atlas(mask_data, atl, mask_threshold) for block in range(blocks): if block == (blocks - 1) and remainder: print('working on final batch of subjects') sub_block = image_paths[count:] else: print('working on batch %s of %s subjects'%((block+1),block_size)) sub_block = image_paths[count:(count+block_size)] i4d = load_data(sub_block, return_images = True).get_data() if i4d.shape[:-1] != atl.shape: raise IOError('image dimensions (%s) do not match atlas dimensions (%)'%(atl.shape, i4d.shape[:-1] )) if type(mask) != type(None): if len(mask_data.shape) == 4: tmp_mask = mask_data[:,:,:,:block_size] else: tmp_mask = mask_data i4d = mask_image_data(i4d, tmp_mask) if block == (blocks - 1) and remainder: if len(sids) == 0: sids_in = range(count,i4d.shape[-1]) else: sids_in = sids[count:] else: if len(sids) == 0: sids_in = range(count,(count+block_size)) else: sids_in = sids[count:(count+block_size)] f_mat = generate_matrix_from_atlas(i4d, atl, labels, sids_in) catch.append(f_mat) count += block_size roi_vals = pandas.concat(catch) else: image_paths = load_data(files_in, return_images = False) if len(atlas) != len(image_paths): raise IOError('number of images (%s) does not match number of atlases (%s)'%(len(image_paths), len(atlas))) catch = [] for i,image_path in enumerate(image_paths): if len(sids) > 0: sid = [i] else: sid = [sids[i]] print('working on subject'%sid) img = ni.load(image_path).get_data() atl = ni.load(atlas[i]).get_data() if type(mask) != type(None): mask_data = ni.load(mask[i]).get_data() mask_data = mask_atlas(mask_data, atl, mask_threshold) img = mask_image_data(img,mask_data) try: assert img.shape == atl.shape, 'fail' except: print('dimensions for subject %s (%s) image did not match atlas dimensions (%s)'%(sid, img.shape, atl.shape )) print('skipping subject %s'%sid) continue f_mat = generate_matrix_from_atlas(img, atl, labels, sid) catch.append(f_mat) roi_vals = pandas.concat(catch) if output: roi_vals.to_csv(output) return roi_vals def generate_matrix_from_atlas(files_in, atl, labels, sids): if len(files_in.shape) == 3: x,y,z = files_in.shape files_in = files_in.reshape(x,y,z,1) atl = atl.astype(int) if max(np.unique(atl)) != (len(np.unique(atl)) -1): atl = fix_atlas(atl) if len(labels) > 0: cols = labels else: cols = ['roi_%s'%x for x in np.unique(atl) if x != 0] f_mat = pandas.DataFrame(index = sids, columns = cols) tot = np.bincount(atl.flat) for sub in range(files_in.shape[-1]): mtx = files_in[:,:,:,sub] sums = np.bincount(atl.flat, weights = mtx.flat) rois = (sums/tot)[1:] f_mat.loc[f_mat.index[sub]] = rois return f_mat def load_data(files_in, return_images): fail = False if type(files_in) == str: if os.path.isdir(files_in): print('It seems you passed a directory') search = os.path.join(files_in,'*') flz = glob(search) num_f = len(flz) if num_f == 0: raise IOError('specified directory did not contain any files') else: print('found %s images!'%num_f) if return_images: i4d = ni.concat_images(flz) elif '*' in files_in: print('It seems you passed a search string') flz = glob(files_in) num_f = len(flz) if num_f == 0: raise IOError('specified search string did not result in any files') else: print('found %s images'%num_f) if return_images: i4d = ni.concat_images(flz) else: fail = True elif type(files_in) == list: flz = files_in print('processing %s subjects'%len(files_in)) if return_images: i4d = ni.concat_images(files_in) elif type(files_in) == ni.nifti1.Nifti1Image: print('processing %s subjects'%files_in.shape[-1]) i4d = files_in else: fail = True if fail: print('files_in not recognized.', 'Please enter a search string, valid directory, list of paths, or a Nifti object') raise ValueError('I do not recognize the files_in input.') if return_images: return i4d else: return flz def mask_image_data(image_data, mask_data): if len(image_data.shape) == 3: if mask_data.shape != image_data.shape: raise ValueError('dimensions of mask (%s) and image (%s) do not match!'%(mask_data.shape, image_data.shape)) image_data[mask_data==0] = 0 elif len(image_data.shape) == 4: if len(mask_data.shape) == 4: if mask_data.shape != image_data.shape: raise ValueError('dimensions of mask (%s) and image (%s) do not match!'%(mask_data.shape, image_data.shape)) else: masker = mask_data else: if mask_data.shape != image_data.shape[:3]: raise ValueError('dimensions of mask (%s) and image (%s) do not match!'%(mask_data.shape, image_data.shape[:3])) masker = np.repeat(mask_data[:, :, :, np.newaxis], image_data.shape[-1], axis=3) image_data[masker==0] = 0 return image_data def mask_atlas(mask_data, atlas_data, mask_threshold): if len(mask_data.shape) == 4: dim4 = mask_data.shape[-1] mask_data = mask_data[:,:,:,0] tfm_4d = True else: tfm_4d = False if max(np.unique(atlas_data)) != (len(np.unique(atlas_data)) -1): atlas_data = fix_atlas(atlas_data) mask_atlas = np.array(atlas_data, copy=True) new_mask = np.array(mask_data, copy=True) mask_atlas[mask_data == 0] = 0 counts = np.bincount(mask_atlas.astype(int).flat) labs_to_mask = [x for x in range(len(counts)) if counts[x] < mask_threshold] for label in labs_to_mask: new_mask[atlas_data==label] = 0 if tfm_4d: new_mask = np.repeat(new_mask[:, :, :, np.newaxis], dim4, axis=3) return new_mask def fix_atlas(atl): new_atl = np.zeros_like(atl) atl_map = dict(zip(np.unique(atl), range(len(np.unique(atl))) )) for u in np.unique(atl): new_atl[atl == u] = atl_map[u] return new_atl def Convert_ROI_values_to_Probabilities(roi_matrix, norm_matrix = None, models = None, target_distribution = 'right', outdir = False, fail_behavior = 'nan', mixed_probability = False, mp_thresh = 0.05): ''' Will take a Subject x ROI array of values and convert them to probabilities, using ECDF (monomial distribution) or Gaussian Mixture models (binomial distribution), with or without a reference sample with the same ROIs. Returns a Subject x ROI matrix the same size as the input with probability values. A report is also generated if an argument is passed for models. The report details which model was selected for each ROI and notes any problems. roi_matrix -- A subject x ROI matrix. can be pandas Dataframe or numpy array norm_matrix -- A matrix with the same ROIs as roi_matrix. This sample will be used to fit the distributions used to calculate the probabilities of subject in roi_matrix. Norm_matrix and roi_matrix can have overlapping subjects if None (default), will use roi_matrix as norm_matrix models -- a dict object pairing sklearn.gaussian models (values) with labels describing the models (keys). If more than one model is passed, for each ROI, model fit between all models will be evaluated and best model (lowest BIC) will be selected for that ROI. if None (default), probabilities will be calculated using ECDF. NOTE: Models with n_components=1 will be calculate probabilities using ECDF. NOTE: This script does not currently support models with n_distributions > 2 target_distribution -- Informs the script whether the target distribution is expected to have lower values ('left', e.g. gray matter volume) or higher values ('right', e.g. tau-PET). The target distribution is the one for which probabilities are generated. For example, passing a value of 'right' will give the probability that a subject falls on the rightmost distribution of values for a particular ROI. outdir -- If the resulting probability matrix (and report) should be save to disk, provide the path to an existing directory. WARNING: Will overwrite already-existing outcome of this script one already exists in the passed directory fail_behavior -- Occasionally, two-component models will find distributions that are not consistent with the hypothesis presented in target_distribution. This argument tells the script what to do in such situations: 'nan' will return NaNs for all ROIs that fail 'values' will return probability values from one the distributions (selected arbitrarily) mixed_probability -- Experimental setting. If set to True, after calculating probabilities, for rois with n_components > 1 only, will set all values < mp_thresh to 0. Remaining values will be put through ECDF. This will create less of a binarized distribution for n_components > 1 ROIs. mp_thresh -- Threshold setting for mixed_probability. Must be a float between 0 and 1. Decides the arbitrary probability of "tau positivity". Default is 0.05. ''' if target_distribution not in ['left','right']: raise IOError('target_distribution must be set to "left", "right" or None') if fail_behavior not in ['nan', 'values']: raise IOError('fail_behavior must be set to "nan" or "values"') if type(roi_matrix) == pandas.core.frame.DataFrame: roi_matrix = pandas.DataFrame(roi_matrix,copy=True) if type(roi_matrix) != pandas.core.frame.DataFrame: if type(roi_matrix) == np.ndarray: roi_matrix = np.array(roi_matrix,copy=True) roi_matrix = pandas.DataFrame(roi_matrix) else: raise IOError('roi_matrix type not recognized. Pass pandas DataFrame or np.ndarray') if mixed_probability: holdout_mtx = pandas.DataFrame(roi_matrix, copy=True) if type(norm_matrix) != type(None): if type(norm_matrix) == pandas.core.frame.DataFrame: norm_matrix = pandas.DataFrame(norm_matrix,copy=True) if type(norm_matrix) != pandas.core.frame.DataFrame: if type(norm_matrix) == np.ndarray: norm_matrix = np.array(norm_matrix,copy=True) norm_matrix = pandas.DataFrame(norm_matrix) else: raise IOError('roi_matrix type not recognized. Pass pandas DataFrame or np.ndarray') if norm_matrix.shape[-1] != roi_matrix.shape[-1]: raise IOError('norm_matrix must have the same number of columns as roi_matrix') elif all(norm_matrix.columns != roi_matrix.columns): raise IOError('norm_matrix must have the same column labels as roi_matrix') else: norm_matrix = pandas.DataFrame(roi_matrix, copy=True) results = pandas.DataFrame(index = roi_matrix.index, columns = roi_matrix.columns) if type(models) == type(None): for col in roi_matrix.columns: if not all([x==0 for x in roi_matrix[col]]): results.loc[:,col] = ecdf_tfm(roi_matrix[col], norm_matrix[col]) if target_distribution == 'left': results.loc[:,col] = (1 - results.loc[:,col].values) final_report = None else: results.loc[:,col] = [0 for x in range(len(roi_matrix[col]))] elif type(models) == dict: for label, model in models.items(): if not hasattr(model, 'predict_proba'): raise AttributeError('Passed model %s requires the predict_proba attribute'%label) if not hasattr(model, 'n_components'): raise AttributeError('Passed model %s requires the n_components attribute'%label) elif model.n_components > 2: raise ValueError('Models with > 2 components currently not supported (%s, n=%s)'%(label, model.n_components)) final_report = pandas.DataFrame(index = roi_matrix.columns, columns = ['model','n_components','reversed', 'perc. positive','problem']) for col in roi_matrix.columns: if not all([x==0 for x in roi_matrix[col]]): tfm, report_out = model_tfm(roi_matrix[col], norm_matrix[col], models, target_distribution, fail_behavior) results.loc[:,col] = tfm final_report.loc[col,:] = pandas.DataFrame.from_dict(report_out,'index' ).T[final_report.columns].values fails = len(final_report[final_report.problem!='False']['problem'].dropna()) else: results.loc[:,col] = [0 for x in range(len(roi_matrix[col]))] final_report.loc[col,:] = [np.nan for x in range(len(final_report.columns))] if fails > 0: print('%s ROIs showed unexpected fitting behavior. See report...'%fails) else: raise ValueError('models must be a dict object or must be set to "ecdf". You passed a %s'%(type(models))) if mixed_probability: results = mixed_probability_transform(results, holdout_mtx, mp_thresh, final_report) if type(final_report) == type(None): if outdir: results.to_csv(os.path.join(outdir, 'results.csv')) return results else: if outdir: results.to_csv(os.path.join(outdir, 'results.csv')) final_report.to_csv(os.path.join(outdir, 'model_choice_report.csv')) return results, final_report def ecdf_tfm(target_col, norm_col): return ed.ECDF(norm_col.values)(target_col.values) def model_tfm(target_col, norm_col, models, target_distribution, fail_behavior): report = {} if len(models.keys()) > 1: model, label = compare_models(models,norm_col) else: model = models[list(models.keys())[0]] label = list(models.keys())[0] report.update({'model': label}) report.update({'n_components': model.n_components}) if model.n_components == 1: tfm = ecdf_tfm(target_col, norm_col) report.update({'reversed': 'False'}) report.update({'perc. positive': np.nan}) report.update({'problem': 'False'}) else: fitted = model.fit(norm_col.values.reshape(-1,1)) labs = fitted.predict(target_col.values.reshape(-1,1)) d0_mean = target_col.values[labs==0].mean() d1_mean = target_col.values[labs==1].mean() numb = len([x for x in labs if x == 1])/len(target_col) if target_distribution == 'right': if d0_mean > d1_mean and numb > 0.5: report.update({'reversed': 'True'}) report.update({'perc. positive': 1-numb}) report.update({'problem': 'False'}) tfm = fitted.predict_proba(target_col.values.reshape(-1,1))[:,0] elif d0_mean < d1_mean and numb < 0.5: report.update({'reversed': 'False'}) report.update({'perc. positive': numb}) report.update({'problem': 'False'}) tfm = fitted.predict_proba(target_col.values.reshape(-1,1))[:,1] else: report.update({'reversed': np.nan}) report.update({'perc. positive': np.nan}) report.update({'problem': 'mean of 0s = %s, mean of 1s = %s, perc of 1s = %s'%( d0_mean, d1_mean, numb)}) if fail_behavior == 'nan': tfm = [np.nan for x in range(len(target_col))] elif fail_behavior == 'values': tfm = fitted.predict_proba(target_col.values.reshape(-1,1))[:,1] else: if d0_mean < d1_mean and numb < 0.5: report.update({'reversed': 'False'}) report.update({'perc. positive': numb}) report.update({'problem': 'False'}) tfm = fitted.predict_proba(target_col.values.reshape(-1,1))[:,0] elif d0_mean > d1_mean and numb > 0.5: report.update({'reversed': 'True'}) report.update({'perc. positive': 1-numb}) report.update({'problem': 'False'}) tfm = fitted.predict_proba(target_col.values.reshape(-1,1))[:,1] else: report.update({'reversed': np.nan}) report.update({'perc. positive': np.nan}) report.update({'problem': 'mean of 0s = %s, mean of 1s = %s, perc of 1s = %s'%( d0_mean, d1_mean, numb)}) if fail_behavior == 'nan': tfm = [np.nan for x in range(len(target_col))] elif fail_behavior == 'values': tfm = fitted.predict_proba(target_col.values.reshape(-1,1))[:,0] return tfm, report def compare_models(models, norm_col): modz = [] labs = [] for lab, mod in models.items(): modz.append(mod) labs.append(lab) bix = [] for model in modz: bic = model.fit(norm_col.values.reshape(-1,1)).bic(norm_col.values.reshape(-1,1)) bix.append(bic) winner_id = np.argmin(bix) winning_mod = modz[winner_id] winning_label = labs[winner_id] return winning_mod, winning_label def mixed_probability_transform(p_matrix, original_matrix, mp_thresh, report): for col in original_matrix.columns: if report.loc[col,'n_components'] == 2: newcol = pandas.Series( [0 if p_matrix.loc[x, col] < mp_thresh else original_matrix.loc[x,col] for x in original_matrix.index] ) if len(newcol[newcol>0]) > 0: newcol[newcol>0] = ecdf_tfm(newcol[newcol>0], newcol[newcol>0]) p_matrix.loc[:,col] = newcol return p_matrix def Evaluate_Model(roi, models, bins=None): ''' Given an array of values and a dictionary of models, this script will generate a plot of the fitted distribution(s) from each model (seperately) over the supplied data. roi -- an array, series or list values models -- a dict object of string label: (unfitted) sklearn.gaussian model pairs bins -- Number of bins for the histogram. Passing None (default) sets bin to length(roi) / 2 ''' if type(roi) == np.ndarray or type(roi) == list: roi = pandas.Series(roi) plt.close() if not bins: bins = int(len(roi)/2) for label,model in models.items(): mmod = model.fit(roi.values.reshape(-1,1)) if mmod.n_components == 2: m1, m2 = mmod.means_ w1, w2 = mmod.weights_ c1, c2 = mmod.covariances_ histdist = plt.hist(roi, bins, normed=True) plotgauss1 = lambda x: plt.plot(x,w1*stats.norm.pdf(x,m1,np.sqrt(c1))[0], linewidth=3, color="black", label="AB Negative") plotgauss2 = lambda x: plt.plot(x,w2*stats.norm.pdf(x,m2,np.sqrt(c2))[0], linewidth=3, color="red", label="AB Positive") plotgauss1(histdist[1]) plotgauss2(histdist[1]) elif mmod.n_components == 1: m1 = mmod.means_ w1 = mmod.weights_ c1 = mmod.covariances_ histdist = plt.hist(roi, bins, normed=True) plotgauss1 = lambda x: plt.plot(x,w1*stats.norm.pdf(x,m1,np.sqrt(c1))[0][0], linewidth=3, color="black") plotgauss1(histdist[1]) plt.title(label, fontsize=18) plt.xticks(fontsize=18) plt.yticks(fontsize=18) plt.legend() plt.show() def Plot_Probabilites(prob_matrix, col_order = [], ind_order = [], vmin=None, vmax=None, figsize=(), cmap=None, ax=None, path=None): ''' Given the output matrix of Convert_ROI_values_to_Probabilities, will plot a heatmap of all probability values sorted in such a manner to demonstrate a progression of values. ''' ## NOTE TO SELF: ADD ARGUMENT FOR FIGSIZE AND THRESHOLDING HEATMAP ## ALSO ARGUMENT TO SORT BY DIFFERENT COLUMNS OR ROWS if type(prob_matrix) == np.ndarray: prob_matrix = pandas.DataFrame(prob_matrix) if len(figsize) == 0: figsize = (14,6) elif len(figsize) > 2: raise IOError('figsize must be a tuple with two values (x and y)') good_cols = [x for x in prob_matrix.columns if not all([x==0 for x in prob_matrix[x]])] prob_matrix = prob_matrix[good_cols] plt.close() if len(ind_order) == 0: sorter = pandas.DataFrame(prob_matrix,copy=True) sorter.loc[:,'mean'] = prob_matrix.mean(axis=1) ind_order = sorter.sort_values('mean',axis=0,ascending=True).index if len(col_order) == 0: sorter2 = pandas.DataFrame(prob_matrix,copy=True) sorter2.loc['mean'] = prob_matrix.mean(axis=0) col_order = sorter2.sort_values('mean',axis=1,ascending=False).columns fig, ax = plt.subplots(figsize=figsize) forplot = prob_matrix.loc[ind_order, col_order] g = sns.heatmap(forplot, vmin, vmax, cmap=cmap, ax=ax) plt.xlabel('Regions (highest - lowest p)', fontsize=24) plt.ylabel('Subjects (lowest - highest p)', fontsize=24) if path != None: plt.yticks([]) plt.tight_layout() plt.savefig(path) return [ind_order,col_order] def Evaluate_Probabilities(prob_matrix, to_test, alpha_threshold = 0.05, FDR=None, info='medium'): ''' This script will quickly calculate significant (as defined by user) associations between all columns in a DataFrame or matrix and variables passed by the user. The script will try to guess the appropriate test to run. Depending on inputs, the script will display the number of significant columns, which columns are significant and the alpha values; for each passed variable. Multiple comparisons correction is supported. prob_matrix -- a Subject x ROI matrix or DataFrame to_test -- a dict object of where values are columns, arrays or lists with the same length as prob_matrix, and keys are string labels IDing them. alpha_threshold -- determines what is significant. NOTE: If an argument is passed for FDR, alpha_threshold refers to Q, otherwise, it refers to p. FDR -- If no argument is passed (default), no multiple comparisons correction is performed. If the user desires multiple comparisons correction, the user can select the type by entering any of the string arguments described here: http://www.statsmodels.org/0.8.0/generated/statsmodels.sandbox.stats.multicomp.multipletests.html info -- Determines how much information the script will display upon completion. light: script will only display the number of significant regions medium: script will also display which regions were significnat heavy: script will also display the alpha value for each region ''' if info not in ['light','medium','heavy']: print('WARNING: a value of %s was passed for argument "info"'%(info)) print('Script will proceed with minimal information displayed') print('in the future, please pass one of the following:') print('"light", "medium", "heavy"') info = 'light' if type(prob_matrix) == np.ndarray: prob_matrix = pandas.DataFrame(prob_matrix) good_cols = [x for x in prob_matrix.columns if not all([x==0 for x in prob_matrix[x]])] prob_matrix = prob_matrix[good_cols] for label, var in to_test.items(): if type(var) == np.ndarray or type(var) == list: var = pandas.Series(var) ps = [] n_vals = len(np.unique(var)) if n_vals < 7: vals = np.unique(var) if n_vals == 2: print('for %s, using t-test...'%(label)) for col in prob_matrix.columns: p = stats.ttest_ind(prob_matrix.loc[var==vals[0]][col], prob_matrix.loc[var==vals[1]][col])[-1] ps.append(p) elif n_vals == 3: print('for %s, using ANOVA...'%(label)) for col in prob_matrix.columns: p = stats.f_oneway(prob_matrix.loc[var==vals[0]][col], prob_matrix.loc[var==vals[1]][col], prob_matrix.loc[var==vals[2]][col])[-1] ps.append(p) elif n_vals == 4: print('for %s, using ANOVA...'%(label)) for col in prob_matrix.columns: p = stats.f_oneway(prob_matrix.loc[var==vals[0]][col], prob_matrix.loc[var==vals[1]][col], prob_matrix.loc[var==vals[2]][col], prob_matrix.loc[var==vals[3]][col])[-1] ps.append(p) elif n_vals == 5: print('for %s, using ANOVA...'%(label)) for col in prob_matrix.columns: p = stats.f_oneway(prob_matrix.loc[var==vals[0]][col], prob_matrix.loc[var==vals[1]][col], prob_matrix.loc[var==vals[2]][col], prob_matrix.loc[var==vals[3]][col], prob_matrix.loc[var==vals[4]][col])[-1] ps.append(p) elif n_vals == 6: print('for %s, using ANOVA...'%(label)) for col in prob_matrix.columns: p = stats.f_oneway(prob_matrix.loc[var==vals[0]][col], prob_matrix.loc[var==vals[1]][col], prob_matrix.loc[var==vals[2]][col], prob_matrix.loc[var==vals[3]][col], prob_matrix.loc[var==vals[4]][col], prob_matrix.loc[var==vals[4]][col])[-1] ps.append(p) else: print('for %s, using correlation...'%(label)) for col in prob_matrix.columns: p = stats.pearsonr(prob_matrix[col],var)[-1] ps.append(p) if not FDR: hits = [i for i in range(len(ps)) if ps[i] < alpha_threshold] else: correction = multipletests(ps,alpha_threshold,FDR) hits = [i for i in range(len(ps)) if correction[0][i]] print('=============%s============'%label) print('for %s, %s regions were significant'%(label,len(hits))) if info == 'medium': print(prob_matrix.columns[hits]) if info == 'heavy': if not FDR: print([(prob_matrix.columns[i], ps[i]) for i in hits]) else: print([(prob_matrix.columns[i], correction[1][i]) for i in hits]) print('\n\n') return ps def Prepare_Inputs_for_ESM(prob_matrices, ages, output_dir, file_name, conn_matrices = [], conn_mat_names = [], conn_out_names = [], epicenters_idx = [], sub_ids = [], visit_labels = [], roi_labels = [], figure = True, betas0 = None, deltas0 = None): ''' This script will convert data into a matfile compatible with running the ESM, and will print outputs to be entered into ESM launcher script. The script will also adjust connectomes to accomodate missing (masked) ROIs. prob_matrices -- a dict object matching string labels to probability matrices (pandas DataFrames). These will be converted into a matlab structure. Columns with all 0s will be removed automatically. NOTE: All prob_matrices should the same shape, and a matching number of non-zero columns. If they do not, run the script separately for these matrices. ages -- an array the same length of prob_matrices that contains the age of each subject. output_dir -- an existing directory where all outputs will be written to file_name -- the name of the output matfile. Do not include a file extension conn_matrices -- a list of paths to matfiles or csvs containing connectomes that match the atlas used to intially extract data. if your probability matrix does not have columns with 0s (because, for example, you used a mask), this argument can be left unchanged. Otherwise, the script will chop up the connectomes so they match the dimensions of the non-zero columns in the probability matrices. NOTE: passing this argument requires passing an argument for conn_out_names con_mat_names -- a list the same length of conn_matrices that contains string labels ''' if type(prob_matrices) != dict: raise IOError('prob_matrices must be a dict object') col_lens = [] for lab, df in prob_matrices.items(): good_cols = [y for y in df.columns if not all([x==0 for x in df[y]])] col_lens.append(len(good_cols)) prob_matrices.update({lab: df[good_cols].values.T}) if not all([x == col_lens[0] for x in col_lens]): raise IOError('all probability matrices entered must have the same # of non-zero columns') goodcols = [y for y in range(len(df.columns)) if not all([x==0 for x in df[df.columns[y]]])] if len(conn_matrices) > 0: if not len(conn_matrices) == len(conn_out_names): raise ValueError('equal length lists must be passed for conn_matrices and out_names') for i,mtx in enumerate(conn_matrices): if mtx[-3:] == 'csv': connmat = pandas.read_csv(mtx) x,y = connmat.shape if x < y: connmat = pandas.read_csv(mtx,header=None) if all(connmat.loc[:,connmat.columns[0]] == range(connmat.shape[0])): connmat = pandas.read_csv(mtx, index_col=0).values x,y = connmat.shape if x < y: connmat = pandas.read_csv(mtx, index_col=0, header=None).values else: connmat = connmat.values jnk = {} elif mtx[-3:] == 'mat': jnk = loadmat(mtx) connmat = jnk[conn_mat_names[i]] newmat = np.array([thing[goodcols] for thing in connmat[goodcols]]) prob_matrices.update({conn_out_names[i]: newmat}) #jnk[file_name] = newmat #savemat(os.path.join(output_dir,conn_out_names[i]), jnk) print('new connectivity matrix size: for %s'%conn_out_names[i],newmat.shape) if figure: plt.close() try: sns.heatmap(newmat) plt.show() except: sns.heatmap(newmat.astype(float)) plt.show() if type(ages) == np.ndarray or type(ages) == list: ages = pandas.Series(ages) if len(ages.dropna()) != len(df): raise ValueError('length mismatch between "ages" and prob_matrices. Does "ages" have NaNs?') prob_matrices.update({'ages': ages.values}) elif type(ages) == dict: for key, ages_list in ages.items(): ages_list = pandas.Series(ages_list) if len(ages_list.dropna()) != len(df): raise ValueError('length mismatch between "ages" and prob_matrices. Does "ages" have NaNs?') prob_matrices.update({key: ages_list.values}) if type(sub_ids) == list: prob_matrices.update({'sub_ids': sub_ids}) if type(visit_labels) == list: prob_matrices.update({'visit_labels': visit_labels}) elif type(visit_labels) == dict: for key, visit_list in visit_labels.items(): visit_list = pandas.Series(visit_list) if len(visit_list.dropna()) != len(df): raise ValueError('length mismatch between "visits" and prob_matrices. Does "visits" have NaNs?') prob_matrices.update({key: visit_list.values}) if type(epicenters_idx) == list: prob_matrices.update({'epicenters_idx': epicenters_idx}) if type(roi_labels) == list: prob_matrices.update({'roi_labels': roi_labels}) if type(betas0) == list: prob_matrices.update({'betas': betas0}) if type(deltas0) == list: prob_matrices.update({'deltas': deltas0}) fl_out = os.path.join(output_dir,file_name) savemat(fl_out,prob_matrices) print('ESM input written to',fl_out) print('===inputs:===') for x in prob_matrices.keys(): print(x) if len(conn_matrices) > 0: print('===connectivity matrices===') for i in range(len(conn_matrices)): print(os.path.join(output_dir,conn_out_names[i]) + '.mat') def Evaluate_ESM_Results(results, sids, save=True, labels = None, lit = False, plot = True): ''' This script will load the matfile outputted from the ESM, will display the main model results (r2, RMSE and "eval"), the chosen epicenter(s) and will return the model outputs as a pandas DataFrame if desired. results -- a .mat file created using the ESM script sids -- a list of subject IDs that matches the subjects input to the ESM save -- if True, will return a pandas DataFrame with model results labels -- ROI labels that match those from the ESM input matrix. lit -- If only one epicenter was sent (for example, for hypothesis testing), set this to True. Otherwise, leave as False. plot -- If True, function will plot several charts to evaluate ESM results on an ROI and subject level. ''' mat = loadmat(results) if not lit: res = pandas.DataFrame(index = sids) for i in range(len(mat['ref_pattern'][0])): # Model fits sid = sids[i] r,p = stats.pearsonr(mat['ref_pattern'][:,i], mat['Final_solutions'][:,i]) res.loc[sid,'model_r'] = r res.loc[sid,'model_r2'] = r**2 res.loc[:, 'model_RMSE'] = mat['Final_RMSEs'].flatten() res.loc[:, 'model_eval'] = mat['Final_CORRs'].flatten() if save: # params res.loc[:, 'beta'] = mat['Final_parameters'][0,:].flatten() res.loc[:, 'delta'] = mat['Final_parameters'][1,:].flatten() res.loc[:, 'sigma'] = mat['Final_parameters'][2,:].flatten() # other res.loc[:, 'ref_age'] = mat['AGEs'].flatten() res.loc[:, 'times'] = mat['Final_times'].flatten() res.loc[:, 'Onset_age'] = mat['ONSETS_est'].flatten() print('average r2 = ', res.model_r2.mean()) print('average RMSE =', res.model_RMSE.mean()) print('average eval =', res.model_eval.mean()) if type(labels) != type(None): if type(labels) == np.ndarray or type(labels) == list: labels = pandas.Series(labels) print('model identfied the following epicenters') for l in mat['models'][0,0][0][0]: print(labels.loc[labels.index[l-1]]) if plot: plot_out = Plot_ESM_results(mat, labels, sids, lit) if save: if plot: res = {'model_output': res, 'eval_output': plot_out} return res else: res = pandas.DataFrame(index = sids) for i in range(len(mat['ref_pattern'][0])): # Model fits sid = sids[i] r,p = stats.pearsonr(mat['ref_pattern'][:,i], mat['model_solutions0'][:,i]) res.loc[sid,'model_r'] = r res.loc[sid,'model_r2'] = r**2 res.loc[:, 'model_RMSE'] = mat['model_RMSEs0'].flatten() res.loc[:, 'model_eval'] = mat['model_CORRs0'].flatten() if save: # params res.loc[:, 'beta'] = mat['model_parameters0'][0,:].flatten() res.loc[:, 'delta'] = mat['model_parameters0'][1,:].flatten() res.loc[:, 'sigma'] = mat['model_parameters0'][2,:].flatten() # other res.loc[:, 'ref_age'] = mat['AGEs'].flatten() res.loc[:, 'times'] = mat['model_times0'].flatten() res.loc[:, 'Onset_age'] = mat['ONSETS_est'].flatten() print('average r2 = ', res.model_r2.mean()) print('average RMSE =', res.model_RMSE.mean()) print('average eval =', res.model_eval.mean()) #if type(labels) != type(None): # print('model identfied the following epicenters') # for l in mat['models'][0,0][0][0]: # print(labels.iloc[l-1]['label']) if plot: plot_out = Plot_ESM_results(mat, labels, sids, lit) if save: if plot: res = {'model_output': res, 'eval_output': plot_out} return res def Plot_ESM_results(mat, labels, subids, lit): if not lit: mat.update({'model_solutions0': mat['Final_solutions']}) sheets = {} # regional accuracy across subjects plt.close() sns.regplot(mat['ref_pattern'].mean(1), mat['model_solutions0'].mean(1)) plt.xlabel('Avg ROI Amyloid Probability Across Subjects') plt.ylabel('Avg Predicted ROI Amyloid Probability Across Subjects') plt.title('Regional accuracy across subjects') plt.show() r,p = stats.pearsonr(mat['ref_pattern'].mean(1), mat['model_solutions0'].mean(1)) print('r2 = ',r**2,'/n') fp = pandas.DataFrame(pandas.concat([pandas.Series(mat['ref_pattern'].mean(1)), pandas.Series(mat['model_solutions0'].mean(1)) ], axis = 1)) fp.columns = ['reference','predicted'] if type(labels) != type(None): fp.loc[:,'labels'] = labels sheets.update({'regional accuracy': fp}) # Average ROI values across subject r2s = [] for i in range(mat['ref_pattern'].shape[0]): r = stats.pearsonr(mat['ref_pattern'][i,:],mat['model_solutions0'][i,:])[0] r2s.append(r**2) if type(labels) == type(None): labels = range(mat['ref_pattern'].shape[0]) roi_test = pandas.concat([pandas.Series(labels).astype(str),pandas.Series(r2s)], axis=1) roi_test.columns = ['label','r2'] plt.close() g = sns.catplot(x='label', y='r2',data=roi_test, ci=None, order = roi_test.sort_values('r2',ascending=False)['label']) g.set_xticklabels(rotation=90) g.fig.set_size_inches((14,6)) plt.title('ROI values across subjects') plt.show() print(roi_test.r2.mean()) sheets.update({'ROI_acc': roi_test}) # average subjects across ROIs r2s = [] for i in range(mat['ref_pattern'].shape[-1]): r2s.append(stats.pearsonr(mat['ref_pattern'][:,i], mat['model_solutions0'][:,i] )[0]**2) sub_test = pandas.concat([pandas.Series(subids).astype(str), pandas.Series(r2s)], axis=1) sub_test.columns = ['subid','model_r2'] plt.close() #sns.set_context('notebook') #g = sns.factorplot(x='subid', y='model_r2', data=sub_test, ci=None, #order = sub_test.sort_values('model_r2',ascending=False)['subid']) #g.set_xticklabels(rotation=90) #g.fig.set_size_inches((14,6)) #plt.show() #print(sub_test.model_r2.mean()) return sheets def Plot_Individual(matrix, index, style='ROI', label = None): ''' Plot a single ROI across subjects, or a single subject across ROIs. matrix -- a dict object representing ESM results index -- the index of the ROI or subject to plot style -- set to 'ROI' or 'subject' label -- Title to put over the plot ''' if style not in ['ROI', 'subject']: raise IOError('style argument must be set to "ROI" or "subject"') if 'Final_solutions' not in matrix.keys(): matrix.update({'Final_solutions': matrix['model_solutions0']}) if style == 'ROI': x = matrix['ref_pattern'][index,:] y = matrix['Final_solutions'][index,:] else: # subject x = matrix['ref_pattern'][:,index] y = matrix['Final_solutions'][:,index] plt.close() sns.regplot(x,y) plt.xlabel('Observed') plt.ylabel('Predicted') if label: plt.title(label) plt.show() def Prepare_PET_Data(files_in, atlases, ref = None, msk = None, dimension_reduction = False, ECDF_in = None, output_type = 'py', out_dir = './', out_name = 'PET_data', save_matrix = False, save_ECDF = False, save_images = False, ref_index = [], mx_model = 0, orig_atlas = None, esm2014method_py = False, orig_prob_method_matlab = False): ''' This is a function that will take several PET images and an atlas and will return a subject X region matrix. If specified, the function will also calculate probabilities (via ECDF) either voxelwise, or using a specified reference region files_in = input can either be - a path to a directory full of (only) nifti images OR - a "search string" using wildcards - a list of subject paths OR - a subject X image matrix atlas = multiple options: - a path to a labeled regional atlas in the same space as the PET data - if analysis was done in native space, a path to a list of labeled regional atlases ref = multiple options: - If None, no probabilities will be calculated, and script will simply extract regional PET data using the atlas. - If a path to a reference region mask, will calculate voxelwise probabilities based on values within the reference region. Mask must be in the same space as as PET data and atlas - List of paths to reference region masks in native space. Voxelwise probabilities will be calculated based on values within the reference region. - If a list of integers, will combine these atlas labels with these integers to make reference region - if 'voxelwise', voxelwise (or atom-wise from dimension reduction) probabilities will be estimated. In other words, each voxel or atom will use serve as its own reference. msk = multiple options: - A path to a binary mask file in the same space as PET data and atlas. If None, mask will be computed as a binary mask of the atlas. ** PLEASE NOTE: The mask will be used to mask the reference region! ** dimension_reduction = whether or not to first reduce dimensions of data using hierarchical clustering. This results in an initial step that will be very slow, but will may result in an overall speedup for the script, but perhaps only if ref is set to 'voxelwise'. - If None, do not perform dimension reduction - If integer, the number of atoms (clusters) to reduce to ECDF_in = If the user wishes to apply an existing ECDF to the PET data instead of generating one de novo, that can be done here. This crucial if the user wishes to use multiple datasets. Think of it like scaling in machine learning. - If None, will generate ECDF de novo. - If np.array, will use this array to generate the ECDF. - If statsmodel ECDF object, will use this as ECDF - If a path, will use the output_type = type of file to save final subject x region matrix into. multiple options: -- 'py' will save matrix into a csv -- 'mat' will save matrix into a matfile out_dir = location to save output files. Defaults to current directory out_name = the prefix for all output files save_matrix = Whether to save or return subject x image matrix. Useful if running multiple times, as this matrix can be set as files_in, bypassing the costly data import -- if 'return', will return subject x image matrix to python environment -- if 'save', will write subject x image matrix to file. -- if None, matrix will not be stored save_ECDF = whether to save the ECDF used to create the probabilities. This is crucial if using multiple datasets. The resulting output can be used as input for the ECDF argument. -- if 'return, will return np.array to python environment -- if 'save', will write array to file -- if None, array will not be stored ''' # Check input arguments print('initiating...') if output_type != 'py' and output_type != 'mat': raise IOError('output_type must be set to py or mat') # Initialize variables # Load data print('loading data...') i4d = load_data(files_in, return_images=False) # load PET data if save_matrix == 'save': otpt = os.path.join(out_dir,'%s_4d_data'%out_name) print('saving 4d subject x scan to nifti image: \n',otpt) i4d.to_filename(otpt) # load atlas if type(atlases) != list: if type(atlases) == str: try: atlas = ni.load(atlases).get_data().astype(int) except: raise IOError('could not find an atlas at the specified location: %s'%atlas) if orig_atlas == True: orig_atlas = np.array(atlas, copy=True) if atlas.shape != i4d.shape[:3]: raise ValueError('atlas dimensions do not match PET data dimensions') # load reference region if type(ref) == str and ref != 'voxelwise': print('looking for reference image...') if not os.path.isdir(ref): raise IOError('Please enter a valid path for ref, or select a different option for this argument') else: ref_msk = ni.load(ref).get_data() if ref_msk.shape != i4d.shape[:3]: raise ValueError('ref region image dimensions do not match PET data dimensions') elif type(ref) == list: ref_msk = np.zeros_like(atlas) for i in ref: ref_msk[atlas == i] = 1 else: ref_msk = None # Mask data print('masking data...') if msk == None: img_mask = np.array(atlas,copy=True) img_mask[img_mask<1] = 0 img_mask[img_mask>0] = 1 else: img_mask = ni.load(msk).get_data() atlas[img_mask < 1] = 0 if type(ref_msk) != type(None): ref_msk[img_mask < 1] = 0 mask_tfm = input_data.NiftiMasker(ni.Nifti1Image(img_mask,i4d.affine)) mi4d = mask_tfm.fit_transform(i4d) # dimension reduction (IN BETA!) if dimension_reduction: print('reducing dimensions...') shape = img_mask.shape connectivity = grid_to_graph(n_x=shape[0], n_y=shape[1], n_z=shape[2], mask=img_mask) # main ECDF calculation (or mixture model calc) skip = False if ref != 'voxelwise': if type(ECDF_in) != type(None): print('generating ECDF...') print('using user-supplied data...') if type(ECDF_in) == ed.ECDF: mi4d_ecdf, ecref = ecdf_simple(mi4d, ECDF_in, mx=mx_model) input_distribution = 'not generated' elif type(ECDF_in) == np.ndarray: mi4d_ecdf, ecref = ecdf_simple(mi4d, ECDF_in, mx=mx_model) input_distribution = ECDF_in # elif # add later an option for importing an external object else: try: mi4d_ecdf, ecref = ecdf_simple(mi4d, ECDF_in, mx=mx_model) print('Could not understand ECDF input, but ECDF successful') input_distribution = 'not generated' except: raise IOError( 'Invalid argument for ECDF in. Please enter an ndarray, an ECDF object, or a valid path') else: if type(ref_msk) != type(None): print('generating ECDF...') ref_tfm = input_data.NiftiMasker(ni.Nifti1Image(ref_msk,i4d.affine)) refz = ref_tfm.fit_transform(i4d) mi4d_ecdf, ecref = ecdf_simple(mi4d, refz, mx=mx_model) input_distribution = refz.flat else: print('skipping ECDF...') skip = True else: print('generating voxelwise ECDF...') mi4d_ecdf, ECDF_array = ecdf_voxelwise(mi4d, ref_index, save_ECDF, mx=mx_model) input_distribution = 'not generated' if not skip: # if save_ECDF: # create an array and somehow write it to a file # transform back to image-space print('transforming back into image space') f_images = mask_tfm.inverse_transform(mi4d_ecdf) else: #if type(ECDF): print('transforming back into image space') f_images = mask_tfm.inverse_transform(mi4d) # generate output matrix print('generating final subject x region matrix') if type(orig_atlas) == type(None): f_mat = generate_matrix_from_atlas_old(f_images, atlas) else: f_mat = generate_matrix_from_atlas_old(f_images, orig_atlas) else: if len(atlases) != len(files_in): raise IOError('number of images (%s) does not match number of atlases (%s)'%(len(files_in), len(atlases))) type_ref_int = True if isinstance(ref, list): if all(isinstance(x, int) for x in ref): print("Passing in a list of integers to specify the reference region.") elif all(isinstance(x, str) for x in ref): if len(ref) == len(files_in): type_ref_int = False print("Passing in a list of paths to reference region masks in native space") else: raise IOError( 'number of images (%s) does not match number of ref region masks (%s)' % len(files_in), len(ref)) catch = [] for i in range(0, len(files_in)): print(files_in[i]) i4d = ni.load(files_in[i]) atlas = ni.load(atlases[i]).get_data() if len(atlas.shape) == 4: atlas = np.reshape(atlas, atlas.shape[:3]) if atlas.shape != i4d.shape[:3]: raise ValueError('atlas dimensions do not match PET data dimensions') if type_ref_int: ref_msk = np.zeros_like(atlas) for i in ref: ref_msk[atlas == i] = 1 else: ref_msk = ni.load(ref[i]).get_data() if len(ref_msk.shape) == 4: ref_msk = np.reshape(ref_msk, ref_msk.shape[:3]) if ref_msk.shape != i4d.shape[:3]: raise ValueError('ref region image dimensions do not match PET data dimensions') if type(ref_msk) != type(None): ref_msk[ref_msk < 1] = 0 ref_msk[ref_msk > 0] = 1 # Mask data if msk == None: img_mask = np.array(atlas, copy=True) img_mask[img_mask < 1] = 0 img_mask[img_mask > 0] = 1 else: img_mask = ni.load(msk).get_data() atlas[img_mask < 1] = 0 mask_tfm = input_data.NiftiMasker(ni.Nifti1Image(img_mask, i4d.affine)) mi4d = mask_tfm.fit_transform(i4d) #Calculate voxelwise ECDF with respect to ref region in native space skip = False if type(ECDF_in) == type(None): if type(ref_msk) != type(None): print('generating ECDF...') ref_tfm = input_data.NiftiMasker(ni.Nifti1Image(ref_msk, i4d.affine)) refz = ref_tfm.fit_transform(i4d) if esm2014method_py: mi4d_ecdf, ecref = ecdf_voxelwise_bootstrapped_maxvalues_refregion(mi4d, refz) elif orig_prob_method_matlab: mi4d_ecdf = ecdf_voxelwise_bootstrapped_yasser2016(mi4d, refz) else: mi4d_ecdf, ecref = ecdf_simple(mi4d, refz, mx=mx_model) input_distribution = refz.flat else: print('skipping ECDF...') skip = True if not skip: print('transforming back into image space') f_images = mask_tfm.inverse_transform(mi4d_ecdf) else: # if type(ECDF): print('transforming back into image space') f_images = mask_tfm.inverse_transform(mi4d) # generate output matrix print('generating final subject x region matrix') if type(orig_atlas) == type(None): f_mat_single = generate_matrix_from_atlas_old(f_images, atlas) else: f_mat_single = generate_matrix_from_atlas_old(f_images, orig_atlas) #f_mat_single = ecdf_main(mi4d=mi4d, i4d=i4d, atlas=atlas, ref=ref, mask_tfm = mask_tfm) catch.append(f_mat_single) f_mat = pandas.concat(catch) print('preparing outputs') output = {} if output_type == 'py': f_mat.to_csv(os.path.join(out_dir, '%s_roi_data.csv' % out_name), index=False) output.update({'roi_matrix': f_mat}) else: output.update({'roi_matrix': f_mat.values}) output.update({'roi_matrix_columns': f_mat.columns}) if save_matrix == 'return': output.update({'4d_image_matrix': i4d}) if save_ECDF == 'return': if output_type == 'py': output.update({'ECDF_function': ECDF_array}) else: output.update({'input_distribution': input_distribution}) return output def ecdf_main(mi4d, i4d, atlas, ref, mask_tfm, mx_model=0, ref_msk=None, save_ECDF=False, ECDF_in=None, ref_index=[], skip=False, orig_atlas=None): if ref != 'voxelwise': if type(ECDF_in) != type(None): print('generating ECDF...') print('using user-supplied data...') if type(ECDF_in) == ed.ECDF: mi4d_ecdf, ecref = ecdf_simple(mi4d, ECDF_in, mx=mx_model) input_distribution = 'not generated' elif type(ECDF_in) == np.ndarray: mi4d_ecdf, ecref = ecdf_simple(mi4d, ECDF_in, mx=mx_model) input_distribution = ECDF_in # elif # add later an option for importing an external object else: try: mi4d_ecdf, ecref = ecdf_simple(mi4d, ECDF_in, mx=mx_model) print('Could not understand ECDF input, but ECDF successful') input_distribution = 'not generated' except: raise IOError( 'Invalid argument for ECDF in. Please enter an ndarray, an ECDF object, or a valid path') else: if type(ref_msk) != type(None): print('generating ECDF...') ref_tfm = input_data.NiftiMasker(ni.Nifti1Image(ref_msk,i4d.affine)) refz = ref_tfm.fit_transform(i4d) mi4d_ecdf, ecref = ecdf_simple(mi4d, refz, mx=mx_model) input_distribution = refz.flat else: print('skipping ECDF...') skip = True else: print('generating voxelwise ECDF...') mi4d_ecdf, ECDF_array = ecdf_voxelwise(mi4d, ref_index, save_ECDF, mx=mx_model) input_distribution = 'not generated' if not skip: # if save_ECDF: # create an array and somehow write it to a file # transform back to image-space print('transforming back into image space') f_images = mask_tfm.inverse_transform(mi4d_ecdf) else: #if type(ECDF): print('transforming back into image space') f_images = mask_tfm.inverse_transform(mi4d) # generate output matrix print('generating final subject x region matrix') if type(orig_atlas) == type(None): f_mat = generate_matrix_from_atlas_old(f_images, atlas) else: f_mat = generate_matrix_from_atlas_old(f_images, orig_atlas) return f_mat def load_data_old(files_in): fail = False if type(files_in) == str: if os.path.isdir(files_in): print('It seems you passed a directory') search = os.path.join(files_in,'*') num_f = len(glob(search)) if num_f == 0: raise IOError('specified directory did not contain any files') else: print('found %s images!'%num_f) i4d = image.load_img(search) elif '*' in files_in: print('It seems you passed a search string') num_f = len(glob(files_in)) if num_f == 0: raise IOError('specified search string did not result in any files') else: print('found %s images'%num_f) i4d = image.load_img(files_in) else: fail = True elif type(files_in) == list: print('processing %s subjects'%len(files_in)) i4d = ni.concat_images(files_in) elif type(files_in) == ni.nifti1.Nifti1Image: print('processing %s subjects'%files_in.shape[-1]) i4d = files_in else: fail = True if fail: print('files_in not recognized.', 'Please enter a search string, valid directory, list of subjects, or matrix') raise ValueError('I do not recognize the files_in input.') return i4d def dim_reduction(mi4d, connectivity, dimension_reduction): ward = FeatureAgglomeration(n_clusters=dimension_reduction/2, connectivity=connectivity, linkage='ward', memory='nilearn_cache') ward.fit(mi4d) ward = FeatureAgglomeration(n_clusters=dimension_reduction, connectivity=connectivity, linkage='ward', memory='nilearn_cache') ward.fit(mi4d) mi4d = ward.transform(mi4d) return mi4d def ecdf_voxelwise_bootstrapped_yasser2016(mi4d, refz): mi4d_ecdf = eng.voxelwise_pet_prob_yasser2016(matlab.double([list(mi4d[0])]), matlab.double([list(refz[0])])) return mi4d_ecdf def ecdf_voxelwise_bootstrapped_maxvalues_refregion(mi4d, refz): refz_max_values = [] for i in range(0, 40000): resampled_refz = resample(refz.flatten(), n_samples=500, replace=True) percentile_value = np.percentile(resampled_refz, 95) refz_max_values.append(percentile_value) refz_max_array = np.array(refz_max_values) refz_max_array = np.reshape(refz_max_array, (1, len(refz_max_array))) mi4d_ecdf, ecref = ecdf_simple(mi4d, refz_max_array, mx=0) return mi4d_ecdf, ecref def ecdf_simple(mi4d, refz, mx=0): if type(refz) == ed.ECDF: ecref = refz else: if len(refz.shape) > 1: ecref = ed.ECDF(refz.flat) else: ecref = ed.ECDF(refz) print('transforming images...') if mx == 0: mi4d_ecdf = ecref(mi4d.flat).reshape(mi4d.shape[0],mi4d.shape[1]) else: print('are you sure it makes sense to use a mixture model on reference region?') mod = GaussianMixture(n_components=mx).fit(ecref) mi4d_ecdf = mod.predict_proba(mi4d.flat)[:,-1].reshape(mi4d.shape[0],mi4d.shape[1]) return mi4d_ecdf, ecref def ecdf_voxelwise(mi4d, ref_index, save_ECDF, mx=0): X,y = mi4d.shape if mx != 0: mmod = GaussianMixture(n_components=mx) if len(ref_index) == 0: if not save_ECDF: if mx == 0: mi4d_ecdf = np.array([ed.ECDF(mi4d[:,x])(mi4d[:,x]) for x in range(y)]).transpose() else: mi4d_ecdf = np.array([mmod.fit(mi4d[:,x].reshape(-1,1)).predict_proba(mi4d[:,x].reshape(-1,1) )[:,-1] for x in range(y)]).transpose() ECDF_array = None else: if mx == 0: ECDF_array = np.array([ed.ECDF(mi4d[:,x]) for x in range(y)]).transpose() print('transforming data...') mi4d_ecdf = np.array([ECDF_array[x](mi4d[:,x]) for x in range(y)] ).transpose() else: raise IOError('at this stage, cant save mixture model info....sorry...') else: if mx == 0: # if you don't want to include subjects used for reference, un-hash this, hash # the next line, and fix the "transpose" line so that the data gets back into the matrix properly #good_ind = [x for x in list(range(X)) if x not in ref_index] good_ind = range(X) if not save_ECDF: mi4d_ecdf = np.array([ed.ECDF(mi4d[ref_index,x])(mi4d[good_ind,x]) for x in range(y)] ).transpose() ECDF_array = None else: ECDF_array = [ed.ECDF(mi4d[ref_index,x]) for x in range(y)] print('transforming data...') mi4d_ecdf = np.array([ECDF_array[x](mi4d[good_ind,x]) for x in range(y)] ).transpose() else: ### COMING SOON! raise IOError('have not yet set up implementation for mixture models and reg groups') return mi4d_ecdf, ECDF_array def generate_matrix_from_atlas_old(files_in, atlas): files_in = files_in.get_data() atlas = atlas.astype(int) f_mat = pandas.DataFrame(index = range(files_in.shape[-1]), columns = ['roi_%s'%x for x in np.unique(atlas) if x != 0]) tot = np.bincount(atlas.flat) sorted_cols = [] for sub in range(files_in.shape[-1]): mtx = files_in[:,:,:,sub] sums = np.bincount(atlas.flat, weights = mtx.flat) rois = (sums/tot)[1:] for i in range(0, len(rois)): col="roi_" + str(i+1) sorted_cols.append(col) if col in list(f_mat.columns): f_mat.loc[f_mat.index[sub], col] = rois[i] else: f_mat.loc[f_mat.index[sub], col] = 0 f_mat = f_mat[sorted_cols] return f_mat def W_Transform(roi_matrix, covariates, norm_index = [], columns = [], verbose = False): ''' Depending on inputs, this function will either regress selected variables out of an roi_matrix, or will perform a W-transform on an roi_matrix. W-transform is represented as such: (Pc - A) / SDrc Where Pc is the predicted value of the roi *based on the covariates of the norm sample*; A = actual value of the roi; SDrc = standard deviation of the residuals *or the norm sample* roi_matrix = a subjects x ROI array covariates = a subject x covariates array norm_index = index pointing exclusively to subjects to be used for normalization. If norm index is passed, W-transformation will be performed using these subjects as the norm_sample (see equation above). If no norm_index is passed, covariates will simply be regressed out of all ROIs. columns = the columns to use fron the covariate matrix. If none, all columns if the covariate matrix will be used. verbose = If True, will notify upon the completion of each ROI transformation. ''' if type(roi_matrix) != pandas.core.frame.DataFrame: raise IOError('roi_matrix must be a subjects x ROIs pandas DataFrame') if type(covariates) != pandas.core.frame.DataFrame: raise IOError('covariates must be a subjects x covariates pandas DataFrame') covariates = clean_time(covariates) roi_matrix = clean_time(roi_matrix) if len(columns) > 0: covs = pandas.DataFrame(covariates[columns], copy=True) else: covs = pandas.DataFrame(covariates, copy=True) if covs.shape[0] != roi_matrix.shape[0]: raise IOError('length of indices for roi_matrix and covariates must match') else: data = pandas.concat([roi_matrix, covs], axis=1) output = pandas.DataFrame(np.zeros_like(roi_matrix.values), index = roi_matrix.index, columns = roi_matrix.columns) if len(norm_index) == 0: for roi in roi_matrix.columns: eq = '%s ~'%roi for i,col in enumerate(covs.columns): if i != len(covs.columns) - 1: eq += ' %s +'%col else: eq += ' %s'%col mod = smf.ols(eq, data = data).fit() output.loc[:,roi] = mod.resid if verbose: print('finished',roi) else: for roi in roi_matrix.columns: eq = '%s ~'%roi for i,col in enumerate(covs.columns): if i != len(covs.columns) - 1: eq += ' %s +'%col else: eq += ' %s'%col mod = smf.ols(eq, data=data.loc[norm_index]).fit() predicted = mod.predict(data) w_score = (data.loc[:,roi] - predicted) / mod.resid.std() output.loc[:,roi] = w_score if verbose: print('finished',roi) return output def clean_time(df): df = pandas.DataFrame(df, copy=True) symbols = ['.','-',' ', ':', '/','&'] ncols = [] for col in df.columns: for symbol in symbols: if symbol in col: col = col.replace(symbol,'_') ncols.append(col) df.columns = ncols return df def Weight_Connectome(base_cx, weight_cx, method = 'min', symmetric = True, transform = MinMaxScaler(), transform_when = 'post', illustrative = False, return_weight_mtx = False): if method not in ['min','mean','max']: raise IOError('a value of "min" or "mean" must be passed for method argument') choices = ['prae','post','both','never'] if transform_when not in choices: raise IOError('transform_when must be set to one of the following: %s'%choices) if len(np.array(weight_cx.shape)) == 1 or np.array(weight_cx).shape[-1] == 1: print('1D array passed. Transforming to 2D matrix using %s method'%method) weight_cx = create_connectome_from_1d(weight_cx, method, symmetric) if transform_when == 'pre' or transform_when == 'both': weight_cx = transform.fit_transform(weight_cx) if base_cx.shape == weight_cx.shape: if illustrative: plt.close() sns.heatmap(base_cx) plt.title('base_cx') plt.show() plt.close() sns.heatmap(weight_cx) plt.title('weight_cx') plt.show() weighted_cx = base_cx * weight_cx if illustrative: plt.close() sns.heatmap(weighted_cx) plt.title('final (weighted) cx') plt.show() else: raise ValueError('base_cx (%s) and weight_cx %s do not have the sampe shape'%( base_cx.shape, weight_cx.shape)) if transform_when == 'post' or transform_when == 'both': transform.fit_transform(weighted_cx) if return_weight_mtx: return weighted_cx, weight_cx else: return weighted_cx def create_connectome_from_1d(cx, method, symmetric): nans = [x for x in range(len(cx)) if not pandas.notnull(cx[x])] if len(nans) > 1: raise ValueError('Values at indices %s are NaNs. Cannot compute'%nans) weight_cx = np.zeros((len(cx),len(cx))) if method == 'min': if symmetric: for i,j in list(itertools.product(range(len(cx)),repeat=2)): weight_cx[i,j] = min([cx[i],cx[j]]) else: for i,j in itertools.combinations(range(len(cx)),2): weight_cx[i,j] = min([cx[i],cx[j]]) rotator = np.rot90(weight_cx, 2) weight_cx = weight_cx + rotator elif method == 'mean': if symmetric: for i,j in list(itertools.product(range(len(cx)),repeat=2)): weight_cx[i,j] = np.mean([cx[i],cx[j]]) else: for i,j in itertools.combinations(range(len(cx)),2): weight_cx[i,j] = np.mean([cx[i],cx[j]]) rotator = np.rot90(weight_cx, 2) weight_cx = weight_cx + rotator elif method == 'max': if symmetric: for i,j in list(itertools.product(range(len(cx)),repeat=2)): weight_cx[i,j] = max([cx[i],cx[j]]) else: for i,j in itertools.combinations(range(len(cx)),2): weight_cx[i,j] = max([cx[i],cx[j]]) rotator = np.rot90(weight_cx, 2) weight_cx = weight_cx + rotator return weight_cx def plot_best_epicenter_x_subs(output_files, subs_to_select=None, color="blue",title=None, plot=True, dataset="DIAN"): clinical_df = pandas.read_csv("../../data/DIAN/participant_metadata/CLINICAL_D1801.csv") pib_df = pandas.read_csv("../../data/DIAN/participant_metadata/pib_D1801.csv") genetic_df = pandas.read_csv("../../data/DIAN/participant_metadata/GENETIC_D1801.csv") output_files = sorted(output_files) example_output = loadmat(output_files[0]) subs = list(example_output['sub_ids']) visit_labels = example_output['visit_labels'] if dataset == "DIAN": rois = list(x.rstrip()[5:] for x in example_output['roi_labels'][0:38]) elif dataset == "ADNI": rois = list(x.rstrip()[5:] for x in example_output['roi_labels'][0:39]) pup_rois = ["precuneus", "superior frontal", "rostral middle frontal", "lateral orbitofrontal", "medial orbitofrontal", "superior temporal", "middle temporal"] composite_roi_list = [] for i,roi in enumerate(example_output['roi_labels']): for roi2 in pup_rois: if roi2 in roi.lower(): composite_roi_list.append(i) sub_epicenter_df = pandas.DataFrame(columns=rois, index=subs) sub_epicenter_df.loc[:, 'visit_label'] = visit_labels all_rois = [] for i,f in enumerate(output_files): mat = loadmat(f) ref_pattern = mat['ref_pattern'] pred_pattern = mat['model_solutions0'] if dataset == "DIAN": epicenter_idx = output_files[i].split("/")[-1].split("_")[8].split("-")[1] elif dataset == "ADNI": epicenter_idx = output_files[i].split("/")[-1].split("_")[2].split("-")[1] if epicenter_idx.isdigit(): epicenter_name = rois[int(epicenter_idx)-1] else: epicenter_name = epicenter_idx all_rois.append(epicenter_name) for i, sub in enumerate(sub_epicenter_df.index): r,p = stats.pearsonr(ref_pattern[:,i], pred_pattern[:,i]) r2 = r**2 sub_epicenter_df.loc[sub, epicenter_name] = r2 sub_epicenter_df.loc[sub, 'esm_idx'] = i for i,sub in enumerate(sub_epicenter_df.index): visit = sub_epicenter_df.loc[sub, "visit_label"] sub_epicenter_df.loc[sub, "AB_Composite"] = np.mean(ref_pattern[composite_roi_list,i]) if dataset == "DIAN": sub_epicenter_df.loc[sub, "DIAN_EYO"] = clinical_df[(clinical_df.IMAGID == sub) & (clinical_df.visit == visit)].DIAN_EYO.values[0] ab_composite_bs = pib_df[(pib_df.IMAGID == sub) & (pib_df.visit == visit)].PIB_fSUVR_TOT_CORTMEAN.values[0] / pib_df[(pib_df.IMAGID == sub) & (pib_df.visit == visit)].PIB_fSUVR_TOT_BRAINSTEM.values[0] sub_epicenter_df.loc[sub, 'AB_COMPOSITE_SUVR_BS'] = ab_composite_bs if sub_epicenter_df.loc[sub, "AB_Composite"] > 0.1: sub_epicenter_df.loc[sub, "AB_Positive"] = True else: sub_epicenter_df.loc[sub, "AB_Positive"] = False if sub_epicenter_df.loc[sub, "AB_COMPOSITE_SUVR_BS"] > 0.79: sub_epicenter_df.loc[sub, "AB_POSITIVE_SUVR"] = True else: sub_epicenter_df.loc[sub, "AB_POSITIVE_SUVR"] = False sub_epicenter_df.loc[sub, 'mut_type'] = genetic_df[genetic_df.IMAGID == sub].MUTATIONTYPE.values[0] if sub_epicenter_df.loc[sub, 'mut_type'] == 1: sub_epicenter_df.loc[sub, 'mut_type_name'] = "PSEN1" elif sub_epicenter_df.loc[sub, 'mut_type'] == 2: sub_epicenter_df.loc[sub, 'mut_type_name'] = "PSEN2" else: sub_epicenter_df.loc[sub, 'mut_type_name'] = "APP" sub_epicenter_df.loc[sub, 'CDR'] = clinical_df[(clinical_df.IMAGID == sub) & (clinical_df.visit == visit)].cdrglob.values[0] for sub in sub_epicenter_df.index: epicenter_vals = list(sub_epicenter_df.loc[sub, all_rois]) esm_idx = int(sub_epicenter_df.loc[sub, 'esm_idx']) idx = epicenter_vals.index(max(epicenter_vals)) roi = all_rois[idx] sub_epicenter_df.loc[sub, "Best_Epicenter"] = roi sub_epicenter_df.loc[sub, "Best_Epicenter_R2"] = sub_epicenter_df.loc[sub, roi] best_exp = loadmat(output_files[idx]) sub_epicenter_df.loc[sub, "BETAS_est"] = list(best_exp['BETAS_est'])[esm_idx] sub_epicenter_df.loc[sub, "DELTAS_est"] = list(best_exp['DELTAS_est'])[esm_idx] if subs_to_select != None: subs = subs_to_select if plot == True: plt.figure(figsize=(20,10)) g = sns.countplot(sub_epicenter_df.loc[subs, "Best_Epicenter"], color=color, order = sub_epicenter_df.loc[subs, "Best_Epicenter"].value_counts().index) g.set_xticklabels(g.get_xticklabels(), rotation=45, horizontalalignment='right',fontsize=16) g.set_title(title, fontsize=20) g.set_xlabel("Epicenter", fontsize=20) g.set_ylabel("Count", fontsize=20) g.set_yticklabels(g.get_yticks(), fontsize=16) plt.show() plt.close() return sub_epicenter_df def group_level_performance(output_files, subs_to_select=None, dataset="DIAN"): output_files = sorted(output_files) example_output = loadmat(output_files[0]) visit_labels = example_output['visit_labels'] if dataset == "DIAN": rois = list(x.rstrip()[5:] for x in example_output['roi_labels'][0:38]) elif dataset == "ADNI": rois = list(x.rstrip()[5:] for x in example_output['roi_labels'][0:39]) subs = list(example_output['sub_ids'].flatten()) # for i,roi in enumerate(example_output['roi_labels']): # for roi2 in pup_rois: # if roi2 in roi.lower(): # composite_roi_list.append(i) global_performance_dict = {} if dataset == "DIAN": num_files = 38 elif dataset == "ADNI": num_files = 39 for i,f in enumerate(output_files[0:num_files]): mat = loadmat(f) ref_pattern_df = pandas.DataFrame(index=subs, columns=example_output['roi_labels']) ref_pattern_df.loc[:,:] = mat['ref_pattern'].transpose() pred_pattern_df =
pandas.DataFrame(index=subs, columns=example_output['roi_labels'])
pandas.DataFrame
import datetime import numpy as np import pandas as pd from dateutil.tz import tzutc from datetime import date import pytz from lstm_load_forecasting import entsoe, weather import json def load_dataset(path=None, update_date=None, modules=None): indicator_vars = {'bsl_1':10,'bsl_2':11,'bsl_3':12,'brn_1':13,'brn_2':14,'brn_3':15,'zrh_1':16,'zrh_2':17, 'zrh_3':18,'lug_1':19,'lug_2':20,'lug_3':21,'lau_1':22,'lau_2':23,'lau_3':24,'gen_1':25, 'gen_2':26,'gen_3':27,'stg_1':28,'stg_2':29,'stg_3':30,'luz_1':31,'luz_2':32,'luz_3':33, 'holiday':34,'weekday_0':35,'weekday_1':36,'weekday_2':37,'weekday_3':38,'weekday_4':39,'weekday_5':40, 'weekday_6':41,'hour_0': 42, 'hour_1':42, 'hour_2':44, 'hour_3':45, 'hour_4':46, 'hour_5':47, 'hour_6':48, 'hour_7':49, 'hour_8':50,'hour_9':51, 'hour_10':52, 'hour_11':53, 'hour_12':54, 'hour_13':55, 'hour_14':56, 'hour_15':57, 'hour_16':58,'hour_17':59, 'hour_18':60, 'hour_19':61, 'hour_20':62, 'hour_21':63, 'hour_22':64, 'hour_23':65,'month_1':66, 'month_2':67, 'month_3':68, 'month_4':69, 'month_5':70, 'month_6':71, 'month_7':72, 'month_8':73,'month_9':74, 'month_10':75, 'month_11':76, 'month_12':77} df = pd.read_csv(path, delimiter=';', parse_dates=[0], index_col = 0) df[list(indicator_vars.keys())] = df[list(indicator_vars.keys())].astype('int') df = df.tz_localize('utc') df = df.sort_index() if update_date: last_actual_obs = df['actual'].last_valid_index() last_obs = df.index[-1] local_timezone = pytz.timezone('Europe/Zurich') update_date = local_timezone.localize(update_date) print('============================================') if update_date - pd.DateOffset(hours=1) > last_actual_obs: df, df_n = update_dataset(df, update_date) df.to_csv('data/fulldataset.csv', sep=';') print('Updated: {}'.format(df_n.shape)) print('New size: {}'.format(df.shape)) else: print('Nothing to update') columns = [] if 'actual' in modules or 'all' in modules: columns.append('actual') if 'entsoe' in modules or 'all' in modules: columns.append('entsoe') if 'weather' in modules or 'all' in modules: columns.extend(['bsl_t','brn_t','zrh_t','lug_t','lau_t','gen_t','stg_t','luz_t', 'bsl_1', 'bsl_2','bsl_3','brn_1','brn_2','brn_3','zrh_1','zrh_2','zrh_3','lug_1','lug_2','lug_3', 'lau_1','lau_2','lau_3','gen_1','gen_2','gen_3','stg_1','stg_2','stg_3','luz_1','luz_2','luz_3']) if 'calendar' in modules or 'all' in modules: columns.extend(['holiday', 'weekday_0','weekday_1','weekday_2','weekday_3','weekday_4','weekday_5','weekday_6', 'hour_0', 'hour_1', 'hour_2', 'hour_3', 'hour_4', 'hour_5', 'hour_6', 'hour_7', 'hour_8', 'hour_9', 'hour_10', 'hour_11', 'hour_12', 'hour_13', 'hour_14', 'hour_15', 'hour_16', 'hour_17', 'hour_18', 'hour_19', 'hour_20', 'hour_21', 'hour_22', 'hour_23', 'month_1', 'month_2', 'month_3', 'month_4', 'month_5', 'month_6', 'month_7', 'month_8', 'month_9', 'month_10', 'month_11', 'month_12']) df = df[columns] return df def update_dataset(df=None, to_date=None): # Set up df = df.sort_index() last_obs = df.index[-1] last_actual_obs = df['actual'].last_valid_index() columns = df.columns starting = last_actual_obs + pd.DateOffset(hours=1) ending = to_date starting = starting.replace(minute=0, second=0) ending = ending.replace(minute=0, second=0) fmt = '%Y%m%d%H%M' starting = starting.tz_convert('utc') ending = ending.astimezone(pytz.utc) - pd.DateOffset(hours=1) df_n = pd.DataFrame(index=
pd.date_range(starting, ending, freq='60min')
pandas.date_range
""" Provide a generic structure to support window functions, similar to how we have a Groupby object. """ from collections import defaultdict from datetime import timedelta from textwrap import dedent from typing import List, Optional, Set import warnings import numpy as np import pandas._libs.window as libwindow from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes.common import ( ensure_float64, is_bool, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_scalar, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDateOffset, ABCDatetimeIndex, ABCPeriodIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas._typing import Axis, FrameOrSeries from pandas.core.base import DataError, PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.generic import _shared_docs from pandas.core.groupby.base import GroupByMixin _shared_docs = dict(**_shared_docs) _doc_template = """ Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ class _Window(PandasObject, SelectionMixin): _attributes = [ "window", "min_periods", "center", "win_type", "axis", "on", "closed", ] # type: List[str] exclusions = set() # type: Set[str] def __init__( self, obj, window=None, min_periods: Optional[int] = None, center: Optional[bool] = False, win_type: Optional[str] = None, axis: Axis = 0, on: Optional[str] = None, closed: Optional[str] = None, **kwargs ): self.__dict__.update(kwargs) self.obj = obj self.on = on self.closed = closed self.window = window self.min_periods = min_periods self.center = center self.win_type = win_type self.win_freq = None self.axis = obj._get_axis_number(axis) if axis is not None else None self.validate() @property def _constructor(self): return Window @property def is_datetimelike(self) -> Optional[bool]: return None @property def _on(self): return None @property def is_freq_type(self) -> bool: return self.win_type == "freq" def validate(self): if self.center is not None and not is_bool(self.center): raise ValueError("center must be a boolean") if self.min_periods is not None and not is_integer(self.min_periods): raise ValueError("min_periods must be an integer") if self.closed is not None and self.closed not in [ "right", "both", "left", "neither", ]: raise ValueError("closed must be 'right', 'left', 'both' or " "'neither'") def _create_blocks(self): """ Split data into blocks & return conformed data. """ obj = self._selected_obj # filter out the on from the object if self.on is not None: if obj.ndim == 2: obj = obj.reindex(columns=obj.columns.difference([self.on]), copy=False) blocks = obj._to_dict_of_blocks(copy=False).values() return blocks, obj def _gotitem(self, key, ndim, subset=None): """ Sub-classes to define. Return a sliced object. Parameters ---------- key : str / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ # create a new object to prevent aliasing if subset is None: subset = self.obj self = self._shallow_copy(subset) self._reset_cache() if subset.ndim == 2: if is_scalar(key) and key in subset or is_list_like(key): self._selection = key return self def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError( "%r object has no attribute %r" % (type(self).__name__, attr) ) def _dir_additions(self): return self.obj._dir_additions() def _get_window(self, other=None): return self.window @property def _window_type(self) -> str: return self.__class__.__name__ def __repr__(self) -> str: """ Provide a nice str repr of our rolling object. """ attrs = ( "{k}={v}".format(k=k, v=getattr(self, k)) for k in self._attributes if getattr(self, k, None) is not None ) return "{klass} [{attrs}]".format( klass=self._window_type, attrs=",".join(attrs) ) def __iter__(self): url = "https://github.com/pandas-dev/pandas/issues/11704" raise NotImplementedError("See issue #11704 {url}".format(url=url)) def _get_index(self) -> Optional[np.ndarray]: """ Return index as an ndarray. Returns ------- None or ndarray """ if self.is_freq_type: return self._on.asi8 return None def _prep_values(self, values: Optional[np.ndarray] = None) -> np.ndarray: """Convert input to numpy arrays for Cython routines""" if values is None: values = getattr(self._selected_obj, "values", self._selected_obj) # GH #12373 : rolling functions error on float32 data # make sure the data is coerced to float64 if is_float_dtype(values.dtype): values = ensure_float64(values) elif is_integer_dtype(values.dtype): values = ensure_float64(values) elif needs_i8_conversion(values.dtype): raise NotImplementedError( "ops for {action} for this " "dtype {dtype} are not " "implemented".format(action=self._window_type, dtype=values.dtype) ) else: try: values = ensure_float64(values) except (ValueError, TypeError): raise TypeError( "cannot handle this type -> {0}" "".format(values.dtype) ) # Always convert inf to nan values[np.isinf(values)] = np.NaN return values def _wrap_result(self, result, block=None, obj=None) -> FrameOrSeries: """ Wrap a single result. """ if obj is None: obj = self._selected_obj index = obj.index if isinstance(result, np.ndarray): # coerce if necessary if block is not None: if is_timedelta64_dtype(block.values.dtype): from pandas import to_timedelta result = to_timedelta(result.ravel(), unit="ns").values.reshape( result.shape ) if result.ndim == 1: from pandas import Series return Series(result, index, name=obj.name) return type(obj)(result, index=index, columns=block.columns) return result def _wrap_results(self, results, blocks, obj, exclude=None) -> FrameOrSeries: """ Wrap the results. Parameters ---------- results : list of ndarrays blocks : list of blocks obj : conformed data (may be resampled) exclude: list of columns to exclude, default to None """ from pandas import Series, concat from pandas.core.index import ensure_index final = [] for result, block in zip(results, blocks): result = self._wrap_result(result, block=block, obj=obj) if result.ndim == 1: return result final.append(result) # if we have an 'on' column # we want to put it back into the results # in the same location columns = self._selected_obj.columns if self.on is not None and not self._on.equals(obj.index): name = self._on.name final.append(Series(self._on, index=obj.index, name=name)) if self._selection is not None: selection = ensure_index(self._selection) # need to reorder to include original location of # the on column (if its not already there) if name not in selection: columns = self.obj.columns indexer = columns.get_indexer(selection.tolist() + [name]) columns = columns.take(sorted(indexer)) # exclude nuisance columns so that they are not reindexed if exclude is not None and exclude: columns = [c for c in columns if c not in exclude] if not columns: raise DataError("No numeric types to aggregate") if not len(final): return obj.astype("float64") return concat(final, axis=1).reindex(columns=columns, copy=False) def _center_window(self, result, window) -> np.ndarray: """ Center the result in the window. """ if self.axis > result.ndim - 1: raise ValueError( "Requested axis is larger then no. of argument " "dimensions" ) offset = _offset(window, True) if offset > 0: if isinstance(result, (ABCSeries, ABCDataFrame)): result = result.slice_shift(-offset, axis=self.axis) else: lead_indexer = [slice(None)] * result.ndim lead_indexer[self.axis] = slice(offset, None) result = np.copy(result[tuple(lead_indexer)]) return result def aggregate(self, func, *args, **kwargs): result, how = self._aggregate(func, *args, **kwargs) if result is None: return self.apply(func, raw=False, args=args, kwargs=kwargs) return result agg = aggregate _shared_docs["sum"] = dedent( """ Calculate %(name)s sum of given DataFrame or Series. Parameters ---------- *args, **kwargs For compatibility with other %(name)s methods. Has no effect on the computed value. Returns ------- Series or DataFrame Same type as the input, with the same index, containing the %(name)s sum. See Also -------- Series.sum : Reducing sum for Series. DataFrame.sum : Reducing sum for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64 >>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64 >>> s.expanding(3).sum() 0 NaN 1 NaN 2 6.0 3 10.0 4 15.0 dtype: float64 >>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64 For DataFrame, each %(name)s sum is computed column-wise. >>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25 >>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0 """ ) _shared_docs["mean"] = dedent( """ Calculate the %(name)s mean of the values. Parameters ---------- *args Under Review. **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.mean : Equivalent method for Series. DataFrame.mean : Equivalent method for DataFrame. Examples -------- The below examples will show rolling mean calculations with window sizes of two and three, respectively. >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).mean() 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 >>> s.rolling(3).mean() 0 NaN 1 NaN 2 2.0 3 3.0 dtype: float64 """ ) class Window(_Window): """ Provide rolling window calculations. .. versionadded:: 0.18.0 Parameters ---------- window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, `min_periods` will default to 1. Otherwise, `min_periods` will default to the size of the window. center : bool, default False Set the labels at the center of the window. win_type : str, default None Provide a window type. If ``None``, all points are evenly weighted. See the notes below for further information. on : str, optional For a DataFrame, a datetime-like column on which to calculate the rolling window, rather than the DataFrame's index. Provided integer column is ignored and excluded from result since an integer index is not used to calculate the rolling window. axis : int or str, default 0 closed : str, default None Make the interval closed on the 'right', 'left', 'both' or 'neither' endpoints. For offset-based windows, it defaults to 'right'. For fixed windows, defaults to 'both'. Remaining cases not implemented for fixed windows. .. versionadded:: 0.20.0 Returns ------- a Window or Rolling sub-classed for the particular operation See Also -------- expanding : Provides expanding transformations. ewm : Provides exponential weighted functions. Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. To learn more about the offsets & frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. The recognized win_types are: * ``boxcar`` * ``triang`` * ``blackman`` * ``hamming`` * ``bartlett`` * ``parzen`` * ``bohman`` * ``blackmanharris`` * ``nuttall`` * ``barthann`` * ``kaiser`` (needs beta) * ``gaussian`` (needs std) * ``general_gaussian`` (needs power, width) * ``slepian`` (needs width) * ``exponential`` (needs tau), center is set to None. If ``win_type=None`` all points are evenly weighted. To learn more about different window types see `scipy.signal window functions <https://docs.scipy.org/doc/scipy/reference/signal.html#window-functions>`__. Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 Rolling sum with a window length of 2, using the 'triang' window type. >>> df.rolling(2, win_type='triang').sum() B 0 NaN 1 0.5 2 1.5 3 NaN 4 NaN Rolling sum with a window length of 2, min_periods defaults to the window length. >>> df.rolling(2).sum() B 0 NaN 1 1.0 2 3.0 3 NaN 4 NaN Same as above, but explicitly set the min_periods >>> df.rolling(2, min_periods=1).sum() B 0 0.0 1 1.0 2 3.0 3 2.0 4 4.0 A ragged (meaning not-a-regular frequency), time-indexed DataFrame >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ... index = [pd.Timestamp('20130101 09:00:00'), ... pd.Timestamp('20130101 09:00:02'), ... pd.Timestamp('20130101 09:00:03'), ... pd.Timestamp('20130101 09:00:05'), ... pd.Timestamp('20130101 09:00:06')]) >>> df B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1. >>> df.rolling('2s').sum() B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 """ def validate(self): super().validate() window = self.window if isinstance(window, (list, tuple, np.ndarray)): pass elif is_integer(window): if window <= 0: raise ValueError("window must be > 0 ") import_optional_dependency( "scipy", extra="Scipy is required to generate window weight." ) import scipy.signal as sig if not isinstance(self.win_type, str): raise ValueError("Invalid win_type {0}".format(self.win_type)) if getattr(sig, self.win_type, None) is None: raise ValueError("Invalid win_type {0}".format(self.win_type)) else: raise ValueError("Invalid window {0}".format(window)) def _prep_window(self, **kwargs): """ Provide validation for our window type, return the window we have already been validated. """ window = self._get_window() if isinstance(window, (list, tuple, np.ndarray)): return com.asarray_tuplesafe(window).astype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_map = { "kaiser": ["beta"], "gaussian": ["std"], "general_gaussian": ["power", "width"], "slepian": ["width"], "exponential": ["tau"], } if win_type in arg_map: win_args = _pop_args(win_type, arg_map[win_type], kwargs) if win_type == "exponential": # exponential window requires the first arg (center) # to be set to None (necessary for symmetric window) win_args.insert(0, None) return tuple([win_type] + win_args) return win_type def _pop_args(win_type, arg_names, kwargs): msg = "%s window requires %%s" % win_type all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) all_args.append(kwargs.pop(n)) return all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.get_window(win_type, window, False).astype(float) def _apply_window(self, mean=True, **kwargs): """ Applies a moving window of type ``window_type`` on the data. Parameters ---------- mean : bool, default True If True computes weighted mean, else weighted sum Returns ------- y : same type as input argument """ window = self._prep_window(**kwargs) center = self.center blocks, obj = self._create_blocks() block_list = list(blocks) results = [] exclude = [] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, len(window)) return libwindow.roll_window( np.concatenate((arg, additional_nans)) if center else arg, window, minp, avg=mean, ) result = np.apply_along_axis(f, self.axis, values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, block_list, obj, exclude) _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3, win_type='boxcar').agg('mean') A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -0.885035 0.212600 -0.711689 3 -0.323928 -0.200122 -1.093408 4 -0.071445 -0.431533 -1.075833 5 0.504739 0.676083 -0.996353 6 0.358206 1.903256 -0.774200 7 0.906020 1.283573 0.085482 8 -0.096361 0.818139 0.472290 9 0.070889 0.134399 -0.031308 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/DataFrame", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: # these must apply directly result = arg(self) return result agg = aggregate @Substitution(name="window") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply_window(mean=False, **kwargs) @Substitution(name="window") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_window_func("mean", args, kwargs) return self._apply_window(mean=True, **kwargs) class _GroupByMixin(GroupByMixin): """ Provide the groupby facilities. """ def __init__(self, obj, *args, **kwargs): parent = kwargs.pop("parent", None) # noqa groupby = kwargs.pop("groupby", None) if groupby is None: groupby, obj = obj, obj.obj self._groupby = groupby self._groupby.mutated = True self._groupby.grouper.mutated = True super().__init__(obj, *args, **kwargs) count = GroupByMixin._dispatch("count") corr = GroupByMixin._dispatch("corr", other=None, pairwise=None) cov = GroupByMixin._dispatch("cov", other=None, pairwise=None) def _apply( self, func, name=None, window=None, center=None, check_minp=None, **kwargs ): """ Dispatch to apply; we are stripping all of the _apply kwargs and performing the original function call on the grouped object. """ def f(x, name=name, *args): x = self._shallow_copy(x) if isinstance(name, str): return getattr(x, name)(*args, **kwargs) return x.apply(name, *args, **kwargs) return self._groupby.apply(f) class _Rolling(_Window): @property def _constructor(self): return Rolling def _apply( self, func, name=None, window=None, center=None, check_minp=None, **kwargs ): """ Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : str/callable to apply name : str, optional name of this function window : int/array, default to _get_window() center : bool, default to self.center check_minp : function, default to _use_window Returns ------- y : type of input """ if center is None: center = self.center if window is None: window = self._get_window() if check_minp is None: check_minp = _use_window blocks, obj = self._create_blocks() block_list = list(blocks) index_as_array = self._get_index() results = [] exclude = [] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, str): cfunc = getattr(libwindow, func, None) if cfunc is None: raise ValueError( "we do not support this function " "in libwindow.{func}".format(func=func) ) def func(arg, window, min_periods=None, closed=None): minp = check_minp(min_periods, window) # ensure we are only rolling on floats arg = ensure_float64(arg) return cfunc(arg, window, minp, index_as_array, closed, **kwargs) # calculation function if center: offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def calc(x): return func( np.concatenate((x, additional_nans)), window, min_periods=self.min_periods, closed=self.closed, ) else: def calc(x): return func( x, window, min_periods=self.min_periods, closed=self.closed ) with np.errstate(all="ignore"): if values.ndim > 1: result = np.apply_along_axis(calc, self.axis, values) else: result = calc(values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, block_list, obj, exclude) class _Rolling_and_Expanding(_Rolling): _shared_docs["count"] = dedent( r""" The %(name)s count of any non-NaN observations inside the window. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. DataFrame.count : Count of the full DataFrame. Examples -------- >>> s = pd.Series([2, 3, np.nan, 10]) >>> s.rolling(2).count() 0 1.0 1 2.0 2 1.0 3 1.0 dtype: float64 >>> s.rolling(3).count() 0 1.0 1 2.0 2 2.0 3 2.0 dtype: float64 >>> s.rolling(4).count() 0 1.0 1 2.0 2 2.0 3 3.0 dtype: float64 """ ) def count(self): blocks, obj = self._create_blocks() # Validate the index self._get_index() window = self._get_window() window = min(window, len(obj)) if not self.center else window results = [] for b in blocks: result = b.notna().astype(int) result = self._constructor( result, window=window, min_periods=0, center=self.center, axis=self.axis, closed=self.closed, ).sum() results.append(result) return self._wrap_results(results, blocks, obj) _shared_docs["apply"] = dedent( r""" The %(name)s function's apply function. Parameters ---------- func : function Must produce a single value from an ndarray input if ``raw=True`` or a single value from a Series if ``raw=False``. raw : bool, default None * ``False`` : passes each row or column as a Series to the function. * ``True`` or ``None`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. The `raw` parameter is required and will show a FutureWarning if not passed. In the future `raw` will default to False. .. versionadded:: 0.23.0 *args, **kwargs Arguments and keyword arguments to be passed into func. Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ ) def apply(self, func, raw=None, args=(), kwargs={}): from pandas import Series kwargs.pop("_level", None) window = self._get_window() offset = _offset(window, self.center) index_as_array = self._get_index() # TODO: default is for backward compat # change to False in the future if raw is None: warnings.warn( "Currently, 'apply' passes the values as ndarrays to the " "applied function. In the future, this will change to passing " "it as Series objects. You need to specify 'raw=True' to keep " "the current behaviour, and you can pass 'raw=False' to " "silence this warning", FutureWarning, stacklevel=3, ) raw = True def f(arg, window, min_periods, closed): minp = _use_window(min_periods, window) if not raw: arg = Series(arg, index=self.obj.index) return libwindow.roll_generic( arg, window, minp, index_as_array, closed, offset, func, raw, args, kwargs, ) return self._apply(f, func, args=args, kwargs=kwargs, center=False, raw=raw) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply("roll_sum", "sum", **kwargs) _shared_docs["max"] = dedent( """ Calculate the %(name)s maximum. Parameters ---------- *args, **kwargs Arguments and keyword arguments to be passed into func. """ ) def max(self, *args, **kwargs): nv.validate_window_func("max", args, kwargs) return self._apply("roll_max", "max", **kwargs) _shared_docs["min"] = dedent( """ Calculate the %(name)s minimum. Parameters ---------- **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with a Series. DataFrame.%(name)s : Calling object with a DataFrame. Series.min : Similar method for Series. DataFrame.min : Similar method for DataFrame. Examples -------- Performing a rolling minimum with a window size of 3. >>> s = pd.Series([4, 3, 5, 2, 6]) >>> s.rolling(3).min() 0 NaN 1 NaN 2 3.0 3 2.0 4 2.0 dtype: float64 """ ) def min(self, *args, **kwargs): nv.validate_window_func("min", args, kwargs) return self._apply("roll_min", "min", **kwargs) def mean(self, *args, **kwargs): nv.validate_window_func("mean", args, kwargs) return self._apply("roll_mean", "mean", **kwargs) _shared_docs["median"] = dedent( """ Calculate the %(name)s median. Parameters ---------- **kwargs For compatibility with other %(name)s methods. Has no effect on the computed median. Returns ------- Series or DataFrame Returned type is the same as the original object. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.median : Equivalent method for Series. DataFrame.median : Equivalent method for DataFrame. Examples -------- Compute the rolling median of a series with a window size of 3. >>> s = pd.Series([0, 1, 2, 3, 4]) >>> s.rolling(3).median() 0 NaN 1 NaN 2 1.0 3 2.0 4 3.0 dtype: float64 """ ) def median(self, **kwargs): return self._apply("roll_median_c", "median", **kwargs) _shared_docs["std"] = dedent( """ Calculate %(name)s standard deviation. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.std : Equivalent method for Series. DataFrame.std : Equivalent method for DataFrame. numpy.std : Equivalent method for Numpy array. Notes ----- The default `ddof` of 1 used in Series.std is different than the default `ddof` of 0 in numpy.std. A minimum of one period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).std() 0 NaN 1 NaN 2 0.577350 3 1.000000 4 1.000000 5 1.154701 6 0.000000 dtype: float64 >>> s.expanding(3).std() 0 NaN 1 NaN 2 0.577350 3 0.957427 4 0.894427 5 0.836660 6 0.786796 dtype: float64 """ ) def std(self, ddof=1, *args, **kwargs): nv.validate_window_func("std", args, kwargs) window = self._get_window() index_as_array = self._get_index() def f(arg, *args, **kwargs): minp = _require_min_periods(1)(self.min_periods, window) return _zsqrt( libwindow.roll_var(arg, window, minp, index_as_array, self.closed, ddof) ) return self._apply( f, "std", check_minp=_require_min_periods(1), ddof=ddof, **kwargs ) _shared_docs["var"] = dedent( """ Calculate unbiased %(name)s variance. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.var : Equivalent method for Series. DataFrame.var : Equivalent method for DataFrame. numpy.var : Equivalent method for Numpy array. Notes ----- The default `ddof` of 1 used in :meth:`Series.var` is different than the default `ddof` of 0 in :func:`numpy.var`. A minimum of 1 period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).var() 0 NaN 1 NaN 2 0.333333 3 1.000000 4 1.000000 5 1.333333 6 0.000000 dtype: float64 >>> s.expanding(3).var() 0 NaN 1 NaN 2 0.333333 3 0.916667 4 0.800000 5 0.700000 6 0.619048 dtype: float64 """ ) def var(self, ddof=1, *args, **kwargs): nv.validate_window_func("var", args, kwargs) return self._apply( "roll_var", "var", check_minp=_require_min_periods(1), ddof=ddof, **kwargs ) _shared_docs[ "skew" ] = """ Unbiased %(name)s skewness. Parameters ---------- **kwargs Keyword arguments to be passed into func. """ def skew(self, **kwargs): return self._apply( "roll_skew", "skew", check_minp=_require_min_periods(3), **kwargs ) _shared_docs["kurt"] = dedent( """ Calculate unbiased %(name)s kurtosis. This function uses Fisher's definition of kurtosis without bias. Parameters ---------- **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.kurt : Equivalent method for Series. DataFrame.kurt : Equivalent method for DataFrame. scipy.stats.skew : Third moment of a probability density. scipy.stats.kurtosis : Reference SciPy method. Notes ----- A minimum of 4 periods is required for the %(name)s calculation. """ ) def kurt(self, **kwargs): return self._apply( "roll_kurt", "kurt", check_minp=_require_min_periods(4), **kwargs ) _shared_docs["quantile"] = dedent( """ Calculate the %(name)s quantile. Parameters ---------- quantile : float Quantile to compute. 0 <= quantile <= 1. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.23.0 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. **kwargs: For compatibility with other %(name)s methods. Has no effect on the result. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.quantile : Computes value at the given quantile over all data in Series. DataFrame.quantile : Computes values at the given quantile over requested axis in DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).quantile(.4, interpolation='lower') 0 NaN 1 1.0 2 2.0 3 3.0 dtype: float64 >>> s.rolling(2).quantile(.4, interpolation='midpoint') 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 """ ) def quantile(self, quantile, interpolation="linear", **kwargs): window = self._get_window() index_as_array = self._get_index() def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, window) if quantile == 1.0: return libwindow.roll_max( arg, window, minp, index_as_array, self.closed ) elif quantile == 0.0: return libwindow.roll_min( arg, window, minp, index_as_array, self.closed ) else: return libwindow.roll_quantile( arg, window, minp, index_as_array, self.closed, quantile, interpolation, ) return self._apply(f, "quantile", quantile=quantile, **kwargs) _shared_docs[ "cov" ] = """ Calculate the %(name)s sample covariance. Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self and produce pairwise output. pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. **kwargs Keyword arguments to be passed into func. """ def cov(self, other=None, pairwise=None, ddof=1, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) # GH 16058: offset window if self.is_freq_type: window = self.win_freq else: window = self._get_window(other) def _get_cov(X, Y): # GH #12373 : rolling functions error on float32 data # to avoid potential overflow, cast the data to float64 X = X.astype("float64") Y = Y.astype("float64") mean = lambda x: x.rolling( window, self.min_periods, center=self.center ).mean(**kwargs) count = (X + Y).rolling(window=window, center=self.center).count(**kwargs) bias_adj = count / (count - ddof) return (mean(X * Y) - mean(X) * mean(Y)) * bias_adj return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise) ) _shared_docs["corr"] = dedent( """ Calculate %(name)s correlation. Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self. pairwise : bool, default None Calculate pairwise combinations of columns within a DataFrame. If `other` is not specified, defaults to `True`, otherwise defaults to `False`. Not relevant for :class:`~pandas.Series`. **kwargs Unused. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.corr : Equivalent method for Series. DataFrame.corr : Equivalent method for DataFrame. %(name)s.cov : Similar method to calculate covariance. numpy.corrcoef : NumPy Pearson's correlation calculation. Notes ----- This function uses Pearson's definition of correlation (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient). When `other` is not specified, the output will be self correlation (e.g. all 1's), except for :class:`~pandas.DataFrame` inputs with `pairwise` set to `True`. Function will return ``NaN`` for correlations of equal valued sequences; this is the result of a 0/0 division error. When `pairwise` is set to `False`, only matching columns between `self` and `other` will be used. When `pairwise` is set to `True`, the output will be a MultiIndex DataFrame with the original index on the first level, and the `other` DataFrame columns on the second level. In the case of missing elements, only complete pairwise observations will be used. Examples -------- The below example shows a rolling calculation with a window size of four matching the equivalent function call using :meth:`numpy.corrcoef`. >>> v1 = [3, 3, 3, 5, 8] >>> v2 = [3, 4, 4, 4, 8] >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> # numpy returns a 2X2 array, the correlation coefficient >>> # is the number at entry [0][1] >>> print(fmt.format(np.corrcoef(v1[:-1], v2[:-1])[0][1])) 0.333333 >>> print(fmt.format(np.corrcoef(v1[1:], v2[1:])[0][1])) 0.916949 >>> s1 = pd.Series(v1) >>> s2 = pd.Series(v2) >>> s1.rolling(4).corr(s2) 0 NaN 1 NaN 2 NaN 3 0.333333 4 0.916949 dtype: float64 The below example shows a similar rolling calculation on a DataFrame using the pairwise option. >>> matrix = np.array([[51., 35.], [49., 30.], [47., 32.],\ [46., 31.], [50., 36.]]) >>> print(np.corrcoef(matrix[:-1,0], matrix[:-1,1]).round(7)) [[1. 0.6263001] [0.6263001 1. ]] >>> print(np.corrcoef(matrix[1:,0], matrix[1:,1]).round(7)) [[1. 0.5553681] [0.5553681 1. ]] >>> df = pd.DataFrame(matrix, columns=['X','Y']) >>> df X Y 0 51.0 35.0 1 49.0 30.0 2 47.0 32.0 3 46.0 31.0 4 50.0 36.0 >>> df.rolling(4).corr(pairwise=True) X Y 0 X NaN NaN Y NaN NaN 1 X NaN NaN Y NaN NaN 2 X NaN NaN Y NaN NaN 3 X 1.000000 0.626300 Y 0.626300 1.000000 4 X 1.000000 0.555368 Y 0.555368 1.000000 """ ) def corr(self, other=None, pairwise=None, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) window = self._get_window(other) def _get_corr(a, b): a = a.rolling( window=window, min_periods=self.min_periods, center=self.center ) b = b.rolling( window=window, min_periods=self.min_periods, center=self.center ) return a.cov(b, **kwargs) / (a.std(**kwargs) * b.std(**kwargs)) return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise) ) class Rolling(_Rolling_and_Expanding): @cache_readonly def is_datetimelike(self): return isinstance( self._on, (ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex) ) @cache_readonly def _on(self): if self.on is None: return self.obj.index elif isinstance(self.obj, ABCDataFrame) and self.on in self.obj.columns: from pandas import Index return Index(self.obj[self.on]) else: raise ValueError( "invalid on specified as {0}, " "must be a column (if DataFrame) " "or None".format(self.on) ) def validate(self): super().validate() # we allow rolling on a datetimelike index if (self.obj.empty or self.is_datetimelike) and isinstance( self.window, (str, ABCDateOffset, timedelta) ): self._validate_monotonic() freq = self._validate_freq() # we don't allow center if self.center: raise NotImplementedError( "center is not implemented " "for datetimelike and offset " "based windows" ) # this will raise ValueError on non-fixed freqs self.win_freq = self.window self.window = freq.nanos self.win_type = "freq" # min_periods must be an integer if self.min_periods is None: self.min_periods = 1 elif not is_integer(self.window): raise ValueError("window must be an integer") elif self.window < 0: raise ValueError("window must be non-negative") if not self.is_datetimelike and self.closed is not None: raise ValueError( "closed only implemented for datetimelike " "and offset based windows" ) def _validate_monotonic(self): """ Validate on is_monotonic. """ if not self._on.is_monotonic: formatted = self.on or "index" raise ValueError("{0} must be " "monotonic".format(formatted)) def _validate_freq(self): """ Validate & return window frequency. """ from pandas.tseries.frequencies import to_offset try: return to_offset(self.window) except (TypeError, ValueError): raise ValueError( "passed window {0} is not " "compatible with a datetimelike " "index".format(self.window) ) _agg_see_also_doc = dedent( """ See Also -------- Series.rolling DataFrame.rolling """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3).sum() A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -2.655105 0.637799 -2.135068 3 -0.971785 -0.600366 -3.280224 4 -0.214334 -1.294599 -3.227500 5 1.514216 2.028250 -2.989060 6 1.074618 5.709767 -2.322600 7 2.718061 3.850718 0.256446 8 -0.289082 2.454418 1.416871 9 0.212668 0.403198 -0.093924 >>> df.rolling(3).agg({'A':'sum', 'B':'min'}) A B 0 NaN NaN 1 NaN NaN 2 -2.655105 -0.165272 3 -0.971785 -1.340923 4 -0.214334 -1.340923 5 1.514216 -1.340923 6 1.074618 0.211596 7 2.718061 -1.647453 8 -0.289082 -1.647453 9 0.212668 -1.647453 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/Dataframe", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): return super().aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name="rolling") @Appender(_shared_docs["count"]) def count(self): # different impl for freq counting if self.is_freq_type: return self._apply("roll_count", "count") return super().count() @Substitution(name="rolling") @Appender(_shared_docs["apply"]) def apply(self, func, raw=None, args=(), kwargs={}): return super().apply(func, raw=raw, args=args, kwargs=kwargs) @Substitution(name="rolling") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_rolling_func("sum", args, kwargs) return super().sum(*args, **kwargs) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["max"]) def max(self, *args, **kwargs): nv.validate_rolling_func("max", args, kwargs) return super().max(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["min"]) def min(self, *args, **kwargs): nv.validate_rolling_func("min", args, kwargs) return super().min(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_rolling_func("mean", args, kwargs) return super().mean(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["median"]) def median(self, **kwargs): return super().median(**kwargs) @Substitution(name="rolling") @Appender(_shared_docs["std"]) def std(self, ddof=1, *args, **kwargs): nv.validate_rolling_func("std", args, kwargs) return super().std(ddof=ddof, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["var"]) def var(self, ddof=1, *args, **kwargs): nv.validate_rolling_func("var", args, kwargs) return super().var(ddof=ddof, **kwargs) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["skew"]) def skew(self, **kwargs): return super().skew(**kwargs) _agg_doc = dedent( """ Examples -------- The example below will show a rolling calculation with a window size of four matching the equivalent function call using `scipy.stats`. >>> arr = [1, 2, 3, 4, 999] >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> import scipy.stats >>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False))) -1.200000 >>> print(fmt.format(scipy.stats.kurtosis(arr[1:], bias=False))) 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64 """ ) @Appender(_agg_doc) @Substitution(name="rolling") @
Appender(_shared_docs["kurt"])
pandas.util._decorators.Appender
# coding: utf-8 __author__ = 'ZFTurbo: https://kaggle.com/zfturbo' import datetime import pandas as pd import numpy as np from sklearn.cross_validation import train_test_split import xgboost as xgb import random from operator import itemgetter import zipfile from sklearn.metrics import roc_auc_score import time random.seed(2016) def create_feature_map(features): outfile = open('xgb.fmap', 'w') for i, feat in enumerate(features): outfile.write('{0}\t{1}\tq\n'.format(i, feat)) outfile.close() def get_importance(gbm, features): create_feature_map(features) importance = gbm.get_fscore(fmap='xgb.fmap') importance = sorted(importance.items(), key=itemgetter(1), reverse=True) return importance def intersect(a, b): return list(set(a) & set(b)) def print_features_importance(imp): for i in range(len(imp)): print("# " + str(imp[i][1])) print('output.remove(\'' + imp[i][0] + '\')') def run_default_test(train, test, features, target, random_state=0): eta = 0.1 max_depth = 5 subsample = 0.8 colsample_bytree = 0.8 start_time = time.time() print('XGBoost params. ETA: {}, MAX_DEPTH: {}, SUBSAMPLE: {}, COLSAMPLE_BY_TREE: {}'.format(eta, max_depth, subsample, colsample_bytree)) params = { "objective": "binary:logistic", "booster" : "gbtree", "eval_metric": "auc", "eta": eta, "max_depth": max_depth, "subsample": subsample, "colsample_bytree": colsample_bytree, "silent": 1, "seed": random_state } num_boost_round = 260 early_stopping_rounds = 20 test_size = 0.1 X_train, X_valid = train_test_split(train, test_size=test_size, random_state=random_state) y_train = X_train[target] y_valid = X_valid[target] dtrain = xgb.DMatrix(X_train[features], y_train) dvalid = xgb.DMatrix(X_valid[features], y_valid) watchlist = [(dtrain, 'train'), (dvalid, 'eval')] gbm = xgb.train(params, dtrain, num_boost_round, evals=watchlist, early_stopping_rounds=early_stopping_rounds, verbose_eval=True) print("Validating...") check = gbm.predict(xgb.DMatrix(X_valid[features]), ntree_limit=gbm.best_ntree_limit) score = roc_auc_score(X_valid[target].values, check) print('Check error value: {:.6f}'.format(score)) imp = get_importance(gbm, features) print('Importance array: ', imp) print("Predict test set...") test_prediction = gbm.predict(xgb.DMatrix(test[features]), ntree_limit=gbm.best_ntree_limit) print('Training time: {} minutes'.format(round((time.time() - start_time)/60, 2))) return test_prediction.tolist(), score def create_submission(score, test, prediction): # Make Submission now = datetime.datetime.now() sub_file = 'submission_' + str(score) + '_' + str(now.strftime("%Y-%m-%d-%H-%M")) + '.csv' print('Writing submission: ', sub_file) f = open(sub_file, 'w') f.write('id,probability\n') total = 0 for id in test['id']: str1 = str(id) + ',' + str(prediction[total]) str1 += '\n' total += 1 f.write(str1) f.close() # print('Creating zip-file...') # z = zipfile.ZipFile(sub_file + ".zip", "w", zipfile.ZIP_DEFLATED) # z.write(sub_file) # z.close() def get_features(train, test): trainval = list(train.columns.values) testval = list(test.columns.values) output = intersect(trainval, testval) output.remove('itemID_1') output.remove('itemID_2') return output def prep_train(): testing = 0 start_time = time.time() types1 = { 'itemID_1': np.dtype(int), 'itemID_2': np.dtype(int), 'isDuplicate': np.dtype(int), 'generationMethod': np.dtype(int), } types2 = { 'itemID': np.dtype(int), 'categoryID': np.dtype(int), 'title': np.dtype(str), 'description': np.dtype(str), 'images_array': np.dtype(str), 'attrsJSON': np.dtype(str), 'price': np.dtype(float), 'locationID': np.dtype(int), 'metroID': np.dtype(float), 'lat': np.dtype(float), 'lon': np.dtype(float), } print("Load ItemPairs_train.csv") pairs = pd.read_csv("../input/ItemPairs_train.csv", dtype=types1) # Add 'id' column for easy merge print("Load ItemInfo_train.csv") items = pd.read_csv("../input/ItemInfo_train.csv", dtype=types2) items.fillna(-1, inplace=True) location = pd.read_csv("../input/Location.csv") category =
pd.read_csv("../input/Category.csv")
pandas.read_csv
from util import plotClusterPairGrid, computeMetric import numpy as np from copy import deepcopy from sklearn.ensemble import RandomForestClassifier from sklearn.cluster import DBSCAN from sklearn.decomposition import PCA from sklearn.decomposition import KernelPCA from sklearn.tree import DecisionTreeClassifier from sklearn.tree import export_graphviz #from sklearn.linear_model import LogisticRegression from selectFeatures import selectFeatures from sklearn.metrics import silhouette_score from sklearn.cluster import MeanShift from scipy.stats import pointbiserialr import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable class Interpreter(): """ This class builds and interprets the model """ def __init__(self, df_X=None, # the predictors, a pandas dataframe df_Y=None, # the responses, a pandas dataframe out_p=None, # the path for saving graphs use_forest=True, # use random forest or not n_trees=200, # the number of trees for the forest (in the paper we use 1000) logger=None): df_X = deepcopy(df_X) df_Y = deepcopy(df_Y) # We need to run the random forest in the unsupervised mode # Consider the original data as class 1 # Create a synthetic second class of the same size that will be labeled as class 2 # The synthetic class is created by sampling at random from the univariate distributions of the original data n = len(df_X) synthetic = {} for c in df_X.columns: synthetic[c] = df_X[c].sample(n=n, replace=True).values df_synthetic =
pd.DataFrame(data=synthetic)
pandas.DataFrame
import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import Index, MultiIndex, Series, date_range, isna import pandas._testing as tm @pytest.fixture( params=[ "linear", "index", "values", "nearest", "slinear", "zero", "quadratic", "cubic", "barycentric", "krogh", "polynomial", "spline", "piecewise_polynomial", "from_derivatives", "pchip", "akima", "cubicspline", ] ) def nontemporal_method(request): """Fixture that returns an (method name, required kwargs) pair. This fixture does not include method 'time' as a parameterization; that method requires a Series with a DatetimeIndex, and is generally tested separately from these non-temporal methods. """ method = request.param kwargs = {"order": 1} if method in ("spline", "polynomial") else {} return method, kwargs @pytest.fixture( params=[ "linear", "slinear", "zero", "quadratic", "cubic", "barycentric", "krogh", "polynomial", "spline", "piecewise_polynomial", "from_derivatives", "pchip", "akima", "cubicspline", ] ) def interp_methods_ind(request): """Fixture that returns a (method name, required kwargs) pair to be tested for various Index types. This fixture does not include methods - 'time', 'index', 'nearest', 'values' as a parameterization """ method = request.param kwargs = {"order": 1} if method in ("spline", "polynomial") else {} return method, kwargs class TestSeriesInterpolateData: def test_interpolate(self, datetime_series, string_series): ts = Series(np.arange(len(datetime_series), dtype=float), datetime_series.index) ts_copy = ts.copy() ts_copy[5:10] = np.NaN linear_interp = ts_copy.interpolate(method="linear") tm.assert_series_equal(linear_interp, ts) ord_ts = Series( [d.toordinal() for d in datetime_series.index], index=datetime_series.index ).astype(float) ord_ts_copy = ord_ts.copy() ord_ts_copy[5:10] = np.NaN time_interp = ord_ts_copy.interpolate(method="time") tm.assert_series_equal(time_interp, ord_ts) def test_interpolate_time_raises_for_non_timeseries(self): # When method='time' is used on a non-TimeSeries that contains a null # value, a ValueError should be raised. non_ts = Series([0, 1, 2, np.NaN]) msg = "time-weighted interpolation only works on Series.* with a DatetimeIndex" with pytest.raises(ValueError, match=msg): non_ts.interpolate(method="time") @td.skip_if_no_scipy def test_interpolate_cubicspline(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) result = ser.reindex(new_index).interpolate(method="cubicspline")[1:3] tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_interpolate_pchip(self): ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index.union( Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]) ).astype(float) interp_s = ser.reindex(new_index).interpolate(method="pchip") # does not blow up, GH5977 interp_s[49:51] @td.skip_if_no_scipy def test_interpolate_akima(self): ser = Series([10, 11, 12, 13]) # interpolate at new_index where `der` is zero expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="akima") tm.assert_series_equal(interp_s[1:3], expected) # interpolate at new_index where `der` is a non-zero int expected = Series( [11.0, 1.0, 1.0, 1.0, 12.0, 1.0, 1.0, 1.0, 13.0], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="akima", der=1) tm.assert_series_equal(interp_s[1:3], expected) @td.skip_if_no_scipy def test_interpolate_piecewise_polynomial(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="piecewise_polynomial") tm.assert_series_equal(interp_s[1:3], expected) @td.skip_if_no_scipy def test_interpolate_from_derivatives(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="from_derivatives") tm.assert_series_equal(interp_s[1:3], expected) @pytest.mark.parametrize( "kwargs", [ {}, pytest.param( {"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy ), ], ) def test_interpolate_corners(self, kwargs): s = Series([np.nan, np.nan]) tm.assert_series_equal(s.interpolate(**kwargs), s) s = Series([], dtype=object).interpolate() tm.assert_series_equal(s.interpolate(**kwargs), s) def test_interpolate_index_values(self): s = Series(np.nan, index=np.sort(np.random.rand(30))) s[::3] = np.random.randn(10) vals = s.index.values.astype(float) result = s.interpolate(method="index") expected = s.copy() bad = isna(expected.values) good = ~bad expected = Series( np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad] ) tm.assert_series_equal(result[bad], expected) # 'values' is synonymous with 'index' for the method kwarg other_result = s.interpolate(method="values") tm.assert_series_equal(other_result, result) tm.assert_series_equal(other_result[bad], expected) def test_interpolate_non_ts(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) msg = ( "time-weighted interpolation only works on Series or DataFrames " "with a DatetimeIndex" ) with pytest.raises(ValueError, match=msg): s.interpolate(method="time") @pytest.mark.parametrize( "kwargs", [ {}, pytest.param( {"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy ), ], ) def test_nan_interpolate(self, kwargs): s = Series([0, 1, np.nan, 3]) result = s.interpolate(**kwargs) expected = Series([0.0, 1.0, 2.0, 3.0]) tm.assert_series_equal(result, expected) def test_nan_irregular_index(self): s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9]) result = s.interpolate() expected = Series([1.0, 2.0, 3.0, 4.0], index=[1, 3, 5, 9]) tm.assert_series_equal(result, expected) def test_nan_str_index(self): s = Series([0, 1, 2, np.nan], index=list("abcd")) result = s.interpolate() expected = Series([0.0, 1.0, 2.0, 2.0], index=list("abcd")) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_interp_quad(self): sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4]) result = sq.interpolate(method="quadratic") expected = Series([1.0, 4.0, 9.0, 16.0], index=[1, 2, 3, 4]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_interp_scipy_basic(self): s = Series([1, 3, np.nan, 12, np.nan, 25]) # slinear expected = Series([1.0, 3.0, 7.5, 12.0, 18.5, 25.0]) result = s.interpolate(method="slinear") tm.assert_series_equal(result, expected) result = s.interpolate(method="slinear", downcast="infer") tm.assert_series_equal(result, expected) # nearest expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method="nearest") tm.assert_series_equal(result, expected.astype("float")) result = s.interpolate(method="nearest", downcast="infer") tm.assert_series_equal(result, expected) # zero expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method="zero") tm.assert_series_equal(result, expected.astype("float")) result = s.interpolate(method="zero", downcast="infer") tm.assert_series_equal(result, expected) # quadratic # GH #15662. expected = Series([1, 3.0, 6.823529, 12.0, 18.058824, 25.0]) result = s.interpolate(method="quadratic") tm.assert_series_equal(result, expected) result = s.interpolate(method="quadratic", downcast="infer") tm.assert_series_equal(result, expected) # cubic expected = Series([1.0, 3.0, 6.8, 12.0, 18.2, 25.0]) result = s.interpolate(method="cubic") tm.assert_series_equal(result, expected) def test_interp_limit(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) expected = Series([1.0, 3.0, 5.0, 7.0, np.nan, 11.0]) result = s.interpolate(method="linear", limit=2) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("limit", [-1, 0]) def test_interpolate_invalid_nonpositive_limit(self, nontemporal_method, limit): # GH 9217: make sure limit is greater than zero. s = Series([1, 2, np.nan, 4]) method, kwargs = nontemporal_method with pytest.raises(ValueError, match="Limit must be greater than 0"): s.interpolate(limit=limit, method=method, **kwargs) def test_interpolate_invalid_float_limit(self, nontemporal_method): # GH 9217: make sure limit is an integer. s = Series([1, 2, np.nan, 4]) method, kwargs = nontemporal_method limit = 2.0 with pytest.raises(ValueError, match="Limit must be an integer"): s.interpolate(limit=limit, method=method, **kwargs) @pytest.mark.parametrize("invalid_method", [None, "nonexistent_method"]) def test_interp_invalid_method(self, invalid_method): s = Series([1, 3, np.nan, 12, np.nan, 25]) msg = f"method must be one of.* Got '{invalid_method}' instead" with pytest.raises(ValueError, match=msg): s.interpolate(method=invalid_method) # When an invalid method and invalid limit (such as -1) are # provided, the error message reflects the invalid method. with pytest.raises(ValueError, match=msg): s.interpolate(method=invalid_method, limit=-1) def test_interp_invalid_method_and_value(self): # GH#36624 ser = Series([1, 3, np.nan, 12, np.nan, 25]) msg = "Cannot pass both fill_value and method" with pytest.raises(ValueError, match=msg): ser.interpolate(fill_value=3, method="pad") def test_interp_limit_forward(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) # Provide 'forward' (the default) explicitly here. expected = Series([1.0, 3.0, 5.0, 7.0, np.nan, 11.0]) result = s.interpolate(method="linear", limit=2, limit_direction="forward") tm.assert_series_equal(result, expected) result = s.interpolate(method="linear", limit=2, limit_direction="FORWARD") tm.assert_series_equal(result, expected) def test_interp_unlimited(self): # these test are for issue #16282 default Limit=None is unlimited s = Series([np.nan, 1.0, 3.0, np.nan, np.nan, np.nan, 11.0, np.nan]) expected = Series([1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 11.0]) result = s.interpolate(method="linear", limit_direction="both") tm.assert_series_equal(result, expected) expected = Series([np.nan, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 11.0]) result = s.interpolate(method="linear", limit_direction="forward") tm.assert_series_equal(result, expected) expected = Series([1.0, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, np.nan]) result = s.interpolate(method="linear", limit_direction="backward") tm.assert_series_equal(result, expected) def test_interp_limit_bad_direction(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) msg = ( r"Invalid limit_direction: expecting one of \['forward', " r"'backward', 'both'\], got 'abc'" ) with pytest.raises(ValueError, match=msg): s.interpolate(method="linear", limit=2, limit_direction="abc") # raises an error even if no limit is specified. with pytest.raises(ValueError, match=msg): s.interpolate(method="linear", limit_direction="abc") # limit_area introduced GH #16284 def test_interp_limit_area(self): # These tests are for issue #9218 -- fill NaNs in both directions. s = Series([np.nan, np.nan, 3, np.nan, np.nan, np.nan, 7, np.nan, np.nan]) expected = Series([np.nan, np.nan, 3.0, 4.0, 5.0, 6.0, 7.0, np.nan, np.nan]) result = s.interpolate(method="linear", limit_area="inside") tm.assert_series_equal(result, expected) expected = Series( [np.nan, np.nan, 3.0, 4.0, np.nan, np.nan, 7.0, np.nan, np.nan] ) result = s.interpolate(method="linear", limit_area="inside", limit=1) tm.assert_series_equal(result, expected) expected = Series([np.nan, np.nan, 3.0, 4.0, np.nan, 6.0, 7.0, np.nan, np.nan]) result = s.interpolate( method="linear", limit_area="inside", limit_direction="both", limit=1 ) tm.assert_series_equal(result, expected) expected = Series([np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, 7.0]) result = s.interpolate(method="linear", limit_area="outside") tm.assert_series_equal(result, expected) expected = Series( [np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan] ) result = s.interpolate(method="linear", limit_area="outside", limit=1) tm.assert_series_equal(result, expected) expected = Series([np.nan, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, 7.0, np.nan]) result = s.interpolate( method="linear", limit_area="outside", limit_direction="both", limit=1 ) tm.assert_series_equal(result, expected) expected = Series([3.0, 3.0, 3.0, np.nan, np.nan, np.nan, 7.0, np.nan, np.nan]) result = s.interpolate( method="linear", limit_area="outside", limit_direction="backward" ) tm.assert_series_equal(result, expected) # raises an error even if limit type is wrong. msg = r"Invalid limit_area: expecting one of \['inside', 'outside'\], got abc" with pytest.raises(ValueError, match=msg): s.interpolate(method="linear", limit_area="abc") @pytest.mark.parametrize( "method, limit_direction, expected", [ ("pad", "backward", "forward"), ("ffill", "backward", "forward"), ("backfill", "forward", "backward"), ("bfill", "forward", "backward"), ("pad", "both", "forward"), ("ffill", "both", "forward"), ("backfill", "both", "backward"), ("bfill", "both", "backward"), ], ) def test_interp_limit_direction_raises(self, method, limit_direction, expected): # https://github.com/pandas-dev/pandas/pull/34746 s = Series([1, 2, 3]) msg = f"`limit_direction` must be '{expected}' for method `{method}`" with pytest.raises(ValueError, match=msg): s.interpolate(method=method, limit_direction=limit_direction) def test_interp_limit_direction(self): # These tests are for issue #9218 -- fill NaNs in both directions. s = Series([1, 3, np.nan, np.nan, np.nan, 11]) expected = Series([1.0, 3.0, np.nan, 7.0, 9.0, 11.0]) result = s.interpolate(method="linear", limit=2, limit_direction="backward") tm.assert_series_equal(result, expected) expected = Series([1.0, 3.0, 5.0, np.nan, 9.0, 11.0]) result = s.interpolate(method="linear", limit=1, limit_direction="both") tm.assert_series_equal(result, expected) # Check that this works on a longer series of nans. s = Series([1, 3, np.nan, np.nan, np.nan, 7, 9, np.nan, np.nan, 12, np.nan]) expected = Series([1.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 10.0, 11.0, 12.0, 12.0]) result = s.interpolate(method="linear", limit=2, limit_direction="both")
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
from pandas import DataFrame import typing from .normalise_data_frame import normalise_data_frame from sklearn.cluster import KMeans from sklearn.preprocessing import MinMaxScaler from .get_columns_labels import get_columns_labels class KMeansAnalysisResult(): labels_mapping: DataFrame = None labels_mapping_labels: typing.List[typing.List[str]] = None centroids: DataFrame = None def __init__(self, labels_mapping: DataFrame, labels_mapping_labels: typing.List[typing.List[str]], centroids: DataFrame): self.labels_mapping = labels_mapping self.labels_mapping_labels = labels_mapping_labels self.centroids = centroids def do_kmeans_analysis(data_frame: DataFrame, clusters_number: int) -> KMeansAnalysisResult: k_means: KMeans = None if clusters_number > 0: k_means = KMeans(n_clusters=clusters_number) else: k_means = KMeans() labels_mapping = normalise_data_frame(data_frame.iloc[:, : 3]) columns = labels_mapping.columns k_means.fit_transform(labels_mapping) labels_mapping['Label'] = MinMaxScaler().fit_transform(k_means.labels_.reshape(-1,1)) centroids =
DataFrame(data=k_means.cluster_centers_, columns=columns)
pandas.DataFrame
from __future__ import division from unittest import TestCase from nose_parameterized import parameterized from numpy.testing import assert_allclose, assert_almost_equal import numpy as np import pandas as pd import pandas.util.testing as pdt from .. import timeseries from .. import utils DECIMAL_PLACES = 8 class TestDrawdown(TestCase): drawdown_list = np.array( [100, 90, 75] ) / 10. dt = pd.date_range('2000-1-3', periods=3, freq='D') drawdown_serie = pd.Series(drawdown_list, index=dt) @parameterized.expand([ (drawdown_serie,) ]) def test_get_max_drawdown_begins_first_day(self, px): rets = px.pct_change() drawdowns = timeseries.gen_drawdown_table(rets, top=1) self.assertEqual(drawdowns.loc[0, 'net drawdown in %'], 25) drawdown_list = np.array( [100, 110, 120, 150, 180, 200, 100, 120, 160, 180, 200, 300, 400, 500, 600, 800, 900, 1000, 650, 600] ) / 10. dt = pd.date_range('2000-1-3', periods=20, freq='D') drawdown_serie = pd.Series(drawdown_list, index=dt) @parameterized.expand([ (drawdown_serie, pd.Timestamp('2000-01-08'), pd.Timestamp('2000-01-09'), pd.Timestamp('2000-01-13'), 50, pd.Timestamp('2000-01-20'), pd.Timestamp('2000-01-22'), None, 40 ) ]) def test_gen_drawdown_table_relative( self, px, first_expected_peak, first_expected_valley, first_expected_recovery, first_net_drawdown, second_expected_peak, second_expected_valley, second_expected_recovery, second_net_drawdown ): rets = px.pct_change() drawdowns = timeseries.gen_drawdown_table(rets, top=2) self.assertEqual(np.round(drawdowns.loc[0, 'net drawdown in %']), first_net_drawdown) self.assertEqual(drawdowns.loc[0, 'peak date'], first_expected_peak) self.assertEqual(drawdowns.loc[0, 'valley date'], first_expected_valley) self.assertEqual(drawdowns.loc[0, 'recovery date'], first_expected_recovery) self.assertEqual(np.round(drawdowns.loc[1, 'net drawdown in %']), second_net_drawdown) self.assertEqual(drawdowns.loc[1, 'peak date'], second_expected_peak) self.assertEqual(drawdowns.loc[1, 'valley date'], second_expected_valley) self.assertTrue(pd.isnull(drawdowns.loc[1, 'recovery date'])) px_list_1 = np.array( [100, 120, 100, 80, 70, 110, 180, 150]) / 100. # Simple px_list_2 = np.array( [100, 120, 100, 80, 70, 80, 90, 90]) / 100. # Ends in drawdown dt = pd.date_range('2000-1-3', periods=8, freq='D') @parameterized.expand([ (pd.Series(px_list_1, index=dt), pd.Timestamp('2000-1-4'), pd.Timestamp('2000-1-7'), pd.Timestamp('2000-1-9')), (pd.Series(px_list_2, index=dt), pd.Timestamp('2000-1-4'), pd.Timestamp('2000-1-7'), None) ]) def test_get_max_drawdown( self, px, expected_peak, expected_valley, expected_recovery): rets = px.pct_change().iloc[1:] peak, valley, recovery = timeseries.get_max_drawdown(rets) # Need to use isnull because the result can be NaN, NaT, etc. self.assertTrue( pd.isnull(peak)) if expected_peak is None else self.assertEqual( peak, expected_peak) self.assertTrue( pd.isnull(valley)) if expected_valley is None else \ self.assertEqual( valley, expected_valley) self.assertTrue(
pd.isnull(recovery)
pandas.isnull
# -*- coding: UTF-8 -*- """ This module contains functions for calculating evaluation metrics for the generated service recommendations. """ import numpy import pandas runtime_metrics = ["Training time", "Overall testing time", "Individual testing time"] quality_metrics = ["Recall", "Precision", "F1", "# of recommendations"] def results_as_dataframe(user_actions, recommendations): """ Converts the recommendation results into a pandas dataframe for easier evaluation. @param user_actions: A list of the actually performed user actions. @param recommendations: For each of the performed actions the list of calculated service recommendations. @return: A pandas dataframe that has as index the performed user actions (there is one row per action). The first column contains for each action the highest scoring recommendation, the second column contains the second best recommendation etc. """ results = pandas.DataFrame(recommendations, index=pandas.Index(user_actions, name="Actual action")) results.columns = [(r+1) for r in range(len(results.columns))] return results class QualityMetricsCalculator(): """ This is a utility class that contains a number of methods for calculating overall quality metrics for the produced recommendations. In general these methods produce pandas dataframes with several rows, where each row corresponds to one "cutoff" point. For example, a cutoff "4" means that the system cuts the number of recommendations at four, i.e. the user is shown at most four recommendations. If some post-processing method was used (e.g. show fewer recommendations if the recommendation conflict is low), then it can happen that fewer than four recommendations are shown. For reference, the column "# of recommendations" lists the average of the number of recommendations that were actually shown to the user. """ def __init__(self, actual_actions, recommendations): """ Initialize the calculation of the quality metrics.. @param actual_actions: A list of strings, each representing one actual user action. @param recommendations: A list of lists of strings with the same length as actual_actions. Each list of strings contains the calculated recommendations for the corresponding actual user action. @return: """ self.results = results_as_dataframe(actual_actions, recommendations) def __unique_actions__(self): """ It can happen that one potential user action never happened, but that the corresponding service was recommended. To be able to count these false positives, we must calculate the list of all potential actions. """ occurring_actions = set(self.results.index.values) occurring_services = pandas.melt(self.results).dropna()["value"] occurring_services = set(occurring_services.unique()) return sorted(occurring_actions | occurring_services) def true_positives(self, action): """ Counts how often the given action was recommended correctly (true positives, TP). @param action: The name of the user action for which to count true positives. @return: A pandas dataset with column TP and several rows, first row lists #TP at cutoff "1", the second row at cutoff "2", etc. """ #get all rows where the actual action corresponds to the given action r = self.results[self.results.index == action] if len(r) == 0: #if there are no such rows, then we have zero true positives, fill result dataframe with zeroes true_positives = pandas.Series(0.0, index=self.results.columns) else: #if recommendation matches the action, set column to "1" (true positive), else set to "0" (false negative) r = r.applymap(lambda col: 1 if col == action else 0).fillna(0) #count how many true positives there are in each column r = r.sum() #if have a true positive for n-th recommendation, then also have true positive for n+1, n+2 etc #-> calculate cumulative sum true_positives = r.cumsum(axis=0).apply(float) true_positives = pandas.DataFrame(true_positives, columns=["TP"]) true_positives.index.name = "cutoff" return true_positives def true_positives_for_all(self): """ Create a matrix that contains information about true positives for all possible actions. @return: A pandas with one column for each action, first row lists #TP at cutoff "1", the second row at cutoff "2", etc. """ tp = [self.true_positives(action) for action in self.__unique_actions__()] tp = pandas.concat(tp, axis=1) tp.columns = self.__unique_actions__() return tp def false_negatives(self, action): """ Counts how often the given action was not recommended correctly (false negatives, FN). @param action: The name of the user action for which to count false negatives. @return: A pandas dataset with column FN and several rows, first row lists #FN cutoff "1", the second row at cutoff "2", etc. """ #the amount of false negatives corresponds to the difference between the total number of occurrences of the #action and the number of false positives true_positives = self.true_positives(action) total_occurrences = len(self.results[self.results.index == action]) total_occurrences = pandas.Series(total_occurrences, index=true_positives.index) false_negatives = total_occurrences - true_positives["TP"] false_negatives = pandas.DataFrame(false_negatives, columns=["FN"]) false_negatives.index.name = "cutoff" return false_negatives def false_positives(self, action): """ Counts how often the given action was recommended even though it didn't occur (false positives, FP). @param action: The name of the user action for which to count false positives. @return: A pandas dataset with column FP and several rows, first row lists #FP at cutoff "1", the second row at cutoff "2", etc. """ #get all rows where the actual service does NOT correspond to the given action r = self.results[self.results.index != action] if len(r) == 0: #if there are no such rows, then we have zero false positives, fill result dataframe with zeroes false_positives = pandas.Series(0.0, index=self.results.columns) else: #if recommendation matches the action, set column to "1" (false positive), else set to "0" (true negative) r = r.applymap(lambda col: 1 if col == action else 0) #count how many false positives there are in each column r = r.sum() #if have a false positive for n-th recommendation, then also have false positive for n+1, n+2 etc #-> calculate cumulative sum false_positives = r.cumsum(axis=0).apply(float) false_positives = pandas.DataFrame(false_positives, columns=["FP"]) false_positives.index.name = "cutoff" return false_positives @staticmethod def precision(counts): """ Calculate the precision as (true positives)/(true positives + false positives). @param counts: A dataframe that contains a column "TP" with true positives and "FP" with false positives. @return: A pandas dataframe with one column "Precision". The first row lists the achieved precision at cutoff "1", the second row at cutoff "2", etc. """ p = counts["TP"]/(counts["TP"] + counts["FP"]) p = pandas.DataFrame({"Precision": p}).fillna(0.0) return p @staticmethod def recall(counts): """ Calculate the recall as (true positives)/(true positives + false negatives). @param counts: A dataframe that contains a column "TP" with true positives and "FN" with false negatives. @return: A pandas dataframe with one column "Recall". The first row lists the achieved recall at cutoff "1", the second row at cutoff "2", etc. """ p = counts["TP"]/(counts["TP"] + counts["FN"]) p = pandas.DataFrame({"Recall": p}).fillna(0.0) return p @staticmethod def f1(metrics): """ Calculate the F1 as the harmonic mean of precision and recall. @param metrics: A dataframe with a column "Precision" and a column "Recall" @return: A pandas dataframe with one column "F1". The first row lists the achieved F1 at cutoff "1", the second row at cutoff "2", etc. """ f = (2.0*metrics["Precision"]*metrics["Recall"]) / (metrics["Precision"]+metrics["Recall"]) f = pandas.DataFrame({"F1": f}).fillna(0.0) return f def number_of_recommendations(self): """ Count how many recommendations the user was actually shown (e.g. when using a dynamic cutoff such as "show less recommendations when recommendation conflict is low").Number of recommendation is not an quality metric but fits here conceptually. @return: A pandas dataframe with one column "# of recommendations". The first row lists the # at cutoff "1", the second row at cutoff "2", etc. """ n = (self.results.count(axis=0)/float(len(self.results))).cumsum() n = pandas.DataFrame({"# of recommendations": n}) n.index.name = "cutoff" return n def calculate_for_action(self, action): """ Calculate precision, recall and F1 for one action (= one possible user action) @param action: Which user action to calculate the metrics for. @return: A pandas dataframe containing columns for "Precision", "Recall", "F1". The first row lists calculated metrics at cutoff "1", the second row at cutoff "2", etc. A fourth column "action" simply lists the action name in all rows, this column is necessary for later merging the metrics of all actions. """ #count how many true positives, false positives and false negatives occurred for this action counts = pandas.concat([self.true_positives(action), self.false_negatives(action), self.false_positives(action)], axis=1) #use these counts to calculate the relevant metrics metrics = pandas.concat([self.precision(counts), self.recall(counts)], axis=1) metrics["F1"] = self.f1(metrics)["F1"] #add column that contains name of the action in all rows, to prepare for merging the metrics for all actions metrics["action"] = pandas.Series(action, index=metrics.index) return metrics def calculate(self): """ Performs the actual calculation of the weighted average of precision, recall and F1 over all actions and counts the number of recommendations that where actually shown to the user. @return: A pandas dataframe containing one column for each of the four quality metrics. The first row lists calculated metrics at cutoff "1", the second row at cutoff "2" """ #make one big matrix with the metrics for all actions actions = self.__unique_actions__() metrics = pandas.concat([self.calculate_for_action(action) for action in actions]) #count for each action how often the corresponding action actually occurred occurrences =
pandas.TimeSeries(self.results.index.values)
pandas.TimeSeries
"""Tests for cell_img.common.df_style.""" from absl.testing import absltest from cell_img.common import df_style import numpy as np import numpy.testing as npt import pandas as pd class DfStyleTest(absltest.TestCase): def testColorizerWithInts(self): values = [1, 2, 3, 4] c = df_style.make_colorizer_from_series(pd.Series(values)) for v in values: self.assertTrue(c(v).startswith('background-color: #')) def testColorizerWithStrings(self): values = ['a', 'b', 'cc', 'd'] c = df_style.make_colorizer_from_series(
pd.Series(values)
pandas.Series
import inspect import numpy as np from pandas._libs import reduction as libreduction from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( is_dict_like, is_extension_array_dtype, is_list_like, is_sequence, ) from pandas.core.dtypes.generic import ABCSeries def frame_apply( obj, func, axis=0, raw=False, result_type=None, ignore_failures=False, args=None, kwds=None, ): """ construct and return a row or column based frame apply object """ axis = obj._get_axis_number(axis) if axis == 0: klass = FrameRowApply elif axis == 1: klass = FrameColumnApply return klass( obj, func, raw=raw, result_type=result_type, ignore_failures=ignore_failures, args=args, kwds=kwds, ) class FrameApply: def __init__(self, obj, func, raw, result_type, ignore_failures, args, kwds): self.obj = obj self.raw = raw self.ignore_failures = ignore_failures self.args = args or () self.kwds = kwds or {} if result_type not in [None, "reduce", "broadcast", "expand"]: raise ValueError( "invalid value for result_type, must be one " "of {None, 'reduce', 'broadcast', 'expand'}" ) self.result_type = result_type # curry if needed if (kwds or args) and not isinstance(func, (np.ufunc, str)): def f(x): return func(x, *args, **kwds) else: f = func self.f = f # results self.result = None self.res_index = None self.res_columns = None @property def columns(self): return self.obj.columns @property def index(self): return self.obj.index @cache_readonly def values(self): return self.obj.values @cache_readonly def dtypes(self): return self.obj.dtypes @property def agg_axis(self): return self.obj._get_agg_axis(self.axis) def get_result(self): """ compute the results """ # dispatch to agg if
is_list_like(self.f)
pandas.core.dtypes.common.is_list_like
import numpy as np import pandas as pd import sqlalchemy as sa from dask.dataframe import from_delayed, from_pandas from dask.delayed import delayed from sqlalchemy import create_engine from sqlalchemy import sql from sqlalchemy.sql import elements # Optimus plays defensive with the number of rows to be retrieved from the server so if a limit is not specified it will # only will retrieve the LIMIT value from optimus.engines.dask.dataframe import DaskDataFrame from optimus.engines.base.contants import NUM_PARTITIONS, LIMIT_TABLE from optimus.engines.base.io.driver_context import DriverContext from optimus.engines.base.io.factory import DriverFactory from optimus.engines.spark.io.properties import DriverProperties from optimus.helpers.core import val_to_list from optimus.helpers.logger import logger from optimus.helpers.raiseit import RaiseIt class DaskBaseJDBC: """ Helper for JDBC connections and queries """ def __init__(self, host, database, user, password, port=None, driver=None, schema="public", oracle_tns=None, oracle_service_name=None, oracle_sid=None, presto_catalog=None, cassandra_keyspace=None, cassandra_table=None, bigquery_project=None, bigquery_dataset=None): """ Create the JDBC connection object :return: """ if host is None: host = "127.0.0.1" # RaiseIt.value_error(host, "host must be specified") if user is None: user = "root" # print("user",user) # RaiseIt.value_error(user, "user must be specified") if database is None: database = "" self.db_driver = driver self.oracle_sid = oracle_sid self.cassandra_keyspace = cassandra_keyspace self.cassandra_table = cassandra_table self.driver_context = DriverContext(DriverFactory.get(self.db_driver)) self.driver_properties = self.driver_context.properties() if port is None: self.port = self.driver_properties.value["port"] else: self.port = port self.driver_option = self.driver_properties.value["java_class"] self.uri = self.driver_context.uri( user=user, password=password, driver=driver, host=host, port=str(self.port), database=database, schema=schema, oracle_tns=oracle_tns, oracle_sid=oracle_sid, oracle_service_name=oracle_service_name, presto_catalog=presto_catalog, bigquery_project=bigquery_project, bigquery_dataset=bigquery_dataset ) self.database = database self.user = user self.password = password self.schema = schema print(self.uri) logger.print(self.uri) def tables(self, schema=None, database=None, limit=None): """ Return all the tables in a database :return: """ # Override the schema used in the constructor # if database is None: # database = self.database # # if schema is None: # schema = self.schema # query = self.driver_context.table_names_query(schema=schema, database=database) # df = self.execute(query, limit) # return df.display(limit) engine = create_engine(self.uri) return engine.table_names() @property def table(self): """ Print n rows of every table in a database :return: Table Object """ return Table(self) def table_to_df(self, table_name: str, columns="*", limit=None): """ Return cols as Spark data frames from a specific table :type table_name: object :param columns: :param limit: how many rows will be retrieved """ db_table = table_name if limit == "all": query = self.driver_context.count_query(db_table=db_table) count = self.execute(query, "all").first()[0] # We want to count the number of rows to warn the users how much it can take to bring the whole data print(str(int(count)) + " rows") if columns == "*": columns_sql = "*" else: columns = val_to_list(columns) columns_sql = ",".join(columns) query = "SELECT " + columns_sql + " FROM " + db_table logger.print(query) dfd = self.execute(query, limit) # Bring the data to local machine if not every time we call an action is going to be # retrieved from the remote server # dfd = dfd.run() # dfd = dask_pandas_to_dask_cudf(dfd) return DaskDataFrame(dfd) def execute(self, query, limit=None, num_partitions: int = NUM_PARTITIONS, partition_column: str = None, table_name=None): """ Execute a SQL query :param limit: default limit the whole query. We play defensive here in case the result is a big chunk of data :param num_partitions: :param partition_column: :param query: SQL query string :param table_name: :return: """ # play defensive with a select clause # if self.db_driver == DriverProperties.ORACLE.value["name"]: # query = "(" + query + ") t" # elif self.db_driver == DriverProperties.PRESTO.value["name"]: # query = "(" + query + ")" # elif self.db_driver == DriverProperties.CASSANDRA.value["name"]: # query = query # else: # query = "(" + query + ") AS t" # df = dd.read_sql_table(table='test_data', uri=self.url, index_col='id') # "SELECT table_name, table_rows FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = 'optimus'" df = DaskBaseJDBC.read_sql_table(table_name=table_name, uri=self.uri, index_col=partition_column, npartitions=num_partitions, query=query) # print(len(df)) # conf = Spark.instance.spark.read \ # .format( # "jdbc" if not self.db_driver == DriverProperties.CASSANDRA.value["name"] else # DriverProperties.CASSANDRA.value["java_class"]) \ # .option("url", self.url) \ # .option("user", self.user) \ # .option("dbtable", query) # # # Password # if self.db_driver != DriverProperties.PRESTO.value["name"] and self.password is not None: # conf.option("password", self.password) # # # Driver # if self.db_driver == DriverProperties.ORACLE.value["name"] \ # or self.db_driver == DriverProperties.POSTGRESQL.value["name"] \ # or self.db_driver == DriverProperties.PRESTO.value["name"]: # conf.option("driver", self.driver_option) # # if self.db_driver == DriverProperties.CASSANDRA.value["name"]: # conf.options(table=self.cassandra_table, keyspace=self.cassandra_keyspace) # return self._limit(conf.load(), limit) return df @staticmethod def read_sql_table( table_name, uri, index_col=None, divisions=None, npartitions=None, limits=None, columns=None, bytes_per_chunk=256 * 2 ** 20, head_rows=5, schema=None, meta=None, engine_kwargs=None, query=None, **kwargs ): engine_kwargs = {} if engine_kwargs is None else engine_kwargs engine = sa.create_engine(uri, **engine_kwargs) m = sa.MetaData() # print("table", table) if isinstance(table_name, str): table_name = sa.Table(table_name, m, autoload=True, autoload_with=engine, schema=schema) columns = ( [(table_name.columns[c] if isinstance(c, str) else c) for c in columns] if columns else list(table_name.columns) ) index = None if index_col: # raise ValueError("Must specify index column to partition on") # else: index = table_name.columns[index_col] if isinstance(index_col, str) else index_col if not isinstance(index_col, (str, elements.Label)): raise ValueError( "Use label when passing an SQLAlchemy instance as the index (%s)" % index ) if divisions and npartitions: raise TypeError("Must supply either divisions or npartitions, not both") if index_col not in columns: columns.append( table_name.columns[index_col] if isinstance(index_col, str) else index_col ) if isinstance(index_col, str): kwargs["index_col"] = index_col else: # function names get pandas auto-named kwargs["index_col"] = index_col.name parts = [] if meta is None: # derive metadata from first few rows # q = sql.select(columns).limit(head_rows).select_from(table) head = pd.read_sql(query, engine, **kwargs) # print("head", head) # print("META", head.iloc[:0]) if head.empty: # no results at all # name = table_name.name # schema = table_name.schema # head = pd.read_sql_table(name, uri, schema=schema, index_col=index_col) return from_pandas(head, npartitions=1) bytes_per_row = (head.memory_usage(deep=True, index=True)).sum() / head_rows meta = head.iloc[:0] # print(list(head.columns.values)) else: if divisions is None and npartitions is None: raise ValueError( "Must provide divisions or npartitions when using explicit meta." ) # if divisions is None and index_col is not None: if divisions is None: # print(index) # print("LIMITS",limits) if index is not None and limits is None: # calculate max and min for given index q = sql.select([sql.func.max(index), sql.func.min(index)]).select_from( table_name ) minmax = pd.read_sql(q, engine) maxi, mini = minmax.iloc[0] dtype = minmax.dtypes["max_1"] elif index is None and npartitions: # User for Limit offset mini = 0 q = f"SELECT COUNT(*) AS count FROM ({query}) AS query" maxi = pd.read_sql(q, engine)["count"][0] limit = maxi / npartitions dtype = pd.Series((mini, maxi,)).dtype # Use for ntile calculation # mini = 0 # maxi = npartitions # print(pd.Series((mini, maxi,))) # dtype = pd.Series((mini, maxi,)).dtype # ntile_columns = ", ".join(list(head.columns.values)) else: mini, maxi = limits dtype = pd.Series(limits).dtype if npartitions is None: q = sql.select([sql.func.count(index)]).select_from(table_name) count = pd.read_sql(q, engine)["count_1"][0] npartitions = int(round(count * bytes_per_row / bytes_per_chunk)) or 1 if dtype.kind == "M": divisions = pd.date_range( start=mini, end=maxi, freq="%iS" % ((maxi - mini).total_seconds() / npartitions), ).tolist() divisions[0] = mini divisions[-1] = maxi elif dtype.kind in ["i", "u", "f"]: divisions = np.linspace(mini, maxi, npartitions + 1).tolist() # else: # print(dtype) # raise TypeError( # 'Provided index column is of type "{}". If divisions is not provided the ' # "index column type must be numeric or datetime.".format(dtype) # ) lowers, uppers = divisions[:-1], divisions[1:] for i, (lower, upper) in enumerate(zip(lowers, uppers)): if index_col: if i == len(lowers) - 1: where = f" WHERE {index} > {lower} AND {index} <= {upper}" else: where = f" WHERE {index} >= {lower} AND {index} < {upper}" q = query + where else: if i == len(lowers) - 1: where = f" LIMIT {int(upper) - int(lower)} OFFSET {int(lower)}" else: where = f" LIMIT {int(limit)} OFFSET {int(lower)}" q = query + where # Ntile calculation # print("Using Ntile query") # ntile_column = "temp" # ntile_sql = f"SELECT *, NTILE({npartitions}) OVER(ORDER BY id DESC) AS {ntile_column} FROM ({query}) AS t"; # q = f"SELECT {ntile_columns} FROM ({ntile_sql}) AS r" # if i == len(lowers) - 1: # where = f" WHERE {ntile_column} > {lower} AND {ntile_column} <= {upper}" # else: # where = f" WHERE {ntile_column} >= {lower} AND {ntile_column} < {upper}" # q = q + where # table = "test_data" # q = f'SELECT {ntile_columns} FROM {table} WHERE NTILE({npartitions}) OVER (ORDER BY {ntile_column}) = i' # When we do not have and index parts.append( delayed(DaskBaseJDBC._read_sql_chunk)( q, uri, meta, engine_kwargs=engine_kwargs, **kwargs ) ) else: # JDBC._read_sql_chunk(q, uri, meta, engine_kwargs=engine_kwargs, **kwargs) parts.append( delayed(DaskBaseJDBC._read_sql_chunk)( query, uri, meta, engine_kwargs=engine_kwargs, **kwargs ) ) engine.dispose() return from_delayed(parts, meta, divisions=divisions) @staticmethod def _read_sql_chunk(q, uri, meta, engine_kwargs=None, **kwargs): import sqlalchemy as sa engine_kwargs = engine_kwargs or {} engine = sa.create_engine(uri, **engine_kwargs) df =
pd.read_sql(q, engine, **kwargs)
pandas.read_sql
from rpyc import Service from rpyc.utils.server import ThreadedServer from common import * import os import math import pandas as pd import numpy as np class NameNode(Service): def __init__(self): super().__init__() def exposed_format(self): format_command = 'rm -rf {}'.format(name_node_dir) os.system(format_command) return 'format successfully at {}'.format(name_node_dir) def exposed_new_fat_item(self, dfs_path, file_size): blk_nums = int(math.ceil(file_size / dfs_blk_size)) data_pd = pd.DataFrame(columns=['blk_no', 'host_name', 'blk_size']) idx = 0 for i in range(blk_nums): blk_no = i hosts_name = np.random.choice(host_lists, dfs_replication, replace = True) print(hosts_name) blk_size = min(dfs_blk_size, file_size - i * dfs_blk_size) for host_name in hosts_name: data_pd.loc[idx] = [blk_no, host_name, blk_size] idx = idx + 1 local_path = os.path.join(name_node_dir, dfs_path) os.system(' mkdir -p {}'.format(os.path.dirname(local_path))) data_pd.to_csv(local_path, index=False) return data_pd.to_csv(index=False) def exposed_rm_fat_item(self, dfs_path): local_path = os.path.join(name_node_dir, dfs_path) response = pd.read_csv(local_path) os.system('rm ' + local_path) return response.to_csv(index=False) def exposed_get_fat_item(self, dfs_path): local_path = os.path.join(name_node_dir, dfs_path) response = pd.read_csv(local_path) return response.to_csv(index=False) def exposed_ls(self, dfs_path): local_path = os.path.join(name_node_dir, dfs_path) if not os.path.exists(local_path): response = 'No such file or directory at {}'.format(dfs_path) elif os.path.isdir(local_path): files = os.listdir(local_path) response = str(files) else: response =
pd.read_csv(local_path)
pandas.read_csv
#!/usr/bin/env python """ ######################################################################################### # # This function allows to run a function on a large dataset with a set of parameters. # Results are extracted and saved in a way that they can easily be compared with another set. # # Data should be organized as the following: # (names of images can be changed but must be passed as parameters to this function) # # data/ # ......subject_name_01/ # ......subject_name_02/ # .................t1/ # .........................subject_02_anything_t1.nii.gz # .........................some_landmarks_of_vertebral_levels.nii.gz # .........................subject_02_manual_segmentation_t1.nii.gz # .................t2/ # .........................subject_02_anything_t2.nii.gz # .........................some_landmarks_of_vertebral_levels.nii.gz # .........................subject_02_manual_segmentation_t2.nii.gz # .................t2star/ # .........................subject_02_anything_t2star.nii.gz # .........................subject_02_manual_segmentation_t2star.nii.gz # ......subject_name_03/ # . # . # . # # --------------------------------------------------------------------------------------- # Copyright (c) 2015 Polytechnique Montreal <www.neuro.polymtl.ca> # Author: <NAME>, <NAME> # Modified: 2015-09-30 # # About the license: see the file LICENSE.TXT ######################################################################################### usage: sct_pipeline -f sct_a_tool -d /path/to/data/ -p \" sct_a_tool option \" -cpu-nb 8 """ # TODO: remove compute duration which is now replaced with results.duration # TODO: create a dictionnary for param, such that results can display reduced param instead of full. Example: -param t1="blablabla",t2="blablabla" # TODO: read_database: hard coded fields to put somewhere else (e.g. config file) from __future__ import print_function, absolute_import import sys, io, os, types, copy, copy_reg, time, itertools, glob, importlib, pickle import platform import signal path_script = os.path.dirname(__file__) sys.path.append(os.path.join(sct.__sct_dir__, 'testing')) import concurrent.futures if "SCT_MPI_MODE" in os.environ: from mpi4py.futures import MPIPoolExecutor as PoolExecutor __MPI__ = True sys.path.insert(0, path_script) else: from concurrent.futures import ProcessPoolExecutor as PoolExecutor __MPI__ = False from multiprocessing import cpu_count import numpy as np import h5py import pandas as pd import sct_utils as sct import spinalcordtoolbox.utils as utils import msct_parser import sct_testing def _pickle_method(method): """ Author: <NAME> (author of argparse) http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods """ func_name = method.im_func.__name__ obj = method.im_self cls = method.im_class cls_name = '' if func_name.startswith('__') and not func_name.endswith('__'): cls_name = cls.__name__.lstrip('_') if cls_name: func_name = '_' + cls_name + func_name return _unpickle_method, (func_name, obj, cls) def _unpickle_method(func_name, obj, cls): """ Author: <NAME> http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods """ for cls in cls.mro(): try: func = cls.__dict__[func_name] except KeyError: pass else: break return func.__get__(obj, cls) copy_reg.pickle(types.MethodType, _pickle_method, _unpickle_method) def generate_data_list(folder_dataset, verbose=1): """ Construction of the data list from the data set This function return a list of directory (in folder_dataset) in which the contrast is present. :return data: """ list_subj = [] # each directory in folder_dataset should be a directory of a subject for subject_dir in os.listdir(folder_dataset): if not subject_dir.startswith('.') and os.path.isdir(os.path.join(folder_dataset, subject_dir)): # data_subjects.append(os.path.join(folder_dataset, subject_dir)) list_subj.append(subject_dir) if not list_subj: logger.error('ERROR: No subject data were found in ' + folder_dataset + '. ' 'Please organize your data correctly or provide a correct dataset.', verbose=verbose, type='error') return list_subj def read_database(folder_dataset, specifications=None, fname_database='', verbose=1): """ Read subject database from xls file. Parameters ---------- folder_dataset: path to database specifications: field-based specifications for subject selection fname_database: fname of XLS file that contains database verbose: Returns ------- subj_selected: list of subjects selected """ # initialization subj_selected = [] # if fname_database is empty, check if xls or xlsx file exist in the database directory. if fname_database == '': logger.info(' Looking for an XLS file describing the database...') list_fname_database = glob.glob(os.path.join(folder_dataset, '*.xls*')) if list_fname_database == []: logger.warning('WARNING: No XLS file found. Returning empty list.') return subj_selected elif len(list_fname_database) > 1: logger.warning('WARNING: More than one XLS file found. Returning empty list.') return subj_selected else: fname_database = list_fname_database[0] # sct.printv(' XLS file found: ' + fname_database, verbose) # read data base file and import to panda data frame logger.info(' Reading XLS: ' + fname_database, verbose, 'normal') try: data_base = pd.read_excel(fname_database) except: logger.error('ERROR: File '+fname_database+' cannot be read. Please check format or get help from SCT forum.') # # correct some values and clean panda data base # convert columns to int to_int = ['gm_model', 'PAM50', 'MS_mapping'] for key in to_int: data_base[key].fillna(0.0).astype(int) # for key in data_base.keys(): # remove 'unnamed' columns if 'Unnamed' in key: data_base = data_base.drop(key, axis=1) # duplicate columns with lower case names and with space in names else: data_base[key.lower()] = data_base[key] data_base['_'.join(key.split(' '))] = data_base[key] # ## parse specifications ## specification format: "center=unf,twh:pathology=hc:sc_seg=t2" list_fields = specifications.split(':') dict_spec = {} for f in list_fields: field, value = f.split('=') dict_spec[field] = value.split(',') # ## select subjects from specification # type of field for which the subject should be selected if the field CONTAINS the requested value (as opposed to the field is equal to the requested value) list_field_multiple_choice = ['contrasts', 'sc seg', 'gm seg', 'lesion seg'] list_field_multiple_choice_tmp = copy.deepcopy(list_field_multiple_choice) for field in list_field_multiple_choice_tmp: list_field_multiple_choice.append('_'.join(field.split(' '))) # data_selected = copy.deepcopy(data_base) for field, list_val in dict_spec.items(): if field.lower() not in list_field_multiple_choice: # select subject if field is equal to the requested value data_selected = data_selected[data_selected[field].isin(list_val)] else: # select subject if field contains the requested value data_selected = data_selected[data_selected[field].str.contains('|'.join(list_val)).fillna(False)] # ## retrieve list of subjects from database database_subj = ['_'.join([str(center), str(study), str(subj)]) for center, study, subj in zip(data_base['Center'], data_base['Study'], data_base['Subject'])] ## retrieve list of subjects from database selected database_subj_selected = ['_'.join([str(center), str(study), str(subj)]) for center, study, subj in zip(data_selected['Center'], data_selected['Study'], data_selected['Subject'])] # retrieve folders from folder_database list_folder_dataset = [i for i in os.listdir(folder_dataset) if os.path.isdir(os.path.join(folder_dataset, i))] # loop across folders for ifolder in list_folder_dataset: # check if folder is listed in database if ifolder in database_subj: # check if subject is selected if ifolder in database_subj_selected: subj_selected.append(ifolder) # if not, report to user else: logger.warning('WARNING: Subject '+ifolder+' is not listed in the database.', verbose, 'warning') return subj_selected # <NAME> 2017-10-21 # def process_results(results, subjects_name, function, folder_dataset): # try: # results_dataframe = pd.concat([result for result in results]) # results_dataframe.loc[:, 'subject'] = pd.Series(subjects_name, index=results_dataframe.index) # results_dataframe.loc[:, 'script'] = pd.Series([function] * len(subjects_name), index=results_dataframe.index) # results_dataframe.loc[:, 'dataset'] = pd.Series([folder_dataset] * len(subjects_name), index=results_dataframe.index) # # results_dataframe.loc[:, 'parameters'] = pd.Series([parameters] * len(subjects_name), index=results_dataframe.index) # return results_dataframe # except KeyboardInterrupt: # return 'KeyboardException' # except Exception as e: # logger.error('Error on line {}'.format(sys.exc_info()[-1].tb_lineno)) # logger.exception(e) # raise def function_launcher(args): # append local script to PYTHONPATH for import sys.path.append(os.path.join(sct.__sct_dir__, "testing")) # retrieve param class from sct_testing param_testing = sct_testing.Param() param_testing.function_to_test = args[0] param_testing.path_data = args[1] param_testing.args = args[2] param_testing.test_integrity = args[3] param_testing.redirect_stdout = True # create individual logs for each subject. # load modules of function to test module_testing = importlib.import_module('test_' + param_testing.function_to_test) # initialize parameters specific to the test param_testing = module_testing.init(param_testing) try: param_testing = sct_testing.test_function(param_testing) except: import traceback logger.error('%s: %s' % ('test_' + args[0], traceback.format_exc())) # output = (1, 'ERROR: Function crashed', 'No result') from pandas import DataFrame # TODO: CHECK IF ASSIGNING INDEX WITH SUBJECT IS NECESSARY param_testing.results = DataFrame(index=[''], data={'status': int(1), 'output': 'ERROR: Function crashed.'}) # status_script = 1 # output_script = 'ERROR: Function crashed.' # output = (status_script, output_script, DataFrame(data={'status': int(status_script), 'output': output_script}, index=[''])) # TODO: THE THING BELOW: IMPLEMENT INSIDE SCT_TESTING SUB-FUNCTION # sys.stdout.close() # sys.stdout = stdout_orig # # write log file # write_to_log_file(fname_log, output, mode='r+', prepend=True) return param_testing.results # return param_testing.results # return script_to_be_run.test(*args[1:]) def init_worker(): signal.signal(signal.SIGINT, signal.SIG_IGN) def get_list_subj(folder_dataset, data_specifications=None, fname_database=''): """ Generate list of eligible subjects from folder and file containing database Parameters ---------- folder_dataset: path to database data_specifications: field-based specifications for subject selection fname_database: fname of XLS file that contains database Returns ------- list_subj: list of subjects """ if data_specifications is None: list_subj = generate_data_list(folder_dataset) else: logger.info('Selecting subjects using the following specifications: ' + data_specifications) list_subj = read_database(folder_dataset, specifications=data_specifications, fname_database=fname_database) # logger.info(' Total number of subjects: ' + str(len(list_subj))) # if no subject to process, raise exception if len(list_subj) == 0: raise Exception('No subject to process. Exit function.') return list_subj def run_function(function, folder_dataset, list_subj, list_args=[], nb_cpu=None, verbose=1, test_integrity=0): """ Run a test function on the dataset using multiprocessing and save the results :return: results # results are organized as the following: tuple of (status, output, DataFrame with results) """ # add full path to each subject list_subj_path = [os.path.join(folder_dataset, subject) for subject in list_subj] # All scripts that are using multithreading with ITK must not use it when using multiprocessing os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = "1" # create list that finds all the combinations for function + subject path + arguments. Example of one list element: # ('sct_propseg', os.path.join(path_sct, 'data', 'sct_test_function', '200_005_s2''), '-i ' + os.path.join("t2", "t2.nii.gz") + ' -c t2', 1) list_func_subj_args = list(itertools.product(*[[function], list_subj_path, list_args, [test_integrity]])) # data_and_params = itertools.izip(itertools.repeat(function), data_subjects, itertools.repeat(parameters)) logger.debug("stating pool with {} thread(s)".format(nb_cpu)) pool = PoolExecutor(nb_cpu) compute_time = None try: compute_time = time.time() count = 0 all_results = [] # logger.info('Waiting for results, be patient') future_dirs = {pool.submit(function_launcher, subject_arg): subject_arg for subject_arg in list_func_subj_args} for future in concurrent.futures.as_completed(future_dirs): count += 1 subject = os.path.basename(future_dirs[future][1]) arguments = future_dirs[future][2] try: result = future.result() sct.no_new_line_log('Processing subjects... {}/{}'.format(count, len(list_func_subj_args))) all_results.append(result) except Exception as exc: logger.error('{} {} generated an exception: {}'.format(subject, arguments, exc)) compute_time = time.time() - compute_time # concatenate all_results into single Panda structure results_dataframe = pd.concat(all_results) except KeyboardInterrupt: logger.warning("\nCaught KeyboardInterrupt, terminating workers") for job in future_dirs: job.cancel() except Exception as e: logger.error('Error on line {}'.format(sys.exc_info()[-1].tb_lineno)) logger.exception(e) for job in future_dirs: job.cancel() raise finally: pool.shutdown() return {'results': results_dataframe, "compute_time": compute_time} def get_parser(): # Initialize parser parser = msct_parser.Parser(__file__) # Mandatory arguments parser.usage.set_description("Run a specific SCT function in a list of subjects contained within a given folder. " "Multiple parameters can be selected by repeating the flag -p as shown in the example below:\n" "sct_pipeline -f sct_propseg -d PATH_TO_DATA -p \\\"-i t1/t1.nii.gz -c t1\\\" -p \\\"-i t2/t2.nii.gz -c t2\\\"") parser.add_option(name="-f", type_value="str", description="Function to test.", mandatory=True, example="sct_propseg") parser.add_option(name="-d", type_value="folder", description="Dataset directory.", mandatory=True, example="dataset_full/") parser.add_option(name="-p", type_value="str", description="Arguments to pass to the function that is tested. Put double-quotes if there are " "spaces in the list of parameters. Path to images are relative to the subject's folder. " "Use multiple '-p' flags if you would like to test different parameters on the same" "subjects.", mandatory=False) parser.add_option(name="-subj", type_value="str", description="Choose the subjects to process based on center, study, [...] to select the testing dataset\n" "Syntax: field_1=val1,val2:field_2=val3:field_3=val4,val5", example="center=unf,twh:gm_model=0:contrasts=t2,t2s", mandatory=False) parser.add_option(name="-subj-file", type_value="file", description="Excel spreadsheet containing database information (center, study, subject, demographics, ...). If this field is empty, it will search for an xls file located in the database folder. If no xls file is present, all subjects will be selected.", default_value='', mandatory=False) parser.add_option(name="-j", type_value="int", description="Number of threads for parallel computing (one subject per thread)." " By default, all available CPU cores will be used. Set to 0 for" " no multiprocessing.", mandatory=False, example='42') parser.add_option(name="-test-integrity", type_value="multiple_choice", description="Run (=1) or not (=0) integrity testing which is defined in test_integrity() function of the test_ script. See example here: https://github.com/neuropoly/spinalcordtoolbox/blob/master/testing/test_sct_propseg.py", mandatory=False, example=['0', '1'], default_value='0') # TODO: this should have values True/False as defined in sct_testing, not 0/1 parser.usage.addSection("\nOUTPUT") parser.add_option(name="-log", type_value='multiple_choice', description="Redirects Terminal verbose to log file.", mandatory=False, example=['0', '1'], default_value='1') parser.add_option(name="-pickle", type_value='multiple_choice', description="Output Pickle file.", mandatory=False, example=['0', '1'], default_value='1') parser.add_option(name='-email', type_value=[[','], 'str'], description="Email information to send results." \ " Fields are assigned with '=' and are separated with ',':\n" \ " - addr_to: address to send email to\n" \ " - addr_from: address to send email from (default: <EMAIL>)\n" \ " - login: SMTP login (use if different from email_from)\n" " - passwd: <PASSWORD>\n" " - smtp_host: SMTP server (default: 'smtp.gmail.com')\n" " - smtp_port: port for SMTP server (default: 587)\n" "Note: will always use TLS", mandatory=False, default_value='') parser.add_option(name="-v", type_value="multiple_choice", description="Verbose. 0: nothing, 1: basic, 2: extended.", mandatory=False, example=['0', '1', '2'], default_value='1') return parser # ==================================================================================================== # Start program # ==================================================================================================== if __name__ == "__main__": sct.init_sct() parser = get_parser() arguments = parser.parse(sys.argv[1:]) function_to_test = arguments["-f"] path_data = os.path.abspath(arguments["-d"]) if "-p" in arguments: # in case users used more than one '-p' flag, the output will be a list of all arguments (for each -p) if isinstance(arguments['-p'], list): list_args = arguments['-p'] else: list_args = [arguments['-p']] else: list_args = [] data_specifications = None if "-subj" in arguments: data_specifications = arguments["-subj"] if "-subj-file" in arguments: fname_database = arguments["-subj-file"] else: fname_database = '' # if empty, it will look for xls file automatically in database folder if "-j" in arguments: jobs = arguments["-j"] else: jobs = cpu_count() # uses maximum number of available CPUs test_integrity = int(arguments['-test-integrity']) create_log = int(arguments['-log']) output_pickle = int(arguments['-pickle']) send_email = False if '-email' in arguments: create_log = True send_email = True # loop across fields for i in arguments['-email']: k, v = i.split("=") if k == 'addr_to': addr_to = v if k == 'addr_from': addr_from = v if k == 'login': login = v if k == 'passwd': passwd_from = v if k == 'smtp_host': smtp_host = v if k == 'smtp_port': smtp_port = int(v) verbose = int(arguments["-v"]) # start timer time_start = time.time() # create single time variable for output names output_time = time.strftime("%y%m%d%H%M%S") # build log file name if create_log: # global log: file_log = "_".join([output_time, function_to_test, sct.__get_branch().replace("/", "~")]).replace("sct_", "") fname_log = file_log + '.log' # handle_log = sct.ForkStdoutToFile(fname_log) file_handler = sct.add_file_handler_to_logger(fname_log) logger.info('Testing started on: ' + time.strftime("%Y-%m-%d %H:%M:%S")) # fetch SCT version logger.info('SCT version: {}'.format(sct.__version__)) # check OS platform_running = sys.platform if (platform_running.find('darwin') != -1): os_running = 'osx' elif (platform_running.find('linux') != -1): os_running = 'linux' logger.info('OS: ' + os_running + ' (' + platform.platform() + ')') # check hostname logger.info('Hostname: {}'.format(platform.node())) # Check number of CPU cores logger.info('CPU Thread on local machine: {} '.format(cpu_count())) logger.info(' Requested threads: {} '.format(jobs)) if __MPI__: logger.info("Running in MPI mode with mpi4py.futures's MPIPoolExecutor") else: logger.info("Running with python concurrent.futures's ProcessPoolExecutor") # check RAM sct.checkRAM(os_running, 0) # display command logger.info('\nCommand(s):') for args in list_args: logger.info(' ' + function_to_test + ' ' + args) logger.info('Dataset: ' + path_data) logger.info('Test integrity: ' + str(test_integrity)) # test function try: # retrieve subjects list list_subj = get_list_subj(path_data, data_specifications=data_specifications, fname_database=fname_database) # during testing, redirect to standard output to avoid stacking error messages in the general log if create_log: # handle_log.pause() sct.remove_handler(file_handler) # run function logger.debug("enter test fct") tests_ret = run_function(function_to_test, path_data, list_subj, list_args=list_args, nb_cpu=jobs, verbose=1, test_integrity=test_integrity) logger.debug("exit test fct") results = tests_ret['results'] compute_time = tests_ret['compute_time'] # after testing, redirect to log file if create_log: logger.addHandler(file_handler) # build results
pd.set_option('display.max_rows', 500)
pandas.set_option
from __future__ import print_function import statistics import time from os.path import dirname, join import pandas as pd import os import sys import pickle import dill from math import inf from math import log from sklearn.preprocessing import Imputer import numpy as np from sklearn.preprocessing import StandardScaler __all__ = ["load_data", "suppress_stdout_stderr", "Benchmark", "check_name", "dev_model", "load_model", "aggregate_data", "devmodel_to_array"] """ Salty is a toolkit for interacting with ionic liquid data from ILThermo """ class qspr_model(): def __init__(self, model, summary, descriptors): self.Model = model self.Summary = summary self.Descriptors = descriptors class dev_model(): def __init__(self, coef_data, data_summary, data): self.Coef_data = coef_data self.Data_summary = data_summary self.Data = data def devmodel_to_array(model_name, train_fraction=1): if model_name is str: model_outputs = len(model_name.split("_")) pickle_in = open("../salty/data/MODELS/%s_devmodel.pkl" % model_name, "rb") devmodel = dill.load(pickle_in) else: model_outputs = -6 + model_name.Data_summary.shape[0] devmodel = model_name rawdf = devmodel.Data rawdf = rawdf.sample(frac=1) datadf = rawdf.select_dtypes(include=[np.number]) data = np.array(datadf) n = data.shape[0] d = data.shape[1] d -= model_outputs n_train = int(n * train_fraction) # set fraction for training n_test = n - n_train X_train = np.zeros((n_train, d)) # prepare train/test arrays X_test = np.zeros((n_test, d)) Y_train = np.zeros((n_train, model_outputs)) Y_test = np.zeros((n_test, model_outputs)) X_train[:] = data[:n_train, :-model_outputs] Y_train[:] = (data[:n_train, -model_outputs:].astype(float)) X_test[:] = data[n_train:, :-model_outputs] Y_test[:] = (data[n_train:, -model_outputs:].astype(float)) return X_train, Y_train, X_test, Y_test def aggregate_data(data, T=[0, inf], P=[0, inf], data_ranges=None, merge="overlap", feature_type=None, impute=False): """ Aggregates molecular data for model training Parameters ---------- data: list density, cpt, and/or viscosity T: array desired min and max of temperature distribution P: array desired min and max of pressure distribution data_ranges: array desired min and max of property distribution(s) merge: str overlap or union, defaults to overlap. Merge type of property sets feature_type: str desired feature set, defaults to RDKit's 2D descriptor set Returns ----------- devmodel: dev_model obj returns dev_model object containing scale/center information, data summary, and the data frame """ data_files = [] for i, string in enumerate(data): data_files.append(load_data("MODELS/%s_premodel.csv" % string)) if i == 0: merged = data_files[0] if i == 1: merged = pd.merge(data_files[0], data_files[1], sort=False, how='outer') elif i > 1: merged = pd.merge(merged, data_files[-1], sort=False, how='outer') if merge == "overlap": merged.dropna(inplace=True) # select state variable and data ranges merged = merged.loc[merged["Temperature, K"] < T[1]] merged = merged.loc[merged["Temperature, K"] > T[0]] merged = merged.loc[merged["Pressure, kPa"] < P[1]] merged = merged.loc[merged["Pressure, kPa"] > P[0]] for i in range(1, len(data) + 1): merged = merged[merged.iloc[:, -i] != 0] # avoid log(0) error if data_ranges: merged = merged[merged.iloc[:, -i] < data_ranges[::-1][i - 1][1]] merged = merged[merged.iloc[:, -i] > data_ranges[::-1][i - 1][0]] merged.reset_index(drop=True, inplace=True) # Create summary of dataset unique_salts = merged["smiles-cation"] + merged["smiles-anion"] unique_cations = repr(merged["smiles-cation"].unique()) unique_anions = repr(merged["smiles-anion"].unique()) actual_data_ranges = [] for i in range(1, len(data) + 3): actual_data_ranges.append("{} - {}".format( str(merged.iloc[:, -i].min()), str(merged.iloc[:, -i].max()))) a = np.array([len(unique_salts.unique()), unique_cations, unique_anions, len(unique_salts)]) a = np.concatenate((a, actual_data_ranges)) cols1 = ["Unique salts", "Cations", "Anions", "Total datapoints"] cols2 = ["Temperature range (K)", "Pressure range (kPa)"] cols = cols1 + data[::-1] + cols2 data_summary = pd.DataFrame(a, cols) # scale and center metaDf = merged.select_dtypes(include=["object"]) dataDf = merged.select_dtypes(include=[np.number]) cols = dataDf.columns.tolist() if impute: imp = Imputer(missing_values='NaN', strategy="median", axis=0) X = imp.fit_transform(dataDf) dataDf =
pd.DataFrame(X, columns=cols)
pandas.DataFrame
import calendar from ..utils import search_quote from datetime import datetime, timedelta from ..utils import process_dataframe_and_series import rich from jsonpath import jsonpath from retry import retry import pandas as pd import requests import multitasking import signal from tqdm import tqdm from typing import (Dict, List, Union) from ..shared import session from ..common import get_quote_history as get_quote_history_for_stock from ..common import get_history_bill as get_history_bill_for_stock from ..common import get_today_bill as get_today_bill_for_stock from ..common import get_realtime_quotes_by_fs from ..utils import (to_numeric, get_quote_id) from .config import EASTMONEY_STOCK_DAILY_BILL_BOARD_FIELDS, EASTMONEY_STOCK_BASE_INFO_FIELDS from ..common.config import ( FS_DICT, MARKET_NUMBER_DICT, EASTMONEY_REQUEST_HEADERS, EASTMONEY_QUOTE_FIELDS ) signal.signal(signal.SIGINT, multitasking.killall) @to_numeric def get_base_info_single(stock_code: str) -> pd.Series: """ 获取单股票基本信息 Parameters ---------- stock_code : str 股票代码 Returns ------- Series 单只股票基本信息 """ fields = ",".join(EASTMONEY_STOCK_BASE_INFO_FIELDS.keys()) secid = get_quote_id(stock_code) if not secid: return pd.Series(index=EASTMONEY_STOCK_BASE_INFO_FIELDS.values()) params = ( ('ut', 'fa5fd1943c7b386f172d6893dbfba10b'), ('invt', '2'), ('fltt', '2'), ('fields', fields), ('secid', secid), ) url = 'http://push2.eastmoney.com/api/qt/stock/get' json_response = session.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params).json() s = pd.Series(json_response['data']).rename( index=EASTMONEY_STOCK_BASE_INFO_FIELDS) return s[EASTMONEY_STOCK_BASE_INFO_FIELDS.values()] def get_base_info_muliti(stock_codes: List[str]) -> pd.DataFrame: """ 获取股票多只基本信息 Parameters ---------- stock_codes : List[str] 股票代码列表 Returns ------- DataFrame 多只股票基本信息 """ @multitasking.task @retry(tries=3, delay=1) def start(stock_code: str): s = get_base_info_single(stock_code) dfs.append(s) pbar.update() pbar.set_description(f'Processing => {stock_code}') dfs: List[pd.DataFrame] = [] pbar = tqdm(total=len(stock_codes)) for stock_code in stock_codes: start(stock_code) multitasking.wait_for_tasks() df = pd.DataFrame(dfs) df = df.dropna(subset=['股票代码']) return df @to_numeric def get_base_info(stock_codes: Union[str, List[str]]) -> Union[pd.Series, pd.DataFrame]: """ Parameters ---------- stock_codes : Union[str, List[str]] 股票代码或股票代码构成的列表 Returns ------- Union[Series, DataFrame] - ``Series`` : 包含单只股票基本信息(当 ``stock_codes`` 是字符串时) - ``DataFrane`` : 包含多只股票基本信息(当 ``stock_codes`` 是字符串列表时) Raises ------ TypeError 当 ``stock_codes`` 类型不符合要求时 Examples -------- >>> import efinance as ef >>> # 获取单只股票信息 >>> ef.stock.get_base_info('600519') 股票代码 600519 股票名称 贵州茅台 市盈率(动) 39.38 市净率 12.54 所处行业 酿酒行业 总市值 2198082348462.0 流通市值 2198082348462.0 板块编号 BK0477 ROE 8.29 净利率 54.1678 净利润 13954462085.610001 毛利率 91.6763 dtype: object >>> # 获取多只股票信息 >>> ef.stock.get_base_info(['600519','300715']) 股票代码 股票名称 市盈率(动) 市净率 所处行业 总市值 流通市值 板块编号 ROE 净利率 净利润 毛利率 0 300715 凯伦股份 42.29 3.12 水泥建材 9.160864e+09 6.397043e+09 BK0424 3.97 12.1659 5.415488e+07 32.8765 1 600519 贵州茅台 39.38 12.54 酿酒行业 2.198082e+12 2.198082e+12 BK0477 8.29 54.1678 1.395446e+10 91.6763 """ if isinstance(stock_codes, str): return get_base_info_single(stock_codes) elif hasattr(stock_codes, '__iter__'): return get_base_info_muliti(stock_codes) raise TypeError(f'所给的 {stock_codes} 不符合参数要求') def get_quote_history(stock_codes: Union[str, List[str]], beg: str = '19000101', end: str = '20500101', klt: int = 101, fqt: int = 1, **kwargs) -> Union[pd.DataFrame, Dict[str, pd.DataFrame]]: """ 获取股票的 K 线数据 Parameters ---------- stock_codes : Union[str,List[str]] 股票代码、名称 或者 股票代码、名称构成的列表 beg : str, optional 开始日期,默认为 ``'19000101'`` ,表示 1900年1月1日 end : str, optional 结束日期,默认为 ``'20500101'`` ,表示 2050年1月1日 klt : int, optional 行情之间的时间间隔,默认为 ``101`` ,可选示例如下 - ``1`` : 分钟 - ``5`` : 5 分钟 - ``15`` : 15 分钟 - ``30`` : 30 分钟 - ``60`` : 60 分钟 - ``101`` : 日 - ``102`` : 周 - ``103`` : 月 fqt : int, optional 复权方式,默认为 ``1`` ,可选示例如下 - ``0`` : 不复权 - ``1`` : 前复权 - ``2`` : 后复权 Returns ------- Union[DataFrame, Dict[str, DataFrame]] 股票的 K 线数据 - ``DataFrame`` : 当 ``stock_codes`` 是 ``str`` 时 - ``Dict[str, DataFrame]`` : 当 ``stock_codes`` 是 ``List[str]`` 时 Examples -------- >>> import efinance as ef >>> # 获取单只股票日 K 行情数据 >>> ef.stock.get_quote_history('600519') 股票名称 股票代码 日期 开盘 收盘 最高 最低 成交量 成交额 振幅 涨跌幅 涨跌额 换手率 0 贵州茅台 600519 2001-08-27 -89.74 -89.53 -89.08 -90.07 406318 1.410347e+09 -1.10 0.92 0.83 56.83 1 贵州茅台 600519 2001-08-28 -89.64 -89.27 -89.24 -89.72 129647 4.634630e+08 -0.54 0.29 0.26 18.13 2 贵州茅台 600519 2001-08-29 -89.24 -89.36 -89.24 -89.42 53252 1.946890e+08 -0.20 -0.10 -0.09 7.45 3 贵州茅台 600519 2001-08-30 -89.38 -89.22 -89.14 -89.44 48013 1.775580e+08 -0.34 0.16 0.14 6.72 4 贵州茅台 600519 2001-08-31 -89.21 -89.24 -89.12 -89.28 23231 8.623100e+07 -0.18 -0.02 -0.02 3.25 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4756 贵州茅台 600519 2021-07-23 1937.82 1900.00 1937.82 1895.09 47585 9.057762e+09 2.20 -2.06 -40.01 0.38 4757 贵州茅台 600519 2021-07-26 1879.00 1804.11 1879.00 1780.00 98619 1.789436e+10 5.21 -5.05 -95.89 0.79 4758 贵州茅台 600519 2021-07-27 1803.00 1712.89 1810.00 1703.00 86577 1.523081e+10 5.93 -5.06 -91.22 0.69 4759 贵州茅台 600519 2021-07-28 1703.00 1768.90 1788.20 1682.12 85369 1.479247e+10 6.19 3.27 56.01 0.68 4760 贵州茅台 600519 2021-07-29 1810.01 1749.79 1823.00 1734.34 63864 1.129957e+10 5.01 -1.08 -19.11 0.51 >>> # 获取多只股票历史行情 >>> stock_df = ef.stock.get_quote_history(['600519','300750']) >>> type(stock_df) <class 'dict'> >>> stock_df.keys() dict_keys(['300750', '600519']) >>> stock_df['600519'] 股票名称 股票代码 日期 开盘 收盘 最高 最低 成交量 成交额 振幅 涨跌幅 涨跌额 换手率 0 贵州茅台 600519 2001-08-27 -89.74 -89.53 -89.08 -90.07 406318 1.410347e+09 -1.10 0.92 0.83 56.83 1 贵州茅台 600519 2001-08-28 -89.64 -89.27 -89.24 -89.72 129647 4.634630e+08 -0.54 0.29 0.26 18.13 2 贵州茅台 600519 2001-08-29 -89.24 -89.36 -89.24 -89.42 53252 1.946890e+08 -0.20 -0.10 -0.09 7.45 3 贵州茅台 600519 2001-08-30 -89.38 -89.22 -89.14 -89.44 48013 1.775580e+08 -0.34 0.16 0.14 6.72 4 贵州茅台 600519 2001-08-31 -89.21 -89.24 -89.12 -89.28 23231 8.623100e+07 -0.18 -0.02 -0.02 3.25 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4756 贵州茅台 600519 2021-07-23 1937.82 1900.00 1937.82 1895.09 47585 9.057762e+09 2.20 -2.06 -40.01 0.38 4757 贵州茅台 600519 2021-07-26 1879.00 1804.11 1879.00 1780.00 98619 1.789436e+10 5.21 -5.05 -95.89 0.79 4758 贵州茅台 600519 2021-07-27 1803.00 1712.89 1810.00 1703.00 86577 1.523081e+10 5.93 -5.06 -91.22 0.69 4759 贵州茅台 600519 2021-07-28 1703.00 1768.90 1788.20 1682.12 85369 1.479247e+10 6.19 3.27 56.01 0.68 4760 贵州茅台 600519 2021-07-29 1810.01 1749.79 1823.00 1734.34 63864 1.129957e+10 5.01 -1.08 -19.11 0.51 """ df = get_quote_history_for_stock( stock_codes, beg=beg, end=end, klt=klt, fqt=fqt ) if isinstance(df, pd.DataFrame): df.rename(columns={'代码': '股票代码', '名称': '股票名称' }, inplace=True) elif isinstance(df, dict): for stock_code in df.keys(): df[stock_code].rename(columns={'代码': '股票代码', '名称': '股票名称' }, inplace=True) # NOTE 扩展接口 设定此关键词即返回 DataFrame 而不是 dict if kwargs.get('return_df'): df: pd.DataFrame = pd.concat(df, axis=0, ignore_index=True) return df @process_dataframe_and_series(remove_columns_and_indexes=['市场编号']) @to_numeric def get_realtime_quotes(fs: Union[str, List[str]] = None) -> pd.DataFrame: """ 获取单个或者多个市场行情的最新状况 Parameters ---------- fs : Union[str, List[str]], optional 行情名称或者多个行情名列表 可选值及示例如下 - ``None`` 沪深京A股市场行情 - ``'沪深A股'`` 沪深A股市场行情 - ``'沪A'`` 沪市A股市场行情 - ``'深A'`` 深市A股市场行情 - ``北A`` 北证A股市场行情 - ``'可转债'`` 沪深可转债市场行情 - ``'期货'`` 期货市场行情 - ``'创业板'`` 创业板市场行情 - ``'美股'`` 美股市场行情 - ``'港股'`` 港股市场行情 - ``'中概股'`` 中国概念股市场行情 - ``'新股'`` 沪深新股市场行情 - ``'科创板'`` 科创板市场行情 - ``'沪股通'`` 沪股通市场行情 - ``'深股通'`` 深股通市场行情 - ``'行业板块'`` 行业板块市场行情 - ``'概念板块'`` 概念板块市场行情 - ``'沪深系列指数'`` 沪深系列指数市场行情 - ``'上证系列指数'`` 上证系列指数市场行情 - ``'深证系列指数'`` 深证系列指数市场行情 - ``'ETF'`` ETF 基金市场行情 - ``'LOF'`` LOF 基金市场行情 Returns ------- DataFrame 单个或者多个市场行情的最新状况 Raises ------ KeyError 当参数 ``fs`` 中含有不正确的行情类型时引发错误 Examples -------- >>> import efinance as ef >>> ef.stock.get_realtime_quotes() 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 行情ID 市场类型 0 688787 N海天 277.59 139.48 172.39 139.25 171.66 102.54 85.62 - 78.93 74519 1110318832.0 36.94 5969744000 1213908667 1.688787 沪A 1 301045 N天禄 149.34 39.42 48.95 39.2 48.95 23.61 66.66 - 37.81 163061 683878656.0 15.81 4066344240 964237089 0.301045 深A 2 300532 今天国际 20.04 12.16 12.16 10.69 10.69 2.03 8.85 3.02 -22.72 144795 171535181.0 10.13 3322510580 1989333440 0.300532 深A 3 300600 国瑞科技 20.02 13.19 13.19 11.11 11.41 2.2 18.61 2.82 218.75 423779 541164432.0 10.99 3915421427 3003665117 0.300600 深A 4 300985 致远新能 20.01 47.08 47.08 36.8 39.4 7.85 66.65 2.17 58.37 210697 897370992.0 39.23 6277336472 1488300116 0.300985 深A ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4598 603186 华正新材 -10.0 43.27 44.09 43.27 43.99 -4.81 1.98 0.48 25.24 27697 120486294.0 48.08 6146300650 6063519472 1.603186 沪A 4599 688185 康希诺-U -10.11 476.4 534.94 460.13 530.0 -53.6 6.02 2.74 -2088.07 40239 1960540832.0 530.0 117885131884 31831479215 1.688185 沪A 4600 688148 芳源股份 -10.57 31.3 34.39 31.3 33.9 -3.7 26.07 0.56 220.01 188415 620632512.0 35.0 15923562000 2261706043 1.688148 沪A 4601 300034 钢研高纳 -10.96 43.12 46.81 42.88 46.5 -5.31 7.45 1.77 59.49 323226 1441101824.0 48.43 20959281094 18706911861 0.300034 深A 4602 300712 永福股份 -13.71 96.9 110.94 95.4 109.0 -15.4 6.96 1.26 511.21 126705 1265152928.0 112.3 17645877600 17645877600 0.300712 深A >>> ef.stock.get_realtime_quotes(['创业板','港股']) 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 行情ID 市场类型 0 00859 中昌国际控股 49.02 0.38 0.38 0.26 0.26 0.125 0.08 86.85 -2.83 938000 262860.0 0.255 427510287 427510287 128.00859 None 1 01058 粤海制革 41.05 1.34 1.51 0.9 0.93 0.39 8.34 1.61 249.89 44878000 57662440.0 0.95 720945460 720945460 128.01058 None 2 00713 世界(集团) 27.94 0.87 0.9 0.68 0.68 0.19 1.22 33.28 3.64 9372000 7585400.0 0.68 670785156 670785156 128.00713 None 3 08668 瀛海集团 24.65 0.177 0.179 0.145 0.145 0.035 0.0 10.0 -9.78 20000 3240.0 0.142 212400000 212400000 128.08668 None 4 08413 亚洲杂货 24.44 0.28 0.28 0.25 0.25 0.055 0.01 3.48 -20.76 160000 41300.0 0.225 325360000 325360000 128.08413 None ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 5632 08429 冰雪集团 -16.75 0.174 0.2 0.166 0.2 -0.035 2.48 3.52 -21.58 11895000 2074645.0 0.209 83520000 83520000 128.08429 None 5633 00524 长城天下 -17.56 0.108 0.118 0.103 0.118 -0.023 0.45 15.43 -6.55 5961200 649171.0 0.131 141787800 141787800 128.00524 None 5634 08377 申酉控股 -17.71 0.395 0.46 0.39 0.46 -0.085 0.07 8.06 -5.07 290000 123200.0 0.48 161611035 161611035 128.08377 None 5635 00108 国锐地产 -19.01 1.15 1.42 1.15 1.42 -0.27 0.07 0.78 23.94 2376000 3012080.0 1.42 3679280084 3679280084 128.00108 None 5636 08237 华星控股 -25.0 0.024 0.031 0.023 0.031 -0.008 0.43 8.74 -2.01 15008000 364188.0 0.032 83760000 83760000 128.08237 None >>> ef.stock.get_realtime_quotes(['ETF']) 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 行情ID 市场类型 0 513050 中概互联网ETF 4.49 1.444 1.455 1.433 1.452 0.062 6.71 0.92 - 12961671 1870845984.0 1.382 27895816917 27895816917 1.513050 沪A 1 513360 教育ETF 4.38 0.5 0.502 0.486 0.487 0.021 16.89 1.7 - 1104254 54634387.0 0.479 326856952 326856952 1.513360 沪A 2 159766 旅游ETF 3.84 0.974 0.988 0.95 0.95 0.036 14.46 1.97 - 463730 45254947.0 0.938 312304295 312304295 0.159766 深A 3 159865 养殖ETF 3.8 0.819 0.828 0.785 0.791 0.03 12.13 0.89 - 1405871 114254714.0 0.789 949594189 949594189 0.159865 深A 4 516670 畜牧养殖ETF 3.76 0.856 0.864 0.825 0.835 0.031 24.08 0.98 - 292027 24924513.0 0.825 103803953 103803953 1.516670 沪A .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 549 513060 恒生医疗ETF -4.12 0.861 0.905 0.86 0.902 -0.037 47.96 1.57 - 1620502 141454355.0 0.898 290926128 290926128 1.513060 沪A 550 515220 煤炭ETF -4.46 2.226 2.394 2.194 2.378 -0.104 14.39 0.98 - 2178176 487720560.0 2.330 3369247992 3369247992 1.515220 沪A 551 513000 日经225ETF易方达 -4.49 1.212 1.269 1.21 1.269 -0.057 5.02 2.49 - 25819 3152848.0 1.269 62310617 62310617 1.513000 沪A 552 513880 日经225ETF -4.59 1.163 1.224 1.162 1.217 -0.056 16.93 0.94 - 71058 8336846.0 1.219 48811110 48811110 1.513880 沪A 553 513520 日经ETF -4.76 1.2 1.217 1.196 1.217 -0.06 27.7 1.79 - 146520 17645828.0 1.260 63464640 63464640 1.513520 沪A Notes ----- 无论股票、可转债、期货还是基金。第一列表头始终叫 ``股票代码`` """ fs_list: List[str] = [] if fs is None: fs_list.append(FS_DICT['stock']) if isinstance(fs, str): fs = [fs] if isinstance(fs, list): for f in fs: if not FS_DICT.get(f): raise KeyError(f'指定的行情参数 `{fs}` 不正确') fs_list.append(FS_DICT[f]) # 给空列表时 试用沪深A股行情 if not fs_list: fs_list.append(FS_DICT['stock']) fs_str = ','.join(fs_list) df = get_realtime_quotes_by_fs(fs_str) df.rename(columns={'代码': '股票代码', '名称': '股票名称' }, inplace=True) return df @to_numeric def get_history_bill(stock_code: str) -> pd.DataFrame: """ 获取单只股票历史单子流入流出数据 Parameters ---------- stock_code : str 股票代码 Returns ------- DataFrame 沪深市场单只股票历史单子流入流出数据 Examples -------- >>> import efinance as ef >>> ef.stock.get_history_bill('600519') 股票名称 股票代码 日期 主力净流入 小单净流入 中单净流入 大单净流入 超大单净流入 主力净流入占比 小单流入净占比 中单流入净占比 大单流入净占比 超大单流入净占比 收盘价 涨跌幅 0 贵州茅台 600519 2021-03-04 -3.670272e+06 -2282056.0 5.952143e+06 1.461528e+09 -1.465199e+09 -0.03 -0.02 0.04 10.99 -11.02 2013.71 -5.05 1 贵州茅台 600519 2021-03-05 -1.514880e+07 -1319066.0 1.646793e+07 -2.528896e+07 1.014016e+07 -0.12 -0.01 0.13 -0.19 0.08 2040.82 1.35 2 贵州茅台 600519 2021-03-08 -8.001702e+08 -877074.0 8.010473e+08 5.670671e+08 -1.367237e+09 -6.29 -0.01 6.30 4.46 -10.75 1940.71 -4.91 3 贵州茅台 600519 2021-03-09 -2.237770e+08 -6391767.0 2.301686e+08 -1.795013e+08 -4.427571e+07 -1.39 -0.04 1.43 -1.11 -0.27 1917.70 -1.19 4 贵州茅台 600519 2021-03-10 -2.044173e+08 -1551798.0 2.059690e+08 -2.378506e+08 3.343331e+07 -2.02 -0.02 2.03 -2.35 0.33 1950.72 1.72 .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 97 贵州茅台 600519 2021-07-26 -1.564233e+09 13142211.0 1.551091e+09 -1.270400e+08 -1.437193e+09 -8.74 0.07 8.67 -0.71 -8.03 1804.11 -5.05 98 贵州茅台 600519 2021-07-27 -7.803296e+08 -10424715.0 7.907544e+08 6.725104e+07 -8.475807e+08 -5.12 -0.07 5.19 0.44 -5.56 1712.89 -5.06 99 贵州茅台 600519 2021-07-28 3.997645e+08 2603511.0 -4.023677e+08 2.315648e+08 1.681997e+08 2.70 0.02 -2.72 1.57 1.14 1768.90 3.27 100 贵州茅台 600519 2021-07-29 -9.209842e+08 -2312235.0 9.232964e+08 -3.959741e+08 -5.250101e+08 -8.15 -0.02 8.17 -3.50 -4.65 1749.79 -1.08 101 贵州茅台 600519 2021-07-30 -1.524740e+09 -6020099.0 1.530761e+09 1.147248e+08 -1.639465e+09 -11.63 -0.05 11.68 0.88 -12.51 1678.99 -4.05 """ df = get_history_bill_for_stock(stock_code) df.rename(columns={ '代码': '股票代码', '名称': '股票名称' }, inplace=True) return df @to_numeric def get_today_bill(stock_code: str) -> pd.DataFrame: """ 获取单只股票最新交易日的日内分钟级单子流入流出数据 Parameters ---------- stock_code : str 股票代码 Returns ------- DataFrame 单只股票最新交易日的日内分钟级单子流入流出数据 Examples -------- >>> import efinance as ef >>> ef.stock.get_today_bill('600519') 股票代码 时间 主力净流入 小单净流入 中单净流入 大单净流入 超大单净流入 0 600519 2021-07-29 09:31 -3261705.0 -389320.0 3651025.0 -12529658.0 9267953.0 1 600519 2021-07-29 09:32 6437999.0 -606994.0 -5831006.0 -42615994.0 49053993.0 2 600519 2021-07-29 09:33 13179707.0 -606994.0 -12572715.0 -85059118.0 98238825.0 3 600519 2021-07-29 09:34 15385244.0 -970615.0 -14414632.0 -86865209.0 102250453.0 4 600519 2021-07-29 09:35 7853716.0 -970615.0 -6883104.0 -75692436.0 83546152.0 .. ... ... ... ... ... ... ... 235 600519 2021-07-29 14:56 -918956019.0 -1299630.0 920255661.0 -397127393.0 -521828626.0 236 600519 2021-07-29 14:57 -920977761.0 -2319213.0 923296987.0 -397014702.0 -523963059.0 237 600519 2021-07-29 14:58 -920984196.0 -2312233.0 923296442.0 -395974137.0 -525010059.0 238 600519 2021-07-29 14:59 -920984196.0 -2312233.0 923296442.0 -395974137.0 -525010059.0 239 600519 2021-07-29 15:00 -920984196.0 -2312233.0 923296442.0 -395974137.0 -525010059.0 """ df = get_today_bill_for_stock(stock_code) df.rename(columns={ '代码': '股票代码', '名称': '股票名称' }, inplace=True) return df @to_numeric def get_latest_quote(stock_codes: List[str]) -> pd.DataFrame: """ 获取沪深市场多只股票的实时涨幅情况 Parameters ---------- stock_codes : List[str] 多只股票代码列表 Returns ------- DataFrame 沪深市场、港股、美股多只股票的实时涨幅情况 Examples -------- >>> import efinance as ef >>> ef.stock.get_latest_quote(['600519','300750']) 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 市场类型 0 600519 贵州茅台 0.59 1700.04 1713.0 1679.0 1690.0 10.04 0.30 0.72 43.31 37905 6.418413e+09 1690.0 2135586507912 2135586507912 沪A 1 300750 宁德时代 0.01 502.05 529.9 480.0 480.0 0.05 1.37 1.75 149.57 277258 1.408545e+10 502.0 1169278366994 1019031580505 深A Notes ----- 当需要获取多只沪深 A 股 的实时涨跌情况时,最好使用 ``efinance.stock.get_realtime_quptes`` """ if isinstance(stock_codes, str): stock_codes = [stock_codes] secids: List[str] = [get_quote_id(stock_code) for stock_code in stock_codes] columns = EASTMONEY_QUOTE_FIELDS fields = ",".join(columns.keys()) params = ( ('OSVersion', '14.3'), ('appVersion', '6.3.8'), ('fields', fields), ('fltt', '2'), ('plat', 'Iphone'), ('product', 'EFund'), ('secids', ",".join(secids)), ('serverVersion', '6.3.6'), ('version', '6.3.8'), ) url = 'https://push2.eastmoney.com/api/qt/ulist.np/get' json_response = session.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params).json() rows = jsonpath(json_response, '$..diff[:]') if rows is None: return pd.DataFrame(columns=columns.values()).rename({ '市场编号': '市场类型' }) df = pd.DataFrame(rows)[columns.keys()].rename(columns=columns) df['市场类型'] = df['市场编号'].apply(lambda x: MARKET_NUMBER_DICT.get(str(x))) del df['市场编号'] return df @to_numeric def get_top10_stock_holder_info(stock_code: str, top: int = 4) -> pd.DataFrame: """ 获取沪深市场指定股票前十大股东信息 Parameters ---------- stock_code : str 股票代码 top : int, optional 最新 top 个前 10 大流通股东公开信息, 默认为 ``4`` Returns ------- DataFrame 个股持仓占比前 10 的股东的一些信息 Examples -------- >>> import efinance as ef >>> ef.stock.get_top10_stock_holder_info('600519',top = 1) 股票代码 更新日期 股东代码 股东名称 持股数 持股比例 增减 变动率 0 600519 2021-03-31 80010298 中国贵州茅台酒厂(集团)有限责任公司 6.783亿 54.00% 不变 -- 1 600519 2021-03-31 80637337 香港中央结算有限公司 9594万 7.64% -841.1万 -8.06% 2 600519 2021-03-31 80732941 贵州省国有资本运营有限责任公司 5700万 4.54% -182.7万 -3.11% 3 600519 2021-03-31 80010302 贵州茅台酒厂集团技术开发公司 2781万 2.21% 不变 -- 4 600519 2021-03-31 80475097 中央汇金资产管理有限责任公司 1079万 0.86% 不变 -- 5 600519 2021-03-31 80188285 中国证券金融股份有限公司 803.9万 0.64% -91 0.00% 6 600519 2021-03-31 78043999 深圳市金汇荣盛财富管理有限公司-金汇荣盛三号私募证券投资基金 502.1万 0.40% 不变 -- 7 600519 2021-03-31 70400207 中国人寿保险股份有限公司-传统-普通保险产品-005L-CT001沪 434.1万 0.35% 44.72万 11.48% 8 600519 2021-03-31 005827 中国银行股份有限公司-易方达蓝筹精选混合型证券投资基金 432万 0.34% 新进 -- 9 600519 2021-03-31 78083830 珠海市瑞丰汇邦资产管理有限公司-瑞丰汇邦三号私募证券投资基金 416.1万 0.33% 不变 -- """ def gen_fc(stock_code: str) -> str: """ Parameters ---------- stock_code : str 股票代码 Returns ------- str 指定格式的字符串 """ _type, stock_code = get_quote_id(stock_code).split('.') _type = int(_type) # 深市 if _type == 0: return f'{stock_code}02' # 沪市 return f'{stock_code}01' def get_public_dates(stock_code: str) -> List[str]: """ 获取指定股票公开股东信息的日期 Parameters ---------- stock_code : str 股票代码 Returns ------- List[str] 公开日期列表 """ quote_id = get_quote_id(stock_code) stock_code = quote_id.split('.')[-1] fc = gen_fc(stock_code) data = {"fc": fc} url = 'https://emh5.eastmoney.com/api/GuBenGuDong/GetFirstRequest2Data' json_response = requests.post( url, json=data).json() dates = jsonpath(json_response, f'$..BaoGaoQi') if not dates: return [] return dates fields = { 'GuDongDaiMa': '股东代码', 'GuDongMingCheng': '股东名称', 'ChiGuShu': '持股数', 'ChiGuBiLi': '持股比例', 'ZengJian': '增减', 'BianDongBiLi': '变动率', } quote_id = get_quote_id(stock_code) stock_code = quote_id.split('.')[-1] fc = gen_fc(stock_code) dates = get_public_dates(stock_code) dfs: List[pd.DataFrame] = [] empty_df = pd.DataFrame(columns=['股票代码', '日期']+list(fields.values())) for date in dates[:top]: data = {"fc": fc, "BaoGaoQi": date} url = 'https://emh5.eastmoney.com/api/GuBenGuDong/GetShiDaLiuTongGuDong' response = requests.post(url, json=data) response.encoding = 'utf-8' items: List[dict] = jsonpath( response.json(), f'$..ShiDaLiuTongGuDongList[:]') if not items: continue df = pd.DataFrame(items) df.rename(columns=fields, inplace=True) df.insert(0, '股票代码', [stock_code for _ in range(len(df))]) df.insert(1, '更新日期', [date for _ in range(len(df))]) del df['IsLink'] dfs.append(df) if len(dfs) == 0: return empty_df return pd.concat(dfs, axis=0, ignore_index=True) def get_all_report_dates() -> pd.DataFrame: """ 获取沪深市场的全部股票报告期信息 Returns ------- DataFrame 沪深市场的全部股票报告期信息 Examples -------- >>> import efinance as ef >>> ef.stock.get_all_report_dates() 报告日期 季报名称 0 2021-06-30 2021年 半年报 1 2021-03-31 2021年 一季报 2 2020-12-31 2020年 年报 3 2020-09-30 2020年 三季报 4 2020-06-30 2020年 半年报 5 2020-03-31 2020年 一季报 6 2019-12-31 2019年 年报 7 2019-09-30 2019年 三季报 8 2019-06-30 2019年 半年报 9 2019-03-31 2019年 一季报 10 2018-12-31 2018年 年报 11 2018-09-30 2018年 三季报 12 2018-06-30 2018年 半年报 13 2018-03-31 2018年 一季报 14 2017-12-31 2017年 年报 15 2017-09-30 2017年 三季报 16 2017-06-30 2017年 半年报 17 2017-03-31 2017年 一季报 18 2016-12-31 2016年 年报 19 2016-09-30 2016年 三季报 20 2016-06-30 2016年 半年报 21 2016-03-31 2016年 一季报 22 2015-12-31 2015年 年报 24 2015-06-30 2015年 半年报 25 2015-03-31 2015年 一季报 26 2014-12-31 2014年 年报 27 2014-09-30 2014年 三季报 28 2014-06-30 2014年 半年报 29 2014-03-31 2014年 一季报 30 2013-12-31 2013年 年报 31 2013-09-30 2013年 三季报 32 2013-06-30 2013年 半年报 33 2013-03-31 2013年 一季报 34 2012-12-31 2012年 年报 35 2012-09-30 2012年 三季报 36 2012-06-30 2012年 半年报 37 2012-03-31 2012年 一季报 38 2011-12-31 2011年 年报 39 2011-09-30 2011年 三季报 """ fields = { 'REPORT_DATE': '报告日期', 'DATATYPE': '季报名称' } params = ( ('type', 'RPT_LICO_FN_CPD_BBBQ'), ('sty', ','.join(fields.keys())), ('p', '1'), ('ps', '2000'), ) url = 'https://datacenter.eastmoney.com/securities/api/data/get' response = requests.get( url, headers=EASTMONEY_REQUEST_HEADERS, params=params) items = jsonpath(response.json(), '$..data[:]') if not items: pd.DataFrame(columns=fields.values()) df = pd.DataFrame(items) df = df.rename(columns=fields) df['报告日期'] = df['报告日期'].apply(lambda x: x.split()[0]) return df @to_numeric def get_all_company_performance(date: str = None) -> pd.DataFrame: """ 获取沪深市场股票某一季度的表现情况 Parameters ---------- date : str, optional 报告发布日期 部分可选示例如下(默认为 ``None``) - ``None`` : 最新季报 - ``'2021-06-30'`` : 2021 年 Q2 季度报 - ``'2021-03-31'`` : 2021 年 Q1 季度报 Returns ------- DataFrame 获取沪深市场股票某一季度的表现情况 Examples --------- >>> import efinance as ef >>> # 获取最新季度业绩表现 >>> ef.stock.get_all_company_performance() 股票代码 股票简称 公告日期 营业收入 营业收入同比增长 营业收入季度环比 净利润 净利润同比增长 净利润季度环比 每股收益 每股净资产 净资产收益率 销售毛利率 每股经营现金流量 0 688981 中芯国际 2021-08-28 00:00:00 1.609039e+10 22.253453 20.6593 5.241321e+09 278.100000 307.8042 0.6600 11.949525 5.20 26.665642 1.182556 1 688819 天能股份 2021-08-28 00:00:00 1.625468e+10 9.343279 23.9092 6.719446e+08 -14.890000 -36.8779 0.7100 11.902912 6.15 17.323263 -1.562187 2 688789 宏华数科 2021-08-28 00:00:00 4.555604e+08 56.418441 6.5505 1.076986e+08 49.360000 -7.3013 1.8900 14.926761 13.51 43.011243 1.421272 3 688681 科汇股份 2021-08-28 00:00:00 1.503343e+08 17.706987 121.9407 1.664509e+07 -13.100000 383.3331 0.2100 5.232517 4.84 47.455511 -0.232395 4 688670 金迪克 2021-08-28 00:00:00 3.209423e+07 -63.282413 -93.1788 -2.330505e+07 -242.275001 -240.1554 -0.3500 3.332254 -10.10 85.308531 1.050348 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 3720 600131 国网信通 2021-07-16 00:00:00 2.880378e+09 6.787087 69.5794 2.171389e+08 29.570000 296.2051 0.1800 4.063260 4.57 19.137437 -0.798689 3721 600644 乐山电力 2021-07-15 00:00:00 1.257030e+09 18.079648 5.7300 8.379727e+07 -14.300000 25.0007 0.1556 3.112413 5.13 23.645137 0.200906 3722 002261 拓维信息 2021-07-15 00:00:00 8.901777e+08 47.505282 24.0732 6.071063e+07 68.320000 30.0596 0.0550 2.351598 2.37 37.047968 -0.131873 3723 601952 苏垦农发 2021-07-13 00:00:00 4.544138e+09 11.754570 47.8758 3.288132e+08 1.460000 83.1486 0.2400 3.888046 6.05 15.491684 -0.173772 3724 601568 北元集团 2021-07-09 00:00:00 6.031506e+09 32.543303 30.6352 1.167989e+09 61.050000 40.8165 0.3200 3.541533 9.01 27.879243 0.389860 >>> # 获取指定日期的季度业绩表现 >>> ef.stock.get_all_company_performance('2020-03-31') 股票代码 股票简称 公告日期 营业收入 营业收入同比增长 营业收入季度环比 净利润 净利润同比增长 净利润季度环比 每股收益 每股净资产 净资产收益率 销售毛利率 每股经营现金流量 0 605033 美邦股份 2021-08-25 00:00:00 2.178208e+08 NaN NaN 4.319814e+07 NaN NaN 0.4300 NaN NaN 37.250416 NaN 1 301048 金鹰重工 2021-07-30 00:00:00 9.165528e+07 NaN NaN -2.189989e+07 NaN NaN NaN NaN -1.91 20.227118 NaN 2 001213 中铁特货 2021-07-29 00:00:00 1.343454e+09 NaN NaN -3.753634e+07 NaN NaN -0.0100 NaN NaN -1.400708 NaN 3 605588 冠石科技 2021-07-28 00:00:00 1.960175e+08 NaN NaN 1.906751e+07 NaN NaN 0.3500 NaN NaN 16.324650 NaN 4 688798 艾为电子 2021-07-27 00:00:00 2.469943e+08 NaN NaN 2.707568e+07 NaN NaN 0.3300 NaN 8.16 33.641934 NaN ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4440 603186 华正新材 2020-04-09 00:00:00 4.117502e+08 -6.844813 -23.2633 1.763252e+07 18.870055 -26.3345 0.1400 5.878423 2.35 18.861255 0.094249 4441 002838 道恩股份 2020-04-09 00:00:00 6.191659e+08 -8.019810 -16.5445 6.939886e+07 91.601624 76.7419 0.1700 2.840665 6.20 22.575224 0.186421 4442 600396 金山股份 2020-04-08 00:00:00 2.023133e+09 0.518504 -3.0629 1.878432e+08 114.304022 61.2733 0.1275 1.511012 8.81 21.422393 0.085698 4443 002913 奥士康 2020-04-08 00:00:00 4.898977e+08 -3.883035 -23.2268 2.524717e+07 -47.239162 -58.8136 0.1700 16.666749 1.03 22.470020 0.552624 4444 002007 华兰生物 2020-04-08 00:00:00 6.775414e+08 -2.622289 -36.1714 2.472864e+08 -4.708821 -22.6345 0.1354 4.842456 3.71 61.408522 0.068341 Notes ----- 当输入的日期不正确时,会输出可选的日期列表。 你也可以通过函数 ``efinance.stock.get_all_report_dates`` 来获取可选日期 """ # TODO 加速 fields = { 'SECURITY_CODE': '股票代码', 'SECURITY_NAME_ABBR': '股票简称', 'NOTICE_DATE': '公告日期', 'TOTAL_OPERATE_INCOME': '营业收入', 'YSTZ': '营业收入同比增长', 'YSHZ': '营业收入季度环比', 'PARENT_NETPROFIT': '净利润', 'SJLTZ': '净利润同比增长', 'SJLHZ': '净利润季度环比', 'BASIC_EPS': '每股收益', 'BPS': '每股净资产', 'WEIGHTAVG_ROE': '净资产收益率', 'XSMLL': '销售毛利率', 'MGJYXJJE': '每股经营现金流量' # 'ISNEW':'是否最新' } dates = get_all_report_dates()['报告日期'].to_list() if date is None: date = dates[0] if date not in dates: rich.print('日期输入有误,可选日期如下:') rich.print(dates) return pd.DataFrame(columns=fields.values()) date = f"(REPORTDATE=\'{date}\')" page = 1 dfs: List[pd.DataFrame] = [] while 1: params = ( ('st', 'NOTICE_DATE,SECURITY_CODE'), ('sr', '-1,-1'), ('ps', '500'), ('p', f'{page}'), ('type', 'RPT_LICO_FN_CPD'), ('sty', 'ALL'), ('token', '<KEY>'), # ! 只选沪深A股 ('filter', f'(SECURITY_TYPE_CODE in ("058001001","058001008")){date}'), ) url = 'http://datacenter-web.eastmoney.com/api/data/get' response = session.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params) items = jsonpath(response.json(), '$..data[:]') if not items: break df = pd.DataFrame(items) dfs.append(df) page += 1 if len(dfs) == 0: df = pd.DataFrame(columns=fields.values()) return df df = pd.concat(dfs, axis=0, ignore_index=True) df = df.rename(columns=fields)[fields.values()] return df @to_numeric def get_latest_holder_number(date: str = None) -> pd.DataFrame: """ 获取沪深A股市场最新公开的股东数目变化情况 也可获取指定报告期的股东数目变化情况 Parameters ---------- date : str, optional 报告期日期 部分可选示例如下 - ``None`` 最新的报告期 - ``'2021-06-30'`` 2021年中报 - ``'2021-03-31'`` 2021年一季报 Returns ------- DataFrame 沪深A股市场最新公开的或指定报告期的股东数目变化情况 Examples -------- >>> import efinance as ef >>> ef.stock.get_latest_holder_number() 股票代码 股票名称 股东人数 股东人数增减 较上期变化百分比 股东户数统计截止日 户均持股市值 户均持股数量 总市值 总股本 公告日期 0 301029 怡合达 12021 -1.636527 -200.0 2021-09-30 00:00:00 2.790187e+06 33275.933783 3.354084e+10 400010000 2021-10-09 00:00:00 1 301006 迈拓股份 10964 -0.463005 -51.0 2021-09-30 00:00:00 3.493433e+05 12703.392922 3.830200e+09 139280000 2021-10-09 00:00:00 2 301003 江苏博云 11642 -2.658863 -318.0 2021-09-30 00:00:00 2.613041e+05 5004.867463 3.042103e+09 58266667 2021-10-09 00:00:00 3 300851 交大思诺 12858 -2.752987 -364.0 2021-09-30 00:00:00 2.177054e+05 6761.035931 2.799255e+09 86933400 2021-10-09 00:00:00 4 300830 金现代 34535 -16.670688 -6909.0 2021-09-30 00:00:00 2.001479e+05 12454.756045 6.912109e+09 430125000 2021-10-09 00:00:00 ... ... ... ... ... ... ... ... ... ... ... ... 4435 600618 氯碱化工 45372 -0.756814 -346.0 2014-06-30 00:00:00 1.227918e+05 16526.491581 5.571311e+09 749839976 2014-08-22 00:00:00 4436 601880 辽港股份 89923 -3.589540 -3348.0 2014-03-31 00:00:00 9.051553e+04 37403.111551 8.139428e+09 3363400000 2014-04-30 00:00:00 4437 600685 中船防务 52296 -4.807325 -2641.0 2014-03-11 00:00:00 1.315491e+05 8384.263691 6.879492e+09 438463454 2014-03-18 00:00:00 4438 000017 深中华A 21358 -10.800200 -2586.0 2013-06-30 00:00:00 5.943993e+04 14186.140556 1.269518e+09 302987590 2013-08-24 00:00:00 4439 601992 金隅集团 66736 -12.690355 -9700.0 2013-06-30 00:00:00 2.333339e+05 46666.785918 1.557177e+10 3114354625 2013-08-22 00:00:00 >>> ef.stock.get_latest_holder_number(date='2021-06-30') 股票代码 股票名称 股东人数 股东人数增减 较上期变化百分比 股东户数统计截止日 户均持股市值 户均持股数量 总市值 总股本 公告日期 0 688768 容知日新 24 0.000000 0.0 2021-06-30 00:00:00 NaN 1.714395e+06 NaN 41145491 2021-08-31 00:00:00 1 688669 聚石化学 8355 -11.135929 -1047.0 2021-06-30 00:00:00 3.662956e+05 1.117096e+04 3.060400e+09 93333334 2021-08-31 00:00:00 2 688613 奥精医疗 8768 -71.573999 -22077.0 2021-06-30 00:00:00 1.380627e+06 1.520681e+04 1.210533e+10 133333334 2021-08-31 00:00:00 3 688586 江航装备 20436 -5.642257 -1222.0 2021-06-30 00:00:00 5.508121e+05 1.975653e+04 1.125640e+10 403744467 2021-08-31 00:00:00 4 688559 海目星 7491 -16.460355 -1476.0 2021-06-30 00:00:00 8.071019e+05 2.669871e+04 6.046000e+09 200000000 2021-08-31 00:00:00 ... ... ... ... ... ... ... ... ... ... ... ... 4292 002261 拓维信息 144793 0.931290 1336.0 2021-06-30 00:00:00 7.731589e+04 7.602349e+03 1.119480e+10 1100766874 2021-07-15 00:00:00 4293 002471 中超控股 75592 1.026409 768.0 2021-06-30 00:00:00 4.864536e+04 1.677426e+04 3.677200e+09 1268000000 2021-07-12 00:00:00 4294 600093 *ST易见 52497 -2.118099 -1136.0 2021-06-30 00:00:00 1.267904e+05 2.138117e+04 6.656114e+09 1122447500 2021-07-06 00:00:00 4295 688091 上海谊众 25 0.000000 0.0 2021-06-30 00:00:00 NaN 3.174000e+06 NaN 79350000 2021-07-02 00:00:00 4296 301053 远信工业 10 0.000000 0.0 2021-06-30 00:00:00 NaN 6.131250e+06 NaN 61312500 2021-06-30 00:00:00 """ dfs: List[pd.DataFrame] = [] if date is not None: date: datetime = datetime.strptime(date, '%Y-%m-%d') year = date.year month = date.month if month % 3 != 0: month -= month % 3 # TODO 优化处理月份正确但日期不为月份最后一天的逻辑 if month < 3: year -= 1 # NOTE 对应上一年最后一个月 month = 12 _, last_day = calendar.monthrange(year, month) date: str = datetime.strptime( f'{year}-{month}-{last_day}', '%Y-%m-%d').strftime('%Y-%m-%d') page = 1 fields = { 'SECURITY_CODE': '股票代码', 'SECURITY_NAME_ABBR': '股票名称', 'HOLDER_NUM': '股东人数', 'HOLDER_NUM_RATIO': '股东人数增减', 'HOLDER_NUM_CHANGE': '较上期变化百分比', 'END_DATE': '股东户数统计截止日', 'AVG_MARKET_CAP': '户均持股市值', 'AVG_HOLD_NUM': '户均持股数量', 'TOTAL_MARKET_CAP': '总市值', 'TOTAL_A_SHARES': '总股本', 'HOLD_NOTICE_DATE': '公告日期' } while 1: params = [ ('sortColumns', 'HOLD_NOTICE_DATE,SECURITY_CODE'), ('sortTypes', '-1,-1'), ('pageSize', '500'), ('pageNumber', page), ('columns', 'SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE'), ('quoteColumns', 'f2,f3'), ('source', 'WEB'), ('client', 'WEB'), ] if date is not None: # NOTE 注意不能漏 \' params.append(('filter', f'(END_DATE=\'{date}\')')) params.append(('reportName', 'RPT_HOLDERNUM_DET')) else: params.append(('reportName', 'RPT_HOLDERNUMLATEST')) params = tuple(params) url = 'http://datacenter-web.eastmoney.com/api/data/v1/get' response = session.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params) items = jsonpath(response.json(), '$..data[:]') if not items: break df = pd.DataFrame(items) df = df.rename(columns=fields)[fields.values()] page += 1 dfs.append(df) if len(dfs) == 0: df = pd.DataFrame(columns=fields.values()) return df df = pd.concat(dfs, ignore_index=True) return df @to_numeric @retry(tries=3) def get_daily_billboard(start_date: str = None, end_date: str = None) -> pd.DataFrame: """ 获取指定日期区间的龙虎榜详情数据 Parameters ---------- start_date : str, optional 开始日期 部分可选示例如下 - ``None`` 最新一个榜单公开日(默认值) - ``"2021-08-27"`` 2021年8月27日 end_date : str, optional 结束日期 部分可选示例如下 - ``None`` 最新一个榜单公开日(默认值) - ``"2021-08-31"`` 2021年8月31日 Returns ------- DataFrame 龙虎榜详情数据 Examples -------- >>> import efinance as ef >>> # 获取最新一个公开的龙虎榜数据(后面还有获取指定日期区间的示例代码) >>> ef.stock.get_daily_billboard() 股票代码 股票名称 上榜日期 解读 收盘价 涨跌幅 换手率 龙虎榜净买额 龙虎榜买入额 龙虎榜卖出额 龙虎榜成交额 市场总成交额 净买额占总成交比 成交额占总成交比 流通市值 上榜原因 0 000608 阳光股份 2021-08-27 卖一主卖,成功率48.36% 3.73 -9.9034 3.8430 -8.709942e+06 1.422786e+07 2.293780e+07 3.716565e+07 110838793 -7.858208 33.531268 2.796761e+09 日跌幅偏离值达到7%的前5只证券 1 000751 锌业股份 2021-08-27 主力做T,成功率18.84% 5.32 -2.9197 19.6505 -1.079219e+08 5.638899e+07 1.643109e+08 2.206999e+08 1462953973 -7.376984 15.085906 7.500502e+09 日振幅值达到15%的前5只证券 2 000762 西藏矿业 2021-08-27 北京资金买入,成功率39.42% 63.99 1.0741 15.6463 2.938758e+07 4.675541e+08 4.381665e+08 9.057206e+08 4959962598 0.592496 18.260633 3.332571e+10 日振幅值达到15%的前5只证券 3 000833 粤桂股份 2021-08-27 实力游资买入,成功率44.55% 8.87 10.0496 8.8263 4.993555e+07 1.292967e+08 7.936120e+07 2.086580e+08 895910429 5.573721 23.290046 3.353614e+09 连续三个交易日内,涨幅偏离值累计达到20%的证券 4 001208 华菱线缆 2021-08-27 1家机构买入,成功率40.43% 19.72 4.3386 46.1985 4.055258e+07 1.537821e+08 1.132295e+08 2.670117e+08 1203913048 3.368398 22.178651 2.634710e+09 日换手率达到20%的前5只证券 .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 70 688558 国盛智科 2021-08-27 买一主买,成功率38.71% 60.72 1.6064 34.0104 1.835494e+07 1.057779e+08 8.742293e+07 1.932008e+08 802569300 2.287023 24.072789 2.321743e+09 有价格涨跌幅限制的日换手率达到30%的前五只证券 71 688596 正帆科技 2021-08-27 1家机构买入,成功率57.67% 26.72 3.1660 3.9065 -1.371039e+07 8.409046e+07 9.780085e+07 1.818913e+08 745137400 -1.839982 24.410438 4.630550e+09 有价格涨跌幅限制的连续3个交易日内收盘价格涨幅偏离值累计达到30%的证券 72 688663 新风光 2021-08-27 卖一主卖,成功率37.18% 28.17 -17.6316 32.2409 1.036460e+07 5.416901e+07 4.380440e+07 9.797341e+07 274732700 3.772613 35.661358 8.492507e+08 有价格涨跌幅限制的日收盘价格跌幅达到15%的前五只证券 73 688663 新风光 2021-08-27 卖一主卖,成功率37.18% 28.17 -17.6316 32.2409 1.036460e+07 5.416901e+07 4.380440e+07 9.797341e+07 274732700 3.772613 35.661358 8.492507e+08 有价格涨跌幅限制的日换手率达到30%的前五只证券 74 688667 菱电电控 2021-08-27 1家机构卖出,成功率49.69% 123.37 -18.8996 17.7701 -2.079877e+06 4.611216e+07 4.819204e+07 9.430420e+07 268503400 -0.774618 35.122163 1.461225e+09 有价格涨跌幅限制的日收盘价格跌幅达到15%的前五只证券 >>> # 获取指定日期区间的龙虎榜数据 >>> start_date = '2021-08-20' # 开始日期 >>> end_date = '2021-08-27' # 结束日期 >>> ef.stock.get_daily_billboard(start_date = start_date,end_date = end_date) 股票代码 股票名称 上榜日期 解读 收盘价 涨跌幅 换手率 龙虎榜净买额 龙虎榜买入额 龙虎榜卖出额 龙虎榜成交额 市场总成交额 净买额占总成交比 成交额占总成交比 流通市值 上榜原因 0 000608 阳光股份 2021-08-27 卖一主卖,成功率48.36% 3.73 -9.9034 3.8430 -8.709942e+06 1.422786e+07 2.293780e+07 3.716565e+07 110838793 -7.858208 33.531268 2.796761e+09 日跌幅偏离值达到7%的前5只证券 1 000751 锌业股份 2021-08-27 主力做T,成功率18.84% 5.32 -2.9197 19.6505 -1.079219e+08 5.638899e+07 1.643109e+08 2.206999e+08 1462953973 -7.376984 15.085906 7.500502e+09 日振幅值达到15%的前5只证券 2 000762 西藏矿业 2021-08-27 北京资金买入,成功率39.42% 63.99 1.0741 15.6463 2.938758e+07 4.675541e+08 4.381665e+08 9.057206e+08 4959962598 0.592496 18.260633 3.332571e+10 日振幅值达到15%的前5只证券 3 000833 粤桂股份 2021-08-27 实力游资买入,成功率44.55% 8.87 10.0496 8.8263 4.993555e+07 1.292967e+08 7.936120e+07 2.086580e+08 895910429 5.573721 23.290046 3.353614e+09 连续三个交易日内,涨幅偏离值累计达到20%的证券 4 001208 华菱线缆 2021-08-27 1家机构买入,成功率40.43% 19.72 4.3386 46.1985 4.055258e+07 1.537821e+08 1.132295e+08 2.670117e+08 1203913048 3.368398 22.178651 2.634710e+09 日换手率达到20%的前5只证券 .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 414 605580 恒盛能源 2021-08-20 买一主买,成功率33.33% 13.28 10.0249 0.4086 2.413149e+06 2.713051e+06 2.999022e+05 3.012953e+06 2713051 88.945937 111.054054 6.640000e+08 有价格涨跌幅限制的日收盘价格涨幅偏离值达到7%的前三只证券 415 688029 南微医学 2021-08-20 4家机构卖出,成功率55.82% 204.61 -18.5340 8.1809 -1.412053e+08 1.883342e+08 3.295394e+08 5.178736e+08 762045800 -18.529760 67.958326 9.001510e+09 有价格涨跌幅限制的日收盘价格跌幅达到15%的前五只证券 416 688408 中信博 2021-08-20 4家机构卖出,成功率47.86% 179.98 -0.0666 15.3723 -4.336304e+07 3.750919e+08 4.184550e+08 7.935469e+08 846547400 -5.122340 93.739221 5.695886e+09 有价格涨跌幅限制的日价格振幅达到30%的前五只证券 417 688556 高测股份 2021-08-20 上海资金买入,成功率60.21% 51.97 17.0495 10.6452 -3.940045e+07 1.642095e+08 2.036099e+08 3.678194e+08 575411600 -6.847351 63.922831 5.739089e+09 有价格涨跌幅限制的日收盘价格涨幅达到15%的前五只证券 418 688636 智明达 2021-08-20 2家机构买入,成功率47.37% 161.90 15.8332 11.9578 2.922406e+07 6.598126e+07 3.675721e+07 1.027385e+08 188330100 15.517464 54.552336 1.647410e+09 有价格涨跌幅限制的日收盘价格涨幅达到15%的前五只证券 """ today = datetime.today().date() mode = 'auto' if start_date is None: start_date = today if end_date is None: end_date = today if isinstance(start_date, str): mode = 'user' start_date = datetime.strptime(start_date, '%Y-%m-%d') if isinstance(end_date, str): mode = 'user' end_date = datetime.strptime(end_date, '%Y-%m-%d') fields = EASTMONEY_STOCK_DAILY_BILL_BOARD_FIELDS bar: tqdm = None while 1: dfs: List[pd.DataFrame] = [] page = 1 while 1: params = ( ('sortColumns', 'TRADE_DATE,SECURITY_CODE'), ('sortTypes', '-1,1'), ('pageSize', '500'), ('pageNumber', page), ('reportName', 'RPT_DAILYBILLBOARD_DETAILS'), ('columns', 'ALL'), ('source', 'WEB'), ('client', 'WEB'), ('filter', f"(TRADE_DATE<='{end_date}')(TRADE_DATE>='{start_date}')"), ) url = 'http://datacenter-web.eastmoney.com/api/data/v1/get' response = session.get(url, params=params) if bar is None: pages = jsonpath(response.json(), '$..pages') if pages and pages[0] != 1: total = pages[0] bar = tqdm(total=int(total)) if bar is not None: bar.update() items = jsonpath(response.json(), '$..data[:]') if not items: break page += 1 df = pd.DataFrame(items).rename(columns=fields)[fields.values()] dfs.append(df) if mode == 'user': break if len(dfs) == 0: start_date = start_date-timedelta(1) end_date = end_date-timedelta(1) if len(dfs) > 0: break if len(dfs) == 0: df = pd.DataFrame(columns=fields.values()) return df df = pd.concat(dfs, ignore_index=True) df['上榜日期'] = df['上榜日期'].astype('str').apply(lambda x: x.split(' ')[0]) return df def get_members(index_code: str) -> pd.DataFrame: """ 获取指数成分股信息 Parameters ---------- index_code : str 指数名称或者指数代码 Returns ------- DataFrame 指数成分股信息 Examples -------- >>> import efinance as ef >>> ef.stock.get_members('000300') 指数代码 指数名称 股票代码 股票名称 股票权重 0 000300 沪深300 600519 贵州茅台 4.77 1 000300 沪深300 601398 工商银行 3.46 2 000300 沪深300 601939 建设银行 3.12 3 000300 沪深300 600036 招商银行 2.65 4 000300 沪深300 601857 中国石油 2.37 .. ... ... ... ... ... 295 000300 沪深300 688126 沪硅产业 NaN 296 000300 沪深300 688169 石头科技 NaN 297 000300 沪深300 688036 传音控股 NaN 298 000300 沪深300 688009 中国通号 NaN 299 000300 沪深300 688008 澜起科技 NaN >>> ef.stock.get_members('中证白酒') 指数代码 指数名称 股票代码 股票名称 股票权重 0 399997 中证白酒 600519 贵州茅台 49.25 1 399997 中证白酒 000858 五粮液 18.88 2 399997 中证白酒 600809 山西汾酒 8.45 3 399997 中证白酒 000568 泸州老窖 7.03 4 399997 中证白酒 002304 洋河股份 5.72 5 399997 中证白酒 000596 古井贡酒 2.76 6 399997 中证白酒 000799 酒鬼酒 1.77 7 399997 中证白酒 600779 水井坊 1.36 8 399997 中证白酒 603369 今世缘 1.26 9 399997 中证白酒 603198 迎驾贡酒 0.89 10 399997 中证白酒 603589 口子窖 0.67 11 399997 中证白酒 000860 顺鑫农业 0.59 12 399997 中证白酒 600559 老白干酒 0.44 13 399997 中证白酒 603919 金徽酒 0.39 14 399997 中证白酒 600197 伊力特 0.28 15 399997 中证白酒 600199 金种子酒 0.26 """ fields = { 'IndexCode': '指数代码', 'IndexName': '指数名称', 'StockCode': '股票代码', 'StockName': '股票名称', 'MARKETCAPPCT': '股票权重' } qs = search_quote(index_code, count=10) df = pd.DataFrame(columns=fields.values()) if not qs: return df for q in qs: if q.security_typeName == '指数': params = ( ('IndexCode', f'{q.code}'), ('pageIndex', '1'), ('pageSize', '10000'), ('deviceid', '1234567890'), ('version', '6.9.9'), ('product', 'EFund'), ('plat', 'Iphone'), ('ServerVersion', '6.9.9'), ) url = 'https://fundztapi.eastmoney.com/FundSpecialApiNew/FundSpecialZSB30ZSCFG' json_response = requests.get( url, params=params, headers=EASTMONEY_REQUEST_HEADERS).json() items = json_response['Datas'] # NOTE 这是为了跳过排在前面但无法获取成分股的指数 例如搜索 白酒 时排在前面的 980031 if not items: continue df: pd.DataFrame = pd.DataFrame(items).rename( columns=fields)[fields.values()] df['股票权重'] = pd.to_numeric(df['股票权重'], errors='coerce') return df return df def get_latest_ipo_info() -> pd.DataFrame: """ 获取企业 IPO 审核状态 Returns ------- DataFrame 企业 IPO 审核状态 Examples -------- >>> import efinance as ef >>> ef.stock.get_latest_ipo_info() 发行人全称 审核状态 注册地 证监会行业 保荐机构 会计师事务所 更新日期 受理日期 拟上市地点 0 郑州众智科技股份有限公司 已问询 河南 电气机械和器材制造业 民生证券股份有限公司 信永中和会计师事务所(特殊普通合伙) 2021-10-09 00:00:00 2021-06-24 00:00:00 创业板 1 成都盛帮密封件股份有限公司 已问询 四川 橡胶和塑料制品业 国金证券股份有限公司 中审众环会计师事务所(特殊普通合伙) 2021-10-09 00:00:00 2020-12-08 00:00:00 创业板 2 恒勃控股股份有限公司 已问询 浙江 汽车制造业 中信建投证券股份有限公司 中汇会计师事务所(特殊普通合伙) 2021-10-08 00:00:00 2021-09-06 00:00:00 创业板 3 深圳英集芯科技股份有限公司 已问询 广东 计算机、通信和其他电子设备制造业 华泰联合证券有限责任公司 容诚会计师事务所(特殊普通合伙) 2021-10-08 00:00:00 2021-06-10 00:00:00 科创板 4 苏州长光华芯光电技术股份有限公司 上市委会议通过 江苏 计算机、通信和其他电子设备制造业 华泰联合证券有限责任公司 天衡会计师事务所(特殊普通合伙) 2021-10-08 00:00:00 2021-06-24 00:00:00 科创板 ... ... ... .. ... ... ... ... ... ... 1376 澜起科技股份有限公司 注册生效 上海 计算机、通信和其他电子设备制造业 中信证券股份有限公司 瑞华会计师事务所(特殊普通合伙) 2019-06-26 00:00:00 2019-04-01 00:00:00 科创板 1377 浙江杭可科技股份有限公司 注册生效 浙江 专用设备制造业 国信证券股份有限公司 天健会计师事务所(特殊普通合伙) 2019-06-24 00:00:00 2019-04-15 00:00:00 科创板 1378 苏州天准科技股份有限公司 注册生效 江苏 专用设备制造业 海通证券股份有限公司 瑞华会计师事务所(特殊普通合伙) 2019-06-20 00:00:00 2019-04-02 00:00:00 科创板 1379 烟台睿创微纳技术股份有限公司 注册生效 山东 计算机、通信和其他电子设备制造业 中信证券股份有限公司 信永中和会计师事务所(特殊普通合伙) 2019-06-18 00:00:00 2019-03-22 00:00:00 科创板 1380 苏州华兴源创科技股份有限公司 注册生效 江苏 专用设备制造业 华泰联合证券有限责任公司 华普天健会计师事务所(特殊普通合伙) 2019-06-18 00:00:00 2019-03-27 00:00:00 科创板 """ fields = { # 'ORG_CODE':'发行人代码', 'ISSUER_NAME': '发行人全称', 'CHECK_STATUS': '审核状态', 'REG_ADDRESS': '注册地', 'CSRC_INDUSTRY': '证监会行业', 'RECOMMEND_ORG': '保荐机构', 'ACCOUNT_FIRM': '会计师事务所', 'UPDATE_DATE': '更新日期', 'ACCEPT_DATE': '受理日期', 'TOLIST_MARKET': '拟上市地点' } df = pd.DataFrame(columns=fields.values()) dfs: List[pd.DataFrame] = [] page = 1 while 1: params = ( ('st', 'UPDATE_DATE,SECURITY_CODE'), ('sr', '-1,-1'), ('ps', '500'), ('p', page), ('type', 'RPT_REGISTERED_INFO'), ('sty', 'ORG_CODE,ISSUER_NAME,CHECK_STATUS,CHECK_STATUS_CODE,REG_ADDRESS,CSRC_INDUSTRY,RECOMMEND_ORG,LAW_FIRM,ACCOUNT_FIRM,UPDATE_DATE,ACCEPT_DATE,TOLIST_MARKET,SECURITY_CODE'), ('token', '<KEY>'), ('client', 'WEB'), ) url = 'http://datacenter-web.eastmoney.com/api/data/get' json_response = requests.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params).json() items = jsonpath(json_response, '$..data[:]') if not items: break page += 1 df =
pd.DataFrame(items)
pandas.DataFrame
import builtins from io import StringIO from itertools import product from string import ascii_lowercase import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna) import pandas.core.nanops as nanops from pandas.util import testing as tm @pytest.mark.parametrize("agg_func", ['any', 'all']) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("vals", [ ['foo', 'bar', 'baz'], ['foo', '', ''], ['', '', ''], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1., 2., 3.], [1., 0., 0.], [0., 0., 0.], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan] ]) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({'key': ['a'] * 3 + ['b'] * 3, 'val': vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == 'any': exp = False exp_df = DataFrame([exp] * 2, columns=['val'], index=Index( ['a', 'b'], name='key')) result = getattr(df.groupby('key'), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({'nn': [11, 11, 22, 22], 'ii': [1, 2, 3, 4], 'ss': 4 * ['mama']}) result = aa.groupby('nn').max() assert 'ss' in result result = aa.groupby('nn').max(numeric_only=False) assert 'ss' in result result = aa.groupby('nn').min() assert 'ss' in result result = aa.groupby('nn').min(numeric_only=False) assert 'ss' in result def test_intercept_builtin_sum(): s = Series([1., 2., np.nan, 3.]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize('keys', [ "jim", # Single key ["jim", "joe"] # Multi-key ]) def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = ("invalid frame shape: {} " "(expected ({}, 3))".format(result.shape, ngroups)) assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal(result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname))) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( {'group': [1, 1, 2], 'int': [1, 2, 3], 'float': [4., 5., 6.], 'string': list('abc'), 'category_string': pd.Series(list('abc')).astype('category'), 'category_int': [7, 8, 9], 'datetime': pd.date_range('20130101', periods=3), 'datetimetz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'timedelta': pd.timedelta_range('1 s', periods=3, freq='s')}, columns=['group', 'int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) expected_columns_numeric = Index(['int', 'float', 'category_int']) # mean / median expected = pd.DataFrame( {'category_int': [7.5, 9], 'float': [4.5, 6.], 'timedelta': [pd.Timedelta('1.5s'), pd.Timedelta('3s')], 'int': [1.5, 3], 'datetime': [pd.Timestamp('2013-01-01 12:00:00'), pd.Timestamp('2013-01-03 00:00:00')], 'datetimetz': [ pd.Timestamp('2013-01-01 12:00:00', tz='US/Eastern'), pd.Timestamp('2013-01-03 00:00:00', tz='US/Eastern')]}, index=Index([1, 2], name='group'), columns=['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['mean', 'median']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index(['int', 'float', 'string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['min', 'max']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['first', 'last']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_int', 'timedelta']) for attr in ['sum']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'category_int']) for attr in ['prod', 'cumprod']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) # like min, max, but don't include strings expected_columns = Index(['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['cummin', 'cummax']: f = getattr(df.groupby('group'), attr) result = f() # GH 15561: numeric_only=False set by default like min/max tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'category_int', 'timedelta']) for attr in ['cumsum']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) def test_non_cython_api(): # GH5610 # non-cython calls should not include the grouper df = DataFrame( [[1, 2, 'foo'], [1, np.nan, 'bar'], [3, np.nan, 'baz']], columns=['A', 'B', 'C']) g = df.groupby('A') gni = df.groupby('A', as_index=False) # mad expected = DataFrame([[0], [np.nan]], columns=['B'], index=[1, 3]) expected.index.name = 'A' result = g.mad() tm.assert_frame_equal(result, expected) expected = DataFrame([[0., 0.], [0, np.nan]], columns=['A', 'B'], index=[0, 1]) result = gni.mad() tm.assert_frame_equal(result, expected) # describe expected_index = pd.Index([1, 3], name='A') expected_col = pd.MultiIndex(levels=[['B'], ['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']], codes=[[0] * 8, list(range(8))]) expected = pd.DataFrame([[1.0, 2.0, np.nan, 2.0, 2.0, 2.0, 2.0, 2.0], [0.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]], index=expected_index, columns=expected_col) result = g.describe() tm.assert_frame_equal(result, expected) expected = pd.concat([df[df.A == 1].describe().unstack().to_frame().T, df[df.A == 3].describe().unstack().to_frame().T]) expected.index = pd.Index([0, 1]) result = gni.describe() tm.assert_frame_equal(result, expected) # any expected = DataFrame([[True, True], [False, True]], columns=['B', 'C'], index=[1, 3]) expected.index.name = 'A' result = g.any() tm.assert_frame_equal(result, expected) # idxmax expected = DataFrame([[0.0], [np.nan]], columns=['B'], index=[1, 3]) expected.index.name = 'A' result = g.idxmax() tm.assert_frame_equal(result, expected) def test_cython_api2(): # this takes the fast apply path # cumsum (GH5614) df = DataFrame( [[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9] ], columns=['A', 'B', 'C']) expected = DataFrame( [[2, np.nan], [np.nan, 9], [4, 9]], columns=['B', 'C']) result = df.groupby('A').cumsum() tm.assert_frame_equal(result, expected) # GH 5755 - cumsum is a transformer and should ignore as_index result = df.groupby('A', as_index=False).cumsum() tm.assert_frame_equal(result, expected) # GH 13994 result = df.groupby('A').cumsum(axis=1) expected = df.cumsum(axis=1) tm.assert_frame_equal(result, expected) result = df.groupby('A').cumprod(axis=1) expected = df.cumprod(axis=1) tm.assert_frame_equal(result, expected) def test_cython_median(): df = DataFrame(np.random.randn(1000)) df.values[::2] = np.nan labels = np.random.randint(0, 50, size=1000).astype(float) labels[::17] = np.nan result = df.groupby(labels).median() exp = df.groupby(labels).agg(nanops.nanmedian) tm.assert_frame_equal(result, exp) df = DataFrame(np.random.randn(1000, 5)) rs = df.groupby(labels).agg(np.median) xp = df.groupby(labels).median() tm.assert_frame_equal(rs, xp) def test_median_empty_bins(observed): df = pd.DataFrame(np.random.randint(0, 44, 500)) grps = range(0, 55, 5) bins = pd.cut(df[0], grps) result = df.groupby(bins, observed=observed).median() expected = df.groupby(bins, observed=observed).agg(lambda x: x.median()) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("dtype", [ 'int8', 'int16', 'int32', 'int64', 'float32', 'float64']) @pytest.mark.parametrize("method,data", [ ('first', {'df': [{'a': 1, 'b': 1}, {'a': 2, 'b': 3}]}), ('last', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}]}), ('min', {'df': [{'a': 1, 'b': 1}, {'a': 2, 'b': 3}]}), ('max', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}]}), ('nth', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 4}], 'args': [1]}), ('count', {'df': [{'a': 1, 'b': 2}, {'a': 2, 'b': 2}], 'out_type': 'int64'}) ]) def test_groupby_non_arithmetic_agg_types(dtype, method, data): # GH9311, GH6620 df = pd.DataFrame( [{'a': 1, 'b': 1}, {'a': 1, 'b': 2}, {'a': 2, 'b': 3}, {'a': 2, 'b': 4}]) df['b'] = df.b.astype(dtype) if 'args' not in data: data['args'] = [] if 'out_type' in data: out_type = data['out_type'] else: out_type = dtype exp = data['df'] df_out = pd.DataFrame(exp) df_out['b'] = df_out.b.astype(out_type) df_out.set_index('a', inplace=True) grpd = df.groupby('a') t = getattr(grpd, method)(*data['args']) tm.assert_frame_equal(t, df_out) @pytest.mark.parametrize("i", [ (Timestamp("2011-01-15 12:50:28.502376"), Timestamp("2011-01-20 12:50:28.593448")), (24650000000000001, 24650000000000002) ]) def test_groupby_non_arithmetic_agg_int_like_precision(i): # see gh-6620, gh-9311 df = pd.DataFrame([{"a": 1, "b": i[0]}, {"a": 1, "b": i[1]}]) grp_exp = {"first": {"expected": i[0]}, "last": {"expected": i[1]}, "min": {"expected": i[0]}, "max": {"expected": i[1]}, "nth": {"expected": i[1], "args": [1]}, "count": {"expected": 2}} for method, data in grp_exp.items(): if "args" not in data: data["args"] = [] grouped = df.groupby("a") res = getattr(grouped, method)(*data["args"]) assert res.iloc[0].b == data["expected"] @pytest.mark.parametrize("func, values", [ ("idxmin", {'c_int': [0, 2], 'c_float': [1, 3], 'c_date': [1, 2]}), ("idxmax", {'c_int': [1, 3], 'c_float': [0, 2], 'c_date': [0, 3]}) ]) def test_idxmin_idxmax_returns_int_types(func, values): # GH 25444 df = pd.DataFrame({'name': ['A', 'A', 'B', 'B'], 'c_int': [1, 2, 3, 4], 'c_float': [4.02, 3.03, 2.04, 1.05], 'c_date': ['2019', '2018', '2016', '2017']}) df['c_date'] = pd.to_datetime(df['c_date']) result = getattr(df.groupby('name'), func)() expected = pd.DataFrame(values, index=Index(['A', 'B'], name="name")) tm.assert_frame_equal(result, expected) def test_fill_consistency(): # GH9221 # pass thru keyword arguments to the generated wrapper # are set if the passed kw is None (only) df = DataFrame(index=pd.MultiIndex.from_product( [['value1', 'value2'], date_range('2014-01-01', '2014-01-06')]), columns=Index( ['1', '2'], name='id')) df['1'] = [np.nan, 1, np.nan, np.nan, 11, np.nan, np.nan, 2, np.nan, np.nan, 22, np.nan] df['2'] = [np.nan, 3, np.nan, np.nan, 33, np.nan, np.nan, 4, np.nan, np.nan, 44, np.nan] expected = df.groupby(level=0, axis=0).fillna(method='ffill') result = df.T.groupby(level=0, axis=1).fillna(method='ffill').T tm.assert_frame_equal(result, expected) def test_groupby_cumprod(): # GH 4095 df = pd.DataFrame({'key': ['b'] * 10, 'value': 2}) actual = df.groupby('key')['value'].cumprod() expected = df.groupby('key')['value'].apply(lambda x: x.cumprod()) expected.name = 'value' tm.assert_series_equal(actual, expected) df = pd.DataFrame({'key': ['b'] * 100, 'value': 2}) actual = df.groupby('key')['value'].cumprod() # if overflows, groupby product casts to float # while numpy passes back invalid values df['value'] = df['value'].astype(float) expected = df.groupby('key')['value'].apply(lambda x: x.cumprod()) expected.name = 'value' tm.assert_series_equal(actual, expected) def test_ops_general(): ops = [('mean', np.mean), ('median', np.median), ('std', np.std), ('var', np.var), ('sum', np.sum), ('prod', np.prod), ('min', np.min), ('max', np.max), ('first', lambda x: x.iloc[0]), ('last', lambda x: x.iloc[-1]), ('count', np.size), ] try: from scipy.stats import sem except ImportError: pass else: ops.append(('sem', sem)) df = DataFrame(np.random.randn(1000)) labels = np.random.randint(0, 50, size=1000).astype(float) for op, targop in ops: result = getattr(df.groupby(labels), op)().astype(float) expected = df.groupby(labels).agg(targop) try: tm.assert_frame_equal(result, expected) except BaseException as exc: exc.args += ('operation: %s' % op, ) raise def test_max_nan_bug(): raw = """,Date,app,File -04-23,2013-04-23 00:00:00,,log080001.log -05-06,2013-05-06 00:00:00,,log.log -05-07,2013-05-07 00:00:00,OE,xlsx""" df = pd.read_csv(StringIO(raw), parse_dates=[0]) gb = df.groupby('Date') r = gb[['File']].max() e = gb['File'].max().to_frame() tm.assert_frame_equal(r, e) assert not r['File'].isna().any() def test_nlargest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list('a' * 5 + 'b' * 5)) gb = a.groupby(b) r = gb.nlargest(3) e = Series([ 7, 5, 3, 10, 9, 6 ], index=MultiIndex.from_arrays([list('aaabbb'), [3, 2, 1, 9, 5, 8]])) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series([ 3, 2, 1, 3, 3, 2 ], index=MultiIndex.from_arrays([list('aaabbb'), [2, 3, 1, 6, 5, 7]])) tm.assert_series_equal(gb.nlargest(3, keep='last'), e) def test_nsmallest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list('a' * 5 + 'b' * 5)) gb = a.groupby(b) r = gb.nsmallest(3) e = Series([ 1, 2, 3, 0, 4, 6 ], index=MultiIndex.from_arrays([list('aaabbb'), [0, 4, 1, 6, 7, 8]])) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series([ 0, 1, 1, 0, 1, 2 ], index=MultiIndex.from_arrays([list('aaabbb'), [4, 1, 0, 9, 8, 7]])) tm.assert_series_equal(gb.nsmallest(3, keep='last'), e) @pytest.mark.parametrize("func", [ 'mean', 'var', 'std', 'cumprod', 'cumsum' ]) def test_numpy_compat(func): # see gh-12811 df = pd.DataFrame({'A': [1, 2, 1], 'B': [1, 2, 3]}) g = df.groupby('A') msg = "numpy operations are not valid with groupby" with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(1, 2, 3) with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(foo=1) def test_cummin_cummax(): # GH 15048 num_types = [np.int32, np.int64, np.float32, np.float64] num_mins = [np.iinfo(np.int32).min, np.iinfo(np.int64).min, np.finfo(np.float32).min, np.finfo(np.float64).min] num_max = [np.iinfo(np.int32).max, np.iinfo(np.int64).max, np.finfo(np.float32).max, np.finfo(np.float64).max] base_df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 2, 2], 'B': [3, 4, 3, 2, 2, 3, 2, 1]}) expected_mins = [3, 3, 3, 2, 2, 2, 2, 1] expected_maxs = [3, 4, 4, 4, 2, 3, 3, 3] for dtype, min_val, max_val in zip(num_types, num_mins, num_max): df = base_df.astype(dtype) # cummin expected = pd.DataFrame({'B': expected_mins}).astype(dtype) result = df.groupby('A').cummin() tm.assert_frame_equal(result, expected) result = df.groupby('A').B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # Test cummin w/ min value for dtype df.loc[[2, 6], 'B'] = min_val expected.loc[[2, 3, 6, 7], 'B'] = min_val result = df.groupby('A').cummin() tm.assert_frame_equal(result, expected) expected = df.groupby('A').B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # cummax expected = pd.DataFrame({'B': expected_maxs}).astype(dtype) result = df.groupby('A').cummax() tm.assert_frame_equal(result, expected) result = df.groupby('A').B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(result, expected) # Test cummax w/ max value for dtype df.loc[[2, 6], 'B'] = max_val expected.loc[[2, 3, 6, 7], 'B'] = max_val result = df.groupby('A').cummax() tm.assert_frame_equal(result, expected) expected = df.groupby('A').B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(result, expected) # Test nan in some values base_df.loc[[0, 2, 4, 6], 'B'] = np.nan expected = pd.DataFrame({'B': [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]}) result = base_df.groupby('A').cummin() tm.assert_frame_equal(result, expected) expected = (base_df.groupby('A') .B .apply(lambda x: x.cummin()) .to_frame()) tm.assert_frame_equal(result, expected) expected = pd.DataFrame({'B': [np.nan, 4, np.nan, 4, np.nan, 3, np.nan, 3]}) result = base_df.groupby('A').cummax() tm.assert_frame_equal(result, expected) expected = (base_df.groupby('A') .B .apply(lambda x: x.cummax()) .to_frame()) tm.assert_frame_equal(result, expected) # Test nan in entire column base_df['B'] = np.nan expected = pd.DataFrame({'B': [np.nan] * 8}) result = base_df.groupby('A').cummin() tm.assert_frame_equal(expected, result) result = base_df.groupby('A').B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(expected, result) result = base_df.groupby('A').cummax() tm.assert_frame_equal(expected, result) result = base_df.groupby('A').B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(expected, result) # GH 15561 df = pd.DataFrame(dict(a=[1], b=pd.to_datetime(['2001']))) expected = pd.Series(pd.to_datetime('2001'), index=[0], name='b') for method in ['cummax', 'cummin']: result = getattr(df.groupby('a')['b'], method)() tm.assert_series_equal(expected, result) # GH 15635 df = pd.DataFrame(dict(a=[1, 2, 1], b=[2, 1, 1])) result = df.groupby('a').b.cummax() expected = pd.Series([2, 1, 2], name='b') tm.assert_series_equal(result, expected) df = pd.DataFrame(dict(a=[1, 2, 1], b=[1, 2, 2])) result = df.groupby('a').b.cummin() expected = pd.Series([1, 2, 1], name='b') tm.assert_series_equal(result, expected) @pytest.mark.parametrize('in_vals, out_vals', [ # Basics: strictly increasing (T), strictly decreasing (F), # abs val increasing (F), non-strictly increasing (T) ([1, 2, 5, 3, 2, 0, 4, 5, -6, 1, 1], [True, False, False, True]), # Test with inf vals ([1, 2.1, np.inf, 3, 2, np.inf, -np.inf, 5, 11, 1, -np.inf], [True, False, True, False]), # Test with nan vals; should always be False ([1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], [False, False, False, False]), ]) def test_is_monotonic_increasing(in_vals, out_vals): # GH 17015 source_dict = { 'A': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11'], 'B': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd'], 'C': in_vals} df = pd.DataFrame(source_dict) result = df.groupby('B').C.is_monotonic_increasing index = Index(list('abcd'), name='B') expected = pd.Series(index=index, data=out_vals, name='C') tm.assert_series_equal(result, expected) # Also check result equal to manually taking x.is_monotonic_increasing. expected = ( df.groupby(['B']).C.apply(lambda x: x.is_monotonic_increasing)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('in_vals, out_vals', [ # Basics: strictly decreasing (T), strictly increasing (F), # abs val decreasing (F), non-strictly increasing (T) ([10, 9, 7, 3, 4, 5, -3, 2, 0, 1, 1], [True, False, False, True]), # Test with inf vals ([np.inf, 1, -np.inf, np.inf, 2, -3, -np.inf, 5, -3, -np.inf, -np.inf], [True, True, False, True]), # Test with nan vals; should always be False ([1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], [False, False, False, False]), ]) def test_is_monotonic_decreasing(in_vals, out_vals): # GH 17015 source_dict = { 'A': ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11'], 'B': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c', 'd', 'd'], 'C': in_vals} df = pd.DataFrame(source_dict) result = df.groupby('B').C.is_monotonic_decreasing index = Index(list('abcd'), name='B') expected = pd.Series(index=index, data=out_vals, name='C') tm.assert_series_equal(result, expected) # describe # -------------------------------- def test_apply_describe_bug(mframe): grouped = mframe.groupby(level='first') grouped.describe() # it works! def test_series_describe_multikey(): ts = tm.makeTimeSeries() grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.describe() tm.assert_series_equal(result['mean'], grouped.mean(), check_names=False) tm.assert_series_equal(result['std'], grouped.std(), check_names=False) tm.assert_series_equal(result['min'], grouped.min(), check_names=False) def test_series_describe_single(): ts = tm.makeTimeSeries() grouped = ts.groupby(lambda x: x.month) result = grouped.apply(lambda x: x.describe()) expected = grouped.describe().stack() tm.assert_series_equal(result, expected) def test_series_index_name(df): grouped = df.loc[:, ['C']].groupby(df['A']) result = grouped.agg(lambda x: x.mean()) assert result.index.name == 'A' def test_frame_describe_multikey(tsframe): grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.describe() desc_groups = [] for col in tsframe: group = grouped[col].describe() # GH 17464 - Remove duplicate MultiIndex levels group_col = pd.MultiIndex( levels=[[col], group.columns], codes=[[0] * len(group.columns), range(len(group.columns))]) group = pd.DataFrame(group.values, columns=group_col, index=group.index) desc_groups.append(group) expected = pd.concat(desc_groups, axis=1) tm.assert_frame_equal(result, expected) groupedT = tsframe.groupby({'A': 0, 'B': 0, 'C': 1, 'D': 1}, axis=1) result = groupedT.describe() expected = tsframe.describe().T expected.index = pd.MultiIndex( levels=[[0, 1], expected.index], codes=[[0, 0, 1, 1], range(len(expected.index))]) tm.assert_frame_equal(result, expected) def test_frame_describe_tupleindex(): # GH 14848 - regression from 0.19.0 to 0.19.1 df1 = DataFrame({'x': [1, 2, 3, 4, 5] * 3, 'y': [10, 20, 30, 40, 50] * 3, 'z': [100, 200, 300, 400, 500] * 3}) df1['k'] = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] * 5 df2 = df1.rename(columns={'k': 'key'}) msg = "Names should be list-like for a MultiIndex" with pytest.raises(ValueError, match=msg): df1.groupby('k').describe() with pytest.raises(ValueError, match=msg): df2.groupby('key').describe() def test_frame_describe_unstacked_format(): # GH 4792 prices = {pd.Timestamp('2011-01-06 10:59:05', tz=None): 24990, pd.Timestamp('2011-01-06 12:43:33', tz=None): 25499, pd.Timestamp('2011-01-06 12:54:09', tz=None): 25499} volumes = {pd.Timestamp('2011-01-06 10:59:05', tz=None): 1500000000, pd.Timestamp('2011-01-06 12:43:33', tz=None): 5000000000, pd.Timestamp('2011-01-06 12:54:09', tz=None): 100000000} df = pd.DataFrame({'PRICE': prices, 'VOLUME': volumes}) result = df.groupby('PRICE').VOLUME.describe() data = [df[df.PRICE == 24990].VOLUME.describe().values.tolist(), df[df.PRICE == 25499].VOLUME.describe().values.tolist()] expected = pd.DataFrame(data, index=pd.Index([24990, 25499], name='PRICE'), columns=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # nunique # -------------------------------- @pytest.mark.parametrize('n', 10 ** np.arange(2, 6)) @pytest.mark.parametrize('m', [10, 100, 1000]) @pytest.mark.parametrize('sort', [False, True]) @pytest.mark.parametrize('dropna', [False, True]) def test_series_groupby_nunique(n, m, sort, dropna): def check_nunique(df, keys, as_index=True): gr = df.groupby(keys, as_index=as_index, sort=sort) left = gr['julie'].nunique(dropna=dropna) gr = df.groupby(keys, as_index=as_index, sort=sort) right = gr['julie'].apply(Series.nunique, dropna=dropna) if not as_index: right = right.reset_index(drop=True) tm.assert_series_equal(left, right, check_names=False) days = date_range('2015-08-23', periods=10) frame = DataFrame({'jim': np.random.choice(list(ascii_lowercase), n), 'joe': np.random.choice(days, n), 'julie': np.random.randint(0, m, n)}) check_nunique(frame, ['jim']) check_nunique(frame, ['jim', 'joe']) frame.loc[1::17, 'jim'] = None frame.loc[3::37, 'joe'] = None frame.loc[7::19, 'julie'] = None frame.loc[8::19, 'julie'] = None frame.loc[9::19, 'julie'] = None check_nunique(frame, ['jim']) check_nunique(frame, ['jim', 'joe']) check_nunique(frame, ['jim'], as_index=False) check_nunique(frame, ['jim', 'joe'], as_index=False) def test_nunique(): df = DataFrame({ 'A': list('abbacc'), 'B': list('abxacc'), 'C': list('abbacx'), }) expected = DataFrame({'A': [1] * 3, 'B': [1, 2, 1], 'C': [1, 1, 2]}) result = df.groupby('A', as_index=False).nunique() tm.assert_frame_equal(result, expected) # as_index expected.index = list('abc') expected.index.name = 'A' result = df.groupby('A').nunique() tm.assert_frame_equal(result, expected) # with na result = df.replace({'x': None}).groupby('A').nunique(dropna=False) tm.assert_frame_equal(result, expected) # dropna expected = DataFrame({'A': [1] * 3, 'B': [1] * 3, 'C': [1] * 3}, index=list('abc')) expected.index.name = 'A' result = df.replace({'x': None}).groupby('A').nunique() tm.assert_frame_equal(result, expected) def test_nunique_with_object(): # GH 11077 data = pd.DataFrame( [[100, 1, 'Alice'], [200, 2, 'Bob'], [300, 3, 'Charlie'], [-400, 4, 'Dan'], [500, 5, 'Edith']], columns=['amount', 'id', 'name'] ) result = data.groupby(['id', 'amount'])['name'].nunique() index = MultiIndex.from_arrays([data.id, data.amount]) expected = pd.Series([1] * 5, name='name', index=index) tm.assert_series_equal(result, expected) def test_nunique_with_empty_series(): # GH 12553 data = pd.Series(name='name') result = data.groupby(level=0).nunique() expected = pd.Series(name='name', dtype='int64') tm.assert_series_equal(result, expected) def test_nunique_with_timegrouper(): # GH 13453 test = pd.DataFrame({ 'time': [Timestamp('2016-06-28 09:35:35'), Timestamp('2016-06-28 16:09:30'), Timestamp('2016-06-28 16:46:28')], 'data': ['1', '2', '3']}).set_index('time') result = test.groupby(pd.Grouper(freq='h'))['data'].nunique() expected = test.groupby( pd.Grouper(freq='h') )['data'].apply(pd.Series.nunique) tm.assert_series_equal(result, expected) def test_nunique_preserves_column_level_names(): # GH 23222 test = pd.DataFrame([1, 2, 2], columns=pd.Index(['A'], name="level_0")) result = test.groupby([0, 0, 0]).nunique() expected = pd.DataFrame([2], columns=test.columns) tm.assert_frame_equal(result, expected) # count # -------------------------------- def test_groupby_timedelta_cython_count(): df = DataFrame({'g': list('ab' * 2), 'delt': np.arange(4).astype('timedelta64[ns]')}) expected = Series([ 2, 2 ], index=pd.Index(['a', 'b'], name='g'), name='delt') result = df.groupby('g').delt.count() tm.assert_series_equal(expected, result) def test_count(): n = 1 << 15 dr = date_range('2015-08-30', periods=n // 10, freq='T') df = DataFrame({ '1st': np.random.choice( list(ascii_lowercase), n), '2nd': np.random.randint(0, 5, n), '3rd': np.random.randn(n).round(3), '4th': np.random.randint(-10, 10, n), '5th': np.random.choice(dr, n), '6th': np.random.randn(n).round(3), '7th': np.random.randn(n).round(3), '8th': np.random.choice(dr, n) - np.random.choice(dr, 1), '9th': np.random.choice( list(ascii_lowercase), n) }) for col in df.columns.drop(['1st', '2nd', '4th']): df.loc[np.random.choice(n, n // 10), col] = np.nan df['9th'] = df['9th'].astype('category') for key in '1st', '2nd', ['1st', '2nd']: left = df.groupby(key).count() right = df.groupby(key).apply(DataFrame.count).drop(key, axis=1) tm.assert_frame_equal(left, right) # GH5610 # count counts non-nulls df = pd.DataFrame([[1, 2, 'foo'], [1, np.nan, 'bar'], [3, np.nan, np.nan]], columns=['A', 'B', 'C']) count_as = df.groupby('A').count() count_not_as = df.groupby('A', as_index=False).count() expected = DataFrame([[1, 2], [0, 0]], columns=['B', 'C'], index=[1, 3]) expected.index.name = 'A' tm.assert_frame_equal(count_not_as, expected.reset_index()) tm.assert_frame_equal(count_as, expected) count_B = df.groupby('A')['B'].count() tm.assert_series_equal(count_B, expected['B']) def test_count_object(): df = pd.DataFrame({'a': ['a'] * 3 + ['b'] * 3, 'c': [2] * 3 + [3] * 3}) result = df.groupby('c').a.count() expected = pd.Series([ 3, 3 ], index=pd.Index([2, 3], name='c'), name='a') tm.assert_series_equal(result, expected) df = pd.DataFrame({'a': ['a', np.nan, np.nan] + ['b'] * 3, 'c': [2] * 3 + [3] * 3}) result = df.groupby('c').a.count() expected = pd.Series([ 1, 3 ], index=pd.Index([2, 3], name='c'), name='a') tm.assert_series_equal(result, expected) def test_count_cross_type(): # GH8169 vals = np.hstack((np.random.randint(0, 5, (100, 2)), np.random.randint( 0, 2, (100, 2)))) df = pd.DataFrame(vals, columns=['a', 'b', 'c', 'd']) df[df == 2] = np.nan expected = df.groupby(['c', 'd']).count() for t in ['float32', 'object']: df['a'] = df['a'].astype(t) df['b'] = df['b'].astype(t) result = df.groupby(['c', 'd']).count() tm.assert_frame_equal(result, expected) def test_lower_int_prec_count(): df = DataFrame({'a': np.array( [0, 1, 2, 100], np.int8), 'b': np.array( [1, 2, 3, 6], np.uint32), 'c': np.array( [4, 5, 6, 8], np.int16), 'grp': list('ab' * 2)}) result = df.groupby('grp').count() expected = DataFrame({'a': [2, 2], 'b': [2, 2], 'c': [2, 2]}, index=pd.Index(list('ab'), name='grp')) tm.assert_frame_equal(result, expected) def test_count_uses_size_on_exception(): class RaisingObjectException(Exception): pass class RaisingObject(object): def __init__(self, msg='I will raise inside Cython'): super(RaisingObject, self).__init__() self.msg = msg def __eq__(self, other): # gets called in Cython to check that raising calls the method raise RaisingObjectException(self.msg) df = DataFrame({'a': [RaisingObject() for _ in range(4)], 'grp': list('ab' * 2)}) result = df.groupby('grp').count() expected = DataFrame({'a': [2, 2]}, index=pd.Index( list('ab'), name='grp')) tm.assert_frame_equal(result, expected) # size # -------------------------------- def test_size(df): grouped = df.groupby(['A', 'B']) result = grouped.size() for key, group in grouped: assert result[key] == len(group) grouped = df.groupby('A') result = grouped.size() for key, group in grouped: assert result[key] == len(group) grouped = df.groupby('B') result = grouped.size() for key, group in grouped: assert result[key] == len(group) df = DataFrame(np.random.choice(20, (1000, 3)), columns=list('abc')) for sort, key in product((False, True), ('a', 'b', ['a', 'b'])): left = df.groupby(key, sort=sort).size() right = df.groupby(key, sort=sort)['c'].apply(lambda a: a.shape[0]) tm.assert_series_equal(left, right, check_names=False) # GH11699 df = DataFrame(columns=['A', 'B']) out = Series(dtype='int64', index=Index([], name='A')) tm.assert_series_equal(df.groupby('A').size(), out) def test_size_groupby_all_null(): # GH23050 # Assert no 'Value Error : Length of passed values is 2, index implies 0' df = DataFrame({'A': [None, None]}) # all-null groups result = df.groupby('A').size() expected = Series(dtype='int64', index=Index([], name='A')) tm.assert_series_equal(result, expected) # quantile # -------------------------------- @pytest.mark.parametrize("interpolation", [ "linear", "lower", "higher", "nearest", "midpoint"]) @pytest.mark.parametrize("a_vals,b_vals", [ # Ints ([1, 2, 3, 4, 5], [5, 4, 3, 2, 1]), ([1, 2, 3, 4], [4, 3, 2, 1]), ([1, 2, 3, 4, 5], [4, 3, 2, 1]), # Floats ([1., 2., 3., 4., 5.], [5., 4., 3., 2., 1.]), # Missing data ([1., np.nan, 3., np.nan, 5.], [5., np.nan, 3., np.nan, 1.]), ([np.nan, 4., np.nan, 2., np.nan], [np.nan, 4., np.nan, 2., np.nan]), # Timestamps ([x for x in pd.date_range('1/1/18', freq='D', periods=5)], [x for x in pd.date_range('1/1/18', freq='D', periods=5)][::-1]), # All NA ([np.nan] * 5, [np.nan] * 5), ]) @pytest.mark.parametrize('q', [0, .25, .5, .75, 1]) def test_quantile(interpolation, a_vals, b_vals, q): if interpolation == 'nearest' and q == 0.5 and b_vals == [4, 3, 2, 1]: pytest.skip("Unclear numpy expectation for nearest result with " "equidistant data") a_expected = pd.Series(a_vals).quantile(q, interpolation=interpolation) b_expected = pd.Series(b_vals).quantile(q, interpolation=interpolation) df = DataFrame({ 'key': ['a'] * len(a_vals) + ['b'] * len(b_vals), 'val': a_vals + b_vals}) expected = DataFrame([a_expected, b_expected], columns=['val'], index=Index(['a', 'b'], name='key')) result = df.groupby('key').quantile(q, interpolation=interpolation) tm.assert_frame_equal(result, expected) def test_quantile_raises(): df = pd.DataFrame([ ['foo', 'a'], ['foo', 'b'], ['foo', 'c']], columns=['key', 'val']) with pytest.raises(TypeError, match="cannot be performed against " "'object' dtypes"): df.groupby('key').quantile() # pipe # -------------------------------- def test_pipe(): # Test the pipe method of DataFrameGroupBy. # Issue #17871 random_state = np.random.RandomState(1234567890) df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B': random_state.randn(8), 'C': random_state.randn(8)}) def f(dfgb): return dfgb.B.max() - dfgb.C.min().min() def square(srs): return srs ** 2 # Note that the transformations are # GroupBy -> Series # Series -> Series # This then chains the GroupBy.pipe and the # NDFrame.pipe methods result = df.groupby('A').pipe(f).pipe(square) index = Index(['bar', 'foo'], dtype='object', name='A') expected = pd.Series([8.99110003361, 8.17516964785], name='B', index=index) tm.assert_series_equal(expected, result) def test_pipe_args(): # Test passing args to the pipe method of DataFrameGroupBy. # Issue #17871 df = pd.DataFrame({'group': ['A', 'A', 'B', 'B', 'C'], 'x': [1.0, 2.0, 3.0, 2.0, 5.0], 'y': [10.0, 100.0, 1000.0, -100.0, -1000.0]}) def f(dfgb, arg1): return (dfgb.filter(lambda grp: grp.y.mean() > arg1, dropna=False) .groupby(dfgb.grouper)) def g(dfgb, arg2): return dfgb.sum() / dfgb.sum().sum() + arg2 def h(df, arg3): return df.x + df.y - arg3 result = (df .groupby('group') .pipe(f, 0) .pipe(g, 10) .pipe(h, 100)) # Assert the results here index = pd.Index(['A', 'B', 'C'], name='group') expected = pd.Series([-79.5160891089, -78.4839108911, -80], index=index)
tm.assert_series_equal(expected, result)
pandas.util.testing.assert_series_equal
import os import re #from tqdm import tqdm import numpy as np import pandas as pd import preprocessor as tp pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pandas.set_option
0 # -*- coding: utf-8 -*- """ Created on Fri Jul 17 08:47:37 2020 @author: titou """ import numpy as np import pandas as pd from pathlib import Path from pvtseg import features_3d as f3d from pvtseg import data_preparation as dtp from pvtseg import evaluation as ev import os import pickle import shap from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import RandomizedSearchCV import matplotlib.pyplot as plt def BuildDirectoryTree(path="My_data"): """ Build the directory structure for the segmentation project. Parameters ---------- path: string, optional path to the project root Returns ------- path_s: Path Path to the source directory path_f: Path Path to the features directory path_r: Path Path to the result directory """ if not(os.path.exists(path)): Path(path).mkdir() path_s = Path(path) / Path('Sources') path_f = Path(path) / Path('Features') path_r = Path(path) / Path('Results') if not(os.path.exists(path_s)): path_s.mkdir() if not(os.path.exists(path_f)): path_f.mkdir() if not(os.path.exists(path_r)): path_r.mkdir() return path_s, path_f, path_r def PointsSelection(annotations_file, mask_file = "auto", box_file_list = "auto", vessel_prop = 0.5, points = 2000, ): """ Build a set of points that can be balanced between classes and areas to be used for training model. The result of this methode goes in the BuildDataFrame points_set option Parameters ---------- annotations_file : str or Path Paths to the annotation file: 3d array where points from each class i have a value of i and point without class 0. The first class has to be the vessels annotations (or the object of interest to be segmented). mask_file : str, optional path to the mask file. the default is "auto" for a mask covering all the image box_file_list : list, otional list of path to boxe_file, boxe in wich annotations have been performed. the default is "auto" for a box covering all the image vessel_prop : int, optional Vessel proportions. the default is 0.5 points_set : int, optional total number of selected points. Returns ------- points_set: tuple A tuple of 3 numpy 1d array, with indices of selected points. to be passed to the BuildDataFrame methode. """ annotations = np.load(annotations_file) if mask_file == "auto": mask = np.ones(annotations.shape) else: mask = np.load(mask_file) if box_file_list == "auto": box_list = [np.ones(annotations.shape)] else: box_list = list(map(np.load, box_file_list)) # balancing and splitting datas for different values of vessel proportion splited_datas = {} for i, box in enumerate(box_list): annot = annotations*box*mask seeds = dtp.Seeds(annot) balanced = dtp.Balance(seeds, vessel_prop, points/len(box_list)) splited_datas["box: " + str(i)] = balanced # merging points_set = dtp.Merge([ splited_datas["box: " + str(i)] for i in range(len(box_list)) ]) return points_set def MultiFilesPointSelection(annotations_file_list, mask_file_list = "auto", box_file_list_list = "auto", vessel_prop = 0.5, points = 2000): """ Performe the PointsSelection methode one multiple files. Parameters ---------- annotations_file_list : list list of paths to the annotation files: 3d array where points from each class i have a value of i and point without class 0. The first class has to be the vessels annotations (or the object of interest to be segmented). mask_file_list : list, optional list of paths to the mask files. the default is "auto" for a list of mask, each covering all the image. The default is "auto". box_file_list_list : list, optional list of list of path to boxe files. each box file is a mask on an area for one image. For one image, with a list of box files, the point selection will be balanced between all boxes of the list If auta, the point selection won't be balanced. The default is "auto". vessel_prop : float, optional proportion of vessel (class 1) in the . The default is 0.5. point_num : int, optional number of points to be selected in each annotation file Returns ------- points_set_list : list A list of tuple of 3 numpy 1d array, with indices of selected points. to be passed to the MultiFileBuildDataFrame methode. """ if mask_file_list == "auto": mask_file_list=["auto" for i in range(len(annotations_file_list))] if box_file_list_list == "auto": box_file_list_list = ["auto" for i in range(len(annotations_file_list))] points_set_list = [PointsSelection(annotations_file_list[i], mask_file_list[i], box_file_list_list[i], vessel_prop = vessel_prop, points=points ) for i in range(len(annotations_file_list))] return points_set_list def BuildDataFrame(path_featur_dir, annotations_file, points_set = None, feature_list = None): """ Build a dataframe with, for each point, a row with features and label. If points set is None, uses all annotations to build the dataframe, else, uses only points in the points set. Parameters ---------- path_featur_dir : str or Path Path to featured_dir, in wich features as been computed. annotations_file : str or Path Path to annotation file. points_set : list, optional List of point sets. Result of DataPreparation methode. if None uses all annotated points as a single set. The default is None feature_list : list, optional If None, all files in the featur_dir are loaded as features, else only files in feature list are loaded. The default is None Returns ------- data: dataframe dataframe with, for each point, a row with features and label. """ annotations = np.load(annotations_file) if points_set is None: points_set = np.nonzero(annotations) if feature_list is None: feature_list = [feat.split(".npy")[0] for feat in os.listdir(path_featur_dir)] data = f3d.LoadFeaturesDir(path_featur_dir, points_set, feature_list) data["Label"] = annotations[points_set] return data def MultiFilesBuildDataFrame(path_featur_dir_list, annotations_file_list, points_set_list = None, feature_list = None): """ Build a dataframe with, for each point, a row with features and label. If points sets is None, uses all annotations to build the dataframe, else, uses only points in points sets. Parameters ---------- path_featur_dir_list : list List of path to feature folder, in wich features as been computed for a 3d image. annotations_file_list : str or Path list of path to annotation files for each image. point_set : list, optional List of point sets. Result of MultiFilesDataPreparation methode. if None uses all annotated points as a single set for each image. The default is None feature_list : list, optional If None, feature list is set on all the feature names in the first feature folder, else only files in feature list are loaded from each feature files. The default is None Returns ------- data: dataframe dataframe with, for each point, a row with features and label. """ if points_set_list is None: points_set_list = [None for i in range(len(path_featur_dir_list))] if feature_list is None: feature_list = [feat.split(".npy")[0] for feat in os.listdir(path_featur_dir_list[0])] data_list = [BuildDataFrame(path_featur_dir_list[i], annotations_file_list[i], points_set_list[i], feature_list) for i in range(len(path_featur_dir_list))] data = pd.concat(data_list, axis = 0, ignore_index = True) return data def DFToXY(dataframe): """ Divide a dataframe producted by BuildDataFrames methode between features and labels Parameters ---------- dataframe : pandas DataFrame dataframe with features and labels Returns ------- x : pandas DataFrame dataframe of features. y : pandas Series labels """ y = dataframe["Label"] x = dataframe.drop("Label", axis = 1) return x, y def Optimise(data, optimiser = None): """ Find the best hyperparameters for a random forest classifier model through an sklearn optimiser. Parameters ---------- cross_validation_dataframes : Dataframe the cross_validation set optimiser : optimiser object, default = None a RandomizedSearchCV or GridSearchCV object to find best hyperparameters. if None, a default optimiser will be constructed instead the default is None Returns ------- optimiser : optimiser object the optimiser fited to cross validations datas. """ x, y = DFToXY(data) y[y!=1] = 2 #we can only use 2 class in this optimiser, so vessel and not vessel if optimiser is None: param_grid = { "criterion": ["gini", "entropy"], 'max_depth': [5, 10, 20, 50, 100], 'max_features': ['auto', 'sqrt'], 'min_samples_leaf': [1, 2, 4], 'min_samples_split': [2, 5, 10], 'n_estimators': [20, 50, 100, 250, 500] } classifier = RandomForestClassifier(n_jobs=6) optimiser = RandomizedSearchCV(estimator = classifier, param_distributions = param_grid, n_iter = 100, cv = 5, verbose=2, scoring = "roc_auc", random_state=42, n_jobs = 6) optimiser.fit(x, y) return optimiser def BuildModel(data, hyperparameters = None, shuffle=False): """ From a dataframes, build a segmentation model Parameters ---------- data : dataframe Dataframe with for each point, a row with features and label. hyperparameters : dict Sklearn random forest classifier parameters. The default is None. If None, those parameter are going to be used: - "n_estimators": 100, - "criterion":'gini', - "max_depth": None, - "min_samples_split": 2, - "min_samples_leaf": 1, - "max_features": 'auto' cv: int, optional Number of folds for the cross-validation. The default is 5 shuffle: boolean, optional If the dataframe has to be shuffuled. The default is False Returns ------- model : dict Output of BuildModel methode. A dictionary with: - "model" an sklearn trained random forest classifier. - "features" the list of the model features. """ data = data[sorted(data.columns)] if shuffle: data = data.sample(frac=1).reset_index(drop=True) if hyperparameters is None: hyperparameters = {"n_estimators": 100, "criterion": 'gini', "max_depth": None, "min_samples_split": 2, "min_samples_leaf": 1, "max_features": 'auto'} forest = RandomForestClassifier( n_estimators = hyperparameters["n_estimators"], max_depth = hyperparameters["max_depth"], max_features = hyperparameters["max_features"], min_samples_leaf = hyperparameters["min_samples_leaf"], min_samples_split = hyperparameters["min_samples_split"], criterion = hyperparameters["criterion"], n_jobs=6 ) x_train, y_train = DFToXY(data) forest.fit(x_train, y_train) model = {"model": forest, "features": x_train.columns} return model def CrossValidation(data, hyperparameters = None, cv=5, shuffle=False): """ From a dataframes, performe n-fold cross validation (default is 5) Parameters ---------- data : dataframe dataframe with, for each point, a row with features and label. hyperparameters : dict best param to optimise forest. cv: int, optional number of folds for the cross-validation. The default is 5 shuffle: boolean, optional if the dataframe has to be shuffuled. Returns ------- results_dict : dict a dictionary with results all cross validation experiments, to be treated with Summarise. """ if shuffle: data = data.sample(frac=1).reset_index(drop=True) set_size = len(data)/cv cross_validation_dataframes = [data.iloc[int(i*set_size):int((i+1)*set_size),:] for i in range(cv)] results_dict = { "models": [], "test" : {}, "train" : {}, "features": {"names":[]}} set_num = len(cross_validation_dataframes) results_dict["features"]["names"] = list(cross_validation_dataframes[0].columns) results_dict["features"]["names"].remove('Label') if hyperparameters is None: hyperparameters = {"n_estimators": 100, "criterion": 'gini', "max_depth": None, "min_samples_split": 2, "min_samples_leaf": 1, "max_features": 'auto'} for i in range(set_num): forest = RandomForestClassifier( n_estimators = hyperparameters["n_estimators"], max_depth = hyperparameters["max_depth"], max_features = hyperparameters["max_features"], min_samples_leaf = hyperparameters["min_samples_leaf"], min_samples_split = hyperparameters["min_samples_split"], criterion = hyperparameters["criterion"], n_jobs=6 ) results_dict["test"][str(i)] = {} test = cross_validation_dataframes.pop(0) train = pd.concat(cross_validation_dataframes, axis = 0, ignore_index = True) x_test, y_test = DFToXY(test) x_train, y_train = DFToXY(train) model = forest.fit(x_train, y_train) results_dict["models"].append({"model": model, "features": x_train.columns}) pred_test = model.predict_proba(x_test)[:,0] pred_train = model.predict_proba(x_train)[:,0] eval_test = ev.Eval(y_test, pred_test, n_threshold = 50) eval_train = ev.Eval(y_train, pred_train, n_threshold = 50) metrics, curvs = ev.SummarisedMetrics(eval_test) metrics_train, curvs_train = ev.SummarisedMetrics(eval_train) results_dict["test"][str(i)] = {"metrics": metrics, "curvs": curvs} results_dict["train"][str(i)] = {"metrics": metrics_train, "curvs": curvs_train} cross_validation_dataframes.append(test) return results_dict def Summarise(result_dict, display=False): """ From the results of the CrossValiation methode, build an human readable summary Parameters ---------- result_dict : dict the dict from cross_validation data. display : bool, optional if true, display the ROC curv of each test the default is False Returns ------- nice_dataframes : dict dict of human readable and interpretable dataframes, to analyse cross validation results """ nice_dataframes = {} if "features" in list(result_dict.keys()): feat_dataframe = pd.DataFrame() oob_ranking = pd.DataFrame() for i in range(len(result_dict["models"])): oob_ranking[str(i)] = np.argsort( result_dict["models"][i]["model"].feature_importances_ ) oob_ranking.index=result_dict["features"]["names"] feat_dataframe["oob mean rank"] = oob_ranking.mean(axis = 1) feat_dataframe["oob rank std"] = oob_ranking.std(axis = 1) feat_dataframe = feat_dataframe.T feat_dataframe = feat_dataframe.sort_values(by = "oob mean rank" , axis = 1) nice_dataframes["feat_values"] = feat_dataframe metric_dataframe_test = pd.DataFrame() metric_dataframe_train =
pd.DataFrame()
pandas.DataFrame
from collections import defaultdict import copy import json import numpy as np import pandas as pd import pickle import scipy import seaborn as sb import torch from allennlp.common.util import prepare_environment, Params from matplotlib import pyplot as plt from pytorch_pretrained_bert import BertTokenizer, BertModel from scipy.stats import entropy from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics import accuracy_score, mean_squared_error from probing.globals import * from probing.helpers import _reg_r2 from probing.tasks import ProbingTask class Analytics: def __init__(self, workspace): self.directories = {d: os.path.join(workspace, d) for d in ["out", "tasks", "datasets", "configs"]} self.scalar_mixes = None self.tokenizer = None self.embedder = None # === Data statistics def task_statistics(self): data = [] for task_id in sorted(os.listdir(self.directories["tasks"])): config = ProbingTask.parse_id(task_id) stats = json.load(open(os.path.join(self.directories["tasks"], task_id, "_stats.json"))) for split in stats: c = copy.deepcopy(config) c["sentences"] = stats[split]["total_sentences"] c["instances"] = stats[split]["total_instances"] c["labels"] = stats[split]["total_labels"] c["split"] = split data += [c] return pd.DataFrame(data) def dataset_statistics(self): def _collect_stats(sentences): num_tokens = 0 num_sentences = 0 num_predications = 0 roles_all = 0 roles_core = 0 for s, pp in sentences: num_tokens += len(s.tokens()) num_sentences += 1 num_predications += len(pp) for p in pp: roles_all += len([a for a in p.arguments]) roles_core += len([a for a in p.arguments if not p.arguments[a]["pb"].startswith("AM")]) return {"tokens": num_tokens, "sentences": num_sentences, "predicates": num_predications, "roles_all": roles_all, "roles_core": roles_core} rows = [] for ds in os.listdir(self.directories["datasets"]): ds = pickle.load(open(os.path.join(self.directories["datasets"], ds), "rb")) for split in ds: stats = _collect_stats(ds[split].values()) stats["split"] = split stats["dataset"] = ds.name rows += [stats] df = pd.DataFrame(rows) return df # === Scalar mix analysis def get_mixes(self): if self.scalar_mixes is None: self.scalar_mixes = self._parse_scalar_mixes() return self.scalar_mixes @staticmethod # Extract a single scalar mix set by layer def _parse_scalar_mix(th, kind, softmax=True): mix_map = {"common": "bert_embedder._scalar_mix.scalar_parameters", "src": "bert_embedder._scalar_mix_1.scalar_parameters", "tgt": "bert_embedder._scalar_mix_2.scalar_parameters"} device = torch.device('cpu') data = torch.load(os.path.join(th), map_location=device) layers = [] for layer in range(12): # FIXME num layers to global layers += [data[f"{mix_map[kind]}.{layer}"].item()] return kind, scipy.special.softmax(np.array(layers)) if softmax else np.array(layers) @staticmethod def center_of_gravity(x): return sum(l * x[l] for l in range(len(x))) def _parse_scalar_mixes(self): data = [] for exp_id in os.listdir(self.directories["out"]): config = ProbingTask.parse_id(exp_id) task_name = config["name"] try: if config["ttype"] == "unary": mix = [self._parse_scalar_mix(os.path.join(self.directories["out"], exp_id, "best.th"), "common")] else: mix = [self._parse_scalar_mix(os.path.join(self.directories["out"], exp_id, "best.th"), m) for m in ["src", "tgt"]] for kind, m in mix: task_mix_name = task_name # prepend regression tasks with * if config["mtype"] == "reg": task_mix_name = "*"+task_mix_name # add src-tgt mix distinction if kind != "common": task_mix_name += " " + kind for layer in range(12): c = copy.deepcopy(config) c["name"] = task_mix_name c["layer"] = layer c["weight"] = m[layer] data += [c] except Exception: print(f"No best weights for {exp_id} (yet?). Skipping.") return pd.DataFrame(data) def plot_scalar_mix_by_task(self, lang, task_order=None, cbar_max=None, show_cbar=True, ax=None): mix_df = self.get_mixes() pvt = mix_df[mix_df["language"] == lang].copy().pivot("name", "layer", "weight") cog = {name: self.center_of_gravity(pvt.loc[name]) for name in pvt.index} if task_order is None: # if no task order for display, order by center of gravity pvt = pvt.reindex([x[0] for x in sorted(cog.items(), key=lambda y: y[1])]) else: pvt = pvt.reindex(task_order) # set maximum value for heatmap if cbar_max is None: cbar_max = pvt.values.max() ax = sb.heatmap(pvt, cmap="Oranges", vmin=0.0, vmax=cbar_max, cbar=show_cbar, square=False, xticklabels=[], yticklabels=[ix + f" [{round(cog[ix], 2)}]" for ix in pvt.index], ax=ax) bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) ax.set_ylabel("") ax.set_xlabel(r'Layer $\rightarrow$') ax.set_title(lang) def plot_anchor_task_map(self, lang, target_tasks, anchor_tasks=None, ax=None, show_cbar=False): mix_df = self.get_mixes() pvt = mix_df[mix_df["language"] == lang].copy().pivot("name", "layer", "weight") if anchor_tasks is None: anchor_tasks = [a for a in mix_df["name"].unique() if a not in target_tasks] kl_div =
pd.DataFrame()
pandas.DataFrame
import numpyro import numpyro.distributions as dist from numpyro.infer import MCMC, NUTS, Predictive import jax import jax.numpy as np from jax.random import PRNGKey import numpy as onp import pandas as pd import matplotlib.pyplot as plt from covid.compartment import SEIRDModel import pdb '''Utility to define access method for time varying fields''' def getter(f): def get(self, samples, forecast=False): return samples[f + '_future'] if forecast else self.combine_samples(samples, f) return get """ ************************************************************ Base class for models ************************************************************ """ class Model(): names = { 'S': 'susceptible', 'I': 'infectious', 'R': 'removed', 'E': 'exposed', 'H': 'hospitalized', 'D': 'dead', 'C': 'cumulative infected', 'y': 'confirmed', 'z': 'deaths', 'dy': 'daily confirmed', 'dz': 'daily deaths', 'mean_dy': 'daily confirmed (mean)', 'mean_dz': 'daily deaths (mean)' } def __init__(self, data=None, mcmc_samples=None, **args): self.mcmc_samples = mcmc_samples self.data = data self.args = args @property def obs(self): '''Provide extra arguments for observations Used during inference and forecasting ''' return {} """ *************************************** Inference and sampling routines *************************************** """ def infer(self, num_warmup=1000, num_samples=1000, num_chains=1, rng_key=PRNGKey(1), **args): '''Fit using MCMC''' args = dict(self.args, **args) kernel = NUTS(self, init_strategy = numpyro.infer.initialization.init_to_median()) mcmc = MCMC(kernel, num_warmup=num_warmup, num_samples=num_samples, num_chains=num_chains) mcmc.run(rng_key, **self.obs, **args) mcmc.print_summary() self.mcmc = mcmc self.mcmc_samples = mcmc.get_samples() return self.mcmc_samples def prior(self, num_samples=1000, rng_key=PRNGKey(2), **args): '''Draw samples from prior''' predictive = Predictive(self, posterior_samples={}, num_samples=num_samples) args = dict(self.args, **args) # passed args take precedence self.prior_samples = predictive(rng_key, **args) return self.prior_samples def predictive(self, rng_key=PRNGKey(3), **args): '''Draw samples from in-sample predictive distribution''' if self.mcmc_samples is None: raise RuntimeError("run inference first") predictive = Predictive(self, posterior_samples=self.mcmc_samples) args = dict(self.args, **args) return predictive(rng_key, **args) def forecast(self, num_samples=1000, rng_key=PRNGKey(4), **args): '''Draw samples from forecast predictive distribution''' if self.mcmc_samples is None: raise RuntimeError("run inference first") predictive = Predictive(self, posterior_samples=self.mcmc_samples) args = dict(self.args, **args) return predictive(rng_key, **self.obs, **args) def resample(self, low=0, high=90, rw_use_last=1, **kwargs): '''Resample MCMC samples by growth rate''' # TODO: hard-coded for SEIRDModel. Would also # work for SEIR, but not SIR beta = self.mcmc_samples['beta'] gamma = self.mcmc_samples['gamma'] sigma = self.mcmc_samples['sigma'] beta_end = beta[:,-rw_use_last:].mean(axis=1) growth_rate = SEIRDModel.growth_rate((beta_end, sigma, gamma)) low = int(low/100 * len(growth_rate)) high = int(high/100 * len(growth_rate)) sorted_inds = onp.argsort(growth_rate) selection = onp.random.randint(low, high, size=(1000)) inds = sorted_inds[selection] new_samples = {k: v[inds, ...] for k, v in self.mcmc_samples.items()} self.mcmc_samples = new_samples return new_samples """ *************************************** Data access and plotting *************************************** """ def combine_samples(self, samples, f, use_future=False): '''Combine fields like x0, x, x_future into a single array''' f0, f_future = f + '0', f + '_future' data = np.concatenate((samples[f0][:,None], samples[f]), axis=1) if f_future in samples and use_future: data = np.concatenate((data, samples[f_future]), axis=1) return data def get(self, samples, c, **kwargs): forecast = kwargs.get('forecast', False) if c in self.compartments: x = samples['x_future'] if forecast else self.combine_samples(samples, 'x') j = self.compartments.index(c) return x[:,:,j] else: return getattr(self, c)(samples, **kwargs) # call method named c def horizon(self, samples, **kwargs): '''Get time horizon''' y = self.y(samples, **kwargs) return y.shape[1] '''These are methods e.g., call self.z(samples) to get z''' #z = getter('z') #y = getter('y') mean_y = getter('mean_y') mean_z = getter('mean_z') z = mean_z y = mean_y # There are only available in some models but easier to define here dz = getter('dz') dy = getter('dy') mean_dy = getter('mean_dy') mean_dz = getter('mean_dz') def plot_samples(self, samples, plot_fields=['y'], start='2020-03-04', T=None, ax=None, legend=True, forecast=False, n_samples=0, intervals=[50, 80, 95]): ''' Plotting method for SIR-type models. ''' ax = plt.axes(ax) T_data = self.horizon(samples, forecast=forecast) T = T_data if T is None else min(T, T_data) fields = {f: 0.0 + self.get(samples, f, forecast=forecast)[:,:T] for f in plot_fields} names = {f: self.names[f] for f in plot_fields} medians = {names[f]: onp.median(v, axis=0) for f, v in fields.items()} t = pd.date_range(start=start, periods=T, freq='D') ax.set_prop_cycle(None) colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] # Plot medians df = pd.DataFrame(index=t, data=medians) df.plot(ax=ax, legend=legend) median_max = df.max().values # Plot samples if requested if n_samples > 0: for i, f in enumerate(fields): df = pd.DataFrame(index=t, data=fields[f][:n_samples,:].T) df.plot(ax=ax, legend=False, alpha=0.1) # Plot prediction intervals pi_max = 10 handles = [] for interval in intervals: low=(100.-interval)/2 high=100.-low pred_intervals = {names[f]: onp.percentile(v, (low, high), axis=0) for f, v in fields.items()} for i, pi in enumerate(pred_intervals.values()): h = ax.fill_between(t, pi[0,:], pi[1,:], alpha=0.1, color=colors[i], label=interval) handles.append(h) pi_max = onp.maximum(pi_max, onp.nanmax(pi[1,:])) return median_max, pi_max # def get_medians(self, # samples, # plot_fields=['y'], # start='2020-03-04', # T=None, # legend=True, # forecast=False, # n_samples=0, # intervals=[50, 80, 95]): # T_data = self.horizon(samples, forecast=forecast) # T = T_data if T is None else min(T, T_data) # fields = {f: 0.0 + self.get(samples, f, forecast=forecast)[:,:T] for f in plot_fields} # names = {f: self.names[f] for f in plot_fields} # medians = {names[f]: onp.median(v, axis=0) for f, v in fields.items()} # return medians def plot_forecast(self, variable, post_pred_samples, forecast_samples=None, start='2020-03-04', T_future=7*4, ax=None, obs=None, scale='lin', **kwargs): ax = plt.axes(ax) # Plot posterior predictive for observed times median_max1, pi_max1 = self.plot_samples(post_pred_samples, ax=ax, start=start, plot_fields=[variable]) # Plot forecast T = self.horizon(post_pred_samples) obs_end = pd.to_datetime(start) + pd.Timedelta(T-1, "d") forecast_start = obs_end +
pd.Timedelta("1d")
pandas.Timedelta
import os import io import locale import datetime import numpy as np import pandas as pd import requests import urllib.parse import urllib.request as ur from bs4 import BeautifulSoup from zipfile import ZipFile import xml.etree.ElementTree as ET def get_sectors(): url = 'http://bvmf.bmfbovespa.com.br/cias-listadas/empresas-listadas/' + \ 'BuscaEmpresaListada.aspx?opcao=1&indiceAba=1&Idioma=pt-br' page = requests.get(url) soup = BeautifulSoup(page.text, 'html.parser') url = soup.find("a", string="Download").get('href') # Unzip filehandle, _ = ur.urlretrieve(url) with ZipFile(filehandle, 'r') as zf: fn = zf.namelist()[0] df = pd.read_excel( io.BytesIO(zf.read(fn)), skiprows=7, skipfooter=18, names=['SETOR', 'SUBSETOR', 'NM_PREGAO', 'BTICKER', 'CD_GOVERN'] ) df['SEGMENTO'] = np.where( df['BTICKER'].isnull(), df['NM_PREGAO'], np.NaN) for col in ['SETOR', 'SUBSETOR', 'SEGMENTO']: df[col] = df[col].fillna(method='ffill') df['CD_GOVERN'] = df['CD_GOVERN'].fillna('') df = df.dropna(subset=['BTICKER']) df = df[df['BTICKER'] != 'CÓDIGO'] df = df[df['SUBSETOR'] != 'SUBSETOR'] df['NM_PREGAO'] = df['NM_PREGAO'].str.strip() df = df.reset_index(drop=True) return df[['BTICKER', 'NM_PREGAO', 'SETOR', 'SUBSETOR', 'SEGMENTO', 'CD_GOVERN']] def get_listed_codes(): url = 'http://bvmf.bmfbovespa.com.br/cias-listadas/empresas-listadas/' + \ 'BuscaEmpresaListada.aspx?idioma=pt-br' r = requests.post(url, {'__EVENTTARGET': 'ctl00:contentPlaceHolderConteudo:BuscaNomeEmpresa1:btnTodas'}) soup = BeautifulSoup(r.text, 'html.parser') anchors = soup.find_all('a') df = pd.DataFrame({ 'CD_CVM': [a['href'] for a in anchors], 'NM_PREGAO': [a.text for a in anchors] }) df['NM_PREGAO'] = df['NM_PREGAO'].str.strip() df = df[df['CD_CVM'].str[:28] == 'ResumoEmpresaPrincipal.aspx?'] df['CD_CVM'] = df['CD_CVM'].str.split('=', expand=True).loc[:,1] df = df[df.index % 2 == 0].reset_index(drop=True) return df def get_index_composition(index_name='IBRA'): url = 'http://bvmf.bmfbovespa.com.br/indices/ResumoCarteiraTeorica.aspx?' + \ f'Indice={index_name}' acoes = pd.read_html(url)[0] acoes.columns = ['TICKER', 'NM_PREGAO', 'TIPO', 'QTDE', 'PESO'] acoes['NM_PREGAO'] = acoes['NM_PREGAO'].str.strip() acoes['PESO'] = acoes['PESO'] / 1000 acoes['TIPO'] = acoes['TIPO'].str.split(' ', expand=True).loc[:,0] acoes = acoes[acoes['PESO'] != 100] acoes = acoes.sort_values('PESO', ascending=False) return acoes.reset_index(drop=True) def get_num_shares(): numshares = pd.read_html( 'http://bvmf.bmfbovespa.com.br/CapitalSocial/', decimal=',', thousands='.')[0] numshares = numshares[['Código', 'Qtde Ações Ordinárias', 'Qtde Ações Preferenciais']] numshares.columns = ['BTICKER', 'QTDE_ON', 'QTDE_PN'] numshares = numshares.groupby('BTICKER').sum().reset_index() return numshares.reset_index(drop=True) def cache_data(fn, fun, *args, **kwargs): if not os.path.isdir('cache'): os.mkdir('cache') fn = os.path.join('cache', fn) if os.path.exists(fn): print(f'{fn} exists, using cached version') return pd.read_csv(fn) else: print(f'{fn} does not exist, creating file') df = fun(*args, **kwargs) df.to_csv(fn, index=False) return df def get_companies(): codigos = cache_data('codigos.csv', get_listed_codes) setores = cache_data('setores.csv', get_sectors) numshares = cache_data('num_shares.csv', get_num_shares) df = pd.merge(codigos, setores, on='NM_PREGAO', how='inner') df = df.merge(numshares, on='BTICKER') return df.reset_index(drop=True) def get_cvm_zip(year, doc_type, accounts=None, companies=None, rmzero=True): # fn = f'{doc_type.lower()}_cia_aberta_{year}' print('Downloading ' + fn) url = 'http://dados.cvm.gov.br/dados/CIA_ABERTA/DOC/' if doc_type.lower() != 'itr': url = url + 'DFP/' url = url + doc_type.upper() + '/DADOS/' + fn + '.zip' # filehandle, _ = ur.urlretrieve(url) with ZipFile(filehandle, 'r') as zf: flist = zf.namelist() flist = [f for f in flist if 'con' in f] if fn + '.csv' in flist: flist.remove(fn + '.csv') df = pd.concat([ pd.read_csv(io.BytesIO(zf.read(fn)), delimiter=';', encoding='latin1') for fn in flist ]) # if companies is not None: df = df[df['CD_CVM'].isin(companies)] if accounts is not None: df = df[df['CD_CONTA'].isin(accounts)] if rmzero: df = df[df['VL_CONTA'] != 0] # df['VL_CONTA'] = df['VL_CONTA'] * 10 ** \ np.where(df['ESCALA_MOEDA'] == 'UNIDADE', 1, 3) # cols = df.columns cols = cols[cols.isin(['DT_REFER', 'VERSAO', 'CD_CVM', 'DT_INI_EXERC', 'DT_FIM_EXERC', 'CD_CONTA', 'DS_CONTA', 'VL_CONTA', 'COLUNA_DF'])] return df[cols].reset_index(drop=True) def get_cvm_all(years, doc_types=['dre', 'bpa', 'bpp'], accounts=None, companies=None): doc_types.append('itr') df = ( pd.concat([ get_cvm_zip(year, doc_type, accounts, companies) for doc_type in doc_types for year in years ], ignore_index=True) .sort_values(['CD_CVM', 'CD_CONTA', 'DT_FIM_EXERC', 'DT_REFER', 'VERSAO']) .drop_duplicates(['CD_CVM', 'CD_CONTA', 'DT_FIM_EXERC'], keep='last') .assign(VL_CONTA=lambda x: x['VL_CONTA'] / 1000000) .rename(columns={'VL_CONTA': 'VL_CONTA_YTD'}) .reset_index(drop=True) ) df['VL_CONTA'] = np.where( df['CD_CONTA'].str[:1].isin(['1', '2']), df['VL_CONTA_YTD'], df['VL_CONTA_YTD'] - (df.groupby(['CD_CVM', 'CD_CONTA', 'DT_INI_EXERC'])['VL_CONTA_YTD'] .shift(fill_value=0)) ) return df def get_quotes(tickers): url = 'http://bvmf.bmfbovespa.com.br/cotacoes2000/' + \ 'FormConsultaCotacoes.asp?strListaCodigos=' + '|'.join(tickers) page = requests.get(url) xml = ET.fromstring(page.text) df = pd.DataFrame([p.attrib for p in xml.findall('Papel')]) df = df[['Codigo', 'Data', 'Ultimo']] df.columns = ['ticker', 'data', 'cotacao'] df['cotacao'] = pd.to_numeric(df['cotacao'].str.replace(',','.')) return df def get_mktcap(): url = "http://www.b3.com.br/pt_br/market-data-e-indices/" + \ "servicos-de-dados/market-data/consultas/mercado-a-vista/" + \ "valor-de-mercado-das-empresas-listadas/bolsa-de-valores/" page = requests.get(url) soup = BeautifulSoup(page.text, 'html.parser') url = soup.find("a", string="Histórico diário").get('href') url = "http://www.b3.com.br/" + url.replace('../', '') df = ( pd.read_excel(url, skiprows=7, skipfooter=5) .dropna(axis=1, how="all") .rename(columns={"Empresa": "NM_PREGAO", "R$ (Mil)": "MarketCap"}) .assign( MarketCap=lambda x: x['MarketCap'] / 1000, NM_PREGAO=lambda x: x['NM_PREGAO'].str.strip() ) [["NM_PREGAO", "MarketCap"]] ) return df def get_pib(): url = "https://sidra.ibge.gov.br/geratabela?format=us.csv&" + \ "name=tabela6613.csv&terr=N&rank=-&query=" + \ "t/6613/n1/all/v/all/p/all/c11255/90687,90691,90696,90707/" + \ "d/v9319%202/l/t,v%2Bc11255,p" df = ( pd.read_csv(url, skiprows=5, skipfooter=11, names=['DT_FIM_EXERC', 'PIB_AGRO', 'PIB_IND', 'PIB_SERV', 'PIB']) .assign( DT_FIM_EXERC=lambda x: pd.to_datetime({ 'year': x['DT_FIM_EXERC'].str[-4:], 'month': x['DT_FIM_EXERC'].str[0].astype(int) * 3, 'day': 1 }) ) .set_index('DT_FIM_EXERC') .resample('Q').last() .reset_index() ) return df def get_ipca(): locale.setlocale(locale.LC_ALL,'pt_BR.UTF-8') url = "https://sidra.ibge.gov.br/geratabela?format=us.csv&" + \ "name=tabela1737.csv&terr=N&rank=-&query=" + \ "t/1737/n1/all/v/2266/p/all/d/v2266%2013/l/t%2Bv,,p" df = ( pd.read_csv(url, skiprows=4, skipfooter=13, names=['DT_FIM_EXERC', 'IPCA']) .assign( IPCA=lambda x: x['IPCA'] / x['IPCA'].iloc[-1], DT_FIM_EXERC=lambda x: pd.to_datetime( x['DT_FIM_EXERC'], format="%B %Y" ) ) .set_index('DT_FIM_EXERC') .resample('Q').last() .reset_index() ) return df def bcb_sgs(beg_date, end_date, **kwargs): return pd.concat([ pd.read_json(f"http://api.bcb.gov.br/dados/serie/bcdata.sgs.{v}" + f"/dados?formato=json&dataInicial={beg_date}&" + f"dataFinal={end_date}", convert_dates=False) .assign(DT_FIM_EXERC=lambda x: pd.to_datetime(x.data, dayfirst=True)) .set_index('DT_FIM_EXERC') .rename(columns={'valor': k}) for k, v in kwargs.items() ], axis=1) def get_usd(): df = ( bcb_sgs('01/01/1996', '31/03/2020', USD=3697) .resample('Q') ['USD'] .agg(['last', 'mean']) .reset_index() .rename(columns={ 'last': 'USD_EOP', 'mean': 'USD_AVG' }) ) return df def last_friday(): current_time = datetime.datetime.now() return str( current_time.date() - datetime.timedelta(days=current_time.weekday()) + datetime.timedelta(days=4, weeks=-1)) def get_focus_quarterly(column='PIB Total', date=None): if date is None: date = last_friday() url = \ "https://olinda.bcb.gov.br/olinda/servico/Expectativas/versao/v1/" + \ "odata/ExpectativasMercadoTrimestrais?$top=100&$format=text/csv" + \ "&$filter=Indicador%20eq%20'" + urllib.parse.quote(column) + \ "'%20and%20Data%20eq%20'" + date + "'" dfq = ( pd.read_csv(url, decimal=',') [['DataReferencia', 'Media', 'Mediana', 'Minimo', 'Maximo']] .assign( DataReferencia=lambda x: pd.to_datetime({ 'year': x['DataReferencia'].str[-4:], 'month': x['DataReferencia'].str[0].astype(int) * 3, 'day': 1 }) ) .set_index("DataReferencia") .resample('Q').last() ) return dfq def get_focus_monthly(column="IPCA", date=None): if date is None: date = last_friday() url = \ "https://olinda.bcb.gov.br/olinda/servico/Expectativas/versao/v1/" + \ "odata/ExpectativaMercadoMensais?$top=100&$format=text/csv" + \ "&$filter=(Indicador%20eq%20'" + urllib.parse.quote(column) + \ "')%20and%20" + \ "Data%20eq%20'" + date + "'%20and%20baseCalculo%20eq%200" dfm = ( pd.read_csv(url, decimal=',') [['DataReferencia', 'Media', 'Mediana', 'Minimo', 'Maximo']] .assign( DataReferencia=lambda x: pd.to_datetime({ 'year': x['DataReferencia'].str[-4:], 'month': x['DataReferencia'].str[:2], 'day': 1 }) ) .set_index('DataReferencia') .resample('M').last() ) return dfm def get_focus_yearly(column="IPCA", date=None): if date is None: date = last_friday() url = \ "https://olinda.bcb.gov.br/olinda/servico/Expectativas/versao/v1/" + \ "odata/ExpectativasMercadoAnuais?$top=100&$format=text/csv" + \ "&$filter=Indicador%20eq%20'" + urllib.parse.quote(column) + \ "'%20and%20Data%20eq%20'" + date + "'" dfy = ( pd.read_csv(url, decimal=",") [['DataReferencia', 'Media', 'Mediana', 'Minimo', 'Maximo']] .assign( DataReferencia=lambda x: pd.to_datetime({ 'year': x['DataReferencia'], 'month': 12, 'day': 1 }) ) .set_index('DataReferencia') .resample('Y').last() ) return dfy def get_focus(historicals, date=None): if date is None: date = last_friday()
pd.set_option('display.max_rows', None)
pandas.set_option
############################################################## #----------------------Libraries------------------------------ ############################################################## #Las librerias tkinter sirven para generar las vistas #La libreria pandas permite generar archivos excel from tkinter import* # importar interfaz from tkinter import messagebox # pop ups mensajes from tkinter import filedialog # guardar archivos from tkinter.filedialog import asksaveasfile, askdirectory #descargar archivos import tkinter as tk # iniciar interfaz from PIL import ImageTk,Image import pandas as pd # generar archivos excel import numpy as np # libreria de matrices import xlsxwriter # escribir excels import math #libreria para uso de funciones matematicas import os #permite acceder a las fucciones principales de la pc - navegar por archivos de pc from shutil import copyfile #permite copiar y mover archivos en la pc ############################################################## #----------------------Variables globales--------------------- ############################################################## ############################################################## #----------------------Funciones------------------------------ ############################################################## # La funcion guardar nos permite generar un excel donde se mostraran los resultados con las formulas def guardar(): #----------------------variables globales------------------------------ global a file_excel=asksaveasfile(defaultextension=".xlsx", initialfile="Resultados.xlsx", title="Guardar",) dic={} lista=[] for i in range(20): lista.append(i) diametro_2=round(pulgadas,0) angulo=float(a.get()) l0=["","","","","","","","","","","","","","",""] l1=["","","Parte I:","","","","","","","","","","","",""] l2=["","","DIÁMETRO DE TUBO","","DIAMETRO DE TUBO","","Area=","Diámetro=","","LONG. DE TRANSICION","","T1=","T2=","Lt1=","Lt2="] l3=["","","Y LONG. DE ","","","",f"{area} m2",f"{diametro} m","","","",T1,T2,LT,LT2] l4=["","","TRANSICIÓN","","","","",f"» {pulgadas} plg ≈ {diametro_2} plg","","","","» b+(2yz)","Diametro (m)","Ang°","4*Diametro"] l5=["------------------------------------","","Parte II:","","","","","","","",""] l6=["------------------------------------","","COTAS","","NIVEL DE AGUA","","Cota de fondo 1=","Nivel Agua 1=","","COTA DE FONDO 2",""] l7=["------------------------------------","","","","","",f" {cota_fondo_1} m.s.n.m",f" {nivel_agua_1} m.s.n.m","","", ""] l8=["------------------------------------","","","","","","» Cota inicial-(Long e*Escala)","» Cota1 + y","","",""] l9=["","","","","","","",""] l10=["v1=","vt=","hte=","1.5Hv(1)=","1.5Hv(2)=","1.5Hv=","Hv=","Cota de fondo 2="] l11=[v1,vt,hte,hv1,hv2,hv15,hv,f" {cota_fondo_2} m.s.n.m"] l12=["» Q/((T2^2)*Pi/4)","» (y*z+b)*y/2","» T2/cos(Angº)","» (v1^2)/(2*g)","» (vt^2)/(2*g)","» 1.5Hv(1) - 1.5Hv(2)","» 1.5Hv * 1.5","» Nivel Agua 1 -(Hte + Hv)"] l13=["","","","","","","","","","","","","","","",""] l14=["","COTA DE FONDO 3","","h=","Cota de fondo 3=","","COTA DE FONDO 4","","h4=","Cota de fondo 4=","","COTA DE FONDO 5","","h=","Cota de fondo 5=",""] l15=["","","",h,f" {cota_fondo_3} m.s.n.m","","","",h4,f" {cota_fondo_4} m.s.n.m","","","",h5, f" {cota_fondo_5} m.s.n.m",""] l16=["","","","» Angº *5","» Cota2 - h","","","","» Lth* Escala","» Cota3 - h4","","","","» Angº *4","» Cota4 + h",""] l17=["------------------------------------","","Parte III:","","","","","","","","","","","","",""] l18=["------------------------------------","","VALOR P,","","VALOR P","","P de entrada=","P de salida=","Valor P=","","INCLINACION DE LOS","","Entrada x=","Entrada y=","Inclinacion=","","Salida x="] l19=["------------------------------------","","CARGA HIDRÁULICA","","","",p_entrada,p_salida,p,"","TUBOS DOBLADOS","",x_entrada,y_entrada,inclinacion_entrada,"",x_salida] l20=["------------------------------------","","Y PERDIDAS DE CARGA","","","","» 3/4 T2","» 1/2 T2","» Cota Final - Cota5","","","","» h(cota3)/Tang(Angº)","» h(cota3)","» Entrada x/Entrada Y","","» h(cota5)/Tang(Angº)"] l21=["","","","","","","","","","","","","","","","","",""] l22=["Salida y=","Inclinacion=","","CARGA HIDRÁULICA","","Cota 1 + tirante=","Cota 6 + tirante=","Carga disponible=","","CALCULO DE","","Entrada=","Salida=","Friccion=","Codos=","PERDIDA TOTAL=","10% Seguridad="] l23=[y_salida,inclinacion_salida,"","DISPONIBLE","",f" {c1_t} m.s.n.m",f" {c6_t} m.s.n.m",f" {carga} m","","LAS PERDIDAS","",entrada,salida,friccion,codos,perdida,porcentaje] l24=["» h(cota5)","» Salida x/Salida Y","","","","» Cota1 +y","» Cota Final +y (2)","» (1)-(2)","","DE CARGA","","» P entrada *0.0938","» P Salida *0.0938","» 0.025*(longitud/Diametro)*1.5Hv(1)","» 2*(0.25*(Angº^(1/2))/(90º *1.5Hv(1))","»Entrada+Salida+Friccion+Codo","» Perdida*(1+10%)"] l25=["","","","","","",""] l26=["","∆ Cota 1 y Cota 2=","Altura de sumergencia=","","LONGITUD DE","","Lp="] l27=["",cotas,altura,"","PROTECCION CON","",longitud] l28=["","» Cota1-Cota2","»y+(∆c1 y c2)-hte","","ENRROCADO","","»3*T2"] dic['']=l1 + l5 +l9 +l13+l17+l21+l25 dic['Diseño ']=l2+l6+l10+l14+l18+l22+l26 dic['hidráulico ']=l3+l7+l11+l15+l19+l23+l27 dic['del sifón']=l4+l8+l12+l16+l20+l24+l28 df1=pd.DataFrame(dic) columnas=len(df1.columns) # aqui se genera el excel con el formato q le damos writer =
pd.ExcelWriter(file_excel.name, engine='xlsxwriter')
pandas.ExcelWriter
import argparse import os import pandas as pd import azureml.train.automl.runtime._hts.hts_runtime_utilities as hru from azureml.core import Run from azureml.core.dataset import Dataset # Parse the arguments. args = { "step_size": "--step-size", "step_number": "--step-number", "time_column_name": "--time-column-name", "time_series_id_column_names": "--time-series-id-column-names", "out_dir": "--output-dir", } parser = argparse.ArgumentParser("Parsing input arguments.") for argname, arg in args.items(): parser.add_argument(arg, dest=argname, required=True) parsed_args, _ = parser.parse_known_args() step_number = int(parsed_args.step_number) step_size = int(parsed_args.step_size) # Create the working dirrectory to store the temporary csv files. working_dir = parsed_args.out_dir os.makedirs(working_dir, exist_ok=True) # Set input and output script_run = Run.get_context() input_dataset = script_run.input_datasets["training_data"] X_train = input_dataset.to_pandas_dataframe() # Split the data. for i in range(step_number): file_name = os.path.join(working_dir, "backtest_{}.csv".format(i)) if parsed_args.time_series_id_column_names: dfs = [] for _, one_series in X_train.groupby([parsed_args.time_series_id_column_names]): one_series = one_series.sort_values( by=[parsed_args.time_column_name], inplace=False ) dfs.append(one_series.iloc[: len(one_series) - step_size * i])
pd.concat(dfs, sort=False, ignore_index=True)
pandas.concat
import re from unittest.mock import Mock, patch import numpy as np import pandas as pd import pytest from rdt.transformers import ( CategoricalTransformer, LabelEncodingTransformer, OneHotEncodingTransformer) RE_SSN = re.compile(r'\d\d\d-\d\d-\d\d\d\d') class TestCategoricalTransformer: def test___init__(self): """Passed arguments must be stored as attributes.""" # Run transformer = CategoricalTransformer( fuzzy='fuzzy_value', clip='clip_value', ) # Asserts assert transformer.fuzzy == 'fuzzy_value' assert transformer.clip == 'clip_value' def test__get_intervals(self): # Run data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) result = CategoricalTransformer._get_intervals(data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert result[0] == expected_intervals def test_fit(self): # Setup transformer = CategoricalTransformer() # Run data = np.array(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) transformer.fit(data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert transformer.intervals == expected_intervals def test__get_value_no_fuzzy(self): # Setup transformer = CategoricalTransformer(fuzzy=False) transformer.fuzzy = False transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), } # Run result = transformer._get_value('foo') # Asserts assert result == 0.25 @patch('scipy.stats.norm.rvs') def test__get_value_fuzzy(self, rvs_mock): # setup rvs_mock.return_value = 0.2745 transformer = CategoricalTransformer(fuzzy=True) transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), } # Run result = transformer._get_value('foo') # Asserts assert result == 0.2745 def test__normalize_no_clip(self): """Test normalize data""" # Setup transformer = CategoricalTransformer(clip=False) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.57, 0.1234, 0.5, 0.69], dtype=float) pd.testing.assert_series_equal(result, expect) def test__normalize_clip(self): """Test normalize data with clip=True""" # Setup transformer = CategoricalTransformer(clip=True) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.0, 0.1234, 1.0, 0.0], dtype=float) pd.testing.assert_series_equal(result, expect) def test_reverse_transform_array(self): """Test reverse_transform a numpy.array""" # Setup data = np.array(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) rt_data = np.array([-0.6, 0.5, 0.6, 0.2, 0.1, -0.2]) transformer = CategoricalTransformer() # Run transformer.fit(data) result = transformer.reverse_transform(rt_data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert transformer.intervals == expected_intervals expect = pd.Series(data) pd.testing.assert_series_equal(result, expect) def test__transform_by_category_called(self): """Test that the `_transform_by_category` method is called. When the number of rows is greater than the number of categories, expect that the `_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 5 rows Output: - the output of `_transform_by_category` Side effects: - `_transform_by_category` will be called once """ # Setup data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer.transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_category.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_category.return_value def test__transform_by_category(self): """Test the `_transform_by_category` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 5 rows Ouptut: - the transformed data """ # Setup data = pd.Series([1, 3, 3, 2, 1]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Asserts expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() def test__transform_by_row_called(self): """Test that the `_transform_by_row` method is called. When the number of rows is less than or equal to the number of categories, expect that the `_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 4 rows Output: - the output of `_transform_by_row` Side effects: - `_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer.transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_row.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_row.return_value def test__transform_by_row(self): """Test the `_transform_by_row` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 4 rows Ouptut: - the transformed data """ # Setup data = pd.Series([1, 2, 3, 4]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_row(data) # Asserts expected = np.array([0.875, 0.625, 0.375, 0.125]) assert (transformed == expected).all() @patch('psutil.virtual_memory') def test__reverse_transfrom_by_matrix_called(self, psutil_mock): """Test that the `_reverse_transform_by_matrix` method is called. When there is enough virtual memory, expect that the `_reverse_transform_by_matrix` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_matrix` Side effects: - `_reverse_transform_by_matrix` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_matrix.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_matrix.return_value @patch('psutil.virtual_memory') def test__reverse_transfrom_by_matrix(self, psutil_mock): """Test the _reverse_transform_by_matrix method with numerical data Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories and means. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data = pd.Series([1, 2, 3, 4]) transformed = pd.Series([0.875, 0.625, 0.375, 0.125]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = transformer._reverse_transform_by_matrix(transformed) # Assert pd.testing.assert_series_equal(data, reverse) @patch('psutil.virtual_memory') def test__reverse_transform_by_category_called(self, psutil_mock): """Test that the `_reverse_transform_by_category` method is called. When there is not enough virtual memory and the number of rows is greater than the number of categories, expect that the `_reverse_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 5 rows Output: - the output of `_reverse_transform_by_category` Side effects: - `_reverse_transform_by_category` will be called once """ # Setup transform_data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = transform_data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform( categorical_transformer_mock, transform_data) # Asserts categorical_transformer_mock._reverse_transform_by_category.assert_called_once_with( transform_data) assert reverse == categorical_transformer_mock._reverse_transform_by_category.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_category(self, psutil_mock): """Test the _reverse_transform_by_category method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 5 rows Ouptut: - the original data """ data = pd.Series([1, 3, 3, 2, 1]) transformed = pd.Series([0.875, 0.375, 0.375, 0.625, 0.875]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory reverse = transformer._reverse_transform_by_category(transformed) pd.testing.assert_series_equal(data, reverse) @patch('psutil.virtual_memory') def test__reverse_transform_by_row_called(self, psutil_mock): """Test that the `_reverse_transform_by_row` method is called. When there is not enough virtual memory and the number of rows is less than or equal to the number of categories, expect that the `_reverse_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_row` Side effects: - `_reverse_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock.starts = pd.DataFrame( [0., 0.25, 0.5, 0.75], index=[4, 3, 2, 1], columns=['category']) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_row.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_row.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_row(self, psutil_mock): """Test the _reverse_transform_by_row method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means, starts, and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data = pd.Series([1, 2, 3, 4]) transformed = pd.Series([0.875, 0.625, 0.375, 0.125]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.starts = pd.DataFrame( [4, 3, 2, 1], index=[0., 0.25, 0.5, 0.75], columns=['category']) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = transformer.reverse_transform(transformed) # Assert pd.testing.assert_series_equal(data, reverse) class TestOneHotEncodingTransformer: def test__prepare_data_empty_lists(self): # Setup ohet = OneHotEncodingTransformer() data = [[], [], []] # Assert with pytest.raises(ValueError): ohet._prepare_data(data) def test__prepare_data_nested_lists(self): # Setup ohet = OneHotEncodingTransformer() data = [[[]]] # Assert with pytest.raises(ValueError): ohet._prepare_data(data) def test__prepare_data_list_of_lists(self): # Setup ohet = OneHotEncodingTransformer() # Run data = [['a'], ['b'], ['c']] out = ohet._prepare_data(data) # Assert expected = np.array(['a', 'b', 'c']) np.testing.assert_array_equal(out, expected) def test__prepare_data_pandas_series(self): # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', 'c']) out = ohet._prepare_data(data) # Assert expected = pd.Series(['a', 'b', 'c']) np.testing.assert_array_equal(out, expected) def test_fit_no_nans(self): """Test the ``fit`` method without nans. Check that the settings of the transformer are properly set based on the input. Encoding should be activated Input: - Series with values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', 'c']) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a', 'b', 'c']) np.testing.assert_array_equal(ohet.decoder, ['a', 'b', 'c']) assert ohet.dummy_encoded assert not ohet.dummy_na def test_fit_no_nans_numeric(self): """Test the ``fit`` method without nans. Check that the settings of the transformer are properly set based on the input. Encoding should be deactivated Input: - Series with values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series([1, 2, 3]) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, [1, 2, 3]) np.testing.assert_array_equal(ohet.decoder, [1, 2, 3]) assert not ohet.dummy_encoded assert not ohet.dummy_na def test_fit_nans(self): """Test the ``fit`` method with nans. Check that the settings of the transformer are properly set based on the input. Encoding and NA should be activated. Input: - Series with containing nan values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', None]) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a', 'b']) np.testing.assert_array_equal(ohet.decoder, ['a', 'b', np.nan]) assert ohet.dummy_encoded assert ohet.dummy_na def test_fit_nans_numeric(self): """Test the ``fit`` method with nans. Check that the settings of the transformer are properly set based on the input. Encoding should be deactivated and NA activated. Input: - Series with containing nan values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series([1, 2, np.nan]) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, [1, 2]) np.testing.assert_array_equal(ohet.decoder, [1, 2, np.nan]) assert not ohet.dummy_encoded assert ohet.dummy_na def test_fit_single(self): # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'a', 'a']) ohet.fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a']) def test__transform_no_nan(self): """Test the ``_transform`` method without nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation. Input: - Series with values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet.dummies = ['a', 'b', 'c'] ohet.num_dummies = 3 # Run out = ohet._transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test__transform_no_nan_categorical(self): """Test the ``_transform`` method without nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch. Input: - Series with categorical values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet.dummies = ['a', 'b', 'c'] ohet.indexer = [0, 1, 2] ohet.num_dummies = 3 ohet.dummy_encoded = True # Run out = ohet._transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test__transform_nans(self): """Test the ``_transform`` method with nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation. Null values should be represented by the same encoding. Input: - Series with values containing nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series([np.nan, None, 'a', 'b']) ohet.dummies = ['a', 'b'] ohet.dummy_na = True ohet.num_dummies = 2 # Run out = ohet._transform(data) # Assert expected = np.array([ [0, 0, 1], [0, 0, 1], [1, 0, 0], [0, 1, 0] ]) np.testing.assert_array_equal(out, expected) def test__transform_nans_categorical(self): """Test the ``_transform`` method with nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch. Null values should be represented by the same encoding. Input: - Series with categorical values containing nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series([np.nan, None, 'a', 'b']) ohet.dummies = ['a', 'b'] ohet.indexer = [0, 1] ohet.dummy_na = True ohet.num_dummies = 2 ohet.dummy_encoded = True # Run out = ohet._transform(data) # Assert expected = np.array([ [0, 0, 1], [0, 0, 1], [1, 0, 0], [0, 1, 0] ]) np.testing.assert_array_equal(out, expected) def test__transform_single(self): """Test the ``_transform`` with one category. The values passed to ``_transform`` should be returned in a one-hot encoding representation where it should be a single column. Input: - Series with a single category Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet.dummies = ['a'] ohet.num_dummies = 1 # Run out = ohet._transform(data) # Assert expected = np.array([ [1], [1], [1] ]) np.testing.assert_array_equal(out, expected) def test__transform_single_categorical(self): """Test the ``_transform`` with one category. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch where it should be a single column. Input: - Series with a single category Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet.dummies = ['a'] ohet.indexer = [0] ohet.num_dummies = 1 ohet.dummy_encoded = True # Run out = ohet._transform(data) # Assert expected = np.array([ [1], [1], [1] ]) np.testing.assert_array_equal(out, expected) def test__transform_zeros(self): """Test the ``_transform`` with unknown category. The values passed to ``_transform`` should be returned in a one-hot encoding representation where it should be a column of zeros. Input: - Series with unknown values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() pd.Series(['a']) ohet.dummies = ['a'] ohet.num_dummies = 1 # Run out = ohet._transform(pd.Series(['b', 'b', 'b'])) # Assert expected = np.array([ [0], [0], [0] ]) np.testing.assert_array_equal(out, expected) def test__transform_zeros_categorical(self): """Test the ``_transform`` with unknown category. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch where it should be a column of zeros. Input: - Series with categorical and unknown values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() pd.Series(['a']) ohet.dummies = ['a'] ohet.indexer = [0] ohet.num_dummies = 1 ohet.dummy_encoded = True # Run out = ohet._transform(pd.Series(['b', 'b', 'b'])) # Assert expected = np.array([ [0], [0], [0] ]) np.testing.assert_array_equal(out, expected) def test__transform_unknown_nan(self): """Test the ``_transform`` with unknown and nans. This is an edge case for ``_transform`` where unknowns should be zeros and nans should be the last entry in the column. Input: - Series with unknown and nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() pd.Series(['a']) ohet.dummies = ['a'] ohet.dummy_na = True ohet.num_dummies = 1 # Run out = ohet._transform(pd.Series(['b', 'b', np.nan])) # Assert expected = np.array([ [0, 0], [0, 0], [0, 1] ]) np.testing.assert_array_equal(out, expected) def test_transform_no_nans(self): """Test the ``transform`` without nans. In this test ``transform`` should return an identity matrix representing each item in the input. Input: - Series with categorical values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet.fit(data) # Run out = ohet.transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test_transform_nans(self): """Test the ``transform`` with nans. In this test ``transform`` should return an identity matrix representing each item in the input as well as nans. Input: - Series with categorical values and nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', None]) ohet.fit(data) # Run out = ohet.transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test_transform_single(self): """Test the ``transform`` on a single category. In this test ``transform`` should return a column filled with ones. Input: - Series with a single categorical value Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet.fit(data) # Run out = ohet.transform(data) # Assert expected = np.array([ [1], [1], [1] ]) np.testing.assert_array_equal(out, expected) def test_transform_unknown(self): """Test the ``transform`` with unknown data. In this test ``transform`` should raise an error due to the attempt of transforming data with previously unseen categories. Input: - Series with unknown categorical values """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a']) ohet.fit(data) # Assert with np.testing.assert_raises(ValueError): ohet.transform(['b']) def test_transform_numeric(self): """Test the ``transform`` on numeric input. In this test ``transform`` should return a matrix representing each item in the input as one-hot encodings. Input: - Series with numeric input Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series([1, 2]) ohet.fit(data) expected = np.array([ [1, 0], [0, 1], ]) # Run out = ohet.transform(data) # Assert assert not ohet.dummy_encoded np.testing.assert_array_equal(out, expected) def test_reverse_transform_no_nans(self): # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet.fit(data) # Run transformed = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) out = ohet.reverse_transform(transformed) # Assert expected = pd.Series(['a', 'b', 'c']) pd.testing.assert_series_equal(out, expected) def test_reverse_transform_nans(self): # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', None]) ohet.fit(data) # Run transformed = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) out = ohet.reverse_transform(transformed) # Assert expected =
pd.Series(['a', 'b', None])
pandas.Series
from dataclasses import dataclass import pandas as pd import streamlit as st from streamlit_drawable_canvas import st_canvas from helpers import ( download_data, visualize_pitch, get_field_lines, get_converted_positional_data, VoronoiPitch, PitchDraw, ) from pitch import FootballPitch tags = { "Direct opponent of pass sender @ Pre pass": "#00fff1", "Intended pass receiver @ Pre pass": "#00ffff2", "Interception candidate @ Pre pass": "#00fff3", "Ball @ Start pass": "#a52a2a", "Direct opponent of pass sender @ Start pass": "#a52a2b", "Intended pass receiver @ Start pass": "#a52a2c", "Interception candidate @ Start pass": "#a52a2d", "Body orientation visual line @ Start pass": "#a52a2e", "Body orientation point 1 @ Start pass": "#FFFFF5", "Body orientation point 2 @ Start pass": "#FFFFF6", "Ball @ End pass": "#FFFFF1", "Intended Pass receiver @ End pass": "#FFFFF3", "Interception candidate @ End pass": "#FFFFF4", "Hypothetical pass end location @ End pass": "#FFFFF2", } columns_of_interest = [ "team", "x", "y", "player_name", "pass_duration", "player_role", "situation_id", "facing_passing_line", "nationality", ] st.set_option("deprecation.showfileUploaderEncoding", False) st.beta_set_page_config(page_title="BirdsPyView", layout="wide") @dataclass class SessionState: positional_data = pd.DataFrame(columns=columns_of_interest) @st.cache(allow_output_mutation=True) def fetch_session(): session = SessionState() return session session = fetch_session() st.title("Upload Image or Video") uploaded_file = st.file_uploader( "Select Image file to open:", type=["png", "jpg", "mp4"] ) pitch = FootballPitch() if uploaded_file: snapshot = visualize_pitch(uploaded_file, pitch) st.title("Pitch lines") lines_expander = st.beta_expander( "Draw pitch lines on selected image (2 horizontal lines, then 2 vertical lines)", expanded=True, ) with lines_expander: col1, col2, col_, col3 = st.beta_columns([2, 1, 0.5, 1]) canvas_image, hlines, vlines = get_field_lines( pitch, snapshot, col1, col2, col3 ) if canvas_image.json_data is not None: n_lines = len(canvas_image.json_data["objects"]) with col3: st.write( f"You have drawn {n_lines} lines. Use the Undo button to delete lines." ) if n_lines >= 4: snapshot.set_info( pd.json_normalize(canvas_image.json_data["objects"]), hlines + vlines ) with lines_expander: st.write("Converted image:") st.image(snapshot.conv_im) st.title("Annotate positional data") st.write( "Draw rectangle over players on image. " + "The player location is assumed to the middle of the base of the rectangle." ) p_col1, p_col2, p_col3 = st.beta_columns([2, 1, 1]) with p_col2: team_color = st.selectbox( "Select Player to annotate position: ", list(tags.keys()) ) stroke_color = tags[team_color] is_facing_the_passingline = st.checkbox( "Is the pass interception candidate facing the passing line?", value=True, ) original = True # st.checkbox('Select on original image', value=True) situation_id = st.text_input("Situation ID (e.g. 1)", value="1") player_name = st.text_input( "Interception candidate player name", value="NaN" ) player_role = st.selectbox( "Interception candidate role", [ "Direct opponent of pass sender", "Direct opponent of pass receiver", "any other", ], index=0, ) nationality = st.selectbox( "Nationality of the interception candidate", ["NL", "BIH", "ITA"] ) pass_duration = st.text_input( "Pass duration in seconds and fraction of second (e.g. 0.50 for a 500ms pass)", max_chars=4, value="0.50", ) if len(pass_duration) < 3 & len(pass_duration) > 0: st.warning( "Pass duration has to be indicated with the format S.FF (e.g. 0.50 s)" ) update = st.button("Update data") if team_color == "Body orientation visual line @ Start pass": body_orientation_lines = True else: body_orientation_lines = False image2 = snapshot.get_image(original) height2 = image2.height width2 = image2.width with p_col1: canvas_converted = st_canvas( fill_color="rgba(255, 165, 0, 0.3)", stroke_width=2, stroke_color=stroke_color, background_image=image2, drawing_mode="line" if body_orientation_lines else "rect", update_streamlit=update, height=height2, width=width2, key="canvas2", ) if canvas_converted.json_data is not None: if len(canvas_converted.json_data["objects"]) > 0: dfCoords = get_converted_positional_data( tags, snapshot, original, canvas_converted ) # Add metadata to dataframe dfCoords["situation_id"] = situation_id dfCoords["pass_duration"] = pass_duration dfCoords["player_name"] = player_name dfCoords["pass_duration"] = pass_duration dfCoords["player_role"] = player_role dfCoords["facing_passing_line"] = is_facing_the_passingline dfCoords["nationality"] = nationality session.positional_data = pd.concat( [session.positional_data, dfCoords[columns_of_interest]], axis=0, ) session.positional_data.drop_duplicates( keep="last", ignore_index=True, inplace=True, ) session.positional_data.drop_duplicates( keep="first", ignore_index=True, inplace=True ) st.title("Overlay of positional data of current frame") voronoi = VoronoiPitch(dfCoords) sensitivity = 10 player_circle_size = 2 player_opacity = 100 draw = PitchDraw(snapshot, original=True) for pid, coord in dfCoords.iterrows(): draw.draw_circle( coord[["x", "y"]].values, "black", player_circle_size, player_opacity, ) st.image(draw.compose_image(sensitivity)) def empty_uploaded_cache(): global uploaded_file uploaded_file = None if "dfCoords" in globals(): st.title("Inspect raw dataframe") st.dataframe(session.positional_data) st.title("Downloda data") download_data(session.positional_data) if st.button("Clear all cached data"): session.positional_data =
pd.DataFrame(columns=session.positional_data.columns)
pandas.DataFrame
import model_age as mdl import pathos.pools as pp from pathlib import Path import varcontrol import time import pandas as pd import matplotlib.pyplot as plt def prepare_jobs(step_size,policy_,output_lst,out_path): # WARNING: policy_ is now a dict, not a dataframe steps_day = step_size initial_time = 90 # writing the files for different measures and different durations of the measures # sd: social distancing, sq: self quarantine, sdq: social distancing AND self quarantine # code by <NAME> and <NAME> job_list = [] for measure_ in ['sd', 'sq', 'sqd']: for start_day in range(initial_time, 270+steps_day, steps_day): for duration in range(steps_day, 180+steps_day, steps_day): end_day = start_day + duration if end_day <= 270: if measure_ == 'sd': for group in varcontrol.age_groups: policy_['self quarantine policy SWITCH self %s' % group] = 0 policy_['social distancing policy SWITCH self %s' % group] = 1 policy_['social distancing start %s' % group] = start_day policy_['social distancing end %s' % group] = end_day elif measure_ == 'sq': for group in varcontrol.age_groups: policy_['self quarantine policy SWITCH self %s' % group] = 1 policy_['social distancing policy SWITCH self %s' % group] = 0 policy_['self quarantine start %s' % group] = start_day policy_['self quarantine end %s' % group] = end_day else: for group in varcontrol.age_groups: policy_['self quarantine policy SWITCH self %s' % group] = 1 policy_['social distancing policy SWITCH self %s' % group] = 1 policy_['social distancing start %s' % group] = start_day policy_['social distancing end %s' % group] = end_day policy_['self quarantine start %s' % group] = start_day policy_['self quarantine end %s' % group] = end_day # we should write the policy file into a more readable version # getting the names of the variables could also be hardcoded but if we expand this, this is going to be easier row_names = list(policy_.keys()) row_names = [name.rsplit(' ',1)[0] for name in row_names] row_names = list(set(row_names)) pol_df = pd.DataFrame(index=row_names,columns=varcontrol.age_groups) for key,val in policy_.items(): row,col = key.rsplit(' ',1) pol_df.loc[row][col] = val pol_df.to_csv(out_path / 'policy_{0}_{1}_{2}.csv'.format(measure_, start_day-initial_time, end_day-initial_time)) item = (policy_.copy(),(measure_,start_day-initial_time,end_day-initial_time),output_lst) job_list.append(item) print('number of jobs:', len(job_list)) return job_list def worker(args): from pathlib import Path import model_age as mdl model = mdl.setup_model()[0] results_out_path = Path.cwd() / 'full_results_output' pol_out = mdl.run_policy(model,args[0],args[2]) pol_out = pol_out.reset_index(drop=True) pol_out.to_csv(results_out_path / 'results_{0}_{1}_{2}.csv'.format(args[1][0], args[1][1], args[1][2])) print('Result: {0}_{1}_{2}'.format(args[1][0], args[1][1], args[1][2])) def check_result(path): """ from pathlib import Path results_out_path = Path.cwd() / 'full_results_output' import create_output_for_web create_output_for_web.check_result(results_out_path) """ file_list = list(path.glob('*'))[:20] sum_df = pd.DataFrame() for file in file_list: df =
pd.read_csv(file,index_col=0)
pandas.read_csv
import argparse import pandas as pd import torch import configure as conf parser = argparse.ArgumentParser() parser.add_argument('model', choices=['GATENet', 'LSTMNet']) parser.add_argument('pool', choices=['GlobalAddPool', 'NodeAttentionPool', 'StructureAttentionPool']) parser.add_argument('--device', type=str, default='cuda') parser.add_argument('--ckpt', type=str, default="") parser.add_argument('--fold', type=int, default=-1) args = parser.parse_args() class Inferencer(torch.nn.Module): def __init__(self, gnn, pool): super(Inferencer, self).__init__() self.gnn = gnn self.pool = pool def forward(self, batch): nembed = self.gnn(batch) return nembed conf.fold = args.fold if args.fold >= 0 else None conf.setup_dataset() gnn, pool, _ = conf.setup_gnn_logger(args.model, args.pool, log=False) model = Inferencer(gnn, pool).to(args.device) if args.ckpt: ckpt = torch.load(args.ckpt, map_location=args.device) model.load_state_dict(ckpt['state_dict']) metrics = conf.dset[2].evaluate_val(model, args.device, 'euclidean', 'plain').T eval_list = conf.dset[2].names pos_pair = conf.dset[2].pos_pair pdblst = [i for i in eval_list if i in pos_pair] print(len(pdblst), metrics.shape) k = [1, 5, 10, 20, 50, 100] roc, prc = metrics[0], metrics[1] hitk = metrics[2:8] d1 = {f'hit@top{n}': h for n, h in zip(k, hitk)} prec = metrics[8:14] d2 = {f'prec@top{n}': p for n, p in zip(k, prec)} recall = metrics[14:20] d3 = {f'recall@top{n}': r for n, r in zip(k, recall)} print(len(pdblst), len(roc), len(prc)) df =
pd.DataFrame({'name': pdblst, 'auroc': roc, 'auprc': prc, **d1, **d2, **d3})
pandas.DataFrame
#import AYS_Environment as ays_env import c_global.cG_LAGTPKS_Environment as c_global import numpy as np import pandas as pd import sys,os import matplotlib.pyplot as plt from matplotlib.offsetbox import AnchoredText pars=dict( Sigma = 1.5 * 1e8, Cstar=5500, a0=0.03, aT=3.2*1e3, l0=26.4, lT=1.1*1e6, delta=0.01, m=1.5, g=0.02, p=0.04, Wp=2000, q0=20, qP=0., b=5.4*1e-7, yE=120, wL=0., eB=4*1e10, eF=4*1e10, i=0.25, k0=0.1, aY=0., aB=1.5e4, aF=2.7e5, aR=9e-15, sS=1./50., sR=1., ren_sub=.5, carbon_tax=.5 , i_DG=0.1, L0=0.3*2480 ) ics=dict( L=2480., A=830.0, G=1125, T=5.053333333333333e-6, P=6e9, K=5e13, S=5e11 ) dt=1 reward_type='PB' my_Env=c_global.cG_LAGTPKS_Environment(dt=dt,pars=pars, reward_type=reward_type, ics=ics, plot_progress=True) def read_trajectories(learner_type, reward_type, basin, policy='epsilon_greedy', episode=0): runs=[] # 0_path_[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]_episode0 limit=150 limit=150 parameters=['time','L', 'A', 'G', 'T', 'P', 'K', 'S' , 'action' , 'Reward' ] for i in range(limit): file_name=('./'+learner_type+'/' + policy +'/' +reward_type + '/DQN_Path/' + basin+ '/' + str(i)+'_path_[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]_episode' + str(episode)+'.txt') if os.path.isfile(file_name): tmp_file= pd.read_csv(file_name, sep='\s+' ,header=None, names=parameters, skiprows=2, index_col=False) # Skiprow=2, since we calculate derived variables first! runs.append(tmp_file) # print(file_name) # For not too many files if len(runs) > 100: break print(len(runs)) return runs def get_LAGTPKS(learning_progress): time=learning_progress['time'] L=learning_progress['L'] A=learning_progress['A'] G=learning_progress['G'] T=learning_progress['T'] P=learning_progress['P'] K=learning_progress['K'] S=learning_progress['S'] actions= learning_progress['action'] return time, L,A,G,T,P,K,S,actions def management_distribution_part(learning_progress_arr, savepath, start_time=0, end_time=20, only_long_times=False): tot_my_actions=pd.DataFrame(columns=['action']) for learning_progress in learning_progress_arr: time, L_comp, A_comp, G_comp, T_comp, P_comp, K_comp, S_comp, actions = get_LAGTPKS(learning_progress) end_time_simulation=time.iloc[-1] if only_long_times: if end_time_simulation >100: print(end_time_simulation) my_actions= pd.DataFrame(actions[start_time:end_time]) else: my_actions= pd.DataFrame(actions[start_time:end_time]) tot_my_actions=pd.concat([tot_my_actions, my_actions]).reset_index(drop = True) tot_my_actions=tot_my_actions.to_numpy() d = np.diff(np.unique(tot_my_actions)).min() left_of_first_bin = tot_my_actions.min() - float(d)/2 right_of_last_bin = tot_my_actions.max() + float(d)/2 #print(d, left_of_first_bin, right_of_last_bin) right_of_last_bin = 7.5 fig, ax= plt.subplots(figsize=(8,5)) plt.hist(tot_my_actions, np.arange(left_of_first_bin, right_of_last_bin + d, d),density=True, edgecolor='grey',rwidth=0.9) plt.xlabel("Action number", fontsize=15) plt.ylabel("Probability",fontsize=15) #plt.xlim([0,7]) box_text='' for i in range(len(c_global.cG_LAGTPKS_Environment.management_options)): box_text+=str(i ) + ": " + c_global.cG_LAGTPKS_Environment.management_options[i] +"\n" at = AnchoredText(box_text, prop=dict(size=14), frameon=True, loc='lower left', bbox_to_anchor=(1.0, .02),bbox_transform=ax.transAxes ) at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2") #ax.axis('off') ax.add_artist(at) fig.tight_layout() fig.savefig(savepath) @np.vectorize def std_err_bin_coefficient(n,p): #print(n,p) std_dev=p*(1-p) return np.sqrt(std_dev/n) def action_timeline(savepath, learner_type='ddqn_per_is_duel', reward_type='PB', basin='GREEN_FP', start_time=0, end_time=100): time_arr= np.arange(0,end_time) action_names=['default', 'Sub' , 'Tax','NP' , 'Sub+Tax', 'Sub+NP', 'Tax+NP', 'Sub+Tax+NP' ] tot_average_actions=pd.DataFrame(columns=action_names) tot_average_actions_errors=
pd.DataFrame(columns=action_names)
pandas.DataFrame
from qc_time_estimator.config import config import numpy as np np.random.seed(config.SEED) import logging from pprint import pprint from time import time from sklearn.metrics import make_scorer from sklearn.model_selection import RandomizedSearchCV from qc_time_estimator.pipeline import qc_time_nn from qc_time_estimator.metrics import mape, percentile_rel_90 from qc_time_estimator.processing.data_management import load_dataset, get_train_test_split from sklearn.model_selection import KFold import pandas as pd from datetime import datetime from scipy.stats import uniform, randint, loguniform # from sklearn.utils.fixes import loguniform logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') logger = logging.getLogger(__name__) # Num of iter (samples/model) to try n_iter = 300 parameters = { 'nn_model__input_dim': [22,], 'nn_model__nodes_per_layer': [(10, 5), (10, 10, 5), (10, 10, 7, 5)], 'nn_model__dropout': uniform(0, 0.3), # max 0.3 is ok 'nn_model__batch_size': [64, 128, 256, 512], 'nn_model__epochs': randint(50, 400), 'nn_model__optimizer': ['adam'], 'nn_model__learning_rate': loguniform(1e-4, 1e-1), # search in smaller nums, < 0.1 } if __name__ == "__main__": # multiprocessing requires the fork to happen in a __main__ protected block # change max_rows, None means all data data = load_dataset(file_name=config.TRAINING_DATA_FILE, nrows=None) X_train, X_test, y_train, y_test = get_train_test_split(data, test_size=0.2) random_search = RandomizedSearchCV(qc_time_nn, param_distributions=parameters, scoring={ 'percentile99': make_scorer(percentile_rel_90, greater_is_better=False), 'MAPE': make_scorer(mape, greater_is_better=False), }, refit='percentile99', n_jobs=-1, # -2 to use all CPUs except one return_train_score=True, n_iter=n_iter, cv=KFold(n_splits=2, random_state=0), verbose=1) print("Performing grid search...") print("pipeline:", [name for name, _ in qc_time_nn.steps]) print("parameters:") pprint(parameters) t0 = time() random_search.fit(X_train, y_train) print("done in %0.3fs" % (time() - t0)) print() print("Best score: %0.3f" % random_search.best_score_) print("Best parameters set:") best_parameters = random_search.best_params_ for param_name in sorted(parameters.keys()): print("\t%s: %r" % (param_name, best_parameters[param_name])) df =
pd.DataFrame(random_search.cv_results_)
pandas.DataFrame
""" test fancy indexing & misc """ from datetime import datetime import re import weakref import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.common import ( is_float_dtype, is_integer_dtype, ) import pandas as pd from pandas import ( DataFrame, Index, NaT, Series, date_range, offsets, timedelta_range, ) import pandas._testing as tm from pandas.core.api import Float64Index from pandas.tests.indexing.common import _mklbl from pandas.tests.indexing.test_floats import gen_obj # ------------------------------------------------------------------------ # Indexing test cases class TestFancy: """pure get/set item & fancy indexing""" def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(np.arange(1, 11))) df["foo"] = np.zeros(10, dtype=np.float64) df["bar"] = np.zeros(10, dtype=complex) # invalid msg = "Must have equal len keys and value when setting with an iterable" with pytest.raises(ValueError, match=msg): df.loc[df.index[2:5], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) # valid df.loc[df.index[2:6], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], "bar"] expected = Series( [2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name="bar" ) tm.assert_series_equal(result, expected) def test_setitem_ndarray_1d_2(self): # GH5508 # dtype getting changed? df = DataFrame(index=Index(np.arange(1, 11))) df["foo"] = np.zeros(10, dtype=np.float64) df["bar"] = np.zeros(10, dtype=complex) msg = "Must have equal len keys and value when setting with an iterable" with pytest.raises(ValueError, match=msg): df[2:5] = np.arange(1, 4) * 1j def test_getitem_ndarray_3d( self, index, frame_or_series, indexer_sli, using_array_manager ): # GH 25567 obj = gen_obj(frame_or_series, index) idxr = indexer_sli(obj) nd3 = np.random.randint(5, size=(2, 2, 2)) msgs = [] if frame_or_series is Series and indexer_sli in [tm.setitem, tm.iloc]: msgs.append(r"Wrong number of dimensions. values.ndim > ndim \[3 > 1\]") if using_array_manager: msgs.append("Passed array should be 1-dimensional") if frame_or_series is Series or indexer_sli is tm.iloc: msgs.append(r"Buffer has wrong number of dimensions \(expected 1, got 3\)") if using_array_manager: msgs.append("indexer should be 1-dimensional") if indexer_sli is tm.loc or ( frame_or_series is Series and indexer_sli is tm.setitem ): msgs.append("Cannot index with multidimensional key") if frame_or_series is DataFrame and indexer_sli is tm.setitem: msgs.append("Index data must be 1-dimensional") if isinstance(index, pd.IntervalIndex) and indexer_sli is tm.iloc: msgs.append("Index data must be 1-dimensional") if isinstance(index, (pd.TimedeltaIndex, pd.DatetimeIndex, pd.PeriodIndex)): msgs.append("Data must be 1-dimensional") if len(index) == 0 or isinstance(index, pd.MultiIndex): msgs.append("positional indexers are out-of-bounds") msg = "|".join(msgs) potential_errors = (IndexError, ValueError, NotImplementedError) with pytest.raises(potential_errors, match=msg): idxr[nd3] def test_setitem_ndarray_3d(self, index, frame_or_series, indexer_sli): # GH 25567 obj = gen_obj(frame_or_series, index) idxr = indexer_sli(obj) nd3 = np.random.randint(5, size=(2, 2, 2)) if indexer_sli is tm.iloc: err = ValueError msg = f"Cannot set values with ndim > {obj.ndim}" else: err = ValueError msg = "|".join( [ r"Buffer has wrong number of dimensions \(expected 1, got 3\)", "Cannot set values with ndim > 1", "Index data must be 1-dimensional", "Data must be 1-dimensional", "Array conditional must be same shape as self", ] ) with pytest.raises(err, match=msg): idxr[nd3] = 0 def test_getitem_ndarray_0d(self): # GH#24924 key = np.array(0) # dataframe __getitem__ df = DataFrame([[1, 2], [3, 4]]) result = df[key] expected = Series([1, 3], name=0) tm.assert_series_equal(result, expected) # series __getitem__ ser = Series([1, 2]) result = ser[key] assert result == 1 def test_inf_upcast(self): # GH 16957 # We should be able to use np.inf as a key # np.inf should cause an index to convert to float # Test with np.inf in rows df = DataFrame(columns=[0]) df.loc[1] = 1 df.loc[2] = 2 df.loc[np.inf] = 3 # make sure we can look up the value assert df.loc[np.inf, 0] == 3 result = df.index expected = Float64Index([1, 2, np.inf]) tm.assert_index_equal(result, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df["c"] = np.nan assert df["c"].dtype == np.float64 df.loc[0, "c"] = "foo" expected = DataFrame( [{"a": 1, "b": np.nan, "c": "foo"}, {"a": 3, "b": 2, "c": np.nan}] ) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("val", [3.14, "wxyz"]) def test_setitem_dtype_upcast2(self, val): # GH10280 df = DataFrame( np.arange(6, dtype="int64").reshape(2, 3), index=list("ab"), columns=["foo", "bar", "baz"], ) left = df.copy() left.loc["a", "bar"] = val right = DataFrame( [[0, val, 2], [3, 4, 5]], index=list("ab"), columns=["foo", "bar", "baz"], ) tm.assert_frame_equal(left, right) assert is_integer_dtype(left["foo"]) assert is_integer_dtype(left["baz"]) def test_setitem_dtype_upcast3(self): left = DataFrame( np.arange(6, dtype="int64").reshape(2, 3) / 10.0, index=list("ab"), columns=["foo", "bar", "baz"], ) left.loc["a", "bar"] = "wxyz" right = DataFrame( [[0, "wxyz", 0.2], [0.3, 0.4, 0.5]], index=list("ab"), columns=["foo", "bar", "baz"], ) tm.assert_frame_equal(left, right) assert is_float_dtype(left["foo"]) assert is_float_dtype(left["baz"]) def test_dups_fancy_indexing(self): # GH 3455 df = tm.makeCustomDataframe(10, 3) df.columns = ["a", "a", "b"] result = df[["b", "a"]].columns expected = Index(["b", "a", "a"]) tm.assert_index_equal(result, expected) def test_dups_fancy_indexing_across_dtypes(self): # across dtypes df = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("aaaaaaa")) df.head() str(df) result = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]]) result.columns = list("aaaaaaa") # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) def test_dups_fancy_indexing_not_in_order(self): # GH 3561, dups not in selected order df = DataFrame( {"test": [5, 7, 9, 11], "test1": [4.0, 5, 6, 7], "other": list("abcd")}, index=["A", "A", "B", "C"], ) rows = ["C", "B"] expected = DataFrame( {"test": [11, 9], "test1": [7.0, 6], "other": ["d", "c"]}, index=rows ) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ["C", "B", "E"] with pytest.raises(KeyError, match="not in index"): df.loc[rows] # see GH5553, make sure we use the right indexer rows = ["F", "G", "H", "C", "B", "E"] with pytest.raises(KeyError, match="not in index"): df.loc[rows] def test_dups_fancy_indexing_only_missing_label(self): # List containing only missing label dfnu = DataFrame(np.random.randn(5, 3), index=list("AABCD")) with pytest.raises( KeyError, match=re.escape( "\"None of [Index(['E'], dtype='object')] are in the [index]\"" ), ): dfnu.loc[["E"]] # ToDo: check_index_type can be True after GH 11497 @pytest.mark.parametrize("vals", [[0, 1, 2], list("abc")]) def test_dups_fancy_indexing_missing_label(self, vals): # GH 4619; duplicate indexer with missing label df = DataFrame({"A": vals}) with pytest.raises(KeyError, match="not in index"): df.loc[[0, 8, 0]] def test_dups_fancy_indexing_non_unique(self): # non unique with non unique selector df = DataFrame({"test": [5, 7, 9, 11]}, index=["A", "A", "B", "C"]) with pytest.raises(KeyError, match="not in index"): df.loc[["A", "A", "E"]] def test_dups_fancy_indexing2(self): # GH 5835 # dups on index and missing values df = DataFrame(np.random.randn(5, 5), columns=["A", "B", "B", "B", "A"]) with pytest.raises(KeyError, match="not in index"): df.loc[:, ["A", "B", "C"]] def test_dups_fancy_indexing3(self): # GH 6504, multi-axis indexing df = DataFrame( np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=["a", "b"] ) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ["a", "b"]] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ["a", "b"]] tm.assert_frame_equal(result, expected) def test_duplicate_int_indexing(self, indexer_sl): # GH 17347 ser = Series(range(3), index=[1, 1, 3]) expected = Series(range(2), index=[1, 1]) result = indexer_sl(ser)[[1]] tm.assert_series_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame( {"a": {1: "aaa", 2: "bbb", 3: "ccc"}, "b": {1: 111, 2: 222, 3: 333}} ) # this works, new column is created correctly df["test"] = df["a"].apply(lambda x: "_" if x == "aaa" else x) # this does not work, ie column test is not changed idx = df["test"] == "_" temp = df.loc[idx, "a"].apply(lambda x: "-----" if x == "aaa" else x) df.loc[idx, "test"] = temp assert df.iloc[0, 2] == "-----" def test_multitype_list_index_access(self): # GH 10610 df = DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with pytest.raises(KeyError, match=re.escape("'[26, -8] not in index'")): df[[22, 26, -8]] assert df[21].shape[0] == df.shape[0] def test_set_index_nan(self): # GH 3586 df = DataFrame( { "PRuid": { 17: "nonQC", 18: "nonQC", 19: "nonQC", 20: "10", 21: "11", 22: "12", 23: "13", 24: "24", 25: "35", 26: "46", 27: "47", 28: "48", 29: "59", 30: "10", }, "QC": { 17: 0.0, 18: 0.0, 19: 0.0, 20: np.nan, 21: np.nan, 22: np.nan, 23: np.nan, 24: 1.0, 25: np.nan, 26: np.nan, 27: np.nan, 28: np.nan, 29: np.nan, 30: np.nan, }, "data": { 17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006, }, "year": { 17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986, }, } ).reset_index() result = ( df.set_index(["year", "PRuid", "QC"]) .reset_index() .reindex(columns=df.columns) ) tm.assert_frame_equal(result, df) def test_multi_assign(self): # GH 3626, an assignment of a sub-df to a df df = DataFrame( { "FC": ["a", "b", "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": list(range(6)), "col2": list(range(6, 12)), } ) df.iloc[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isna() cols = ["col1", "col2"] dft = df2 * 2 dft.iloc[3, 3] = np.nan expected = DataFrame( { "FC": ["a", np.nan, "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": Series([0, 1, 4, 6, 8, 10]), "col2": [12, 7, 16, np.nan, 20, 22], } ) # frame on rhs df2.loc[mask, cols] = dft.loc[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs # coerces to float64 because values has float64 dtype # GH 14001 expected = DataFrame( { "FC": ["a", np.nan, "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": [0.0, 1.0, 4.0, 6.0, 8.0, 10.0], "col2": [12, 7, 16, np.nan, 20, 22], } ) df2 = df.copy() df2.loc[mask, cols] = dft.loc[mask, cols].values tm.assert_frame_equal(df2, expected) def test_multi_assign_broadcasting_rhs(self): # broadcasting on the rhs is required df = DataFrame( { "A": [1, 2, 0, 0, 0], "B": [0, 0, 0, 10, 11], "C": [0, 0, 0, 10, 11], "D": [3, 4, 5, 6, 7], } ) expected = df.copy() mask = expected["A"] == 0 for col in ["A", "B"]: expected.loc[mask, col] = df["D"] df.loc[df["A"] == 0, ["A", "B"]] = df["D"] tm.assert_frame_equal(df, expected) # TODO(ArrayManager) setting single item with an iterable doesn't work yet # in the "split" path @td.skip_array_manager_not_yet_implemented def test_setitem_list(self): # GH 6043 # iloc with a list df = DataFrame(index=[0, 1], columns=[0]) df.iloc[1, 0] = [1, 2, 3] df.iloc[1, 0] = [1, 2] result = DataFrame(index=[0, 1], columns=[0]) result.iloc[1, 0] = [1, 2] tm.assert_frame_equal(result, df) def test_string_slice(self): # GH 14424 # string indexing against datetimelike with object # dtype should properly raises KeyError df = DataFrame([1], Index([pd.Timestamp("2011-01-01")], dtype=object)) assert df.index._is_all_dates with pytest.raises(KeyError, match="'2011'"): df["2011"] with pytest.raises(KeyError, match="'2011'"): df.loc["2011", 0] def test_string_slice_empty(self): # GH 14424 df = DataFrame() assert not df.index._is_all_dates with pytest.raises(KeyError, match="'2011'"): df["2011"] with pytest.raises(KeyError, match="^0$"): df.loc["2011", 0] def test_astype_assignment(self): # GH4312 (iloc) df_orig = DataFrame( [["1", "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64) expected = DataFrame( [[1, 2, "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2]._convert(datetime=True, numeric=True) expected = DataFrame( [[1, 2, "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) # GH5702 (loc) df = df_orig.copy() df.loc[:, "A"] = df.loc[:, "A"].astype(np.int64) expected = DataFrame( [[1, "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, ["B", "C"]] = df.loc[:, ["B", "C"]].astype(np.int64) expected = DataFrame( [["1", 2, 3, ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) def test_astype_assignment_full_replacements(self): # full replacements / no nans df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]}) df.iloc[:, 0] = df["A"].astype(np.int64) expected = DataFrame({"A": [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]}) df.loc[:, "A"] = df["A"].astype(np.int64) expected = DataFrame({"A": [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("indexer", [tm.getitem, tm.loc]) def test_index_type_coercion(self, indexer): # GH 11836 # if we have an index type and set it with something that looks # to numpy like the same, but is actually, not # (e.g. setting with a float or string '0') # then we need to coerce to object # integer indexes for s in [Series(range(5)), Series(range(5), index=range(1, 6))]: assert s.index.is_integer() s2 = s.copy() indexer(s2)[0.1] = 0 assert s2.index.is_floating() assert indexer(s2)[0.1] == 0 s2 = s.copy() indexer(s2)[0.0] = 0 exp = s.index if 0 not in s: exp = Index(s.index.tolist() + [0]) tm.assert_index_equal(s2.index, exp) s2 = s.copy() indexer(s2)["0"] = 0 assert s2.index.is_object() for s in [Series(range(5), index=np.arange(5.0))]: assert s.index.is_floating() s2 = s.copy() indexer(s2)[0.1] = 0 assert s2.index.is_floating() assert indexer(s2)[0.1] == 0 s2 = s.copy() indexer(s2)[0.0] = 0 tm.assert_index_equal(s2.index, s.index) s2 = s.copy() indexer(s2)["0"] = 0 assert s2.index.is_object() class TestMisc: def test_float_index_to_mixed(self): df = DataFrame({0.0: np.random.rand(10), 1.0: np.random.rand(10)}) df["a"] = 10 expected = DataFrame({0.0: df[0.0], 1.0: df[1.0], "a": [10] * 10}) tm.assert_frame_equal(expected, df) def test_float_index_non_scalar_assignment(self): df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0]) df.loc[df.index[:2]] = 1 expected = DataFrame({"a": [1, 1, 3], "b": [1, 1, 5]}, index=df.index) tm.assert_frame_equal(expected, df) def test_loc_setitem_fullindex_views(self): df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0]) df2 = df.copy() df.loc[df.index] = df.loc[df.index] tm.assert_frame_equal(df, df2) def test_rhs_alignment(self): # GH8258, tests that both rows & columns are aligned to what is # assigned to. covers both uniform data-type & multi-type cases def run_tests(df, rhs, right_loc, right_iloc): # label, index, slice lbl_one, idx_one, slice_one = list("bcd"), [1, 2, 3], slice(1, 4) lbl_two, idx_two, slice_two = ["joe", "jolie"], [1, 2], slice(1, 3) left = df.copy() left.loc[lbl_one, lbl_two] = rhs tm.assert_frame_equal(left, right_loc) left = df.copy() left.iloc[idx_one, idx_two] = rhs tm.assert_frame_equal(left, right_iloc) left = df.copy() left.iloc[slice_one, slice_two] = rhs tm.assert_frame_equal(left, right_iloc) xs = np.arange(20).reshape(5, 4) cols = ["jim", "joe", "jolie", "joline"] df = DataFrame(xs, columns=cols, index=list("abcde"), dtype="int64") # right hand side; permute the indices and multiplpy by -2 rhs = -2 * df.iloc[3:0:-1, 2:0:-1] # expected `right` result; just multiply by -2 right_iloc = df.copy() right_iloc["joe"] = [1, 14, 10, 6, 17] right_iloc["jolie"] = [2, 13, 9, 5, 18] right_iloc.iloc[1:4, 1:3] *= -2 right_loc = df.copy() right_loc.iloc[1:4, 1:3] *= -2 # run tests with uniform dtypes run_tests(df, rhs, right_loc, right_iloc) # make frames multi-type & re-run tests for frame in [df, rhs, right_loc, right_iloc]: frame["joe"] = frame["joe"].astype("float64") frame["jolie"] = frame["jolie"].map("@{}".format) right_iloc["joe"] = [1.0, "@-28", "@-20", "@-12", 17.0] right_iloc["jolie"] = ["@2", -26.0, -18.0, -10.0, "@18"] run_tests(df, rhs, right_loc, right_iloc) def test_str_label_slicing_with_negative_step(self): SLC = pd.IndexSlice for idx in [_mklbl("A", 20), np.arange(20) + 100, np.linspace(100, 150, 20)]: idx = Index(idx) ser = Series(np.arange(20), index=idx) tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] :: -1], SLC[9::-1]) tm.assert_indexing_slices_equivalent(ser, SLC[: idx[9] : -1], SLC[:8:-1]) tm.assert_indexing_slices_equivalent( ser, SLC[idx[13] : idx[9] : -1], SLC[13:8:-1] ) tm.assert_indexing_slices_equivalent( ser, SLC[idx[9] : idx[13] : -1], SLC[:0] ) def test_slice_with_zero_step_raises(self, indexer_sl, frame_or_series): obj = frame_or_series(np.arange(20), index=_mklbl("A", 20)) with pytest.raises(ValueError, match="slice step cannot be zero"): indexer_sl(obj)[::0] def test_loc_setitem_indexing_assignment_dict_already_exists(self): index = Index([-5, 0, 5], name="z") df = DataFrame({"x": [1, 2, 6], "y": [2, 2, 8]}, index=index) expected = df.copy() rhs = {"x": 9, "y": 99} df.loc[5] = rhs expected.loc[5] = [9, 99] tm.assert_frame_equal(df, expected) # GH#38335 same thing, mixed dtypes df = DataFrame({"x": [1, 2, 6], "y": [2.0, 2.0, 8.0]}, index=index) df.loc[5] = rhs expected = DataFrame({"x": [1, 2, 9], "y": [2.0, 2.0, 99.0]}, index=index) tm.assert_frame_equal(df, expected) def test_iloc_getitem_indexing_dtypes_on_empty(self): # Check that .iloc returns correct dtypes GH9983 df = DataFrame({"a": [1, 2, 3], "b": ["b", "b2", "b3"]}) df2 = df.iloc[[], :] assert df2.loc[:, "a"].dtype == np.int64 tm.assert_series_equal(df2.loc[:, "a"], df2.iloc[:, 0]) @pytest.mark.parametrize("size", [5, 999999, 1000000]) def test_loc_range_in_series_indexing(self, size): # range can cause an indexing error # GH 11652 s = Series(index=range(size), dtype=np.float64) s.loc[range(1)] = 42 tm.assert_series_equal(s.loc[range(1)], Series(42.0, index=[0])) s.loc[range(2)] = 43 tm.assert_series_equal(s.loc[range(2)], Series(43.0, index=[0, 1])) def test_partial_boolean_frame_indexing(self): # GH 17170 df = DataFrame( np.arange(9.0).reshape(3, 3), index=list("abc"), columns=list("ABC") ) index_df = DataFrame(1, index=list("ab"), columns=list("AB")) result = df[index_df.notnull()] expected = DataFrame( np.array([[0.0, 1.0, np.nan], [3.0, 4.0, np.nan], [np.nan] * 3]), index=list("abc"), columns=list("ABC"), ) tm.assert_frame_equal(result, expected) def test_no_reference_cycle(self): df =
DataFrame({"a": [0, 1], "b": [2, 3]})
pandas.DataFrame
# This file is part of Patsy # Copyright (C) 2012-2013 <NAME> <<EMAIL>> # See file LICENSE.txt for license information. # There are a number of unit tests in build.py, but this file contains more # thorough tests of the overall design matrix building system. (These are # still not exhaustive end-to-end tests, though -- for that see # test_highlevel.py.) from __future__ import print_function import six import numpy as np from nose.tools import assert_raises from patsy import PatsyError from patsy.util import (atleast_2d_column_default, have_pandas, have_pandas_categorical) from patsy.desc import Term, INTERCEPT from patsy.build import * from patsy.categorical import C from patsy.user_util import balanced, LookupFactor from patsy.design_info import DesignMatrix if have_pandas: import pandas def assert_full_rank(m): m = atleast_2d_column_default(m) if m.shape[1] == 0: return True u, s, v = np.linalg.svd(m) rank = np.sum(s > 1e-10) assert rank == m.shape[1] def test_assert_full_rank(): assert_full_rank(np.eye(10)) assert_full_rank([[1, 0], [1, 0], [1, 0], [1, 1]]) assert_raises(AssertionError, assert_full_rank, [[1, 0], [2, 0]]) assert_raises(AssertionError, assert_full_rank, [[1, 2], [2, 4]]) assert_raises(AssertionError, assert_full_rank, [[1, 2, 3], [1, 10, 100]]) # col1 + col2 = col3 assert_raises(AssertionError, assert_full_rank, [[1, 2, 3], [1, 5, 6], [1, 6, 7]]) def make_termlist(*entries): terms = [] for entry in entries: terms.append(Term([LookupFactor(name) for name in entry])) return terms def check_design_matrix(mm, expected_rank, termlist, column_names=None): assert_full_rank(mm) assert set(mm.design_info.terms) == set(termlist) if column_names is not None: assert mm.design_info.column_names == column_names assert mm.ndim == 2 assert mm.shape[1] == expected_rank def make_matrix(data, expected_rank, entries, column_names=None): termlist = make_termlist(*entries) def iter_maker(): yield data builders = design_matrix_builders([termlist], iter_maker) matrices = build_design_matrices(builders, data) matrix = matrices[0] assert (builders[0].design_info.term_slices == matrix.design_info.term_slices) assert (builders[0].design_info.column_names == matrix.design_info.column_names) assert matrix.design_info.builder is builders[0] check_design_matrix(matrix, expected_rank, termlist, column_names=column_names) return matrix def test_simple(): data = balanced(a=2, b=2) x1 = data["x1"] = np.linspace(0, 1, len(data["a"])) x2 = data["x2"] = data["x1"] ** 2 m = make_matrix(data, 2, [["a"]], column_names=["a[a1]", "a[a2]"]) assert np.allclose(m, [[1, 0], [1, 0], [0, 1], [0, 1]]) m = make_matrix(data, 2, [[], ["a"]], column_names=["Intercept", "a[T.a2]"]) assert np.allclose(m, [[1, 0], [1, 0], [1, 1], [1, 1]]) m = make_matrix(data, 4, [["a", "b"]], column_names=["a[a1]:b[b1]", "a[a2]:b[b1]", "a[a1]:b[b2]", "a[a2]:b[b2]"]) assert np.allclose(m, [[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) m = make_matrix(data, 4, [[], ["a"], ["b"], ["a", "b"]], column_names=["Intercept", "a[T.a2]", "b[T.b2]", "a[T.a2]:b[T.b2]"]) assert np.allclose(m, [[1, 0, 0, 0], [1, 0, 1, 0], [1, 1, 0, 0], [1, 1, 1, 1]]) m = make_matrix(data, 4, [[], ["b"], ["a"], ["b", "a"]], column_names=["Intercept", "b[T.b2]", "a[T.a2]", "b[T.b2]:a[T.a2]"]) assert np.allclose(m, [[1, 0, 0, 0], [1, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]]) m = make_matrix(data, 4, [["a"], ["x1"], ["a", "x1"]], column_names=["a[a1]", "a[a2]", "x1", "a[T.a2]:x1"]) assert np.allclose(m, [[1, 0, x1[0], 0], [1, 0, x1[1], 0], [0, 1, x1[2], x1[2]], [0, 1, x1[3], x1[3]]]) m = make_matrix(data, 3, [["x1"], ["x2"], ["x2", "x1"]], column_names=["x1", "x2", "x2:x1"]) assert np.allclose(m, np.column_stack((x1, x2, x1 * x2))) def test_R_bugs(): data = balanced(a=2, b=2, c=2) data["x"] = np.linspace(0, 1, len(data["a"])) # For "1 + a:b", R produces a design matrix with too many columns (5 # instead of 4), because it can't tell that there is a redundancy between # the two terms. make_matrix(data, 4, [[], ["a", "b"]]) # For "0 + a:x + a:b", R produces a design matrix with too few columns (4 # instead of 6), because it thinks that there is a redundancy which # doesn't exist. make_matrix(data, 6, [["a", "x"], ["a", "b"]]) # This can be compared with "0 + a:c + a:b", where the redundancy does # exist. Confusingly, adding another categorical factor increases the # baseline dimensionality to 8, and then the redundancy reduces it to 6 # again, so the result is the same as before but for different reasons. (R # does get this one right, but we might as well test it.) make_matrix(data, 6, [["a", "c"], ["a", "b"]]) def test_redundancy_thoroughly(): # To make sure there aren't any lurking bugs analogous to the ones that R # has (see above), we check that we get the correct matrix rank for every # possible combination of 2 categorical and 2 numerical factors. data = balanced(a=2, b=2, repeat=5) data["x1"] = np.linspace(0, 1, len(data["a"])) data["x2"] = data["x1"] ** 2 def all_subsets(l): if not l: yield tuple() else: obj = l[0] for subset in all_subsets(l[1:]): yield tuple(sorted(subset)) yield tuple(sorted((obj,) + subset)) all_terms = list(all_subsets(("a", "b", "x1", "x2"))) all_termlist_templates = list(all_subsets(all_terms)) print(len(all_termlist_templates)) # eliminate some of the symmetric versions to speed things up redundant = [[("b",), ("a",)], [("x2",), ("x1",)], [("b", "x2"), ("a", "x1")], [("a", "b", "x2"), ("a", "b", "x1")], [("b", "x1", "x2"), ("a", "x1", "x2")]] count = 0 for termlist_template in all_termlist_templates: termlist_set = set(termlist_template) for dispreferred, preferred in redundant: if dispreferred in termlist_set and preferred not in termlist_set: break else: expanded_terms = set() for term_template in termlist_template: numeric = tuple([t for t in term_template if t.startswith("x")]) rest = [t for t in term_template if not t.startswith("x")] for subset_rest in all_subsets(rest): expanded_terms.add(frozenset(subset_rest + numeric)) # Because our categorical variables have 2 levels, each expanded # term corresponds to 1 unique dimension of variation expected_rank = len(expanded_terms) if termlist_template in [(), ((),)]: # No data dependence, should fail assert_raises(PatsyError, make_matrix, data, expected_rank, termlist_template) else: make_matrix(data, expected_rank, termlist_template) count += 1 print(count) test_redundancy_thoroughly.slow = 1 def test_data_types(): basic_dict = {"a": ["a1", "a2", "a1", "a2"], "x": [1, 2, 3, 4]} # On Python 2, this is identical to basic_dict: basic_dict_bytes = dict(basic_dict) basic_dict_bytes["a"] = [s.encode("ascii") for s in basic_dict_bytes["a"]] # On Python 3, this is identical to basic_dict: basic_dict_unicode = {"a": ["a1", "a2", "a1", "a2"], "x": [1, 2, 3, 4]} basic_dict_unicode = dict(basic_dict) basic_dict_unicode["a"] = [six.text_type(s) for s in basic_dict_unicode["a"]] structured_array_bytes = np.array(list(zip(basic_dict["a"], basic_dict["x"])), dtype=[("a", "S2"), ("x", int)]) structured_array_unicode = np.array(list(zip(basic_dict["a"], basic_dict["x"])), dtype=[("a", "U2"), ("x", int)]) recarray_bytes = structured_array_bytes.view(np.recarray) recarray_unicode = structured_array_unicode.view(np.recarray) datas = [basic_dict, structured_array_bytes, structured_array_unicode, recarray_bytes, recarray_unicode] if have_pandas: df_bytes = pandas.DataFrame(basic_dict_bytes) datas.append(df_bytes) df_unicode = pandas.DataFrame(basic_dict_unicode) datas.append(df_unicode) for data in datas: m = make_matrix(data, 4, [["a"], ["a", "x"]], column_names=["a[a1]", "a[a2]", "a[a1]:x", "a[a2]:x"]) assert np.allclose(m, [[1, 0, 1, 0], [0, 1, 0, 2], [1, 0, 3, 0], [0, 1, 0, 4]]) def test_build_design_matrices_dtype(): data = {"x": [1, 2, 3]} def iter_maker(): yield data builder = design_matrix_builders([make_termlist("x")], iter_maker)[0] mat = build_design_matrices([builder], data)[0] assert mat.dtype == np.dtype(np.float64) mat = build_design_matrices([builder], data, dtype=np.float32)[0] assert mat.dtype == np.dtype(np.float32) if hasattr(np, "float128"): mat = build_design_matrices([builder], data, dtype=np.float128)[0] assert mat.dtype == np.dtype(np.float128) def test_return_type(): data = {"x": [1, 2, 3]} def iter_maker(): yield data builder = design_matrix_builders([make_termlist("x")], iter_maker)[0] # Check explicitly passing return_type="matrix" works mat = build_design_matrices([builder], data, return_type="matrix")[0] assert isinstance(mat, DesignMatrix) # Check that nonsense is detected assert_raises(PatsyError, build_design_matrices, [builder], data, return_type="asdfsadf") def test_NA_action(): initial_data = {"x": [1, 2, 3], "c": ["c1", "c2", "c1"]} def iter_maker(): yield initial_data builder = design_matrix_builders([make_termlist("x", "c")], iter_maker)[0] # By default drops rows containing either NaN or None mat = build_design_matrices([builder], {"x": [10.0, np.nan, 20.0], "c": np.asarray(["c1", "c2", None], dtype=object)})[0] assert mat.shape == (1, 3) assert np.array_equal(mat, [[1.0, 0.0, 10.0]]) # NA_action="a string" also accepted: mat = build_design_matrices([builder], {"x": [10.0, np.nan, 20.0], "c": np.asarray(["c1", "c2", None], dtype=object)}, NA_action="drop")[0] assert mat.shape == (1, 3) assert np.array_equal(mat, [[1.0, 0.0, 10.0]]) # And objects from patsy.missing import NAAction # allows NaN's to pass through NA_action = NAAction(NA_types=[]) mat = build_design_matrices([builder], {"x": [10.0, np.nan], "c": np.asarray(["c1", "c2"], dtype=object)}, NA_action=NA_action)[0] assert mat.shape == (2, 3) # According to this (and only this) function, NaN == NaN. np.testing.assert_array_equal(mat, [[1.0, 0.0, 10.0], [0.0, 1.0, np.nan]]) # NA_action="raise" assert_raises(PatsyError, build_design_matrices, [builder], {"x": [10.0, np.nan, 20.0], "c": np.asarray(["c1", "c2", None], dtype=object)}, NA_action="raise") def test_NA_drop_preserves_levels(): # Even if all instances of some level are dropped, we still include it in # the output matrix (as an all-zeros column) data = {"x": [1.0, np.nan, 3.0], "c": ["c1", "c2", "c3"]} def iter_maker(): yield data builder = design_matrix_builders([make_termlist("x", "c")], iter_maker)[0] assert builder.design_info.column_names == ["c[c1]", "c[c2]", "c[c3]", "x"] mat, = build_design_matrices([builder], data) assert mat.shape == (2, 4) assert np.array_equal(mat, [[1.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 3.0]]) def test_return_type_pandas(): if not have_pandas: return data = pandas.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6], "a": ["a1", "a2", "a1"]}, index=[10, 20, 30]) def iter_maker(): yield data int_builder, = design_matrix_builders([make_termlist([])], iter_maker) (y_builder, x_builder) = design_matrix_builders([make_termlist("y"), make_termlist("x")], iter_maker) (x_a_builder,) = design_matrix_builders([make_termlist("x", "a")], iter_maker) (x_y_builder,) = design_matrix_builders([make_termlist("x", "y")], iter_maker) # Index compatibility is always checked for pandas input, regardless of # whether we're producing pandas output assert_raises(PatsyError, build_design_matrices, [x_a_builder], {"x": data["x"], "a": data["a"][::-1]}) assert_raises(PatsyError, build_design_matrices, [y_builder, x_builder], {"x": data["x"], "y": data["y"][::-1]}) # And we also check consistency between data.index and value indexes # Creating a mismatch between these is a bit tricky. We want a data object # such that isinstance(data, DataFrame), but data["x"].index != # data.index. class CheatingDataFrame(pandas.DataFrame): def __getitem__(self, key): if key == "x": return
pandas.DataFrame.__getitem__(self, key)
pandas.DataFrame.__getitem__
## Generate twitter Pre-Trained Word2Vec and trained Word2Vec ## Word2Vec import os os.chdir("C:/Users/dordo/Dropbox/Capstone Project") import pandas as pd import pickle from gensim import corpora from gensim.models import Word2Vec import gensim.downloader as api ##---------------------------------------------------------------------------## ## Define function to get embeddings from memory def get_wv(model, dicts): """ Get word embeddings in memory""" w2v_embed = {} missing = [] for val in dicts.values(): try: it = model.wv[val] except: missing.append(val) it = None w2v_embed[val] = it return w2v_embed, missing ##---------------------------------------------------------------------------## ## Reading in pre processed data with open('Data/Twitter/ProcessedTwitter.pkl', 'rb') as input: txt_end = pickle.load(input) ## Create dictionary dicts = corpora.Dictionary(txt_end) len(dicts) ## Filter by appeareance in documents dicts.filter_extremes(no_below=40, no_above=0.5, keep_n=None, keep_tokens=None) len(dicts) ##--------------------------------------------------------------------------## ## PreTrained Word2vec path = "C:/Users/dordo/Documents/Daniel/LSE/Capstone/Modelo/GoogleNews-vectors-negative300.bin" model = Word2Vec(txt_end, size = 300, min_count = 40) model.intersect_word2vec_format(path, lockf=1.0, binary=True) model.train(txt_end, total_examples=model.corpus_count, epochs=25) embeds_1 = get_wv(model, dicts) ## How many word of our corpus appear in the pre trained? ##---------------------------------------------------------------------------## ## Self Trained Word2Vec model_t = Word2Vec(txt_end, window=5, min_count=40, workers=4, size = 50) model_t.train(txt_end, epochs=50, total_words = model_t.corpus_total_words, total_examples = model_t.corpus_count) embeds_2 = get_wv(model_t, dicts) ##---------------------------------------------------------------------------## ## Pre Trained GLOVE model_g = api.load("glove-twitter-50") embeds_3 = get_wv(model_g, dicts) embeds_3df = pd.DataFrame(embeds_3[0]) ## This are the embeddings that are really available in GLOVE embeds_3df.T[~embeds_3df.T[1].isnull()] ##---------------------------------------------------------------------------## ## Saving pretrained_embed = pd.DataFrame(embeds_1[0]) trained_embed = pd.DataFrame(embeds_2[0]) glove_embed =
pd.DataFrame(embeds_3df)
pandas.DataFrame
''' Created on Nov 12, 2018 @author: <NAME> (<EMAIL>) ''' import os import glob import argparse import time import pandas as pd import numpy as np import scipy.io as io from keras.models import Model from keras.layers import GRU, Dense, Dropout, Input from keras import optimizers from keras.utils import multi_gpu_model import keras import ipyparallel as ipp # Constant. MODEL_FILE_NAME = 'yaw_misalignment_calibrator.h5' RESULT_FILE_NAME = 'ymc_result.csv' dt = pd.Timedelta(10.0, 'm') testTimeRanges = [(pd.Timestamp('2018-05-19'), pd.Timestamp('2018-05-26') - dt) , (pd.Timestamp('2018-05-26'), pd.Timestamp('2018-06-02') - dt) , (
pd.Timestamp('2018-06-02')
pandas.Timestamp
'''Assesses instances using cases''' # TODO: Add output file import common.constants as cn from common.data_provider import DataProvider import common_python.constants as ccn from common_python.classifier.feature_set import \ FeatureVector from tools.shared_data import SharedData import argparse import collections import multiprocessing import numpy as np import os import pandas as pd INSTANCE = "instance" MAX_SL = 0.001 REPORT_INTERVAL = 25 # Computations between reports NUM_FSET = 100 # Number of feature sets examined Arguments = collections.namedtuple("Arguments", "state df num_fset") INDEX = "index" def _runState(arguments): """ Does case evaluation for all instances for a single state. Run in multiple proceses concurrently. Parameters ---------- state: int df_instance: pd.DataFrame Instances of feature vectors num_fset: int Return ------ pd.DataFrame FEATURE_VECTOR SIGLVL: significance level of FRAC STATE: state analyzed INSTANCE: from data feature vector COUNT: number of cases FRAC: fraction of positive cases """ state = arguments.state df_instance = arguments.df num_fset = arguments.num_fset # shared_data = SharedData() fset_selector = lambda f: True dfs = [] for instance in df_instance.index: ser_X = df_instance.loc[instance, :] collection = shared_data.collection_dct[state] df = collection.getFVEvaluations(ser_X, fset_selector=fset_selector, num_fset=num_fset, max_sl=MAX_SL) if len(df) > 0: df[cn.STATE] = state df[INSTANCE] = instance dfs.append(df) df_result = pd.concat(dfs) df_result.index = range(len(df_result.index)) # Augment the dataframe with gene descriptions provider = DataProvider() provider.do() df_go = provider.df_go_terms descriptions = [] for stg in df_result[ccn.FEATURE_VECTOR]: if not isinstance(stg, str): descriptions.append("") else: feature_vector = FeatureVector.make(stg) features = feature_vector.fset.set description = [] for feature in features: df_sub = df_go[df_go[cn.GENE_ID] == feature] this_desc = ["%s: %s " % (feature, f) for f in df_sub[cn.GO_TERM]] description.extend(this_desc) description = "\n".join(description) descriptions.append(description) # df_result[cn.GENE_DESCRIPTION] = descriptions return df_result def run(input_fd, output_fd, num_fset=NUM_FSET): """ Processes the Parameters ---------- input_fd: File Descriptor Input CSV file output_fd: File Descriptor Output file num_fset: int Number of FeatureSets considered Returns ------- None. """ # Initializations df_instance =
pd.read_csv(input_fd)
pandas.read_csv
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv("/content/IIITH_Codemixed_new.txt",sep="\t",names = ["Speech", "Labels"]).dropna() df1 = pd.read_csv("/content/train_new.txt",sep = "\t",names = ["Speech", "Labels"]).dropna() df_new =
pd.concat([df,df1], ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Fri Jan 12 16:01:32 2018 @author: Adam """ import os import glob from numbers import Number import numpy as np import pandas as pd def sub_dire(base, dire, fname=None): """ Build path to a base/dire. Create if does not exist.""" if base is None: raise ValueError(f"base={base} is not valid") else: path = os.path.join(base, dire) if not os.path.exists(path): os.makedirs(path) if fname is not None: path = os.path.join(path, fname) return path def ls(dire, regex="*", full_output=True, report=False): """ List the contents of dire. e.g., to list pickle files in the cache, ls(h5.cache_dire, regex="*.pkl") """ # folder if dire is None: raise Exception("Cannot read from None directory.") # check exists if not os.path.isdir(dire): raise Exception(f"{dire} does not exist.") fils = glob.glob(os.path.join(dire, regex)) if report: print(f"Found {len(fils)} matches to {regex} in {dire}.") if full_output: return fils fnames = [os.path.split(f)[1] for f in fils] return fnames def to_pickle(obj, dire, fname, overwrite=False, **kwargs): """ save `obj` as [dire]/[fname].pkl args: obj python object to save dire directory fname file name overwrite=False kwargs: [passed to pandas.to_pickle()] """ fname, _ = os.path.splitext(fname) fname += ".pkl" fil = os.path.join(dire, fname) # checks if not os.path.isdir(dire): raise OSError(f"{dire} not found") elif os.path.exists(fil) and not overwrite: raise OSError(f"{fil} already exists. Use overwrite=True") else: pd.to_pickle(obj, fil, **kwargs) def read_pickle(dire, fname, **kwargs): """ read `obj` from [dire]/[fname].pkl args: obj python object to save dire directory fname file name. kwargs: [passed to pandas.read_pickle()] """ fname, _ = os.path.splitext(fname) fname += ".pkl" fil = os.path.join(dire, fname) # checks if not os.path.exists(fil): raise OSError(f"{fil} not found") else: pd.read_pickle(fil, **kwargs) def t_index(time, dt=1.0, t0=0.0): """ Convert time to index using dt [and t0]. """ if isinstance(time, Number): return int(round((time - t0) / dt)) elif isinstance(time, tuple): return tuple([int(round((t - t0) / dt)) for t in time]) elif isinstance(time, list): return list([int(round((t - t0) / dt)) for t in time]) elif isinstance(time, np.ndarray): return np.array([int(round((t - t0) / dt)) for t in time]) else: raise TypeError("time must be a number or list of numbers.") def utf8_attrs(info): """ Convert bytes to utf8 args: info dict() return: info dict() (decoded to utf8) """ for key, val in info.items(): if isinstance(val, bytes): info[key] = val.decode("utf8") return info def add_level(df, label, position="first"): """ Add a level to pd.MultiIndex columns. This can be useful when joining DataFrames with / without multiindex columns. >>> st = statistics(df, groupby="squid") # MultiIndex DataFrame >>> add_level(h5.var, "VAR").join(st) args: df object to add index level to pd.DataFrame() label= value(s) of the added level(s) str() / list(str) position=0 position of level to add "first", "last" or int return: df.copy() with pd.MultiIndex() """ df2 = df.copy() # multiple labels? if isinstance(label, str): # ..nope... label = [label] # reverse the label list (more intuitve behaviour?) label = label[::-1] # position is first? if position == "first": position = 0 # if df is Series then convert to DataFrame if isinstance(df2, pd.Series): df2 = pd.DataFrame(df2) for lbl in label: # add a level for each label df2_columns = df2.columns.tolist() new_columns = [] for col in df2_columns: if not isinstance(col, tuple): col = (col,) col = list(col) if position == "last": col.append(lbl) else: col.insert(position, lbl) new_columns.append(tuple(col)) df2.columns = pd.MultiIndex.from_tuples(new_columns) return df2 def df_from_dict_of_tuples(data, names=("value", "error")): """ Construct a DataFrame with MultiIndex columns from a dict of tuples. args: data : dict Of the form {row_i : {col_i: (item_i, ...), ...}, ...} names=("value", "error") : tuple Names of the items in each entry. return: pandas.DataFrame +-------+-----------------+-----------------+ | | col_1 | col_2 | | | name_1 | name_2 | name_1 | name_2 | |-------+-----------------+-----------------+ | row_1 | item_1 | item_2 | item_1 | item_2 | | row_2 | item_1 | item_2 | item_1 | item_2 | """ tmp = pd.DataFrame.from_dict(data, orient="index") df = pd.DataFrame() num = len(names) for c in tmp.columns: df[list(zip([c] * num, names))] = tmp[c].apply(pd.Series) df.columns =
pd.MultiIndex.from_tuples(df.columns)
pandas.MultiIndex.from_tuples
import numpy as np import pandas as pd import matplotlib.pyplot as plt #Load Data, Fill NA with column means and Standardize dat = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data",header=None,sep="\t")[0] X=pd.DataFrame(np.array(list(dat.str.split()))) for i in X.columns.values: X[i]=X[i].replace("?",np.nan).astype(float) X[i].fillna(np.nanmean(X[i]),inplace=True) Y=np.array(X[0]) X=X[[i for i in X.columns.values if i>0]] X=(X-np.mean(X))/np.std(X) X['int']=1 X=np.array(X) #Initialize 600 chains of 30,000 iterations to evaluate 8 model coefficients, with regressions scored by the R-squared. draws = 600 w0=np.random.normal(0,.01,(X.shape[1],draws)) score0=1-np.sum((Y.reshape(len(Y),1)-X@w0)**2,axis=0)/sum((Y-np.mean(Y))**2) delta=np.zeros((X.shape[1],draws)) stepsize=.0001 updates = 0 while updates < 30000: w1=w0+np.random.normal(delta,stepsize) score1=1-np.sum((Y.reshape(len(Y),1)-X@w1)**2,axis=0)/sum((Y-np.mean(Y))**2) delta = np.where(score1>score0,w1-w0,delta) w0=np.where(score1>score0,w1,w0) print(sum(np.where(score1>score0,1,0))) score0=score1 updates+=1 coef_est=np.round(np.mean(w0,axis=1),2) print(coef_est) coef_actual=np.round(np.linalg.inv(X.T@X)@(X.T@Y),2) print(coef_actual) def dist_plot(i, fontsize=12): plt.hist(w0[i],bins=30,label='est. distribution') plt.bar(coef_actual[i],100,color='.1',width=1,alpha=.5,label='true coef') plt.ylim((0,60)) plt.legend() plt.title("feat_"+str(i)+"; Mean: "+str(coef_est[i])+", Exact: "+str(coef_actual[i])) fig = plt.figure(figsize=(10,15)) ax1 = fig.add_subplot(4,2,1) ax1 = dist_plot(0, fontsize=12) ax2 = fig.add_subplot(4,2,2) ax2 = dist_plot(1, fontsize=12) ax3 = fig.add_subplot(4,2,3) ax3 = dist_plot(2, fontsize=12) ax4 = fig.add_subplot(4,2,4) ax4 = dist_plot(3, fontsize=12) ax5 = fig.add_subplot(4,2,5) ax5 = dist_plot(4, fontsize=12) ax6 = fig.add_subplot(4,2,6) ax6 = dist_plot(5, fontsize=12) ax7 = fig.add_subplot(4,2,7) ax7 = dist_plot(6, fontsize=12) ax8 = fig.add_subplot(4,2,8) ax8 = dist_plot(7, fontsize=12) plt.show() #KNN import pandas as pd import random from sklearn.neighbors import KNeighborsClassifier dat = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/00519/heart_failure_clinical_records_dataset.csv")
pd.set_option("display.max_columns",500)
pandas.set_option
import nose import unittest import os import sys import warnings from datetime import datetime import numpy as np from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, Index) from pandas.io.pytables import HDFStore, get_store, Term, IncompatibilityWarning import pandas.util.testing as tm from pandas.tests.test_series import assert_series_equal from pandas.tests.test_frame import assert_frame_equal from pandas import concat, Timestamp try: import tables except ImportError: raise nose.SkipTest('no pytables') from distutils.version import LooseVersion _default_compressor = LooseVersion(tables.__version__) >= '2.2' \ and 'blosc' or 'zlib' _multiprocess_can_split_ = False class TestHDFStore(unittest.TestCase): path = '__test__.h5' scratchpath = '__scratch__.h5' def setUp(self): self.store = HDFStore(self.path) def tearDown(self): self.store.close() os.remove(self.path) def test_factory_fun(self): try: with get_store(self.scratchpath) as tbl: raise ValueError('blah') except ValueError: pass with get_store(self.scratchpath) as tbl: tbl['a'] = tm.makeDataFrame() with get_store(self.scratchpath) as tbl: self.assertEquals(len(tbl), 1) self.assertEquals(type(tbl['a']), DataFrame) os.remove(self.scratchpath) def test_keys(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.assertEquals(len(self.store), 5) self.assert_(set(self.store.keys()) == set(['/a', '/b', '/c', '/d', '/foo/bar'])) def test_repr(self): repr(self.store) self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.store.append('e', tm.makePanel()) repr(self.store) str(self.store) def test_contains(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() self.store['foo/bar'] = tm.makeDataFrame() self.assert_('a' in self.store) self.assert_('b' in self.store) self.assert_('c' not in self.store) self.assert_('foo/bar' in self.store) self.assert_('/foo/bar' in self.store) self.assert_('/foo/b' not in self.store) self.assert_('bar' not in self.store) def test_versioning(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) self.assert_(self.store.root.a._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.b._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.df1._v_attrs.pandas_version == '0.10') # write a file and wipe its versioning self.store.remove('df2') self.store.append('df2', df) self.store.get_node('df2')._v_attrs.pandas_version = None self.store.select('df2') self.store.select('df2', [ Term('index','>',df.index[2]) ]) def test_meta(self): raise nose.SkipTest('no meta') meta = { 'foo' : [ 'I love pandas ' ] } s = tm.makeTimeSeries() s.meta = meta self.store['a'] = s self.assert_(self.store['a'].meta == meta) df = tm.makeDataFrame() df.meta = meta self.store['b'] = df self.assert_(self.store['b'].meta == meta) # this should work, but because slicing doesn't propgate meta it doesn self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) results = self.store['df1'] #self.assert_(getattr(results,'meta',None) == meta) # no meta df = tm.makeDataFrame() self.store['b'] = df self.assert_(hasattr(self.store['b'],'meta') == False) def test_reopen_handle(self): self.store['a'] = tm.makeTimeSeries() self.store.open('w', warn=False) self.assert_(self.store.handle.isopen) self.assertEquals(len(self.store), 0) def test_flush(self): self.store['a'] = tm.makeTimeSeries() self.store.flush() def test_get(self): self.store['a'] = tm.makeTimeSeries() left = self.store.get('a') right = self.store['a'] tm.assert_series_equal(left, right) left = self.store.get('/a') right = self.store['/a'] tm.assert_series_equal(left, right) self.assertRaises(KeyError, self.store.get, 'b') def test_put(self): ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() self.store['a'] = ts self.store['b'] = df[:10] self.store['foo/bar/bah'] = df[:10] self.store['foo'] = df[:10] self.store['/foo'] = df[:10] self.store.put('c', df[:10], table=True) # not OK, not a table self.assertRaises(ValueError, self.store.put, 'b', df[10:], append=True) # node does not currently exist, test _is_table_type returns False in # this case self.assertRaises(ValueError, self.store.put, 'f', df[10:], append=True) # OK self.store.put('c', df[10:], append=True) # overwrite table self.store.put('c', df[:10], table=True, append=False) tm.assert_frame_equal(df[:10], self.store['c']) def test_put_string_index(self): index = Index([ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(20), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) # mixed length index = Index(['abcdefghijklmnopqrstuvwxyz1234567890'] + [ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(21), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) def test_put_compression(self): df = tm.makeTimeDataFrame() self.store.put('c', df, table=True, compression='zlib') tm.assert_frame_equal(self.store['c'], df) # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='zlib') def test_put_compression_blosc(self): tm.skip_if_no_package('tables', '2.2', app='blosc support') df = tm.makeTimeDataFrame() # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='blosc') self.store.put('c', df, table=True, compression='blosc') tm.assert_frame_equal(self.store['c'], df) def test_put_integer(self): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal) def test_append(self): df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) tm.assert_frame_equal(self.store['df1'], df) self.store.remove('df2') self.store.put('df2', df[:10], table=True) self.store.append('df2', df[10:]) tm.assert_frame_equal(self.store['df2'], df) self.store.remove('df3') self.store.append('/df3', df[:10]) self.store.append('/df3', df[10:]) tm.assert_frame_equal(self.store['df3'], df) # this is allowed by almost always don't want to do it warnings.filterwarnings('ignore', category=tables.NaturalNameWarning) self.store.remove('/df3 foo') self.store.append('/df3 foo', df[:10]) self.store.append('/df3 foo', df[10:]) tm.assert_frame_equal(self.store['df3 foo'], df) warnings.filterwarnings('always', category=tables.NaturalNameWarning) # panel wp = tm.makePanel() self.store.remove('wp1') self.store.append('wp1', wp.ix[:,:10,:]) self.store.append('wp1', wp.ix[:,10:,:]) tm.assert_panel_equal(self.store['wp1'], wp) # ndim p4d = tm.makePanel4D() self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:]) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using axis labels self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=['items','major_axis','minor_axis']) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using differnt number of items on each axis p4d2 = p4d.copy() p4d2['l4'] = p4d['l1'] p4d2['l5'] = p4d['l1'] self.store.remove('p4d2') self.store.append('p4d2', p4d2, axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d2'], p4d2) # test using differt order of items on the non-index axes self.store.remove('wp1') wp_append1 = wp.ix[:,:10,:] self.store.append('wp1', wp_append1) wp_append2 = wp.ix[:,10:,:].reindex(items = wp.items[::-1]) self.store.append('wp1', wp_append2) tm.assert_panel_equal(self.store['wp1'], wp) def test_append_frame_column_oriented(self): # column oriented df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df.ix[:,:2], axes = ['columns']) self.store.append('df1', df.ix[:,2:]) tm.assert_frame_equal(self.store['df1'], df) result = self.store.select('df1', 'columns=A') expected = df.reindex(columns=['A']) tm.assert_frame_equal(expected, result) # this isn't supported self.assertRaises(Exception, self.store.select, 'df1', ('columns=A', Term('index','>',df.index[4]))) # selection on the non-indexable result = self.store.select('df1', ('columns=A', Term('index','=',df.index[0:4]))) expected = df.reindex(columns=['A'],index=df.index[0:4]) tm.assert_frame_equal(expected, result) def test_ndim_indexables(self): """ test using ndim tables in new ways""" p4d = tm.makePanel4D() def check_indexers(key, indexers): for i,idx in enumerate(indexers): self.assert_(getattr(getattr(self.store.root,key).table.description,idx)._v_pos == i) # append then change (will take existing schema) indexers = ['items','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # same as above, but try to append with differnt axes self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['labels','items','major_axis']) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # pass incorrect number of axes self.store.remove('p4d') self.assertRaises(Exception, self.store.append, 'p4d', p4d.ix[:,:,:10,:], axes=['major_axis','minor_axis']) # different than default indexables #1 indexers = ['labels','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # different than default indexables #2 indexers = ['major_axis','labels','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # partial selection result = self.store.select('p4d',['labels=l1']) expected = p4d.reindex(labels = ['l1']) tm.assert_panel4d_equal(result, expected) # partial selection2 result = self.store.select('p4d',[
Term('labels=l1')
pandas.io.pytables.Term
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 17 10:56:59 2020 Author: <NAME> 1. Use parallel computing to find the probability distribution of rate of change of a parameter. 2. Use parallel computing to find points that fits the above probability distribution. 3. Read one file per parameter and generate one final file containing rate of change of each parameter. Expected input 1: TimeStamp paramX rate 06/08/2015 12:33:00 199.84 0 06/08/2015 12:33:30 199.14 -0.023333333 06/08/2015 12:34:00 199.96 0.027333333 06/08/2015 12:34:30 200.14 0.006 ... Expected input 2: TimeStamp paramY rate 06/08/2015 12:41:00 199.18 -0.047666667 06/08/2015 12:41:30 199 -0.006 06/08/2015 12:42:00 200.06 0.035333333 06/08/2015 12:42:30 199.88 -0.006 ... Expected Output: paramX paramY -0.014455046 0.005159816 -0.010470647 -0.027910691 -0.008445245 -0.00039344 0.028559856 0.022433843 ... Running on Python 3.7.5. """ import time from os import path from multiprocessing import Pool import numpy as np import pandas as pd from scipy.stats import gaussian_kde from git import Repo repo = Repo('.', search_parent_directories=True) # to calculate total running time start_time = time.time() if __name__ == '__main__': __spec__ = "ModuleSpec(name='builtins', loader=<class '_frozen_importlib.BuiltinImporter'>)" filenames = ["resources/paramX_rate.csv", ] # add more files here # initialise variables random_rate, random_values = [], [] samples = 10000 # number of rate samples required rate_df = pd.DataFrame() pool = Pool(processes=1) # define number of parallel processes required # Generate time series for file in filenames: # split filename to get parameter name name = file.split('/')[-1].split('_') # print parameter name print(name[0]) # get full file path filepath = path.join(repo.working_dir, file) # read file data_file =
pd.read_csv(filepath, header=0, index_col=False)
pandas.read_csv
import pytest import datetime as dt import numpy as np import pandas as pd import cftime import bokeh.palettes import forest.state from forest import db from forest.db.control import time_array_equal @pytest.mark.parametrize("left,right,expect", [ (db.State(), db.State(), True), (db.State(valid_time="2019-01-01 00:00:00"), db.State(valid_time=dt.datetime(2019, 1, 1)), True), (db.State(initial_time="2019-01-01 00:00:00"), db.State(initial_time=dt.datetime(2019, 1, 1)), True), (db.State(initial_times=np.array([ "2019-01-01 00:00:00"], dtype='datetime64[s]')), db.State(initial_times=["2019-01-01 00:00:00"]), True), (db.State(initial_times=[]), db.State(initial_times=["2019-01-01 00:00:00"]), False), (db.State(valid_times=np.array([ "2019-01-01 00:00:00"], dtype='datetime64[s]')), db.State(valid_times=["2019-01-01 00:00:00"]), True), (db.State(pressure=1000.001), db.State(pressure=1000.0001), True), (db.State(pressure=1000.001), db.State(pressure=900), False), (db.State(pressures=np.array([1000.001, 900])), db.State(pressures=[1000.0001, 900]), True), (db.State(pressures=[1000.001, 900]), db.State(pressures=[900, 900]), False), (db.State(variables=[]), db.State(), False), (db.State(variables=["a", "b"]), db.State(), False), (db.State(), db.State(variables=["a", "b"]), False), (db.State(variables=["a", "b"]), db.State(variables=["a", "b"]), True), (db.State(variables=np.array(["a", "b"])), db.State(variables=["a", "b"]), True) ]) def test_equality_and_not_equality(left, right, expect): assert (left == right) == expect assert (left != right) == (not expect) def test_state_equality_valueerror_lengths_must_match(): """should return False if lengths do not match""" valid_times = ( pd.date_range("2020-01-01", periods=2), pd.date_range("2020-01-01", periods=3), ) left = db.State(valid_times=valid_times[0]) right = db.State(valid_times=valid_times[1]) assert (left == right) == False def test_time_array_equal(): left = pd.date_range("2020-01-01", periods=2) right = pd.date_range("2020-01-01", periods=3) assert time_array_equal(left, right) == False def test_valueerror_lengths_must_match(): a = ["2020-01-01T00:00:00Z"] b = ["2020-02-01T00:00:00Z", "2020-02-02T00:00:00Z", "2020-02-03T00:00:00Z"] with pytest.raises(ValueError): pd.to_datetime(a) == pd.to_datetime(b) @pytest.mark.parametrize("left,right,expect", [ pytest.param([cftime.DatetimeGregorian(2020, 1, 1), cftime.DatetimeGregorian(2020, 1, 2), cftime.DatetimeGregorian(2020, 1, 3)], pd.date_range("2020-01-01", periods=3), True, id="gregorian/pandas same values"), pytest.param([cftime.DatetimeGregorian(2020, 2, 1), cftime.DatetimeGregorian(2020, 2, 2), cftime.DatetimeGregorian(2020, 2, 3)],
pd.date_range("2020-01-01", periods=3)
pandas.date_range
import csv from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserError import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, read_csv, to_datetime, ) import pandas._testing as tm import pandas.core.common as com from pandas.io.common import get_handle MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] MIXED_INT_DTYPES = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ] class TestDataFrameToCSV: def read_csv(self, path, **kwargs): params = {"index_col": 0, "parse_dates": True} params.update(**kwargs) return read_csv(path, **params) def test_to_csv_from_csv1(self, float_frame, datetime_frame): with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path: float_frame["A"][:5] = np.nan float_frame.to_csv(path) float_frame.to_csv(path, columns=["A", "B"]) float_frame.to_csv(path, header=False) float_frame.to_csv(path, index=False) # test roundtrip # freq does not roundtrip datetime_frame.index = datetime_frame.index._with_freq(None) datetime_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(datetime_frame, recons) datetime_frame.to_csv(path, index_label="index") recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(datetime_frame.columns) + 1 # no index datetime_frame.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(datetime_frame.values, recons.values) # corner case dm = DataFrame( { "s1": Series(range(3), index=np.arange(3)), "s2": Series(range(2), index=np.arange(2)), } ) dm.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self, float_frame): with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path: # duplicate index df = DataFrame( np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"] ) df.to_csv(path) result = self.read_csv(path) tm.assert_frame_equal(result, df) midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)]) df = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"]) df.to_csv(path) result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False) tm.assert_frame_equal(result, df, check_names=False) # column aliases col_aliases = Index(["AA", "X", "Y", "Z"]) float_frame.to_csv(path, header=col_aliases) rs = self.read_csv(path) xp = float_frame.copy() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) msg = "Writing 4 cols but got 2 aliases" with pytest.raises(ValueError, match=msg): float_frame.to_csv(path, header=["AA", "X"]) def test_to_csv_from_csv3(self): with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path: df1 = DataFrame(np.random.randn(3, 1)) df2 = DataFrame(np.random.randn(3, 1)) df1.to_csv(path) df2.to_csv(path, mode="a", header=False) xp = pd.concat([df1, df2]) rs = read_csv(path, index_col=0) rs.columns = [int(label) for label in rs.columns] xp.columns = [int(label) for label in xp.columns] tm.assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path: # GH 10833 (TimedeltaIndex formatting) dt = pd.Timedelta(seconds=1) df = DataFrame( {"dt_data": [i * dt for i in range(3)]}, index=Index([i * dt for i in range(3)], name="dt_index"), ) df.to_csv(path) result = read_csv(path, index_col="dt_index") result.index = pd.to_timedelta(result.index) result["dt_data"] = pd.to_timedelta(result["dt_data"]) tm.assert_frame_equal(df, result, check_index_type=True) def test_to_csv_from_csv5(self, timezone_frame): # tz, 8260 with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path: timezone_frame.to_csv(path) result = read_csv(path, index_col=0, parse_dates=["A"]) converter = ( lambda c: to_datetime(result[c]) .dt.tz_convert("UTC") .dt.tz_convert(timezone_frame[c].dt.tz) ) result["B"] = converter("B") result["C"] = converter("C") tm.assert_frame_equal(result, timezone_frame) def test_to_csv_cols_reordering(self): # GH3454 chunksize = 5 N = int(chunksize * 2.5) df = tm.makeCustomDataframe(N, 3) cs = df.columns cols = [cs[2], cs[0]] with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) tm.assert_frame_equal(df[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): def _check_df(df, cols=None): with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if df.columns.is_unique: rs_c.columns = cols else: indexer, missing = df.columns.get_indexer_non_unique(cols) rs_c.columns = df.columns.take(indexer) for c in cols: obj_df = df[c] obj_rs = rs_c[c] if isinstance(obj_df, Series): tm.assert_series_equal(obj_df, obj_rs) else: tm.assert_frame_equal(obj_df, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = df.columns tm.assert_frame_equal(df, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] _check_df(df, None) # dupe cols with selection cols = ["b", "a"] _check_df(df, cols) @pytest.mark.slow def test_to_csv_dtnat(self): # GH3437 def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range("2000", freq="5min", periods=n)) if nnat: for i in np.random.randint(0, len(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with tm.ensure_clean("1.csv") as pth: df = DataFrame({"a": s1, "b": s2}) df.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth).apply(to_datetime) tm.assert_frame_equal(df, recons, check_names=False) @pytest.mark.slow def test_to_csv_moar(self): def _do_test( df, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False ): kwargs = {"parse_dates": False} if cnlvl: if rnlvl is not None: kwargs["index_col"] = list(range(rnlvl)) kwargs["header"] = list(range(cnlvl)) with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) else: kwargs["header"] = 0 with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) def _to_uni(x): if not isinstance(x, str): return x.decode("utf8") return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = df.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1 :] type_map = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"} if r_dtype: if r_dtype == "u": # unicode r_dtype = "O" recons.index = np.array( [_to_uni(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [_to_uni(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "dt": # unicode r_dtype = "O" recons.index = np.array( [Timestamp(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [Timestamp(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "p": r_dtype = "O" idx_list = to_datetime(recons.index) recons.index = np.array( [Timestamp(label) for label in idx_list], dtype=r_dtype ) df.index = np.array( list(map(Timestamp, df.index.to_timestamp())), dtype=r_dtype ) else: r_dtype = type_map.get(r_dtype) recons.index = np.array(recons.index, dtype=r_dtype) df.index = np.array(df.index, dtype=r_dtype) if c_dtype: if c_dtype == "u": c_dtype = "O" recons.columns = np.array( [_to_uni(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [_to_uni(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "dt": c_dtype = "O" recons.columns = np.array( [Timestamp(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [Timestamp(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "p": c_dtype = "O" col_list = to_datetime(recons.columns) recons.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) col_list = df.columns.to_timestamp() df.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) else: c_dtype = type_map.get(c_dtype) recons.columns = np.array(recons.columns, dtype=c_dtype) df.columns = np.array(df.columns, dtype=c_dtype) tm.assert_frame_equal(df, recons, check_names=False) N = 100 chunksize = 1000 ncols = 4 base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe(nrows, ncols, r_idx_type="dt", c_idx_type="s"), "dt", "s", ) for r_idx_type, c_idx_type in [("i", "i"), ("s", "s"), ("u", "dt"), ("p", "p")]: for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type ), r_idx_type, c_idx_type, ) for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols)) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2]: df = tm.makeCustomDataframe(nrows, 3) cols = list(df.columns) cols[:2] = ["dupe", "dupe"] cols[-2:] = ["dupe", "dupe"] ix = list(df.index) ix[:2] = ["rdupe", "rdupe"] ix[-2:] = ["rdupe", "rdupe"] df.index = ix df.columns = cols _do_test(df, dupe_col=True) _do_test(DataFrame(index=np.arange(10))) _do_test( tm.makeCustomDataframe(chunksize // 2 + 1, 2, r_idx_nlevels=2), rnlvl=2 ) for ncols in [2, 3, 4]: base = int(chunksize // ncols) for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols, r_idx_nlevels=2), rnlvl=2) _do_test(tm.makeCustomDataframe(nrows, ncols, c_idx_nlevels=2), cnlvl=2) _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_nlevels=2, c_idx_nlevels=2 ), rnlvl=2, cnlvl=2, ) def test_to_csv_from_csv_w_some_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["G"] = np.nan f = lambda x: [np.inf, np.nan][np.random.rand() < 0.5] float_frame["H"] = float_frame.index.map(f) with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_from_csv_w_all_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["E"] = np.inf float_frame["F"] = -np.inf with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_no_index(self): # GH 3624, after appending columns, to_csv fails with tm.ensure_clean("__tmp_to_csv_no_index__") as path: df = DataFrame({"c1": [1, 2, 3], "c2": [4, 5, 6]}) df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) df["c3"] = Series([7, 8, 9], dtype="int64") df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) def test_to_csv_with_mix_columns(self): # gh-11637: incorrect output when a mix of integer and string column # names passed as columns parameter in to_csv df = DataFrame({0: ["a", "b", "c"], 1: ["aa", "bb", "cc"]}) df["test"] = "txt" assert df.to_csv() == df.to_csv(columns=[0, 1, "test"]) def test_to_csv_headers(self): # GH6186, the presence or absence of `index` incorrectly # causes to_csv to have different header semantics. from_df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) to_df = DataFrame([[1, 2], [3, 4]], columns=["X", "Y"]) with tm.ensure_clean("__tmp_to_csv_headers__") as path: from_df.to_csv(path, header=["X", "Y"]) recons = self.read_csv(path) tm.assert_frame_equal(to_df, recons) from_df.to_csv(path, index=False, header=["X", "Y"]) recons = self.read_csv(path) return_value = recons.reset_index(inplace=True) assert return_value is None tm.assert_frame_equal(to_df, recons) def test_to_csv_multiindex(self, float_frame, datetime_frame): frame = float_frame old_index = frame.index arrays = np.arange(len(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=["first", "second"]) frame.index = new_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: frame.to_csv(path, header=False) frame.to_csv(path, columns=["A", "B"]) # round trip frame.to_csv(path) df = self.read_csv(path, index_col=[0, 1], parse_dates=False) # TODO to_csv drops column name tm.assert_frame_equal(frame, df, check_names=False) assert frame.index.names == df.index.names # needed if setUp becomes a class method float_frame.index = old_index # try multiindex with dates tsframe = datetime_frame old_index = tsframe.index new_index = [old_index, np.arange(len(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.to_csv(path, index_label=["time", "foo"]) recons = self.read_csv(path, index_col=[0, 1]) # TODO to_csv drops column name tm.assert_frame_equal(tsframe, recons, check_names=False) # do not load index tsframe.to_csv(path) recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(tsframe.columns) + 2 # no index tsframe.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(recons.values, datetime_frame.values) # needed if setUp becomes class method datetime_frame.index = old_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # GH3571, GH1651, GH3141 def _make_frame(names=None): if names is True: names = ["first", "second"] return DataFrame( np.random.randint(0, 10, size=(3, 3)), columns=MultiIndex.from_tuples( [("bah", "foo"), ("bah", "bar"), ("ban", "baz")], names=names ), dtype="int64", ) # column & index are multi-index df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1]) tm.assert_frame_equal(df, result) # column is mi df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=1, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=0) tm.assert_frame_equal(df, result) # dup column names? df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=3, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1, 2]) tm.assert_frame_equal(df, result) # writing with no index df = _make_frame() df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) tm.assert_frame_equal(df, result) # we lose the names here df = _make_frame(True) df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) assert com.all_none(*result.columns.names) result.columns.names = df.columns.names tm.assert_frame_equal(df, result) # whatsnew example df = _make_frame() df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) tm.assert_frame_equal(df, result) df = _make_frame(True) df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) tm.assert_frame_equal(df, result) # invalid options df = _make_frame(True) df.to_csv(path) for i in [6, 7]: msg = f"len of {i}, but only 5 lines in file" with pytest.raises(ParserError, match=msg): read_csv(path, header=list(range(i)), index_col=0) # write with cols msg = "cannot specify cols with a MultiIndex" with pytest.raises(TypeError, match=msg): df.to_csv(path, columns=["foo", "bar"]) with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # empty tsframe[:0].to_csv(path) recons = self.read_csv(path) exp = tsframe[:0] exp.index = [] tm.assert_index_equal(recons.columns, exp.columns) assert len(recons) == 0 def test_to_csv_interval_index(self): # GH 28210 df = DataFrame({"A": list("abc"), "B": range(3)}, index=pd.interval_range(0, 3)) with tm.ensure_clean("__tmp_to_csv_interval_index__.csv") as path: df.to_csv(path) result = self.read_csv(path, index_col=0) # can't roundtrip intervalindex via read_csv so check string repr (GH 23595) expected = df.copy() expected.index = expected.index.astype(str) tm.assert_frame_equal(result, expected) def test_to_csv_float32_nanrep(self): df = DataFrame(np.random.randn(1, 4).astype(np.float32)) df[1] = np.nan with tm.ensure_clean("__tmp_to_csv_float32_nanrep__.csv") as path: df.to_csv(path, na_rep=999) with open(path) as f: lines = f.readlines() assert lines[1].split(",")[2] == "999" def test_to_csv_withcommas(self): # Commas inside fields should be correctly escaped when saving as CSV. df = DataFrame({"A": [1, 2, 3], "B": ["5,6", "7,8", "9,0"]}) with tm.ensure_clean("__tmp_to_csv_withcommas__.csv") as path: df.to_csv(path) df2 = self.read_csv(path) tm.assert_frame_equal(df2, df) def test_to_csv_mixed(self): def create_cols(name): return [f"{name}{i:03d}" for i in range(5)] df_float = DataFrame( np.random.randn(100, 5), dtype="float64", columns=create_cols("float") ) df_int = DataFrame( np.random.randn(100, 5).astype("int64"), dtype="int64", columns=create_cols("int"), ) df_bool = DataFrame(True, index=df_float.index, columns=create_cols("bool")) df_object = DataFrame( "foo", index=df_float.index, columns=create_cols("object") ) df_dt = DataFrame( Timestamp("20010101"), index=df_float.index, columns=create_cols("date") ) # add in some nans df_float.iloc[30:50, 1:3] = np.nan # ## this is a bug in read_csv right now #### # df_dt.loc[30:50,1:3] = np.nan df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1) # dtype dtypes = {} for n, dtype in [ ("float", np.float64), ("int", np.int64), ("bool", np.bool_), ("object", object), ]: for c in create_cols(n): dtypes[c] = dtype with tm.ensure_clean() as filename: df.to_csv(filename) rs = read_csv( filename, index_col=0, dtype=dtypes, parse_dates=create_cols("date") ) tm.assert_frame_equal(rs, df) def test_to_csv_dups_cols(self): df = DataFrame( np.random.randn(1000, 30), columns=list(range(15)) + list(range(15)), dtype="float64", ) with tm.ensure_clean() as filename: df.to_csv(filename) # single dtype, fine result = read_csv(filename, index_col=0) result.columns = df.columns tm.assert_frame_equal(result, df) df_float = DataFrame(np.random.randn(1000, 3), dtype="float64") df_int = DataFrame(np.random.randn(1000, 3)).astype("int64") df_bool = DataFrame(True, index=df_float.index, columns=range(3)) df_object = DataFrame("foo", index=df_float.index, columns=range(3)) df_dt = DataFrame(Timestamp("20010101"), index=df_float.index, columns=range(3)) df = pd.concat( [df_float, df_int, df_bool, df_object, df_dt], axis=1, ignore_index=True ) df.columns = [0, 1, 2] * 5 with tm.ensure_clean() as filename: df.to_csv(filename) result = read_csv(filename, index_col=0) # date cols for i in ["0.4", "1.4", "2.4"]: result[i] = to_datetime(result[i]) result.columns = df.columns tm.assert_frame_equal(result, df) # GH3457 N = 10 df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] with tm.ensure_clean() as filename: df.to_csv(filename) # read_csv will rename the dups columns result = read_csv(filename, index_col=0) result = result.rename(columns={"a.1": "a"}) tm.assert_frame_equal(result, df) def test_to_csv_chunking(self): aa = DataFrame({"A": range(100000)}) aa["B"] = aa.A + 1.0 aa["C"] = aa.A + 2.0 aa["D"] = aa.A + 3.0 for chunksize in [10000, 50000, 100000]: with tm.ensure_clean() as filename: aa.to_csv(filename, chunksize=chunksize) rs = read_csv(filename, index_col=0) tm.assert_frame_equal(rs, aa) @pytest.mark.slow def test_to_csv_wide_frame_formatting(self): # Issue #8621 df = DataFrame(np.random.randn(1, 100010), columns=None, index=None) with tm.ensure_clean() as filename: df.to_csv(filename, header=False, index=False) rs = read_csv(filename, header=None) tm.assert_frame_equal(rs, df) def test_to_csv_bug(self): f1 = StringIO("a,1.0\nb,2.0") df = self.read_csv(f1, header=None) newdf = DataFrame({"t": df[df.columns[0]]}) with tm.ensure_clean() as path: newdf.to_csv(path) recons = read_csv(path, index_col=0) # don't check_names as t != 1 tm.assert_frame_equal(recons, newdf, check_names=False) def test_to_csv_unicode(self): df = DataFrame({"c/\u03c3": [1, 2, 3]}) with tm.ensure_clean() as path: df.to_csv(path, encoding="UTF-8") df2 = read_csv(path, index_col=0, encoding="UTF-8") tm.assert_frame_equal(df, df2) df.to_csv(path, encoding="UTF-8", index=False) df2 = read_csv(path, index_col=None, encoding="UTF-8") tm.assert_frame_equal(df, df2) def test_to_csv_unicode_index_col(self): buf = StringIO("") df = DataFrame( [["\u05d0", "d2", "d3", "d4"], ["a1", "a2", "a3", "a4"]], columns=["\u05d0", "\u05d1", "\u05d2", "\u05d3"], index=["\u05d0", "\u05d1"], ) df.to_csv(buf, encoding="UTF-8") buf.seek(0) df2 = read_csv(buf, index_col=0, encoding="UTF-8") tm.assert_frame_equal(df, df2) def test_to_csv_stringio(self, float_frame): buf = StringIO() float_frame.to_csv(buf) buf.seek(0) recons = read_csv(buf, index_col=0) tm.assert_frame_equal(recons, float_frame) def test_to_csv_float_format(self): df = DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ) with tm.ensure_clean() as filename: df.to_csv(filename, float_format="%.2f") rs = read_csv(filename, index_col=0) xp = DataFrame( [[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]], index=["A", "B"], columns=["X", "Y", "Z"], ) tm.assert_frame_equal(rs, xp) def test_to_csv_unicodewriter_quoting(self): df = DataFrame({"A": [1, 2, 3], "B": ["foo", "bar", "baz"]}) buf = StringIO() df.to_csv(buf, index=False, quoting=csv.QUOTE_NONNUMERIC, encoding="utf-8") result = buf.getvalue() expected_rows = ['"A","B"', '1,"foo"', '2,"bar"', '3,"baz"'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert result == expected def test_to_csv_quote_none(self): # GH4328 df = DataFrame({"A": ["hello", '{"hello"}']}) for encoding in (None, "utf-8"): buf = StringIO() df.to_csv(buf, quoting=csv.QUOTE_NONE, encoding=encoding, index=False) result = buf.getvalue() expected_rows = ["A", "hello", '{"hello"}'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert result == expected def test_to_csv_index_no_leading_comma(self): df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["one", "two", "three"]) buf = StringIO() df.to_csv(buf, index_label=False) expected_rows = ["A,B", "one,1,4", "two,2,5", "three,3,6"] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert buf.getvalue() == expected def test_to_csv_line_terminators(self): # see gh-20353 df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["one", "two", "three"]) with tm.ensure_clean() as path: # case 1: CRLF as line terminator df.to_csv(path, line_terminator="\r\n") expected = b",A,B\r\none,1,4\r\ntwo,2,5\r\nthree,3,6\r\n" with open(path, mode="rb") as f: assert f.read() == expected with tm.ensure_clean() as path: # case 2: LF as line terminator df.to_csv(path, line_terminator="\n") expected = b",A,B\none,1,4\ntwo,2,5\nthree,3,6\n" with open(path, mode="rb") as f: assert f.read() == expected with tm.ensure_clean() as path: # case 3: The default line terminator(=os.linesep)(gh-21406) df.to_csv(path) os_linesep = os.linesep.encode("utf-8") expected = ( b",A,B" + os_linesep + b"one,1,4" + os_linesep + b"two,2,5" + os_linesep + b"three,3,6" + os_linesep ) with open(path, mode="rb") as f: assert f.read() == expected def test_to_csv_from_csv_categorical(self): # CSV with categoricals should result in the same output # as when one would add a "normal" Series/DataFrame. s = Series(pd.Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])) s2 = Series(["a", "b", "b", "a", "a", "c", "c", "c"]) res = StringIO() s.to_csv(res, header=False) exp = StringIO() s2.to_csv(exp, header=False) assert res.getvalue() == exp.getvalue() df = DataFrame({"s": s}) df2 = DataFrame({"s": s2}) res = StringIO() df.to_csv(res) exp = StringIO() df2.to_csv(exp) assert res.getvalue() == exp.getvalue() def test_to_csv_path_is_none(self, float_frame): # GH 8215 # Make sure we return string for consistency with # Series.to_csv() csv_str = float_frame.to_csv(path_or_buf=None) assert isinstance(csv_str, str) recons = read_csv(StringIO(csv_str), index_col=0) tm.assert_frame_equal(float_frame, recons) @pytest.mark.parametrize( "df,encoding", [ ( DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ), None, ), # GH 21241, 21118 (DataFrame([["abc", "def", "ghi"]], columns=["X", "Y", "Z"]), "ascii"), (DataFrame(5 * [[123, "你好", "世界"]], columns=["X", "Y", "Z"]), "gb2312"), ( DataFrame(5 * [[123, "Γειά σου", "Κόσμε"]], columns=["X", "Y", "Z"]), "cp737", ), ], ) def test_to_csv_compression(self, df, encoding, compression): with tm.ensure_clean() as filename: df.to_csv(filename, compression=compression, encoding=encoding) # test the round trip - to_csv -> read_csv result = read_csv( filename, compression=compression, index_col=0, encoding=encoding ) tm.assert_frame_equal(df, result) # test the round trip using file handle - to_csv -> read_csv with get_handle( filename, "w", compression=compression, encoding=encoding ) as handles: df.to_csv(handles.handle, encoding=encoding) assert not handles.handle.closed result = read_csv( filename, compression=compression, encoding=encoding, index_col=0, ).squeeze("columns") tm.assert_frame_equal(df, result) # explicitly make sure file is compressed with tm.decompress_file(filename, compression) as fh: text = fh.read().decode(encoding or "utf8") for col in df.columns: assert col in text with tm.decompress_file(filename, compression) as fh: tm.assert_frame_equal(df, read_csv(fh, index_col=0, encoding=encoding)) def test_to_csv_date_format(self, datetime_frame): with tm.ensure_clean("__tmp_to_csv_date_format__") as path: dt_index = datetime_frame.index datetime_frame = DataFrame( {"A": dt_index, "B": dt_index.shift(1)}, index=dt_index ) datetime_frame.to_csv(path, date_format="%Y%m%d") # Check that the data was put in the specified format test = read_csv(path, index_col=0) datetime_frame_int = datetime_frame.applymap( lambda x: int(x.strftime("%Y%m%d")) ) datetime_frame_int.index = datetime_frame_int.index.map( lambda x: int(x.strftime("%Y%m%d")) ) tm.assert_frame_equal(test, datetime_frame_int) datetime_frame.to_csv(path, date_format="%Y-%m-%d") # Check that the data was put in the specified format test = read_csv(path, index_col=0) datetime_frame_str = datetime_frame.applymap( lambda x: x.strftime("%Y-%m-%d") ) datetime_frame_str.index = datetime_frame_str.index.map( lambda x: x.strftime("%Y-%m-%d") ) tm.assert_frame_equal(test, datetime_frame_str) # Check that columns get converted datetime_frame_columns = datetime_frame.T datetime_frame_columns.to_csv(path, date_format="%Y%m%d") test = read_csv(path, index_col=0) datetime_frame_columns = datetime_frame_columns.applymap( lambda x: int(x.strftime("%Y%m%d")) ) # Columns don't get converted to ints by read_csv datetime_frame_columns.columns = datetime_frame_columns.columns.map( lambda x: x.strftime("%Y%m%d") ) tm.assert_frame_equal(test, datetime_frame_columns) # test NaTs nat_index = to_datetime( ["NaT"] * 10 + ["2000-01-01", "1/1/2000", "1-1-2000"] ) nat_frame = DataFrame({"A": nat_index}, index=nat_index) nat_frame.to_csv(path, date_format="%Y-%m-%d") test = read_csv(path, parse_dates=[0, 1], index_col=0) tm.assert_frame_equal(test, nat_frame) def test_to_csv_with_dst_transitions(self): with tm.ensure_clean("csv_date_format_with_dst") as path: # make sure we are not failing on transitions times = date_range( "2013-10-26 23:00", "2013-10-27 01:00", tz="Europe/London", freq="H", ambiguous="infer", ) for i in [times, times + pd.Timedelta("10s")]: i = i._with_freq(None) # freq is not preserved by read_csv time_range = np.array(range(len(i)), dtype="int64") df = DataFrame({"A": time_range}, index=i) df.to_csv(path, index=True) # we have to reconvert the index as we # don't parse the tz's result = read_csv(path, index_col=0) result.index =
to_datetime(result.index, utc=True)
pandas.to_datetime
# -*- coding: utf-8 -*- from collections import defaultdict from datetime import timedelta, datetime, date from dateutil.relativedelta import relativedelta import pandas as pd from pytz import utc from odoo import models, fields, api, _ from odoo.http import request from odoo.tools import float_utils ROUNDING_FACTOR = 16 class HrLeave(models.Model): _inherit = 'hr.leave' duration_display = fields.Char('Requested (Days/Hours)', compute='_compute_duration_display', store=True, help="Field allowing to see the leave request duration" " in days or hours depending on the leave_type_request_unit") class Employee(models.Model): _inherit = 'hr.employee' birthday = fields.Date('Date of Birth', groups="base.group_user", help="Birthday") @api.model def check_user_group(self): uid = request.session.uid user = self.env['res.users'].sudo().search([('id', '=', uid)], limit=1) if user.has_group('hr.group_hr_manager'): return True else: return False @api.model def get_user_employee_details(self): uid = request.session.uid employee = self.env['hr.employee'].sudo().search_read([('user_id', '=', uid)], limit=1) leaves_to_approve = self.env['hr.leave'].sudo().search_count([('state', 'in', ['confirm', 'validate1'])]) today = datetime.strftime(datetime.today(), '%Y-%m-%d') query = """ select count(id) from hr_leave WHERE (hr_leave.date_from::DATE,hr_leave.date_to::DATE) OVERLAPS ('%s', '%s') and state='validate'""" % (today, today) cr = self._cr cr.execute(query) leaves_today = cr.fetchall() first_day = date.today().replace(day=1) last_day = (date.today() + relativedelta(months=1, day=1)) - timedelta(1) query = """ select count(id) from hr_leave WHERE (hr_leave.date_from::DATE,hr_leave.date_to::DATE) OVERLAPS ('%s', '%s') and state='validate'""" % (first_day, last_day) cr = self._cr cr.execute(query) leaves_this_month = cr.fetchall() leaves_alloc_req = self.env['hr.leave.allocation'].sudo().search_count( [('state', 'in', ['confirm', 'validate1'])]) timesheet_count = self.env['account.analytic.line'].sudo().search_count( [('project_id', '!=', False), ('user_id', '=', uid)]) timesheet_view_id = self.env.ref('hr_timesheet.hr_timesheet_line_search') job_applications = self.env['hr.applicant'].sudo().search_count([]) if employee: sql = """select broad_factor from hr_employee_broad_factor where id =%s""" self.env.cr.execute(sql, (employee[0]['id'],)) result = self.env.cr.dictfetchall() broad_factor = result[0]['broad_factor'] if employee[0]['birthday']: diff = relativedelta(datetime.today(), employee[0]['birthday']) age = diff.years else: age = False if employee[0]['joining_date']: diff = relativedelta(datetime.today(), employee[0]['joining_date']) years = diff.years months = diff.months days = diff.days experience = '{} years {} months {} days'.format(years, months, days) else: experience = False if employee: data = { 'broad_factor': broad_factor if broad_factor else 0, 'leaves_to_approve': leaves_to_approve, 'leaves_today': leaves_today, 'leaves_this_month': leaves_this_month, 'leaves_alloc_req': leaves_alloc_req, 'emp_timesheets': timesheet_count, 'job_applications': job_applications, 'timesheet_view_id': timesheet_view_id, 'experience': experience, 'age': age } employee[0].update(data) return employee else: return False @api.model def get_upcoming(self): cr = self._cr uid = request.session.uid employee = self.env['hr.employee'].search([('user_id', '=', uid)], limit=1) cr.execute("""select *, (to_char(dob,'ddd')::int-to_char(now(),'ddd')::int+total_days)%total_days as dif from (select he.id, he.name, to_char(he.birthday, 'Month dd') as birthday, hj.name as job_id , he.birthday as dob, (to_char((to_char(now(),'yyyy')||'-12-31')::date,'ddd')::int) as total_days FROM hr_employee he join hr_job hj on hj.id = he.job_id ) birth where (to_char(dob,'ddd')::int-to_char(now(),'DDD')::int+total_days)%total_days between 0 and 15 order by dif;""") birthday = cr.fetchall() # e.is_online # was there below # where e.state ='confirm' on line 118/9 #change cr.execute("""select e.name, e.date_begin, e.date_end, rc.name as location from event_event e left join res_partner rp on e.address_id = rp.id left join res_country rc on rc.id = rp.country_id and (e.date_begin >= now() and e.date_begin <= now() + interval '15 day') or (e.date_end >= now() and e.date_end <= now() + interval '15 day') order by e.date_begin """) event = cr.fetchall() announcement = [] if employee: department = employee.department_id job_id = employee.job_id sql = """select ha.name, ha.announcement_reason from hr_announcement ha left join hr_employee_announcements hea on hea.announcement = ha.id left join hr_department_announcements hda on hda.announcement = ha.id left join hr_job_position_announcements hpa on hpa.announcement = ha.id where ha.state = 'approved' and ha.date_start <= now()::date and ha.date_end >= now()::date and (ha.is_announcement = True or (ha.is_announcement = False and ha.announcement_type = 'employee' and hea.employee = %s)""" % employee.id if department: sql += """ or (ha.is_announcement = False and ha.announcement_type = 'department' and hda.department = %s)""" % department.id if job_id: sql += """ or (ha.is_announcement = False and ha.announcement_type = 'job_position' and hpa.job_position = %s)""" % job_id.id sql += ')' cr.execute(sql) announcement = cr.fetchall() return { 'birthday': birthday, 'event': event, 'announcement': announcement } @api.model def get_dept_employee(self): cr = self._cr cr.execute("""select department_id, hr_department.name,count(*) from hr_employee join hr_department on hr_department.id=hr_employee.department_id group by hr_employee.department_id,hr_department.name""") dat = cr.fetchall() data = [] for i in range(0, len(dat)): data.append({'label': dat[i][1], 'value': dat[i][2]}) return data @api.model def get_department_leave(self): month_list = [] graph_result = [] for i in range(5, -1, -1): last_month = datetime.now() - relativedelta(months=i) text = format(last_month, '%B %Y') month_list.append(text) self.env.cr.execute("""select id, name from hr_department where active=True """) departments = self.env.cr.dictfetchall() department_list = [x['name'] for x in departments] for month in month_list: leave = {} for dept in departments: leave[dept['name']] = 0 vals = { 'l_month': month, 'leave': leave } graph_result.append(vals) sql = """ SELECT h.id, h.employee_id,h.department_id , extract('month' FROM y)::int AS leave_month , to_char(y, 'Month YYYY') as month_year , GREATEST(y , h.date_from) AS date_from , LEAST (y + interval '1 month', h.date_to) AS date_to FROM (select * from hr_leave where state = 'validate') h , generate_series(date_trunc('month', date_from::timestamp) , date_trunc('month', date_to::timestamp) , interval '1 month') y where date_trunc('month', GREATEST(y , h.date_from)) >= date_trunc('month', now()) - interval '6 month' and date_trunc('month', GREATEST(y , h.date_from)) <= date_trunc('month', now()) and h.department_id is not null """ self.env.cr.execute(sql) results = self.env.cr.dictfetchall() leave_lines = [] for line in results: employee = self.browse(line['employee_id']) from_dt = fields.Datetime.from_string(line['date_from']) to_dt = fields.Datetime.from_string(line['date_to']) days = employee.get_work_days_dashboard(from_dt, to_dt) line['days'] = days vals = { 'department': line['department_id'], 'l_month': line['month_year'], 'days': days } leave_lines.append(vals) if leave_lines: df =
pd.DataFrame(leave_lines)
pandas.DataFrame
import datetime as dt import numpy as np import pandas as pd import plotly.express as px import statsmodels.api as sm ################################### # Time Series Data Quality Checks ################################### class DataQualityCheck: """ A class used to capture summary stats and data quality checks prior to uploading time series data to DataRobot Attributes: ----------- df : DataFrame time series data, including a date column and target variable at a minimum settings : dict definitions of date_col, target_col, series_id and time series parameters stats : dict summary statistics generated from `calc_summary_stats` duplicate_dates : int duplicate dates in the time series date_col series_timesteps : series steps between time units for each series_id series_max_gap : series maximum time gap per series series_lenth : series length of each series_id series_pct : series percent of series with complete time steps irregular : boolean True if df contains irregular time series data series_negative_target_pct : float Percent of target values that are negative Methods: -------- calc_summary_stats(settings, df) generates a dictionary of summary statistics calc_time_steps(settings, df) calculate time steps per series_id hierarchical_check(settings, df) check if time series data passes heirarchical check zero_inflated_check(settings, df) check if target value contains zeros negative_values_check(settings, df) check if target value contains negative values time_steps_gap_check(settings, df) check if any series has missing time steps irregular_check(settings, df) check is time series data irregular """ def __init__(self, df, ts_settings): self.df = df self.settings = ts_settings self.stats = None self.duplicate_dates = None self.series_time_steps = None self.series_length = None self.series_pct = None self.irregular = None self.series_negative_target_pct = None self.project_time_unit = None self.project_time_step = None self.calc_summary_stats() self.calc_time_steps() self.run_all_checks() def calc_summary_stats(self): """ Analyze time series data to perform checks and gather summary statistics prior to modeling. """ date_col = self.settings['date_col'] series_id = self.settings['series_id'] target = self.settings['target'] df = self.df df[date_col] = pd.to_datetime(df[date_col]) df.sort_values(by=[date_col, series_id], ascending=True, inplace=True) # Create dictionary of helpful statistics stats = dict() stats['rows'] = df.shape[0] stats['columns'] = df.shape[1] stats['min_' + str(target)] = df[target].min() stats['max_' + str(target)] = df[target].max() stats['series'] = len(df[series_id].unique()) stats['start_date'] = df[date_col].min() stats['end_date'] = df[date_col].max() stats['timespan'] = stats['end_date'] - stats['start_date'] stats['median_timestep'] = df.groupby([series_id])[date_col].diff().median() stats['min_timestep'] = df.groupby([series_id])[date_col].diff().min() stats['max_timestep'] = df.groupby([series_id])[date_col].diff().max() # create data for histogram of series lengths stats['series_length'] = ( df.groupby([series_id])[date_col].apply(lambda x: x.max() - x.min()) / stats['median_timestep'] ) # calculate max gap per series stats['series_max_gap'] = ( df.groupby([series_id])[date_col].apply(lambda x: x.diff().max()) / stats['median_timestep'] ) self.stats = stats def calc_percent_missing(self, missing_value=np.nan): """ Calculate percentage of rows where target is np.nan """ target = self.settings['target'] df = self.df if np.isnan(missing_value): percent_missing = sum(np.isnan(df[target])) / len(df) else: percent_missing = sum(df[target] == missing_value) / len(df) self.stats['percent_missing'] = percent_missing print('{:0.2f}% of the rows are missing a target value'.format(percent_missing * 100)) def get_zero_inflated_series(self, cutoff=0.99): """ Identify series where the target is 0.0 in more than x% of the rows Returns: -------- List of series """ assert 0 < cutoff <= 1.0, 'cutoff must be between 0 and 1' series_id = self.settings['series_id'] target = self.settings['target'] df = self.df df = df.groupby([series_id])[target].apply(lambda x: (x.dropna() == 0).mean()) series = df[df >= cutoff].index.values pct = len(series) / self.stats['series'] print( '{:0.2f}% series have zeros in more than {:0.2f}% or more of the rows'.format( pct * 100, cutoff * 100 ) ) def calc_time_steps(self): """ Calculate timesteps per series """ date_col = self.settings['date_col'] series_id = self.settings['series_id'] df = self.df if self.stats is None: print('calc_summary_stats must be run first!') # create data for histogram of timestep series_timesteps = df.groupby([series_id])[date_col].diff() / self.stats['median_timestep'] self.series_time_steps = series_timesteps def hierarchical_check(self): """ Calculate percentage of series that appear on each timestep """ date_col = self.settings['date_col'] series_id = self.settings['series_id'] df = self.df if self.stats is None: print('calc_summary_stats must be run first!') # Test if series passes the hierarchical check series_pct = df.groupby([date_col])[series_id].apply( lambda x: x.count() / self.stats['series'] ) if np.where(series_pct > 0.95, 1, 0).mean() > 0.95: self.stats['passes_hierarchical_check'] = True print( 'Data passes hierarchical check! DataRobot hierarchical blueprints will run if you enable cross series features.' ) else: print('Data fails hierarchical check! No hierarchical blueprints will run.') self.stats['passes_hierarchical_check'] = False self.series_pct = series_pct def zero_inflated_check(self): """ Check if minimum target value is 0.0 """ target = self.settings['target'] df = self.df if min(df[target]) == 0: self.stats['passes_zero_inflated_check'] = False print('The minimum target value is zero. Zero-Inflated blueprints will run.') else: self.stats['passes_zero_inflated_check'] = True print('Minimum target value is <> 0. Zero-inflated blueprints will not run.') def negative_values_check(self): """ Check if any series contain negative values. If yes, identify and call out which series by id. """ series_id = self.settings['series_id'] target = self.settings['target'] df = self.df df['target_sign'] = np.sign(df[target]) try: # Get percent of series that have at least one negative value any_series_negative = ( df.groupby([series_id])['target_sign'].value_counts().unstack()[-1] ) series_negative_target_pct = np.sign(any_series_negative).sum() / len( df[series_id].unique() ) df.drop('target_sign', axis=1, inplace=True) self.stats['passes_negative_values_check'] = False print( '{0:.2f}% of series have at least one negative {1} value.'.format( (round(series_negative_target_pct * 100), 2), target ) ) # Identify which series have negative values # print('{} contain negative values. Consider creating a seperate project for these series.'.format(any_series_negative[any_series_negative == 1].index.values)) except: series_negative_target_pct = 0 self.stats['passes_negative_values_check'] = True print('No negative values are contained in {}.'.format(target)) self.series_negative_target_pct = series_negative_target_pct def new_series_check(self): """ Check if any series start after the the minimum datetime """ min_dates = self.df.groupby(self.settings['series_id'])[self.settings['date_col']].min() new_series = min_dates > self.stats['start_date'] + dt.timedelta(days=30) if new_series.sum() == 0: self.stats['series_introduced_over_time'] = False print('No new series were introduced after the start of the training data') else: self.stats['series_introduced_over_time'] = True print( 'Warning: You may encounter new series at prediction time. \n {0:.2f}% of the series appeared after the start of the training data'.format( round(new_series.mean() * 100, 0) ) ) def old_series_check(self): """ Check if any series end before the maximum datetime """ max_dates = self.df.groupby(self.settings['series_id'])[self.settings['date_col']].max() old_series = max_dates < self.stats['end_date'] - dt.timedelta(days=30) if old_series.sum() == 0: self.stats['series_removed_over_time'] = False print('No series were removed before the end of the training data') else: self.stats['series_removed_over_time'] = True print( 'Warning: You may encounter fewer series at prediction time. \n {0:.2f}% of the series were removed before the end of the training data'.format( round(old_series.mean() * 100, 0) ) ) def leading_or_trailing_zeros_check(self, threshold=5, drop=True): """ Check for contain consecutive zeros at the beginning or end of each series """ date_col = self.settings['date_col'] series_id = self.settings['series_id'] target = self.settings['target'] df = self.df new_df = remove_leading_and_trailing_zeros( df, series_id, date_col, target, leading_threshold=threshold, trailing_threshold=threshold, drop=drop, ) if new_df.shape[0] < df.shape[0]: print(f'Warning: Leading and trailing zeros detected within series') else: print(f'No leading or trailing zeros detected within series') def duplicate_dates_check(self): """ Check for duplicate datetimes within each series """ duplicate_dates = self.df.groupby([self.settings['series_id'], self.settings['date_col']])[ self.settings['date_col'] ].count() duplicate_dates = duplicate_dates[duplicate_dates > 1] if len(duplicate_dates) == 0: print(f'No duplicate timestamps detected within any series') self.stats['passes_duplicate_timestamp_check'] = True else: print('Warning: Data contains duplicate timestamps within series!') self.stats['passes_duplicate_timestamp_check'] = False def time_steps_gap_check(self): """ Check for missing timesteps within each series """ date_col = self.settings['date_col'] series_id = self.settings['series_id'] df = self.df gap_size = self.stats['median_timestep'] if self.stats is None: print('calc_summary_stats must be run first!') # check is series has any missing time steps self.stats['pct_series_w_gaps'] = ( df.groupby([series_id])[date_col].apply(lambda x: x.diff().max()) > gap_size ).mean() print( '{0:.2f}% of series have at least one missing time step.'.format( round(self.stats['pct_series_w_gaps'] * 100), 2 ) ) def _get_spacing(self, df, project_time_unit): """ Helper function for self.irregular_check() Returns: -------- List of series """ project_time_unit = self.project_time_unit ts_settings = self.settings date_col = ts_settings['date_col'] series_id = ts_settings['series_id'] df['indicator'] = 1 df = fill_missing_dates(df=df, ts_settings=ts_settings) if project_time_unit == 'minute': df['minute'] = df[date_col].dt.minute elif project_time_unit == 'hour': df['hour'] = df[date_col].dt.hour elif project_time_unit == 'day': df['day'] = df[date_col].dt.dayofweek elif project_time_unit == 'week': df['week'] = df[date_col].dt.week elif project_time_unit == 'month': df['month'] = df[date_col].dt.month sums = df.groupby([series_id, project_time_unit])['indicator'].sum() counts = df.groupby([series_id, project_time_unit])['indicator'].agg( lambda x: x.fillna(0).count() ) pcts = sums / counts irregular = pcts.reset_index(drop=True) < 0.8 irregular = irregular[irregular] return irregular def irregular_check(self, plot=False): """ Check for irregular spacing within each series """ date_col = self.settings['date_col'] df = self.df.copy() # first cast date column to a pandas datetime type df[date_col] = pd.to_datetime(df[date_col]) project_time_unit, project_time_step = get_timestep(self.df, self.settings) self.project_time_unit = project_time_unit self.project_time_step = project_time_step print('Project Timestep: ', project_time_step, ' ', project_time_unit) if project_time_unit == 'minute': df['minute'] = df[date_col].dt.minute elif project_time_unit == 'hour': df['hour'] = df[date_col].dt.hour elif project_time_unit == 'day': df['day'] = df[date_col].dt.dayofweek elif project_time_unit == 'week': df['week'] = df[date_col].dt.week elif project_time_unit == 'month': df['month'] = df[date_col].dt.month # Plot histogram of timesteps time_unit_counts = df[project_time_unit].value_counts() if plot: time_unit_percent = time_unit_counts / sum(time_unit_counts.values) fig = px.bar( time_unit_percent, x=time_unit_percent.index, y=time_unit_percent.values, title=f'Percentage of records per {project_time_unit}', ) fig.update_xaxes(title=project_time_unit) fig.update_yaxes(title='Percentage') fig.show() # Detect uncommon time steps # If time bin has less than 30% of most common bin then it is an uncommon time bin uncommon_time_bins = list( time_unit_counts[(time_unit_counts / time_unit_counts.max()) < 0.3].index ) common_time_bins = list( time_unit_counts[(time_unit_counts / time_unit_counts.max()) >= 0.3].index ) if len(uncommon_time_bins) > 0: print(f'Uncommon {project_time_unit}s:', uncommon_time_bins) else: print('There are no uncommon time steps') # Detect irregular series df = df.loc[df[project_time_unit].isin(common_time_bins), :] irregular_series = self._get_spacing(df, project_time_unit) if len(irregular_series) > 0: print( 'Series are irregularly spaced. Projects will only be able to run in row-based mode!' ) self.stats['passes_irregular_check'] = False else: self.stats['passes_irregular_check'] = True print( 'Timesteps are regularly spaced. You will be able to run projects in either time-based or row-based mode' ) def detect_periodicity(self, alpha=0.05): """ Calculate project-level periodicity """ timestep = self.project_time_unit df = self.df target = self.settings['target'] date_col = self.settings['date_col'] metric = self.settings['metric'] metrics = { 'LogLoss': sm.families.Binomial(), 'RMSE': sm.families.Gaussian(), 'Poisson Deviance': sm.families.Poisson(), 'Gamma Deviance': sm.families.Gamma(), } periodicity = { 'moh': 'hourly', 'hod': 'daily', 'dow': 'weekly', 'dom': 'monthly', 'month': 'yearly', 'year': 'multi-year' } try: loss = metrics[metric] except KeyError: loss = metrics['RMSE'] # Instantiate a glm with the default link function. df[date_col] = pd.to_datetime(df[date_col]) df = df.loc[np.isfinite(df[target]), :].copy() df['moh'] = df[date_col].dt.minute df['hod'] = df[date_col].dt.hour df['dow'] = df[date_col].dt.dayofweek df['dom'] = df[date_col].dt.day df['month'] = df[date_col].dt.month df['year'] = df[date_col].dt.year if timestep == 'minute': inputs = ['moh', 'hod', 'dow', 'dom', 'month'] elif timestep == 'hour': inputs = ['hod', 'dow', 'dom', 'month'] elif timestep == 'day': inputs = ['dow', 'dom', 'month'] elif timestep == 'week': inputs = ['month'] elif timestep == 'month': inputs = ['month','year'] else: raise ValueError('timestep has to be either minute, hour, day, week, or month') output = [] for i in inputs: x = pd.DataFrame(df[i]) y = df[target] x = pd.get_dummies(x.astype('str'), drop_first=True) x['const'] = 1 clf = sm.GLM(endog=y, exog=x, family=loss) model = clf.fit() if any(model.pvalues[:-1] <= alpha): output.append(periodicity[i]) # print(f'Detected periodicity: {periodicity[i]}') # return periodicity[i] if len(output) > 0: print(f'Detected periodicity: {output}') else: print('No periodicity detected') def run_all_checks(self): """ Runner function to run all data checks in one call """ print('Running all data quality checks...\n') series = self.stats['series'] start_date = self.stats['start_date'] end_date = self.stats['end_date'] rows = self.stats['rows'] cols = self.stats['columns'] print(f'There are {rows} rows and {cols} columns') print(f'There are {series} series') print(f'The data spans from {start_date} to {end_date}') self.hierarchical_check() self.zero_inflated_check() self.new_series_check() self.old_series_check() self.duplicate_dates_check() self.leading_or_trailing_zeros_check() self.time_steps_gap_check() self.calc_percent_missing() self.get_zero_inflated_series() self.irregular_check() self.detect_periodicity() def get_timestep(df, ts_settings): """ Calculate the project-level timestep Returns: -------- project_time_unit: minute, hour, day, week, or month project_time_step: int Examples: -------- '1 days' '4 days' '1 week' '2 months' """ date_col = ts_settings['date_col'] series_id = ts_settings['series_id'] df = df.copy() # Cast date column to a pandas datetime type and sort df df[date_col] = pd.to_datetime(df[date_col]) df.sort_values(by=[date_col, series_id], ascending=True, inplace=True) # Calculate median timestep deltas = df.groupby([series_id])[date_col].diff().reset_index(drop=True) median_timestep = deltas.apply(lambda x: x.total_seconds()).median() # Logic to detect project time step and time unit if (60 <= median_timestep < 3600) & (median_timestep % 60 == 0): project_time_unit = 'minute' project_time_step = int(median_timestep / 60) df['minute'] = df[date_col].dt.minute elif (3600 <= median_timestep < 86400) & (median_timestep % 3600 == 0): project_time_unit = 'hour' project_time_step = int(median_timestep / 3600) df['hour'] = df[date_col].dt.hour elif (86400 <= median_timestep < 604800) & (median_timestep % 86400 == 0): project_time_unit = 'day' project_time_step = int(median_timestep / 86400) df['day'] = df[date_col].dt.strftime('%A') elif (604800 <= median_timestep < 2.628e6) & (median_timestep % 604800 == 0): project_time_unit = 'week' project_time_step = int(median_timestep / 604800) df['week'] = df[date_col].dt.week elif (median_timestep >= 2.628e6) & (median_timestep / 2.628e6 <= 1.02): # elif (median_timestep >= 2.628e6) & (median_timestep % 2.628e6 == 0): # original project_time_unit = 'month' project_time_step = int(median_timestep / 2.628e6) df['month'] = df[date_col].dt.month else: raise ValueError(f'{median_timestep} seconds is not a supported timestep') # print('Project Timestep: 1', project_time_unit) return project_time_unit, project_time_step def _reindex_dates(group, freq): """ Helper function for fill_missing_dates() """ date_range = pd.date_range(group.index.min(), group.index.max(), freq=freq) group = group.reindex(date_range) return group def fill_missing_dates(df, ts_settings, freq=None): """ Insert rows with np.nan targets for series with missing timesteps between the series start and end dates df: pandas df ts_settings: dictionary of parameters for time series project freq: project time unit and timestep Returns: -------- pandas df with inserted rows """ date_col = ts_settings['date_col'] series_id = ts_settings['series_id'] df = df.copy() df[date_col] = pd.to_datetime(df[date_col]) df.sort_values(by=[series_id, date_col], ascending=True, inplace=True) if freq is None: mapper = {'minute': 'min', 'hour': 'H', 'day': 'D', 'week': 'W', 'month': 'M'} project_time_unit, project_time_step = get_timestep(df, ts_settings) freq = str(project_time_step) + mapper[project_time_unit] df = ( df.set_index(date_col) .groupby(series_id) .apply(_reindex_dates, freq) .rename_axis((series_id, date_col)) .drop(series_id, axis=1) .reset_index() ) return df.reset_index(drop=True) def _remove_leading_zeros(df, date_col, target, threshold=5, drop=False): """ Remove excess zeros at the beginning of series df: pandas df date_col: str Column name for datetime column in df target: str Column name for target column in df threshold: minimum number of consecutive zeros at the beginning of a series before rows are dropped drop: specifies whether to drop the zeros or set them to np.nan Returns: -------- pandas df """ df[date_col] = pd.to_datetime(df[date_col]) df_non_zero = df[(df[target] != 0) & (~pd.isnull(df[target]))] min_date = df_non_zero[date_col].min() df_begin = df[df[date_col] < min_date] if df_begin[target].dropna().shape[0] >= threshold or pd.isnull(min_date): if drop: if pd.isnull(min_date): return pd.DataFrame(columns=df.columns, dtype=float) return df[df[date_col] >= min_date] else: df[target] = df.apply( lambda row: np.nan if pd.isnull(min_date) or row[date_col] < min_date else row[target], axis=1, ) return df else: return df def _remove_trailing_zeros(df, date_col, target, threshold=5, drop=False): """ Remove excess zeros at the end of series df: pandas df date_col: str Column name for datetime column in df target: str Column name for target column in df threshold: minimum number of consecutive zeros at the beginning of a series before rows are dropped drop: specifies whether to drop the zeros or set them to np.nan Returns: -------- pandas df """ df[date_col] =
pd.to_datetime(df[date_col])
pandas.to_datetime
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import scale from scipy.stats import pearsonr, spearmanr from ripser import Rips from dtw import dtw, accelerated_dtw from datetime import timedelta, date import pickle import os class dyads(): def __init__(self, dfi, dfp): self.dfi = dfi self.dfp = dfp self.start_date = pd.to_datetime('1955-1-1', format='%Y-%m-%d') self.end_date = pd.to_datetime('1978-12-31', format='%Y-%m-%d') self.country_codes_i = { 'USA': ['USA'], 'USSR': ['USR'], 'China': ['CHN'], 'East-Germany': ['GME'], 'West-Germany': ['GMW'], 'Canada': ['CAD'] } self.country_codes_p = { 'USA': ['USA'], 'USSR': ['SUN', 'RUS'], 'China': ['CHN'], 'East-Germany': ['DDR'], 'West-Germany': ['DEU'], 'Canada': ['CAN'] } self.complete_dyads = None # track data with complete data in cor pass def filter_dates(self, dfi=None, dfp=None): ''' filter by selected date range ''' if dfi is None: dfi_filt = self.dfi dfp_filt = self.dfp # convert to datetime dfi_filt['date'] = pd.to_datetime( dfi_filt['date'], format='%Y-%m-%d') dfp_filt['date'] = pd.to_datetime( dfp_filt['story_date'], format='%m/%d/%Y') start = self.start_date end = self.end_date pass else: dfi_filt = dfi dfp_filt = dfp start = max(min(dfi_filt.date), min(dfp_filt.date)) end = min(max(dfi_filt.date), max(dfp_filt.date)) pass # filter by start and end dates dfi_filt = dfi_filt[(dfi_filt.date >= start) & (dfi_filt.date <= end)] dfp_filt = dfp_filt[(dfp_filt.date >= start) & (dfp_filt.date <= end)] return (dfi_filt, dfp_filt) def initial_manupulations(self): ''' rename and select columns ''' self.dfp = self.dfp.rename( columns={ 'source_root': 'actor', 'target': 'something_else', 'target_root': 'target' }) self.dfp = self.dfp[['date', 'actor', 'target', 'goldstein']] self.dfi = self.dfi[['date', 'actor', 'target', 'scale']] # implement azar weights azar_weighting = [ 92, 47, 31, 27, 14, 10, 6, 0, -6, -16, -29, -44, -50, -65, -102 ] self.dfp['score'] = self.dfp['goldstein'] self.dfi['score'] = [ azar_weighting[ind - 1] for ind in self.dfi['scale'].to_list() ] # create time frame designations self.dfp['year'] = pd.DatetimeIndex(self.dfp.date).to_period('Y') self.dfi['year'] = pd.DatetimeIndex(self.dfi.date).to_period('Y') self.dfp['month'] =
pd.DatetimeIndex(self.dfp.date)
pandas.DatetimeIndex
#coding:utf-8 from PyQt5 import QtWidgets, QtWidgets from PyQt5.QtGui import QImage, QPixmap from PyQt5.QtWidgets import * from PyQt5.QtCore import * import sys import cv2 import os import cv2 import numpy as np import time import os from PIL import Image, ImageDraw, ImageFont import scipy.misc import pickle import datetime import tensorflow as tf import glog as log from glob import glob import pandas as pd #图像标记类 class Mark(QtWidgets.QWidget): def __init__(self, imgPath, lablePath, imageOffsetX, imageOffsetY, excelCon): super(Mark,self).__init__() self.imgPath=imgPath self.lablePath=lablePath self.imageOffsetX=imageOffsetX self.imageOffsetY=imageOffsetY self.excelCon=excelCon self.mouseOnImgX=0.0 self.mouseOnImgY=0.0 self.xPos=0.0 self.yPos=0.0 self.curWidth=0.0 self.curHeight=0.0 #左上角点100,100, 宽高1000,900, 可自己设置,未利用布局 self.setGeometry(100,100,1000,900) self.setWindowTitle(u"坐标标注") #窗口标题 self.initUI() def initUI(self): # self.labelR = QtWidgets.QLabel(u'缩放比例:', self) #label标签 # self.labelR.move(200, 20) #label标签坐标 # self.editR = QtWidgets.QLineEdit(self) #存放图像缩放的比例值 # self.editR.move(250,20) #编辑框坐标 self.buttonSave = QtWidgets.QPushButton(u"保存坐标到EXCEL", self) #保存按钮 self.buttonSave.move(400,20) #保存按钮坐标 self.buttonSave.clicked.connect(self.saveButtonClick) #保存按钮关联的时间 self.allFiles = QtWidgets.QListWidget(self) #列表框,显示所有的图像文件 self.allFiles.move(10,40) #列表框坐标 self.allFiles.resize(180,700) #列表框大小 allImgs = os.listdir(self.imgPath) #遍历路径,将所有文件放到列表框中 allImgs.sort(key= lambda x:int(x[:-4])) #按文件名大小排序 for imgTmp in allImgs: self.allFiles.addItem(imgTmp) imgNum=self.allFiles.count() self.labelShowNum = QtWidgets.QLabel(u'图片数量:'+str(imgNum), self) #label标签 self.labelShowNum.move(20, 20) #label标签坐标 self.allFiles.itemClicked.connect(self.itemClick) #列表框关联时间,用信号槽的写法方式不起作用 self.allFiles.itemSelectionChanged.connect(self.itemSeleChange) self.labelImg = QtWidgets.QLabel("选中显示图片", self) # 显示图像的标签 self.labelImg.move(self.imageOffsetX, self.imageOffsetY) #显示图像标签坐标 # def closeEvent(self, event): # self.file.close() # print('file close') # # event.ignore() # 忽略关闭事件 # # self.hide() # 隐藏窗体 # cv2img转换Qimage def img2pixmap(self, image): Y, X = image.shape[:2] self._bgra = np.zeros((Y, X, 4), dtype=np.uint8, order='C') self._bgra[..., 0] = image[..., 0] self._bgra[..., 1] = image[..., 1] self._bgra[..., 2] = image[..., 2] qimage = QImage(self._bgra.data, X, Y, QImage.Format_RGB32) pixmap = QPixmap.fromImage(qimage) return pixmap # 选择图像列表得到图片和路径 def selectItemGetImg(self): imgName=self.allFiles.currentItem().text() imgDirName = self.imgPath + self.allFiles.currentItem().text() #图像的绝对路径 imgOri = cv2.imread(str(imgDirName),1) #读取图像 self.curHeight = imgOri.shape[0] #图像高度 self.curWidth = imgOri.shape[1] # 计算图像宽度,缩放图像 return imgOri, imgName # 显示坐标和图片 def pointorShow(self, img, x, y): cv2.circle(img,(x, y),3,(0,0,255),2) cv2.circle(img,(x, y),5,(0,255,0),2) self.labelImg.resize(self.curWidth,self.curHeight) #显示图像标签大小,图像按照宽或高缩放到这个尺度 self.labelImg.setPixmap(self.img2pixmap(img)) #鼠标单击事件 def mousePressEvent(self, QMouseEvent): pointT = QMouseEvent.pos() # 获得鼠标点击处的坐标 self.mouseOnImgX=pointT.x()-200 self.mouseOnImgY=pointT.y()-70 imgOri, _=self.selectItemGetImg() self.pointorShow(imgOri, self.mouseOnImgX, self.mouseOnImgY) # 保存标签 self.saveLabelBySelectItem() # 列表改变显示图片坐标 def itemSelectShowImg(self): imgOri, imgName=self.selectItemGetImg() # 从excel表中得到x,y坐标 xScal, yScal = self.excelCon.getXYPoint('imageName', imgName) # 通过归一化x,y计算真实坐标 self.mouseOnImgX=int(xScal*self.curWidth) self.mouseOnImgY=int(yScal*self.curHeight) self.pointorShow(imgOri, self.mouseOnImgX, self.mouseOnImgY) def itemClick(self): #列表框单击事件 self.itemSelectShowImg() def itemSeleChange(self): #列表框改变事件 self.itemSelectShowImg() def saveLabelBySelectItem(self): curItem=self.allFiles.currentItem() if(curItem==None): print('please select a item') return name=str(curItem.text()) # 坐标归一化 self.xPos=self.mouseOnImgX/self.curWidth self.yPos=self.mouseOnImgY/self.curHeight # 更新或追加记录 self.excelCon.updateAppendRowBycolName('imageName', name, self.xPos, self.yPos) def saveButtonClick(self): #保存按钮事件 self.saveLabelBySelectItem() class imgTools(): def __init__(self): self.name = "ray" def png2jpg(self, path): # path:=>'images/*.png' pngs = glob(path) for j in pngs: img = cv2.imread(j) cv2.imwrite(j[:-3] + 'jpg', img) def txt2Excel(self, txtPathName, excelCon): with open(txtPathName, 'r') as f: lines = f.readlines() imagesNum=len(lines) imgNameList=[] xList=[] yList=[] for i in range (imagesNum): line=lines[i].strip().split() imageName=line[0] # 去掉路径 imageName=imageName[44:] print(imageName) imgNameList.append(imageName) landmark = np.asarray(line[1:197], dtype=np.float32) nosice=landmark[54*2:54*2+2] xList.append(nosice[0]) yList.append(nosice[1]) # 批量追加数据 colNames=['imageName', 'x', 'y'] datas=[] datas.append(imgNameList) datas.append(xList) datas.append(yList) excelCon.appendRowsAnyway(colNames, datas) def CenterLabelHeatMap(self, img_width, img_height, posX, posY, sigma): X1 = np.linspace(1, img_width, img_width) Y1 = np.linspace(1, img_height, img_height) [X, Y] = np.meshgrid(X1, Y1) X = X - posX Y = Y - posY D2 = X * X + Y * Y E2 = 2.0 * sigma * sigma Exponent = D2 / E2 heatmap = np.exp(-Exponent) return heatmap # Compute gaussian kernel def CenterGaussianHeatMap(self, img_height, img_width, posX, posY, variance): gaussian_map = np.zeros((img_height, img_width)) for x_p in range(img_width): for y_p in range(img_height): dist_sq = (x_p - posX) * (x_p - posX) + \ (y_p - posY) * (y_p - posY) exponent = dist_sq / 2.0 / variance / variance gaussian_map[y_p, x_p] = np.exp(-exponent) return gaussian_map class excelTools(): def __init__(self, lablePath, excelName, sheetName=None): self.lablePath = lablePath self.excelName=excelName self.sheetName=sheetName def mkEmptyExecl(self, titleFormat): writer = pd.ExcelWriter(self.lablePath+self.excelName, engine='xlsxwriter') df=pd.DataFrame(titleFormat) # df=pd.DataFrame() if(self.sheetName==None): df.to_excel(writer, index=False) else: df.to_excel(writer, sheet_name=self.sheetName, index=False) writer.save() def updateAppendRowBycolName(self, colName, keyWord, x, y): dirName=self.lablePath+self.excelName if(self.sheetName==None): df = pd.read_excel(dirName) else: df =
pd.read_excel(dirName, sheet_name=self.sheetName)
pandas.read_excel
import baostock as bs import pandas as pd from wdc.util.logger import logger class BaoStockData: def __init__(self): pass @staticmethod def query_trade_dates(start_date=None, end_date=None): """ 交易日查询 方法说明:通过API接口获取股票交易日信息,可以通过参数设置获取起止年份数据,提供上交所1990-今年数据。 返回类型:pandas的DataFrame类型。 :param start_date:开始日期,为空时默认为2015-01-01。 :param end_date:结束日期,为空时默认为当前日期。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_trade_dates(start_date=start_date, end_date=end_date) if rs.error_code != '0': logger.error('query_trade_dates respond error_msg:' + rs.error_msg) data_list = [] while (rs.error_code == '0') & rs.next(): data_list.append(rs.get_row_data()) result = pd.DataFrame(data_list, columns=rs.fields) bs.logout() return result @staticmethod def query_all_stock(day=None): """ 证券代码查询 方法说明:获取指定交易日期所有股票列表。通过API接口获取证券代码及股票交易状态信息,与日K线数据同时更新。可以通过参数‘某交易日’获取数据(包括:A股、指数),提供2006-今数据。 返回类型:pandas的DataFrame类型。 更新时间:与日K线同时更新。 :param day:需要查询的交易日期,为空时默认当前日期。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_all_stock(day=day) if rs.error_code != '0': logger.error('query_all_stock respond error_msg:' + rs.error_msg) data_list = [] while (rs.error_code == '0') & rs.next(): data_list.append(rs.get_row_data()) result = pd.DataFrame(data_list, columns=rs.fields) bs.logout() return result @staticmethod def query_stock_basic(code=None, code_name=None): """ 证券基本资料 方法说明:获取证券基本资料,可以通过参数设置获取对应证券代码、证券名称的数据。 返回类型:pandas的DataFrame类型。 :param code:A股股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。可以为空; :param code_name:股票名称,支持模糊查询,可以为空。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_stock_basic(code=code, code_name=code_name) if rs.error_code != '0': logger.error('query_stock_basic respond error_msg:' + rs.error_msg) data_list = [] while (rs.error_code == '0') & rs.next(): data_list.append(rs.get_row_data()) result = pd.DataFrame(data_list, columns=rs.fields) bs.logout() return result @staticmethod def query_history_k_data_plus(symbol, timeframe='1d', fields=None, adj=None, start_date=None, end_date=None): """ 获取k线数据 注意: 股票停牌时,对于日线,开、高、低、收价都相同,且都为前一交易日的收盘价,成交量、成交额为0,换手率为空。 :param symbol:股票代码,6位数字代码,或者指数代码,如:sh601398。sh:上海;sz:深圳。此参数不可为空; :param fields:获取的字段 :param timeframe:k线周期,"5m"为5分钟,"15m"为15分钟,"30m"为30分钟,"1h"为1小时,"1d"为日,"1w"为一周,"1M"为一月。指数没有分钟线数据;周线每周最后一个交易日才可以获取,月线每月最后一个交易日才可以获取。 :param adj:复权类型,默认是"3"不复权;前复权:"2";后复权:"1"。已支持分钟线、日线、周线、月线前后复权。 BaoStock提供的是涨跌幅复权算法复权因子,具体介绍见:复权因子简介或者BaoStock复权因子简介。 :param start_date:开始日期(包含),格式“YYYY-MM-DD”,为空时取2015-01-01; :param end_date:结束日期(包含),格式“YYYY-MM-DD”,为空时取最近一个交易日; :return:返回一个列表 """ frequency = '' if timeframe == "5m": frequency = "5" elif timeframe == "15m": frequency = "15" elif timeframe == "30m": frequency = "30" elif timeframe == "1h": frequency = "60" elif timeframe == "1d": frequency = "d" elif timeframe == "1w": frequency = 'w' elif timeframe == "1M": frequency = "m" else: logger.error("timeframe error !") if fields is None: if 'm' in timeframe or 'h' in timeframe: fields = "date,time,code,open,high,low,close,volume,amount,adjustflag" elif "d" in timeframe: fields = "date,code,open,high,low,close,preclose,volume,amount,adjustflag,turn,tradestatus,pctChg,isST" elif 'w' in timeframe or 'M' in timeframe: fields = "date,code,open,high,low,close,volume,amount,adjustflag,turn,pctChg" else: logger.error("timeframe error !") if symbol.startswith('6'): stock_name = 'sh.' + symbol else: stock_name = 'sz.' + symbol #stock_name = 'sh.' + str(symbol).split('sh')[1] if str(symbol).startswith("sh") else 'sz.' + str(symbol).split('sz')[1] adjust_flag = "3" if not adj else adj rs = bs.query_history_k_data_plus( code=stock_name, fields=fields, start_date=start_date, end_date=end_date, frequency=frequency, adjustflag=adjust_flag ) if rs.error_code != "0": logger.error('query_history_k_data_plus respond error: {}'.format(rs.error_msg)) data_list = [] while (rs.error_code == '0') & rs.next(): data_list.append(rs.get_row_data()) result = pd.DataFrame(data_list, columns=rs.fields) result['code'] = symbol #result.set_index(['date', 'code'],drop=False) #bs.logout() """ if 'm' in timeframe or 'h' in timeframe: result = result.drop("date", axis=1) #result = result.drop('code', axis=1) result = result.values.tolist() """ return result @staticmethod def query_dividend_data(code, year, yearType): """ 查询除权除息信息 :param code:股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。此参数不可为空; :param year:年份,如:2017。此参数不可为空; :param yearType:年份类别。"report":预案公告年份,"operate":除权除息年份。此参数不可为空。 """ lg = bs.login() if lg.error_code != '1': logger.error('login respond error_msg:' + lg.error_msg) rs_list = [] rs_dividend = bs.query_dividend_data(code=code, year=year, yearType=yearType) while (rs_dividend.error_code == '0') & rs_dividend.next(): rs_list.append(rs_dividend.get_row_data()) result_dividend = pd.DataFrame(rs_list, columns=rs_dividend.fields) bs.logout() return result_dividend @staticmethod def query_adjust_factor(code, start_date=None, end_date=None): """ 查询复权因子信息 BaoStock提供的是涨跌幅复权算法复权因子 :param code:股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。此参数不可为空; :param start_date:开始日期,为空时默认为2015-01-01,包含此日期; :param end_date:结束日期,为空时默认当前日期,包含此日期。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs_list = [] rs_factor = bs.query_adjust_factor(code=code, start_date=start_date, end_date=end_date) while (rs_factor.error_code == '0') & rs_factor.next(): rs_list.append(rs_factor.get_row_data()) result_factor = pd.DataFrame(rs_list, columns=rs_factor.fields) bs.logout() return result_factor @staticmethod def query_profit_data(code, year=None, quarter=None): """ 季频盈利能力 方法说明:通过API接口获取季频盈利能力信息,可以通过参数设置获取对应年份、季度数据,提供2007年至今数据。 返回类型:pandas的DataFrame类型。 参数含义: code:股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。此参数不可为空; year:统计年份,为空时默认当前年; quarter:统计季度,可为空,默认当前季度。不为空时只有4个取值:1,2,3,4。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) profit_list = [] rs_profit = bs.query_profit_data(code=code, year=year, quarter=quarter) while (rs_profit.error_code == '0') & rs_profit.next(): profit_list.append(rs_profit.get_row_data()) result_profit = pd.DataFrame(profit_list, columns=rs_profit.fields) bs.logout() return result_profit @staticmethod def query_operation_data(code, year=None, quarter=None): """ 季频营运能力 方法说明:通过API接口获取季频营运能力信息,可以通过参数设置获取对应年份、季度数据,提供2007年至今数据。 返回类型:pandas的DataFrame类型。 参数含义: code:股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。此参数不可为空; year:统计年份,为空时默认当前年; quarter:统计季度,为空时默认当前季度。不为空时只有4个取值:1,2,3,4。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) operation_list = [] rs_operation = bs.query_operation_data(code=code, year=year, quarter=quarter) while (rs_operation.error_code == '0') & rs_operation.next(): operation_list.append(rs_operation.get_row_data()) result_operation = pd.DataFrame(operation_list, columns=rs_operation.fields) bs.logout() return result_operation @staticmethod def query_growth_data(code, year=None, quarter=None): """ 季频成长能力 方法说明:通过API接口获取季频成长能力信息,可以通过参数设置获取对应年份、季度数据,提供2007年至今数据。 返回类型:pandas的DataFrame类型。 参数含义: code:股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。此参数不可为空; year:统计年份,为空时默认当前年; quarter:统计季度,为空时默认当前季度。不为空时只有4个取值:1,2,3,4。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) growth_list = [] rs_growth = bs.query_growth_data(code=code, year=year, quarter=quarter) while (rs_growth.error_code == '0') & rs_growth.next(): growth_list.append(rs_growth.get_row_data()) result_growth = pd.DataFrame(growth_list, columns=rs_growth.fields) bs.logout() return result_growth @staticmethod def query_balance_data(code, year=None, quarter=None): """ 季频偿债能力 通过API接口获取季频偿债能力信息,可以通过参数设置获取对应年份、季度数据,提供2007年至今数据。 返回类型:pandas的DataFrame类型。 参数含义: code:股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。此参数不可为空; year:统计年份,为空时默认当前年; quarter:统计季度,为空时默认当前季度。不为空时只有4个取值:1,2,3,4。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) balance_list = [] rs_balance = bs.query_balance_data(code=code, year=year, quarter=quarter) while (rs_balance.error_code == '0') & rs_balance.next(): balance_list.append(rs_balance.get_row_data()) result_balance = pd.DataFrame(balance_list, columns=rs_balance.fields) bs.logout() return result_balance @staticmethod def query_cash_flow_data(code, year=None, quarter=None): """ 季频现金流量 方法说明:通过API接口获取季频现金流量信息,可以通过参数设置获取对应年份、季度数据,提供2007年至今数据。 返回类型:pandas的DataFrame类型. 参数含义: code:股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。此参数不可为空; year:统计年份,为空时默认当前年; quarter:统计季度,为空时默认当前季度。不为空时只有4个取值:1,2,3,4。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) cash_flow_list = [] rs_cash_flow = bs.query_cash_flow_data(code=code, year=year, quarter=quarter) while (rs_cash_flow.error_code == '0') & rs_cash_flow.next(): cash_flow_list.append(rs_cash_flow.get_row_data()) result_cash_flow = pd.DataFrame(cash_flow_list, columns=rs_cash_flow.fields) bs.logout() return result_cash_flow @staticmethod def query_dupont_data(code, year=None, quarter=None): """ 季频杜邦指数 方法说明:通过API接口获取季频杜邦指数信息,可以通过参数设置获取对应年份、季度数据,提供2007年至今数据。 返回类型:pandas的DataFrame类型。 参数含义: code:股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。此参数不可为空; year:统计年份,为空时默认当前年; quarter:统计季度,为空时默认当前季度。不为空时只有4个取值:1,2,3,4。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) dupont_list = [] rs_dupont = bs.query_dupont_data(code=code, year=year, quarter=quarter) while (rs_dupont.error_code == '0') & rs_dupont.next(): dupont_list.append(rs_dupont.get_row_data()) result_profit = pd.DataFrame(dupont_list, columns=rs_dupont.fields) bs.logout() return result_profit @staticmethod def query_performance_express_report(code, start_date, end_date): """ 季频公司业绩快报 方法说明:通过API接口获取季频公司业绩快报信息,可以通过参数设置获取起止年份数据,提供2006年至今数据。 返回类型:pandas的DataFrame类型。 参数含义: code:股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。此参数不可为空; start_date:开始日期,发布日期或更新日期在这个范围内; end_date:结束日期,发布日期或更新日期在这个范围内。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_performance_express_report(code, start_date=start_date, end_date=end_date) if rs.error_code != '0': logger.error('query_performance_express_report respond error_msg:' + rs.error_msg) result_list = [] while (rs.error_code == '0') & rs.next(): result_list.append(rs.get_row_data()) result = pd.DataFrame(result_list, columns=rs.fields) bs.logout() return result @staticmethod def query_forcast_report(code, start_date, end_date): """ 季频公司业绩预告 方法说明:通过API接口获取季频公司业绩预告信息,可以通过参数设置获取起止年份数据,提供2003年至今数据。 返回类型:pandas的DataFrame类型。 参数含义: code:股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。此参数不可为空; start_date:开始日期,发布日期或更新日期在这个范围内; end_date:结束日期,发布日期或更新日期在这个范围内。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs_forecast = bs.query_forecast_report(code, start_date=start_date, end_date=end_date) if rs_forecast.error_code != '0': logger.error('query_forecast_reprot respond error_msg:' + rs_forecast.error_msg) rs_forecast_list = [] while (rs_forecast.error_code == '0') & rs_forecast.next(): rs_forecast_list.append(rs_forecast.get_row_data()) result_forecast = pd.DataFrame(rs_forecast_list, columns=rs_forecast.fields) bs.logout() return result_forecast @staticmethod def query_deposit_rate_data(start_date=None, end_date=None): """ 存款利率 方法说明:通过API接口获取存款利率,可以通过参数设置获取对应起止日期的数据。 返回类型:pandas的DataFrame类型。 参数含义: start_date:开始日期,格式XXXX-XX-XX,发布日期在这个范围内,可以为空; end_date:结束日期,格式XXXX-XX-XX,发布日期在这个范围内,可以为空。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_deposit_rate_data(start_date=start_date, end_date=end_date) if rs.error_code != '0': logger.error('query_deposit_rate_data respond error_msg:' + rs.error_msg) data_list = [] while (rs.error_code == '0') & rs.next(): data_list.append(rs.get_row_data()) result = pd.DataFrame(data_list, columns=rs.fields) bs.logout() return result @staticmethod def query_loan_rate_data(start_date=None, end_date=None): """ 贷款利率 方法说明:通过API接口获取贷款利率,可以通过参数设置获取对应起止日期的数据。 返回类型:pandas的DataFrame类型。 参数含义: start_date:开始日期,格式XXXX-XX-XX,发布日期在这个范围内,可以为空; end_date:结束日期,格式XXXX-XX-XX,发布日期在这个范围内,可以为空。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_loan_rate_data(start_date=start_date, end_date=end_date) if rs.error_code != '0': logger.error('query_loan_rate_data respond error_msg:' + rs.error_msg) data_list = [] while (rs.error_code == '0') & rs.next(): data_list.append(rs.get_row_data()) result = pd.DataFrame(data_list, columns=rs.fields) bs.logout() return result @staticmethod def query_required_reserve_ratio_data(start_date=None, end_date=None, yearType=None): """ 存款准备金率 方法说明:通过API接口获取存款准备金率,可以通过参数设置获取对应起止日期的数据。 返回类型:pandas的DataFrame类型。 参数含义: start_date:开始日期,格式XXXX-XX-XX,发布日期在这个范围内,可以为空; end_date:结束日期,格式XXXX-XX-XX,发布日期在这个范围内,可以为空; yearType:年份类别,默认为0,查询公告日期;1查询生效日期。 """ yearType = yearType or '0' lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_required_reserve_ratio_data(start_date=start_date, end_date=end_date, yearType=yearType) if rs.error_code != '0': logger.error('query_required_reserve_ratio_data respond error_msg:' + rs.error_msg) data_list = [] while (rs.error_code == '0') & rs.next(): data_list.append(rs.get_row_data()) result = pd.DataFrame(data_list, columns=rs.fields) bs.logout() return result @staticmethod def query_money_supply_data_month(start_date=None, end_date=None): """ 货币供应量 方法说明:通过API接口获取货币供应量,可以通过参数设置获取对应起止日期的数据。 返回类型:pandas的DataFrame类型。 参数含义: start_date:开始日期,格式XXXX-XX,发布日期在这个范围内,可以为空; end_date:结束日期,格式XXXX-XX,发布日期在这个范围内,可以为空。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_money_supply_data_month(start_date=start_date, end_date=end_date) if rs.error_code != '0': logger.error('query_money_supply_data_month respond error_msg:' + rs.error_msg) data_list = [] while (rs.error_code == '0') & rs.next(): data_list.append(rs.get_row_data()) result = pd.DataFrame(data_list, columns=rs.fields) bs.logout() return result @staticmethod def query_money_supply_data_year(start_date=None, end_date=None): """ 货币供应量(年底余额) 方法说明:通过API接口获取货币供应量(年底余额),可以通过参数设置获取对应起止日期的数据。 返回类型:pandas的DataFrame类型。 参数含义: start_date:开始日期,格式XXXX,发布日期在这个范围内,可以为空; end_date:结束日期,格式XXXX,发布日期在这个范围内,可以为空。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_money_supply_data_year(start_date=start_date, end_date=end_date) if rs.error_code != '0': logger.error('query_money_supply_data_year respond error_msg:' + rs.error_msg) data_list = [] while (rs.error_code == '0') & rs.next(): data_list.append(rs.get_row_data()) result = pd.DataFrame(data_list, columns=rs.fields) bs.logout() return result @staticmethod def query_shibor_data(start_date=None, end_date=None): """ 银行间同业拆放利率 方法说明:通过API接口获取银行间同业拆放利率,可以通过参数设置获取对应起止日期的数据。 返回类型:pandas的DataFrame类型。 参数含义: start_date:开始日期,格式XXXX,发布日期在这个范围内,可以为空; end_date:结束日期,格式XXXX,发布日期在这个范围内,可以为空。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_shibor_data(start_date=start_date, end_date=end_date) if rs.error_code != '0': logger.error('query_shibor_data respond error_msg:' + rs.error_msg) data_list = [] while (rs.error_code == '0') & rs.next(): data_list.append(rs.get_row_data()) result = pd.DataFrame(data_list, columns=rs.fields) bs.logout() return result @staticmethod def query_stock_industry(code=None, date=None): """ 行业分类 方法说明:通过API接口获取行业分类信息,更新频率:每周一更新。 返回类型:pandas的DataFrame类型。 参数含义: code:A股股票代码,sh或sz.+6位数字代码,或者指数代码,如:sh.601398。sh:上海;sz:深圳。可以为空; date:查询日期,格式XXXX-XX-XX,为空时默认最新日期。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_stock_industry(code, date) if rs.error_code != '0': logger.error('query_stock_industry respond error_msg:' + rs.error_msg) industry_list = [] while (rs.error_code == '0') & rs.next(): industry_list.append(rs.get_row_data()) result = pd.DataFrame(industry_list, columns=rs.fields) bs.logout() return result @staticmethod def query_sz50_stocks(date=None): """ 上证50成分股 方法说明:通过API接口获取上证50成分股信息,更新频率:每周一更新。 返回类型:pandas的DataFrame类型。 参数含义: date:查询日期,格式XXXX-XX-XX,为空时默认最新日期。 """ lg = bs.login() if lg.error_code != '0': logger.error('login respond error_msg:' + lg.error_msg) rs = bs.query_sz50_stocks(date) if rs.error_code != '0': logger.error('query_sz50_stocks respond error_msg:' + rs.error_msg) sz50_stocks = [] while (rs.error_code == '0') & rs.next(): sz50_stocks.append(rs.get_row_data()) result =
pd.DataFrame(sz50_stocks, columns=rs.fields)
pandas.DataFrame
from keepa_request import get_varies import pandas as pd import datetime import pymysql def stock_handle(file): stock_list = [] # data = pd.read_excel(file) # asin_list = data['asin'].tolist() asin_list = ['B07XFCX2Z5'] for asin in asin_list: stock_list.extend(get_varies(asin)) print(stock_list) aft = "./data/stock_" + datetime.datetime.now().strftime("%m%d%H%M") data_pd =
pd.DataFrame(stock_list, columns=['parent_asin', 'asin', 'style', 'stock', 'model'])
pandas.DataFrame
import argparse import pandas as pd import swifter import re from typing import List, Optional, Dict from pythainlp.tokenize import word_tokenize, sent_tokenize def break_long_sentence(text:str, sent_tokenizer=sent_tokenize, word_toknizer=word_tokenize, max_sent_len=300) -> List[str]: sents = sent_tokenizer(text) sents_n_toks = [ len(word_toknizer(sent)) for sent in sents ] groupped_sents = [] seq_len_counter = 0 temp_groupped_sent = '' for i, sent in enumerate(sents): if seq_len_counter + sents_n_toks[i] >= max_sent_len: groupped_sents.append(temp_groupped_sent) seq_len_counter = 0 temp_groupped_sent = sent else: temp_groupped_sent += sent seq_len_counter += sents_n_toks[i] if i == len(sents) - 1: groupped_sents.append(temp_groupped_sent) return groupped_sents def drop_na(df): return df.dropna(subset=['text']) def drop_no_thai_char(df): return df[df['text'].str.contains(r'[ก-๙]')] def drop_by_min_max_newmm_tokens(df, min_tokens:int, max_tokens:int): return df[(df['nb_tokens'] >= min_tokens) & (df['nb_tokens'] <= max_tokens)] def strip_text(text: str): if type(text) != str: return text return text.strip() def replace_nbspace(text: str): if type(text) != str: return text nbspace = '\xa0' cleaned_text = re.sub(fr'{nbspace}', ' ', text) return cleaned_text def remove_thwiki_section(text:str): if type(text) != str: return text search_obj = re.search(r'Section::::', text) cleaned_text = text if search_obj: cleaned_text = re.sub(r'^Section::::', '', text) cleaned_text = re.sub(r'Section::::', '', text) cleaned_text = re.sub(r'\.$', '', cleaned_text) return cleaned_text def remove_soft_hyphen(text: str): if type(text) != str: return text soft_hyphen = '\u00ad' # discretionary hyphen cleaned_text = re.sub(fr'{soft_hyphen}', '', text) return cleaned_text def remove_zero_width_nbspace(text: str): if type(text) != str: return text zero_width_nbspace = '\ufeff' cleaned_text = re.sub(fr'{zero_width_nbspace}', '', text) return cleaned_text if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('input_path', type=str) parser.add_argument('output_path', type=str) parser.add_argument('--drop_na', action='store_true', default=True) parser.add_argument('--remove_thwiki_section', action='store_true', default=True) parser.add_argument('--break_long_sentence', action='store_true', default=True) parser.add_argument('--max_sentence_length', type=int, default=300) parser.add_argument('--drop_no_thai_char', action='store_true', default=True) parser.add_argument('--min_newmm_token_len', type=int, default=4) parser.add_argument('--max_newmm_token_len', type=int, default=500) parser.add_argument('--space_token', type=str, default='<th_roberta_space_token>') args = parser.parse_args() print(f'INFO: Load csv file from {args.input_path}') df = pd.read_csv(args.input_path) TEXT_FILTERING_RULES = [drop_na, drop_no_thai_char] for fn in TEXT_FILTERING_RULES: print(f'INFO: Perform filtering rule: {fn.__name__}') print(f'INFO: df.shape (before): {df.shape}') df = fn(df) print(f'INFO: df.shape (after): {df.shape}') print(f'INFO: Done.') print('\nDone all text filtering rules. \n') TEXT_CLEANING_RULES = [replace_nbspace, remove_soft_hyphen, remove_zero_width_nbspace, strip_text ] if args.remove_thwiki_section: TEXT_CLEANING_RULES.append(remove_thwiki_section) for fn in TEXT_CLEANING_RULES: print(f'INFO: Start cleaning rule: {fn.__name__}') print(f'INFO: df.shape (before): {df.shape}') df = fn(df) print(f'INFO: df.shape (after): {df.shape}') print(f'INFO: Done.') print(f'INFO: Write cleaned dataset as csv file to {args.input_path}') print(f'INFO: df.columns : {df.columns}') print('\nINFO: Done all text cleaning rules. \n') print('INFO: Perform sentnece breakdown. ') print(f' max_sentence_length: {args.max_sentence_length}') print(f'INFO: df.shape (before): {df.shape}') # split short and long sentences: df_short = df[df['nb_tokens'] <= 450] long_segments = df[df['nb_tokens'] > 450]['text'].tolist() breaked_segments = [] for s in long_segments: breaked_segments += break_long_sentence(s, max_sent_len=args.max_sentence_length) print(f'\n\tNumber of long segments: {len(long_segments)}\n\tNumber of new segments: {len(breaked_segments)}') nb_tokens = [ len(word_tokenize(s)) for s in breaked_segments ] breaked_segments_df = pd.DataFrame({'text': breaked_segments, 'nb_tokens': nb_tokens}) breaked_segments_df = breaked_segments_df[breaked_segments_df['nb_tokens'] > 0] df =
pd.concat([df, breaked_segments_df])
pandas.concat
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) # test with wrong number of arguments, raising an error if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') repl = lambda: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x, y=None: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) # test regex named groups values = Series(['Foo Bar Baz', NA]) pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)" repl = lambda m: m.group('middle').swapcase() result = values.str.replace(pat, repl) exp = Series(['bAR', NA]) tm.assert_series_equal(result, exp) def test_replace_compiled_regex(self): # GH 15446 values = Series(['fooBAD__barBAD', NA]) # test with compiled regex pat = re.compile(r'BAD[_]*') result = values.str.replace(pat, '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace(pat, '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace(pat, '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace(pat, '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE) result = values.str.replace(pat, ", ") tm.assert_series_equal(result, exp) # case and flags provided to str.replace will have no effect # and will produce warnings values = Series(['fooBAD__barBAD__bad', NA]) pat = re.compile(r'BAD[_]*') with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', flags=re.IGNORECASE) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=False) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=True) # test with callable values = Series(['fooBAD__barBAD', NA]) repl = lambda m: m.group(0).swapcase() pat = re.compile('[a-z][A-Z]{2}') result = values.str.replace(pat, repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = Series(['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # test passing as_indexer still works but is ignored values = Series(['fooBAD__barBAD', NA, 'foo']) exp = Series([True, NA, False]) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=True) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) tm.assert_series_equal(result, exp) pytest.raises(ValueError, values.str.match, '.*(BAD[_]+).*(BAD)', as_indexer=False) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = Series([True, NA, True, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract_expand_None(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)', expand=None) def test_extract_expand_unspecified(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)') def test_extract_expand_False(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(['A1', 'A2', 'A3', 'A4', 'B5']) with tm.assert_raises_regex(ValueError, "supported"): idx.str.extract('([AB])([123])', expand=False) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=False) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=False) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=False) assert result.name == 'uno' exp = klass(['A', 'A'], name='uno') if klass == Series: tm.assert_series_equal(result, exp) else: tm.assert_index_equal(result, exp) s = Series(['A1', 'B2', 'C3']) # one group, no matches result = s.str.extract('(_)', expand=False) exp = Series([NA, NA, NA], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=False) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=False) exp = Series(['A', 'B', NA], name='letter') tm.assert_series_equal(result, exp) # two named groups result = s.str.extract('(?P<letter>[AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, '3']], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] s = Series(data, index=index) result = s.str.extract(r'(\d)', expand=False) exp = Series(['1', '2', NA], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=False) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) # single_series_name_is_preserved. s = Series(['a3', 'b3', 'c2'], name='bob') r = s.str.extract(r'(?P<sue>[a-z])', expand=False) e = Series(['a', 'b', 'c'], name='sue') tm.assert_series_equal(r, e) assert r.name == e.name def test_extract_expand_True(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=True) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=True) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result_df = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=True) assert isinstance(result_df, DataFrame) result_series = result_df['uno'] assert_series_equal(result_series, Series(['A', 'A'], name='uno')) def test_extract_series(self): # extract should give the same result whether or not the # series has a name. for series_name in None, "series_name": s = Series(['A1', 'B2', 'C3'], name=series_name) # one group, no matches result = s.str.extract('(_)', expand=True) exp = DataFrame([NA, NA, NA], dtype=object) tm.assert_frame_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=True) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=True) exp = DataFrame({"letter": ['A', 'B', NA]}) tm.assert_frame_equal(result, exp) # two named groups result = s.str.extract( '(?P<letter>[AB])(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=True) exp = DataFrame(e_list, columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) def test_extract_optional_groups(self): # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, '3'] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] result = Series(data, index=index).str.extract( r'(\d)', expand=True) exp = DataFrame(['1', '2', NA], index=index) tm.assert_frame_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) def test_extract_single_group_returns_frame(self): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(['a3', 'b3', 'c2'], name='series_name') r = s.str.extract(r'(?P<letter>[a-z])', expand=True) e = DataFrame({"letter": ['a', 'b', 'c']}) tm.assert_frame_equal(r, e) def test_extractall(self): subject_list = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL> some text <EMAIL>', '<EMAIL> some text c@d.<EMAIL> and <EMAIL>', np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] named_pattern = r""" (?P<user>[a-z0-9]+) @ (?P<domain>[a-z]+) \. (?P<tld>[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] S = Series(subject_list) # extractall should return a DataFrame with one row for each # match, indexed by the subject from which the match came. expected_index = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2), ], names=(None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = S.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # The index of the input Series should be used to construct # the index of the output DataFrame: series_index = MultiIndex.from_tuples([ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ]) Si = Series(subject_list, series_index) expected_index = MultiIndex.from_tuples([ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Si.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # MultiIndexed subject with names. Sn = Series(subject_list, series_index) Sn.index.names = ("matches", "description") expected_index.names = ("matches", "description", "match") expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Sn.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # optional groups. subject_list = ['', 'A1', '32'] named_pattern = '(?P<letter>[AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(named_pattern) expected_index = MultiIndex.from_tuples([ (1, 0), (2, 0), (2, 1), ], names=(None, "match")) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=['letter', 'number']) tm.assert_frame_equal(computed_df, expected_df) # only one of two groups has a name. pattern = '([AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(pattern) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=[0, 'number']) tm.assert_frame_equal(computed_df, expected_df) def test_extractall_single_group(self): # extractall(one named group) returns DataFrame with one named # column. s = Series(['a3', 'b3', 'd4c2'], name='series_name') r = s.str.extractall(r'(?P<letter>[a-z])') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame({"letter": ['a', 'b', 'd', 'c']}, i) tm.assert_frame_equal(r, e) # extractall(one un-named group) returns DataFrame with one # un-named column. r = s.str.extractall(r'([a-z])') e = DataFrame(['a', 'b', 'd', 'c'], i) tm.assert_frame_equal(r, e) def test_extractall_single_group_with_quantifier(self): # extractall(one un-named group with quantifier) returns # DataFrame with one un-named column (GH13382). s = Series(['ab3', 'abc3', 'd4cd2'], name='series_name') r = s.str.extractall(r'([a-z]+)') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame(['ab', 'abc', 'd', 'cd'], i) tm.assert_frame_equal(r, e) def test_extractall_no_matches(self): s = Series(['a3', 'b3', 'd4c2'], name='series_name') # one un-named group. r = s.str.extractall('(z)') e = DataFrame(columns=[0]) tm.assert_frame_equal(r, e) # two un-named groups. r = s.str.extractall('(z)(z)') e = DataFrame(columns=[0, 1]) tm.assert_frame_equal(r, e) # one named group. r = s.str.extractall('(?P<first>z)') e = DataFrame(columns=["first"]) tm.assert_frame_equal(r, e) # two named groups. r = s.str.extractall('(?P<first>z)(?P<second>z)') e = DataFrame(columns=["first", "second"]) tm.assert_frame_equal(r, e) # one named, one un-named. r = s.str.extractall('(z)(?P<second>z)') e = DataFrame(columns=[0, "second"]) tm.assert_frame_equal(r, e) def test_extractall_stringindex(self): s = Series(["a1a2", "b1", "c1"], name='xxx') res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) # index should return the same result as the default index without name # thus index.name doesn't affect to the result for idx in [Index(["a1a2", "b1", "c1"]), Index(["a1a2", "b1", "c1"], name='xxx')]: res = idx.str.extractall(r"[ab](?P<digit>\d)") tm.assert_frame_equal(res, exp) s = Series(["a1a2", "b1", "c1"], name='s_name', index=Index(["XX", "yy", "zz"], name='idx_name')) res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) def test_extractall_errors(self): # Does not make sense to use extractall with a regex that has # no capture groups. (it returns DataFrame with one column for # each capture group) s = Series(['a3', 'b3', 'd4c2'], name='series_name') with tm.assert_raises_regex(ValueError, "no capture groups"): s.str.extractall(r'[a-z]') def test_extract_index_one_two_groups(self): s = Series(['a3', 'b3', 'd4c2'], index=["A3", "B3", "D4"], name='series_name') r = s.index.str.extract(r'([A-Z])', expand=True) e = DataFrame(['A', "B", "D"]) tm.assert_frame_equal(r, e) # Prior to v0.18.0, index.str.extract(regex with one group) # returned Index. With more than one group, extract raised an # error (GH9980). Now extract always returns DataFrame. r = s.index.str.extract( r'(?P<letter>[A-Z])(?P<digit>[0-9])', expand=True) e_list = [ ("A", "3"), ("B", "3"), ("D", "4"), ] e = DataFrame(e_list, columns=["letter", "digit"]) tm.assert_frame_equal(r, e) def test_extractall_same_as_extract(self): s = Series(['a3', 'b3', 'c2'], name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_multi_index = s.str.extractall(pattern_two_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_multi_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_multi_index = s.str.extractall(pattern_two_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_multi_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_multi_index = s.str.extractall(pattern_one_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_multi_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_multi_index = s.str.extractall(pattern_one_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_multi_index) def test_extractall_same_as_extract_subject_index(self): # same as above tests, but s has an MultiIndex. i = MultiIndex.from_tuples([ ("A", "first"), ("B", "second"), ("C", "third"), ], names=("capital", "ordinal")) s = Series(['a3', 'b3', 'c2'], i, name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_match_index = s.str.extractall(pattern_two_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_match_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_match_index = s.str.extractall(pattern_two_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_match_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_match_index = s.str.extractall(pattern_one_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_match_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_match_index = s.str.extractall(pattern_one_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_match_index) def test_empty_str_methods(self): empty_str = empty = Series(dtype=object) empty_int = Series(dtype=int) empty_bool = Series(dtype=bool) empty_bytes = Series(dtype=object) # GH7241 # (extract) on empty series tm.assert_series_equal(empty_str, empty.str.cat(empty)) assert '' == empty.str.cat() tm.assert_series_equal(empty_str, empty.str.title()) tm.assert_series_equal(empty_int, empty.str.count('a')) tm.assert_series_equal(empty_bool, empty.str.contains('a')) tm.assert_series_equal(empty_bool, empty.str.startswith('a')) tm.assert_series_equal(empty_bool, empty.str.endswith('a')) tm.assert_series_equal(empty_str, empty.str.lower()) tm.assert_series_equal(empty_str, empty.str.upper()) tm.assert_series_equal(empty_str, empty.str.replace('a', 'b')) tm.assert_series_equal(empty_str, empty.str.repeat(3)) tm.assert_series_equal(empty_bool, empty.str.match('^a')) tm.assert_frame_equal( DataFrame(columns=[0], dtype=str), empty.str.extract('()', expand=True)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=True)) tm.assert_series_equal( empty_str, empty.str.extract('()', expand=False)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=False)) tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies()) tm.assert_series_equal(empty_str, empty_str.str.join('')) tm.assert_series_equal(empty_int, empty.str.len()) tm.assert_series_equal(empty_str, empty_str.str.findall('a')) tm.assert_series_equal(empty_int, empty.str.find('a')) tm.assert_series_equal(empty_int, empty.str.rfind('a')) tm.assert_series_equal(empty_str, empty.str.pad(42)) tm.assert_series_equal(empty_str, empty.str.center(42)) tm.assert_series_equal(empty_str, empty.str.split('a')) tm.assert_series_equal(empty_str, empty.str.rsplit('a')) tm.assert_series_equal(empty_str, empty.str.partition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.rpartition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.slice(stop=1)) tm.assert_series_equal(empty_str, empty.str.slice(step=1)) tm.assert_series_equal(empty_str, empty.str.strip()) tm.assert_series_equal(empty_str, empty.str.lstrip()) tm.assert_series_equal(empty_str, empty.str.rstrip()) tm.assert_series_equal(empty_str, empty.str.wrap(42)) tm.assert_series_equal(empty_str, empty.str.get(0)) tm.assert_series_equal(empty_str, empty_bytes.str.decode('ascii')) tm.assert_series_equal(empty_bytes, empty.str.encode('ascii')) tm.assert_series_equal(empty_str, empty.str.isalnum()) tm.assert_series_equal(empty_str, empty.str.isalpha()) tm.assert_series_equal(empty_str, empty.str.isdigit()) tm.assert_series_equal(empty_str, empty.str.isspace()) tm.assert_series_equal(empty_str, empty.str.islower()) tm.assert_series_equal(empty_str, empty.str.isupper()) tm.assert_series_equal(empty_str, empty.str.istitle()) tm.assert_series_equal(empty_str, empty.str.isnumeric()) tm.assert_series_equal(empty_str, empty.str.isdecimal()) tm.assert_series_equal(empty_str, empty.str.capitalize()) tm.assert_series_equal(empty_str, empty.str.swapcase()) tm.assert_series_equal(empty_str, empty.str.normalize('NFC')) if compat.PY3: table = str.maketrans('a', 'b') else: import string table = string.maketrans('a', 'b') tm.assert_series_equal(empty_str, empty.str.translate(table)) def test_empty_str_methods_to_frame(self): empty = Series(dtype=str) empty_df = DataFrame([]) tm.assert_frame_equal(empty_df, empty.str.partition('a')) tm.assert_frame_equal(empty_df, empty.str.rpartition('a')) def test_ismethods(self): values = ['A', 'b', 'Xy', '4', '3A', '', 'TT', '55', '-', ' '] str_s = Series(values) alnum_e = [True, True, True, True, True, False, True, True, False, False] alpha_e = [True, True, True, False, False, False, True, False, False, False] digit_e = [False, False, False, True, False, False, False, True, False, False] # TODO: unused num_e = [False, False, False, True, False, False, # noqa False, True, False, False] space_e = [False, False, False, False, False, False, False, False, False, True] lower_e = [False, True, False, False, False, False, False, False, False, False] upper_e = [True, False, False, False, True, False, True, False, False, False] title_e = [True, False, True, False, True, False, False, False, False, False] tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e)) tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e)) tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e)) tm.assert_series_equal(str_s.str.isspace(), Series(space_e)) tm.assert_series_equal(str_s.str.islower(), Series(lower_e)) tm.assert_series_equal(str_s.str.isupper(), Series(upper_e)) tm.assert_series_equal(str_s.str.istitle(), Series(title_e)) assert str_s.str.isalnum().tolist() == [v.isalnum() for v in values] assert str_s.str.isalpha().tolist() == [v.isalpha() for v in values] assert str_s.str.isdigit().tolist() == [v.isdigit() for v in values] assert str_s.str.isspace().tolist() == [v.isspace() for v in values] assert str_s.str.islower().tolist() == [v.islower() for v in values] assert str_s.str.isupper().tolist() == [v.isupper() for v in values] assert str_s.str.istitle().tolist() == [v.istitle() for v in values] def test_isnumeric(self): # 0x00bc: ¼ VULGAR FRACTION ONE QUARTER # 0x2605: ★ not number # 0x1378: ፸ ETHIOPIC NUMBER SEVENTY # 0xFF13: 3 Em 3 values = ['A', '3', u'¼', u'★', u'፸', u'3', 'four'] s = Series(values) numeric_e = [False, True, True, False, True, True, False] decimal_e = [False, True, False, False, False, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) unicodes = [u'A', u'3', u'¼', u'★', u'፸', u'3', u'four'] assert s.str.isnumeric().tolist() == [v.isnumeric() for v in unicodes] assert s.str.isdecimal().tolist() == [v.isdecimal() for v in unicodes] values = ['A', np.nan, u'¼', u'★', np.nan, u'3', 'four'] s = Series(values) numeric_e = [False, np.nan, True, False, np.nan, True, False] decimal_e = [False, np.nan, False, False, np.nan, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) def test_get_dummies(self): s = Series(['a|b', 'a|c', np.nan]) result = s.str.get_dummies('|') expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list('abc')) tm.assert_frame_equal(result, expected) s = Series(['a;b', 'a', 7]) result = s.str.get_dummies(';') expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list('7ab')) tm.assert_frame_equal(result, expected) # GH9980, GH8028 idx = Index(['a|b', 'a|c', 'b|c']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=('a', 'b', 'c')) tm.assert_index_equal(result, expected) def test_get_dummies_with_name_dummy(self): # GH 12180 # Dummies named 'name' should work as expected s = Series(['a', 'b,name', 'b']) result = s.str.get_dummies(',') expected = DataFrame([[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=['a', 'b', 'name']) tm.assert_frame_equal(result, expected) idx = Index(['a|b', 'name|c', 'b|name']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=('a', 'b', 'c', 'name')) tm.assert_index_equal(result, expected) def test_join(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.split('_').str.join('_') xp = Series(['a_b', NA, 'asdf_cas_asdf', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) def test_len(self): values = Series(['foo', 'fooo', 'fooooo', np.nan, 'fooooooo']) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.len() xp = Series([3, NA, 13, NA, NA, 3, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('foo'), u('fooo'), u('fooooo'), np.nan, u( 'fooooooo')]) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) def test_findall(self): values = Series(['fooBAD__barBAD', NA, 'foo', 'BAD']) result = values.str.findall('BAD[_]*') exp = Series([['BAD__', 'BAD'], NA, [], ['BAD']]) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['fooBAD__barBAD', NA, 'foo', True, datetime.today(), 'BAD', None, 1, 2.]) rs = Series(mixed).str.findall('BAD[_]*') xp = Series([['BAD__', 'BAD'], NA, [], NA, NA, ['BAD'], NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo'), u('BAD')]) result = values.str.findall('BAD[_]*') exp = Series([[u('BAD__'), u('BAD')], NA, [], [u('BAD')]]) tm.assert_almost_equal(result, exp) def test_find(self): values = Series(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF', 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, 3, 1, 0, -1])) expected = np.array([v.find('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, 3, 7, 4, -1])) expected = np.array([v.find('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.find('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.rfind('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.find(0) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.rfind(0) def test_find_nan(self): values = Series(['ABCDEFG', np.nan, 'DEFGHIJEF', np.nan, 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, np.nan, 1, np.nan, -1])) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) def test_index(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF']) result = s.str.index('EF') _check(result, klass([4, 3, 1, 0])) expected = np.array([v.index('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF') _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('EF', 3) _check(result, klass([4, 3, 7, 4])) expected = np.array([v.index('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF', 3) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('E', 4, 8) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.index('E', 4, 8) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('E', 0, 5) _check(result, klass([4, 3, 1, 4])) expected = np.array([v.rindex('E', 0, 5) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(ValueError, "substring not found"): result = s.str.index('DE') with tm.assert_raises_regex(TypeError, "expected a string " "object, not int"): result = s.str.index(0) # test with nan s = Series(['abcb', 'ab', 'bcbe', np.nan]) result = s.str.index('b') tm.assert_series_equal(result, Series([1, 1, 0, np.nan])) result = s.str.rindex('b') tm.assert_series_equal(result, Series([3, 1, 2, np.nan])) def test_pad(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left') exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='left') xp = Series([' a', NA, ' b', NA, NA, ' ee', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='right') xp = Series(['a ', NA, 'b ', NA, NA, 'ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='both') xp = Series([' a ', NA, ' b ', NA, NA, ' ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.pad(5, side='left') exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_pad_fillchar(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left', fillchar='X') exp = Series(['XXXXa', 'XXXXb', NA, 'XXXXc', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right', fillchar='X') exp = Series(['aXXXX', 'bXXXX', NA, 'cXXXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both', fillchar='X') exp = Series(['XXaXX', 'XXbXX', NA, 'XXcXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.pad(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.pad(5, fillchar=5) def test_pad_width(self): # GH 13598 s = Series(['1', '22', 'a', 'bb']) for f in ['center', 'ljust', 'rjust', 'zfill', 'pad']: with tm.assert_raises_regex(TypeError, "width must be of " "integer type, not*"): getattr(s.str, f)('f') def test_translate(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['abcdefg', 'abcc', 'cdddfg', 'cdefggg']) if not compat.PY3: import string table = string.maketrans('abc', 'cde') else: table = str.maketrans('abc', 'cde') result = s.str.translate(table) expected = klass(['cdedefg', 'cdee', 'edddfg', 'edefggg']) _check(result, expected) # use of deletechars is python 2 only if not compat.PY3: result = s.str.translate(table, deletechars='fg') expected = klass(['cdede', 'cdee', 'eddd', 'ede']) _check(result, expected) result = s.str.translate(None, deletechars='fg') expected = klass(['abcde', 'abcc', 'cddd', 'cde']) _check(result, expected) else: with tm.assert_raises_regex( ValueError, "deletechars is not a valid argument"): result = s.str.translate(table, deletechars='fg') # Series with non-string values s = Series(['a', 'b', 'c', 1.2]) expected = Series(['c', 'd', 'e', np.nan]) result = s.str.translate(table) tm.assert_series_equal(result, expected) def test_center_ljust_rjust(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.center(5) exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'c', 'eee', None, 1, 2.]) rs = Series(mixed).str.center(5) xp = Series([' a ', NA, ' b ', NA, NA, ' c ', ' eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.ljust(5) xp = Series(['a ', NA, 'b ', NA, NA, 'c ', 'eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rjust(5) xp = Series([' a', NA, ' b', NA, NA, ' c', ' eee', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.center(5) exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_center_ljust_rjust_fillchar(self): values = Series(['a', 'bb', 'cccc', 'ddddd', 'eeeeee']) result = values.str.center(5, fillchar='X') expected = Series(['XXaXX', 'XXbbX', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.center(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.ljust(5, fillchar='X') expected = Series(['aXXXX', 'bbXXX', 'ccccX', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.ljust(5, 'X') for v in values.values], dtype=np.object_)
tm.assert_numpy_array_equal(result.values, expected)
pandas.util.testing.assert_numpy_array_equal
import s3fs import numpy as np import pandas as pd import xarray as xr from glob import glob from os.path import join, exists from sklearn.preprocessing import StandardScaler, RobustScaler, MaxAbsScaler, MinMaxScaler from operator import lt, le, eq, ne, ge, gt scalers = {"MinMaxScaler": MinMaxScaler, "MaxAbsScaler": MaxAbsScaler, "StandardScaler": StandardScaler, "RobustScaler": RobustScaler} ops = {"<": lt, "<=": le, "==": eq, "!=": ne, ">=": ge, ">": gt} def log10_transform(x, eps=1e-18): return np.log10(np.maximum(x, eps)) def neg_log10_transform(x, eps=1e-18): return np.log10(np.maximum(-x, eps)) def zero_transform(x, eps=None): return np.zeros(x.shape, dtype=np.float32) def inverse_log10_transform(x): return 10.0 ** x def inverse_neg_log10_transform(x): return -10.0 ** x transforms = {"log10_transform": log10_transform, "neg_log10_transform": neg_log10_transform, "zero_transform": zero_transform} inverse_transforms = {"log10_transform": inverse_log10_transform, "neg_log10_transform": inverse_neg_log10_transform, "zero_transform": zero_transform} def load_cam_output(path, file_start="TAU_run1.cam.h1", file_end="nc"): """ Load set of model output from CAM/CESM into xarray Dataset object. Args: path: Path to directory containing model output file_start: Shared beginning of model files file_end: Filetype shared by all files. Returns: xarray Dataset object containing the model output """ if not exists(path): raise FileNotFoundError("Specified path " + path + " does not exist") data_files = sorted(glob(join(path, file_start + "*" + file_end))) if len(data_files) > 0: cam_dataset = xr.open_mfdataset(data_files, decode_times=False) else: raise FileNotFoundError("No matching CAM output files found in " + path) return cam_dataset def get_cam_output_times(path, time_var="time", file_start="TAU_run1.cam.h1", file_end="nc"): if not exists(path): raise FileNotFoundError("Specified path " + path + " does not exist") data_files = sorted(glob(join(path, file_start + "*" + file_end))) file_time_list = [] for data_file in data_files: ds = xr.open_dataset(data_file, decode_times=False, decode_cf=False) time_minutes = (ds[time_var].values * 24 * 60).astype(int) file_time_list.append(pd.DataFrame({"time": time_minutes, "filename": [data_file] * len(time_minutes)})) ds.close() del ds return pd.concat(file_time_list, ignore_index=True) def unstagger_vertical(dataset, variable, vertical_dim="lev"): """ Interpolate a 4D variable on a staggered vertical grid to an unstaggered vertical grid. Will not execute until compute() is called on the result of the function. Args: dataset: xarray Dataset object containing the variable to be interpolated variable: Name of the variable being interpolated vertical_dim: Name of the vertical coordinate dimension. Returns: xarray DataArray containing the vertically interpolated data """ var_data = dataset[variable] unstaggered_var_data = xr.DataArray(0.5 * (var_data[:, :-1].values + var_data[:, 1:].values), coords=[var_data.time, dataset[vertical_dim], var_data.lat, var_data.lon], dims=("time", vertical_dim, "lat", "lon"), name=variable + "_" + vertical_dim) return unstaggered_var_data def split_staggered_variable(dataset, variable, vertical_dim="lev"): """ Split vertically staggered variable into top and bottom subsets with the unstaggered vertical coordinate Args: dataset: xarray Dataset object variable: Name of staggered variable vertical_dim: Unstaggered vertical dimension Returns: top_var_data, bottom_var_data: xarray DataArrays containing the unstaggered vertical data """ var_data = dataset[variable] top_var_data = xr.DataArray(var_data[:, :-1], coords=[var_data.time, dataset[vertical_dim], var_data["lat"], var_data["lon"]], dims=("time", vertical_dim, "lat", "lon"), name=variable + "_top") bottom_var_data = xr.DataArray(var_data[:, 1:], coords=[var_data.time, dataset[vertical_dim], var_data["lat"], var_data["lon"]], dims=("time", vertical_dim, "lat", "lon"), name=variable + "_bottom") return xr.Dataset({variable + "_top": top_var_data, variable + "_bottom": bottom_var_data}) def add_index_coords(dataset, row_coord="lat", col_coord="lon", depth_coord="lev"): """ Calculate the index values of the row, column, and depth coordinates in a Dataset. Indices range from 0 to length of coordinate - 1. Args: dataset: xarray Dataset row_coord: name of the row coordinate variable. Default lat. col_coord: name of the column coordinate variable. Default lon. depth_coord: name of the depth coordinate variable. Default lev. Returns: row, col, depth: DataArrays with the row, col, and depth indices """ row = xr.DataArray(np.arange(dataset[row_coord].shape[0]), dims=(row_coord,), name="row") col = xr.DataArray(np.arange(dataset[col_coord].shape[0]), dims=(col_coord,), name="col") depth = xr.DataArray(np.arange(dataset[depth_coord].shape[0]), dims=(depth_coord,), name="depth") return xr.Dataset({"row": row, "col": col, "depth": depth}) def calc_pressure_field(dataset, pressure_var_name="pressure"): """ Calculate pressure at each location based on the surface pressure and vertical coordinate information. Args: dataset: pressure_var_name: Returns: """ pressure = xr.DataArray((dataset["hyam"] * dataset["P0"] + dataset["hybm"] * dataset["PS"]).transpose("time", "lev", "lat", "lon")) pressure.name = pressure_var_name pressure.attrs["units"] = "Pa" pressure.attrs["long_name"] = "atmospheric pressure" return pressure def calc_temperature(dataset, density_variable="RHO_CLUBB_lev", pressure_variable="pressure"): """ Calculation temperature from pressure and density. The temperature variable is added to the dataset object in place. Args: dataset: xarray Dataset object containing pressure and density variable density_variable: name of the density variable pressure_variable: name of the pressure variable """ temperature = dataset[pressure_variable] / dataset[density_variable] / 287.0 temperature.attrs["units"] = "K" temperature.attrs["long_name"] = "temperature derived from pressure and density" temperature.name = "temperature" return temperature def convert_to_dataframe(dataset, variables, times, time_var, subset_variable, subset_threshold): """ Convert 4D Dataset to flat dataframe for machine learning. Args: dataset: xarray Dataset containing all relevant variables and times. variables: List of variables in dataset to be included in DataFrame. All variables should have the same dimensions and coordinates. times: Iterable of times to select from dataset. time_var: Variable used as the time coordinate. subset_variable: Variable used to select a subset of grid points from file subset_threshold: Threshold that must be exceeded for examples to be kept. Returns: """ data_frames = [] for t, time in enumerate(times): print(t, time) time_df = dataset[variables].sel(**{time_var: time}).to_dataframe() if type(subset_variable) == list: valid = np.zeros(time_df.shape[0], dtype=bool) for s, sv in enumerate(subset_variable): valid[time_df[subset_variable] >= subset_threshold[s]] = True else: valid = time_df[subset_variable] >= subset_threshold data_frames.append(time_df.loc[valid].reset_index()) print(data_frames[-1]) del time_df return pd.concat(data_frames) def load_csv_data(csv_path, index_col="Index"): """ Read pre-processed csv files into memory. Args: csv_path: Path to csv files index_col: Column label used as the index Returns: `pandas.DataFrame` containing data from all csv files in the csv_path directory. """ csv_files = sorted(glob(join(csv_path, "*.csv"))) all_data = [] for csv_file in csv_files: all_data.append(
pd.read_csv(csv_file, index_col=index_col)
pandas.read_csv
"""Evaluate multiple models in multiple experiments, or evaluate baseline on multiple datasets TODO: use hydra or another model to manage the experiments """ import os import sys import json import argparse import logging from glob import glob import time import string logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s', level=logging.INFO) import numpy as np import pandas as pd import h5py import scipy import scipy.interpolate import scipy.stats import torch import dill import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.ticker as ticker import matplotlib.colors as colors import matplotlib.patheffects as pe import matplotlib.animation as animation from tqdm import tqdm from tabulate import tabulate import utility as util from helper import load_model, prediction_output_to_trajectories pd.set_option('io.hdf.default_format','table') ############################ # Bag-of-N (BoN) FDE metrics ############################ def compute_min_FDE(predict, future): return np.min(np.linalg.norm(predict[...,-1,:] - future[-1], axis=-1)) def compute_min_ADE(predict, future): mean_ades = np.mean(np.linalg.norm(predict - future, axis=-1), axis=-1) return np.min(mean_ades) def evaluate_scene_BoN(scene, ph, eval_stg, hyp, n_predictions=20, min_fde=True, min_ade=True): predictconfig = util.AttrDict(ph=ph, num_samples=n_predictions, z_mode=False, gmm_mode=False, full_dist=False, all_z_sep=False) max_hl = hyp['maximum_history_length'] with torch.no_grad(): predictions = eval_stg.predict(scene, np.arange(scene.timesteps), predictconfig.ph, num_samples=predictconfig.num_samples, min_future_timesteps=predictconfig.ph, z_mode=predictconfig.z_mode, gmm_mode=predictconfig.gmm_mode, full_dist=predictconfig.full_dist, all_z_sep=predictconfig.all_z_sep) prediction_dict, histories_dict, futures_dict = \ prediction_output_to_trajectories( predictions, dt=scene.dt, max_h=max_hl, ph=predictconfig.ph, map=None) batch_metrics = {'min_ade': list(), 'min_fde': list()} for t in prediction_dict.keys(): for node in prediction_dict[t].keys(): if min_ade: batch_metrics['min_ade'].append(compute_min_ADE(prediction_dict[t][node], futures_dict[t][node])) if min_fde: batch_metrics['min_fde'].append(compute_min_FDE(prediction_dict[t][node], futures_dict[t][node])) return batch_metrics def evaluate_BoN(env, ph, eval_stg, hyp, n_predictions=20, min_fde=True, min_ade=True): batch_metrics = {'min_ade': list(), 'min_fde': list()} prefix = f"Evaluate Bo{n_predictions} (ph = {ph}): " for scene in tqdm(env.scenes, desc=prefix, dynamic_ncols=True, leave=True): _batch_metrics = evaluate_scene_BoN(scene, ph, eval_stg, hyp, n_predictions=n_predictions, min_fde=min_fde, min_ade=min_ade) batch_metrics['min_ade'].extend(_batch_metrics['min_ade']) batch_metrics['min_fde'].extend(_batch_metrics['min_fde']) return batch_metrics ############### # Other metrics ############### def make_interpolate_map(scene): map = scene.map['VEHICLE'] obs_map = 1 - np.max(map.data[..., :, :, :], axis=-3) / 255 interp_obs_map = scipy.interpolate.RectBivariateSpline( range(obs_map.shape[0]), range(obs_map.shape[1]), obs_map, kx=1, ky=1) return interp_obs_map def compute_num_offroad_viols(interp_map, scene_map, predicted_trajs): """Count the number of predicted trajectories that go off the road. Note this does not count trajectories that go over road/lane dividers. Parameters ========== interp_map : scipy.interpolate.RectBivariateSpline Interpolation to get road obstacle indicator value from predicted points. scene_map : trajectron.environment.GeometricMap Map transform the predicted points to map coordinates. predicted_trajs : ndarray Predicted trajectories of shape (number of predictions, number of timesteps, 2). Returns ======= int A value between [0, number of predictions]. """ old_shape = predicted_trajs.shape pred_trajs_map = scene_map.to_map_points(predicted_trajs.reshape((-1, 2))) traj_values = interp_map(pred_trajs_map[:, 0], pred_trajs_map[:, 1], grid=False) # traj_values has shape (1, num_samples, ph). traj_values = traj_values.reshape((old_shape[0], old_shape[1], old_shape[2])) # num_viol_trajs is an integer in [0, num_samples]. return np.sum(traj_values.max(axis=2) > 0, dtype=float) def compute_kde_nll(predicted_trajs, gt_traj): kde_ll = 0. log_pdf_lower_bound = -20 num_timesteps = gt_traj.shape[0] num_batches = predicted_trajs.shape[0] for batch_num in range(num_batches): for timestep in range(num_timesteps): try: kde = scipy.stats.gaussian_kde(predicted_trajs[batch_num, :, timestep].T) pdf = kde.logpdf(gt_traj[timestep].T) pdf = np.clip(kde.logpdf(gt_traj[timestep].T), a_min=log_pdf_lower_bound, a_max=None)[0] kde_ll += pdf / (num_timesteps * num_batches) except np.linalg.LinAlgError: kde_ll = np.nan return -kde_ll def compute_ade(predicted_trajs, gt_traj): error = np.linalg.norm(predicted_trajs - gt_traj, axis=-1) ade = np.mean(error, axis=-1) return ade.flatten() def compute_fde(predicted_trajs, gt_traj): final_error = np.linalg.norm(predicted_trajs[:, :, -1] - gt_traj[-1], axis=-1) return final_error.flatten() ######################## # Most Likely Evaluation ######################## def evaluate_scene_most_likely(scene, ph, eval_stg, hyp, ade=True, fde=True): predictconfig = util.AttrDict(ph=ph, num_samples=1, z_mode=True, gmm_mode=True, full_dist=False, all_z_sep=False) max_hl = hyp['maximum_history_length'] with torch.no_grad(): predictions = eval_stg.predict(scene, np.arange(scene.timesteps), predictconfig.ph, num_samples=predictconfig.num_samples, min_future_timesteps=predictconfig.ph, z_mode=predictconfig.z_mode, gmm_mode=predictconfig.gmm_mode, full_dist=predictconfig.full_dist, all_z_sep=predictconfig.all_z_sep) prediction_dict, histories_dict, futures_dict = \ prediction_output_to_trajectories( predictions, dt=scene.dt, max_h=max_hl, ph=predictconfig.ph, map=None) batch_metrics = {'ade': list(), 'fde': list()} for t in prediction_dict.keys(): for node in prediction_dict[t].keys(): if ade: batch_metrics['ade'].extend( compute_ade(prediction_dict[t][node], futures_dict[t][node]) ) if fde: batch_metrics['fde'].extend( compute_fde(prediction_dict[t][node], futures_dict[t][node]) ) return batch_metrics def evaluate_most_likely(env, ph, eval_stg, hyp, ade=True, fde=True): batch_metrics = {'ade': list(), 'fde': list()} prefix = f"Evaluate Most Likely (ph = {ph}): " for scene in tqdm(env.scenes, desc=prefix, dynamic_ncols=True, leave=True): _batch_metrics = evaluate_scene_most_likely(scene, ph, eval_stg, hyp, ade=ade, fde=fde) batch_metrics['ade'].extend(_batch_metrics['ade']) batch_metrics['fde'].extend(_batch_metrics['fde']) return batch_metrics ################# # Full Evaluation ################# def evaluate_scene_full(scene, ph, eval_stg, hyp, ade=True, fde=True, kde=True, offroad_viols=True): num_samples = 2000 predictconfig = util.AttrDict(ph=ph, num_samples=num_samples, z_mode=False, gmm_mode=False, full_dist=False, all_z_sep=False) max_hl = hyp['maximum_history_length'] with torch.no_grad(): predictions = eval_stg.predict(scene, np.arange(scene.timesteps), predictconfig.ph, num_samples=predictconfig.num_samples, min_future_timesteps=predictconfig.ph, z_mode=predictconfig.z_mode, gmm_mode=predictconfig.gmm_mode, full_dist=predictconfig.full_dist, all_z_sep=predictconfig.all_z_sep) prediction_dict, histories_dict, futures_dict = \ prediction_output_to_trajectories( predictions, dt=scene.dt, max_h=max_hl, ph=predictconfig.ph, map=None) interp_map = make_interpolate_map(scene) map = scene.map['VEHICLE'] batch_metrics = {'ade': list(), 'fde': list(), 'kde': list(), 'offroad_viols': list()} for t in prediction_dict.keys(): for node in prediction_dict[t].keys(): if ade: batch_metrics['ade'].extend( compute_ade(prediction_dict[t][node], futures_dict[t][node]) ) if fde: batch_metrics['fde'].extend( compute_fde(prediction_dict[t][node], futures_dict[t][node]) ) if offroad_viols: batch_metrics['offroad_viols'].extend( [ compute_num_offroad_viols(interp_map, map, prediction_dict[t][node]) / float(num_samples) ]) if kde: batch_metrics['kde'].extend( [ compute_kde_nll(prediction_dict[t][node], futures_dict[t][node]) ]) return batch_metrics def evaluate_full(env, ph, eval_stg, hyp, ade=True, fde=True, kde=True, offroad_viols=True): batch_metrics = {'ade': list(), 'fde': list(), 'kde': list(), 'offroad_viols': list()} prefix = f"Evaluate Full (ph = {ph}): " for scene in tqdm(env.scenes, desc=prefix, dynamic_ncols=True, leave=True): _batch_metrics = evaluate_scene_full(scene, ph, eval_stg, hyp, ade=ade, fde=fde, kde=kde, offroad_viols=offroad_viols) batch_metrics['ade'].extend(_batch_metrics['ade']) batch_metrics['fde'].extend(_batch_metrics['fde']) batch_metrics['kde'].extend(_batch_metrics['kde']) batch_metrics['offroad_viols'].extend(_batch_metrics['offroad_viols']) return batch_metrics ########## # Datasets ########## dataset_dir = "../../.." dataset_1 = util.AttrDict( test_set_path=f"{ dataset_dir }/carla_v3-1_dataset/v3-1_split1_test.pkl", name='v3-1_split1_test', desc="CARLA synthesized dataset with heading fix, occlusion fix, and 32 timesteps.") dataset_2 = util.AttrDict( test_set_path=f"{ dataset_dir }/carla_v3-1-1_dataset/v3-1-1_split1_test.pkl", name='v3-1-1_split1_test', desc="CARLA synthesized dataset with heading fix, occlusion fix, and 32 timesteps.") dataset_3 = util.AttrDict( test_set_path=f"{ dataset_dir }/carla_v3-1-2_dataset/v3-1-2_split1_test.pkl", name='v3-1-2_split1_test', desc="CARLA synthesized dataset with heading fix, occlusion fix, and 32 timesteps.") DATASETS = [dataset_1, dataset_2, dataset_3] def load_dataset(dataset): logging.info(f"Loading dataset: {dataset.name}: {dataset.desc}") with open(dataset.test_set_path, 'rb') as f: eval_env = dill.load(f, encoding='latin1') return eval_env ############# # Experiments ############# """ The experiments to evaluate are: - 20210621 one model trained on NuScenes to use as baseline for other evaluation - 20210801 have models trained from v3-1-1 (train set has 200 scenes). Compare MapV2, MapV3. - 20210802 have models trained from v3-1-1. MapV5 squeezes map encoding to size 32 using FC. - 20210803 have models trained from v3-1-1. Compare map, mapV4. MapV4 with multi K values. MapV4 does not apply FC. May have size 100 or 150. - 20210804 have models trained from v3-1 (train set has 300 scenes). Compare map with mapV4. - 20210805 have models trained from v3-1 (train set has 300 scenes). MapV4 with multi K values. - 20210812 have models trained from v3-1-1 rebalanced. Models are trained 20 epochs. - 20210815 have models trained from v3-1-1 rebalanced. Models are trained 40 epochs. - 20210816 have models trained from v3-1-2 (train set has 600 scenes) rebalanced. """ model_dir = "models" baseline_model = util.AttrDict( path=f"{ model_dir }/20210621/models_19_Mar_2021_22_14_19_int_ee_me_ph8", desc="Base model +Dynamics Integration, Maps with K=25 latent values " "(on NuScenes dataset)") experiment_1 = util.AttrDict( models_dir=f"{ model_dir }/20210801", dataset=dataset_2, desc="20210801 have models trained from v3-1-1 (train set has 200 scenes). Compare MapV2, MapV3.") experiment_2 = util.AttrDict( models_dir=f"{ model_dir }/20210802", dataset=dataset_2, desc="20210802 have models trained from v3-1-1. MapV5 squeezes map encoding to size 32 using FC.") experiment_3 = util.AttrDict( models_dir=f"{ model_dir }/20210803", dataset=dataset_2, desc="20210803 have models trained from v3-1-1. Compare map, mapV4. MapV4 with multi K values. " "MapV4 does not apply FC. May have size 100 or 150.") experiment_4 = util.AttrDict( models_dir=f"{ model_dir }/20210804", dataset=dataset_1, desc="20210804 have models trained from v3-1 (train set has 300 scenes). Compare map with mapV4.") experiment_5 = util.AttrDict( models_dir=f"{ model_dir }/20210805", dataset=dataset_1, desc="20210805 have models trained from v3-1 (train set has 300 scenes). MapV4 with multi K values.") experiment_6 = util.AttrDict( models_dir=f"{ model_dir }/20210812", dataset=dataset_2, desc="20210812 have models trained from v3-1-1 rebalanced. Models are trained 20 epochs.") experiment_7 = util.AttrDict( models_dir=f"{ model_dir }/20210815", dataset=dataset_2, ts=40, desc="20210815 have models trained from v3-1-1 rebalanced. Models are trained 40 epochs.") experiment_8 = util.AttrDict( models_dir=f"{ model_dir }/20210816", dataset=dataset_3, desc="20210816 have models trained from v3-1-2 (train set has 600 scenes) rebalanced.") EXPERIMENTS = [experiment_1, experiment_2, experiment_3, experiment_4, experiment_5, experiment_6, experiment_7, experiment_8] def _load_model(model_path, eval_env, ts=20): eval_stg, hyp = load_model(model_path, eval_env, ts=ts)#, device='cuda') return eval_stg, hyp PREDICTION_HORIZONS = [2,4,6,8] def run_evaluate_experiments(config): if config.experiment_index is not None and config.experiment_index >= 1: experiments = [EXPERIMENTS[config.experiment_index - 1]] else: experiments = EXPERIMENTS ###################### # Evaluate experiments ###################### # results_filename = f"results_{time.strftime('%d_%b_%Y_%H_%M_%S', time.localtime())}.h5" logging.info("Evaluating each experiment") for experiment in experiments: results_key = experiment.models_dir.split('/')[-1] results_filename = f"results_{results_key}.h5" logging.info(f"Evaluating models in experiment: {experiment.desc}") logging.info(f"Writing to: {results_filename}") eval_env = load_dataset(experiment.dataset) # need hyper parameters to do this, but have to load models first has_computed_scene_graph = False for model_path in glob(f"{experiment.models_dir}/*"): model_key = '/'.join(model_path.split('/')[-2:]) ts = getattr(experiment, 'ts', 20) eval_stg, hyp = _load_model(model_path, eval_env, ts=ts) if not has_computed_scene_graph: prefix = f"Preparing Node Graph: " for scene in tqdm(eval_env.scenes, desc=prefix, dynamic_ncols=True, leave=True): scene.calculate_scene_graph(eval_env.attention_radius, hyp['edge_addition_filter'], hyp['edge_removal_filter']) has_computed_scene_graph = True logging.info(f"Evaluating: {model_key}") BoN_results_key = '/'.join([experiment.dataset.name] + model_path.split('/')[-2:] + ['BoN']) with
pd.HDFStore(results_filename, 'a')
pandas.HDFStore
# ********************************************************************** # Copyright (C) 2020 Johns Hopkins University Applied Physics Laboratory # # All Rights Reserved. # For any other permission, please contact the Legal Office at JHU/APL. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ********************************************************************** import glob import json import os import re import pandas as pd import pydash from bson import ObjectId from flask import Blueprint, send_from_directory from shared.config import config from shared.log import logger from system import FlaskExtensions from system.controllers import classification_job, simulation_job, user_job from system.models.metrics import SimulationMetrics, ClassificationMetrics from system.utils.biology import TaxonomicHierarchy from system.utils.zip import send_to_zip results_bp = Blueprint("results", __name__, url_prefix=config.SERVER_API_CHROOT) mongodb = FlaskExtensions.mongodb @results_bp.route("/results/orig_abundance_profile/<string:user_job_id>") def get_original_abundance_profile(user_job_id): # Taxid Abundance Organization files: data/jobs/<user_job_id>/*.tsv job = user_job.find_by_id(user_job_id=ObjectId(user_job_id)) if job is None: return "{} does not exist!".format(user_job_id), 501 tsv_name = pydash.get(job, "abundance_tsv", None) if tsv_name is not None: path = os.path.join(config.JOBS_DIR, user_job_id, tsv_name) abundance_df = get_result_dataframe(path, ["taxid", "abundance", "val"]) if abundance_df is None: return "No abundance profile tsv file for {}!".format(user_job_id), 501 parsed_abundance_json = abundance_df.to_dict("records") return json.dumps(parsed_abundance_json), 200 else: logger.error("No abundance TSV found for job {}".format(user_job_id)) return None, 501 @results_bp.route( "/results/computation/simulation/<string:metric>/<string:user_job_id>/<string:read_type>", methods=["GET"]) def get_cpu_time_simulation(metric, user_job_id, read_type): try: SimulationMetrics(metric) except ValueError: return None, 501 data = simulation_job.find_specific_job(user_job_id=ObjectId(user_job_id), read_type=read_type) res = {metric: pydash.get(data, metric, None)} return json.dumps(res), 200 @results_bp.route( "/results/computation/classification/<string:metric>/<string:user_job_id>/<string:read_type>/<string:classifier>", methods=["GET"]) def get_computational_performance_simulated(metric, user_job_id, read_type, classifier): try: ClassificationMetrics(metric) except ValueError: return None, 501 data = classification_job.find_specific_job(user_job_id=ObjectId(user_job_id), read_type=read_type, classifier=classifier) res = {metric: pydash.get(data, metric, None)} return json.dumps(res), 200 @results_bp.route( "/results/computation/classification/<string:metric>/<string:user_job_id>/<string:classifier>", methods=["GET"]) def get_computational_performance_real(metric, user_job_id, classifier): try: ClassificationMetrics(metric) except ValueError: return None, 501 data = classification_job.find_specific_job(user_job_id=ObjectId(user_job_id), classifier=classifier) res = {metric: pydash.get(data, metric, None)} return json.dumps(res), 200 @results_bp.route("/results/<string:user_job_id>/<string:read_type>/compare", methods=["GET"]) def get_results_for_user_job_and_read_type(user_job_id, read_type): # Eval tsv: data/jobs/<user_job_id>/<read_type>/compare path = os.path.join(config.JOBS_DIR, user_job_id, read_type, "eval", "eval.tsv") eval_df = get_result_dataframe(path) if eval_df is None: return "No evaluation TSV file found!", 501 eval_json = eval_df.to_dict("records") return json.dumps(eval_json), 200 @results_bp.route("/results/<string:user_job_id>/inclusion", methods=["GET"]) def get_classifier_rank_abu_taxid_org_inclusion_real(user_job_id): # classifier_rank_abu_taxid_org_inclusion tsv: # /data/jobs/<user_job_id>/eval/classifier_rank_abu_taxid_org_inclusion.tsv path = os.path.join(config.JOBS_DIR, user_job_id, "eval", "classifier_rank_abu_taxid_org_inclusion.tsv") eval_df = get_result_dataframe(path, ['classifier', 'rank', 'abundance', 'taxid', 'name', 'classifier_inclusion']) eval_df['classifier_inclusion'] = eval_df['classifier_inclusion'].str.split(',') eval_df['classifier_count'] = eval_df['classifier_inclusion'].str.len() if eval_df is None: return "No evaluation TSV file found!", 501 eval_json = eval_df.to_dict("records") return json.dumps(eval_json), 200 @results_bp.route("/results/<string:user_job_id>/<string:read_type>/inclusion", methods=["GET"]) def get_classifier_rank_abu_taxid_org_inclusion_simulated(user_job_id, read_type): # classifier_rank_abu_taxid_org_inclusion tsv: # /data/jobs/<user_job_id>/<read_type>/eval/classifier_rank_abu_taxid_org_inclusion.tsv path = os.path.join(config.JOBS_DIR, user_job_id, read_type, "eval", "classifier_rank_abu_taxid_org_inclusion.tsv") eval_df = get_result_dataframe(path, ['classifier', 'rank', 'abundance', 'taxid', 'name', 'classifier_inclusion']) eval_df['classifier_inclusion'] = eval_df['classifier_inclusion'].str.split(',') eval_df['classifier_count'] = eval_df['classifier_inclusion'].str.len() if eval_df is None: return "No evaluation TSV file found!", 501 eval_json = eval_df.to_dict("records") return json.dumps(eval_json), 200 @results_bp.route("/results/<string:user_job_id>/<string:read_type>/<string:classifier>", methods=["GET"]) def get_results_for_user_job_and_read_type_and_classifier(user_job_id, read_type, classifier): # Report files: data/jobs/<user_job_id>/<read_type>/results/*.parsed_<classifier> path = os.path.join(config.JOBS_DIR, user_job_id, read_type, "results", "*.parsed_{}".format(classifier)) parsed_report_df = get_result_dataframe(path, ["taxid", "abundance"]) if parsed_report_df is None: return "No report file for {} {}!".format(classifier, user_job_id), 501 parsed_report_json = parsed_report_df.to_dict("records") return json.dumps(parsed_report_json), 200 @results_bp.route("/results/taxid_abu_org/<string:user_job_id>/<string:read_type>/<string:classifier>/<string:rank>", methods=["GET"]) def get_results_for_taxid_abu_org_by_rank(user_job_id, read_type, classifier, rank): # Taxid Abundance Organization files: data/jobs/<user_job_id>/<read_type>/eval/tmp/parsed_<classifier>/taxid_abu_org-<rank>.tsv path = os.path.join(config.JOBS_DIR, user_job_id, read_type, "eval", "tmp", "parsed_{}_dir".format(classifier), "taxid_abu_org-{}.tsv".format(rank)) taxid_abu_org_df = get_result_dataframe(path, ["abundance", "taxid", "name"]) if taxid_abu_org_df is None: return "No Tax ID Abundance Organization file for {} {} {}!".format(rank, read_type, user_job_id), 501 taxid_abu_org_json = taxid_abu_org_df.to_dict("records") return json.dumps(taxid_abu_org_json), 200 @results_bp.route("/results/taxid_abu_org/<string:user_job_id>/<string:classifier>", methods=["GET"]) def get_hierarchical_taxid_real(user_job_id, classifier): # -------------------------------- Get result taxid abundance hierarchy -------------------------------- path = os.path.join(config.JOBS_DIR, user_job_id, "eval", "tmp", "parsed_{}_dir".format(classifier), "taxid.abu.ts.padded") if not os.path.exists(path): logger.warning("taxid.abu.ts.padded not found! Using taxid.abu.ts") path = os.path.join(config.JOBS_DIR, user_job_id, "eval", "tmp", "parsed_{}_dir".format(classifier), "taxid.abu.ts") taxid_abu_ts_df = get_result_dataframe(path, ["taxid", "abundance", "hierarchy"]) if taxid_abu_ts_df is None: return "No taxid.abu.ts file for {} {} {}!".format(user_job_id, classifier), 501 # -------------------------------- Build hierarchy -------------------------------- hierarchy_col = taxid_abu_ts_df["hierarchy"].tolist() abundance_col = taxid_abu_ts_df["abundance"].tolist() tree = dict() if len(hierarchy_col) > 0: logger.info("BUILDING HIERARCHY FOR {} TAXONOMIC IDs".format(len(hierarchy_col))) tree = build_hierarchy(hierarchy_list=hierarchy_col, abundance_list=abundance_col) else: logger.warning("taxid.abu.ts IS EMPTY!") return json.dumps(tree), 200 @results_bp.route("/results/taxid_abu_org/<string:user_job_id>/<string:read_type>/<string:classifier>", methods=["GET"]) def get_hierarchical_taxid_simulated(user_job_id, read_type, classifier): # -------------------------------- Get result taxid abundance hierarchy -------------------------------- path = os.path.join(config.JOBS_DIR, user_job_id, read_type, "eval", "tmp", "parsed_{}_dir".format(classifier), "taxid.abu.ts.padded") if not os.path.exists(path): logger.warning("taxid.abu.ts.padded not found! Using taxid.abu.ts") path = os.path.join(config.JOBS_DIR, user_job_id, read_type, "eval", "tmp", "parsed_{}_dir".format(classifier), "taxid.abu.ts") taxid_abu_ts_df = get_result_dataframe(path, ["taxid", "abundance", "hierarchy"]) if taxid_abu_ts_df is None: return "No taxid.abu.ts file for {} {} {}!".format(user_job_id, read_type, classifier), 501 # -------------------------------- Get baseline taxid abundance hierarchy -------------------------------- path = os.path.join(config.JOBS_DIR, user_job_id, read_type, "eval", "tmp", "BASELINE1.tsv_dir", "taxid.abu.ts.padded") if not os.path.exists(path): logger.warning("taxid.abu.ts.padded not found for Baseline! Using taxid.abu.ts") path = os.path.join(config.JOBS_DIR, user_job_id, read_type, "eval", "tmp", "BASELINE1.tsv_dir", 'taxid.abu.ts') taxid_abu_baseline_ts_df = get_result_dataframe(path, ["taxid", "abundance", "hierarchy"]) taxid_abu_baseline_ts_df["abundance"] = 0 # ---------------------------- Merge the baseline and classifier abundance ts files ---------------------------- taxid_abu_ts_df =
pd.concat([taxid_abu_ts_df, taxid_abu_baseline_ts_df])
pandas.concat
from __future__ import absolute_import import collections import gzip import logging import os import sys import multiprocessing import threading import numpy as np import pandas as pd from itertools import cycle, islice from sklearn.preprocessing import Imputer from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler file_path = os.path.dirname(os.path.realpath(__file__)) lib_path = os.path.abspath(os.path.join(file_path, '..', '..', 'common')) sys.path.append(lib_path) from data_utils import get_file logger = logging.getLogger(__name__) SEED = 2017 np.set_printoptions(threshold=np.nan) np.random.seed(SEED) def get_p1_file(link): fname = os.path.basename(link) return get_file(fname, origin=link, cache_subdir='Pilot1') def scale(df, scaling=None): """Scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to scale scaling : 'maxabs', 'minmax', 'std', or None, optional (default 'std') type of scaling to apply """ if scaling is None or scaling.lower() == 'none': return df df = df.dropna(axis=1, how='any') # Scaling data if scaling == 'maxabs': # Normalizing -1 to 1 scaler = MaxAbsScaler() elif scaling == 'minmax': # Scaling to [0,1] scaler = MinMaxScaler() else: # Standard normalization scaler = StandardScaler() mat = df.as_matrix() mat = scaler.fit_transform(mat) df = pd.DataFrame(mat, columns=df.columns) return df def impute_and_scale(df, scaling='std'): """Impute missing values with mean and scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to impute and scale scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply """ df = df.dropna(axis=1, how='all') imputer = Imputer(strategy='mean', axis=0) mat = imputer.fit_transform(df) if scaling is None or scaling.lower() == 'none': return
pd.DataFrame(mat, columns=df.columns)
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti =
date_range("20130101", periods=3, tz=tz)
pandas.date_range
''' Created on 24.01.2018 @author: gregor ''' import pandas as pd from ipet.Key import ProblemStatusCodes, SolverStatusCodes, ObjectiveSenseCode from ipet import Key from ipet.misc import getInfinity as infty from ipet.misc import isInfinite as isInf import numpy as np import logging import sqlite3 logger = logging.getLogger(__name__) DEFAULT_RELTOL = 1e-4 DEFAULT_FEASTOL = 1e-6 class SolufileMarkers: OPT = "=opt=" INF = "=inf=" BEST = "=best=" UNKN = "=unkn=" BESTDUAL = "=bestdual=" FEAS = "=feas=" class DataBaseMarkers: OPT = "opt" INF = "inf" BEST = "best" class Validation: ''' Validation of experiments by using external solution information ''' __primalidx__ = 0 __dualidx__ = 1 __feas__ = 1e99 __infeas__ = 1e100 def __init__(self, solufilename : str = None, tol : float = DEFAULT_RELTOL, feastol : float = DEFAULT_FEASTOL): ''' Validation constructor Parameters ---------- solufilename : str string with absolute or relative path to a solu file with reference information tol : float relative objective tolerance feastol : float relative feasibility tolerance ''' if solufilename: if solufilename.endswith(".solu"): self.referencedict = self.readSoluFile(solufilename) self.objsensedict = {} else: self.referencedict, self.objsensedict = self.connectToDataBase(solufilename) logger.debug("Data base connection finished, {} items".format(len(self.referencedict.items()))) else: self.referencedict, self.objsensedict = {}, {} self.tol = tol self.inconsistentset = set() self.feastol = feastol def set_tol(self, tol : float): """sets this validation's tol attribute Parameters ---------- tol : float new value for the tol for this validation """ self.tol = tol def set_feastol(self, feastol : float): """sets this validation's feastol attribute Parameters ---------- feastol : float new value for the feastol for this validation """ self.feastol = feastol def connectToDataBase(self, databasefilename): """connects this validation to a data base """ soludict = {} objsensedict = {} with sqlite3.connect(databasefilename) as conn: c = conn.cursor() c.execute('SELECT DISTINCT name, objsense,primbound,dualbound,status FROM instances') for name, objsense, primbound, dualbound, status in c: if name in soludict: logger.warning("Warning: Duplicate name {} with different data in data base".format(name)) infotuple = [None, None] if status == DataBaseMarkers.OPT: infotuple[self.__primalidx__] = infotuple[self.__dualidx__] = primbound elif status == DataBaseMarkers.BEST: if primbound is not None: infotuple[self.__primalidx__] = primbound if dualbound is not None: infotuple[self.__dualidx__] = dualbound elif status == DataBaseMarkers.INF: infotuple[self.__primalidx__] = self.__infeas__ objsensedict[name] = ObjectiveSenseCode.MAXIMIZE if objsense == "max" else ObjectiveSenseCode.MINIMIZE soludict[name] = tuple(infotuple) return soludict, objsensedict def readSoluFile(self, solufilename : str) -> dict: """parse entire solu file into a dictionary with problem names as keys Parameters: ----------- solufilename : str name of .solu file containing optimal or best known bounds for instances Return ------ dict dictionary with problem names as keys and best known primal and dual bounds for validation as entries. """ soludict = dict() with open(solufilename, "r") as solufile: for line in solufile: if line.strip() == "": continue spline = line.split() marker = spline[0] problemname = spline[1] infotuple = list(soludict.get(problemname, (None, None))) if marker == SolufileMarkers.OPT: infotuple[self.__primalidx__] = infotuple[self.__dualidx__] = float(spline[2]) elif marker == SolufileMarkers.BEST: infotuple[self.__primalidx__] = float(spline[2]) elif marker == SolufileMarkers.BESTDUAL: infotuple[self.__dualidx__] = float(spline[2]) elif marker == SolufileMarkers.FEAS: infotuple[self.__primalidx__] = self.__feas__ elif marker == SolufileMarkers.INF: infotuple[self.__primalidx__] = self.__infeas__ soludict[problemname] = tuple(infotuple) return soludict def getPbValue(self, pb : float, objsense : int) -> float: """returns a floating point value computed from a given primal bound """ if pd.isnull(pb): pb = infty() if objsense == ObjectiveSenseCode.MINIMIZE else -infty() return pb def getDbValue(self, db : float, objsense : int) -> float : """returns a floating point value computed from a given primal bound """ if pd.isnull(db): db = -infty() if objsense == ObjectiveSenseCode.MINIMIZE else infty() return db def isInconsistent(self, problemname : str) -> bool: """are there inconsistent results for this problem Parameters ---------- problemname : str name of a problem Returns ------- bool True if inconsistent results were detected for this instance, False otherwise """ return problemname in self.inconsistentset def isSolFeasible(self, x : pd.Series): """check if the solution is feasible within tolerances """ # # respect solution checker output, if it exists # if x.get(Key.SolCheckerRead) is not None: # # if this column is not None, the solution checker output exists for at least some of the problems # such that it is reasonable to assume that it should exist for all parsed problems # # recall that we explicitly assume that there has been a solution reported when this function is called # if the solution checker failed to read in the solution, or the solution checker crashed and did # not report the result of the check command, the solution was most likely infeasible. # if not pd.isnull(x.get(Key.SolCheckerRead)) and x.get(Key.SolCheckerRead): if not pd.isnull(x.get(Key.SolCheckerFeas)) and x.get(Key.SolCheckerFeas): return True else: return False else: return False # compute the maximum violation of constraints, LP rows, bounds, and integrality maxviol = max((x.get(key, 0.0) for key in [Key.ViolationBds, Key.ViolationCons, Key.ViolationInt, Key.ViolationLP])) return maxviol <= self.feastol def isSolInfeasible(self, x : pd.Series): """check if the solution is infeasible within tolerances Parameters ---------- x : Series or dict series or dictionary representing single instance information """ # # respect solution checker output, if it exists # if x.get(Key.SolCheckerRead) is not None: if not pd.isnull(x.get(Key.SolCheckerRead)) and x.get(Key.SolCheckerRead): if not pd.isnull(x.get(Key.SolCheckerFeas)) and x.get(Key.SolCheckerFeas): return False else: return True # compute the maximum violation of constraints, LP rows, bounds, and integrality maxviol = max((x.get(key, 0.0) for key in [Key.ViolationBds, Key.ViolationCons, Key.ViolationInt, Key.ViolationLP])) # if no violations have been recorded, no solution was found, and the solution is not infeasible. if pd.isnull(maxviol): return False return maxviol > self.feastol def getReferencePb(self, problemname : str) -> float: """get the reference primal bound for this instance Parameters ---------- problemname : str base name of a problem to access the reference data Returns ------- float or None either a finite floating point value, or None """ reference = self.referencedict.get(problemname, (None, None)) if self.isUnkn(reference) or self.isInf(reference) or self.isFeas(reference): return None else: return reference[self.__primalidx__] def getReferenceDb(self, problemname : str) -> float: """get the reference primal bound for this instance Parameters ---------- problemname : str base name of a problem to access the reference data Returns ------- float or None either a finite floating point value, or None """ reference = self.referencedict.get(problemname, (None, None)) if self.isUnkn(reference) or self.isInf(reference) or self.isFeas(reference): return None else: return reference[self.__dualidx__] def getObjSense(self, problemname : str, x : pd.Series): """get the objective sense of a problem """ if problemname in self.objsensedict: return self.objsensedict[problemname] elif not pd.isnull(x.get(Key.ObjectiveSense, None)): return x.get(Key.ObjectiveSense) else: logger.warning("No objective sense for {}, assuming minimization".format(problemname)) return ObjectiveSenseCode.MINIMIZE def validateSeries(self, x : pd.Series) -> str: """ validate the results of a problem Parameters: ---------- x : Series Data series that represents problem information parsed by a solver """ # print("{x.ProblemName} {x.PrimalBound} {x.DualBound} {x.SolverStatus}".format(x=x)) problemname = x.get(Key.ProblemName) sstatus = x.get(Key.SolverStatus) if not problemname: return ProblemStatusCodes.Unknown if pd.isnull(sstatus): return ProblemStatusCodes.FailAbort else: # # check feasibility # pb = x.get(Key.PrimalBound) if self.isSolInfeasible(x) or not (pd.isnull(pb) or isInf(pb) or self.isLE(x.get(Key.ObjectiveLimit, -1e20), pb) or self.isSolFeasible(x)): return ProblemStatusCodes.FailSolInfeasible # # check reference consistency # psc = self.isReferenceConsistent(x) if psc != ProblemStatusCodes.Ok: return psc # # report inconsistency among solvers. # elif self.isInconsistent(problemname): return ProblemStatusCodes.FailInconsistent return Key.solverToProblemStatusCode(sstatus) def isInf(self, referencetuple : tuple) -> bool: """is this an infeasible reference? Parameters: ----------- referencetuple : tuple tuple containing a primal and dual reference bound Return: ------- bool True if reference bound is infeasible, False otherwise """ return referencetuple[self.__primalidx__] == self.__infeas__ def isFeas(self, referencetuple): """is this a feasible reference? Parameters: ----------- referencetuple : tuple tuple containing a primal and dual reference bound Return: ------- bool True if reference bound is feasible, False otherwise """ return referencetuple[self.__primalidx__] == self.__feas__ def isUnkn(self, referencetuple): """is this a reference tuple of an unknown instance? """ return referencetuple[self.__primalidx__] is None and referencetuple[self.__dualidx__] is None def collectInconsistencies(self, df : pd.DataFrame): """collect individual results for primal and dual bounds and collect inconsistencies. Parameters ---------- df : DataFrame joined data of an experiment with several test runs """ # problems with inconsistent primal and dual bounds self.inconsistentset = set() self.bestpb = dict() self.bestdb = dict() df.apply(self.updateInconsistency, axis = 1) def isPbReferenceConsistent(self, pb : float, referencedb : float, objsense : int) -> bool: """compare primal bound consistency against reference bound Returns ------- bool True if the primal bound value is consistent with the reference dual bound """ if objsense == ObjectiveSenseCode.MINIMIZE: if not self.isLE(referencedb, pb): return False else: if not self.isGE(referencedb, pb): return False return True def isDbReferenceConsistent(self, db : float, referencepb : float, objsense : int) -> bool: """compare dual bound consistency against reference bound Returns ------- bool True if the dual bound value is consistent with the reference primal bound """ if objsense == ObjectiveSenseCode.MINIMIZE: if not self.isGE(referencepb, db): return False else: if not self.isLE(referencepb, db): return False return True def isReferenceConsistent(self, x : pd.Series) -> str : """Check consistency with solution information """ problemname = x.get(Key.ProblemName) pb = x.get(Key.PrimalBound) db = x.get(Key.DualBound) obs = self.getObjSense(problemname, x) sstatus = x.get(Key.SolverStatus) reference = self.referencedict.get(problemname, (None, None)) logger.debug("Checking against reference {} for problem {}".format(reference, problemname)) referencepb = self.getPbValue(reference[self.__primalidx__], obs) referencedb = self.getDbValue(reference[self.__dualidx__], obs) if self.isUnkn(reference): return ProblemStatusCodes.Ok elif self.isInf(reference): if sstatus != SolverStatusCodes.Infeasible and not
pd.isnull(pb)
pandas.isnull