prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
"""Contains classes and functions required for data processing. """ # Loading relevant modules import xarray as xr import numpy as np import glob as glob import datetime import itertools import pandas as pd import matplotlib.pyplot as plt import scipy import scipy.signal # For printing headings from modules.misc import print_heading class dataprocessor(object): """Dataprocessor contains the data for processing and coordinates it's standardisation. It contains seaice data from NSIDC, ERA5 data of a variety of variables and index datasets. each of these need the following functions to work in this class. (Required if more data is added to the system at a later date) load_data() - to load data in. temporal_decomposition() - to split into raw, seasonal cycle and anomalous data. save_data() - to save data to folder. Attributes ---------- index_data : TYPE Description indicies : list Which indicies to process. load_ERA5 : bool Should data from the ERA5 dataset be processed. load_indicies : bool Should data from the index datasets be processed. load_seaice : bool Are we processing seaice data. processeddatafolder : str File path for output processed data. rawdatafolder : str File path for source data. seaice_data : object Object containing seaice data. variables : list Which Era5 variables to load. """ def __init__(self, rawdatafolder = 'data/', processeddatafolder = 'processed_data/'): """Generates a dataprocessor object. Parameters ---------- rawdatafolder : str, optional Path to raw data. processeddatafolder : str, optional Path to output data. """ heading = "Generating a data processor" print_heading(heading) # Saving datafolder paths to object self.rawdatafolder = rawdatafolder self.processeddatafolder = processeddatafolder def load_data(self, load_seaice = False, load_indicies = False, load_ERA5 = False, indicies = ['SAM'], variables = ['t2m'], minyear = 1979, maxyear = 2020): """Adds raw data to the processor object. Parameters ---------- load_seaice : bool, optional Decides if we should load seaice data. load_indicies : bool, optional Decides if we should load index data. load_ERA5 : bool, optional Description indicies : list, optional Which indicies to load as index data. variables : list, optional which era5 variables to load. Deleted Parameters ------------------ n : int, optional Spatial resolution parameter. """ # Setting which datasets to load for processing self.load_seaice = load_seaice self.load_indicies = load_indicies self.load_ERA5 = load_ERA5 # For datasets with multiple variables, which should be loaded. self.indicies = indicies self.variables = variables if self.load_seaice: heading = "Loading seaice data from NSIDC" print_heading(heading) self.seaice_data = seaice_data(rawdatafolder = self.rawdatafolder, processeddatafolder = self.processeddatafolder) self.seaice_data.load_data() self.seaice_data.data = self.seaice_data.data.where(self.seaice_data.data > 0.15*250, other = 0.0) self.seaice_data.data = self.seaice_data.data.sel(time=slice(f"{minyear}-01-01", f"{maxyear}-12-31")) if self.load_indicies: heading = f"Loading index data" print_heading(heading) self.index_data = index_data(rawdatafolder = self.rawdatafolder, processeddatafolder = self.processeddatafolder, indicies = self.indicies) self.index_data.load_data() self.index_data.data = {index : self.index_data.data[index].sel(time=slice(f"{minyear}-01-01", f"{maxyear}-12-31")) for index in self.index_data.data.keys()} if self.load_ERA5: heading = f"Loading ECMWF ERA5 data" print_heading(heading) self.era5_data = era5_data(rawdatafolder = self.rawdatafolder, processeddatafolder = self.processeddatafolder) self.era5_data.load_data() def decompose_and_save(self, resolutions = [1,5,10,20], temporal_resolution = ['monthly', 'seasonal', 'annual'], temporal_decomposition = ['raw', 'anomalous'], detrend = ['raw', 'detrended']): """Summary Parameters ---------- resolutions : list, optional Description temporal_resolution : list, optional Description temporal_decomposition : list, optional Description detrend : list, optional Description Deleted Parameters ------------------ temporal_decomp : list, optional Description """ if self.load_seaice: self.seaice_data.decompose_and_save(resolutions = resolutions, temporal_resolution = temporal_resolution, temporal_decomposition = temporal_decomposition, detrend = detrend) if self.load_indicies: self.index_data.decompose_and_save(temporal_resolution = temporal_resolution, temporal_decomposition = temporal_decomposition, detrend = detrend) if self.load_ERA5: self.era5_data.decompose_and_save(resolutions = resolutions, temporal_resolution = temporal_resolution, temporal_decomposition = temporal_decomposition, detrend = detrend) class seaice_data: """Class for seaice data. Attributes ---------- data : xarray DataArray The data for seaice. files : list list of seaice raw data files. output_folder : str File path for output data folder. source_folder : str File path for source data folder. Deleted Attributes ------------------ n : int spatial resolution parameter. """ def __init__(self, rawdatafolder = 'data/', processeddatafolder = 'processeddata/', n = 5): """Loads the raw data. Parameters ---------- rawdatafolder : str, optional File path for raw data. processeddatafolder : str, optional File path for processed data. n : int, optional Spatial resolution parameter. """ self.source_folder = rawdatafolder + 'SIC-monthly/' self.output_folder = processeddatafolder + 'SIC/' self.files = glob.glob(self.source_folder+'*.bin') def load_data(self): """Iterates over seaice files and loads as an object. """ data = [] dates = [] errorlist = [] sic_files = self.files n = 1 for file in sic_files: date = file.split('_')[-4] try: data += [self.readfile(file)[::n,::n]] except ValueError: print(file) data += [data[-1]] errorlist += [(date,file)] # try: # date = datetime.datetime.strptime(date, '%Y%m%d') # except: date = datetime.datetime.strptime(date, '%Y%m') dates += [date] for date, file in errorlist: i = int(np.where(np.array(files) == file)[0]) data[i] = (data[i-1]+data[i+1])/2 data = np.array(data, dtype = float) x = 10*np.arange(-395000,395000,2500)[::n] y = 10*np.arange(435000,-395000,-2500)[::n] x,y = np.meshgrid(x,y) sie = data[0] x_coastlines = x.flatten()[sie.flatten()==253] y_coastlines = y.flatten()[sie.flatten()==253] seaice = xr.DataArray(data, coords={'time': dates, 'x': 10*np.arange(-395000, 395000, 2500)[::n], 'y': 10*np.arange( 435000,-395000,-2500)[::n]}, dims=['time', 'y', 'x']) seaice.rename('seaice_concentration') self.data = seaice self.data = self.data.sortby('time') def decompose_and_save(self, resolutions = [1,5,10,20], temporal_resolution = ['monthly', 'seasonal', 'annual'], temporal_decomposition = ['raw', 'anomalous'], detrend = ['raw', 'detrended']): """Break the data into different temporal splits. Parameters ---------- resolutions : list, optional Description temporal_resolution : list, optional Description temporal_decomposition : list, optional Description detrend : list, optional Description """ dataset = xr.Dataset({'source':self.data.copy()}) dataset.to_netcdf(self.output_folder+'source.nc') heading = 'Splitting the seaice data up' print_heading(heading) for n, temp_res, temp_decomp, dt in itertools.product(resolutions, temporal_resolution, temporal_decomposition, detrend): print(n, temp_res, temp_decomp, dt) # Spatial resolution fix. new_data = dataset.source.loc[:,::n,::n].copy() # Temporal interpolation for missing data. new_data = new_data.resample(time = '1MS').fillna(np.nan) new_data = new_data.sortby(new_data.time) new_data = new_data.groupby('time.month').apply(lambda group: group.sortby(group.time).interp(method='linear')) if temp_res == 'seasonal': new_data = new_data[:-1] # If anomalous remove seasonal cycle if temp_decomp == 'anomalous': climatology = new_data.groupby("time.month").mean("time") new_data = new_data.groupby("time.month") - climatology # temporal averaging if temp_res == 'seasonal': new_data = new_data.resample(time="QS-DEC").mean() elif temp_res == 'annual': new_data = new_data.resample(time="YS").mean() # plt.plot(new_data.mean(dim = ('x','y'))) # plt.show() # dataset = xr.Dataset({'source':self.data.copy()}) # dataset[f'{temp_decomp}_{temp_res}_{n}'] = new_data # Detrend if 'detrended' == dt: new_data = new_data.sortby(new_data.time) new_data = detrend_data(new_data) new_data.name = f'{temp_decomp}_{temp_res}_{n}_{dt}' new_data.to_netcdf(self.output_folder + new_data.name +'.nc') # self.data = dataset print_heading('DONE') def readfile(self, file): """Reads a binary data file and returns the numpy data array. Parameters ---------- file : str File path. Returns ------- data = (numpy array) data contained in the file. """ with open(file, "rb") as binary_file: # Seek a specific position in the file and read N bytes binary_file.seek(300, 0) # Go to beginning of the file data = binary_file.read() # data array data = np.array(list(data)).reshape(332, 316) return data class index_data: """Class for index data. Attributes ---------- data : dict Description indicies : list Which indicies to load. output_folder : str Path to output folder. source_folder : str Path to source folder. """ def __init__(self, rawdatafolder = 'data/', processeddatafolder = 'processeddata/', indicies = ['SAM']): """Loads the raw data. Parameters ---------- rawdatafolder : str, optional File path for raw data. processeddatafolder : str, optional File path for processed data. indicies : list, optional which indicies to load. """ self.source_folder = rawdatafolder + 'indicies/' self.output_folder = processeddatafolder + 'INDICIES/' self.indicies = indicies def load_data(self): """Summary """ self.data = {} if 'DMI' in self.indicies: dmi = xr.open_dataset('Data/Indicies/dmi.nc') self.data['DMI'] = dmi.DMI if 'SAM' in self.indicies: sam = np.genfromtxt('Data/Indicies/newsam.1957.2007.txt', skip_header =1, skip_footer = 1)[:,1:] index = range(1957, 2020) columns = range(1,13) sam = pd.DataFrame(data = sam, columns = columns, index = index) sam = sam.stack().reset_index() sam.columns = ['year', 'month', 'SAM'] sam['time'] = pd.to_datetime(sam.year*100+sam.month,format='%Y%m') sam = sam.set_index('time').SAM sam = xr.DataArray(sam) self.data['SAM'] = sam if 'IPO' in self.indicies: ipo = np.genfromtxt('Data/Indicies/tpi.timeseries.ersstv5.data', skip_header = 1, skip_footer = 11)[:,1:] index = range(1854, 2021) columns = range(1,13) ipo = pd.DataFrame(data = ipo, columns = columns, index = index) ipo = ipo.stack().reset_index() ipo.columns = ['year', 'month', 'IPO'] ipo['time'] =
pd.to_datetime(ipo.year*100+ipo.month,format='%Y%m')
pandas.to_datetime
from functools import partial import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( DataFrame, Series, concat, isna, notna, ) import pandas._testing as tm import pandas.tseries.offsets as offsets @td.skip_if_no_scipy @pytest.mark.parametrize("sp_func, roll_func", [["kurtosis", "kurt"], ["skew", "skew"]]) def test_series(series, sp_func, roll_func): import scipy.stats compare_func = partial(getattr(scipy.stats, sp_func), bias=False) result = getattr(series.rolling(50), roll_func)() assert isinstance(result, Series) tm.assert_almost_equal(result.iloc[-1], compare_func(series[-50:])) @td.skip_if_no_scipy @pytest.mark.parametrize("sp_func, roll_func", [["kurtosis", "kurt"], ["skew", "skew"]]) def test_frame(raw, frame, sp_func, roll_func): import scipy.stats compare_func = partial(getattr(scipy.stats, sp_func), bias=False) result = getattr(frame.rolling(50), roll_func)() assert isinstance(result, DataFrame) tm.assert_series_equal( result.iloc[-1, :], frame.iloc[-50:, :].apply(compare_func, axis=0, raw=raw), check_names=False, ) @td.skip_if_no_scipy @pytest.mark.parametrize("sp_func, roll_func", [["kurtosis", "kurt"], ["skew", "skew"]]) def test_time_rule_series(series, sp_func, roll_func): import scipy.stats compare_func = partial(getattr(scipy.stats, sp_func), bias=False) win = 25 ser = series[::2].resample("B").mean() series_result = getattr(ser.rolling(window=win, min_periods=10), roll_func)() last_date = series_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_series = series[::2].truncate(prev_date, last_date) tm.assert_almost_equal(series_result[-1], compare_func(trunc_series)) @td.skip_if_no_scipy @pytest.mark.parametrize("sp_func, roll_func", [["kurtosis", "kurt"], ["skew", "skew"]]) def test_time_rule_frame(raw, frame, sp_func, roll_func): import scipy.stats compare_func = partial(getattr(scipy.stats, sp_func), bias=False) win = 25 frm = frame[::2].resample("B").mean() frame_result = getattr(frm.rolling(window=win, min_periods=10), roll_func)() last_date = frame_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_frame = frame[::2].truncate(prev_date, last_date) tm.assert_series_equal( frame_result.xs(last_date), trunc_frame.apply(compare_func, raw=raw), check_names=False, ) @td.skip_if_no_scipy @pytest.mark.parametrize("sp_func, roll_func", [["kurtosis", "kurt"], ["skew", "skew"]]) def test_nans(sp_func, roll_func): import scipy.stats compare_func = partial(getattr(scipy.stats, sp_func), bias=False) obj = Series(np.random.randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN result = getattr(obj.rolling(50, min_periods=30), roll_func)() tm.assert_almost_equal(result.iloc[-1], compare_func(obj[10:-10])) # min_periods is working correctly result = getattr(obj.rolling(20, min_periods=15), roll_func)() assert isna(result.iloc[23]) assert not isna(result.iloc[24]) assert not isna(result.iloc[-6]) assert
isna(result.iloc[-5])
pandas.isna
from typing import Optional import pandas as pd from dero.ml.typing import ModelDict, AllModelResultsDict, DfDict def model_dict_to_df(model_results: ModelDict, model_name: Optional[str] = None) -> pd.DataFrame: df = pd.DataFrame(model_results).T df.drop('score', inplace=True) df['score'] = model_results['score'] if model_name is not None: df['model'] = model_name first_cols = ['model', 'score'] else: first_cols = ['score'] other_cols = [col for col in df.columns if col not in first_cols] return df[first_cols + other_cols] def all_model_results_dict_to_df(results: AllModelResultsDict) -> pd.DataFrame: df = pd.DataFrame() for model_type, instance_list in results.items(): for instance in instance_list: model_df = model_dict_to_df(instance, model_name=model_type) df = df.append(model_df) first_cols = ['model', 'score'] other_cols = [col for col in df.columns if col not in first_cols] return df[first_cols + other_cols].sort_values('score', ascending=False) def all_model_results_dict_to_model_df_dict(results: AllModelResultsDict) -> DfDict: out_dict = {} for model_type, instance_list in results.items(): model_df =
pd.DataFrame()
pandas.DataFrame
from datasets import load_dataset import streamlit as st import pandas as pd from googletrans import Translator import session_state import time from fuzzywuzzy import fuzz,process # Security #passlib,hashlib,bcrypt,scrypt import hashlib # DB Management import sqlite3 import os import psycopg2 # import torch # from transformers import PegasusForConditionalGeneration, PegasusTokenizer state = session_state.get(question_number=0) translator = Translator() # model_name = 'tuner007/pegasus_paraphrase' # torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' # tokenizer = PegasusTokenizer.from_pretrained(model_name) # model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device) # def get_response(input_text,num_return_sequences,num_beams): # batch = tokenizer([input_text],truncation=True,padding='longest',max_length=60, return_tensors="pt").to(torch_device) # translated = model.generate(**batch,max_length=60,num_beams=num_beams, num_return_sequences=num_return_sequences, temperature=1.5) # tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True) # return tgt_text @st.cache(suppress_st_warning=True) def get_qa_pair_low(file, rand): df = pd.read_csv(file, sep="\t", lineterminator='\n') a = df.sample(1).reset_index() st.text(df) return { "text": a["text"][0], "question": a["question"][0], "answer": a["answer\r"][0] } @st.cache(suppress_st_warning=True) def get_qa_pair_mid(file, rand): df = pd.read_csv(file,sep="\t", lineterminator='\n') a = df.sample(1).reset_index() return { "text": a["text"][0], "question": a["question"][0], "answer": a["answer\r"][0] } @st.cache(suppress_st_warning=True) def get_qa_pair_high(file, rand): df =
pd.read_csv(file,sep="\t", lineterminator='\n')
pandas.read_csv
''' This is a follow up of https://letianzj.github.io/portfolio-management-one.html It backtests four portfolios: GMV, tangent, maximum diversification and risk parity and compare them with equally-weighted portfolio ''' import os import numpy as np import pandas as pd import pytz from datetime import datetime, timezone import quanttrader as qt from scipy.optimize import minimize import matplotlib.pyplot as plt import empyrical as ep import pyfolio as pf # set browser full width from IPython.core.display import display, HTML display(HTML("<style>.container { width:100% !important; }</style>")) # ------------------ help functions -------------------------------- # def minimum_vol_obj(wo, cov): w = wo.reshape(-1, 1) sig_p = np.sqrt(np.matmul(w.T, np.matmul(cov, w)))[0, 0] # portfolio sigma return sig_p def maximum_sharpe_negative_obj(wo, mu_cov): w = wo.reshape(-1, 1) mu = mu_cov[0].reshape(-1, 1) cov = mu_cov[1] obj = np.matmul(w.T, mu)[0, 0] sig_p = np.sqrt(np.matmul(w.T, np.matmul(cov, w)))[0, 0] # portfolio sigma obj = -1 * obj/sig_p return obj def maximum_diversification_negative_obj(wo, cov): w = wo.reshape(-1, 1) w_vol = np.matmul(w.T, np.sqrt(np.diag(cov).reshape(-1, 1)))[0, 0] port_vol = np.sqrt(np.matmul(w.T, np.matmul(cov, w)))[0, 0] ratio = w_vol / port_vol return -ratio # this is also used to verify rc from optimal w def calc_risk_contribution(wo, cov): w = wo.reshape(-1, 1) sigma = np.sqrt(np.matmul(w.T, np.matmul(cov, w)))[0, 0] mrc = np.matmul(cov, w) rc = (w * mrc) / sigma # element-wise multiplication return rc def risk_budget_obj(wo, cov_wb): w = wo.reshape(-1, 1) cov = cov_wb[0] wb = cov_wb[1].reshape(-1, 1) # target/budget in percent of portfolio risk sig_p = np.sqrt(np.matmul(w.T, np.matmul(cov, w)))[0, 0] # portfolio sigma risk_target = sig_p * wb asset_rc = calc_risk_contribution(w, cov) f = np.sum(np.square(asset_rc - risk_target.T)) # sum of squared error return f class PortfolioOptimization(qt.StrategyBase): def __init__(self, nlookback=200, model='gmv'): super(PortfolioOptimization, self).__init__() self.nlookback = nlookback, self.model = model self.current_time = None def on_tick(self, tick_event): self.current_time = tick_event.timestamp # print('Processing {}'.format(self.current_time)) # wait for enough bars for symbol in self.symbols: df_hist = self._data_board.get_hist_price(symbol, self.current_time) if df_hist.shape[0] < self.nlookback: return # wait for month end time_index = self._data_board.get_hist_time_index() time_loc = time_index.get_loc(self.current_time) if (time_loc != len(time_index)-1) & (time_index[time_loc].month == time_index[time_loc+1].month): return npv = self._position_manager.current_total_capital n_stocks = len(self.symbols) TOL = 1e-12 prices = None for symbol in self.symbols: price = self._data_board.get_hist_price(symbol, self.current_time)['Close'].iloc[-self.nlookback:] price = np.array(price) if prices is None: prices = price else: prices = np.c_[prices, price] rets = prices[1:,:]/prices[0:-1, :]-1.0 mu = np.mean(rets, axis=0) cov = np.cov(rets.T) w = np.ones(n_stocks) / n_stocks # default try: if self.model == 'gmv': w0 = np.ones(n_stocks) / n_stocks cons = ({'type': 'eq', 'fun': lambda w: np.sum(w) - 1.0}, {'type': 'ineq', 'fun': lambda w: w}) res = minimize(minimum_vol_obj, w0, args=cov, method='SLSQP', constraints=cons, tol=TOL, options={'disp': True}) if not res.success: print(f'{self.model} Optimization failed') w = res.x elif self.model == 'sharpe': w0 = np.ones(n_stocks) / n_stocks cons = ({'type': 'eq', 'fun': lambda w: np.sum(w) - 1.0}, {'type': 'ineq', 'fun': lambda w: w}) res = minimize(maximum_sharpe_negative_obj, w0, args=[mu, cov], method='SLSQP', constraints=cons, tol=TOL, options={'disp': True}) w = res.x elif self.model == 'diversified': w0 = np.ones(n_stocks) / n_stocks cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1.0}) # weights sum to one bnds = tuple([(0, 1)] * n_stocks) res = minimize(maximum_diversification_negative_obj, w0, bounds=bnds, args=cov, method='SLSQP', constraints=cons, tol=TOL, options={'disp': True}) w = res.x elif self.model == 'risk_parity': w0 = np.ones(n_stocks) / n_stocks w_b = np.ones(n_stocks) / n_stocks # risk budget/target, percent of total portfolio risk (in this case equal risk) # bnds = ((0,1),(0,1),(0,1),(0,1)) # alternative, use bounds for weights, one for each stock cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1.0}, {'type': 'ineq', 'fun': lambda x: x}) res = minimize(risk_budget_obj, w0, args=[cov, w_b], method='SLSQP', constraints=cons, tol=TOL, options={'disp': True}) w = res.x except Exception as e: print(f'{self.model} Optimization failed; {str(e)}') i = 0 for sym in self.symbols: current_size = self._position_manager.get_position_size(sym) current_price = self._data_board.get_hist_price(sym, self.current_time)['Close'].iloc[-1] target_size = (int)(npv * w[i] / current_price) self.adjust_position(sym, size_from=current_size, size_to=target_size, timestamp=self.current_time) print('REBALANCE ORDER SENT, %s, Price: %.2f, Percentage: %.2f, Target Size: %.2f' % (sym, current_price, w[i], target_size)) i += 1 if __name__ == '__main__': etfs = ['SPY', 'EFA', 'TIP', 'GSG', 'VNQ'] models = ['gmv', 'sharpe', 'diversified', 'risk_parity'] benchmark = etfs init_capital = 100_000.0 test_start_date = datetime(2010,1,1, 8, 30, 0, 0, pytz.timezone('America/New_York')) test_end_date = datetime(2019,12,31, 6, 0, 0, 0, pytz.timezone('America/New_York')) dict_results = dict() for model in models: dict_results[model] = dict() # SPY: S&P 500 # EFA: MSCI EAFE # TIP: UST # GSG: GSCI # VNQ: REITs strategy = PortfolioOptimization() strategy.set_capital(init_capital) strategy.set_symbols(etfs) strategy.set_params({'nlookback': 200, 'model': model}) backtest_engine = qt.BacktestEngine(test_start_date, test_end_date) backtest_engine.set_capital(init_capital) # capital or portfolio >= capital for one strategy for symbol in etfs: data = qt.util.read_ohlcv_csv(os.path.join('../data/', f'{symbol}.csv')) backtest_engine.add_data(symbol, data) backtest_engine.set_strategy(strategy) ds_equity, df_positions, df_trades = backtest_engine.run() # save to excel qt.util.save_one_run_results('./output', ds_equity, df_positions, df_trades, batch_tag=model) ds_ret = ds_equity.pct_change().dropna() ds_ret.name = model dict_results[model]['equity'] = ds_equity dict_results[model]['return'] = ds_ret dict_results[model]['positions'] = df_positions dict_results[model]['transactions'] = df_trades # ------------------------- Evaluation and Plotting -------------------------------------- # bm = pd.DataFrame() for s in etfs: df_temp = qt.util.read_ohlcv_csv(os.path.join('../data/', f'{s}.csv')) df_temp = df_temp['Close'] df_temp.name = s bm =
pd.concat([bm, df_temp], axis=1)
pandas.concat
import numpy as np import pytest import pandas as pd from pandas import Series class TestSeriesConcat: @pytest.mark.parametrize( "dtype", ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"] ) def test_concat_empty_series_dtypes_match_roundtrips(self, dtype): dtype = np.dtype(dtype) result = pd.concat([Series(dtype=dtype)]) assert result.dtype == dtype result = pd.concat([Series(dtype=dtype), Series(dtype=dtype)]) assert result.dtype == dtype def test_concat_empty_series_dtypes_roundtrips(self): # round-tripping with self & like self dtypes = map(np.dtype, ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"]) def int_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"i", "u", "b"}) and ( dtype.kind == "i" or dtype2.kind == "i" ): return "i" elif not len(typs - {"u", "b"}) and ( dtype.kind == "u" or dtype2.kind == "u" ): return "u" return None def float_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"f", "i", "u"}) and ( dtype.kind == "f" or dtype2.kind == "f" ): return "f" return None def get_result_type(dtype, dtype2): result = float_result_type(dtype, dtype2) if result is not None: return result result = int_result_type(dtype, dtype2) if result is not None: return result return "O" for dtype in dtypes: for dtype2 in dtypes: if dtype == dtype2: continue expected = get_result_type(dtype, dtype2) result = pd.concat([Series(dtype=dtype), Series(dtype=dtype2)]).dtype assert result.kind == expected @pytest.mark.parametrize( "left,right,expected", [ # booleans (np.bool_, np.int32, np.int32), (np.bool_, np.float32, np.object_), # datetime-like ("m8[ns]", np.bool, np.object_), ("m8[ns]", np.int64, np.object_), ("M8[ns]", np.bool, np.object_), ("M8[ns]", np.int64, np.object_), # categorical ("category", "category", "category"), ("category", "object", "object"), ], ) def test_concat_empty_series_dtypes(self, left, right, expected): result = pd.concat([Series(dtype=left), Series(dtype=right)]) assert result.dtype == expected def test_concat_empty_series_dtypes_triple(self): assert ( pd.concat( [Series(dtype="M8[ns]"), Series(dtype=np.bool_), Series(dtype=np.int64)] ).dtype == np.object_ ) def test_concat_empty_series_dtype_category_with_array(self): # GH 18515 assert ( pd.concat( [Series(np.array([]), dtype="category"), Series(dtype="float64")] ).dtype == "float64" ) def test_concat_empty_series_dtypes_sparse(self): result = pd.concat( [ Series(dtype="float64").astype("Sparse"), Series(dtype="float64").astype("Sparse"), ] ) assert result.dtype == "Sparse[float64]" result = pd.concat( [Series(dtype="float64").astype("Sparse"), Series(dtype="float64")] ) # TODO: release-note: concat sparse dtype expected = pd.SparseDtype(np.float64) assert result.dtype == expected result = pd.concat( [
Series(dtype="float64")
pandas.Series
import json import io import plotly.graph_objects as go from plotly.subplots import make_subplots import dash from dash import html from dash import dcc import dash_bootstrap_components as dbc import pandas as pd import numpy as np import plotly.express as px from dash.dependencies import Output, Input, State from datetime import datetime, timedelta from server import app import plotly.graph_objects as go import plotly.express as px from sqlalchemy import create_engine from flask import send_file import os from joblib import Parallel, delayed from dash.exceptions import PreventUpdate import time import re # ----------------------------------------------------------------------------------------------------- 一级图一 ---------------------------------------------------------------------------------------------------------------------- # 获取抗菌药物-菌检出-药敏一级第一张图数据 def get_first_lev_first_fig_date(engine): res = pd.DataFrame(columns=['业务类型', 'num', 'month' ]) # 问题类别、问题数据量统计、全数据统计 bus_dic = { '生化': "select '生化' as 业务类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null group by substr(REQUESTTIME,1,7)", '检查': " select '检查' as 业务类型 , count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM where EXAM_DATE is not null group by substr(EXAM_DATE,1,7) ", '体温': " select '体温' as 业务类型 , count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where RECORDDATE is not null group by substr(RECORDDATE,1,7) ", } for bus in bus_dic: res = res.append(pd.read_sql(bus_dic[bus],con=engine)) return res # 更新抗菌药物-菌检出-药敏一级图一 @app.callback( Output('rout_exam_temp_first_level_first_fig','figure'), Output('rout_exam_temp_first_level_first_fig_data','data'), Input('rout_exam_temp_first_level_first_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_first_level_first_fig(rout_exam_temp_first_level_first_fig_data,db_con_url,count_time): if db_con_url is None : return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] engine = create_engine(db_con_url['db']) if rout_exam_temp_first_level_first_fig_data is None: rout_exam_temp_first_level_first_fig_data = {} rout_exam_temp_first_level_first_fig = get_first_lev_first_fig_date(engine) rout_exam_temp_first_level_first_fig_data['rout_exam_temp_first_level_first_fig'] = rout_exam_temp_first_level_first_fig.to_json(orient='split', date_format='iso') rout_exam_temp_first_level_first_fig_data['hosname'] = db_con_url['hosname'] rout_exam_temp_first_level_first_fig_data['btime'] = btime rout_exam_temp_first_level_first_fig_data['etime'] = etime rout_exam_temp_first_level_first_fig_data = json.dumps(rout_exam_temp_first_level_first_fig_data) else: rout_exam_temp_first_level_first_fig_data = json.loads(rout_exam_temp_first_level_first_fig_data) if db_con_url['hosname'] != rout_exam_temp_first_level_first_fig_data['hosname']: rout_exam_temp_first_level_first_fig = get_first_lev_first_fig_date(engine) rout_exam_temp_first_level_first_fig_data['rout_exam_temp_first_level_first_fig'] = rout_exam_temp_first_level_first_fig.to_json(orient='split',date_format='iso') rout_exam_temp_first_level_first_fig_data['hosname'] = db_con_url['hosname'] rout_exam_temp_first_level_first_fig_data = json.dumps(rout_exam_temp_first_level_first_fig_data) else: rout_exam_temp_first_level_first_fig = pd.read_json(rout_exam_temp_first_level_first_fig_data['rout_exam_temp_first_level_first_fig'], orient='split') rout_exam_temp_first_level_first_fig_data = dash.no_update # rout_exam_temp_first_level_first_fig = rout_exam_temp_first_level_first_fig[(rout_exam_temp_first_level_first_fig['month']>=btime) & (rout_exam_temp_first_level_first_fig['month']<=etime)] rout_exam_temp_first_level_first_fig = rout_exam_temp_first_level_first_fig.sort_values(['month','业务类型']) fig1 = px.line(rout_exam_temp_first_level_first_fig, x='month', y='num', color='业务类型', color_discrete_sequence=px.colors.qualitative.Dark24) # 设置水平图例及位置 fig1.update_layout( margin=dict(l=20, r=20, t=20, b=20), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 )) fig1.update_yaxes(title_text="业务数据量") fig1.update_xaxes(title_text="时间") return fig1,rout_exam_temp_first_level_first_fig_data # ----------------------------------------------------------------------------------------------------- 一级图二 ---------------------------------------------------------------------------------------------------------------------- # 获取一级第二张图片数据 def get_first_lev_second_fig_date(engine): res = pd.DataFrame(columns=['问题类型', 'num' ]) # 问题类别、问题数据量统计、全数据统计 bus_dic = { '体温测量时间缺失': f"select '体温测量时间缺失' as 问题类型 ,count(1) as num from TEMPERATURE where RECORDDATE is null ", '生化检验申请时间缺失': f"select '生化检验申请时间缺失' as 问题类型 ,count(1) as num from ROUTINE2 where REQUESTTIME is null ", '生化检验报告时间缺失': f"select '生化检验报告时间缺失' as 问题类型 ,count(1) as num from ROUTINE2 where REPORTTIME is null", '检查时间为空': f"select '检查时间为空' as 问题类型 ,count(1) as num from exam where EXAM_DATE is null ", } for bus in bus_dic: res = res.append(pd.read_sql(bus_dic[bus],con=engine)) return res # 更新一级图二 @app.callback( Output('rout_exam_temp_first_level_second_fig','figure'), Output('rout_exam_temp_first_level_second_fig_data','data'), Input('rout_exam_temp_first_level_second_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_first_level_first_fig(rout_exam_temp_first_level_second_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if rout_exam_temp_first_level_second_fig_data is None: rout_exam_temp_first_level_second_fig = get_first_lev_second_fig_date(engine) rout_exam_temp_first_level_second_fig_data = {} rout_exam_temp_first_level_second_fig_data['rout_exam_temp_first_level_second_fig'] = rout_exam_temp_first_level_second_fig.to_json( orient='split', date_format='iso') rout_exam_temp_first_level_second_fig_data['hosname'] = db_con_url['hosname'] rout_exam_temp_first_level_second_fig_data = json.dumps(rout_exam_temp_first_level_second_fig_data) else: rout_exam_temp_first_level_second_fig_data = json.loads(rout_exam_temp_first_level_second_fig_data) if db_con_url['hosname'] != rout_exam_temp_first_level_second_fig_data['hosname']: rout_exam_temp_first_level_second_fig = get_first_lev_second_fig_date(engine) rout_exam_temp_first_level_second_fig_data = {} rout_exam_temp_first_level_second_fig_data[ 'rout_exam_temp_first_level_second_fig'] = rout_exam_temp_first_level_second_fig.to_json( orient='split', date_format='iso') rout_exam_temp_first_level_second_fig_data['hosname'] = db_con_url['hosname'] rout_exam_temp_first_level_second_fig_data = json.dumps(rout_exam_temp_first_level_second_fig_data) else: rout_exam_temp_first_level_second_fig = pd.read_json( rout_exam_temp_first_level_second_fig_data['rout_exam_temp_first_level_second_fig'], orient='split') rout_exam_temp_first_level_second_fig_data = dash.no_update fig = go.Figure() # fig = px.bar(rout_exam_temp_first_level_second_fig,x='问题类型',y='num',color_discrete_sequence=px.colors.qualitative.Dark24 ) fig.add_trace( go.Bar(x=rout_exam_temp_first_level_second_fig['问题类型'], y=rout_exam_temp_first_level_second_fig['num'], name="问题类型", marker_color=px.colors.qualitative.Dark24, ) ) fig.update_layout( margin=dict(l=20, r=20, t=20, b=20), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ) ) fig.update_yaxes(title_text="问题数量") fig.update_xaxes(title_text="月份") return fig, rout_exam_temp_first_level_second_fig_data # 下载一级图二明细 @app.callback( Output('rout_exam_temp_first_level_second_fig_detail', 'data'), Input('rout_exam_temp_first_level_second_fig_data_detail_down','n_clicks'), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def download_first_level_third_fig_data_detail(n_clicks,db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) bus_dic = { '体温测量时间缺失': f"select * from TEMPERATURE where RECORDDATE is null ", '生化检验申请时间缺失': f"select * from ROUTINE2 where REQUESTTIME is null ", '生化检验报告时间缺失': f"select * from ROUTINE2 where REPORTTIME is null", '检查时间为空': f"select * from exam where EXAM_DATE is null ", } output = io.BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') for key in bus_dic.keys(): try: temp = pd.read_sql(bus_dic[key], con=engine) if temp.shape[0] > 0: temp.to_excel(writer, sheet_name=key) except: error_df = pd.DataFrame(['明细数据获取出错'], columns=[key]) error_df.to_excel(writer, sheet_name=key) writer.save() data = output.getvalue() hosName = db_con_url['hosname'] return dcc.send_bytes(data, f'{hosName}时间缺失数据明细.xlsx') else: return dash.no_update # # ----------------------------------------------------------------------------------------------------- 二级图一 ---------------------------------------------------------------------------------------------------------------------- # # 获取体温二级第一张图数据 def get_second_lev_first_fig_date(engine,btime,etime): res = pd.DataFrame(columns=['问题类型','num','momth']) bus_dic = { '体温测量值异常': f"select '体温测量值异常' as 问题类型 ,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where (VALUE >46 or VALUE<34) and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' group by substr(RECORDDATE,1,7)", '体温测量值缺失': f"select '体温测量值缺失' as 问题类型 ,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where VALUE is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' group by substr(RECORDDATE,1,7)", '科室缺失': f"select '科室缺失' as 问题类型 ,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where DEPT is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' group by substr(RECORDDATE,1,7)", '体温测量时机缺失': f"select '体温测量时机缺失' as 问题类型 ,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where OUTSIDE is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' group by substr(RECORDDATE,1,7)", '体温测量时间无时间点': f"select '检验测量时间无时间点' as 问题类型 ,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE where length(RECORDDATE)<19 and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' group by substr(RECORDDATE,1,7)", '体温测量时间在出入院时间之外': f""" select '体温测量时间在出入院时间之外' as 问题类型,count(1) as num ,substr(RECORDDATE,1,7) as month from TEMPERATURE t1,overall t2 where ( t1.RECORDDATE is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.RECORDDATE<t2.IN_TIME or t1.RECORDDATE > t2.OUT_TIME ) and (substr(t1.RECORDDATE,1,7)>='{btime}' and substr(t1.RECORDDATE,1,7)<='{etime}') group by substr(RECORDDATE,1,7) """, } for bus in bus_dic: res = res.append(pd.read_sql(bus_dic[bus],con=engine)) return res # 更新二级图一 @app.callback( Output('temp_second_level_first_fig','figure'), Output('temp_second_level_first_fig_data','data'), Input('temp_second_level_first_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), ) def update_first_level_second_fig(temp_second_level_first_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if temp_second_level_first_fig_data is None: temp_second_level_first_fig_data = {} temp_second_level_first_fig = get_second_lev_first_fig_date(engine, btime, etime) temp_second_level_first_fig_data['temp_second_level_first_fig'] = temp_second_level_first_fig.to_json( orient='split', date_format='iso') temp_second_level_first_fig_data['hosname'] = db_con_url['hosname'] temp_second_level_first_fig_data['btime'] = btime temp_second_level_first_fig_data['etime'] = etime temp_second_level_first_fig_data = json.dumps(temp_second_level_first_fig_data) else: temp_second_level_first_fig_data = json.loads(temp_second_level_first_fig_data) if db_con_url['hosname'] != temp_second_level_first_fig_data['hosname']: temp_second_level_first_fig = get_second_lev_first_fig_date(engine, btime, etime) temp_second_level_first_fig_data['temp_second_level_first_fig'] = temp_second_level_first_fig.to_json( orient='split', date_format='iso') temp_second_level_first_fig_data['hosname'] = db_con_url['hosname'] temp_second_level_first_fig_data['btime'] = btime temp_second_level_first_fig_data['etime'] = etime temp_second_level_first_fig_data = json.dumps(temp_second_level_first_fig_data) else: if temp_second_level_first_fig_data['btime'] != btime or temp_second_level_first_fig_data[ 'etime'] != etime: temp_second_level_first_fig = get_second_lev_first_fig_date(engine, btime, etime) temp_second_level_first_fig_data[ 'temp_second_level_first_fig'] = temp_second_level_first_fig.to_json( orient='split', date_format='iso') temp_second_level_first_fig_data['btime'] = btime temp_second_level_first_fig_data['etime'] = etime temp_second_level_first_fig_data = json.dumps(temp_second_level_first_fig_data) else: temp_second_level_first_fig = pd.read_json( temp_second_level_first_fig_data['temp_second_level_first_fig'], orient='split') temp_second_level_first_fig_data = dash.no_update temp_second_level_first_fig = temp_second_level_first_fig.sort_values(['month']) fig = px.line(temp_second_level_first_fig, x="month", y="num", color='问题类型', color_discrete_sequence=px.colors.qualitative.Dark24) fig.update_layout( margin=dict(l=30, r=30, t=30, b=30), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), ) fig.update_yaxes(title_text="体温测量数量", ) fig.update_xaxes(title_text="月份", ) return fig, temp_second_level_first_fig_data # 下载二级图一明细 @app.callback( Output('temp_second_level_first_fig_detail', 'data'), Input('temp_second_level_first_fig_data_detail_down','n_clicks'), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def download_first_level_third_fig_data_detail(n_clicks,db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] engine = create_engine(db_con_url['db']) bus_dic = { '体温测量值异常': f"select * from TEMPERATURE where (VALUE >46 or VALUE<34) and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' ", '体温测量值缺失': f"select * from TEMPERATURE where VALUE is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' ", '科室缺失': f"select * from TEMPERATURE where DEPT is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' ", '体温测量时机缺失': f"select * from TEMPERATURE where OUTSIDE is null and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' ", '体温测量时间无时间点': f"select * from TEMPERATURE where length(RECORDDATE)<19 and substr(RECORDDATE,1,7)>='{btime}' and substr(RECORDDATE,1,7)<='{etime}' ", '体温测量时间在出入院时间之外': f""" select t1.*,t2.in_time as 入院时间,t2.out_time as 出院时间 from TEMPERATURE t1,overall t2 where ( t1.RECORDDATE is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.RECORDDATE<t2.IN_TIME or t1.RECORDDATE > t2.OUT_TIME ) and (substr(t1.RECORDDATE,1,7)>='{btime}' and substr(t1.RECORDDATE,1,7)<='{etime}') """, } output = io.BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') for key in bus_dic.keys(): try: temp = pd.read_sql(bus_dic[key], con=engine) if temp.shape[0] > 0: temp.to_excel(writer, sheet_name=key) except: error_df = pd.DataFrame(['明细数据获取出错'], columns=[key]) error_df.to_excel(writer, sheet_name=key) writer.save() data = output.getvalue() hosName = db_con_url['hosname'] return dcc.send_bytes(data, f'{hosName}体温问题数据明细.xlsx') else: return dash.no_update # # # # ----------------------------------------------------------------------------------------------------- 三级图一 ---------------------------------------------------------------------------------------------------------------------- # 获取生化检验三级第一张图数据 def get_third_lev_first_fig_date(engine,btime,etime): res_数据时间缺失及汇总 = pd.DataFrame(columns=['问题类型', 'num', 'month' ]) # 问题类别、问题数据量统计、全数据统计 bus_dic = { '标本缺失': f"select '标本缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and SPECIMEN is null group by substr(REQUESTTIME,1,7)", '检验项目缺失': f"select '检验项目缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RTYPE is null group by substr(REQUESTTIME,1,7)", '检验结果缺失': f"select '检验结果缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RVALUE is null group by substr(REQUESTTIME,1,7)", '院内外标识缺失': f"select '院内外标识缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and OUTSIDE is null group by substr(REQUESTTIME,1,7)", '检验子项缺失': f"select '检验子项缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RITEM is null group by substr(REQUESTTIME,1,7)", '定性结果缺失': f"select '定性结果缺失' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and ABNORMAL is null group by substr(REQUESTTIME,1,7)", '申请时间大于等于报告时间': f"select '申请时间大于等于报告时间' as 问题类型 ,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where REQUESTTIME >= REPORTTIME and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' group by substr(REQUESTTIME,1,7)", '申请时间在出入院时间之外': f""" select '申请时间在出入院时间之外' as 问题类型,count(1) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 t1,overall t2 where ( t1.REQUESTTIME is not null and t1.REPORTTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.REQUESTTIME<t2.IN_TIME or t1.REQUESTTIME > t2.OUT_TIME ) and (substr(t1.REQUESTTIME,1,7)>='{btime}' and substr(t1.REQUESTTIME,1,7)<='{etime}') group by substr(REQUESTTIME,1,7) """, } for bus in bus_dic: res_数据时间缺失及汇总 = res_数据时间缺失及汇总.append(pd.read_sql(bus_dic[bus],con=engine)) return res_数据时间缺失及汇总 # 更新抗菌药物-菌检出-药敏一级图一 @app.callback( Output('rout_third_level_first_fig','figure'), Output('rout_third_level_first_fig_data','data'), Input('rout_third_level_first_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_first_level_first_fig(rout_third_level_first_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if rout_third_level_first_fig_data is None: rout_third_level_first_fig_data = {} rout_third_level_first_fig = get_third_lev_first_fig_date(engine, btime, etime) rout_third_level_first_fig_data['rout_third_level_first_fig'] = rout_third_level_first_fig.to_json( orient='split', date_format='iso') rout_third_level_first_fig_data['hosname'] = db_con_url['hosname'] rout_third_level_first_fig_data['btime'] = btime rout_third_level_first_fig_data['etime'] = etime rout_third_level_first_fig_data = json.dumps(rout_third_level_first_fig_data) else: rout_third_level_first_fig_data = json.loads(rout_third_level_first_fig_data) if db_con_url['hosname'] != rout_third_level_first_fig_data['hosname']: rout_third_level_first_fig = get_third_lev_first_fig_date(engine, btime, etime) rout_third_level_first_fig_data['rout_third_level_first_fig'] = rout_third_level_first_fig.to_json( orient='split', date_format='iso') rout_third_level_first_fig_data['hosname'] = db_con_url['hosname'] rout_third_level_first_fig_data['btime'] = btime rout_third_level_first_fig_data['etime'] = etime rout_third_level_first_fig_data = json.dumps(rout_third_level_first_fig_data) else: if rout_third_level_first_fig_data['btime'] != btime or rout_third_level_first_fig_data[ 'etime'] != etime: rout_third_level_first_fig = get_third_lev_first_fig_date(engine, btime, etime) rout_third_level_first_fig_data[ 'rout_third_level_first_fig'] = rout_third_level_first_fig.to_json(orient='split', date_format='iso') rout_third_level_first_fig_data['btime'] = btime rout_third_level_first_fig_data['etime'] = etime rout_third_level_first_fig_data = json.dumps(rout_third_level_first_fig_data) else: rout_third_level_first_fig = pd.read_json( rout_third_level_first_fig_data['rout_third_level_first_fig'], orient='split') rout_third_level_first_fig_data = dash.no_update rout_third_level_first_fig = rout_third_level_first_fig.sort_values(['month']) fig = px.line(rout_third_level_first_fig,x='month',y='num',color='问题类型',color_discrete_sequence=px.colors.qualitative.Dark24 ) fig.update_layout( margin=dict(l=20, r=20, t=20, b=20), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ) ) fig.update_yaxes(title_text="问题数量") fig.update_xaxes(title_text="月份") return fig, rout_third_level_first_fig_data # 下载三级图一明细 @app.callback( Output('rout_third_level_first_fig_detail', 'data'), Input('rout_third_level_first_fig_data_detail_down','n_clicks'), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def download_first_level_third_fig_data_detail(n_clicks,db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] bus_dic = { '标本缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and SPECIMEN is null ", '检验项目缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RTYPE is null ", '检验结果缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RVALUE is null ", '院内外标识缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and OUTSIDE is null ", '检验子项缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and RITEM is null ", '定性结果缺失': f"select * from ROUTINE2 where REQUESTTIME is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' and ABNORMAL is null ", '申请时间大于等于报告时间': f"select * from ROUTINE2 where REQUESTTIME >= REPORTTIME and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' ", '申请时间在出入院时间之外': f""" select t1.* ,t2.in_time as 入院时间,t2.out_time as 出院时间 from ROUTINE2 t1,overall t2 where ( t1.REQUESTTIME is not null and t1.REPORTTIME is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.REQUESTTIME<t2.IN_TIME or t1.REQUESTTIME > t2.OUT_TIME ) and (substr(t1.REQUESTTIME,1,7)>='{btime}' and substr(t1.REQUESTTIME,1,7)<='{etime}') """, } output = io.BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') for key in bus_dic.keys(): try: temp = pd.read_sql(bus_dic[key], con=engine) if temp.shape[0] > 0: temp.to_excel(writer, sheet_name=key) except: error_df = pd.DataFrame(['明细数据获取出错'], columns=[key]) error_df.to_excel(writer, sheet_name=key) writer.save() data = output.getvalue() hosName = db_con_url['hosname'] return dcc.send_bytes(data, f'{hosName}生化检验问题数据明细.xlsx') else: return dash.no_update # # # ----------------------------------------------------------------------------------------------------- 三级图二 ---------------------------------------------------------------------------------------------------------------------- # 获取生化三级第二张图数据 def get_third_level_second_fig_date(engine,btime,etime): res = pd.read_sql(f"select RTYPE as 生化检验类型,count(distinct CASEID||TESTNO||RTYPE) as num ,substr(REQUESTTIME,1,7) as month from ROUTINE2 where RTYPE is not null and substr(REQUESTTIME,1,7)>='{btime}' and substr(REQUESTTIME,1,7)<='{etime}' group by RTYPE,substr(REQUESTTIME,1,7)",con=engine) return res # 更新生化三级第二张图 @app.callback( Output('rout_third_level_second_fig','figure'), Output('rout_third_level_second_fig_data','data'), Input('rout_third_level_second_fig_data','data'), Input("db_con_url", "data"), Input("count_time", "data"), # prevent_initial_call=True ) def update_second_level_fig(rout_third_level_second_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if rout_third_level_second_fig_data is None: rout_third_level_second_fig_data = {} rout_third_level_second_fig = get_third_level_second_fig_date(engine, btime, etime) rout_third_level_second_fig_data['rout_third_level_second_fig'] = rout_third_level_second_fig.to_json(orient='split', date_format='iso') rout_third_level_second_fig_data['hosname'] = db_con_url['hosname'] rout_third_level_second_fig_data['btime'] = btime rout_third_level_second_fig_data['etime'] = etime rout_third_level_second_fig_data = json.dumps(rout_third_level_second_fig_data) else: rout_third_level_second_fig_data = json.loads(rout_third_level_second_fig_data) if db_con_url['hosname'] != rout_third_level_second_fig_data['hosname']: rout_third_level_second_fig = get_third_level_second_fig_date(engine, btime, etime) rout_third_level_second_fig_data['rout_third_level_second_fig'] = rout_third_level_second_fig.to_json(orient='split',date_format='iso') rout_third_level_second_fig_data['hosname'] = db_con_url['hosname'] rout_third_level_second_fig_data['btime'] = btime rout_third_level_second_fig_data['etime'] = etime rout_third_level_second_fig_data = json.dumps(rout_third_level_second_fig_data) else: if rout_third_level_second_fig_data['btime'] != btime or rout_third_level_second_fig_data['etime'] != etime: rout_third_level_second_fig = get_third_level_second_fig_date(engine, btime, etime) rout_third_level_second_fig_data['rout_third_level_second_fig'] = rout_third_level_second_fig.to_json(orient='split',date_format='iso') rout_third_level_second_fig_data['btime'] = btime rout_third_level_second_fig_data['etime'] = etime rout_third_level_second_fig_data = json.dumps(rout_third_level_second_fig_data) else: rout_third_level_second_fig = pd.read_json(rout_third_level_second_fig_data['rout_third_level_second_fig'], orient='split') rout_third_level_second_fig_data = dash.no_update rout_third_level_second_fig = rout_third_level_second_fig.sort_values(['month']) # fig = px.line(rout_third_level_second_fig,x='month',y='num',color='生化检验类型',color_discrete_sequence=px.colors.qualitative.Dark24) fig = px.bar(rout_third_level_second_fig,x='month',y='num',color='生化检验类型',color_discrete_sequence=px.colors.qualitative.Dark24) fig.update_layout( margin=dict(l=20, r=20, t=20, b=20), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ) ) fig.update_yaxes(title_text="生化检验数量", ) fig.update_xaxes(title_text="月份", ) return fig,rout_third_level_second_fig_data # # # ----------------------------------------------------------------------------------------------------- 四级图一 ---------------------------------------------------------------------------------------------------------------------- # 获取检查四级第一张图数据 def get_fourth_level_first_fig_date(engine,btime,etime): res = pd.DataFrame(columns=['问题类型', 'num', 'month']) # 问题类别、问题数据量统计、全数据统计 bus_dic = { '检查类别缺失': f"select '检查类别缺失' as 问题类型 ,count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and EXAM_CLASS is null group by substr(EXAM_DATE,1,7)", '检查部位缺失': f"select '检验部位缺失' as 问题类型 ,count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and EXAM_PARA is null group by substr(EXAM_DATE,1,7)", '检查所见缺失': f"select '检查所见缺失' as 问题类型 ,count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and DESCRIPTION is null group by substr(EXAM_DATE,1,7)", '检查印象缺失': f"select '检查印象缺失' as 问题类型 ,count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and IMPRESSION is null group by substr(EXAM_DATE,1,7)", '检查时间在出入院时间之外': f""" select '检查时间在出入院时间之外' as 问题类型,count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM t1,overall t2 where ( t1.EXAM_DATE is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.EXAM_DATE<t2.IN_TIME or t1.EXAM_DATE > t2.OUT_TIME ) and (substr(t1.EXAM_DATE,1,7)>='{btime}' and substr(t1.EXAM_DATE,1,7)<='{etime}') group by substr(EXAM_DATE,1,7) """, } for bus in bus_dic: res = res.append(pd.read_sql(bus_dic[bus], con=engine)) return res # 四级第一张图更新 @app.callback( Output('exam_fourth_level_first_fig','figure'), Output('exam_fourth_level_first_fig_data', 'data'), Input('exam_fourth_level_first_fig_data', 'data'), Input("db_con_url", "data"), Input("count_time", "data"), ) def update_third_level_first_fig(exam_fourth_level_first_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if exam_fourth_level_first_fig_data is None: exam_fourth_level_first_fig_data = {} exam_fourth_level_first_fig = get_fourth_level_first_fig_date(engine, btime, etime) exam_fourth_level_first_fig_data['exam_fourth_level_first_fig'] = exam_fourth_level_first_fig.to_json( orient='split', date_format='iso') exam_fourth_level_first_fig_data['hosname'] = db_con_url['hosname'] exam_fourth_level_first_fig_data['btime'] = btime exam_fourth_level_first_fig_data['etime'] = etime exam_fourth_level_first_fig_data = json.dumps(exam_fourth_level_first_fig_data) else: exam_fourth_level_first_fig_data = json.loads(exam_fourth_level_first_fig_data) if db_con_url['hosname'] != exam_fourth_level_first_fig_data['hosname']: exam_fourth_level_first_fig = get_fourth_level_first_fig_date(engine, btime, etime) exam_fourth_level_first_fig_data['exam_fourth_level_first_fig'] = exam_fourth_level_first_fig.to_json(orient='split', date_format='iso') exam_fourth_level_first_fig_data['hosname'] = db_con_url['hosname'] exam_fourth_level_first_fig_data['btime'] = btime exam_fourth_level_first_fig_data['etime'] = etime exam_fourth_level_first_fig_data = json.dumps(exam_fourth_level_first_fig_data) else: if exam_fourth_level_first_fig_data['btime'] != btime or exam_fourth_level_first_fig_data['etime'] != etime: exam_fourth_level_first_fig = get_fourth_level_first_fig_date(engine, btime, etime) exam_fourth_level_first_fig_data['exam_fourth_level_first_fig'] = exam_fourth_level_first_fig.to_json(orient='split', date_format='iso') exam_fourth_level_first_fig_data['btime'] = btime exam_fourth_level_first_fig_data['etime'] = etime exam_fourth_level_first_fig_data = json.dumps(exam_fourth_level_first_fig_data) else: exam_fourth_level_first_fig = pd.read_json( exam_fourth_level_first_fig_data['exam_fourth_level_first_fig'], orient='split') exam_fourth_level_first_fig_data = dash.no_update exam_fourth_level_first_fig = exam_fourth_level_first_fig.sort_values(['month']) fig = px.line(exam_fourth_level_first_fig, x="month", y="num", color='问题类型', color_discrete_sequence=px.colors.qualitative.Dark24) fig.update_layout( margin=dict(l=30, r=30, t=30, b=30), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), ) fig.update_yaxes(title_text="问题数量", ) fig.update_xaxes(title_text="月份", ) return fig,exam_fourth_level_first_fig_data # 下载四级图一明细 @app.callback( Output('exam_fourth_level_first_fig_detail', 'data'), Input('exam_fourth_level_first_fig_data_detail_down','n_clicks'), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def download_first_level_third_fig_data_detail(n_clicks,db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] bus_dic = { '检查类别缺失': f"select * from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and EXAM_CLASS is null ", '检查部位缺失': f"select * from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and EXAM_PARA is null ", '检查所见缺失': f"select * from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and DESCRIPTION is null ", '检查印象缺失': f"select * from EXAM where EXAM_DATE is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' and IMPRESSION is null ", '检查时间在出入院时间之外': f""" select t1.* ,t2.in_time as 入院时间,t2.out_time as 出院时间 from EXAM t1,overall t2 where ( t1.EXAM_DATE is not null and t2.in_time is not null and t2.out_time is not null) and t1.caseid = t2.caseid and (t1.EXAM_DATE<t2.IN_TIME or t1.EXAM_DATE > t2.OUT_TIME ) and (substr(t1.EXAM_DATE,1,7)>='{btime}' and substr(t1.EXAM_DATE,1,7)<='{etime}') """, } output = io.BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') for key in bus_dic.keys(): try: temp = pd.read_sql(bus_dic[key], con=engine) if temp.shape[0] > 0: temp.to_excel(writer, sheet_name=key) except: error_df = pd.DataFrame(['明细数据获取出错'], columns=[key]) error_df.to_excel(writer, sheet_name=key) writer.save() data = output.getvalue() hosName = db_con_url['hosname'] return dcc.send_bytes(data, f'{hosName}检查问题数据明细.xlsx') else: return dash.no_update # # ----------------------------------------------------------------------------------------------------- 四级图二 ---------------------------------------------------------------------------------------------------------------------- # 获取检查四级第二张图数据 def get_fourth_level_second_fig_date(engine,btime,etime): res = pd.read_sql(f"select EXAM_CLASS as 检查类别,count(1) as num ,substr(EXAM_DATE,1,7) as month from EXAM where EXAM_CLASS is not null and substr(EXAM_DATE,1,7)>='{btime}' and substr(EXAM_DATE,1,7)<='{etime}' group by substr(EXAM_DATE,1,7),EXAM_CLASS ",con=engine) return res # 四级第一张图更新 @app.callback( Output('exam_fourth_level_second_fig','figure'), Output('exam_fourth_level_second_fig_data', 'data'), Input('exam_fourth_level_second_fig_data', 'data'), Input("db_con_url", "data"), Input("count_time", "data"), ) def update_third_level_first_fig(exam_fourth_level_second_fig_data,db_con_url,count_time): if db_con_url is None: return dash.no_update else: db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] if exam_fourth_level_second_fig_data is None: exam_fourth_level_second_fig_data = {} exam_fourth_level_second_fig = get_fourth_level_second_fig_date(engine, btime, etime) exam_fourth_level_second_fig_data['exam_fourth_level_second_fig'] = exam_fourth_level_second_fig.to_json( orient='split', date_format='iso') exam_fourth_level_second_fig_data['hosname'] = db_con_url['hosname'] exam_fourth_level_second_fig_data['btime'] = btime exam_fourth_level_second_fig_data['etime'] = etime exam_fourth_level_second_fig_data = json.dumps(exam_fourth_level_second_fig_data) else: exam_fourth_level_second_fig_data = json.loads(exam_fourth_level_second_fig_data) if db_con_url['hosname'] != exam_fourth_level_second_fig_data['hosname']: exam_fourth_level_second_fig = get_fourth_level_second_fig_date(engine, btime, etime) exam_fourth_level_second_fig_data['exam_fourth_level_second_fig'] = exam_fourth_level_second_fig.to_json(orient='split', date_format='iso') exam_fourth_level_second_fig_data['hosname'] = db_con_url['hosname'] exam_fourth_level_second_fig_data['btime'] = btime exam_fourth_level_second_fig_data['etime'] = etime exam_fourth_level_second_fig_data = json.dumps(exam_fourth_level_second_fig_data) else: if exam_fourth_level_second_fig_data['btime'] != btime or exam_fourth_level_second_fig_data['etime'] != etime: exam_fourth_level_second_fig = get_fourth_level_second_fig_date(engine, btime, etime) exam_fourth_level_second_fig_data['exam_fourth_level_second_fig'] = exam_fourth_level_second_fig.to_json(orient='split', date_format='iso') exam_fourth_level_second_fig_data['btime'] = btime exam_fourth_level_second_fig_data['etime'] = etime exam_fourth_level_second_fig_data = json.dumps(exam_fourth_level_second_fig_data) else: exam_fourth_level_second_fig = pd.read_json( exam_fourth_level_second_fig_data['exam_fourth_level_second_fig'], orient='split') exam_fourth_level_second_fig_data = dash.no_update exam_fourth_level_second_fig = exam_fourth_level_second_fig.sort_values(['month']) fig = px.bar(exam_fourth_level_second_fig, x="month", y="num", color='检查类别', color_discrete_sequence=px.colors.qualitative.Dark24) fig.update_layout( margin=dict(l=30, r=30, t=30, b=30), legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), ) fig.update_yaxes(title_text="检查数量", ) fig.update_xaxes(title_text="月份", ) return fig,exam_fourth_level_second_fig_data # # # ----------------------------------------------------------------------------------------------------- 全部下载 ---------------------------------------------------------------------------------------------------------------------- # 页面数据统计结果下载 @app.callback( Output("down-rout-exam-temp", "data"), Input("rout-exam-temp-all-count-data-down", "n_clicks"), Input("rout_exam_temp_first_level_first_fig_data", "data"), Input("rout_exam_temp_first_level_second_fig_data", "data"), Input("temp_second_level_first_fig_data", "data"), Input("rout_third_level_first_fig_data", "data"), Input("rout_third_level_second_fig_data", "data"), Input("exam_fourth_level_first_fig_data", "data"), Input("exam_fourth_level_second_fig_data", "data"), Input("db_con_url", "data"), Input("count_time", "data"), prevent_initial_call=True, ) def get_all_count_data(n_clicks, rout_exam_temp_first_level_first_fig_data, rout_exam_temp_first_level_second_fig_data, temp_second_level_first_fig_data, rout_third_level_first_fig_data, rout_third_level_second_fig_data, exam_fourth_level_first_fig_data, exam_fourth_level_second_fig_data, db_con_url,count_time): if db_con_url is None : return dash.no_update else: if n_clicks is not None and n_clicks>0: n_clicks = 0 db_con_url = json.loads(db_con_url) count_time = json.loads(count_time) engine = create_engine(db_con_url['db']) hosName = db_con_url['hosname'] btime = count_time['btime'][0:7] etime = count_time['etime'][0:7] now_time = str(datetime.now())[0:19].replace(' ', '_').replace(':', '_') if rout_exam_temp_first_level_first_fig_data is not None and rout_exam_temp_first_level_second_fig_data is not None and temp_second_level_first_fig_data is not None and \ rout_third_level_first_fig_data is not None and rout_third_level_second_fig_data is not None and exam_fourth_level_first_fig_data is not None and exam_fourth_level_second_fig_data is not None : rout_exam_temp_first_level_first_fig_data = json.loads(rout_exam_temp_first_level_first_fig_data ) rout_exam_temp_first_level_second_fig_data = json.loads(rout_exam_temp_first_level_second_fig_data ) temp_second_level_first_fig_data = json.loads(temp_second_level_first_fig_data ) rout_third_level_first_fig_data = json.loads(rout_third_level_first_fig_data ) rout_third_level_second_fig_data = json.loads(rout_third_level_second_fig_data ) exam_fourth_level_first_fig_data = json.loads(exam_fourth_level_first_fig_data ) exam_fourth_level_second_fig_data = json.loads(exam_fourth_level_second_fig_data ) if rout_exam_temp_first_level_first_fig_data['hosname'] == hosName and \ rout_exam_temp_first_level_second_fig_data['hosname'] == hosName and \ temp_second_level_first_fig_data['hosname'] == hosName and temp_second_level_first_fig_data['btime'] == btime and temp_second_level_first_fig_data['etime'] == etime and \ rout_third_level_first_fig_data['hosname'] == hosName and rout_third_level_first_fig_data['btime'] == btime and rout_third_level_first_fig_data['etime'] == etime and\ rout_third_level_second_fig_data['hosname'] == hosName and rout_third_level_second_fig_data['btime'] == btime and rout_third_level_second_fig_data['etime'] == etime and \ exam_fourth_level_first_fig_data['hosname'] == hosName and exam_fourth_level_first_fig_data['btime'] == btime and exam_fourth_level_first_fig_data['etime'] == etime and \ exam_fourth_level_second_fig_data['hosname'] == hosName and exam_fourth_level_second_fig_data['btime'] == btime and exam_fourth_level_second_fig_data['etime'] == etime : rout_exam_temp_first_level_first_fig_data = pd.read_json( rout_exam_temp_first_level_first_fig_data['rout_exam_temp_first_level_first_fig'], orient='split') rout_exam_temp_first_level_first_fig_data = rout_exam_temp_first_level_first_fig_data[ (rout_exam_temp_first_level_first_fig_data['month'] >= btime) & ( rout_exam_temp_first_level_first_fig_data['month'] <= etime)] rout_exam_temp_first_level_second_fig_data = pd.read_json( rout_exam_temp_first_level_second_fig_data['rout_exam_temp_first_level_second_fig'], orient='split') temp_second_level_first_fig_data = pd.read_json( temp_second_level_first_fig_data['temp_second_level_first_fig'], orient='split') rout_third_level_first_fig_data = pd.read_json( rout_third_level_first_fig_data['rout_third_level_first_fig'], orient='split') rout_third_level_second_fig_data =
pd.read_json( rout_third_level_second_fig_data['rout_third_level_second_fig'], orient='split')
pandas.read_json
from os import name import pandas as pd import numpy as np from pandas.core.frame import DataFrame import seaborn as sns import matplotlib.pyplot as plt #open csv df = pd.read_csv('cereal.csv') #find negative values and replace will null df = df.replace(-1, np.NaN) #fill null values with mean values for column in ['carbo','sugars','potass']: df[column] = df[column].fillna(df[column].mean()) #apply mean method to selected columns cereal_means = df.loc[:,'protein':'cups'].apply(np.mean) cereal_std = df.loc[:,'protein':'cups'].apply(np.std) #open to file and append to it f = open('cereal data.txt','a+') f.write('Cereal means: \n') f.write(cereal_means.to_string()) f.writelines('\n\nCereal Standard Deviation: \n ') f.write(cereal_std.to_string()) #print to console print('Cereal Means: \n{}' '\n\nCereal Standard Deviation: \n{}'.format(cereal_means,cereal_std)) #max a list by selected column name and return the max value and save the name of the row calories = list(df[df['calories'] == max(df['calories'])]['name'])[0] protein = list(df[df['protein'] == max(df['protein'])]['name'])[0] fat = list(df[df['fat'] == max(df['fat'])]['name'])[0] sodium = list(df[df['sodium'] == max(df['sodium'])]['name'])[0] fiber = list(df[df['fiber'] == max(df['fiber'])]['name'])[0] max_cereals = str('\nCereal with the most calories: {}' '\nCereal with the most protein: {}' '\nCereal with the most fat: {}' '\nCereal with the most sodium: {}''\nCereal with the most fiber: {}'.format(calories,protein,fat,sodium,fiber)) print(max_cereals) f.write('\n\nCereal Max Values: \n') f.write(max_cereals) #get the mfr column manufactors = df.loc[:,'mfr'] manufactors = manufactors.reset_index().melt(id_vars='index') #plot with kind= count sns.catplot( x='value', data=manufactors, kind='count', ) plt.xlabel('Manufactors') plt.ylabel('Counts') plt.title('Cereal Totals by Manufactor') plt.savefig('manufactors.png') plt.show() #plot the calories per serving with the distribution of the mean cps = df.loc[:,'calories'] cps = cps.reset_index().melt(id_vars='index') #plot with the distribution line sns.displot( df['calories'], kde=True, bins=10 ) plt.axvline plt.xlabel('calories') plt.ylabel('Counts') plt.title('Calorie Distribution') plt.savefig('calories.png') plt.show() #boxplot calories per manufactor cb =
pd.DataFrame(df.loc[:,['calories','name','mfr']])
pandas.DataFrame
from sklearn.cluster import MeanShift, estimate_bandwidth import pandas as pd import glob from pathlib import Path from spatiotemporal.util import sampling def load_data_nrel(path, resampling=None): ## some resampling options: 'H' - hourly, '15min' - 15 minutes, 'M' - montlhy ## more options at: ## http://benalexkeen.com/resampling-time-series-data-with-pandas/ allFiles = glob.iglob(path + "/**/*.txt", recursive=True) frame = pd.DataFrame() list_ = [] for file_ in allFiles: #print("Reading: ",file_) df = pd.read_csv(file_,index_col="datetime",parse_dates=['datetime'], header=0, sep=",") if frame.columns is None : frame.columns = df.columns list_.append(df) frame = pd.concat(list_) if resampling is not None: frame = frame.resample(resampling).mean() frame = frame.fillna(method='ffill') frame.columns = ['DHHL_3', 'DHHL_4', 'DHHL_5', 'DHHL_10', 'DHHL_11', 'DHHL_9', 'DHHL_2', 'DHHL_1', 'DHHL_1_Tilt', 'AP_6', 'AP_6_Tilt', 'AP_1', 'AP_3', 'AP_5', 'AP_4', 'AP_7', 'DHHL_6', 'DHHL_7', 'DHHL_8'] return frame def create_spatio_temporal_data_oahu(oahu_df): lat = [21.31236,21.31303,21.31357,21.31183,21.31042,21.31268,21.31451,21.31533,21.30812,21.31276,21.31281,21.30983,21.31141,21.31478,21.31179,21.31418,21.31034] lon = [-158.08463,-158.08505,-158.08424,-158.08554,-158.0853,-158.08688,-158.08534,-158.087,-158.07935,-158.08389,-158.08163,-158.08249,-158.07947,-158.07785,-158.08678,-158.08685,-158.08675] additional_info = pd.DataFrame({'station': oahu_df.columns, 'latitude': lat, 'longitude': lon }) ll = [] for ind, row in oahu_df.iterrows(): for col in oahu_df.columns: lat = additional_info[(additional_info.station == col)].latitude.values[0] lon = additional_info[(additional_info.station == col)].longitude.values[0] irradiance = row[col] ll.append([lat, lon, irradiance]) return pd.DataFrame(columns=['latitude','longitude','irradiance'], data=ll) def load_oahu_dataset(start_date = "2010-04-01", end_date = "2011-10-31"): """ Dataset used in "Impact of network layout and time resolution on spatio-temporal solar forecasting" - <NAME>, <NAME>. - Solar Energy 2018 :param start_date: time series start date in dd-mm-yyyy :param end_date: time series end date in dd-mm-yyyy :return: dataset in dataframe """ # read raw dataset df =
pd.read_csv('https://query.data.world/s/76ohtd4zd6a6fhiwwe742y23fiplgk')
pandas.read_csv
import unittest import qteasy as qt import pandas as pd from pandas import Timestamp import numpy as np import math from numpy import int64 import itertools import datetime from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day from qteasy.utilfuncs import next_market_trade_day, unify, mask_to_signal, list_or_slice, labels_to_dict from qteasy.utilfuncs import weekday_name, prev_market_trade_day, is_number_like, list_truncate, input_to_list from qteasy.space import Space, Axis, space_around_centre, ResultPool from qteasy.core import apply_loop from qteasy.built_in import SelectingFinanceIndicator, TimingDMA, TimingMACD, TimingCDL, TimingTRIX from qteasy.tsfuncs import income, indicators, name_change, get_bar from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic, stock_company from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv from qteasy.evaluate import eval_info_ratio, eval_max_drawdown, eval_sharp from qteasy.evaluate import eval_volatility from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc from qteasy.tafuncs import macdfix, mfi, minus_di, minus_dm, mom, plus_di, plus_dm from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu from qteasy.tafuncs import cdlconcealbabyswall, cdlcounterattack, cdldarkcloudcover from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod from qteasy.tafuncs import cdlhomingpigeon, cdlidentical3crows, cdlinneck from qteasy.tafuncs import cdlinvertedhammer, cdlkicking, cdlkickingbylength from qteasy.tafuncs import cdlladderbottom, cdllongleggeddoji, cdllongline, cdlmarubozu from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlrisefall3methods from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop from qteasy.tafuncs import cdlstalledpattern, cdlsticksandwich, cdltakuri, cdltasukigap from qteasy.tafuncs import cdlthrusting, cdltristar, cdlunique3river, cdlupsidegap2crows from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle from qteasy.tafuncs import linearreg_intercept, linearreg_slope, stddev, tsf, var, acos from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh from qteasy.tafuncs import sqrt, tan, tanh, add, div, max, maxindex, min, minindex, minmax from qteasy.tafuncs import minmaxindex, mult, sub, sum from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data from qteasy.history import stack_dataframes, dataframe_to_hp, HistoryPanel from qteasy.database import DataSource from qteasy.strategy import Strategy, SimpleTiming, RollingTiming, SimpleSelecting, FactoralSelecting from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs from qteasy.blender import _exp_to_token, blender_parser, signal_blend class TestCost(unittest.TestCase): def setUp(self): self.amounts = np.array([10000., 20000., 10000.]) self.op = np.array([0., 1., -0.33333333]) self.amounts_to_sell = np.array([0., 0., -3333.3333]) self.cash_to_spend = np.array([0., 20000., 0.]) self.prices = np.array([10., 20., 10.]) self.r = qt.Cost(0.0) def test_rate_creation(self): """测试对象生成""" print('testing rates objects\n') self.assertIsInstance(self.r, qt.Cost, 'Type should be Rate') self.assertEqual(self.r.buy_fix, 0) self.assertEqual(self.r.sell_fix, 0) def test_rate_operations(self): """测试交易费率对象""" self.assertEqual(self.r['buy_fix'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['sell_fix'], 0.0, 'Item got is wrong') self.assertEqual(self.r['buy_rate'], 0.003, 'Item got is incorrect') self.assertEqual(self.r['sell_rate'], 0.001, 'Item got is incorrect') self.assertEqual(self.r['buy_min'], 5., 'Item got is incorrect') self.assertEqual(self.r['sell_min'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['slipage'], 0.0, 'Item got is incorrect') self.assertEqual(np.allclose(self.r.calculate(self.amounts), [0.003, 0.003, 0.003]), True, 'fee calculation wrong') def test_rate_fee(self): """测试买卖交易费率""" self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 0. self.r.sell_min = 0. self.r.slipage = 0. print('\nSell result with fixed rate = 0.001 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33299.999667, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.333332999999996, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1.)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33296.67, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.33, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 32967.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997.00897308, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82053838484547, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 1:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 1)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -19999.82, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -18054., msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 54.0, msg='result incorrect') def test_min_fee(self): """测试最低交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 300 self.r.slipage = 0. print('\npurchase result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_min_fee_result[0], [0., 985, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_min_fee_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33033.333) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33030) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 32700) self.assertAlmostEqual(test_min_fee_result[2], 300.0) def test_rate_with_min(self): """测试最低交易费用对其他交易费率参数的影响""" self.r.buy_rate = 0.0153 self.r.sell_rate = 0.01 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 333 self.r.slipage = 0. print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 984.9305624, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 301.3887520929774, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32999.99967) self.assertAlmostEqual(test_rate_with_min_result[2], 333.33333) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32996.7) self.assertAlmostEqual(test_rate_with_min_result[2], 333.3) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32667.0) self.assertAlmostEqual(test_rate_with_min_result[2], 333.0) def test_fixed_fee(self): """测试固定交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 200 self.r.sell_fix = 150 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nselling result of fixed cost with fixed fee = 150 and moq=0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 0)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], 33183.333, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150.0, msg='result incorrect') print('\nselling result of fixed cost with fixed fee = 150 and moq=100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3300.]), True, f'result incorrect, {test_fixed_fee_result[0]} does not equal to [0,0,-3400]') self.assertAlmostEqual(test_fixed_fee_result[1], 32850., msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150., msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 990., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18200.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') def test_slipage(self): """测试交易滑点""" self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.slipage = 1E-9 print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) print('\nselling result with fixed rate = 0.001 and slipage = 1E-10:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, f'{test_fixed_fee_result[0]} does not equal to [0, 0, -10000]') self.assertAlmostEqual(test_fixed_fee_result[1], 33298.88855591, msg=f'{test_fixed_fee_result[1]} does not equal to 99890.') self.assertAlmostEqual(test_fixed_fee_result[2], 34.44444409, msg=f'{test_fixed_fee_result[2]} does not equal to -36.666663.') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 996.98909294, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 60.21814121353513, msg='result incorrect') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18054.36, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 54.36, msg='result incorrect') class TestSpace(unittest.TestCase): def test_creation(self): """ test if creation of space object is fine """ # first group of inputs, output Space with two discr axis from [0,10] print('testing space objects\n') # pars_list = [[(0, 10), (0, 10)], # [[0, 10], [0, 10]]] # # types_list = ['discr', # ['discr', 'discr']] # # input_pars = itertools.product(pars_list, types_list) # for p in input_pars: # # print(p) # s = qt.Space(*p) # b = s.boes # t = s.types # # print(s, t) # self.assertIsInstance(s, qt.Space) # self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') # self.assertEqual(t, ['discr', 'discr'], 'types incorrect') # pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = ['foo, bar', ['foo', 'bar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['enum', 'enum'], 'types incorrect') pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = [['discr', 'foobar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['discr', 'enum'], 'types incorrect') pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types='conti, enum') self.assertEqual(s.types, ['conti', 'enum']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 2)) self.assertEqual(s.shape, (np.inf, 2)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(1, 2), (2, 3), (3, 4)] s = Space(pars=pars_list) self.assertEqual(s.types, ['discr', 'discr', 'discr']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (2, 2, 2)) self.assertEqual(s.shape, (2, 2, 2)) self.assertEqual(s.count, 8) self.assertEqual(s.boes, [(1, 2), (2, 3), (3, 4)]) pars_list = [(1, 2, 3), (2, 3, 4), (3, 4, 5)] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) pars_list = [((1, 2, 3), (2, 3, 4), (3, 4, 5))] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum']) self.assertEqual(s.dim, 1) self.assertEqual(s.size, (3,)) self.assertEqual(s.shape, (3,)) self.assertEqual(s.count, 3) pars_list = ((1, 2, 3), (2, 3, 4), (3, 4, 5)) s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) def test_extract(self): """ :return: """ pars_list = [(0, 10), (0, 10)] types_list = ['discr', 'discr'] s = Space(pars=pars_list, par_types=types_list) extracted_int, count = s.extract(3, 'interval') extracted_int_list = list(extracted_int) print('extracted int\n', extracted_int_list) self.assertEqual(count, 16, 'extraction count wrong!') self.assertEqual(extracted_int_list, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') extracted_rand, count = s.extract(10, 'rand') extracted_rand_list = list(extracted_rand) self.assertEqual(count, 10, 'extraction count wrong!') print('extracted rand\n', extracted_rand_list) for point in list(extracted_rand_list): self.assertEqual(len(point), 2) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) extracted_int2, count = s.extract(3, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list2 = list(extracted_int2) self.assertEqual(extracted_int_list2, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') print('extracted int list 2\n', extracted_int_list2) self.assertIsInstance(extracted_int_list2[0][0], float) self.assertIsInstance(extracted_int_list2[0][1], (int, int64)) extracted_rand2, count = s.extract(10, 'rand') self.assertEqual(count, 10, 'extraction count wrong!') extracted_rand_list2 = list(extracted_rand2) print('extracted rand list 2:\n', extracted_rand_list2) for point in extracted_rand_list2: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], float) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], (int, int64)) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), ('a', 'b')] s = Space(pars=pars_list, par_types='enum, enum') extracted_int3, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list3 = list(extracted_int3) self.assertEqual(extracted_int_list3, [(0., 'a'), (0., 'b'), (10, 'a'), (10, 'b')], 'space extraction wrong!') print('extracted int list 3\n', extracted_int_list3) self.assertIsInstance(extracted_int_list3[0][0], float) self.assertIsInstance(extracted_int_list3[0][1], str) extracted_rand3, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list3 = list(extracted_rand3) print('extracted rand list 3:\n', extracted_rand_list3) for point in extracted_rand_list3: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (float, int)) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], str) self.assertIn(point[1], ['a', 'b']) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14))] s = Space(pars=pars_list, par_types='enum') extracted_int4, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list4 = list(extracted_int4) it = zip(extracted_int_list4, [(0, 10), (1, 'c'), (0, 'b'), (1, 14)]) for item, item2 in it: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 4\n', extracted_int_list4) self.assertIsInstance(extracted_int_list4[0], tuple) extracted_rand4, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list4 = list(extracted_rand4) print('extracted rand list 4:\n', extracted_rand_list4) for point in extracted_rand_list4: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (int, str)) self.assertIn(point[0], [0, 1, 'a']) self.assertIsInstance(point[1], (int, str)) self.assertIn(point[1], [10, 14, 'b', 'c']) self.assertIn(point, [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14)), (1, 4)] s = Space(pars=pars_list, par_types='enum, discr') extracted_int5, count = s.extract(1, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list5 = list(extracted_int5) for item, item2 in extracted_int_list5: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 5\n', extracted_int_list5) self.assertIsInstance(extracted_int_list5[0], tuple) extracted_rand5, count = s.extract(5, 'rand') self.assertEqual(count, 5, 'extraction count wrong!') extracted_rand_list5 = list(extracted_rand5) print('extracted rand list 5:\n', extracted_rand_list5) for point in extracted_rand_list5: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], tuple) print(f'type of point[1] is {type(point[1])}') self.assertIsInstance(point[1], (int, np.int64)) self.assertIn(point[0], [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) print(f'test incremental extraction') pars_list = [(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)] s = Space(pars_list) ext, count = s.extract(64, 'interval') self.assertEqual(count, 4096) points = list(ext) # 已经取出所有的点,围绕其中10个点生成十个subspaces # 检查是否每个subspace都为Space,是否都在s范围内,使用32生成点集,检查生成数量是否正确 for point in points[1000:1010]: subspace = s.from_point(point, 64) self.assertIsInstance(subspace, Space) self.assertTrue(subspace in s) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) ext, count = subspace.extract(32) points = list(ext) self.assertGreaterEqual(count, 512) self.assertLessEqual(count, 4096) print(f'\n---------------------------------' f'\nthe space created around point <{point}> is' f'\n{subspace.boes}' f'\nand extracted {count} points, the first 5 are:' f'\n{points[:5]}') def test_axis_extract(self): # test axis object with conti type axis = Axis((0., 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'conti') self.assertEqual(axis.axis_boe, (0., 5.)) self.assertEqual(axis.count, np.inf) self.assertEqual(axis.size, 5.0) self.assertTrue(np.allclose(axis.extract(1, 'int'), [0., 1., 2., 3., 4.])) self.assertTrue(np.allclose(axis.extract(0.5, 'int'), [0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5])) extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(0 <= item <= 5) for item in extracted])) # test axis object with discrete type axis = Axis((1, 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'discr') self.assertEqual(axis.axis_boe, (1, 5)) self.assertEqual(axis.count, 5) self.assertEqual(axis.size, 5) self.assertTrue(np.allclose(axis.extract(1, 'int'), [1, 2, 3, 4, 5])) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 2, 3, 4, 5]) for item in extracted])) # test axis object with enumerate type axis = Axis((1, 5, 7, 10, 'A', 'F')) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'enum') self.assertEqual(axis.axis_boe, (1, 5, 7, 10, 'A', 'F')) self.assertEqual(axis.count, 6) self.assertEqual(axis.size, 6) self.assertEqual(axis.extract(1, 'int'), [1, 5, 7, 10, 'A', 'F']) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 5, 7, 10, 'A', 'F']) for item in extracted])) def test_from_point(self): """测试从一个点生成一个space""" # 生成一个space,指定space中的一个点以及distance,生成一个sub-space pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10., 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) print('create subspace from a point in space') p = (3, 3) distance = 2 subspace = s.from_point(p, distance) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'discr']) self.assertEqual(subspace.dim, 2) self.assertEqual(subspace.size, (4.0, 5)) self.assertEqual(subspace.shape, (np.inf, 5)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(1, 5), (1, 5)]) print('create subspace from a 6 dimensional discrete space') s = Space(pars=[(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 65345616) self.assertEqual(subspace.size, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.shape, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.count, 65345616) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace from a 6 dimensional continuous space') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 48000000) self.assertEqual(subspace.size, (15.0, 20.0, 20.0, 20.0, 20.0, 20.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace with different distances on each dimension') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = [10, 5, 5, 10, 10, 5] subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 6000000) self.assertEqual(subspace.size, (15.0, 10.0, 10.0, 20.0, 20.0, 10.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (195, 205), (145, 155), (140, 160), (140, 160), (145, 155)]) class TestCashPlan(unittest.TestCase): def setUp(self): self.cp1 = qt.CashPlan(['2012-01-01', '2010-01-01'], [10000, 20000], 0.1) self.cp1.info() self.cp2 = qt.CashPlan(['20100501'], 10000) self.cp2.info() self.cp3 = qt.CashPlan(pd.date_range(start='2019-01-01', freq='Y', periods=12), [i * 1000 + 10000 for i in range(12)], 0.035) self.cp3.info() def test_creation(self): self.assertIsInstance(self.cp1, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp2, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp3, qt.CashPlan, 'CashPlan object creation wrong') # test __repr__() print(self.cp1) print(self.cp2) print(self.cp3) # test __str__() self.cp1.info() self.cp2.info() self.cp3.info() # test assersion errors self.assertRaises(AssertionError, qt.CashPlan, '2016-01-01', [10000, 10000]) self.assertRaises(KeyError, qt.CashPlan, '2020-20-20', 10000) def test_properties(self): self.assertEqual(self.cp1.amounts, [20000, 10000], 'property wrong') self.assertEqual(self.cp1.first_day, Timestamp('2010-01-01')) self.assertEqual(self.cp1.last_day, Timestamp('2012-01-01')) self.assertEqual(self.cp1.investment_count, 2) self.assertEqual(self.cp1.period, 730) self.assertEqual(self.cp1.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01')]) self.assertEqual(self.cp1.ir, 0.1) self.assertAlmostEqual(self.cp1.closing_value, 34200) self.assertAlmostEqual(self.cp2.closing_value, 10000) self.assertAlmostEqual(self.cp3.closing_value, 220385.3483685) self.assertIsInstance(self.cp1.plan, pd.DataFrame) self.assertIsInstance(self.cp2.plan, pd.DataFrame) self.assertIsInstance(self.cp3.plan, pd.DataFrame) def test_operation(self): cp_self_add = self.cp1 + self.cp1 cp_add = self.cp1 + self.cp2 cp_add_int = self.cp1 + 10000 cp_mul_int = self.cp1 * 2 cp_mul_float = self.cp2 * 1.5 cp_mul_time = 3 * self.cp2 cp_mul_time2 = 2 * self.cp1 cp_mul_time3 = 2 * self.cp3 cp_mul_float2 = 2. * self.cp3 self.assertIsInstance(cp_self_add, qt.CashPlan) self.assertEqual(cp_self_add.amounts, [40000, 20000]) self.assertEqual(cp_add.amounts, [20000, 10000, 10000]) self.assertEqual(cp_add_int.amounts, [30000, 20000]) self.assertEqual(cp_mul_int.amounts, [40000, 20000]) self.assertEqual(cp_mul_float.amounts, [15000]) self.assertEqual(cp_mul_float.dates, [Timestamp('2010-05-01')]) self.assertEqual(cp_mul_time.amounts, [10000, 10000, 10000]) self.assertEqual(cp_mul_time.dates, [Timestamp('2010-05-01'), Timestamp('2011-05-01'), Timestamp('2012-04-30')]) self.assertEqual(cp_mul_time2.amounts, [20000, 10000, 20000, 10000]) self.assertEqual(cp_mul_time2.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01'), Timestamp('2014-01-01'), Timestamp('2016-01-01')]) self.assertEqual(cp_mul_time3.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31'), Timestamp('2031-12-29'), Timestamp('2032-12-29'), Timestamp('2033-12-29'), Timestamp('2034-12-29'), Timestamp('2035-12-29'), Timestamp('2036-12-29'), Timestamp('2037-12-29'), Timestamp('2038-12-29'), Timestamp('2039-12-29'), Timestamp('2040-12-29'), Timestamp('2041-12-29'), Timestamp('2042-12-29')]) self.assertEqual(cp_mul_float2.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31')]) self.assertEqual(cp_mul_float2.amounts, [20000.0, 22000.0, 24000.0, 26000.0, 28000.0, 30000.0, 32000.0, 34000.0, 36000.0, 38000.0, 40000.0, 42000.0]) class TestPool(unittest.TestCase): def setUp(self): self.p = ResultPool(5) self.items = ['first', 'second', (1, 2, 3), 'this', 24] self.perfs = [1, 2, 3, 4, 5] self.additional_result1 = ('abc', 12) self.additional_result2 = ([1, 2], -1) self.additional_result3 = (12, 5) def test_create(self): self.assertIsInstance(self.p, ResultPool) def test_operation(self): self.p.in_pool(self.additional_result1[0], self.additional_result1[1]) self.p.cut() self.assertEqual(self.p.item_count, 1) self.assertEqual(self.p.items, ['abc']) for item, perf in zip(self.items, self.perfs): self.p.in_pool(item, perf) self.assertEqual(self.p.item_count, 6) self.assertEqual(self.p.items, ['abc', 'first', 'second', (1, 2, 3), 'this', 24]) self.p.cut() self.assertEqual(self.p.items, ['second', (1, 2, 3), 'this', 24, 'abc']) self.assertEqual(self.p.perfs, [2, 3, 4, 5, 12]) self.p.in_pool(self.additional_result2[0], self.additional_result2[1]) self.p.in_pool(self.additional_result3[0], self.additional_result3[1]) self.assertEqual(self.p.item_count, 7) self.p.cut(keep_largest=False) self.assertEqual(self.p.items, [[1, 2], 'second', (1, 2, 3), 'this', 24]) self.assertEqual(self.p.perfs, [-1, 2, 3, 4, 5]) class TestCoreSubFuncs(unittest.TestCase): """Test all functions in core.py""" def setUp(self): pass def test_input_to_list(self): print('Testing input_to_list() function') input_str = 'first' self.assertEqual(qt.utilfuncs.input_to_list(input_str, 3), ['first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 4), ['first', 'first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 2, None), ['first', 'first']) input_list = ['first', 'second'] self.assertEqual(qt.utilfuncs.input_to_list(input_list, 3), ['first', 'second', None]) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 4, 'padder'), ['first', 'second', 'padder', 'padder']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 1), ['first', 'second']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, -5), ['first', 'second']) def test_point_in_space(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) p2 = (-1, 3, 10) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') self.assertFalse(p2 in sp) print(f'point {p2} is not in space {sp}') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)], 'conti, conti, enum') p1 = (5.5, 3.2, 8) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') def test_space_in_space(self): print('test if a space is in another space') sp = Space([(0., 10.), (0., 10.), (0., 10.)]) sp2 = Space([(0., 10.), (0., 10.), (0., 10.)]) self.assertTrue(sp2 in sp) self.assertTrue(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is in space {sp2}\n' f'they are equal to each other\n') sp2 = Space([(0, 5.), (2, 7.), (3., 9.)]) self.assertTrue(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'{sp2} is a sub space of {sp}\n') sp2 = Space([(0, 5), (2, 7), (3., 9)]) self.assertFalse(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)]) self.assertFalse(sp in sp2) self.assertFalse(sp2 in sp) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') def test_space_around_centre(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) ssp = space_around_centre(space=sp, centre=p1, radius=1.2) print(ssp.boes) print('\ntest multiple diameters:') self.assertEqual(ssp.boes, [(4.3, 6.7), (2.0, 4.4), (5.8, 8.2)]) ssp = space_around_centre(space=sp, centre=p1, radius=[1, 2, 1]) print(ssp.boes) self.assertEqual(ssp.boes, [(4.5, 6.5), (1.2000000000000002, 5.2), (6.0, 8.0)]) print('\ntest points on edge:') p2 = (5.5, 3.2, 10) ssp = space_around_centre(space=sp, centre=p1, radius=3.9) print(ssp.boes) self.assertEqual(ssp.boes, [(1.6, 9.4), (0.0, 7.1), (3.1, 10.0)]) print('\ntest enum spaces') sp = Space([(0, 100), range(40, 3, -2)], 'discr, enum') p1 = [34, 12] ssp = space_around_centre(space=sp, centre=p1, radius=5, ignore_enums=False) self.assertEqual(ssp.boes, [(29, 39), (22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(ssp.boes) print('\ntest enum space and ignore enum axis') ssp = space_around_centre(space=sp, centre=p1, radius=5) self.assertEqual(ssp.boes, [(29, 39), (40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(sp.boes) def test_get_stock_pool(self): print(f'start test building stock pool function\n') share_basics = stock_basic(fields='ts_code,symbol,name,area,industry,market,list_date,exchange') print(f'\nselect all stocks by area') stock_pool = qt.get_stock_pool(area='上海') print(f'{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "上海"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].eq('上海').all()) print(f'\nselect all stocks by multiple areas') stock_pool = qt.get_stock_pool(area='贵州,北京,天津') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are in list of ["贵州", "北京", "天津"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['贵州', '北京', '天津']).all()) print(f'\nselect all stocks by area and industry') stock_pool = qt.get_stock_pool(area='四川', industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "四川", and industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['四川']).all()) print(f'\nselect all stocks by industry') stock_pool = qt.get_stock_pool(industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stocks industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) print(f'\nselect all stocks by market') stock_pool = qt.get_stock_pool(market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) print(f'\nselect all stocks by market and list date') stock_pool = qt.get_stock_pool(date='2000-01-01', market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板", and list date after "2000-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('2000-01-01').all()) print(f'\nselect all stocks by list date') stock_pool = qt.get_stock_pool(date='1997-01-01') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all list date after "1997-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1997-01-01').all()) print(f'\nselect all stocks by exchange') stock_pool = qt.get_stock_pool(exchange='SSE') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['exchange'].eq('SSE').all()) print(f'\nselect all stocks by industry, area and list date') industry_list = ['银行', '全国地产', '互联网', '环境保护', '区域地产', '酒店餐饮', '运输设备', '综合类', '建筑工程', '玻璃', '家用电器', '文教休闲', '其他商业', '元器件', 'IT设备', '其他建材', '汽车服务', '火力发电', '医药商业', '汽车配件', '广告包装', '轻工机械', '新型电力', '多元金融', '饲料'] area_list = ['深圳', '北京', '吉林', '江苏', '辽宁', '广东', '安徽', '四川', '浙江', '湖南', '河北', '新疆', '山东', '河南', '山西', '江西', '青海', '湖北', '内蒙', '海南', '重庆', '陕西', '福建', '广西', '上海'] stock_pool = qt.get_stock_pool(date='19980101', industry=industry_list, area=area_list) print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1998-01-01').all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(industry_list).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(area_list).all()) self.assertRaises(KeyError, qt.get_stock_pool, industry=25) self.assertRaises(KeyError, qt.get_stock_pool, share_name='000300.SH') self.assertRaises(KeyError, qt.get_stock_pool, markets='SSE') class TestEvaluations(unittest.TestCase): """Test all evaluation functions in core.py""" # 以下手动计算结果在Excel文件中 def setUp(self): """用np.random生成测试用数据,使用cumsum()模拟股票走势""" self.test_data1 = pd.DataFrame([5.34892759, 5.65768696, 5.79227076, 5.56266871, 5.88189632, 6.24795001, 5.92755558, 6.38748165, 6.31331899, 5.86001665, 5.61048472, 5.30696736, 5.40406792, 5.03180571, 5.37886353, 5.78608307, 6.26540339, 6.59348026, 6.90943801, 6.70911677, 6.33015954, 6.06697417, 5.9752499, 6.45786408, 6.95273763, 6.7691991, 6.70355481, 6.28048969, 6.61344541, 6.24620003, 6.47409983, 6.4522311, 6.8773094, 6.99727832, 6.59262674, 6.59014938, 6.63758237, 6.38331869, 6.09902105, 6.35390109, 6.51993567, 6.87244592, 6.83963485, 7.08797815, 6.88003144, 6.83657323, 6.97819483, 7.01600276, 7.12554256, 7.58941523, 7.61014457, 7.21224091, 7.48174399, 7.66490854, 7.51371968, 7.11586198, 6.97147399, 6.67453301, 6.2042138, 6.33967015, 6.22187938, 5.98426993, 6.37096079, 6.55897161, 6.26422645, 6.69363762, 7.12668015, 6.83232926, 7.30524081, 7.4262041, 7.54031383, 7.17545919, 7.20659257, 7.44886016, 7.37094393, 6.88011022, 7.08142491, 6.74992833, 6.5967097, 6.21336693, 6.35565105, 6.82347596, 6.44773408, 6.84538053, 6.47966466, 6.09699528, 5.63927014, 6.01081024, 6.20585303, 6.60528206, 7.01594726, 7.03684251, 6.76574977, 7.08740846, 6.65336462, 7.07126686, 6.80058956, 6.79241977, 6.47843472, 6.39245474], columns=['value']) self.test_data2 = pd.DataFrame([5.09276527, 4.83828592, 4.6000911, 4.63170487, 4.63566451, 4.50546921, 4.96390044, 4.64557907, 4.25787855, 3.76585551, 3.38826334, 3.76243422, 4.06365426, 3.87084726, 3.91400935, 4.13438822, 4.27064542, 4.56776104, 5.03800296, 5.31070529, 5.39902276, 5.21186286, 5.05683114, 4.68842046, 5.11895168, 5.27151571, 5.72294993, 6.09961056, 6.26569635, 6.48806151, 6.16058885, 6.2582459, 6.38934791, 6.57831057, 6.19508831, 5.70155153, 5.20435735, 5.36538825, 5.40450056, 5.2227697, 5.37828693, 5.53058991, 6.02996797, 5.76802181, 5.66166713, 6.07988994, 5.61794367, 5.63218151, 6.10728013, 6.0324168, 6.27164431, 6.27551239, 6.52329665, 7.00470007, 7.34163113, 7.33699083, 7.67661334, 8.09395749, 7.68086668, 7.58341161, 7.46219819, 7.58671899, 7.19348298, 7.40088323, 7.47562005, 7.93342043, 8.2286081, 8.3521632, 8.43590025, 8.34977395, 8.57563095, 8.81586328, 9.08738649, 9.01542031, 8.8653815, 9.21763111, 9.04233017, 8.59533999, 8.47590075, 8.70857222, 8.78890756, 8.92697606, 9.35743773, 9.68280866, 10.15622021, 10.55908549, 10.6337894, 10.55197128, 10.65435176, 10.54611045, 10.19432562, 10.48320884, 10.36176768, 10.03186854, 10.23656092, 10.0062843, 10.13669686, 10.30758958, 9.87904176, 10.05126375], columns=['value']) self.test_data3 = pd.DataFrame([5.02851874, 5.20700348, 5.02410709, 5.49836387, 5.06834371, 5.10956737, 5.15314979, 5.02256472, 5.09746382, 5.23909247, 4.93410336, 4.96316186, 5.40026682, 5.7353255, 5.53438319, 5.79092139, 5.67528173, 5.89840855, 5.75379463, 6.10855386, 5.77322365, 5.84538021, 5.6103973, 5.7518655, 5.49729695, 5.13610628, 5.30524121, 5.68093462, 5.73251319, 6.04420783, 6.26929843, 6.59610234, 6.09872345, 6.25475121, 6.72927396, 6.91395783, 7.00693283, 7.36217783, 7.71516676, 7.67580263, 7.62477511, 7.73600568, 7.53457914, 7.46170277, 7.83658014, 8.11481319, 8.03705544, 7.64948845, 7.52043731, 7.67247943, 7.46511982, 7.43541798, 7.58856517, 7.9392717, 8.25406287, 7.77031632, 8.03223447, 7.86799055, 7.57630999, 7.33230519, 7.22378732, 6.85972264, 7.17548456, 7.5387846, 7.2392632, 6.8455644, 6.59557185, 6.6496796, 6.73685623, 7.18598015, 7.13619128, 6.88060157, 7.1399681, 7.30308077, 6.94942434, 7.0247815, 7.37567798, 7.50080197, 7.59719284, 7.14520561, 7.29913484, 7.79551341, 8.15497781, 8.40456095, 8.86516528, 8.53042688, 8.94268762, 8.52048006, 8.80036284, 8.91602364, 9.19953385, 8.70828953, 8.24613093, 8.18770453, 7.79548389, 7.68627967, 7.23205036, 6.98302636, 7.06515819, 6.95068113], columns=['value']) self.test_data4 = pd.DataFrame([4.97926539, 5.44016005, 5.45122915, 5.74485615, 5.45600553, 5.44858945, 5.2435413, 5.47315161, 5.58464303, 5.36179749, 5.38236326, 5.29614981, 5.76523508, 5.75102892, 6.15316618, 6.03852528, 6.01442228, 5.70510182, 5.22748133, 5.46762379, 5.78926267, 5.8221362, 5.61236849, 5.30615725, 5.24200611, 5.41042642, 5.59940342, 5.28306781, 4.99451932, 5.08799266, 5.38865647, 5.58229139, 5.33492845, 5.48206276, 5.09721379, 5.39190493, 5.29965087, 5.0374415, 5.50798022, 5.43107577, 5.22759507, 4.991809, 5.43153084, 5.39966868, 5.59916352, 5.66412137, 6.00611838, 5.63564902, 5.66723484, 5.29863863, 4.91115153, 5.3749929, 5.75082334, 6.08308148, 6.58091182, 6.77848803, 7.19588758, 7.64862286, 7.99818347, 7.91824794, 8.30341071, 8.45984973, 7.98700002, 8.18924931, 8.60755649, 8.66233396, 8.91018407, 9.0782739, 9.33515448, 8.95870245, 8.98426422, 8.50340317, 8.64916085, 8.93592407, 8.63145745, 8.65322862, 8.39543204, 8.37969997, 8.23394504, 8.04062872, 7.91259763, 7.57252171, 7.72670114, 7.74486117, 8.06908188, 7.99166889, 7.92155906, 8.39956136, 8.80181323, 8.47464091, 8.06557064, 7.87145573, 8.0237959, 8.39481998, 8.68525692, 8.81185461, 8.98632237, 9.0989835, 8.89787405, 8.86508591], columns=['value']) self.test_data5 = pd.DataFrame([4.50258923, 4.35142568, 4.07459514, 3.87791297, 3.73715985, 3.98455684, 4.07587908, 4.00042472, 4.28276612, 4.01362051, 4.13713565, 4.49312372, 4.48633159, 4.4641207, 4.13444605, 3.79107217, 4.22941629, 4.56548511, 4.92472163, 5.27723158, 5.67409193, 6.00176917, 5.88889928, 5.55256103, 5.39308314, 5.2610492, 5.30738908, 5.22222408, 4.90332238, 4.57499908, 4.96097146, 4.81531011, 4.39115442, 4.63200662, 5.04588813, 4.67866025, 5.01705123, 4.83562258, 4.60381702, 4.66187576, 4.41292828, 4.86604507, 4.42280124, 4.07517294, 4.16317319, 4.10316596, 4.42913598, 4.06609666, 3.96725913, 4.15965746, 4.12379564, 4.04054068, 3.84342851, 3.45902867, 3.17649855, 3.09773586, 3.5502119, 3.66396995, 3.66306483, 3.29131401, 2.79558533, 2.88319542, 3.03671098, 3.44645857, 3.88167161, 3.57961874, 3.60180276, 3.96702102, 4.05429995, 4.40056979, 4.05653231, 3.59600456, 3.60792477, 4.09989922, 3.73503663, 4.01892626, 3.94597242, 3.81466605, 3.71417992, 3.93767156, 4.42806557, 4.06988106, 4.03713636, 4.34408673, 4.79810156, 5.18115011, 4.89798406, 5.3960077, 5.72504875, 5.61894017, 5.1958197, 4.85275896, 5.17550207, 4.71548987, 4.62408567, 4.55488535, 4.36532649, 4.26031979, 4.25225607, 4.58627048], columns=['value']) self.test_data6 = pd.DataFrame([5.08639513, 5.05761083, 4.76160923, 4.62166504, 4.62923183, 4.25070173, 4.13447513, 3.90890013, 3.76687608, 3.43342482, 3.67648224, 3.6274775, 3.9385404, 4.39771627, 4.03199346, 3.93265288, 3.50059789, 3.3851961, 3.29743973, 3.2544872, 2.93692949, 2.70893003, 2.55461976, 2.20922332, 2.29054475, 2.2144714, 2.03726827, 2.39007617, 2.29866155, 2.40607111, 2.40440444, 2.79374649, 2.66541922, 2.27018079, 2.08505127, 2.55478864, 2.22415625, 2.58517923, 2.58802256, 2.94870959, 2.69301739, 2.19991535, 2.69473146, 2.64704637, 2.62753542, 2.14240825, 2.38565154, 1.94592117, 2.32243877, 2.69337246, 2.51283854, 2.62484451, 2.15559054, 2.35410875, 2.31219177, 1.96018265, 2.34711266, 2.58083322, 2.40290041, 2.20439791, 2.31472425, 2.16228248, 2.16439749, 2.20080737, 1.73293206, 1.9264407, 2.25089861, 2.69269101, 2.59296687, 2.1420998, 1.67819153, 1.98419023, 2.14479494, 1.89055376, 1.96720648, 1.9916694, 2.37227761, 2.14446036, 2.34573903, 1.86162546, 2.1410721, 2.39204939, 2.52529064, 2.47079939, 2.9299031, 3.09452923, 2.93276708, 3.21731309, 3.06248964, 2.90413406, 2.67844632, 2.45621213, 2.41463398, 2.7373913, 3.14917045, 3.4033949, 3.82283446, 4.02285451, 3.7619638, 4.10346795], columns=['value']) self.test_data7 = pd.DataFrame([4.75233583, 4.47668283, 4.55894263, 4.61765848, 4.622892, 4.58941116, 4.32535872, 3.88112797, 3.47237806, 3.50898953, 3.82530406, 3.6718017, 3.78918195, 4.1800752, 4.01818557, 4.40822582, 4.65474654, 4.89287256, 4.40879274, 4.65505126, 4.36876403, 4.58418934, 4.75687172, 4.3689799, 4.16126498, 4.0203982, 3.77148242, 3.38198096, 3.07261764, 2.9014741, 2.5049543, 2.756105, 2.28779058, 2.16986991, 1.8415962, 1.83319008, 2.20898291, 2.00128981, 1.75747025, 1.26676663, 1.40316876, 1.11126484, 1.60376367, 1.22523829, 1.58816681, 1.49705679, 1.80244138, 1.55128293, 1.35339409, 1.50985759, 1.0808451, 1.05892796, 1.43414812, 1.43039101, 1.73631655, 1.43940867, 1.82864425, 1.71088265, 2.12015154, 2.45417128, 2.84777618, 2.7925612, 2.90975121, 3.25920745, 3.13801182, 3.52733677, 3.65468491, 3.69395211, 3.49862035, 3.24786017, 3.64463138, 4.00331929, 3.62509565, 3.78013949, 3.4174012, 3.76312271, 3.62054004, 3.67206716, 3.60596058, 3.38636199, 3.42580676, 3.32921095, 3.02976759, 3.28258676, 3.45760838, 3.24917528, 2.94618304, 2.86980011, 2.63191259, 2.39566759, 2.53159917, 2.96273967, 3.25626185, 2.97425402, 3.16412191, 3.58280763, 3.23257727, 3.62353556, 3.12806399, 2.92532313], columns=['value']) # 建立一个长度为 500 个数据点的测试数据, 用于测试数据点多于250个的情况下的评价过程 self.long_data = pd.DataFrame([9.879, 9.916, 10.109, 10.214, 10.361, 10.768, 10.594, 10.288, 10.082, 9.994, 10.125, 10.126, 10.384, 10.734, 10.4, 10.87, 11.338, 11.061, 11.415, 11.724, 12.077, 12.196, 12.064, 12.423, 12.19, 11.729, 11.677, 11.448, 11.485, 10.989, 11.242, 11.239, 11.113, 11.075, 11.471, 11.745, 11.754, 11.782, 12.079, 11.97, 12.178, 11.95, 12.438, 12.612, 12.804, 12.952, 12.612, 12.867, 12.832, 12.832, 13.015, 13.315, 13.249, 12.904, 12.776, 12.64, 12.543, 12.287, 12.225, 11.844, 11.985, 11.945, 11.542, 11.871, 12.245, 12.228, 12.362, 11.899, 11.962, 12.374, 12.816, 12.649, 12.252, 12.579, 12.3, 11.988, 12.177, 12.312, 12.744, 12.599, 12.524, 12.82, 12.67, 12.876, 12.986, 13.271, 13.606, 13.82, 14.161, 13.833, 13.831, 14.137, 13.705, 13.414, 13.037, 12.759, 12.642, 12.948, 13.297, 13.483, 13.836, 14.179, 13.709, 13.655, 13.198, 13.508, 13.953, 14.387, 14.043, 13.987, 13.561, 13.391, 12.923, 12.555, 12.503, 12.292, 11.877, 12.34, 12.141, 11.687, 11.992, 12.458, 12.131, 11.75, 11.739, 11.263, 11.762, 11.976, 11.578, 11.854, 12.136, 12.422, 12.311, 12.56, 12.879, 12.861, 12.973, 13.235, 13.53, 13.531, 13.137, 13.166, 13.31, 13.103, 13.007, 12.643, 12.69, 12.216, 12.385, 12.046, 12.321, 11.9, 11.772, 11.816, 11.871, 11.59, 11.518, 11.94, 11.803, 11.924, 12.183, 12.136, 12.361, 12.406, 11.932, 11.684, 11.292, 11.388, 11.874, 12.184, 12.002, 12.16, 11.741, 11.26, 11.123, 11.534, 11.777, 11.407, 11.275, 11.679, 11.62, 11.218, 11.235, 11.352, 11.366, 11.061, 10.661, 10.582, 10.899, 11.352, 11.792, 11.475, 11.263, 11.538, 11.183, 10.936, 11.399, 11.171, 11.214, 10.89, 10.728, 11.191, 11.646, 11.62, 11.195, 11.178, 11.18, 10.956, 11.205, 10.87, 11.098, 10.639, 10.487, 10.507, 10.92, 10.558, 10.119, 9.882, 9.573, 9.515, 9.845, 9.852, 9.495, 9.726, 10.116, 10.452, 10.77, 11.225, 10.92, 10.824, 11.096, 11.542, 11.06, 10.568, 10.585, 10.884, 10.401, 10.068, 9.964, 10.285, 10.239, 10.036, 10.417, 10.132, 9.839, 9.556, 9.084, 9.239, 9.304, 9.067, 8.587, 8.471, 8.007, 8.321, 8.55, 9.008, 9.138, 9.088, 9.434, 9.156, 9.65, 9.431, 9.654, 10.079, 10.411, 10.865, 10.51, 10.205, 10.519, 10.367, 10.855, 10.642, 10.298, 10.622, 10.173, 9.792, 9.995, 9.904, 9.771, 9.597, 9.506, 9.212, 9.688, 10.032, 9.723, 9.839, 9.918, 10.332, 10.236, 9.989, 10.192, 10.685, 10.908, 11.275, 11.72, 12.158, 12.045, 12.244, 12.333, 12.246, 12.552, 12.958, 13.11, 13.53, 13.123, 13.138, 13.57, 13.389, 13.511, 13.759, 13.698, 13.744, 13.467, 13.795, 13.665, 13.377, 13.423, 13.772, 13.295, 13.073, 12.718, 12.388, 12.399, 12.185, 11.941, 11.818, 11.465, 11.811, 12.163, 11.86, 11.935, 11.809, 12.145, 12.624, 12.768, 12.321, 12.277, 11.889, 12.11, 12.606, 12.943, 12.945, 13.112, 13.199, 13.664, 14.051, 14.189, 14.339, 14.611, 14.656, 15.112, 15.086, 15.263, 15.021, 15.346, 15.572, 15.607, 15.983, 16.151, 16.215, 16.096, 16.089, 16.32, 16.59, 16.657, 16.752, 16.583, 16.743, 16.373, 16.662, 16.243, 16.163, 16.491, 16.958, 16.977, 17.225, 17.637, 17.344, 17.684, 17.892, 18.036, 18.182, 17.803, 17.588, 17.101, 17.538, 17.124, 16.787, 17.167, 17.138, 16.955, 17.148, 17.135, 17.635, 17.718, 17.675, 17.622, 17.358, 17.754, 17.729, 17.576, 17.772, 18.239, 18.441, 18.729, 18.319, 18.608, 18.493, 18.069, 18.122, 18.314, 18.423, 18.709, 18.548, 18.384, 18.391, 17.988, 17.986, 17.653, 17.249, 17.298, 17.06, 17.36, 17.108, 17.348, 17.596, 17.46, 17.635, 17.275, 17.291, 16.933, 17.337, 17.231, 17.146, 17.148, 16.751, 16.891, 17.038, 16.735, 16.64, 16.231, 15.957, 15.977, 16.077, 16.054, 15.797, 15.67, 15.911, 16.077, 16.17, 15.722, 15.258, 14.877, 15.138, 15., 14.811, 14.698, 14.407, 14.583, 14.704, 15.153, 15.436, 15.634, 15.453, 15.877, 15.696, 15.563, 15.927, 16.255, 16.696, 16.266, 16.698, 16.365, 16.493, 16.973, 16.71, 16.327, 16.605, 16.486, 16.846, 16.935, 17.21, 17.389, 17.546, 17.773, 17.641, 17.485, 17.794, 17.354, 16.904, 16.675, 16.43, 16.898, 16.819, 16.921, 17.201, 17.617, 17.368, 17.864, 17.484], columns=['value']) self.long_bench = pd.DataFrame([9.7, 10.179, 10.321, 9.855, 9.936, 10.096, 10.331, 10.662, 10.59, 11.031, 11.154, 10.945, 10.625, 10.233, 10.284, 10.252, 10.221, 10.352, 10.444, 10.773, 10.904, 11.104, 10.797, 10.55, 10.943, 11.352, 11.641, 11.983, 11.696, 12.138, 12.365, 12.379, 11.969, 12.454, 12.947, 13.119, 13.013, 12.763, 12.632, 13.034, 12.681, 12.561, 12.938, 12.867, 13.202, 13.132, 13.539, 13.91, 13.456, 13.692, 13.771, 13.904, 14.069, 13.728, 13.97, 14.228, 13.84, 14.041, 13.963, 13.689, 13.543, 13.858, 14.118, 13.987, 13.611, 14.028, 14.229, 14.41, 14.74, 15.03, 14.915, 15.207, 15.354, 15.665, 15.877, 15.682, 15.625, 15.175, 15.105, 14.893, 14.86, 15.097, 15.178, 15.293, 15.238, 15., 15.283, 14.994, 14.907, 14.664, 14.888, 15.297, 15.313, 15.368, 14.956, 14.802, 14.506, 14.257, 14.619, 15.019, 15.049, 14.625, 14.894, 14.978, 15.434, 15.578, 16.038, 16.107, 16.277, 16.365, 16.204, 16.465, 16.401, 16.895, 17.057, 16.621, 16.225, 16.075, 15.863, 16.292, 16.551, 16.724, 16.817, 16.81, 17.192, 16.86, 16.745, 16.707, 16.552, 16.133, 16.301, 16.08, 15.81, 15.75, 15.909, 16.127, 16.457, 16.204, 16.329, 16.748, 16.624, 17.011, 16.548, 16.831, 16.653, 16.791, 16.57, 16.778, 16.928, 16.932, 17.22, 16.876, 17.301, 17.422, 17.689, 17.316, 17.547, 17.534, 17.409, 17.669, 17.416, 17.859, 17.477, 17.307, 17.245, 17.352, 17.851, 17.412, 17.144, 17.138, 17.085, 16.926, 16.674, 16.854, 17.064, 16.95, 16.609, 16.957, 16.498, 16.552, 16.175, 15.858, 15.697, 15.781, 15.583, 15.36, 15.558, 16.046, 15.968, 15.905, 16.358, 16.783, 17.048, 16.762, 17.224, 17.363, 17.246, 16.79, 16.608, 16.423, 15.991, 15.527, 15.147, 14.759, 14.792, 15.206, 15.148, 15.046, 15.429, 14.999, 15.407, 15.124, 14.72, 14.713, 15.022, 15.092, 14.982, 15.001, 14.734, 14.713, 14.841, 14.562, 15.005, 15.483, 15.472, 15.277, 15.503, 15.116, 15.12, 15.442, 15.476, 15.789, 15.36, 15.764, 16.218, 16.493, 16.642, 17.088, 16.816, 16.645, 16.336, 16.511, 16.2, 15.994, 15.86, 15.929, 16.316, 16.416, 16.746, 17.173, 17.531, 17.627, 17.407, 17.49, 17.768, 17.509, 17.795, 18.147, 18.63, 18.945, 19.021, 19.518, 19.6, 19.744, 19.63, 19.32, 18.933, 19.297, 19.598, 19.446, 19.236, 19.198, 19.144, 19.159, 19.065, 19.032, 18.586, 18.272, 18.119, 18.3, 17.894, 17.744, 17.5, 17.083, 17.092, 16.864, 16.453, 16.31, 16.681, 16.342, 16.447, 16.715, 17.068, 17.067, 16.822, 16.673, 16.675, 16.592, 16.686, 16.397, 15.902, 15.597, 15.357, 15.162, 15.348, 15.603, 15.283, 15.257, 15.082, 14.621, 14.366, 14.039, 13.957, 14.141, 13.854, 14.243, 14.414, 14.033, 13.93, 14.104, 14.461, 14.249, 14.053, 14.165, 14.035, 14.408, 14.501, 14.019, 14.265, 14.67, 14.797, 14.42, 14.681, 15.16, 14.715, 14.292, 14.411, 14.656, 15.094, 15.366, 15.055, 15.198, 14.762, 14.294, 13.854, 13.811, 13.549, 13.927, 13.897, 13.421, 13.037, 13.32, 13.721, 13.511, 13.999, 13.529, 13.418, 13.881, 14.326, 14.362, 13.987, 14.015, 13.599, 13.343, 13.307, 13.689, 13.851, 13.404, 13.577, 13.395, 13.619, 13.195, 12.904, 12.553, 12.294, 12.649, 12.425, 11.967, 12.062, 11.71, 11.645, 12.058, 12.136, 11.749, 11.953, 12.401, 12.044, 11.901, 11.631, 11.396, 11.036, 11.244, 10.864, 11.207, 11.135, 11.39, 11.723, 12.084, 11.8, 11.471, 11.33, 11.504, 11.295, 11.3, 10.901, 10.494, 10.825, 11.054, 10.866, 10.713, 10.875, 10.846, 10.947, 11.422, 11.158, 10.94, 10.521, 10.36, 10.411, 10.792, 10.472, 10.305, 10.525, 10.853, 10.556, 10.72, 10.54, 10.583, 10.299, 10.061, 10.004, 9.903, 9.796, 9.472, 9.246, 9.54, 9.456, 9.177, 9.484, 9.557, 9.493, 9.968, 9.536, 9.39, 8.922, 8.423, 8.518, 8.686, 8.771, 9.098, 9.281, 8.858, 9.027, 8.553, 8.784, 8.996, 9.379, 9.846, 9.855, 9.502, 9.608, 9.761, 9.409, 9.4, 9.332, 9.34, 9.284, 8.844, 8.722, 8.376, 8.775, 8.293, 8.144, 8.63, 8.831, 8.957, 9.18, 9.601, 9.695, 10.018, 9.841, 9.743, 9.292, 8.85, 9.316, 9.288, 9.519, 9.738, 9.289, 9.785, 9.804, 10.06, 10.188, 10.095, 9.739, 9.881, 9.7, 9.991, 10.391, 10.002], columns=['value']) def test_performance_stats(self): """test the function performance_statistics() """ pass def test_fv(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_fv(self.test_data1), 6.39245474) self.assertAlmostEqual(eval_fv(self.test_data2), 10.05126375) self.assertAlmostEqual(eval_fv(self.test_data3), 6.95068113) self.assertAlmostEqual(eval_fv(self.test_data4), 8.86508591) self.assertAlmostEqual(eval_fv(self.test_data5), 4.58627048) self.assertAlmostEqual(eval_fv(self.test_data6), 4.10346795) self.assertAlmostEqual(eval_fv(self.test_data7), 2.92532313) self.assertAlmostEqual(eval_fv(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) def test_max_drawdown(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_max_drawdown(self.test_data1)[0], 0.264274308) self.assertEqual(eval_max_drawdown(self.test_data1)[1], 53) self.assertEqual(eval_max_drawdown(self.test_data1)[2], 86) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data1)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data2)[0], 0.334690849) self.assertEqual(eval_max_drawdown(self.test_data2)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data2)[2], 10) self.assertEqual(eval_max_drawdown(self.test_data2)[3], 19) self.assertAlmostEqual(eval_max_drawdown(self.test_data3)[0], 0.244452899) self.assertEqual(eval_max_drawdown(self.test_data3)[1], 90) self.assertEqual(eval_max_drawdown(self.test_data3)[2], 99) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data3)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data4)[0], 0.201849684) self.assertEqual(eval_max_drawdown(self.test_data4)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4)[2], 50) self.assertEqual(eval_max_drawdown(self.test_data4)[3], 54) self.assertAlmostEqual(eval_max_drawdown(self.test_data5)[0], 0.534206456) self.assertEqual(eval_max_drawdown(self.test_data5)[1], 21) self.assertEqual(eval_max_drawdown(self.test_data5)[2], 60) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data5)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data6)[0], 0.670062689) self.assertEqual(eval_max_drawdown(self.test_data6)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data6)[2], 70) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data6)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data7)[0], 0.783577449) self.assertEqual(eval_max_drawdown(self.test_data7)[1], 17) self.assertEqual(eval_max_drawdown(self.test_data7)[2], 51) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data7)[3])) self.assertEqual(eval_max_drawdown(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) # test max drawdown == 0: # TODO: investigate: how does divide by zero change? self.assertAlmostEqual(eval_max_drawdown(self.test_data4 - 5)[0], 1.0770474121951792) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[2], 50) def test_info_ratio(self): reference = self.test_data1 self.assertAlmostEqual(eval_info_ratio(self.test_data2, reference, 'value'), 0.075553316) self.assertAlmostEqual(eval_info_ratio(self.test_data3, reference, 'value'), 0.018949457) self.assertAlmostEqual(eval_info_ratio(self.test_data4, reference, 'value'), 0.056328143) self.assertAlmostEqual(eval_info_ratio(self.test_data5, reference, 'value'), -0.004270068) self.assertAlmostEqual(eval_info_ratio(self.test_data6, reference, 'value'), 0.009198027) self.assertAlmostEqual(eval_info_ratio(self.test_data7, reference, 'value'), -0.000890283) def test_volatility(self): self.assertAlmostEqual(eval_volatility(self.test_data1), 0.748646166) self.assertAlmostEqual(eval_volatility(self.test_data2), 0.75527442) self.assertAlmostEqual(eval_volatility(self.test_data3), 0.654188853) self.assertAlmostEqual(eval_volatility(self.test_data4), 0.688375814) self.assertAlmostEqual(eval_volatility(self.test_data5), 1.089989522) self.assertAlmostEqual(eval_volatility(self.test_data6), 1.775419308) self.assertAlmostEqual(eval_volatility(self.test_data7), 1.962758406) self.assertAlmostEqual(eval_volatility(self.test_data1, logarithm=False), 0.750993311) self.assertAlmostEqual(eval_volatility(self.test_data2, logarithm=False), 0.75571473) self.assertAlmostEqual(eval_volatility(self.test_data3, logarithm=False), 0.655331424) self.assertAlmostEqual(eval_volatility(self.test_data4, logarithm=False), 0.692683021) self.assertAlmostEqual(eval_volatility(self.test_data5, logarithm=False), 1.09602969) self.assertAlmostEqual(eval_volatility(self.test_data6, logarithm=False), 1.774789504) self.assertAlmostEqual(eval_volatility(self.test_data7, logarithm=False), 2.003329156) self.assertEqual(eval_volatility(pd.DataFrame()), -np.inf) self.assertRaises(AssertionError, eval_volatility, [1, 2, 3]) # 测试长数据的Volatility计算 expected_volatility = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.39955371, 0.39974258, 0.40309866, 0.40486593, 0.4055514, 0.40710639, 0.40708157, 0.40609006, 0.4073625, 0.40835305, 0.41155304, 0.41218193, 0.41207489, 0.41300276, 0.41308415, 0.41292392, 0.41207645, 0.41238397, 0.41229291, 0.41164056, 0.41316317, 0.41348842, 0.41462249, 0.41474574, 0.41652625, 0.41649176, 0.41701556, 0.4166593, 0.41684221, 0.41491689, 0.41435209, 0.41549087, 0.41849338, 0.41998049, 0.41959106, 0.41907311, 0.41916103, 0.42120773, 0.42052391, 0.42111225, 0.42124589, 0.42356445, 0.42214672, 0.42324022, 0.42476639, 0.42621689, 0.42549439, 0.42533678, 0.42539414, 0.42545038, 0.42593637, 0.42652095, 0.42665489, 0.42699563, 0.42798159, 0.42784512, 0.42898006, 0.42868781, 0.42874188, 0.42789631, 0.4277768, 0.42776827, 0.42685216, 0.42660989, 0.42563155, 0.42618281, 0.42606281, 0.42505222, 0.42653242, 0.42555378, 0.42500842, 0.42561939, 0.42442059, 0.42395414, 0.42384356, 0.42319135, 0.42397497, 0.42488579, 0.42449729, 0.42508766, 0.42509878, 0.42456616, 0.42535577, 0.42681884, 0.42688552, 0.42779918, 0.42706058, 0.42792887, 0.42762114, 0.42894045, 0.42977398, 0.42919859, 0.42829041, 0.42780946, 0.42825318, 0.42858952, 0.42858315, 0.42805601, 0.42764751, 0.42744107, 0.42775518, 0.42707283, 0.4258592, 0.42615335, 0.42526286, 0.4248906, 0.42368986, 0.4232565, 0.42265079, 0.42263954, 0.42153046, 0.42132051, 0.41995353, 0.41916605, 0.41914271, 0.41876945, 0.41740175, 0.41583884, 0.41614026, 0.41457908, 0.41472411, 0.41310876, 0.41261041, 0.41212369, 0.41211677, 0.4100645, 0.40852504, 0.40860297, 0.40745338, 0.40698661, 0.40644546, 0.40591375, 0.40640744, 0.40620663, 0.40656649, 0.40727154, 0.40797605, 0.40807137, 0.40808913, 0.40809676, 0.40711767, 0.40724628, 0.40713077, 0.40772698, 0.40765157, 0.40658297, 0.4065991, 0.405011, 0.40537645, 0.40432626, 0.40390177, 0.40237701, 0.40291623, 0.40301797, 0.40324145, 0.40312864, 0.40328316, 0.40190955, 0.40246506, 0.40237663, 0.40198407, 0.401969, 0.40185623, 0.40198313, 0.40005643, 0.39940743, 0.39850438, 0.39845398, 0.39695093, 0.39697295, 0.39663201, 0.39675444, 0.39538699, 0.39331959, 0.39326074, 0.39193287, 0.39157266, 0.39021327, 0.39062591, 0.38917591, 0.38976991, 0.38864187, 0.38872158, 0.38868096, 0.38868377, 0.38842057, 0.38654784, 0.38649517, 0.38600464, 0.38408115, 0.38323049, 0.38260215, 0.38207663, 0.38142669, 0.38003262, 0.37969367, 0.37768092, 0.37732108, 0.37741991, 0.37617779, 0.37698504, 0.37606784, 0.37499276, 0.37533731, 0.37350437, 0.37375172, 0.37385382, 0.37384003, 0.37338938, 0.37212288, 0.37273075, 0.370559, 0.37038506, 0.37062153, 0.36964661, 0.36818564, 0.3656634, 0.36539259, 0.36428672, 0.36502487, 0.3647148, 0.36551435, 0.36409919, 0.36348181, 0.36254383, 0.36166601, 0.36142665, 0.35954942, 0.35846915, 0.35886759, 0.35813867, 0.35642888, 0.35375231, 0.35061783, 0.35078463, 0.34995508, 0.34688918, 0.34548257, 0.34633158, 0.34622833, 0.34652111, 0.34622774, 0.34540951, 0.34418809, 0.34276593, 0.34160916, 0.33811193, 0.33822709, 0.3391685, 0.33883381]) test_volatility = eval_volatility(self.long_data) test_volatility_roll = self.long_data['volatility'].values self.assertAlmostEqual(test_volatility, np.nanmean(expected_volatility)) self.assertTrue(np.allclose(expected_volatility, test_volatility_roll, equal_nan=True)) def test_sharp(self): self.assertAlmostEqual(eval_sharp(self.test_data1, 5, 0), 0.06135557) self.assertAlmostEqual(eval_sharp(self.test_data2, 5, 0), 0.167858667) self.assertAlmostEqual(eval_sharp(self.test_data3, 5, 0), 0.09950547) self.assertAlmostEqual(eval_sharp(self.test_data4, 5, 0), 0.154928241) self.assertAlmostEqual(eval_sharp(self.test_data5, 5, 0.002), 0.007868673) self.assertAlmostEqual(eval_sharp(self.test_data6, 5, 0.002), 0.018306537) self.assertAlmostEqual(eval_sharp(self.test_data7, 5, 0.002), 0.006259971) # 测试长数据的sharp率计算 expected_sharp = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.02346815, -0.02618783, -0.03763912, -0.03296276, -0.03085698, -0.02851101, -0.02375842, -0.02016746, -0.01107885, -0.01426613, -0.00787204, -0.01135784, -0.01164232, -0.01003481, -0.00022512, -0.00046792, -0.01209378, -0.01278892, -0.01298135, -0.01938214, -0.01671044, -0.02120509, -0.0244281, -0.02416067, -0.02763238, -0.027579, -0.02372774, -0.02215294, -0.02467094, -0.02091266, -0.02590194, -0.03049876, -0.02077131, -0.01483653, -0.02488144, -0.02671638, -0.02561547, -0.01957986, -0.02479803, -0.02703162, -0.02658087, -0.01641755, -0.01946472, -0.01647757, -0.01280889, -0.00893643, -0.00643275, -0.00698457, -0.00549962, -0.00654677, -0.00494757, -0.0035633, -0.00109037, 0.00750654, 0.00451208, 0.00625502, 0.01221367, 0.01326454, 0.01535037, 0.02269538, 0.02028715, 0.02127712, 0.02333264, 0.02273159, 0.01670643, 0.01376513, 0.01265342, 0.02211647, 0.01612449, 0.00856706, -0.00077147, -0.00268848, 0.00210993, -0.00443934, -0.00411912, -0.0018756, -0.00867461, -0.00581601, -0.00660835, -0.00861137, -0.00678614, -0.01188408, -0.00589617, -0.00244323, -0.00201891, -0.01042846, -0.01471016, -0.02167034, -0.02258554, -0.01306809, -0.00909086, -0.01233746, -0.00595166, -0.00184208, 0.00750497, 0.01481886, 0.01761972, 0.01562886, 0.01446414, 0.01285826, 0.01357719, 0.00967613, 0.01636272, 0.01458437, 0.02280183, 0.02151903, 0.01700276, 0.01597368, 0.02114336, 0.02233297, 0.02585631, 0.02768459, 0.03519235, 0.04204535, 0.04328161, 0.04672855, 0.05046191, 0.04619848, 0.04525853, 0.05381529, 0.04598861, 0.03947394, 0.04665006, 0.05586077, 0.05617728, 0.06495018, 0.06205172, 0.05665466, 0.06500615, 0.0632062, 0.06084328, 0.05851466, 0.05659229, 0.05159347, 0.0432977, 0.0474047, 0.04231723, 0.03613176, 0.03618391, 0.03591012, 0.03885674, 0.0402686, 0.03846423, 0.04534014, 0.04721458, 0.05130912, 0.05026281, 0.05394312, 0.05529349, 0.05949243, 0.05463304, 0.06195165, 0.06767606, 0.06880985, 0.07048996, 0.07078815, 0.07420767, 0.06773439, 0.0658441, 0.06470875, 0.06302349, 0.06456876, 0.06411282, 0.06216669, 0.067094, 0.07055075, 0.07254976, 0.07119253, 0.06173308, 0.05393352, 0.05681246, 0.05250643, 0.06099845, 0.0655544, 0.06977334, 0.06636514, 0.06177949, 0.06869908, 0.06719767, 0.06178738, 0.05915714, 0.06882277, 0.06756821, 0.06507994, 0.06489791, 0.06553941, 0.073123, 0.07576757, 0.06805446, 0.06063571, 0.05033801, 0.05206971, 0.05540306, 0.05249118, 0.05755587, 0.0586174, 0.05051288, 0.0564852, 0.05757284, 0.06358355, 0.06130082, 0.04925482, 0.03834472, 0.04163981, 0.04648316, 0.04457858, 0.04324626, 0.04328791, 0.04156207, 0.04818652, 0.04972634, 0.06024123, 0.06489556, 0.06255485, 0.06069815, 0.06466389, 0.07081163, 0.07895358, 0.0881782, 0.09374151, 0.08336506, 0.08764795, 0.09080174, 0.08808926, 0.08641158, 0.07811943, 0.06885318, 0.06479503, 0.06851185, 0.07382819, 0.07047903, 0.06658251, 0.07638379, 0.08667974, 0.08867918, 0.08245323, 0.08961866, 0.09905298, 0.0961908, 0.08562706, 0.0839014, 0.0849072, 0.08338395, 0.08783487, 0.09463609, 0.10332336, 0.11806497, 0.11220297, 0.11589097, 0.11678405]) test_sharp = eval_sharp(self.long_data, 5, 0.00035) self.assertAlmostEqual(np.nanmean(expected_sharp), test_sharp) self.assertTrue(np.allclose(self.long_data['sharp'].values, expected_sharp, equal_nan=True)) def test_beta(self): reference = self.test_data1 self.assertAlmostEqual(eval_beta(self.test_data2, reference, 'value'), -0.017148939) self.assertAlmostEqual(eval_beta(self.test_data3, reference, 'value'), -0.042204233) self.assertAlmostEqual(eval_beta(self.test_data4, reference, 'value'), -0.15652986) self.assertAlmostEqual(eval_beta(self.test_data5, reference, 'value'), -0.049195532) self.assertAlmostEqual(eval_beta(self.test_data6, reference, 'value'), -0.026995082) self.assertAlmostEqual(eval_beta(self.test_data7, reference, 'value'), -0.01147809) self.assertRaises(TypeError, eval_beta, [1, 2, 3], reference, 'value') self.assertRaises(TypeError, eval_beta, self.test_data3, [1, 2, 3], 'value') self.assertRaises(KeyError, eval_beta, self.test_data3, reference, 'not_found_value') # 测试长数据的beta计算 expected_beta = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.04988841, -0.05127618, -0.04692104, -0.04272652, -0.04080598, -0.0493347, -0.0460858, -0.0416761, -0.03691527, -0.03724924, -0.03678865, -0.03987324, -0.03488321, -0.02567672, -0.02690303, -0.03010128, -0.02437967, -0.02571932, -0.02455681, -0.02839811, -0.03358653, -0.03396697, -0.03466321, -0.03050966, -0.0247583, -0.01629325, -0.01880895, -0.01480403, -0.01348783, -0.00544294, -0.00648176, -0.00467036, -0.01135331, -0.0156841, -0.02340763, -0.02615705, -0.02730771, -0.02906174, -0.02860664, -0.02412914, -0.02066416, -0.01744816, -0.02185133, -0.02145285, -0.02681765, -0.02827694, -0.02394581, -0.02744096, -0.02778825, -0.02703065, -0.03160023, -0.03615371, -0.03681072, -0.04265126, -0.04344738, -0.04232421, -0.04705272, -0.04533344, -0.04605934, -0.05272737, -0.05156463, -0.05134196, -0.04730733, -0.04425352, -0.03869831, -0.04159571, -0.04223998, -0.04346747, -0.04229844, -0.04740093, -0.04992507, -0.04621232, -0.04477644, -0.0486915, -0.04598224, -0.04943463, -0.05006391, -0.05362256, -0.04994067, -0.05464769, -0.05443275, -0.05513493, -0.05173594, -0.04500994, -0.04662891, -0.03903505, -0.0419592, -0.04307773, -0.03925718, -0.03711574, -0.03992631, -0.0433058, -0.04533641, -0.0461183, -0.05600344, -0.05758377, -0.05959874, -0.05605942, -0.06002859, -0.06253002, -0.06747014, -0.06427915, -0.05931947, -0.05769974, -0.04791515, -0.05175088, -0.05748039, -0.05385232, -0.05072975, -0.05052637, -0.05125567, -0.05005785, -0.05325104, -0.04977727, -0.04947867, -0.05148544, -0.05739156, -0.05742069, -0.06047279, -0.0558414, -0.06086126, -0.06265151, -0.06411129, -0.06828052, -0.06781762, -0.07083409, -0.07211207, -0.06799162, -0.06913295, -0.06775162, -0.0696265, -0.06678248, -0.06867502, -0.06581961, -0.07055823, -0.06448184, -0.06097973, -0.05795587, -0.0618383, -0.06130145, -0.06050652, -0.05936661, -0.05749424, -0.0499, -0.05050495, -0.04962687, -0.05033439, -0.05070116, -0.05422009, -0.05369759, -0.05548943, -0.05907353, -0.05933035, -0.05927918, -0.06227663, -0.06011455, -0.05650432, -0.05828134, -0.05620949, -0.05715323, -0.05482478, -0.05387113, -0.05095559, -0.05377999, -0.05334267, -0.05220438, -0.04001521, -0.03892434, -0.03660782, -0.04282708, -0.04324623, -0.04127048, -0.04227559, -0.04275226, -0.04347049, -0.04125853, -0.03806295, -0.0330632, -0.03155531, -0.03277152, -0.03304518, -0.03878731, -0.03830672, -0.03727434, -0.0370571, -0.04509224, -0.04207632, -0.04116198, -0.04545179, -0.04584584, -0.05287341, -0.05417433, -0.05175836, -0.05005509, -0.04268674, -0.03442321, -0.03457309, -0.03613426, -0.03524391, -0.03629479, -0.04361312, -0.02626705, -0.02406115, -0.03046384, -0.03181044, -0.03375164, -0.03661673, -0.04520779, -0.04926951, -0.05726738, -0.0584486, -0.06220608, -0.06800563, -0.06797431, -0.07562211, -0.07481996, -0.07731229, -0.08413381, -0.09031826, -0.09691925, -0.11018071, -0.11952675, -0.10826026, -0.11173895, -0.10756359, -0.10775916, -0.11664559, -0.10505051, -0.10606547, -0.09855355, -0.10004159, -0.10857084, -0.12209301, -0.11605758, -0.11105113, -0.1155195, -0.11569505, -0.10513348, -0.09611072, -0.10719791, -0.10843965, -0.11025856, -0.10247839, -0.10554044, -0.10927647, -0.10645088, -0.09982498, -0.10542734, -0.09631372, -0.08229695]) test_beta_mean = eval_beta(self.long_data, self.long_bench, 'value') test_beta_roll = self.long_data['beta'].values self.assertAlmostEqual(test_beta_mean, np.nanmean(expected_beta)) self.assertTrue(np.allclose(test_beta_roll, expected_beta, equal_nan=True)) def test_alpha(self): reference = self.test_data1 self.assertAlmostEqual(eval_alpha(self.test_data2, 5, reference, 'value', 0.5), 11.63072977) self.assertAlmostEqual(eval_alpha(self.test_data3, 5, reference, 'value', 0.5), 1.886590071) self.assertAlmostEqual(eval_alpha(self.test_data4, 5, reference, 'value', 0.5), 6.827021872) self.assertAlmostEqual(eval_alpha(self.test_data5, 5, reference, 'value', 0.92), -1.192265168) self.assertAlmostEqual(eval_alpha(self.test_data6, 5, reference, 'value', 0.92), -1.437142359) self.assertAlmostEqual(eval_alpha(self.test_data7, 5, reference, 'value', 0.92), -1.781311545) # 测试长数据的alpha计算 expected_alpha = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, -0.09418119, -0.11188463, -0.17938358, -0.15588172, -0.1462678, -0.13089586, -0.10780125, -0.09102891, -0.03987585, -0.06075686, -0.02459503, -0.04104284, -0.0444565, -0.04074585, 0.02191275, 0.02255955, -0.05583375, -0.05875539, -0.06055551, -0.09648245, -0.07913737, -0.10627829, -0.12320965, -0.12368335, -0.1506743, -0.15768033, -0.13638829, -0.13065298, -0.14537834, -0.127428, -0.15504529, -0.18184636, -0.12652146, -0.09190138, -0.14847221, -0.15840648, -0.1525789, -0.11859418, -0.14700954, -0.16295761, -0.16051645, -0.10364859, -0.11961134, -0.10258267, -0.08090148, -0.05727746, -0.0429945, -0.04672356, -0.03581408, -0.0439215, -0.03429495, -0.0260362, -0.01075022, 0.04931808, 0.02779388, 0.03984083, 0.08311951, 0.08995566, 0.10522428, 0.16159058, 0.14238174, 0.14759783, 0.16257712, 0.158908, 0.11302115, 0.0909566, 0.08272888, 0.15261884, 0.10546376, 0.04990313, -0.01284111, -0.02720704, 0.00454725, -0.03965491, -0.03818265, -0.02186992, -0.06574751, -0.04846454, -0.05204211, -0.06316498, -0.05095099, -0.08502656, -0.04681162, -0.02362027, -0.02205091, -0.07706374, -0.10371841, -0.14434688, -0.14797935, -0.09055402, -0.06739549, -0.08824959, -0.04855888, -0.02291244, 0.04027138, 0.09370505, 0.11472939, 0.10243593, 0.0921445, 0.07662648, 0.07946651, 0.05450718, 0.10497677, 0.09068334, 0.15462924, 0.14231034, 0.10544952, 0.09980256, 0.14035223, 0.14942974, 0.17624102, 0.19035477, 0.2500807, 0.30724652, 0.31768915, 0.35007521, 0.38412975, 0.34356521, 0.33614463, 0.41206165, 0.33999177, 0.28045963, 0.34076789, 0.42220356, 0.42314636, 0.50790423, 0.47713348, 0.42520169, 0.50488411, 0.48705211, 0.46252601, 0.44325578, 0.42640573, 0.37986783, 0.30652822, 0.34503393, 0.2999069, 0.24928617, 0.24730218, 0.24326897, 0.26657905, 0.27861168, 0.26392824, 0.32552649, 0.34177792, 0.37837011, 0.37025267, 0.4030612, 0.41339361, 0.45076809, 0.40383354, 0.47093422, 0.52505036, 0.53614256, 0.5500943, 0.55319293, 0.59021451, 0.52358459, 0.50605947, 0.49359168, 0.47895956, 0.49320243, 0.4908336, 0.47310767, 0.51821564, 0.55105932, 0.57291504, 0.5599809, 0.46868842, 0.39620087, 0.42086934, 0.38317217, 0.45934108, 0.50048866, 0.53941991, 0.50676751, 0.46500915, 0.52993663, 0.51668366, 0.46405428, 0.44100603, 0.52726147, 0.51565458, 0.49186248, 0.49001081, 0.49367648, 0.56422294, 0.58882785, 0.51334664, 0.44386256, 0.35056709, 0.36490029, 0.39205071, 0.3677061, 0.41134736, 0.42315067, 0.35356394, 0.40324562, 0.41340007, 0.46503322, 0.44355762, 0.34854314, 0.26412842, 0.28633753, 0.32335224, 0.30761141, 0.29709569, 0.29570487, 0.28000063, 0.32802547, 0.33967726, 0.42511212, 0.46252357, 0.44244974, 0.42152907, 0.45436727, 0.50482359, 0.57339198, 0.6573356, 0.70912003, 0.60328917, 0.6395092, 0.67015805, 0.64241557, 0.62779142, 0.55028063, 0.46448736, 0.43709245, 0.46777983, 0.51789439, 0.48594916, 0.4456216, 0.52008189, 0.60548684, 0.62792473, 0.56645031, 0.62766439, 0.71829315, 0.69481356, 0.59550329, 0.58133754, 0.59014148, 0.58026655, 0.61719273, 0.67373203, 0.75573056, 0.89501633, 0.8347253, 0.87964685, 0.89015835]) test_alpha_mean = eval_alpha(self.long_data, 100, self.long_bench, 'value') test_alpha_roll = self.long_data['alpha'].values self.assertAlmostEqual(test_alpha_mean, np.nanmean(expected_alpha)) self.assertTrue(np.allclose(test_alpha_roll, expected_alpha, equal_nan=True)) def test_calmar(self): """test evaluate function eval_calmar()""" pass def test_benchmark(self): reference = self.test_data1 tr, yr = eval_benchmark(self.test_data2, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data3, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data4, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data5, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data6, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) tr, yr = eval_benchmark(self.test_data7, reference, 'value') self.assertAlmostEqual(tr, 0.19509091) self.assertAlmostEqual(yr, 0.929154957) def test_evaluate(self): pass class TestLoop(unittest.TestCase): """通过一个假设但精心设计的例子来测试loop_step以及loop方法的正确性""" def setUp(self): # 精心设计的模拟股票名称、交易日期、以及股票价格 self.shares = ['share1', 'share2', 'share3', 'share4', 'share5', 'share6', 'share7'] self.dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07', '2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21', '2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28', '2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11', '2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18', '2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01', '2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08', '2016/09/09', '2016/09/12', '2016/09/13', '2016/09/14', '2016/09/15', '2016/09/16', '2016/09/19', '2016/09/20', '2016/09/21', '2016/09/22', '2016/09/23', '2016/09/26', '2016/09/27', '2016/09/28', '2016/09/29', '2016/09/30', '2016/10/10', '2016/10/11', '2016/10/12', '2016/10/13', '2016/10/14', '2016/10/17', '2016/10/18', '2016/10/19', '2016/10/20', '2016/10/21', '2016/10/23', '2016/10/24', '2016/10/25', '2016/10/26', '2016/10/27', '2016/10/29', '2016/10/30', '2016/10/31', '2016/11/01', '2016/11/02', '2016/11/05', '2016/11/06', '2016/11/07', '2016/11/08', '2016/11/09', '2016/11/12', '2016/11/13', '2016/11/14', '2016/11/15', '2016/11/16', '2016/11/19', '2016/11/20', '2016/11/21', '2016/11/22'] self.dates = [pd.Timestamp(date_text) for date_text in self.dates] self.prices = np.array([[5.35, 5.09, 5.03, 4.98, 4.50, 5.09, 4.75], [5.66, 4.84, 5.21, 5.44, 4.35, 5.06, 4.48], [5.79, 4.60, 5.02, 5.45, 4.07, 4.76, 4.56], [5.56, 4.63, 5.50, 5.74, 3.88, 4.62, 4.62], [5.88, 4.64, 5.07, 5.46, 3.74, 4.63, 4.62], [6.25, 4.51, 5.11, 5.45, 3.98, 4.25, 4.59], [5.93, 4.96, 5.15, 5.24, 4.08, 4.13, 4.33], [6.39, 4.65, 5.02, 5.47, 4.00, 3.91, 3.88], [6.31, 4.26, 5.10, 5.58, 4.28, 3.77, 3.47], [5.86, 3.77, 5.24, 5.36, 4.01, 3.43, 3.51], [5.61, 3.39, 4.93, 5.38, 4.14, 3.68, 3.83], [5.31, 3.76, 4.96, 5.30, 4.49, 3.63, 3.67], [5.40, 4.06, 5.40, 5.77, 4.49, 3.94, 3.79], [5.03, 3.87, 5.74, 5.75, 4.46, 4.40, 4.18], [5.38, 3.91, 5.53, 6.15, 4.13, 4.03, 4.02], [5.79, 4.13, 5.79, 6.04, 3.79, 3.93, 4.41], [6.27, 4.27, 5.68, 6.01, 4.23, 3.50, 4.65], [6.59, 4.57, 5.90, 5.71, 4.57, 3.39, 4.89], [6.91, 5.04, 5.75, 5.23, 4.92, 3.30, 4.41], [6.71, 5.31, 6.11, 5.47, 5.28, 3.25, 4.66], [6.33, 5.40, 5.77, 5.79, 5.67, 2.94, 4.37], [6.07, 5.21, 5.85, 5.82, 6.00, 2.71, 4.58], [5.98, 5.06, 5.61, 5.61, 5.89, 2.55, 4.76], [6.46, 4.69, 5.75, 5.31, 5.55, 2.21, 4.37], [6.95, 5.12, 5.50, 5.24, 5.39, 2.29, 4.16], [6.77, 5.27, 5.14, 5.41, 5.26, 2.21, 4.02], [6.70, 5.72, 5.31, 5.60, 5.31, 2.04, 3.77], [6.28, 6.10, 5.68, 5.28, 5.22, 2.39, 3.38], [6.61, 6.27, 5.73, 4.99, 4.90, 2.30, 3.07], [6.25, 6.49, 6.04, 5.09, 4.57, 2.41, 2.90], [6.47, 6.16, 6.27, 5.39, 4.96, 2.40, 2.50], [6.45, 6.26, 6.60, 5.58, 4.82, 2.79, 2.76], [6.88, 6.39, 6.10, 5.33, 4.39, 2.67, 2.29], [7.00, 6.58, 6.25, 5.48, 4.63, 2.27, 2.17], [6.59, 6.20, 6.73, 5.10, 5.05, 2.09, 1.84], [6.59, 5.70, 6.91, 5.39, 4.68, 2.55, 1.83], [6.64, 5.20, 7.01, 5.30, 5.02, 2.22, 2.21], [6.38, 5.37, 7.36, 5.04, 4.84, 2.59, 2.00], [6.10, 5.40, 7.72, 5.51, 4.60, 2.59, 1.76], [6.35, 5.22, 7.68, 5.43, 4.66, 2.95, 1.27], [6.52, 5.38, 7.62, 5.23, 4.41, 2.69, 1.40], [6.87, 5.53, 7.74, 4.99, 4.87, 2.20, 1.11], [6.84, 6.03, 7.53, 5.43, 4.42, 2.69, 1.60], [7.09, 5.77, 7.46, 5.40, 4.08, 2.65, 1.23], [6.88, 5.66, 7.84, 5.60, 4.16, 2.63, 1.59], [6.84, 6.08, 8.11, 5.66, 4.10, 2.14, 1.50], [6.98, 5.62, 8.04, 6.01, 4.43, 2.39, 1.80], [7.02, 5.63, 7.65, 5.64, 4.07, 1.95, 1.55], [7.13, 6.11, 7.52, 5.67, 3.97, 2.32, 1.35], [7.59, 6.03, 7.67, 5.30, 4.16, 2.69, 1.51], [7.61, 6.27, 7.47, 4.91, 4.12, 2.51, 1.08], [7.21, 6.28, 7.44, 5.37, 4.04, 2.62, 1.06], [7.48, 6.52, 7.59, 5.75, 3.84, 2.16, 1.43], [7.66, 7.00, 7.94, 6.08, 3.46, 2.35, 1.43], [7.51, 7.34, 8.25, 6.58, 3.18, 2.31, 1.74], [7.12, 7.34, 7.77, 6.78, 3.10, 1.96, 1.44], [6.97, 7.68, 8.03, 7.20, 3.55, 2.35, 1.83], [6.67, 8.09, 7.87, 7.65, 3.66, 2.58, 1.71], [6.20, 7.68, 7.58, 8.00, 3.66, 2.40, 2.12], [6.34, 7.58, 7.33, 7.92, 3.29, 2.20, 2.45], [6.22, 7.46, 7.22, 8.30, 2.80, 2.31, 2.85], [5.98, 7.59, 6.86, 8.46, 2.88, 2.16, 2.79], [6.37, 7.19, 7.18, 7.99, 3.04, 2.16, 2.91], [6.56, 7.40, 7.54, 8.19, 3.45, 2.20, 3.26], [6.26, 7.48, 7.24, 8.61, 3.88, 1.73, 3.14], [6.69, 7.93, 6.85, 8.66, 3.58, 1.93, 3.53], [7.13, 8.23, 6.60, 8.91, 3.60, 2.25, 3.65], [6.83, 8.35, 6.65, 9.08, 3.97, 2.69, 3.69], [7.31, 8.44, 6.74, 9.34, 4.05, 2.59, 3.50], [7.43, 8.35, 7.19, 8.96, 4.40, 2.14, 3.25], [7.54, 8.58, 7.14, 8.98, 4.06, 1.68, 3.64], [7.18, 8.82, 6.88, 8.50, 3.60, 1.98, 4.00], [7.21, 9.09, 7.14, 8.65, 3.61, 2.14, 3.63], [7.45, 9.02, 7.30, 8.94, 4.10, 1.89, 3.78], [7.37, 8.87, 6.95, 8.63, 3.74, 1.97, 3.42], [6.88, 9.22, 7.02, 8.65, 4.02, 1.99, 3.76], [7.08, 9.04, 7.38, 8.40, 3.95, 2.37, 3.62], [6.75, 8.60, 7.50, 8.38, 3.81, 2.14, 3.67], [6.60, 8.48, 7.60, 8.23, 3.71, 2.35, 3.61], [6.21, 8.71, 7.15, 8.04, 3.94, 1.86, 3.39], [6.36, 8.79, 7.30, 7.91, 4.43, 2.14, 3.43], [6.82, 8.93, 7.80, 7.57, 4.07, 2.39, 3.33], [6.45, 9.36, 8.15, 7.73, 4.04, 2.53, 3.03], [6.85, 9.68, 8.40, 7.74, 4.34, 2.47, 3.28], [6.48, 10.16, 8.87, 8.07, 4.80, 2.93, 3.46], [6.10, 10.56, 8.53, 7.99, 5.18, 3.09, 3.25], [5.64, 10.63, 8.94, 7.92, 4.90, 2.93, 2.95], [6.01, 10.55, 8.52, 8.40, 5.40, 3.22, 2.87], [6.21, 10.65, 8.80, 8.80, 5.73, 3.06, 2.63], [6.61, 10.55, 8.92, 8.47, 5.62, 2.90, 2.40], [7.02, 10.19, 9.20, 8.07, 5.20, 2.68, 2.53], [7.04, 10.48, 8.71, 7.87, 4.85, 2.46, 2.96], [6.77, 10.36, 8.25, 8.02, 5.18, 2.41, 3.26], [7.09, 10.03, 8.19, 8.39, 4.72, 2.74, 2.97], [6.65, 10.24, 7.80, 8.69, 4.62, 3.15, 3.16], [7.07, 10.01, 7.69, 8.81, 4.55, 3.40, 3.58], [6.80, 10.14, 7.23, 8.99, 4.37, 3.82, 3.23], [6.79, 10.31, 6.98, 9.10, 4.26, 4.02, 3.62], [6.48, 9.88, 7.07, 8.90, 4.25, 3.76, 3.13], [6.39, 10.05, 6.95, 8.87, 4.59, 4.10, 2.93]]) # 精心设计的模拟PT持股仓位目标信号: self.pt_signals = np.array([[0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.000, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.250, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150], [0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000], [0.066, 0.200, 0.250, 0.150, 0.000, 0.300, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104], [0.370, 0.193, 0.120, 0.072, 0.072, 0.072, 0.096], [0.000, 0.222, 0.138, 0.222, 0.083, 0.222, 0.111], [0.000, 0.222, 0.138, 0.222, 0.083, 0.222, 0.111], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160], [0.047, 0.380, 0.238, 0.000, 0.142, 0.000, 0.190], [0.047, 0.380, 0.238, 0.000, 0.142, 0.000, 0.190], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173], [0.045, 0.454, 0.227, 0.000, 0.000, 0.000, 0.272], [0.045, 0.454, 0.227, 0.000, 0.000, 0.000, 0.272], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300], [0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300]]) # 精心设计的模拟PS比例交易信号,与模拟PT信号高度相似 self.ps_signals = np.array([[0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.100, 0.150], [0.200, 0.200, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.100, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, -0.750, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.333, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, -0.500, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, -1.000], [0.000, 0.000, 0.000, 0.000, 0.200, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.500, 0.000, 0.000, 0.150, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.200, 0.000, -1.000, 0.200, 0.000], [0.500, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.200, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, -0.500, 0.200], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.200, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.150, 0.000, 0.000], [-1.000, 0.000, 0.000, 0.250, 0.000, 0.250, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.250, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, -1.000, 0.000, -1.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-0.800, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.100, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, -1.000, 0.000, 0.100], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, -1.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [-1.000, 0.000, 0.150, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]]) # 精心设计的模拟VS股票交易信号,与模拟PS信号类似 self.vs_signals = np.array([[000, 000, 000, 000, 500, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 300, 300], [400, 400, 000, 000, 000, 000, 000], [000, 000, 250, 000, 000, 000, 000], [000, 000, 000, 000, -400, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, -200, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, -300], [000, 000, 000, 000, 500, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 000, 300, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 400, 000, -300, 600, 000], [500, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [600, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, -400, 600], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 500, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 300, 000, 000], [-500, 000, 000, 500, 000, 200, 000], [000, 000, 000, 000, 000, 000, 000], [500, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, -700, 000, -600, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-400, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 300, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, -600, 000, 300], [000, 000, 000, 000, 000, 000, 000], [000, -300, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [-200, 000, 700, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000], [000, 000, 000, 000, 000, 000, 000]]) # 精心设计的模拟多价格交易信号,模拟50个交易日对三只股票的操作 self.multi_shares = ['000010', '000030', '000039'] self.multi_dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07', '2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14', '2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21', '2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28', '2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04', '2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11', '2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18', '2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25', '2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01', '2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08'] self.multi_dates = [pd.Timestamp(date_text) for date_text in self.multi_dates] # 操作的交易价格包括开盘价、最高价和收盘价 self.multi_prices_open = np.array([[10.02, 9.88, 7.26], [10.00, 9.88, 7.00], [9.98, 9.89, 6.88], [9.97, 9.75, 6.91], [9.99, 9.74, np.nan], [10.01, 9.80, 6.81], [10.04, 9.62, 6.63], [10.06, 9.65, 6.45], [10.06, 9.58, 6.16], [10.11, 9.67, 6.24], [10.11, 9.81, 5.96], [10.07, 9.80, 5.97], [10.06, 10.00, 5.96], [10.09, 9.95, 6.20], [10.03, 10.10, 6.35], [10.02, 10.06, 6.11], [10.06, 10.14, 6.37], [10.08, 9.90, 5.58], [9.99, 10.20, 5.65], [10.00, 10.29, 5.65], [10.03, 9.86, 5.19], [10.02, 9.48, 5.42], [10.06, 10.01, 6.30], [10.03, 10.24, 6.15], [9.97, 10.26, 6.05], [9.94, 10.24, 5.89], [9.83, 10.12, 5.22], [9.78, 10.65, 5.20], [9.77, 10.64, 5.07], [9.91, 10.56, 6.04], [9.92, 10.42, 6.12], [9.97, 10.43, 5.85], [9.91, 10.29, 5.67], [9.90, 10.30, 6.02], [9.88, 10.44, 6.04], [9.91, 10.60, 7.07], [9.63, 10.67, 7.64], [9.64, 10.46, 7.99], [9.57, 10.39, 7.59], [9.55, 10.90, 8.73], [9.58, 11.01, 8.72], [9.61, 11.01, 8.97], [9.62, np.nan, 8.58], [9.55, np.nan, 8.71], [9.57, 10.82, 8.77], [9.61, 11.02, 8.40], [9.63, 10.96, 7.95], [9.64, 11.55, 7.76], [9.61, 11.74, 8.25], [9.56, 11.80, 7.51]]) self.multi_prices_high = np.array([[10.07, 9.91, 7.41], [10.00, 10.04, 7.31], [10.00, 9.93, 7.14], [10.00, 10.04, 7.00], [10.03, 9.84, np.nan], [10.03, 9.88, 6.82], [10.04, 9.99, 6.96], [10.09, 9.70, 6.85], [10.10, 9.67, 6.50], [10.14, 9.71, 6.34], [10.11, 9.85, 6.04], [10.10, 9.90, 6.02], [10.09, 10.00, 6.12], [10.09, 10.20, 6.38], [10.10, 10.11, 6.43], [10.05, 10.18, 6.46], [10.07, 10.21, 6.43], [10.09, 10.26, 6.27], [10.10, 10.38, 5.77], [10.00, 10.47, 6.01], [10.04, 10.42, 5.67], [10.04, 10.07, 5.67], [10.06, 10.24, 6.35], [10.09, 10.27, 6.32], [10.05, 10.38, 6.43], [9.97, 10.43, 6.36], [9.96, 10.39, 5.79], [9.86, 10.65, 5.47], [9.77, 10.84, 5.65], [9.92, 10.65, 6.04], [9.94, 10.73, 6.14], [9.97, 10.63, 6.23], [9.97, 10.51, 5.83], [9.92, 10.35, 6.25], [9.92, 10.46, 6.27], [9.92, 10.63, 7.12], [9.93, 10.74, 7.82], [9.64, 10.76, 8.14], [9.58, 10.54, 8.27], [9.60, 11.02, 8.92], [9.58, 11.12, 8.76], [9.62, 11.17, 9.15], [9.62, np.nan, 8.90], [9.64, np.nan, 9.01], [9.59, 10.92, 9.16], [9.62, 11.15, 9.00], [9.63, 11.11, 8.27], [9.70, 11.55, 7.99], [9.66, 11.95, 8.33], [9.64, 11.93, 8.25]]) self.multi_prices_close = np.array([[10.04, 9.68, 6.64], [10.00, 9.87, 7.26], [10.00, 9.86, 7.03], [9.99, 9.87, 6.87], [9.97, 9.79, np.nan], [9.99, 9.82, 6.64], [10.03, 9.80, 6.85], [10.03, 9.66, 6.70], [10.06, 9.62, 6.39], [10.06, 9.58, 6.22], [10.11, 9.69, 5.92], [10.09, 9.78, 5.91], [10.07, 9.75, 6.11], [10.06, 9.96, 5.91], [10.09, 9.90, 6.23], [10.03, 10.04, 6.28], [10.03, 10.06, 6.28], [10.06, 10.08, 6.27], [10.08, 10.24, 5.70], [10.00, 10.24, 5.56], [9.99, 10.24, 5.67], [10.03, 9.86, 5.16], [10.03, 10.13, 5.69], [10.06, 10.12, 6.32], [10.03, 10.10, 6.14], [9.97, 10.25, 6.25], [9.94, 10.24, 5.79], [9.83, 10.22, 5.26], [9.77, 10.75, 5.05], [9.84, 10.64, 5.45], [9.91, 10.56, 6.06], [9.93, 10.60, 6.21], [9.96, 10.42, 5.69], [9.91, 10.25, 5.46], [9.91, 10.24, 6.02], [9.88, 10.49, 6.69], [9.91, 10.57, 7.43], [9.64, 10.63, 7.72], [9.56, 10.48, 8.16], [9.57, 10.37, 7.83], [9.55, 10.96, 8.70], [9.57, 11.02, 8.71], [9.61, np.nan, 8.88], [9.61, np.nan, 8.54], [9.55, 10.88, 8.87], [9.57, 10.87, 8.87], [9.63, 11.01, 8.18], [9.64, 11.01, 7.80], [9.65, 11.58, 7.97], [9.62, 11.80, 8.25]]) # 交易信号包括三组,分别作用与开盘价、最高价和收盘价 # 此时的关键是股票交割期的处理,交割期不为0时,以交易日为单位交割 self.multi_signals = [] # multisignal的第一组信号为开盘价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.000, 0.000], [0.000, -0.500, 0.000], [0.000, -0.500, 0.000], [0.000, 0.000, 0.000], [0.150, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.300, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.300], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.350, 0.250], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.100, 0.000, 0.350], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.050, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 第二组信号为最高价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.150, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, -0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.200], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 第三组信号为收盘价信号 self.multi_signals.append( pd.DataFrame(np.array([[0.000, 0.200, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-0.500, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, -0.800], [0.000, 0.000, 0.000], [0.000, -1.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-0.750, 0.000, 0.000], [0.000, 0.000, -0.850], [0.000, 0.000, 0.000], [0.000, -0.700, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [0.000, 0.000, -1.000], [0.000, 0.000, 0.000], [0.000, 0.000, 0.000], [-1.000, 0.000, 0.000], [0.000, -1.000, 0.000], [0.000, 0.000, 0.000]]), columns=self.multi_shares, index=self.multi_dates ) ) # 交易回测所需的价格也有三组,分别是开盘价、最高价和收盘价 self.multi_histories = [] # multisignal的第一组信号为开盘价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_open, columns=self.multi_shares, index=self.multi_dates ) ) # 第二组信号为最高价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_high, columns=self.multi_shares, index=self.multi_dates ) ) # 第三组信号为收盘价信号 self.multi_histories.append( pd.DataFrame(self.multi_prices_close, columns=self.multi_shares, index=self.multi_dates ) ) # 设置回测参数 self.cash = qt.CashPlan(['2016/07/01', '2016/08/12', '2016/09/23'], [10000, 10000, 10000]) self.rate = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=0, sell_min=0, slipage=0) self.rate2 = qt.Cost(buy_fix=0, sell_fix=0, buy_rate=0, sell_rate=0, buy_min=10, sell_min=5, slipage=0) self.pt_signal_hp = dataframe_to_hp( pd.DataFrame(self.pt_signals, index=self.dates, columns=self.shares), htypes='close' ) self.ps_signal_hp = dataframe_to_hp( pd.DataFrame(self.ps_signals, index=self.dates, columns=self.shares), htypes='close' ) self.vs_signal_hp = dataframe_to_hp( pd.DataFrame(self.vs_signals, index=self.dates, columns=self.shares), htypes='close' ) self.multi_signal_hp = stack_dataframes( self.multi_signals, stack_along='htypes', htypes='open, high, close' ) self.history_list = dataframe_to_hp( pd.DataFrame(self.prices, index=self.dates, columns=self.shares), htypes='close' ) self.multi_history_list = stack_dataframes( self.multi_histories, stack_along='htypes', htypes='open, high, close' ) # 模拟PT信号回测结果 # PT信号,先卖后买,交割期为0 self.pt_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 6035.8333, 0.0000, 9761.1111], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9674.8209], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9712.5872], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9910.7240], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9919.3782], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9793.0692], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9513.8217], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9123.5935], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9000.5995], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9053.4865], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9248.7142], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9161.1372], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9197.3369], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9504.6981], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9875.2461], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10241.5400], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10449.2398], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10628.3269], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10500.7893], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 0.0000, 5233.1396, 0.0000, 10449.2776], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10338.2857], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10194.3474], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10471.0008], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10411.2629], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10670.0618], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10652.4799], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10526.1488], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10458.6614], [101.4983, 417.9188, 821.7315, 288.6672, 0.0000, 2576.1284, 0.0000, 4487.0722, 0.0000, 20609.0270], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21979.4972], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21880.9628], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21630.0454], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 20968.0007], [1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21729.9339], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21107.6400], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21561.1745], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21553.0916], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22316.9366], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22084.2862], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21777.3543], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22756.8225], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22843.4697], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22762.1766], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22257.0973], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 23136.5259], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 21813.7852], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22395.3204], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 23717.6858], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22715.4263], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 22498.3254], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 23341.1733], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24162.3941], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24847.1508], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 23515.9755], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24555.8997], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24390.6372], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24073.3309], [1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24394.6500], [2076.3314, 903.0334, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 3487.5655, 0.0000, 34904.8150], [0.0000, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 4608.8037, 0.0000, 34198.4475], [0.0000, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 4608.8037, 0.0000, 33753.0190], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 34953.8178], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 33230.2498], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 35026.7819], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 36976.2649], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 38673.8147], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 38717.3429], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 36659.0854], [644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 35877.9607], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36874.4840], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37010.2695], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 38062.3510], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36471.1357], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37534.9927], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37520.2569], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36747.7952], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36387.9409], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 35925.9715], [644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36950.7028], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 37383.2463], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 37761.2724], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 39548.2653], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41435.1291], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41651.6261], [644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41131.9920], [644.7274, 1657.3981, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 0.0000, 0.0000, 41286.4702], [644.7274, 1657.3981, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 0.0000, 0.0000, 40978.7259], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 40334.5453], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 41387.9172], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42492.6707], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42953.7188], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42005.1092], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42017.9106], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 43750.2824], [644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 41766.8679], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 42959.1150], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 41337.9320], [0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 40290.3688]]) # PT信号,先买后卖,交割期为0 self.pt_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 6035.8333, 0.0000, 9761.1111], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9674.8209], [348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9712.5872], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9910.7240], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9919.3782], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9793.0692], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9513.8217], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9123.5935], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9000.5995], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9053.4865], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9248.7142], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9161.1372], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9197.3369], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9504.6981], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9875.2461], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10241.5400], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10449.2398], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10628.3269], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10500.7893], [348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 0.0000, 5233.1396, 0.0000, 10449.2776], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10338.2857], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10194.3474], [348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10471.0008], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10411.2629], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10670.0618], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10652.4799], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10526.1488], [101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10458.6614], [101.4983, 417.9188, 821.7315, 288.6672, 0.0000, 2576.1284, 0.0000, 4487.0722, 0.0000, 20609.0270], [797.1684, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 2703.5808, 0.0000, 21979.4972], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21700.7241], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21446.6630], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 20795.3593], [1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21557.2924], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 20933.6887], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21392.5581], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21390.2918], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22147.7562], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21910.9053], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21594.2980], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22575.4380], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22655.8312], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22578.4365], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22073.2661], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22955.2367], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 21628.1647], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22203.4237], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 23516.2598], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 22505.8428], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 22199.1042], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23027.9302], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23848.5806], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24540.8871], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23205.6838], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24267.6685], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24115.3796], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23814.3667], [1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24133.6611], [2061.6837, 896.6628, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 3285.8830, 0.0000, 34658.5742], [0.0000, 896.6628, 507.6643, 466.6033, 0.0000, 1523.7106, 1467.7407, 12328.8684, 0.0000, 33950.7917], [0.0000, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 4380.3797, 0.0000, 33711.4045], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 34922.0959], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 33237.1081], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 35031.8071], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 36976.3376], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 38658.5245], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 38712.2854], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 36655.3125], [644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 35904.3692], [644.1423, 902.2617, 514.8253, 0.0000, 15.5990, 0.0000, 1467.7407, 14821.9004, 0.0000, 36873.9080], [644.1423, 902.2617, 514.8253, 0.0000, 1220.8683, 0.0000, 1467.7407, 10470.8781, 0.0000, 36727.7895], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37719.9840], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36138.1277], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37204.0760], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37173.1201], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36398.2298], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36034.2178], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 35583.6399], [644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36599.2645], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 37013.3408], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 37367.7449], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 39143.8273], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 41007.3074], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 41225.4657], [644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 40685.9525], [644.1423, 1646.4805, 1033.4242, 0.0000, 0.0000, 0.0000, 1467.7407, 6592.6891, 0.0000, 40851.5435], [644.1423, 1646.4805, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 0.0000, 0.0000, 41082.1210], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 40385.0135], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 41455.1513], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42670.6769], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 43213.7233], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42205.2480], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42273.9386], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 44100.0777], [644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42059.7208], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 43344.9653], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 41621.0324], [0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 40528.0648]]) # PT信号,先卖后买,交割期为2天(股票)0天(现金)以便利用先卖的现金继续买入 self.pt_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 321.089, 6035.833, 0.000, 9761.111], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9674.821], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9712.587], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9910.724], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9919.378], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9793.069], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9513.822], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9123.593], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9000.600], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9053.487], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9248.714], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9161.137], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9197.337], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9504.698], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9875.246], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10241.540], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10449.240], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10628.327], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10500.789], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 0.000, 5233.140, 0.000, 10449.278], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10338.286], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10194.347], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10471.001], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10411.263], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10670.062], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10652.480], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10526.149], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10458.661], [101.498, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 4487.072, 0.000, 20609.027], [797.168, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 0.000, 0.000, 21979.497], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21584.441], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21309.576], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 20664.323], [1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21445.597], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 20806.458], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21288.441], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21294.365], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 22058.784], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21805.540], [1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21456.333], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22459.720], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22611.602], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22470.912], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21932.634], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22425.864], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21460.103], [1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22376.968], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23604.295], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 22704.826], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 22286.293], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23204.755], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24089.017], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24768.185], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23265.196], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24350.540], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24112.706], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23709.076], [1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24093.545], [2060.275, 896.050, 504.579, 288.667, 0.000, 763.410, 1577.904, 2835.944, 0.000, 34634.888], [578.327, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 732.036, 0.000, 33912.261], [0.000, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 4415.981, 0.000, 33711.951], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 34951.433], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 33224.596], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 35065.209], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 37018.699], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 38706.035], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 38724.569], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 36647.268], [644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 35928.930], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36967.229], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37056.598], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 38129.862], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36489.333], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37599.602], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37566.823], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36799.280], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36431.196], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 35940.942], [644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36973.050], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 37393.292], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 37711.276], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 39515.991], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41404.440], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41573.523], [644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41011.613], [644.683, 1606.361, 1074.629, 0.000, 0.000, 0.000, 3896.406, 0.000, 0.000, 41160.181], [644.683, 1606.361, 1074.629, 0.000, 0.000, 0.000, 3896.406, 0.000, 0.000, 40815.512], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 40145.531], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41217.281], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 42379.061], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 42879.589], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41891.452], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41929.003], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 43718.052], [644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41685.916], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 42930.410], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 41242.589], [0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 40168.084]]) # PT信号,先买后卖,交割期为2天(股票)1天(现金) self.pt_res_bs21 = np.array([ [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 321.089, 6035.833, 0.000, 9761.111], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9674.821], [348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9712.587], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9910.724], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9919.378], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9793.069], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9513.822], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9123.593], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9000.600], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9053.487], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9248.714], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9161.137], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9197.337], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9504.698], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9875.246], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10241.540], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10449.240], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10628.327], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10500.789], [348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 0.000, 5233.140, 0.000, 10449.278], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10338.286], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10194.347], [348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10471.001], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10411.263], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10670.062], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10652.480], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10526.149], [101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10458.661], [101.498, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 4487.072, 0.000, 20609.027], [797.168, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 0.000, 0.000, 21979.497], [797.168, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 2475.037, 0.000, 21584.441], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21266.406], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 20623.683], [1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21404.957], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 20765.509], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21248.748], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21256.041], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 22018.958], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21764.725], [1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21413.241], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22417.021], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22567.685], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22427.699], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21889.359], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22381.938], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21416.358], [1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22332.786], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 0.000, 2386.698, 0.000, 23557.595], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 23336.992], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 22907.742], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24059.201], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24941.902], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25817.514], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24127.939], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25459.688], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25147.370], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25005.842], [1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 1086.639, 2752.004, 0.000, 25598.700], [2138.154, 929.921, 503.586, 288.667, 0.000, 761.900, 1086.639, 4818.835, 0.000, 35944.098], [661.356, 929.921, 503.586, 553.843, 0.000, 1954.237, 1086.639, 8831.252, 0.000, 35237.243], [0.000, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 9460.955, 0.000, 35154.442], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 36166.632], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 34293.883], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 35976.901], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 37848.552], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 39512.574], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 39538.024], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 37652.984], [667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 36687.909], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37749.277], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37865.518], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38481.190], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37425.087], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38051.341], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38065.478], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37429.495], [667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37154.479], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 36692.717], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 37327.055], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 37937.630], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 38298.645], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 39689.369], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 40992.397], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 41092.265], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 40733.622], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 3726.579, 0.000, 0.000, 40708.515], [667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 3726.579, 0.000, 0.000, 40485.321], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 39768.059], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 40519.595], [667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 41590.937], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 42354.983], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 41175.149], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 41037.902], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 42706.213], [667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 40539.205], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 41608.692], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 39992.148], [0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 39134.828]]) # 模拟PS信号回测结果 # PS信号,先卖后买,交割期为0 self.ps_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 5059.7222, 0.0000, 9761.1111], [346.9824, 416.6787, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 1201.2775, 0.0000, 9646.1118], [346.9824, 416.6787, 191.0372, 0.0000, 555.5556, 205.0654, 321.0892, 232.7189, 0.0000, 9685.5858], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9813.2184], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9803.1288], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9608.0198], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9311.5727], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8883.6246], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8751.3900], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8794.1811], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9136.5704], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9209.3588], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9093.8294], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9387.5537], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9585.9589], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 9928.7771], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10060.3806], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10281.0021], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10095.5613], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 0.0000, 4506.3926, 0.0000, 10029.9571], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9875.6133], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9614.9463], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9824.1722], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9732.5743], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9968.3391], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 10056.1579], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9921.4925], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9894.1621], [115.7186, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 6179.7742, 0.0000, 20067.9370], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21133.5080], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20988.8485], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20596.7429], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 19910.7730], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20776.7070], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20051.7969], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20725.3884], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20828.8795], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21647.1811], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21310.1687], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20852.0993], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21912.3952], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21937.8282], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21962.4576], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21389.4018], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22027.4535], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 20939.9992], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21250.0636], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22282.7812], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21407.0658], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21160.2373], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21826.7682], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22744.9403], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23466.1185], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22017.8821], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23191.4662], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23099.0822], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22684.7671], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22842.1346], [1073.8232, 416.6787, 735.6442, 269.8496, 1785.2055, 938.6967, 1339.2073, 5001.4246, 0.0000, 33323.8359], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 32820.2901], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 32891.2308], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 34776.5296], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 33909.0325], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 34560.1906], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 36080.4552], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 38618.4454], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 38497.9230], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 37110.0991], [0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 35455.2467], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35646.1860], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35472.3020], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36636.4694], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35191.7035], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36344.2242], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36221.6005], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35943.5708], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35708.2608], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35589.0286], [0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36661.0285], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 36310.5909], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 36466.7637], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 37784.4918], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 39587.6766], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 40064.0191], [0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 39521.6439], [0.0000, 823.2923, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 17142.1018, 0.0000, 39932.2761], [0.0000, 823.2923, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 17142.1018, 0.0000, 39565.2475], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 38943.1632], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39504.1184], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40317.8004], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40798.5768], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39962.5711], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40194.4793], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 41260.4003], [0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39966.3024], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 40847.3160], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 39654.5445], [0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 38914.8151]]) # PS信号,先买后卖,交割期为0 self.ps_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667], [0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 5059.7222, 0.0000, 9761.1111], [346.9824, 416.6787, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 1201.2775, 0.0000, 9646.1118], [346.9824, 416.6787, 191.0372, 0.0000, 555.5556, 205.0654, 321.0892, 232.7189, 0.0000, 9685.5858], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9813.2184], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9803.1288], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9608.0198], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9311.5727], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8883.6246], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8751.3900], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8794.1811], [346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9136.5704], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9209.3588], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9093.8294], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9387.5537], [231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9585.9589], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 9928.7771], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10060.3806], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10281.0021], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10095.5613], [231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 0.0000, 4506.3926, 0.0000, 10029.9571], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9875.6133], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9614.9463], [231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9824.1722], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9732.5743], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9968.3391], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 10056.1579], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9921.4925], [115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9894.1621], [115.7186, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 6179.7742, 0.0000, 20067.9370], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21133.5080], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20988.8485], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20596.7429], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 19910.7730], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20776.7070], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20051.7969], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20725.3884], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20828.8795], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21647.1811], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21310.1687], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20852.0993], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21912.3952], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21937.8282], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21962.4576], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21389.4018], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21625.6913], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 20873.0389], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21450.9447], [1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 22269.3892], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21969.5329], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21752.6924], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22000.6088], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23072.5655], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23487.5201], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22441.0460], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23201.2700], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23400.9485], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22306.2008], [1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21989.5913], [1073.8232, 737.0632, 735.6442, 269.8496, 1708.7766, 938.6967, 0.0000, 5215.4255, 0.0000, 31897.1636], [0.0000, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 6421.4626, 0.0000, 31509.5059], [0.0000, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 6421.4626, 0.0000, 31451.7888], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32773.4592], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32287.0318], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32698.1938], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 34031.5183], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 35537.8336], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 36212.6487], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 36007.5294], [978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 34691.3797], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 33904.8810], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34341.6098], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 35479.9505], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34418.4455], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34726.7182], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34935.0407], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34136.7505], [978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 33804.1575], [195.7763, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 14025.8697, 0.0000, 33653.8970], [195.7763, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 14025.8697, 0.0000, 34689.8757], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 34635.7841], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 35253.2755], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 36388.1051], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 37987.4204], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 38762.2103], [195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 38574.0544], [195.7763, 1124.9219, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 15879.4935, 0.0000, 39101.9156], [195.7763, 1124.9219, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 15879.4935, 0.0000, 39132.5587], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 38873.2941], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39336.6594], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39565.9568], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39583.4317], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39206.8350], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39092.6551], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39666.1834], [195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 38798.0749], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 39143.5561], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 38617.8779], [0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 38156.1701]]) # PS信号,先卖后买,交割期为2天(股票)1天(现金) self.ps_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 205.065, 321.089, 5059.722, 0.000, 9761.111], [346.982, 416.679, 0.000, 0.000, 555.556, 205.065, 321.089, 1201.278, 0.000, 9646.112], [346.982, 416.679, 191.037, 0.000, 555.556, 205.065, 321.089, 232.719, 0.000, 9685.586], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9813.218], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9803.129], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9608.020], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9311.573], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8883.625], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8751.390], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8794.181], [346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9136.570], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9209.359], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9093.829], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9387.554], [231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9585.959], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 9928.777], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10060.381], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10281.002], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10095.561], [231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 0.000, 4506.393, 0.000, 10029.957], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9875.613], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9614.946], [231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9824.172], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9732.574], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9968.339], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 10056.158], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9921.492], [115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9894.162], [115.719, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 6179.774, 0.000, 20067.937], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21133.508], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20988.848], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20596.743], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 19910.773], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20776.707], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20051.797], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20725.388], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20828.880], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21647.181], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21310.169], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20852.099], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21912.395], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21937.828], [1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21962.458], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21389.402], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22027.453], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 20939.999], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21250.064], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22282.781], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21407.066], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21160.237], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21826.768], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22744.940], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23466.118], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22017.882], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23191.466], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23099.082], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22684.767], [1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22842.135], [1073.823, 416.679, 735.644, 269.850, 1785.205, 938.697, 1339.207, 5001.425, 0.000, 33323.836], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 32820.290], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 32891.231], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 34776.530], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 33909.032], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 34560.191], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 36080.455], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 38618.445], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 38497.923], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 37110.099], [0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 35455.247], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35646.186], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35472.302], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36636.469], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35191.704], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36344.224], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36221.601], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35943.571], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35708.261], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35589.029], [0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36661.029], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 36310.591], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 36466.764], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 37784.492], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 39587.677], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 40064.019], [0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 39521.644], [0.000, 823.292, 735.644, 0.000, 0.000, 0.000, 2730.576, 17142.102, 0.000, 39932.276], [0.000, 823.292, 735.644, 0.000, 0.000, 0.000, 2730.576, 17142.102, 0.000, 39565.248], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 38943.163], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39504.118], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40317.800], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40798.577], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39962.571], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40194.479], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 41260.400], [0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39966.302], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 40847.316], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 39654.544], [0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 38914.815]]) # PS信号,先买后卖,交割期为2天(股票)1天(现金) self.ps_res_bs21 = np.array( [[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667], [0.000, 0.000, 0.000, 0.000, 555.556, 208.333, 326.206, 5020.833, 0.000, 9761.111], [351.119, 421.646, 0.000, 0.000, 555.556, 208.333, 326.206, 1116.389, 0.000, 9645.961], [351.119, 421.646, 190.256, 0.000, 555.556, 208.333, 326.206, 151.793, 0.000, 9686.841], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9813.932], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9803.000], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9605.334], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9304.001], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8870.741], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8738.282], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8780.664], [351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9126.199], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9199.746], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9083.518], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9380.932], [234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9581.266], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 9927.154], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10059.283], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10281.669], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10093.263], [234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 0.000, 4453.525, 0.000, 10026.289], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9870.523], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9606.437], [234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9818.691], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9726.556], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9964.547], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 10053.449], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9917.440], [117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9889.495], [117.098, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 6189.948, 0.000, 20064.523], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21124.484], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20827.077], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20396.124], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 19856.445], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20714.156], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 19971.485], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20733.948], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20938.903], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21660.772], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21265.298], [708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20684.378], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21754.770], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21775.215], [1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21801.488], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21235.427], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21466.714], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 20717.431], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21294.450], [1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 22100.247], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21802.552], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21593.608], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21840.028], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22907.725], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23325.945], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22291.942], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23053.050], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23260.084], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22176.244], [1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21859.297], [1055.763, 740.051, 729.561, 272.237, 1706.748, 932.896, 0.000, 5221.105, 0.000, 31769.617], [0.000, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 6313.462, 0.000, 31389.961], [0.000, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 6313.462, 0.000, 31327.498], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32647.140], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32170.095], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32577.742], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 33905.444], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 35414.492], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 36082.120], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 35872.293], [962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 34558.132], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 33778.138], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34213.578], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 35345.791], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34288.014], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34604.406], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34806.850], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34012.232], [962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 33681.345], [192.484, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 13958.345, 0.000, 33540.463], [192.484, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 13958.345, 0.000, 34574.280], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 34516.781], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 35134.412], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 36266.530], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 37864.376], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 38642.633], [192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 38454.227], [192.484, 1127.221, 729.561, 0.000, 0.000, 0.000, 1339.869, 15871.934, 0.000, 38982.227], [192.484, 1127.221, 729.561, 0.000, 0.000, 0.000, 1339.869, 15871.934, 0.000, 39016.154], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38759.803], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39217.182], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39439.690], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39454.081], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39083.341], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38968.694], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39532.030], [192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38675.507], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 39013.741], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 38497.668], [0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 38042.410]]) # 模拟VS信号回测结果 # VS信号,先卖后买,交割期为0 self.vs_res_sb00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750.0000, 0.0000, 10000.0000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750.0000, 0.0000, 9925.0000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 4954.0000, 0.0000, 9785.0000], [400.0000, 400.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 878.0000, 0.0000, 9666.0000], [400.0000, 400.0000, 173.1755, 0.0000, 500.0000, 300.0000, 300.0000, 0.0000, 0.0000, 9731.0000], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9830.9270], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9785.8540], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9614.3412], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9303.1953], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8834.4398], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8712.7554], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8717.9507], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9079.1479], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9166.0276], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9023.6607], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9291.6864], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9411.6371], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9706.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9822.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9986.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9805.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 0.0000, 4993.7357, 0.0000, 9704.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9567.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9209.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9407.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9329.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9545.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9652.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9414.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9367.7357], [0.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 9319.7357, 0.0000, 19556.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20094.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19849.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19802.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19487.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19749.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19392.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19671.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19756.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20111.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19867.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19775.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20314.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20310.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20253.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20044.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20495.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 19798.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20103.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20864.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20425.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20137.8405], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20711.3567], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21470.3891], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21902.9538], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20962.9538], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21833.5184], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21941.8169], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21278.5184], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21224.4700], [1100.0000, 710.4842, 400.0000, 300.0000, 600.0000, 500.0000, 600.0000, 9160.0000, 0.0000, 31225.2119], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488.0000, 0.0000, 30894.5748], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488.0000, 0.0000, 30764.3811], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 31815.5828], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 31615.4215], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 32486.1394], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 33591.2847], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34056.5428], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34756.4863], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34445.5428], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34433.9541], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33870.4703], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34014.3010], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34680.5671], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33890.9945], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34004.6640], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 34127.7768], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33421.1638], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000, 33120.9057], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830.0000, 0.0000, 32613.3171], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830.0000, 0.0000, 33168.1558], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 33504.6236], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 33652.1318], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 34680.4867], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35557.5191], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35669.7128], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000, 35211.4466], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530.0000, 0.0000, 35550.6079], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530.0000, 0.0000, 35711.6563], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35682.6079], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35880.8336], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36249.8740], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36071.6159], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35846.1562], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35773.3578], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36274.9465], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35739.3094], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 36135.0917], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 35286.5835], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 35081.3658]]) # VS信号,先买后卖,交割期为0 self.vs_res_bs00 = np.array( [[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750, 0.0000, 10000], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750, 0.0000, 9925], [0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 4954, 0.0000, 9785], [400.0000, 400.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 878, 0.0000, 9666], [400.0000, 400.0000, 173.1755, 0.0000, 500.0000, 300.0000, 300.0000, 0, 0.0000, 9731], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9830.927022], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9785.854043], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9614.341223], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9303.195266], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8834.439842], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8712.755424], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8717.95069], [400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9079.147929], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9166.027613], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9023.66075], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9291.686391], [200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9411.637081], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9706.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9822.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9986.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9805.7357], [200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 0.0000, 4993.7357, 0.0000, 9704.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9567.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9209.7357], [200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9407.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9329.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9545.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9652.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9414.7357], [0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9367.7357], [0.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 9319.7357, 0.0000, 19556.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20094.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19849.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19802.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19487.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19749.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19392.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19671.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19756.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20111.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19867.7357], [500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19775.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20314.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20310.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20253.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20044.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20495.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 19798.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20103.7357], [1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20864.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20425.7357], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20137.84054], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20711.35674], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21470.38914], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21902.95375], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20962.95375], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21833.51837], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21941.81688], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21278.51837], [1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21224.46995], [1100.0000, 710.4842, 400.0000, 300.0000, 600.0000, 500.0000, 600.0000, 9160, 0.0000, 31225.21185], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488, 0.0000, 30894.57479], [600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488, 0.0000, 30764.38113], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 31815.5828], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 31615.42154], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 32486.13941], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 33591.28466], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34056.54276], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34756.48633], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34445.54276], [1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34433.95412], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33870.47032], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34014.30104], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34680.56715], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33890.99452], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34004.66398], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34127.77683], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33421.1638], [1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33120.9057], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830, 0.0000, 32613.31706], [700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830, 0.0000, 33168.15579], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 33504.62357], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 33652.13176], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 34680.4867], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35557.51909], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35669.71276], [700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35211.44665], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530, 0.0000, 35550.60792], [700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530, 0.0000, 35711.65633], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35682.60792], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35880.83362], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36249.87403], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36071.61593], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35846.15615], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35773.35783], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36274.94647], [700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35739.30941], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 36135.09172], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 35286.58353], [500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 35081.36584]]) # VS信号,先卖后买,交割期为2天(股票)1天(现金) self.vs_res_sb20 = np.array( [[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 9925.000], [0.000, 0.000, 0.000, 0.000, 500.000, 300.000, 300.000, 4954.000, 0.000, 9785.000], [400.000, 400.000, 0.000, 0.000, 500.000, 300.000, 300.000, 878.000, 0.000, 9666.000], [400.000, 400.000, 173.176, 0.000, 500.000, 300.000, 300.000, 0.000, 0.000, 9731.000], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9830.927], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9785.854], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9614.341], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9303.195], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8834.440], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8712.755], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8717.951], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9079.148], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9166.028], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9023.661], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9291.686], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9411.637], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9706.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9822.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9986.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9805.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 0.000, 4993.736, 0.000, 9704.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9567.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9209.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9407.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9329.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9545.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9652.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9414.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9367.736], [0.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 9319.736, 0.000, 19556.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20094.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19849.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19802.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19487.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19749.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19392.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19671.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19756.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20111.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19867.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19775.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20314.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20310.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20253.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20044.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20495.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 19798.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20103.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20864.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20425.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20137.841], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20711.357], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21470.389], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21902.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20962.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21833.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21941.817], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21278.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21224.470], [1100.000, 710.484, 400.000, 300.000, 600.000, 500.000, 600.000, 9160.000, 0.000, 31225.212], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30894.575], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30764.381], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31815.583], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31615.422], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 32486.139], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 33591.285], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34056.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34756.486], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34445.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34433.954], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33870.470], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34014.301], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34680.567], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33890.995], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34004.664], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34127.777], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33421.164], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33120.906], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 32613.317], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 33168.156], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33504.624], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33652.132], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 34680.487], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35557.519], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35669.713], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35211.447], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35550.608], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35711.656], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35682.608], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35880.834], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36249.874], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36071.616], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35846.156], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35773.358], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36274.946], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35739.309], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 36135.092], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35286.584], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35081.366]]) # VS信号,先买后卖,交割期为2天(股票)1天(现金) self.vs_res_bs21 = np.array( [[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 10000.000], [0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 9925.000], [0.000, 0.000, 0.000, 0.000, 500.000, 300.000, 300.000, 4954.000, 0.000, 9785.000], [400.000, 400.000, 0.000, 0.000, 500.000, 300.000, 300.000, 878.000, 0.000, 9666.000], [400.000, 400.000, 173.176, 0.000, 500.000, 300.000, 300.000, 0.000, 0.000, 9731.000], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9830.927], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9785.854], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9614.341], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9303.195], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8834.440], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8712.755], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8717.951], [400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9079.148], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9166.028], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9023.661], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9291.686], [200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9411.637], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9706.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9822.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9986.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9805.736], [200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 0.000, 4993.736, 0.000, 9704.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9567.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9209.736], [200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9407.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9329.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9545.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9652.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9414.736], [0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9367.736], [0.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 9319.736, 0.000, 19556.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20094.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19849.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19802.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19487.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19749.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19392.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19671.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19756.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20111.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19867.736], [500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19775.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20314.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20310.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20253.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20044.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20495.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 19798.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20103.736], [1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20864.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20425.736], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20137.841], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20711.357], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21470.389], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21902.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20962.954], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21833.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21941.817], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21278.518], [1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21224.470], [1100.000, 710.484, 400.000, 300.000, 600.000, 500.000, 600.000, 9160.000, 0.000, 31225.212], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30894.575], [600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30764.381], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31815.583], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31615.422], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 32486.139], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 33591.285], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34056.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34756.486], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34445.543], [1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34433.954], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33870.470], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34014.301], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34680.567], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33890.995], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34004.664], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34127.777], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33421.164], [1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33120.906], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 32613.317], [700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 33168.156], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33504.624], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33652.132], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 34680.487], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35557.519], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35669.713], [700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35211.447], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35550.608], [700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35711.656], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35682.608], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35880.834], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36249.874], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36071.616], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35846.156], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35773.358], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36274.946], [700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35739.309], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 36135.092], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35286.584], [500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35081.366]]) # Multi信号处理结果,先卖后买,使用卖出的现金买进,交割期为2天(股票)0天(现金) self.multi_res = np.array( [[0.0000, 357.2545, 0.0000, 6506.9627, 0.0000, 9965.1867], [0.0000, 357.2545, 0.0000, 6506.9627, 0.0000, 10033.0650], [0.0000, 178.6273, 0.0000, 8273.5864, 0.0000, 10034.8513], [0.0000, 178.6273, 0.0000, 8273.5864, 0.0000, 10036.6376], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10019.3404], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10027.7062], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10030.1477], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10005.1399], [150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10002.5054], [150.3516, 489.4532, 0.0000, 3765.8877, 0.0000, 9967.3860], [75.1758, 391.5625, 0.0000, 5490.1377, 0.0000, 10044.4059], [75.1758, 391.5625, 0.0000, 5490.1377, 0.0000, 10078.1430], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10138.2709], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10050.4768], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10300.0711], [75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10392.6970], [75.1758, 391.5625, 169.2705, 4644.3773, 0.0000, 10400.5282], [75.1758, 391.5625, 169.2705, 4644.3773, 0.0000, 10408.9220], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10376.5914], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10346.8794], [75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10364.7474], [75.1758, 381.1856, 645.5014, 2459.1665, 0.0000, 10302.4570], [18.7939, 381.1856, 645.5014, 3024.6764, 0.0000, 10747.4929], [18.7939, 381.1856, 96.8252, 6492.3097, 0.0000, 11150.9107], [18.7939, 381.1856, 96.8252, 6492.3097, 0.0000, 11125.2946], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11191.9956], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11145.7486], [18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11090.0768], [132.5972, 114.3557, 864.3802, 4223.9548, 0.0000, 11113.8733], [132.5972, 114.3557, 864.3802, 4223.9548, 0.0000, 11456.3281], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21983.7333], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 22120.6165], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21654.5327], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21429.6550], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21912.5643], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 22516.3100], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23169.0777], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23390.8080], [132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23743.3742], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 23210.7311], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 24290.4375], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 24335.3279], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 18317.3553], [132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 18023.4660], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24390.0527], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24389.6421], [259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24483.5953], [0.0000, 559.9112, 0.0000, 18321.5674, 0.0000, 24486.1895], [0.0000, 0.0000, 0.0000, 24805.3389, 0.0000, 24805.3389], [0.0000, 0.0000, 0.0000, 24805.3389, 0.0000, 24805.3389]]) def test_loop_step_pt_sb00(self): """ test loop step PT-signal, sell first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.pt_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[2][7], own_amounts=self.pt_res_sb00[2][0:7], available_cash=self.pt_res_sb00[2][7], available_amounts=self.pt_res_sb00[2][0:7], op=self.pt_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[2][7] + c_g + c_s amounts = self.pt_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[30][7], own_amounts=self.pt_res_sb00[30][0:7], available_cash=self.pt_res_sb00[30][7], available_amounts=self.pt_res_sb00[30][0:7], op=self.pt_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[30][7] + c_g + c_s amounts = self.pt_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[59][7] + 10000, own_amounts=self.pt_res_sb00[59][0:7], available_cash=self.pt_res_sb00[59][7] + 10000, available_amounts=self.pt_res_sb00[59][0:7], op=self.pt_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.pt_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_sb00[95][7], own_amounts=self.pt_res_sb00[95][0:7], available_cash=self.pt_res_sb00[95][7], available_amounts=self.pt_res_sb00[95][0:7], op=self.pt_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_sb00[96][7] + c_g + c_s amounts = self.pt_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_sb00[97][0:7])) def test_loop_step_pt_bs00(self): """ test loop step PT-signal, buy first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.pt_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[2][7], own_amounts=self.pt_res_bs00[2][0:7], available_cash=self.pt_res_bs00[2][7], available_amounts=self.pt_res_bs00[2][0:7], op=self.pt_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[2][7] + c_g + c_s amounts = self.pt_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[30][7], own_amounts=self.pt_res_bs00[30][0:7], available_cash=self.pt_res_bs00[30][7], available_amounts=self.pt_res_bs00[30][0:7], op=self.pt_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[30][7] + c_g + c_s amounts = self.pt_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[59][7] + 10000, own_amounts=self.pt_res_bs00[59][0:7], available_cash=self.pt_res_bs00[59][7] + 10000, available_amounts=self.pt_res_bs00[59][0:7], op=self.pt_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.pt_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=self.pt_res_bs00[95][7], own_amounts=self.pt_res_bs00[95][0:7], available_cash=self.pt_res_bs00[95][7], available_amounts=self.pt_res_bs00[95][0:7], op=self.pt_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.pt_res_bs00[96][7] + c_g + c_s amounts = self.pt_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.pt_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.pt_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.pt_res_bs00[97][0:7])) def test_loop_step_ps_sb00(self): """ test loop step PS-signal, sell first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.ps_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[2][7], own_amounts=self.ps_res_sb00[2][0:7], available_cash=self.ps_res_sb00[2][7], available_amounts=self.ps_res_sb00[2][0:7], op=self.ps_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[2][7] + c_g + c_s amounts = self.ps_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[30][7], own_amounts=self.ps_res_sb00[30][0:7], available_cash=self.ps_res_sb00[30][7], available_amounts=self.ps_res_sb00[30][0:7], op=self.ps_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[30][7] + c_g + c_s amounts = self.ps_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[59][7] + 10000, own_amounts=self.ps_res_sb00[59][0:7], available_cash=self.ps_res_sb00[59][7] + 10000, available_amounts=self.ps_res_sb00[59][0:7], op=self.ps_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.ps_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_sb00[95][7], own_amounts=self.ps_res_sb00[95][0:7], available_cash=self.ps_res_sb00[95][7], available_amounts=self.ps_res_sb00[95][0:7], op=self.ps_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_sb00[96][7] + c_g + c_s amounts = self.ps_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_sb00[97][0:7])) def test_loop_step_ps_bs00(self): """ test loop step PS-signal, buy first""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.ps_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7500) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[2][7], own_amounts=self.ps_res_sb00[2][0:7], available_cash=self.ps_res_bs00[2][7], available_amounts=self.ps_res_bs00[2][0:7], op=self.ps_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[2][7] + c_g + c_s amounts = self.ps_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[30][7], own_amounts=self.ps_res_sb00[30][0:7], available_cash=self.ps_res_bs00[30][7], available_amounts=self.ps_res_bs00[30][0:7], op=self.ps_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[30][7] + c_g + c_s amounts = self.ps_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[59][7] + 10000, own_amounts=self.ps_res_bs00[59][0:7], available_cash=self.ps_res_bs00[59][7] + 10000, available_amounts=self.ps_res_bs00[59][0:7], op=self.ps_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.ps_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=self.ps_res_bs00[95][7], own_amounts=self.ps_res_bs00[95][0:7], available_cash=self.ps_res_bs00[95][7], available_amounts=self.ps_res_bs00[95][0:7], op=self.ps_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.ps_res_bs00[96][7] + c_g + c_s amounts = self.ps_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.ps_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.ps_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.ps_res_bs00[97][0:7])) def test_loop_step_vs_sb00(self): """test loop step of Volume Signal type of signals""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.vs_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7750) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 500., 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[2][7], own_amounts=self.vs_res_sb00[2][0:7], available_cash=self.vs_res_sb00[2][7], available_amounts=self.vs_res_sb00[2][0:7], op=self.vs_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[2][7] + c_g + c_s amounts = self.vs_res_sb00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[3][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[30][7], own_amounts=self.vs_res_sb00[30][0:7], available_cash=self.vs_res_sb00[30][7], available_amounts=self.vs_res_sb00[30][0:7], op=self.vs_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[30][7] + c_g + c_s amounts = self.vs_res_sb00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[31][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[59][7] + 10000, own_amounts=self.vs_res_sb00[59][0:7], available_cash=self.vs_res_sb00[59][7] + 10000, available_amounts=self.vs_res_sb00[59][0:7], op=self.vs_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[59][7] + c_g + c_s + 10000 amounts = self.vs_res_sb00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[60][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[61][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_sb00[95][7], own_amounts=self.vs_res_sb00[95][0:7], available_cash=self.vs_res_sb00[95][7], available_amounts=self.vs_res_sb00[95][0:7], op=self.vs_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_sb00[96][7] + c_g + c_s amounts = self.vs_res_sb00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[96][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=True, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_sb00[97][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_sb00[97][0:7])) def test_loop_step_vs_bs00(self): """test loop step of Volume Signal type of signals""" c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=10000, own_amounts=np.zeros(7, dtype='float'), available_cash=10000, available_amounts=np.zeros(7, dtype='float'), op=self.vs_signals[0], prices=self.prices[0], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 1 result in complete looping: \n' f'cash_change: +{c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = 10000 + c_g + c_s amounts = np.zeros(7, dtype='float') + a_p + a_s self.assertAlmostEqual(cash, 7750) self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 500., 0, 0]))) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[2][7], own_amounts=self.vs_res_bs00[2][0:7], available_cash=self.vs_res_bs00[2][7], available_amounts=self.vs_res_bs00[2][0:7], op=self.vs_signals[3], prices=self.prices[3], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 4 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[2][7] + c_g + c_s amounts = self.vs_res_bs00[2][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[3][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[3][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[30][7], own_amounts=self.vs_res_bs00[30][0:7], available_cash=self.vs_res_bs00[30][7], available_amounts=self.vs_res_bs00[30][0:7], op=self.vs_signals[31], prices=self.prices[31], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 32 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[30][7] + c_g + c_s amounts = self.vs_res_bs00[30][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[31][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[31][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[59][7] + 10000, own_amounts=self.vs_res_bs00[59][0:7], available_cash=self.vs_res_bs00[59][7] + 10000, available_amounts=self.vs_res_bs00[59][0:7], op=self.vs_signals[60], prices=self.prices[60], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 61 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[59][7] + c_g + c_s + 10000 amounts = self.vs_res_bs00[59][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[60][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[60][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[61], prices=self.prices[61], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 62 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[61][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[61][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=self.vs_res_bs00[95][7], own_amounts=self.vs_res_bs00[95][0:7], available_cash=self.vs_res_bs00[95][7], available_amounts=self.vs_res_bs00[95][0:7], op=self.vs_signals[96], prices=self.prices[96], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 97 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = self.vs_res_bs00[96][7] + c_g + c_s amounts = self.vs_res_bs00[96][0:7] + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[96][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[96][0:7])) c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2, own_cash=cash, own_amounts=amounts, available_cash=cash, available_amounts=amounts, op=self.vs_signals[97], prices=self.prices[97], rate=self.rate, pt_buy_threshold=0.1, pt_sell_threshold=0.1, maximize_cash_usage=False, allow_sell_short=False, moq_buy=0, moq_sell=0, print_log=True) print(f'day 98 result in complete looping: \n' f'cash_change: + {c_g:.2f} / {c_s:.2f}\n' f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n' f'----------------------------------\n') cash = cash + c_g + c_s amounts = amounts + a_p + a_s self.assertAlmostEqual(cash, self.vs_res_bs00[97][7], 2) self.assertTrue(np.allclose(amounts, self.vs_res_bs00[97][0:7])) def test_loop_pt(self): """ Test looping of PT proportion target signals, with stock delivery delay = 0 days cash delivery delay = 0 day buy-sell sequence = sell first """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 0 days \n' 'cash delivery delay = 0 day \n' 'buy-sell sequence = sell first') res = apply_loop(op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) # print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.pt_res_bs00, 2)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=0, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) # print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_pt_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.pt_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.pt_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_pt_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=0, op_list=self.pt_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.pt_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.pt_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps(self): """ Test looping of PS Proportion Signal type of signals """ res = apply_loop(op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.ps_res_bs00, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.ps_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.ps_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_ps_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.ps_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.ps_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.ps_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs(self): """ Test looping of VS Volume Signal type of signals """ res = apply_loop(op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') self.assertTrue(np.allclose(res, self.vs_res_bs00, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs_with_delay(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 1 day use_sell_cash = False """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize_cash = False (buy and sell at the same time)') res = apply_loop( op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, inflation_rate=0, cash_delivery_period=1, stock_delivery_period=2, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.vs_res_bs21[i])) print() self.assertTrue(np.allclose(res, self.vs_res_bs21, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_vs_with_delay_use_cash(self): """ Test looping of PT proportion target signals, with: stock delivery delay = 2 days cash delivery delay = 0 day use sell cash = True (sell stock first to use cash when possible (not possible when cash delivery period != 0)) """ print('Test looping of PT proportion target signals, with:\n' 'stock delivery delay = 2 days \n' 'cash delivery delay = 1 day \n' 'maximize cash usage = True \n' 'but not applicable because cash delivery period == 1') res = apply_loop( op_type=2, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, inflation_rate=0, max_cash_usage=True, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.vs_res_sb20[i])) print() self.assertTrue(np.allclose(res, self.vs_res_sb20, 3)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.vs_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop( op_type=1, op_list=self.vs_signal_hp, history_list=self.history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=1, stock_delivery_period=2, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') def test_loop_multiple_signal(self): """ Test looping of PS Proportion Signal type of signals """ res = apply_loop(op_type=1, op_list=self.multi_signal_hp, history_list=self.multi_history_list, cash_plan=self.cash, cost_rate=self.rate, moq_buy=0, moq_sell=0, cash_delivery_period=0, stock_delivery_period=2, max_cash_usage=True, inflation_rate=0, print_log=False) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}\n' f'result comparison line by line:') for i in range(len(res)): print(np.around(res.values[i])) print(np.around(self.multi_res[i])) print() self.assertTrue(np.allclose(res, self.multi_res, 5)) print(f'test assertion errors in apply_loop: detect moqs that are not compatible') self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 0, 1, 0, False) self.assertRaises(AssertionError, apply_loop, 0, self.ps_signal_hp, self.history_list, self.cash, self.rate, 1, 5, 0, False) print(f'test loop results with moq equal to 100') res = apply_loop(op_type=1, op_list=self.multi_signal_hp, history_list=self.multi_history_list, cash_plan=self.cash, cost_rate=self.rate2, moq_buy=100, moq_sell=1, cash_delivery_period=0, stock_delivery_period=2, max_cash_usage=False, inflation_rate=0, print_log=True) self.assertIsInstance(res, pd.DataFrame) print(f'in test_loop:\nresult of loop test is \n{res}') class TestStrategy(unittest.TestCase): """ test all properties and methods of strategy base class""" def setUp(self) -> None: pass class TestLSStrategy(RollingTiming): """用于test测试的简单多空蒙板生成策略。基于RollingTiming滚动择时方法生成 该策略有两个参数,N与Price N用于计算OHLC价格平均值的N日简单移动平均,判断,当移动平均值大于等于Price时,状态为看多,否则为看空 """ def __init__(self): super().__init__(stg_name='test_LS', stg_text='test long/short strategy', par_count=2, par_types='discr, conti', par_bounds_or_enums=([1, 5], [2, 10]), data_types='close, open, high, low', data_freq='d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): n, price = params h = hist_data.T avg = (h[0] + h[1] + h[2] + h[3]) / 4 ma = sma(avg, n) if ma[-1] < price: return 0 else: return 1 class TestSelStrategy(SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='high, low, close', data_freq='d', sample_freq='10d', window_length=5) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = np.nanmean(hist_data, axis=(1, 2)) dif = (hist_data[:, :, 2] - np.roll(hist_data[:, :, 2], 1, 1)) dif_no_nan = np.array([arr[~np.isnan(arr)][-1] for arr in dif]) difper = dif_no_nan / avg large2 = difper.argsort()[1:] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSelStrategyDiffTime(SimpleSelecting): """用于Test测试的简单选股策略,基于Selecting策略生成 策略没有参数,选股周期为5D 在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。 选股比例为平均分配 """ # TODO: This strategy is not working, find out why and improve def __init__(self): super().__init__(stg_name='test_SEL', stg_text='test portfolio selection strategy', par_count=0, par_types='', par_bounds_or_enums=(), data_types='close, low, open', data_freq='d', sample_freq='w', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): avg = hist_data.mean(axis=1).squeeze() difper = (hist_data[:, :, 0] - np.roll(hist_data[:, :, 0], 1))[:, -1] / avg large2 = difper.argsort()[0:2] chosen = np.zeros_like(avg) chosen[large2] = 0.5 return chosen class TestSigStrategy(SimpleTiming): """用于Test测试的简单信号生成策略,基于SimpleTiming策略生成 策略有三个参数,第一个参数为ratio,另外两个参数为price1以及price2 ratio是k线形状比例的阈值,定义为abs((C-O)/(H-L))。当这个比值小于ratio阈值时,判断该K线为十字交叉(其实还有丁字等多种情形,但这里做了 简化处理。 信号生成的规则如下: 1,当某个K线出现十字交叉,且昨收与今收之差大于price1时,买入信号 2,当某个K线出现十字交叉,且昨收与今收之差小于price2时,卖出信号 """ def __init__(self): super().__init__(stg_name='test_SIG', stg_text='test signal creation strategy', par_count=3, par_types='conti, conti, conti', par_bounds_or_enums=([2, 10], [0, 3], [0, 3]), data_types='close, open, high, low', window_length=2) pass def _realize(self, hist_data: np.ndarray, params: tuple): r, price1, price2 = params h = hist_data.T ratio = np.abs((h[0] - h[1]) / (h[3] - h[2])) diff = h[0] - np.roll(h[0], 1) sig = np.where((ratio < r) & (diff > price1), 1, np.where((ratio < r) & (diff < price2), -1, 0)) return sig class MyStg(qt.RollingTiming): """自定义双均线择时策略策略""" def __init__(self): """这个均线择时策略只有三个参数: - SMA 慢速均线,所选择的股票 - FMA 快速均线 - M 边界值 策略的其他说明 """ """ 必须初始化的关键策略参数清单: """ super().__init__( pars=(20, 100, 0.01), par_count=3, par_types=['discr', 'discr', 'conti'], par_bounds_or_enums=[(10, 250), (10, 250), (0.0, 0.5)], stg_name='CUSTOM ROLLING TIMING STRATEGY', stg_text='Customized Rolling Timing Strategy for Testing', data_types='close', window_length=100, ) print(f'=====================\n====================\n' f'custom strategy initialized, \npars: {self.pars}\npar_count:{self.par_count}\npar_types:' f'{self.par_types}\n' f'{self.info()}') # 策略的具体实现代码写在策略的_realize()函数中 # 这个函数固定接受两个参数: hist_price代表特定组合的历史数据, params代表具体的策略参数 def _realize(self, hist_price, params): """策略的具体实现代码: s:短均线计算日期;l:长均线计算日期;m:均线边界宽度;hesitate:均线跨越类型""" f, s, m = params # 临时处理措施,在策略实现层对传入的数据切片,后续应该在策略实现层以外事先对数据切片,保证传入的数据符合data_types参数即可 h = hist_price.T # 计算长短均线的当前值 s_ma = qt.sma(h[0], s)[-1] f_ma = qt.sma(h[0], f)[-1] # 计算慢均线的停止边界,当快均线在停止边界范围内时,平仓,不发出买卖信号 s_ma_u = s_ma * (1 + m) s_ma_l = s_ma * (1 - m) # 根据观望模式在不同的点位产生Long/short/empty标记 if f_ma > s_ma_u: # 当快均线在慢均线停止范围以上时,持有多头头寸 return 1 elif s_ma_l < f_ma < s_ma_u: # 当均线在停止边界以内时,平仓 return 0 else: # f_ma < s_ma_l 当快均线在慢均线停止范围以下时,持有空头头寸 return -1 class TestOperator(unittest.TestCase): """全面测试Operator对象的所有功能。包括: 1, Strategy 参数的设置 2, 历史数据的获取与分配提取 3, 策略优化参数的批量设置和优化空间的获取 4, 策略输出值的正确性验证 5, 策略结果的混合结果确认 """ def setUp(self): """prepare data for Operator test""" print('start testing HistoryPanel object\n') # build up test data: a 4-type, 3-share, 50-day matrix of prices that contains nan values in some days # for some share_pool # for share1: data_rows = 50 share1_close = [10.04, 10, 10, 9.99, 9.97, 9.99, 10.03, 10.03, 10.06, 10.06, 10.11, 10.09, 10.07, 10.06, 10.09, 10.03, 10.03, 10.06, 10.08, 10, 9.99, 10.03, 10.03, 10.06, 10.03, 9.97, 9.94, 9.83, 9.77, 9.84, 9.91, 9.93, 9.96, 9.91, 9.91, 9.88, 9.91, 9.64, 9.56, 9.57, 9.55, 9.57, 9.61, 9.61, 9.55, 9.57, 9.63, 9.64, 9.65, 9.62] share1_open = [10.02, 10, 9.98, 9.97, 9.99, 10.01, 10.04, 10.06, 10.06, 10.11, 10.11, 10.07, 10.06, 10.09, 10.03, 10.02, 10.06, 10.08, 9.99, 10, 10.03, 10.02, 10.06, 10.03, 9.97, 9.94, 9.83, 9.78, 9.77, 9.91, 9.92, 9.97, 9.91, 9.9, 9.88, 9.91, 9.63, 9.64, 9.57, 9.55, 9.58, 9.61, 9.62, 9.55, 9.57, 9.61, 9.63, 9.64, 9.61, 9.56] share1_high = [10.07, 10, 10, 10, 10.03, 10.03, 10.04, 10.09, 10.1, 10.14, 10.11, 10.1, 10.09, 10.09, 10.1, 10.05, 10.07, 10.09, 10.1, 10, 10.04, 10.04, 10.06, 10.09, 10.05, 9.97, 9.96, 9.86, 9.77, 9.92, 9.94, 9.97, 9.97, 9.92, 9.92, 9.92, 9.93, 9.64, 9.58, 9.6, 9.58, 9.62, 9.62, 9.64, 9.59, 9.62, 9.63, 9.7, 9.66, 9.64] share1_low = [9.99, 10, 9.97, 9.97, 9.97, 9.98, 9.99, 10.03, 10.03, 10.04, 10.11, 10.07, 10.05, 10.03, 10.03, 10.01, 9.99, 10.03, 9.95, 10, 9.95, 10, 10.01, 9.99, 9.96, 9.89, 9.83, 9.77, 9.77, 9.8, 9.9, 9.91, 9.89, 9.89, 9.87, 9.85, 9.6, 9.64, 9.53, 9.55, 9.54, 9.55, 9.58, 9.54, 9.53, 9.53, 9.63, 9.64, 9.59, 9.56] # for share2: share2_close = [9.68, 9.87, 9.86, 9.87, 9.79, 9.82, 9.8, 9.66, 9.62, 9.58, 9.69, 9.78, 9.75, 9.96, 9.9, 10.04, 10.06, 10.08, 10.24, 10.24, 10.24, 9.86, 10.13, 10.12, 10.1, 10.25, 10.24, 10.22, 10.75, 10.64, 10.56, 10.6, 10.42, 10.25, 10.24, 10.49, 10.57, 10.63, 10.48, 10.37, 10.96, 11.02, np.nan, np.nan, 10.88, 10.87, 11.01, 11.01, 11.58, 11.8] share2_open = [9.88, 9.88, 9.89, 9.75, 9.74, 9.8, 9.62, 9.65, 9.58, 9.67, 9.81, 9.8, 10, 9.95, 10.1, 10.06, 10.14, 9.9, 10.2, 10.29, 9.86, 9.48, 10.01, 10.24, 10.26, 10.24, 10.12, 10.65, 10.64, 10.56, 10.42, 10.43, 10.29, 10.3, 10.44, 10.6, 10.67, 10.46, 10.39, 10.9, 11.01, 11.01, np.nan, np.nan, 10.82, 11.02, 10.96, 11.55, 11.74, 11.8] share2_high = [9.91, 10.04, 9.93, 10.04, 9.84, 9.88, 9.99, 9.7, 9.67, 9.71, 9.85, 9.9, 10, 10.2, 10.11, 10.18, 10.21, 10.26, 10.38, 10.47, 10.42, 10.07, 10.24, 10.27, 10.38, 10.43, 10.39, 10.65, 10.84, 10.65, 10.73, 10.63, 10.51, 10.35, 10.46, 10.63, 10.74, 10.76, 10.54, 11.02, 11.12, 11.17, np.nan, np.nan, 10.92, 11.15, 11.11, 11.55, 11.95, 11.93] share2_low = [9.63, 9.84, 9.81, 9.74, 9.67, 9.72, 9.57, 9.54, 9.51, 9.47, 9.68, 9.63, 9.75, 9.65, 9.9, 9.93, 10.03, 9.8, 10.14, 10.09, 9.78, 9.21, 9.11, 9.68, 10.05, 10.12, 9.89, 9.89, 10.59, 10.43, 10.34, 10.32, 10.21, 10.2, 10.18, 10.36, 10.51, 10.41, 10.32, 10.37, 10.87, 10.95, np.nan, np.nan, 10.65, 10.71, 10.75, 10.91, 11.31, 11.58] # for share3: share3_close = [6.64, 7.26, 7.03, 6.87, np.nan, 6.64, 6.85, 6.7, 6.39, 6.22, 5.92, 5.91, 6.11, 5.91, 6.23, 6.28, 6.28, 6.27, np.nan, 5.56, 5.67, 5.16, 5.69, 6.32, 6.14, 6.25, 5.79, 5.26, 5.05, 5.45, 6.06, 6.21, 5.69, 5.46, 6.02, 6.69, 7.43, 7.72, 8.16, 7.83, 8.7, 8.71, 8.88, 8.54, 8.87, 8.87, 8.18, 7.8, 7.97, 8.25] share3_open = [7.26, 7, 6.88, 6.91, np.nan, 6.81, 6.63, 6.45, 6.16, 6.24, 5.96, 5.97, 5.96, 6.2, 6.35, 6.11, 6.37, 5.58, np.nan, 5.65, 5.19, 5.42, 6.3, 6.15, 6.05, 5.89, 5.22, 5.2, 5.07, 6.04, 6.12, 5.85, 5.67, 6.02, 6.04, 7.07, 7.64, 7.99, 7.59, 8.73, 8.72, 8.97, 8.58, 8.71, 8.77, 8.4, 7.95, 7.76, 8.25, 7.51] share3_high = [7.41, 7.31, 7.14, 7, np.nan, 6.82, 6.96, 6.85, 6.5, 6.34, 6.04, 6.02, 6.12, 6.38, 6.43, 6.46, 6.43, 6.27, np.nan, 6.01, 5.67, 5.67, 6.35, 6.32, 6.43, 6.36, 5.79, 5.47, 5.65, 6.04, 6.14, 6.23, 5.83, 6.25, 6.27, 7.12, 7.82, 8.14, 8.27, 8.92, 8.76, 9.15, 8.9, 9.01, 9.16, 9, 8.27, 7.99, 8.33, 8.25] share3_low = [6.53, 6.87, 6.83, 6.7, np.nan, 6.63, 6.57, 6.41, 6.15, 6.07, 5.89, 5.82, 5.73, 5.81, 6.1, 6.06, 6.16, 5.57, np.nan, 5.51, 5.19, 5.12, 5.69, 6.01, 5.97, 5.86, 5.18, 5.19, 4.96, 5.45, 5.84, 5.85, 5.28, 5.42, 6.02, 6.69, 7.28, 7.64, 7.25, 7.83, 8.41, 8.66, 8.53, 8.54, 8.73, 8.27, 7.95, 7.67, 7.8, 7.51] # for sel_finance test shares_eps = np.array([[np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, 0.2, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [0.1, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.3, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 0, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.2], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.15, np.nan, np.nan], [np.nan, 0.1, np.nan], [np.nan, np.nan, np.nan], [0.1, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [0.2, np.nan, np.nan], [np.nan, 0.5, np.nan], [0.4, np.nan, 0.3], [np.nan, np.nan, np.nan], [np.nan, 0.3, np.nan], [0.9, np.nan, np.nan], [np.nan, np.nan, 0.1]]) self.date_indices = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14', '2016-07-15', '2016-07-18', '2016-07-19', '2016-07-20', '2016-07-21', '2016-07-22', '2016-07-25', '2016-07-26', '2016-07-27', '2016-07-28', '2016-07-29', '2016-08-01', '2016-08-02', '2016-08-03', '2016-08-04', '2016-08-05', '2016-08-08', '2016-08-09', '2016-08-10', '2016-08-11', '2016-08-12', '2016-08-15', '2016-08-16', '2016-08-17', '2016-08-18', '2016-08-19', '2016-08-22', '2016-08-23', '2016-08-24', '2016-08-25', '2016-08-26', '2016-08-29', '2016-08-30', '2016-08-31', '2016-09-01', '2016-09-02', '2016-09-05', '2016-09-06', '2016-09-07', '2016-09-08'] self.shares = ['000010', '000030', '000039'] self.types = ['close', 'open', 'high', 'low'] self.sel_finance_tyeps = ['eps'] self.test_data_3D = np.zeros((3, data_rows, 4)) self.test_data_2D = np.zeros((data_rows, 3)) self.test_data_2D2 = np.zeros((data_rows, 4)) self.test_data_sel_finance = np.empty((3, data_rows, 1)) # Build up 3D data self.test_data_3D[0, :, 0] = share1_close self.test_data_3D[0, :, 1] = share1_open self.test_data_3D[0, :, 2] = share1_high self.test_data_3D[0, :, 3] = share1_low self.test_data_3D[1, :, 0] = share2_close self.test_data_3D[1, :, 1] = share2_open self.test_data_3D[1, :, 2] = share2_high self.test_data_3D[1, :, 3] = share2_low self.test_data_3D[2, :, 0] = share3_close self.test_data_3D[2, :, 1] = share3_open self.test_data_3D[2, :, 2] = share3_high self.test_data_3D[2, :, 3] = share3_low self.test_data_sel_finance[:, :, 0] = shares_eps.T self.hp1 = qt.HistoryPanel(values=self.test_data_3D, levels=self.shares, columns=self.types, rows=self.date_indices) print(f'in test Operator, history panel is created for timing test') self.hp1.info() self.hp2 = qt.HistoryPanel(values=self.test_data_sel_finance, levels=self.shares, columns=self.sel_finance_tyeps, rows=self.date_indices) print(f'in test_Operator, history panel is created for selection finance test:') self.hp2.info() self.op = qt.Operator(strategies='dma', signal_type='PS') self.op2 = qt.Operator(strategies='dma, macd, trix') def test_init(self): """ test initialization of Operator class""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.signal_type, 'pt') self.assertIsInstance(op.strategies, list) self.assertEqual(len(op.strategies), 0) op = qt.Operator('dma') self.assertIsInstance(op, qt.Operator) self.assertIsInstance(op.strategies, list) self.assertIsInstance(op.strategies[0], TimingDMA) op = qt.Operator('dma, macd') self.assertIsInstance(op, qt.Operator) op = qt.Operator(['dma', 'macd']) self.assertIsInstance(op, qt.Operator) def test_repr(self): """ test basic representation of Opeartor class""" op = qt.Operator() self.assertEqual(op.__repr__(), 'Operator()') op = qt.Operator('macd, dma, trix, random, avg_low') self.assertEqual(op.__repr__(), 'Operator(macd, dma, trix, random, avg_low)') self.assertEqual(op['dma'].__repr__(), 'Q-TIMING(DMA)') self.assertEqual(op['macd'].__repr__(), 'R-TIMING(MACD)') self.assertEqual(op['trix'].__repr__(), 'R-TIMING(TRIX)') self.assertEqual(op['random'].__repr__(), 'SELECT(RANDOM)') self.assertEqual(op['avg_low'].__repr__(), 'FACTOR(AVG LOW)') def test_info(self): """Test information output of Operator""" print(f'test printing information of operator object') self.op.info() def test_get_strategy_by_id(self): """ test get_strategy_by_id()""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') self.assertEqual(op.strategy_ids, ['macd', 'dma', 'trix']) self.assertIs(op.get_strategy_by_id('macd'), op.strategies[0]) self.assertIs(op.get_strategy_by_id(1), op.strategies[1]) self.assertIs(op.get_strategy_by_id('trix'), op.strategies[2]) def test_get_items(self): """ test method __getitem__(), it should be the same as geting strategies by id""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') self.assertEqual(op.strategy_ids, ['macd', 'dma', 'trix']) self.assertIs(op['macd'], op.strategies[0]) self.assertIs(op['trix'], op.strategies[2]) self.assertIs(op[1], op.strategies[1]) self.assertIs(op[3], op.strategies[2]) def test_get_strategies_by_price_type(self): """ test get_strategies_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategies_by_price_type('close') stg_open = op.get_strategies_by_price_type('open') stg_high = op.get_strategies_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, [op.strategies[1]]) self.assertEqual(stg_open, [op.strategies[0], op.strategies[2]]) self.assertEqual(stg_high, []) stg_wrong = op.get_strategies_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_get_strategy_count_by_price_type(self): """ test get_strategy_count_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_count_by_price_type('close') stg_open = op.get_strategy_count_by_price_type('open') stg_high = op.get_strategy_count_by_price_type('high') self.assertIsInstance(stg_close, int) self.assertIsInstance(stg_open, int) self.assertIsInstance(stg_high, int) self.assertEqual(stg_close, 1) self.assertEqual(stg_open, 2) self.assertEqual(stg_high, 0) stg_wrong = op.get_strategy_count_by_price_type(123) self.assertIsInstance(stg_wrong, int) self.assertEqual(stg_wrong, 0) def test_get_strategy_names_by_price_type(self): """ test get_strategy_names_by_price_type""" op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_names_by_price_type('close') stg_open = op.get_strategy_names_by_price_type('open') stg_high = op.get_strategy_names_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, ['DMA']) self.assertEqual(stg_open, ['MACD', 'TRIX']) self.assertEqual(stg_high, []) stg_wrong = op.get_strategy_names_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_get_strategy_id_by_price_type(self): """ test get_strategy_IDs_by_price_type""" print('-----Test get strategy IDs by price type------\n') op = qt.Operator() self.assertIsInstance(op, qt.Operator) self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op = qt.Operator('macd, dma, trix') op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='close') op.set_parameter('trix', price_type='open') stg_close = op.get_strategy_id_by_price_type('close') stg_open = op.get_strategy_id_by_price_type('open') stg_high = op.get_strategy_id_by_price_type('high') self.assertIsInstance(stg_close, list) self.assertIsInstance(stg_open, list) self.assertIsInstance(stg_high, list) self.assertEqual(stg_close, ['dma']) self.assertEqual(stg_open, ['macd', 'trix']) self.assertEqual(stg_high, []) op.add_strategies('dma, macd') op.set_parameter('dma_1', price_type='open') op.set_parameter('macd', price_type='open') op.set_parameter('macd_1', price_type='high') op.set_parameter('trix', price_type='close') print(f'Operator strategy id:\n' f'{op.strategies} on memory pos:\n' f'{[id(stg) for stg in op.strategies]}') stg_close = op.get_strategy_id_by_price_type('close') stg_open = op.get_strategy_id_by_price_type('open') stg_high = op.get_strategy_id_by_price_type('high') stg_all = op.get_strategy_id_by_price_type() print(f'All IDs of strategies:\n' f'{stg_all}\n' f'All price types of strategies:\n' f'{[stg.price_type for stg in op.strategies]}') self.assertEqual(stg_close, ['dma', 'trix']) self.assertEqual(stg_open, ['macd', 'dma_1']) self.assertEqual(stg_high, ['macd_1']) stg_wrong = op.get_strategy_id_by_price_type(123) self.assertIsInstance(stg_wrong, list) self.assertEqual(stg_wrong, []) def test_property_strategies(self): """ test property strategies""" print(f'created a new simple Operator with only one strategy: DMA') op = qt.Operator('dma') strategies = op.strategies self.assertIsInstance(strategies, list) op.info() print(f'created the second simple Operator with three strategies') self.assertIsInstance(strategies[0], TimingDMA) op = qt.Operator('dma, macd, cdl') strategies = op.strategies op.info() self.assertIsInstance(strategies, list) self.assertIsInstance(strategies[0], TimingDMA) self.assertIsInstance(strategies[1], TimingMACD) self.assertIsInstance(strategies[2], TimingCDL) def test_property_strategy_count(self): """ test Property strategy_count, and the method get_strategy_count_by_price_type()""" self.assertEqual(self.op.strategy_count, 1) self.assertEqual(self.op2.strategy_count, 3) self.assertEqual(self.op.get_strategy_count_by_price_type(), 1) self.assertEqual(self.op2.get_strategy_count_by_price_type(), 3) self.assertEqual(self.op.get_strategy_count_by_price_type('close'), 1) self.assertEqual(self.op.get_strategy_count_by_price_type('high'), 0) self.assertEqual(self.op2.get_strategy_count_by_price_type('close'), 3) self.assertEqual(self.op2.get_strategy_count_by_price_type('open'), 0) def test_property_strategy_names(self): """ test property strategy_ids""" op = qt.Operator('dma') self.assertIsInstance(op.strategy_ids, list) names = op.strategy_ids[0] print(f'names are {names}') self.assertEqual(names, 'dma') op = qt.Operator('dma, macd, trix, cdl') self.assertIsInstance(op.strategy_ids, list) self.assertEqual(op.strategy_ids[0], 'dma') self.assertEqual(op.strategy_ids[1], 'macd') self.assertEqual(op.strategy_ids[2], 'trix') self.assertEqual(op.strategy_ids[3], 'cdl') op = qt.Operator('dma, macd, trix, dma, dma') self.assertIsInstance(op.strategy_ids, list) self.assertEqual(op.strategy_ids[0], 'dma') self.assertEqual(op.strategy_ids[1], 'macd') self.assertEqual(op.strategy_ids[2], 'trix') self.assertEqual(op.strategy_ids[3], 'dma_1') self.assertEqual(op.strategy_ids[4], 'dma_2') def test_property_strategy_blenders(self): """ test property strategy blenders including property setter, and test the method get_blender()""" print(f'------- Test property strategy blenders ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'pt') # test adding blender to empty operator op.strategy_blenders = '1 + 2' op.signal_type = 'proportion signal' self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'ps') op.add_strategy('dma') op.strategy_blenders = '1+2' self.assertEqual(op.strategy_blenders, {'close': ['+', '2', '1']}) op.clear_strategies() self.assertEqual(op.strategy_blenders, {}) op.add_strategies('dma, trix, macd, dma') op.set_parameter('dma', price_type='open') op.set_parameter('trix', price_type='high') op.set_blender('open', '1+2') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '2', '1']) self.assertEqual(blender_close, None) self.assertEqual(blender_high, None) op.set_blender('open', '1+2+3') op.set_blender('abc', '1+2+3') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') blender_abc = op.get_blender('abc') self.assertEqual(op.strategy_blenders, {'open': ['+', '3', '+', '2', '1']}) self.assertEqual(blender_open, ['+', '3', '+', '2', '1']) self.assertEqual(blender_close, None) self.assertEqual(blender_high, None) self.assertEqual(blender_abc, None) op.set_blender('open', 123) blender_open = op.get_blender('open') self.assertEqual(blender_open, []) op.set_blender(None, '1+1') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(op.bt_price_types, ['close', 'high', 'open']) self.assertEqual(op.get_blender(), {'close': ['+', '1', '1'], 'open': ['+', '1', '1'], 'high': ['+', '1', '1']}) self.assertEqual(blender_open, ['+', '1', '1']) self.assertEqual(blender_close, ['+', '1', '1']) self.assertEqual(blender_high, ['+', '1', '1']) op.set_blender(None, ['1+1', '3+4']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '3']) self.assertEqual(blender_close, ['+', '1', '1']) self.assertEqual(blender_high, ['+', '4', '3']) self.assertEqual(op.view_blender('open'), '3+4') self.assertEqual(op.view_blender('close'), '1+1') self.assertEqual(op.view_blender('high'), '3+4') op.strategy_blenders = (['1+2', '2*3', '1+4']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) self.assertEqual(op.view_blender('open'), '1+4') self.assertEqual(op.view_blender('close'), '1+2') self.assertEqual(op.view_blender('high'), '2*3') # test error inputs: # wrong type of price_type self.assertRaises(TypeError, op.set_blender, 1, '1+3') # price_type not found, no change is made op.set_blender('volume', '1+3') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # price_type not valid, no change is made op.set_blender('closee', '1+2') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, ['+', '4', '1']) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # wrong type of blender, set to empty list op.set_blender('open', 55) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, ['+', '2', '1']) self.assertEqual(blender_high, ['*', '3', '2']) # wrong type of blender, set to empty list op.set_blender('close', ['1+2']) blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, []) self.assertEqual(blender_high, ['*', '3', '2']) # can't parse blender, set to empty list op.set_blender('high', 'a+bc') blender_open = op.get_blender('open') blender_close = op.get_blender('close') blender_high = op.get_blender('high') self.assertEqual(blender_open, []) self.assertEqual(blender_close, []) self.assertEqual(blender_high, []) def test_property_singal_type(self): """ test property signal_type""" op = qt.Operator() self.assertIsInstance(op.signal_type, str) self.assertEqual(op.signal_type, 'pt') op = qt.Operator(signal_type='ps') self.assertIsInstance(op.signal_type, str) self.assertEqual(op.signal_type, 'ps') op = qt.Operator(signal_type='PS') self.assertEqual(op.signal_type, 'ps') op = qt.Operator(signal_type='proportion signal') self.assertEqual(op.signal_type, 'ps') print(f'"pt" will be the default type if wrong value is given') op = qt.Operator(signal_type='wrong value') self.assertEqual(op.signal_type, 'pt') print(f'test signal_type.setter') op.signal_type = 'ps' self.assertEqual(op.signal_type, 'ps') print(f'test error raising') self.assertRaises(TypeError, setattr, op, 'signal_type', 123) self.assertRaises(ValueError, setattr, op, 'signal_type', 'wrong value') def test_property_op_data_types(self): """ test property op_data_types""" op = qt.Operator() self.assertIsInstance(op.op_data_types, list) self.assertEqual(op.op_data_types, []) op = qt.Operator('macd, dma, trix') dt = op.op_data_types self.assertEqual(dt[0], 'close') op = qt.Operator('macd, cdl') dt = op.op_data_types self.assertEqual(dt[0], 'close') self.assertEqual(dt[1], 'high') self.assertEqual(dt[2], 'low') self.assertEqual(dt[3], 'open') self.assertEqual(dt, ['close', 'high', 'low', 'open']) op.add_strategy('dma') dt = op.op_data_types self.assertEqual(dt[0], 'close') self.assertEqual(dt[1], 'high') self.assertEqual(dt[2], 'low') self.assertEqual(dt[3], 'open') self.assertEqual(dt, ['close', 'high', 'low', 'open']) def test_property_op_data_type_count(self): """ test property op_data_type_count""" op = qt.Operator() self.assertIsInstance(op.op_data_type_count, int) self.assertEqual(op.op_data_type_count, 0) op = qt.Operator('macd, dma, trix') dtn = op.op_data_type_count self.assertEqual(dtn, 1) op = qt.Operator('macd, cdl') dtn = op.op_data_type_count self.assertEqual(dtn, 4) op.add_strategy('dma') dtn = op.op_data_type_count self.assertEqual(dtn, 4) def test_property_op_data_freq(self): """ test property op_data_freq""" op = qt.Operator() self.assertIsInstance(op.op_data_freq, str) self.assertEqual(len(op.op_data_freq), 0) self.assertEqual(op.op_data_freq, '') op = qt.Operator('macd, dma, trix') dtf = op.op_data_freq self.assertIsInstance(dtf, str) self.assertEqual(dtf[0], 'd') op.set_parameter('macd', data_freq='m') dtf = op.op_data_freq self.assertIsInstance(dtf, list) self.assertEqual(len(dtf), 2) self.assertEqual(dtf[0], 'd') self.assertEqual(dtf[1], 'm') def test_property_bt_price_types(self): """ test property bt_price_types""" print('------test property bt_price_tyeps-------') op = qt.Operator() self.assertIsInstance(op.bt_price_types, list) self.assertEqual(len(op.bt_price_types), 0) self.assertEqual(op.bt_price_types, []) op = qt.Operator('macd, dma, trix') btp = op.bt_price_types self.assertIsInstance(btp, list) self.assertEqual(btp[0], 'close') op.set_parameter('macd', price_type='open') btp = op.bt_price_types btpc = op.bt_price_type_count print(f'price_types are \n{btp}') self.assertIsInstance(btp, list) self.assertEqual(len(btp), 2) self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) op.add_strategies(['dma', 'macd']) op.set_parameter('dma_1', price_type='high') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'high') self.assertEqual(btp[2], 'open') self.assertEqual(btpc, 3) op.remove_strategy('dma_1') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) op.remove_strategy('macd_1') btp = op.bt_price_types btpc = op.bt_price_type_count self.assertEqual(btp[0], 'close') self.assertEqual(btp[1], 'open') self.assertEqual(btpc, 2) def test_property_op_data_type_list(self): """ test property op_data_type_list""" op = qt.Operator() self.assertIsInstance(op.op_data_type_list, list) self.assertEqual(len(op.op_data_type_list), 0) self.assertEqual(op.op_data_type_list, []) op = qt.Operator('macd, dma, trix, cdl') ohd = op.op_data_type_list print(f'ohd is {ohd}') self.assertIsInstance(ohd, list) self.assertEqual(ohd[0], ['close']) op.set_parameter('macd', data_types='open, close') ohd = op.op_data_type_list print(f'ohd is {ohd}') self.assertIsInstance(ohd, list) self.assertEqual(len(ohd), 4) self.assertEqual(ohd[0], ['open', 'close']) self.assertEqual(ohd[1], ['close']) self.assertEqual(ohd[2], ['close']) self.assertEqual(ohd[3], ['open', 'high', 'low', 'close']) def test_property_op_history_data(self): """ Test this important function to get operation history data that shall be used in signal generation these data are stored in list of nd-arrays, each ndarray represents the data that is needed for each and every strategy """ print(f'------- Test getting operation history data ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.op_history_data, {}) self.assertEqual(op.signal_type, 'pt') def test_property_opt_space_par(self): """ test property opt_space_par""" print(f'-----test property opt_space_par--------:\n') op = qt.Operator() self.assertIsInstance(op.opt_space_par, tuple) self.assertIsInstance(op.opt_space_par[0], list) self.assertIsInstance(op.opt_space_par[1], list) self.assertEqual(len(op.opt_space_par), 2) self.assertEqual(op.opt_space_par, ([], [])) op = qt.Operator('macd, dma, trix, cdl') osp = op.opt_space_par print(f'before setting opt_tags opt_space_par is empty:\n' f'osp is {osp}\n') self.assertIsInstance(osp, tuple) self.assertEqual(osp[0], []) self.assertEqual(osp[1], []) op.set_parameter('macd', opt_tag=1) op.set_parameter('dma', opt_tag=1) osp = op.opt_space_par print(f'after setting opt_tags opt_space_par is not empty:\n' f'osp is {osp}\n') self.assertIsInstance(osp, tuple) self.assertEqual(len(osp), 2) self.assertIsInstance(osp[0], list) self.assertIsInstance(osp[1], list) self.assertEqual(len(osp[0]), 6) self.assertEqual(len(osp[1]), 6) self.assertEqual(osp[0], [(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) self.assertEqual(osp[1], ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) def test_property_opt_types(self): """ test property opt_tags""" print(f'-----test property opt_tags--------:\n') op = qt.Operator() self.assertIsInstance(op.opt_tags, list) self.assertEqual(len(op.opt_tags), 0) self.assertEqual(op.opt_tags, []) op = qt.Operator('macd, dma, trix, cdl') otp = op.opt_tags print(f'before setting opt_tags opt_space_par is empty:\n' f'otp is {otp}\n') self.assertIsInstance(otp, list) self.assertEqual(otp, [0, 0, 0, 0]) op.set_parameter('macd', opt_tag=1) op.set_parameter('dma', opt_tag=1) otp = op.opt_tags print(f'after setting opt_tags opt_space_par is not empty:\n' f'otp is {otp}\n') self.assertIsInstance(otp, list) self.assertEqual(len(otp), 4) self.assertEqual(otp, [1, 1, 0, 0]) def test_property_max_window_length(self): """ test property max_window_length""" print(f'-----test property max window length--------:\n') op = qt.Operator() self.assertIsInstance(op.max_window_length, int) self.assertEqual(op.max_window_length, 0) op = qt.Operator('macd, dma, trix, cdl') mwl = op.max_window_length print(f'before setting window_length the value is 270:\n' f'mwl is {mwl}\n') self.assertIsInstance(mwl, int) self.assertEqual(mwl, 270) op.set_parameter('macd', window_length=300) op.set_parameter('dma', window_length=350) mwl = op.max_window_length print(f'after setting window_length the value is new set value:\n' f'mwl is {mwl}\n') self.assertIsInstance(mwl, int) self.assertEqual(mwl, 350) def test_property_bt_price_type_count(self): """ test property bt_price_type_count""" print(f'-----test property bt_price_type_count--------:\n') op = qt.Operator() self.assertIsInstance(op.bt_price_type_count, int) self.assertEqual(op.bt_price_type_count, 0) op = qt.Operator('macd, dma, trix, cdl') otp = op.bt_price_type_count print(f'before setting price_type the price count is 1:\n' f'otp is {otp}\n') self.assertIsInstance(otp, int) self.assertEqual(otp, 1) op.set_parameter('macd', price_type='open') op.set_parameter('dma', price_type='open') otp = op.bt_price_type_count print(f'after setting price_type the price type count is 2:\n' f'otp is {otp}\n') self.assertIsInstance(otp, int) self.assertEqual(otp, 2) def test_property_set(self): """ test all property setters: setting following properties: - strategy_blenders - signal_type other properties can not be set""" print(f'------- Test setting properties ---------') op = qt.Operator() self.assertIsInstance(op.strategy_blenders, dict) self.assertIsInstance(op.signal_type, str) self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'pt') op.strategy_blenders = '1 + 2' op.signal_type = 'proportion signal' self.assertEqual(op.strategy_blenders, {}) self.assertEqual(op.signal_type, 'ps') op = qt.Operator('macd, dma, trix, cdl') # TODO: 修改set_parameter(),使下面的用法成立 # a_to_sell.set_parameter('dma, cdl', price_type='open') op.set_parameter('dma', price_type='open') op.set_parameter('cdl', price_type='open') sb = op.strategy_blenders st = op.signal_type self.assertIsInstance(sb, dict) print(f'before setting: strategy_blenders={sb}') self.assertEqual(sb, {}) op.strategy_blenders = '1+2 * 3' sb = op.strategy_blenders print(f'after setting strategy_blender={sb}') self.assertEqual(sb, {'close': ['+', '*', '3', '2', '1'], 'open': ['+', '*', '3', '2', '1']}) op.strategy_blenders = ['1+2', '3-4'] sb = op.strategy_blenders print(f'after setting strategy_blender={sb}') self.assertEqual(sb, {'close': ['+', '2', '1'], 'open': ['-', '4', '3']}) def test_operator_ready(self): """test the method ready of Operator""" op = qt.Operator() print(f'operator is ready? "{op.ready}"') def test_operator_add_strategy(self): """test adding strategies to Operator""" op = qt.Operator('dma, all, urgent') self.assertIsInstance(op, qt.Operator) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[1], qt.SelectingAll) self.assertIsInstance(op.strategies[2], qt.RiconUrgent) self.assertIsInstance(op[0], qt.TimingDMA) self.assertIsInstance(op[1], qt.SelectingAll) self.assertIsInstance(op[2], qt.RiconUrgent) self.assertIsInstance(op['dma'], qt.TimingDMA) self.assertIsInstance(op['all'], qt.SelectingAll) self.assertIsInstance(op['urgent'], qt.RiconUrgent) self.assertEqual(op.strategy_count, 3) print(f'test adding strategies into existing op') print('test adding strategy by string') op.add_strategy('macd') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[3], qt.TimingMACD) self.assertEqual(op.strategy_count, 4) op.add_strategy('random') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[4], qt.SelectingRandom) self.assertEqual(op.strategy_count, 5) test_ls = TestLSStrategy() op.add_strategy(test_ls) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[5], TestLSStrategy) self.assertEqual(op.strategy_count, 6) print(f'Test different instance of objects are added to operator') op.add_strategy('dma') self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[6], qt.TimingDMA) self.assertIsNot(op.strategies[0], op.strategies[6]) def test_operator_add_strategies(self): """ etst adding multiple strategies to Operator""" op = qt.Operator('dma, all, urgent') self.assertEqual(op.strategy_count, 3) print('test adding multiple strategies -- adding strategy by list of strings') op.add_strategies(['dma', 'macd']) self.assertEqual(op.strategy_count, 5) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[3], qt.TimingDMA) self.assertIsInstance(op.strategies[4], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by comma separated strings') op.add_strategies('dma, macd') self.assertEqual(op.strategy_count, 7) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[5], qt.TimingDMA) self.assertIsInstance(op.strategies[6], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by list of strategies') op.add_strategies([qt.TimingDMA(), qt.TimingMACD()]) self.assertEqual(op.strategy_count, 9) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[7], qt.TimingDMA) self.assertIsInstance(op.strategies[8], qt.TimingMACD) print('test adding multiple strategies -- adding strategy by list of strategy and str') op.add_strategies(['DMA', qt.TimingMACD()]) self.assertEqual(op.strategy_count, 11) self.assertIsInstance(op.strategies[0], qt.TimingDMA) self.assertIsInstance(op.strategies[9], qt.TimingDMA) self.assertIsInstance(op.strategies[10], qt.TimingMACD) self.assertIsNot(op.strategies[0], op.strategies[9]) self.assertIs(type(op.strategies[0]), type(op.strategies[9])) print('test adding fault data') self.assertRaises(AssertionError, op.add_strategies, 123) self.assertRaises(AssertionError, op.add_strategies, None) def test_opeartor_remove_strategy(self): """ test method remove strategy""" op = qt.Operator('dma, all, urgent') op.add_strategies(['dma', 'macd']) op.add_strategies(['DMA', TestLSStrategy()]) self.assertEqual(op.strategy_count, 7) print('test removing strategies from Operator') op.remove_strategy('dma') self.assertEqual(op.strategy_count, 6) self.assertEqual(op.strategy_ids, ['all', 'urgent', 'dma_1', 'macd', 'dma_2', 'custom']) self.assertEqual(op.strategies[0], op['all']) self.assertEqual(op.strategies[1], op['urgent']) self.assertEqual(op.strategies[2], op['dma_1']) self.assertEqual(op.strategies[3], op['macd']) self.assertEqual(op.strategies[4], op['dma_2']) self.assertEqual(op.strategies[5], op['custom']) op.remove_strategy('dma_1') self.assertEqual(op.strategy_count, 5) self.assertEqual(op.strategy_ids, ['all', 'urgent', 'macd', 'dma_2', 'custom']) self.assertEqual(op.strategies[0], op['all']) self.assertEqual(op.strategies[1], op['urgent']) self.assertEqual(op.strategies[2], op['macd']) self.assertEqual(op.strategies[3], op['dma_2']) self.assertEqual(op.strategies[4], op['custom']) def test_opeartor_clear_strategies(self): """ test operator clear strategies""" op = qt.Operator('dma, all, urgent') op.add_strategies(['dma', 'macd']) op.add_strategies(['DMA', TestLSStrategy()]) self.assertEqual(op.strategy_count, 7) print('test removing strategies from Operator') op.clear_strategies() self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) op.add_strategy('dma', pars=(12, 123, 25)) self.assertEqual(op.strategy_count, 1) self.assertEqual(op.strategy_ids, ['dma']) self.assertEqual(type(op.strategies[0]), TimingDMA) self.assertEqual(op.strategies[0].pars, (12, 123, 25)) op.clear_strategies() self.assertEqual(op.strategy_count, 0) self.assertEqual(op.strategy_ids, []) def test_operator_prepare_data(self): """test processes that related to prepare data""" test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sig = TestSigStrategy() self.op = qt.Operator(strategies=[test_ls, test_sel, test_sig]) too_early_cash = qt.CashPlan(dates='2016-01-01', amounts=10000) early_cash = qt.CashPlan(dates='2016-07-01', amounts=10000) on_spot_cash = qt.CashPlan(dates='2016-07-08', amounts=10000) no_trade_cash = qt.CashPlan(dates='2016-07-08, 2016-07-30, 2016-08-11, 2016-09-03', amounts=[10000, 10000, 10000, 10000]) # 在所有策略的参数都设置好之前调用prepare_data会发生assertion Error self.assertRaises(AssertionError, self.op.prepare_data, hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) late_cash = qt.CashPlan(dates='2016-12-31', amounts=10000) multi_cash = qt.CashPlan(dates='2016-07-08, 2016-08-08', amounts=[10000, 10000]) self.op.set_parameter(stg_id='custom', pars={'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.assertEqual(self.op.strategies[0].pars, {'000300': (5, 10.), '000400': (5, 10.), '000500': (5, 6.)}) self.op.set_parameter(stg_id='custom_1', pars=()) self.assertEqual(self.op.strategies[1].pars, ()), self.op.set_parameter(stg_id='custom_2', pars=(0.2, 0.02, -0.02)) self.assertEqual(self.op.strategies[2].pars, (0.2, 0.02, -0.02)), self.op.prepare_data(hist_data=self.hp1, cash_plan=on_spot_cash) self.assertIsInstance(self.op._op_history_data, dict) self.assertEqual(len(self.op._op_history_data), 3) # test if automatic strategy blenders are set self.assertEqual(self.op.strategy_blenders, {'close': ['+', '2', '+', '1', '0']}) tim_hist_data = self.op._op_history_data['custom'] sel_hist_data = self.op._op_history_data['custom_1'] ric_hist_data = self.op._op_history_data['custom_2'] print(f'in test_prepare_data in TestOperator:') print('selecting history data:\n', sel_hist_data) print('originally passed data in correct sequence:\n', self.test_data_3D[:, 3:, [2, 3, 0]]) print('difference is \n', sel_hist_data - self.test_data_3D[:, :, [2, 3, 0]]) self.assertTrue(np.allclose(sel_hist_data, self.test_data_3D[:, :, [2, 3, 0]], equal_nan=True)) self.assertTrue(np.allclose(tim_hist_data, self.test_data_3D, equal_nan=True)) self.assertTrue(np.allclose(ric_hist_data, self.test_data_3D[:, 3:, :], equal_nan=True)) # raises Value Error if empty history panel is given empty_hp = qt.HistoryPanel() correct_hp = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 4)), columns=self.types, levels=self.shares, rows=self.date_indices) too_many_shares = qt.HistoryPanel(values=np.random.randint(10, size=(5, 50, 4))) too_many_types = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 5))) # raises Error when history panel is empty self.assertRaises(ValueError, self.op.prepare_data, empty_hp, on_spot_cash) # raises Error when first investment date is too early self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, early_cash) # raises Error when last investment date is too late self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, late_cash) # raises Error when some of the investment dates are on no-trade-days self.assertRaises(ValueError, self.op.prepare_data, correct_hp, no_trade_cash) # raises Error when number of shares in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_shares, on_spot_cash) # raises Error when too early cash investment date self.assertRaises(AssertionError, self.op.prepare_data, correct_hp, too_early_cash) # raises Error when number of d_types in history data does not fit self.assertRaises(AssertionError, self.op.prepare_data, too_many_types, on_spot_cash) # test the effect of data type sequence in strategy definition def test_operator_generate(self): """ Test signal generation process of operator objects :return: """ # 使用test模块的自定义策略生成三种交易策略 test_ls = TestLSStrategy() test_sel = TestSelStrategy() test_sel2 = TestSelStrategyDiffTime() test_sig = TestSigStrategy() print('--Test PT type signal generation--') # 测试PT类型的信号生成: # 创建一个Operator对象,信号类型为PT(比例目标信号) # 这个Operator对象包含两个策略,分别为LS-Strategy以及Sel-Strategy,代表择时和选股策略 # 两个策略分别生成PT信号后混合成一个信号输出 self.op = qt.Operator(strategies=[test_ls, test_sel]) self.op.set_parameter(stg_id='custom', pars={'000010': (5, 10.), '000030': (5, 10.), '000039': (5, 6.)}) self.op.set_parameter(stg_id=1, pars=()) # self.a_to_sell.set_blender(blender='0+1+2') self.op.prepare_data(hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) print('--test operator information in normal mode--') self.op.info() self.assertEqual(self.op.strategy_blenders, {'close': ['+', '1', '0']}) self.op.set_blender(None, '0*1') self.assertEqual(self.op.strategy_blenders, {'close': ['*', '1', '0']}) print('--test operation signal created in Proportional Target (PT) Mode--') op_list = self.op.create_signal(hist_data=self.hp1) self.assertTrue(isinstance(op_list, HistoryPanel)) backtest_price_types = op_list.htypes self.assertEqual(backtest_price_types[0], 'close') self.assertEqual(op_list.shape, (3, 45, 1)) reduced_op_list = op_list.values.squeeze().T print(f'op_list created, it is a 3 share/45 days/1 htype array, to make comparison happen, \n' f'it will be squeezed to a 2-d array to compare on share-wise:\n' f'{reduced_op_list}') target_op_values = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0]]) self.assertTrue(np.allclose(target_op_values, reduced_op_list, equal_nan=True)) print('--Test two separate signal generation for different price types--') # 测试两组PT类型的信号生成: # 在Operator对象中增加两个SigStrategy策略,策略类型相同但是策略的参数不同,回测价格类型为"OPEN" # Opeartor应该生成两组交易信号,分别用于"close"和"open"两中不同的价格类型 # 这里需要重新生成两个新的交易策略对象,否则在op的strategies列表中产生重复的对象引用,从而引起错误 test_ls = TestLSStrategy() test_sel = TestSelStrategy() self.op.add_strategies([test_ls, test_sel]) self.op.set_parameter(stg_id='custom_2', price_type='open') self.op.set_parameter(stg_id='custom_3', price_type='open') self.assertEqual(self.op['custom'].price_type, 'close') self.assertEqual(self.op['custom_2'].price_type, 'open') self.op.set_parameter(stg_id='custom_2', pars={'000010': (5, 10.), '000030': (5, 10.), '000039': (5, 6.)}) self.op.set_parameter(stg_id='custom_3', pars=()) self.op.set_blender(blender='0 or 1', price_type='open') self.op.prepare_data(hist_data=self.hp1, cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000)) print('--test how operator information is printed out--') self.op.info() self.assertEqual(self.op.strategy_blenders, {'close': ['*', '1', '0'], 'open': ['or', '1', '0']}) print('--test opeartion signal created in Proportional Target (PT) Mode--') op_list = self.op.create_signal(hist_data=self.hp1) self.assertTrue(isinstance(op_list, HistoryPanel)) signal_close = op_list['close'].squeeze().T signal_open = op_list['open'].squeeze().T self.assertEqual(signal_close.shape, (45, 3)) self.assertEqual(signal_open.shape, (45, 3)) target_op_close = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.0], [0.5, 0.0, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0], [0.0, 0.5, 0.0]]) target_op_open = np.array([[0.5, 0.5, 1.0], [0.5, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 0.5, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.5, 0.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.0, 1.0, 0.5], [0.5, 1.0, 0.0], [0.5, 1.0, 0.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.0, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0], [0.5, 1.0, 1.0]]) signal_pairs = [[list(sig1), list(sig2), sig1 == sig2] for sig1, sig2 in zip(list(target_op_close), list(signal_close))] print(f'signals side by side:\n' f'{signal_pairs}') self.assertTrue(np.allclose(target_op_close, signal_close, equal_nan=True)) signal_pairs = [[list(sig1), list(sig2), sig1 == sig2] for sig1, sig2 in zip(list(target_op_open), list(signal_open))] print(f'signals side by side:\n' f'{signal_pairs}') self.assertTrue(np.allclose(target_op_open, signal_open, equal_nan=True)) print('--Test two separate signal generation for different price types--') # 更多测试集合 def test_stg_parameter_setting(self): """ test setting parameters of strategies test the method set_parameters :return: """ op = qt.Operator(strategies='dma, all, urgent') print(op.strategies, '\n', [qt.TimingDMA, qt.SelectingAll, qt.RiconUrgent]) print(f'info of Timing strategy in new op: \n{op.strategies[0].info()}') # TODO: allow set_parameters to a list of strategies or str-listed strategies # TODO: allow set_parameters to all strategies of specific bt price type print(f'Set up strategy parameters by strategy id') op.set_parameter('dma', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) op.set_parameter('all', window_length=20) op.set_parameter('all', price_type='high') print(f'Can also set up strategy parameters by strategy index') op.set_parameter(2, price_type='open') op.set_parameter(2, opt_tag=1, pars=(9, -0.09), window_length=10) self.assertEqual(op.strategies[0].pars, (5, 10, 5)) self.assertEqual(op.strategies[0].par_boes, ((5, 10), (5, 15), (10, 15))) self.assertEqual(op.strategies[2].pars, (9, -0.09)) self.assertEqual(op.op_data_freq, 'd') self.assertEqual(op.op_data_types, ['close', 'high', 'open']) self.assertEqual(op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (1, 40), (-0.5, 0.5)], ['discr', 'discr', 'discr', 'discr', 'conti'])) self.assertEqual(op.max_window_length, 20) print(f'KeyError will be raised if wrong strategy id is given') self.assertRaises(KeyError, op.set_parameter, stg_id='t-1', pars=(1, 2)) self.assertRaises(KeyError, op.set_parameter, stg_id='wrong_input', pars=(1, 2)) print(f'ValueError will be raised if parameter can be set') self.assertRaises(ValueError, op.set_parameter, stg_id=0, pars=('wrong input', 'wrong input')) # test blenders of different price types # test setting blenders to different price types # TODO: to allow operands like "and", "or", "not", "xor" # a_to_sell.set_blender('close', '0 and 1 or 2') # self.assertEqual(a_to_sell.get_blender('close'), 'str-1.2') self.assertEqual(op.bt_price_types, ['close', 'high', 'open']) op.set_blender('open', '0 & 1 | 2') self.assertEqual(op.get_blender('open'), ['|', '2', '&', '1', '0']) op.set_blender('high', '(0|1) & 2') self.assertEqual(op.get_blender('high'), ['&', '2', '|', '1', '0']) op.set_blender('close', '0 & 1 | 2') self.assertEqual(op.get_blender(), {'close': ['|', '2', '&', '1', '0'], 'high': ['&', '2', '|', '1', '0'], 'open': ['|', '2', '&', '1', '0']}) self.assertEqual(op.opt_space_par, ([(5, 10), (5, 15), (10, 15), (1, 40), (-0.5, 0.5)], ['discr', 'discr', 'discr', 'discr', 'conti'])) self.assertEqual(op.opt_tags, [1, 0, 1]) def test_signal_blend(self): self.assertEqual(blender_parser('0 & 1'), ['&', '1', '0']) self.assertEqual(blender_parser('0 or 1'), ['or', '1', '0']) self.assertEqual(blender_parser('0 & 1 | 2'), ['|', '2', '&', '1', '0']) blender = blender_parser('0 & 1 | 2') self.assertEqual(signal_blend([1, 1, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 1, 0], blender), 1) self.assertEqual(signal_blend([0, 1, 1], blender), 1) self.assertEqual(signal_blend([0, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 0], blender), 0) self.assertEqual(signal_blend([0, 1, 0], blender), 0) self.assertEqual(signal_blend([0, 0, 0], blender), 0) # parse: '0 & ( 1 | 2 )' self.assertEqual(blender_parser('0 & ( 1 | 2 )'), ['&', '|', '2', '1', '0']) blender = blender_parser('0 & ( 1 | 2 )') self.assertEqual(signal_blend([1, 1, 1], blender), 1) self.assertEqual(signal_blend([1, 0, 1], blender), 1) self.assertEqual(signal_blend([1, 1, 0], blender), 1) self.assertEqual(signal_blend([0, 1, 1], blender), 0) self.assertEqual(signal_blend([0, 0, 1], blender), 0) self.assertEqual(signal_blend([1, 0, 0], blender), 0) self.assertEqual(signal_blend([0, 1, 0], blender), 0) self.assertEqual(signal_blend([0, 0, 0], blender), 0) # parse: '(1-2)/3 + 0' self.assertEqual(blender_parser('(1-2)/3 + 0'), ['+', '0', '/', '3', '-', '2', '1']) blender = blender_parser('(1-2)/3 + 0') self.assertEqual(signal_blend([5, 9, 1, 4], blender), 7) # pars: '(0*1/2*(3+4))+5*(6+7)-8' self.assertEqual(blender_parser('(0*1/2*(3+4))+5*(6+7)-8'), ['-', '8', '+', '*', '+', '7', '6', '5', '*', '+', '4', '3', '/', '2', '*', '1', '0']) blender = blender_parser('(0*1/2*(3+4))+5*(6+7)-8') self.assertEqual(signal_blend([1, 1, 1, 1, 1, 1, 1, 1, 1], blender), 3) self.assertEqual(signal_blend([2, 1, 4, 3, 5, 5, 2, 2, 10], blender), 14) # parse: '0/max(2,1,3 + 5)+4' self.assertEqual(blender_parser('0/max(2,1,3 + 5)+4'), ['+', '4', '/', 'max(3)', '+', '5', '3', '1', '2', '0']) blender = blender_parser('0/max(2,1,3 + 5)+4') self.assertEqual(signal_blend([8.0, 4, 3, 5.0, 0.125, 5], blender), 0.925) self.assertEqual(signal_blend([2, 1, 4, 3, 5, 5, 2, 2, 10], blender), 5.25) print('speed test') import time st = time.time() blender = blender_parser('0+max(1,2,(3+4)*5, max(6, (7+8)*9), 10-11) * (12+13)') res = [] for i in range(10000): res = signal_blend([1, 1, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 2, 3], blender) et = time.time() print(f'total time for RPN processing: {et - st}, got result: {res}') blender = blender_parser("0 + 1 * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 7) blender = blender_parser("(0 + 1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) blender = blender_parser("(0+1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) blender = blender_parser("(0 + 1) * 2") self.assertEqual(signal_blend([1, 2, 3], blender), 9) # TODO: 目前对于-(1+2)这样的表达式还无法处理 # self.a_to_sell.set_blender('selecting', "-(0 + 1) * 2") # self.assertEqual(self.a_to_sell.signal_blend([1, 2, 3]), -9) blender = blender_parser("(0-1)/2 + 3") print(f'RPN of notation: "(0-1)/2 + 3" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, 2, 3, 0.0], blender), -0.33333333) blender = blender_parser("0 + 1 / 2") print(f'RPN of notation: "0 + 1 / 2" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, math.pi, 4], blender), 1.78539816) blender = blender_parser("(0 + 1) / 2") print(f'RPN of notation: "(0 + 1) / 2" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(signal_blend([1, 2, 3], blender), 1) blender = blender_parser("(0 + 1 * 2) / 3") print(f'RPN of notation: "(0 + 1 * 2) / 3" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([3, math.e, 10, 10], blender), 3.0182818284590454) blender = blender_parser("0 / 1 * 2") print(f'RPN of notation: "0 / 1 * 2" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(signal_blend([1, 3, 6], blender), 2) blender = blender_parser("(0 - 1 + 2) * 4") print(f'RPN of notation: "(0 - 1 + 2) * 4" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([1, 1, -1, np.nan, math.pi], blender), -3.141592653589793) blender = blender_parser("0 * 1") print(f'RPN of notation: "0 * 1" is:\n' f'{" ".join(blender[::-1])}') self.assertAlmostEqual(signal_blend([math.pi, math.e], blender), 8.539734222673566) blender = blender_parser('abs(3-sqrt(2) / cos(1))') print(f'RPN of notation: "abs(3-sqrt(2) / cos(1))" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['abs(1)', '-', '/', 'cos(1)', '1', 'sqrt(1)', '2', '3']) blender = blender_parser('0/max(2,1,3 + 5)+4') print(f'RPN of notation: "0/max(2,1,3 + 5)+4" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '4', '/', 'max(3)', '+', '5', '3', '1', '2', '0']) blender = blender_parser('1 + sum(1,2,3+3, sum(1, 2) + 3) *5') print(f'RPN of notation: "1 + sum(1,2,3+3, sum(1, 2) + 3) *5" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '*', '5', 'sum(4)', '+', '3', 'sum(2)', '2', '1', '+', '3', '3', '2', '1', '1']) blender = blender_parser('1+sum(1,2,(3+5)*4, sum(3, (4+5)*6), 7-8) * (2+3)') print(f'RPN of notation: "1+sum(1,2,(3+5)*4, sum(3, (4+5)*6), 7-8) * (2+3)" is:\n' f'{" ".join(blender[::-1])}') self.assertEqual(blender, ['+', '*', '+', '3', '2', 'sum(5)', '-', '8', '7', 'sum(2)', '*', '6', '+', '5', '4', '3', '*', '4', '+', '5', '3', '2', '1', '1']) # TODO: ndarray type of signals to be tested: def test_set_opt_par(self): """ test setting opt pars in batch""" print(f'--------- Testing setting Opt Pars: set_opt_par -------') op = qt.Operator('dma, random, crossline') op.set_parameter('dma', pars=(5, 10, 5), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15)), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.strategies[0].pars, (5, 10, 5)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (35, 120, 10, 'buy')) self.assertEqual(op.opt_tags, [1, 0, 0]) op.set_opt_par((5, 12, 9)) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (35, 120, 10, 'buy')) op.set_parameter('crossline', pars=(5, 10, 5, 'sell'), opt_tag=1, par_boes=((5, 10), (5, 15), (10, 15), ('buy', 'sell', 'none')), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.opt_tags, [1, 0, 1]) op.set_opt_par((5, 12, 9, 8, 26, 9, 'buy')) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) op.set_opt_par((9, 200, 155, 8, 26, 9, 'buy', 5, 12, 9)) self.assertEqual(op.strategies[0].pars, (9, 200, 155)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) # test set_opt_par when opt_tag is set to be 2 (enumerate type of parameters) op.set_parameter('crossline', pars=(5, 10, 5, 'sell'), opt_tag=2, par_boes=((5, 10), (5, 15), (10, 15), ('buy', 'sell', 'none')), window_length=10, data_types=['close', 'open', 'high']) self.assertEqual(op.opt_tags, [1, 0, 2]) self.assertEqual(op.strategies[0].pars, (9, 200, 155)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (5, 10, 5, 'sell')) op.set_opt_par((5, 12, 9, (8, 26, 9, 'buy'))) self.assertEqual(op.strategies[0].pars, (5, 12, 9)) self.assertEqual(op.strategies[1].pars, (0.5,)) self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy')) # Test Errors # Not enough values for parameter op.set_parameter('crossline', opt_tag=1) self.assertRaises(ValueError, op.set_opt_par, (5, 12, 9, 8)) # wrong type of input self.assertRaises(AssertionError, op.set_opt_par, [5, 12, 9, 7, 15, 12, 'sell']) def test_stg_attribute_get_and_set(self): self.stg = qt.TimingCrossline() self.stg_type = 'R-TIMING' self.stg_name = "CROSSLINE" self.stg_text = 'Moving average crossline strategy, determine long/short position according to the cross ' \ 'point' \ ' of long and short term moving average prices ' self.pars = (35, 120, 10, 'buy') self.par_boes = [(10, 250), (10, 250), (1, 100), ('buy', 'sell', 'none')] self.par_count = 4 self.par_types = ['discr', 'discr', 'conti', 'enum'] self.opt_tag = 0 self.data_types = ['close'] self.data_freq = 'd' self.sample_freq = 'd' self.window_length = 270 self.assertEqual(self.stg.stg_type, self.stg_type) self.assertEqual(self.stg.stg_name, self.stg_name) self.assertEqual(self.stg.stg_text, self.stg_text) self.assertEqual(self.stg.pars, self.pars) self.assertEqual(self.stg.par_types, self.par_types) self.assertEqual(self.stg.par_boes, self.par_boes) self.assertEqual(self.stg.par_count, self.par_count) self.assertEqual(self.stg.opt_tag, self.opt_tag) self.assertEqual(self.stg.data_freq, self.data_freq) self.assertEqual(self.stg.sample_freq, self.sample_freq) self.assertEqual(self.stg.data_types, self.data_types) self.assertEqual(self.stg.window_length, self.window_length) self.stg.stg_name = 'NEW NAME' self.stg.stg_text = 'NEW TEXT' self.assertEqual(self.stg.stg_name, 'NEW NAME') self.assertEqual(self.stg.stg_text, 'NEW TEXT') self.stg.pars = (1, 2, 3, 4) self.assertEqual(self.stg.pars, (1, 2, 3, 4)) self.stg.par_count = 3 self.assertEqual(self.stg.par_count, 3) self.stg.par_boes = [(1, 10), (1, 10), (1, 10), (1, 10)] self.assertEqual(self.stg.par_boes, [(1, 10), (1, 10), (1, 10), (1, 10)]) self.stg.par_types = ['conti', 'conti', 'discr', 'enum'] self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'enum']) self.stg.par_types = 'conti, conti, discr, conti' self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'conti']) self.stg.data_types = 'close, open' self.assertEqual(self.stg.data_types, ['close', 'open']) self.stg.data_types = ['close', 'high', 'low'] self.assertEqual(self.stg.data_types, ['close', 'high', 'low']) self.stg.data_freq = 'w' self.assertEqual(self.stg.data_freq, 'w') self.stg.window_length = 300 self.assertEqual(self.stg.window_length, 300) def test_rolling_timing(self): stg = TestLSStrategy() stg_pars = {'000100': (5, 10), '000200': (5, 10), '000300': (5, 6)} stg.set_pars(stg_pars) history_data = self.hp1.values output = stg.generate(hist_data=history_data) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) lsmask = np.array([[0., 0., 1.], [0., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 0., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 0.], [1., 1., 0.], [1., 1., 0.], [1., 0., 0.], [1., 0., 0.], [1., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 0.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.], [0., 1., 1.]]) # TODO: Issue to be solved: the np.nan value are converted to 0 in the lsmask,这样做可能会有意想不到的后果 # TODO: 需要解决nan值的问题 self.assertEqual(output.shape, lsmask.shape) self.assertTrue(np.allclose(output, lsmask, equal_nan=True)) def test_sel_timing(self): stg = TestSelStrategy() stg_pars = () stg.set_pars(stg_pars) history_data = self.hp1['high, low, close', :, :] seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) def test_simple_timing(self): stg = TestSigStrategy() stg_pars = (0.2, 0.02, -0.02) stg.set_pars(stg_pars) history_data = self.hp1['close, open, high, low', :, 3:50] output = stg.generate(hist_data=history_data, shares=self.shares, dates=self.date_indices) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) sigmatrix = np.array([[0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, -1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [-1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 1.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]]) side_by_side_array = np.array([[i, out_line, sig_line] for i, out_line, sig_line in zip(range(len(output)), output, sigmatrix)]) print(f'output and signal matrix lined up side by side is \n' f'{side_by_side_array}') self.assertEqual(sigmatrix.shape, output.shape) self.assertTrue(np.allclose(output, sigmatrix)) def test_sel_finance(self): """Test selecting_finance strategy, test all built-in strategy parameters""" stg = SelectingFinanceIndicator() stg_pars = (False, 'even', 'greater', 0, 0, 0.67) stg.set_pars(stg_pars) stg.window_length = 5 stg.data_freq = 'd' stg.sample_freq = '10d' stg.sort_ascending = False stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg._poq = 0.67 history_data = self.hp2.values print(f'Start to test financial selection parameter {stg_pars}') seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq) self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49]) self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2]) self.assertEqual(seg_count, 8) output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) self.assertIsInstance(output, np.ndarray) self.assertEqual(output.shape, (45, 3)) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get mininum factor stg_pars = (True, 'even', 'less', 1, 1, 0.67) stg.sort_ascending = True stg.condition = 'less' stg.lbound = 1 stg.ubound = 1 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5], [0.5, 0.0, 0.5]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'linear', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'linear' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.66667, 0.33333], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.00000, 0.33333, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.00000, 0.66667], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000], [0.33333, 0.66667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask)) # test single factor, get max factor in linear weight stg_pars = (False, 'proportion', 'greater', 0, 0, 0.67) stg.sort_ascending = False stg.weighting = 'proportion' stg.condition = 'greater' stg.lbound = 0 stg.ubound = 0 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.08333, 0.91667], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.91667, 0.08333], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.00000, 0.50000, 0.50000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.00000, 0.00000, 1.00000], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.00000, 0.91667], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000], [0.08333, 0.91667, 0.00000]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) # test single factor, get max factor in linear weight, threshold 0.2 stg_pars = (False, 'even', 'greater', 0.2, 0.2, 0.67) stg.sort_ascending = False stg.weighting = 'even' stg.condition = 'greater' stg.lbound = 0.2 stg.ubound = 0.2 stg.set_pars(stg_pars) print(f'Start to test financial selection parameter {stg_pars}') output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates) selmask = np.array([[0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.5, 0.5], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0], [0.5, 0.5, 0.0]]) self.assertEqual(output.shape, selmask.shape) self.assertTrue(np.allclose(output, selmask, 0.001)) def test_tokenizer(self): self.assertListEqual(_exp_to_token('1+1'), ['1', '+', '1']) print(_exp_to_token('1+1')) self.assertListEqual(_exp_to_token('1 & 1'), ['1', '&', '1']) print(_exp_to_token('1&1')) self.assertListEqual(_exp_to_token('1 and 1'), ['1', 'and', '1']) print(_exp_to_token('1 and 1')) self.assertListEqual(_exp_to_token('1 or 1'), ['1', 'or', '1']) print(_exp_to_token('1 or 1')) self.assertListEqual(_exp_to_token('(1 - 1 + -1) * pi'), ['(', '1', '-', '1', '+', '-1', ')', '*', 'pi']) print(_exp_to_token('(1 - 1 + -1) * pi')) self.assertListEqual(_exp_to_token('abs(5-sqrt(2) / cos(pi))'), ['abs(', '5', '-', 'sqrt(', '2', ')', '/', 'cos(', 'pi', ')', ')']) print(_exp_to_token('abs(5-sqrt(2) / cos(pi))')) self.assertListEqual(_exp_to_token('sin(pi) + 2.14'), ['sin(', 'pi', ')', '+', '2.14']) print(_exp_to_token('sin(pi) + 2.14')) self.assertListEqual(_exp_to_token('(1-2)/3.0 + 0.0000'), ['(', '1', '-', '2', ')', '/', '3.0', '+', '0.0000']) print(_exp_to_token('(1-2)/3.0 + 0.0000')) self.assertListEqual(_exp_to_token('-(1. + .2) * max(1, 3, 5)'), ['-', '(', '1.', '+', '.2', ')', '*', 'max(', '1', ',', '3', ',', '5', ')']) print(_exp_to_token('-(1. + .2) * max(1, 3, 5)')) self.assertListEqual(_exp_to_token('(x + e * 10) / 10'), ['(', 'x', '+', 'e', '*', '10', ')', '/', '10']) print(_exp_to_token('(x + e * 10) / 10')) self.assertListEqual(_exp_to_token('8.2/((-.1+abs3(3,4,5))*0.12)'), ['8.2', '/', '(', '(', '-.1', '+', 'abs3(', '3', ',', '4', ',', '5', ')', ')', '*', '0.12', ')']) print(_exp_to_token('8.2/((-.1+abs3(3,4,5))*0.12)')) self.assertListEqual(_exp_to_token('8.2/abs3(3,4,25.34 + 5)*0.12'), ['8.2', '/', 'abs3(', '3', ',', '4', ',', '25.34', '+', '5', ')', '*', '0.12']) print(_exp_to_token('8.2/abs3(3,4,25.34 + 5)*0.12')) class TestLog(unittest.TestCase): def test_init(self): pass class TestConfig(unittest.TestCase): """测试Config对象以及QT_CONFIG变量的设置和获取值""" def test_init(self): pass def test_invest(self): pass def test_pars_string_to_type(self): _parse_string_kwargs('000300', 'asset_pool', _valid_qt_kwargs()) class TestHistoryPanel(unittest.TestCase): def setUp(self): print('start testing HistoryPanel object\n') self.data = np.random.randint(10, size=(5, 10, 4)) self.index = pd.date_range(start='20200101', freq='d', periods=10) self.index2 = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06', '2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12', '2016-07-13', '2016-07-14'] self.index3 = '2016-07-01, 2016-07-04, 2016-07-05, 2016-07-06, 2016-07-07, ' \ '2016-07-08, 2016-07-11, 2016-07-12, 2016-07-13, 2016-07-14' self.shares = '000100,000101,000102,000103,000104' self.htypes = 'close,open,high,low' self.data2 = np.random.randint(10, size=(10, 5)) self.data3 = np.random.randint(10, size=(10, 4)) self.data4 = np.random.randint(10, size=(10)) self.hp = qt.HistoryPanel(values=self.data, levels=self.shares, columns=self.htypes, rows=self.index) self.hp2 = qt.HistoryPanel(values=self.data2, levels=self.shares, columns='close', rows=self.index) self.hp3 = qt.HistoryPanel(values=self.data3, levels='000100', columns=self.htypes, rows=self.index2) self.hp4 = qt.HistoryPanel(values=self.data4, levels='000100', columns='close', rows=self.index3) self.hp5 = qt.HistoryPanel(values=self.data) self.hp6 = qt.HistoryPanel(values=self.data, levels=self.shares, rows=self.index3) def test_properties(self): """ test all properties of HistoryPanel """ self.assertFalse(self.hp.is_empty) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.shape, (5, 10, 4)) self.assertSequenceEqual(self.hp.htypes, ['close', 'open', 'high', 'low']) self.assertSequenceEqual(self.hp.shares, ['000100', '000101', '000102', '000103', '000104']) self.assertSequenceEqual(list(self.hp.hdates), list(self.index)) self.assertDictEqual(self.hp.columns, {'close': 0, 'open': 1, 'high': 2, 'low': 3}) self.assertDictEqual(self.hp.levels, {'000100': 0, '000101': 1, '000102': 2, '000103': 3, '000104': 4}) row_dict = {Timestamp('2020-01-01 00:00:00', freq='D'): 0, Timestamp('2020-01-02 00:00:00', freq='D'): 1, Timestamp('2020-01-03 00:00:00', freq='D'): 2, Timestamp('2020-01-04 00:00:00', freq='D'): 3, Timestamp('2020-01-05 00:00:00', freq='D'): 4, Timestamp('2020-01-06 00:00:00', freq='D'): 5, Timestamp('2020-01-07 00:00:00', freq='D'): 6, Timestamp('2020-01-08 00:00:00', freq='D'): 7, Timestamp('2020-01-09 00:00:00', freq='D'): 8, Timestamp('2020-01-10 00:00:00', freq='D'): 9} self.assertDictEqual(self.hp.rows, row_dict) def test_len(self): """ test the function len(HistoryPanel) :return: """ self.assertEqual(len(self.hp), 10) def test_empty_history_panel(self): """测试空HP或者特殊HP如维度标签为纯数字的HP""" test_hp = qt.HistoryPanel(self.data) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) self.assertEqual(test_hp.level_count, 5) self.assertEqual(test_hp.row_count, 10) self.assertEqual(test_hp.column_count, 4) self.assertEqual(test_hp.shares, list(range(5))) self.assertEqual(test_hp.hdates, list(pd.date_range(start='20200730', periods=10, freq='d'))) self.assertEqual(test_hp.htypes, list(range(4))) self.assertTrue(np.allclose(test_hp.values, self.data)) print(f'shares: {test_hp.shares}\nhtypes: {test_hp.htypes}') print(test_hp) # HistoryPanel should be empty if no value is given empty_hp = qt.HistoryPanel() self.assertTrue(empty_hp.is_empty) self.assertIsInstance(empty_hp, qt.HistoryPanel) self.assertEqual(empty_hp.shape[0], 0) self.assertEqual(empty_hp.shape[1], 0) self.assertEqual(empty_hp.shape[2], 0) self.assertEqual(empty_hp.level_count, 0) self.assertEqual(empty_hp.row_count, 0) self.assertEqual(empty_hp.column_count, 0) # HistoryPanel should also be empty if empty value (np.array([])) is given empty_hp = qt.HistoryPanel(np.empty((5, 0, 4)), levels=self.shares, columns=self.htypes) self.assertTrue(empty_hp.is_empty) self.assertIsInstance(empty_hp, qt.HistoryPanel) self.assertEqual(empty_hp.shape[0], 0) self.assertEqual(empty_hp.shape[1], 0) self.assertEqual(empty_hp.shape[2], 0) self.assertEqual(empty_hp.level_count, 0) self.assertEqual(empty_hp.row_count, 0) self.assertEqual(empty_hp.column_count, 0) def test_create_history_panel(self): """ test the creation of a HistoryPanel object by passing all data explicitly """ self.assertIsInstance(self.hp, qt.HistoryPanel) self.assertEqual(self.hp.shape[0], 5) self.assertEqual(self.hp.shape[1], 10) self.assertEqual(self.hp.shape[2], 4) self.assertEqual(self.hp.level_count, 5) self.assertEqual(self.hp.row_count, 10) self.assertEqual(self.hp.column_count, 4) self.assertEqual(list(self.hp.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp2, qt.HistoryPanel) self.assertEqual(self.hp2.shape[0], 5) self.assertEqual(self.hp2.shape[1], 10) self.assertEqual(self.hp2.shape[2], 1) self.assertEqual(self.hp2.level_count, 5) self.assertEqual(self.hp2.row_count, 10) self.assertEqual(self.hp2.column_count, 1) self.assertEqual(list(self.hp2.levels.keys()), self.shares.split(',')) self.assertEqual(list(self.hp2.columns.keys()), ['close']) self.assertEqual(list(self.hp2.rows.keys())[0], pd.Timestamp('20200101')) self.assertIsInstance(self.hp3, qt.HistoryPanel) self.assertEqual(self.hp3.shape[0], 1) self.assertEqual(self.hp3.shape[1], 10) self.assertEqual(self.hp3.shape[2], 4) self.assertEqual(self.hp3.level_count, 1) self.assertEqual(self.hp3.row_count, 10) self.assertEqual(self.hp3.column_count, 4) self.assertEqual(list(self.hp3.levels.keys()), ['000100']) self.assertEqual(list(self.hp3.columns.keys()), self.htypes.split(',')) self.assertEqual(list(self.hp3.rows.keys())[0], pd.Timestamp('2016-07-01')) self.assertIsInstance(self.hp4, qt.HistoryPanel) self.assertEqual(self.hp4.shape[0], 1) self.assertEqual(self.hp4.shape[1], 10) self.assertEqual(self.hp4.shape[2], 1) self.assertEqual(self.hp4.level_count, 1) self.assertEqual(self.hp4.row_count, 10) self.assertEqual(self.hp4.column_count, 1) self.assertEqual(list(self.hp4.levels.keys()), ['000100']) self.assertEqual(list(self.hp4.columns.keys()), ['close']) self.assertEqual(list(self.hp4.rows.keys())[0], pd.Timestamp('2016-07-01')) self.hp5.info() self.assertIsInstance(self.hp5, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp5.values, self.data)) self.assertEqual(self.hp5.shape[0], 5) self.assertEqual(self.hp5.shape[1], 10) self.assertEqual(self.hp5.shape[2], 4) self.assertEqual(self.hp5.level_count, 5) self.assertEqual(self.hp5.row_count, 10) self.assertEqual(self.hp5.column_count, 4) self.assertEqual(list(self.hp5.levels.keys()), [0, 1, 2, 3, 4]) self.assertEqual(list(self.hp5.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp5.rows.keys())[0], pd.Timestamp('2020-07-30')) self.hp6.info() self.assertIsInstance(self.hp6, qt.HistoryPanel) self.assertTrue(np.allclose(self.hp6.values, self.data)) self.assertEqual(self.hp6.shape[0], 5) self.assertEqual(self.hp6.shape[1], 10) self.assertEqual(self.hp6.shape[2], 4) self.assertEqual(self.hp6.level_count, 5) self.assertEqual(self.hp6.row_count, 10) self.assertEqual(self.hp6.column_count, 4) self.assertEqual(list(self.hp6.levels.keys()), ['000100', '000101', '000102', '000103', '000104']) self.assertEqual(list(self.hp6.columns.keys()), [0, 1, 2, 3]) self.assertEqual(list(self.hp6.rows.keys())[0], pd.Timestamp('2016-07-01')) print('test creating HistoryPanel with very limited data') print('test creating HistoryPanel with 2D data') temp_data = np.random.randint(10, size=(7, 3)).astype('float') temp_hp = qt.HistoryPanel(temp_data) # Error testing during HistoryPanel creating # shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data, levels=self.shares, columns='close', rows=self.index) # valus is not np.ndarray self.assertRaises(TypeError, qt.HistoryPanel, list(self.data)) # dimension/shape does not match self.assertRaises(AssertionError, qt.HistoryPanel, self.data2, levels='000100', columns=self.htypes, rows=self.index) # value dimension over 3 self.assertRaises(AssertionError, qt.HistoryPanel, np.random.randint(10, size=(5, 10, 4, 2))) # lebel value not valid self.assertRaises(ValueError, qt.HistoryPanel, self.data2, levels=self.shares, columns='close', rows='a,b,c,d,e,f,g,h,i,j') def test_history_panel_slicing(self): """测试HistoryPanel的各种切片方法 包括通过标签名称切片,通过数字切片,通过逗号分隔的标签名称切片,通过冒号分隔的标签名称切片等切片方式""" self.assertTrue(np.allclose(self.hp['close'], self.data[:, :, 0:1])) self.assertTrue(np.allclose(self.hp['close,open'], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp[['close', 'open']], self.data[:, :, 0:2])) self.assertTrue(np.allclose(self.hp['close:high'], self.data[:, :, 0:3])) self.assertTrue(np.allclose(self.hp['close,high'], self.data[:, :, [0, 2]])) self.assertTrue(np.allclose(self.hp[:, '000100'], self.data[0:1, :, ])) self.assertTrue(np.allclose(self.hp[:, '000100,000101'], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, ['000100', '000101']], self.data[0:2, :])) self.assertTrue(np.allclose(self.hp[:, '000100:000102'], self.data[0:3, :])) self.assertTrue(np.allclose(self.hp[:, '000100,000102'], self.data[[0, 2], :])) self.assertTrue(np.allclose(self.hp['close,open', '000100,000102'], self.data[[0, 2], :, 0:2])) print('start testing HistoryPanel') data = np.random.randint(10, size=(10, 5)) # index = pd.date_range(start='20200101', freq='d', periods=10) shares = '000100,000101,000102,000103,000104' dtypes = 'close' df = pd.DataFrame(data) print('=========================\nTesting HistoryPanel creation from DataFrame') hp = qt.dataframe_to_hp(df=df, shares=shares, htypes=dtypes) hp.info() hp = qt.dataframe_to_hp(df=df, shares='000100', htypes='close, open, high, low, middle', column_type='htypes') hp.info() print('=========================\nTesting HistoryPanel creation from initialization') data = np.random.randint(10, size=(5, 10, 4)).astype('float') index = pd.date_range(start='20200101', freq='d', periods=10) dtypes = 'close, open, high,low' data[0, [5, 6, 9], [0, 1, 3]] = np.nan data[1:4, [4, 7, 6, 2], [1, 1, 3, 0]] = np.nan data[4:5, [2, 9, 1, 2], [0, 3, 2, 1]] = np.nan hp = qt.HistoryPanel(data, levels=shares, columns=dtypes, rows=index) hp.info() print('==========================\n输出close类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close', :, :], data[:, :, 0:1], equal_nan=True)) print(f'==========================\n输出close和open类型的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1], :, :], data[:, :, 0:2], equal_nan=True)) print(f'==========================\n输出第一只股票的所有类型历史数据\n') self.assertTrue(np.allclose(hp[:, [0], :], data[0:1, :, :], equal_nan=True)) print('==========================\n输出第0、1、2个htype对应的所有股票全部历史数据\n') self.assertTrue(np.allclose(hp[[0, 1, 2]], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp[['close', 'high']], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出0、1两个htype的所有历史数据\n') self.assertTrue(np.allclose(hp[[0, 1]], data[:, :, 0:2], equal_nan=True)) print('==========================\n输出close、high两个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close,high'], data[:, :, [0, 2]], equal_nan=True)) print('==========================\n输出close起到high止的三个类型的所有历史数据\n') self.assertTrue(np.allclose(hp['close:high'], data[:, :, 0:3], equal_nan=True)) print('==========================\n输出0、1、3三个股票的全部历史数据\n') self.assertTrue(np.allclose(hp[:, [0, 1, 3]], data[[0, 1, 3], :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, ['000100', '000102']], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出0、1、2三个股票的历史数据\n', hp[:, 0: 3]) self.assertTrue(np.allclose(hp[:, 0: 3], data[0:3, :, :], equal_nan=True)) print('==========================\n输出000100、000102两只股票的所有历史数据\n') self.assertTrue(np.allclose(hp[:, '000100, 000102'], data[[0, 2], :, :], equal_nan=True)) print('==========================\n输出所有股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, :, 0:8], data[:, 0:8, :], equal_nan=True)) print('==========================\n输出000100股票的0-7日历史数据\n') self.assertTrue(np.allclose(hp[:, '000100', 0:8], data[0, 0:8, :], equal_nan=True)) print('==========================\nstart testing multy axis slicing of HistoryPanel object') print('==========================\n输出000100、000120两只股票的close、open两组历史数据\n', hp['close,open', ['000100', '000102']]) print('==========================\n输出000100、000120两只股票的close到open三组历史数据\n', hp['close,open', '000100, 000102']) print(f'historyPanel: hp:\n{hp}') print(f'data is:\n{data}') hp.htypes = 'open,high,low,close' hp.info() hp.shares = ['000300', '600227', '600222', '000123', '000129'] hp.info() def test_segment(self): """测试历史数据片段的获取""" test_hp = qt.HistoryPanel(self.data, levels=self.shares, columns=self.htypes, rows=self.index2) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) print(f'Test segment with None parameters') seg1 = test_hp.segment() seg2 = test_hp.segment('20150202') seg3 = test_hp.segment(end_date='20201010') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp.values )) self.assertTrue(np.allclose( seg2.values, test_hp.values )) self.assertTrue(np.allclose( seg3.values, test_hp.values )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates) self.assertEqual(seg3.hdates, test_hp.hdates) print(f'Test segment with proper dates') seg1 = test_hp.segment() seg2 = test_hp.segment('20160704') seg3 = test_hp.segment(start_date='2016-07-05', end_date='20160708') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) self.assertTrue(np.allclose( seg2.values, test_hp[:, :, 1:10] )) self.assertTrue(np.allclose( seg3.values, test_hp[:, :, 2:6] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates[1:10]) self.assertEqual(seg3.hdates, test_hp.hdates[2:6]) print(f'Test segment with non-existing but in range dates') seg1 = test_hp.segment() seg2 = test_hp.segment('20160703') seg3 = test_hp.segment(start_date='2016-07-03', end_date='20160710') self.assertIsInstance(seg1, qt.HistoryPanel) self.assertIsInstance(seg2, qt.HistoryPanel) self.assertIsInstance(seg3, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) self.assertTrue(np.allclose( seg2.values, test_hp[:, :, 1:10] )) self.assertTrue(np.allclose( seg3.values, test_hp[:, :, 1:6] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) self.assertEqual(seg2.htypes, test_hp.htypes) self.assertEqual(seg2.shares, test_hp.shares) self.assertEqual(seg3.htypes, test_hp.htypes) self.assertEqual(seg3.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) self.assertEqual(seg2.hdates, test_hp.hdates[1:10]) self.assertEqual(seg3.hdates, test_hp.hdates[1:6]) print(f'Test segment with out-of-range dates') seg1 = test_hp.segment(start_date='2016-05-03', end_date='20160910') self.assertIsInstance(seg1, qt.HistoryPanel) # check values self.assertTrue(np.allclose( seg1.values, test_hp[:, :, :] )) # check that htypes and shares should be same self.assertEqual(seg1.htypes, test_hp.htypes) self.assertEqual(seg1.shares, test_hp.shares) # check that hdates are the same self.assertEqual(seg1.hdates, test_hp.hdates) def test_slice(self): """测试历史数据切片的获取""" test_hp = qt.HistoryPanel(self.data, levels=self.shares, columns=self.htypes, rows=self.index2) self.assertFalse(test_hp.is_empty) self.assertIsInstance(test_hp, qt.HistoryPanel) self.assertEqual(test_hp.shape[0], 5) self.assertEqual(test_hp.shape[1], 10) self.assertEqual(test_hp.shape[2], 4) print(f'Test slice with shares') share = '000101' slc = test_hp.slice(shares=share) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000101']) self.assertEqual(slc.htypes, test_hp.htypes) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp[:, '000101'])) share = '000101, 000103' slc = test_hp.slice(shares=share) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000101', '000103']) self.assertEqual(slc.htypes, test_hp.htypes) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp[:, '000101, 000103'])) print(f'Test slice with htypes') htype = 'open' slc = test_hp.slice(htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, test_hp.shares) self.assertEqual(slc.htypes, ['open']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['open'])) htype = 'open, close' slc = test_hp.slice(htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, test_hp.shares) self.assertEqual(slc.htypes, ['open', 'close']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['open, close'])) # test that slicing of "open, close" does NOT equal to "close, open" self.assertFalse(np.allclose(slc.values, test_hp['close, open'])) print(f'Test slicing with both htypes and shares') share = '000103, 000101' htype = 'high, low, close' slc = test_hp.slice(shares=share, htypes=htype) self.assertIsInstance(slc, qt.HistoryPanel) self.assertEqual(slc.shares, ['000103', '000101']) self.assertEqual(slc.htypes, ['high', 'low', 'close']) self.assertEqual(slc.hdates, test_hp.hdates) self.assertTrue(np.allclose(slc.values, test_hp['high, low, close', '000103, 000101'])) print(f'Test Error cases') # duplicated input htype = 'open, close, open' self.assertRaises(AssertionError, test_hp.slice, htypes=htype) def test_relabel(self): new_shares_list = ['000001', '000002', '000003', '000004', '000005'] new_shares_str = '000001, 000002, 000003, 000004, 000005' new_htypes_list = ['close', 'volume', 'value', 'exchange'] new_htypes_str = 'close, volume, value, exchange' temp_hp = self.hp.copy() temp_hp.re_label(shares=new_shares_list) print(temp_hp.info()) print(temp_hp.htypes) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.htypes, temp_hp.htypes) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.shares, new_shares_list) temp_hp = self.hp.copy() temp_hp.re_label(shares=new_shares_str) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.htypes, temp_hp.htypes) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.shares, new_shares_list) temp_hp = self.hp.copy() temp_hp.re_label(htypes=new_htypes_list) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.shares, temp_hp.shares) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.htypes, new_htypes_list) temp_hp = self.hp.copy() temp_hp.re_label(htypes=new_htypes_str) self.assertTrue(np.allclose(self.hp.values, temp_hp.values)) self.assertEqual(self.hp.shares, temp_hp.shares) self.assertEqual(self.hp.hdates, temp_hp.hdates) self.assertEqual(temp_hp.htypes, new_htypes_list) print(f'test errors raising') temp_hp = self.hp.copy() self.assertRaises(AssertionError, temp_hp.re_label, htypes=new_shares_str) self.assertRaises(TypeError, temp_hp.re_label, htypes=123) self.assertRaises(AssertionError, temp_hp.re_label, htypes='wrong input!') def test_csv_to_hp(self): pass def test_hdf_to_hp(self): pass def test_hp_join(self): # TODO: 这里需要加强,需要用具体的例子确认hp_join的结果正确 # TODO: 尤其是不同的shares、htypes、hdates,以及它们在顺 # TODO: 序不同的情况下是否能正确地组合 print(f'join two simple HistoryPanels with same shares') temp_hp = self.hp.join(self.hp2, same_shares=True) self.assertIsInstance(temp_hp, qt.HistoryPanel) def test_df_to_hp(self): print(f'test converting DataFrame to HistoryPanel') data = np.random.randint(10, size=(10, 5)) df1 = pd.DataFrame(data) df2 = pd.DataFrame(data, columns=str_to_list(self.shares)) df3 = pd.DataFrame(data[:, 0:4]) df4 = pd.DataFrame(data[:, 0:4], columns=str_to_list(self.htypes)) hp = qt.dataframe_to_hp(df1, htypes='close') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, [0, 1, 2, 3, 4]) self.assertEqual(hp.htypes, ['close']) self.assertEqual(hp.hdates, [pd.Timestamp('1970-01-01 00:00:00'), pd.Timestamp('1970-01-01 00:00:00.000000001'), pd.Timestamp('1970-01-01 00:00:00.000000002'), pd.Timestamp('1970-01-01 00:00:00.000000003'), pd.Timestamp('1970-01-01 00:00:00.000000004'), pd.Timestamp('1970-01-01 00:00:00.000000005'), pd.Timestamp('1970-01-01 00:00:00.000000006'), pd.Timestamp('1970-01-01 00:00:00.000000007'), pd.Timestamp('1970-01-01 00:00:00.000000008'), pd.Timestamp('1970-01-01 00:00:00.000000009')]) hp = qt.dataframe_to_hp(df2, shares=self.shares, htypes='close') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, str_to_list(self.shares)) self.assertEqual(hp.htypes, ['close']) hp = qt.dataframe_to_hp(df3, shares='000100', column_type='htypes') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, ['000100']) self.assertEqual(hp.htypes, [0, 1, 2, 3]) hp = qt.dataframe_to_hp(df4, shares='000100', htypes=self.htypes, column_type='htypes') self.assertIsInstance(hp, qt.HistoryPanel) self.assertEqual(hp.shares, ['000100']) self.assertEqual(hp.htypes, str_to_list(self.htypes)) hp.info() self.assertRaises(KeyError, qt.dataframe_to_hp, df1) def test_to_dataframe(self): """ 测试HistoryPanel对象的to_dataframe方法 """ print(f'START TEST == test_to_dataframe') print(f'test converting test hp to dataframe with share == "000102":') df_test = self.hp.to_dataframe(share='000102') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.htypes), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp[:, '000102'], values)) print(f'test DataFrame conversion with share == "000100"') df_test = self.hp.to_dataframe(share='000100') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.htypes), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp[:, '000100'], values)) print(f'test DataFrame conversion error: type incorrect') self.assertRaises(AssertionError, self.hp.to_dataframe, share=3.0) print(f'test DataFrame error raising with share not found error') self.assertRaises(KeyError, self.hp.to_dataframe, share='000300') print(f'test DataFrame conversion with htype == "close"') df_test = self.hp.to_dataframe(htype='close') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp['close'].T, values)) print(f'test DataFrame conversion with htype == "high"') df_test = self.hp.to_dataframe(htype='high') self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values self.assertTrue(np.allclose(self.hp['high'].T, values)) print(f'test DataFrame conversion with htype == "high" and dropna') v = self.hp.values.astype('float') v[:, 3, :] = np.nan v[:, 4, :] = np.inf test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index) df_test = test_hp.to_dataframe(htype='high', dropna=True) self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[4:]), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values target_values = test_hp['high'].T target_values = target_values[np.where(~np.isnan(target_values))].reshape(9, 5) self.assertTrue(np.allclose(target_values, values)) print(f'test DataFrame conversion with htype == "high", dropna and treat infs as na') v = self.hp.values.astype('float') v[:, 3, :] = np.nan v[:, 4, :] = np.inf test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index) df_test = test_hp.to_dataframe(htype='high', dropna=True, inf_as_na=True) self.assertIsInstance(df_test, pd.DataFrame) self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[5:]), list(df_test.index)) self.assertEqual(list(self.hp.shares), list(df_test.columns)) values = df_test.values target_values = test_hp['high'].T target_values = target_values[np.where(~np.isnan(target_values) & ~np.isinf(target_values))].reshape(8, 5) self.assertTrue(np.allclose(target_values, values)) print(f'test DataFrame conversion error: type incorrect') self.assertRaises(AssertionError, self.hp.to_dataframe, htype=pd.DataFrame()) print(f'test DataFrame error raising with share not found error') self.assertRaises(KeyError, self.hp.to_dataframe, htype='non_type') print(f'Raises ValueError when both or none parameter is given') self.assertRaises(KeyError, self.hp.to_dataframe) self.assertRaises(KeyError, self.hp.to_dataframe, share='000100', htype='close') def test_to_df_dict(self): """测试HistoryPanel公有方法to_df_dict""" print('test convert history panel slice by share') df_dict = self.hp.to_df_dict('share') self.assertEqual(self.hp.shares, list(df_dict.keys())) df_dict = self.hp.to_df_dict() self.assertEqual(self.hp.shares, list(df_dict.keys())) print('test convert historypanel slice by htype ') df_dict = self.hp.to_df_dict('htype') self.assertEqual(self.hp.htypes, list(df_dict.keys())) print('test raise assertion error') self.assertRaises(AssertionError, self.hp.to_df_dict, by='random text') self.assertRaises(AssertionError, self.hp.to_df_dict, by=3) print('test empty hp') df_dict = qt.HistoryPanel().to_df_dict('share') self.assertEqual(df_dict, {}) def test_stack_dataframes(self): print('test stack dataframes in a list') df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]}) df1.index = ['20200101', '20200102', '20200103', '20200104'] df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]}) df2.index = ['20200101', '20200102', '20200104', '20200105'] df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]}) df3.index = ['20200101', '20200102', '20200103', '20200106'] values1 = np.array([[[1., 2., 3., np.nan], [2., 3., 4., np.nan], [3., 4., 5., np.nan], [4., 5., 6., np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan]], [[np.nan, 4., 6., 1.], [np.nan, 3., 5., 1.], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2., 4., 1.], [np.nan, 1., 3., 1.], [np.nan, np.nan, np.nan, np.nan]], [[6., 2., np.nan, 4.], [6., 4., np.nan, 4.], [6., 6., np.nan, 4.], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [6., 8., np.nan, 4.]]]) values2 = np.array([[[1., np.nan, 6.], [2., np.nan, 6.], [3., np.nan, 6.], [4., np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 6.]], [[2., 4., 2.], [3., 3., 4.], [4., np.nan, 6.], [5., 2., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 8.]], [[3., 6., np.nan], [4., 5., np.nan], [5., np.nan, np.nan], [6., 4., np.nan], [np.nan, 3., np.nan], [np.nan, np.nan, np.nan]], [[np.nan, 1., 4.], [np.nan, 1., 4.], [np.nan, np.nan, 4.], [np.nan, 1., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 4.]]]) print(df1.rename(index=pd.to_datetime)) print(df2.rename(index=pd.to_datetime)) print(df3.rename(index=pd.to_datetime)) hp1 = stack_dataframes([df1, df2, df3], stack_along='shares', shares=['000100', '000200', '000300']) hp2 = stack_dataframes([df1, df2, df3], stack_along='shares', shares='000100, 000300, 000200') print('hp1 is:\n', hp1) print('hp2 is:\n', hp2) self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp1.shares, ['000100', '000200', '000300']) self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True)) self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp2.shares, ['000100', '000300', '000200']) self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True)) hp3 = stack_dataframes([df1, df2, df3], stack_along='htypes', htypes=['close', 'high', 'low']) hp4 = stack_dataframes([df1, df2, df3], stack_along='htypes', htypes='open, close, high') print('hp3 is:\n', hp3.values) print('hp4 is:\n', hp4.values) self.assertEqual(hp3.htypes, ['close', 'high', 'low']) self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True)) self.assertEqual(hp4.htypes, ['open', 'close', 'high']) self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True)) print('test stack dataframes in a dict') df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]}) df1.index = ['20200101', '20200102', '20200103', '20200104'] df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]}) df2.index = ['20200101', '20200102', '20200104', '20200105'] df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]}) df3.index = ['20200101', '20200102', '20200103', '20200106'] values1 = np.array([[[1., 2., 3., np.nan], [2., 3., 4., np.nan], [3., 4., 5., np.nan], [4., 5., 6., np.nan], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan]], [[np.nan, 4., 6., 1.], [np.nan, 3., 5., 1.], [np.nan, np.nan, np.nan, np.nan], [np.nan, 2., 4., 1.], [np.nan, 1., 3., 1.], [np.nan, np.nan, np.nan, np.nan]], [[6., 2., np.nan, 4.], [6., 4., np.nan, 4.], [6., 6., np.nan, 4.], [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [6., 8., np.nan, 4.]]]) values2 = np.array([[[1., np.nan, 6.], [2., np.nan, 6.], [3., np.nan, 6.], [4., np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 6.]], [[2., 4., 2.], [3., 3., 4.], [4., np.nan, 6.], [5., 2., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 8.]], [[3., 6., np.nan], [4., 5., np.nan], [5., np.nan, np.nan], [6., 4., np.nan], [np.nan, 3., np.nan], [np.nan, np.nan, np.nan]], [[np.nan, 1., 4.], [np.nan, 1., 4.], [np.nan, np.nan, 4.], [np.nan, 1., np.nan], [np.nan, 1., np.nan], [np.nan, np.nan, 4.]]]) print(df1.rename(index=pd.to_datetime)) print(df2.rename(index=pd.to_datetime)) print(df3.rename(index=pd.to_datetime)) hp1 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3}, stack_along='shares') hp2 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3}, stack_along='shares', shares='000100, 000300, 000200') print('hp1 is:\n', hp1) print('hp2 is:\n', hp2) self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp1.shares, ['000001.SZ', '000002.SZ', '000003.SZ']) self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True)) self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd']) self.assertEqual(hp2.shares, ['000100', '000300', '000200']) self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True)) hp3 = stack_dataframes(dfs={'close': df1, 'high': df2, 'low': df3}, stack_along='htypes') hp4 = stack_dataframes(dfs={'close': df1, 'low': df2, 'high': df3}, stack_along='htypes', htypes='open, close, high') print('hp3 is:\n', hp3.values) print('hp4 is:\n', hp4.values) self.assertEqual(hp3.htypes, ['close', 'high', 'low']) self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True)) self.assertEqual(hp4.htypes, ['open', 'close', 'high']) self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd']) self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True)) def test_to_csv(self): pass def test_to_hdf(self): pass def test_fill_na(self): """测试填充无效值""" print(self.hp) new_values = self.hp.values.astype(float) new_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = np.nan print(new_values) temp_hp = qt.HistoryPanel(values=new_values, levels=self.hp.levels, rows=self.hp.rows, columns=self.hp.columns) self.assertTrue(np.allclose(temp_hp.values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]], np.nan, equal_nan=True)) temp_hp.fillna(2.3) filled_values = new_values.copy() filled_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = 2.3 self.assertTrue(np.allclose(temp_hp.values, filled_values, equal_nan=True)) def test_fill_inf(self): """测试填充无限值""" def test_get_history_panel(self): # TODO: implement this test case # test get only one line of data pass def test_get_price_type_raw_data(self): shares = '000039.SZ, 600748.SH, 000040.SZ' start = '20200101' end = '20200131' htypes = 'open, high, low, close' target_price_000039 = [[9.45, 9.49, 9.12, 9.17], [9.46, 9.56, 9.4, 9.5], [9.7, 9.76, 9.5, 9.51], [9.7, 9.75, 9.7, 9.72], [9.73, 9.77, 9.7, 9.73], [9.83, 9.85, 9.71, 9.72], [9.85, 9.85, 9.75, 9.79], [9.96, 9.96, 9.83, 9.86], [9.87, 9.94, 9.77, 9.93], [9.82, 9.9, 9.76, 9.87], [9.8, 9.85, 9.77, 9.82], [9.84, 9.86, 9.71, 9.72], [9.83, 9.93, 9.81, 9.86], [9.7, 9.87, 9.7, 9.82], [9.83, 9.86, 9.69, 9.79], [9.8, 9.94, 9.8, 9.86]] target_price_600748 = [[5.68, 5.68, 5.32, 5.37], [5.62, 5.68, 5.46, 5.65], [5.72, 5.72, 5.61, 5.62], [5.76, 5.77, 5.6, 5.73], [5.78, 5.84, 5.73, 5.75], [5.89, 5.91, 5.76, 5.77], [6.03, 6.04, 5.87, 5.89], [5.94, 6.07, 5.94, 6.02], [5.96, 5.98, 5.88, 5.97], [6.04, 6.06, 5.95, 5.96], [5.98, 6.04, 5.96, 6.03], [6.1, 6.11, 5.89, 5.94], [6.02, 6.12, 6., 6.1], [5.96, 6.05, 5.88, 6.01], [6.03, 6.03, 5.95, 5.99], [6.02, 6.12, 5.99, 5.99]] target_price_000040 = [[3.63, 3.83, 3.63, 3.65], [3.99, 4.07, 3.97, 4.03], [4.1, 4.11, 3.93, 3.95], [4.12, 4.13, 4.06, 4.11], [4.13, 4.19, 4.07, 4.13], [4.27, 4.28, 4.11, 4.12], [4.37, 4.38, 4.25, 4.29], [4.34, 4.5, 4.32, 4.41], [4.28, 4.35, 4.2, 4.34], [4.41, 4.43, 4.29, 4.31], [4.42, 4.45, 4.36, 4.41], [4.51, 4.56, 4.33, 4.35], [4.35, 4.55, 4.31, 4.55], [4.3, 4.41, 4.22, 4.36], [4.27, 4.44, 4.23, 4.34], [4.23, 4.27, 4.18, 4.25]] print(f'test get price type raw data with single thread') df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d') self.assertIsInstance(df_list, dict) self.assertEqual(len(df_list), 3) self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039))) self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748))) self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040))) print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n' f'{df_list["000039.SZ"]}\n"600748.SH":\n' f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}') print(f'test get price type raw data with with multi threads') df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d', parallel=10) self.assertIsInstance(df_list, dict) self.assertEqual(len(df_list), 3) self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039))) self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748))) self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040))) print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n' f'{df_list["000039.SZ"]}\n"600748.SH":\n' f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}') def test_get_financial_report_type_raw_data(self): shares = '000039.SZ, 600748.SH, 000040.SZ' start = '20160101' end = '20201231' htypes = 'eps,basic_eps,diluted_eps,total_revenue,revenue,total_share,' \ 'cap_rese,undistr_porfit,surplus_rese,net_profit' target_eps_000039 = [[1.41], [0.1398], [-0.0841], [-0.1929], [0.37], [0.1357], [0.1618], [0.1191], [1.11], [0.759], [0.3061], [0.1409], [0.81], [0.4187], [0.2554], [0.1624], [0.14], [-0.0898], [-0.1444], [0.1291]] target_eps_600748 = [[0.41], [0.22], [0.22], [0.09], [0.42], [0.23], [0.22], [0.09], [0.36], [0.16], [0.15], [0.07], [0.47], [0.19], [0.12], [0.07], [0.32], [0.22], [0.14], [0.07]] target_eps_000040 = [[-0.6866], [-0.134], [-0.189], [-0.036], [-0.6435], [0.05], [0.062], [0.0125], [0.8282], [1.05], [0.985], [0.811], [0.41], [0.242], [0.113], [0.027], [0.19], [0.17], [0.17], [0.064]] target_basic_eps_000039 = [[1.3980000e-01, 1.3980000e-01, 6.3591954e+10, 6.3591954e+10], [-8.4100000e-02, -8.4100000e-02, 3.9431807e+10, 3.9431807e+10], [-1.9290000e-01, -1.9290000e-01, 1.5852177e+10, 1.5852177e+10], [3.7000000e-01, 3.7000000e-01, 8.5815341e+10, 8.5815341e+10], [1.3570000e-01, 1.3430000e-01, 6.1660271e+10, 6.1660271e+10], [1.6180000e-01, 1.6040000e-01, 4.2717729e+10, 4.2717729e+10], [1.1910000e-01, 1.1900000e-01, 1.9099547e+10, 1.9099547e+10], [1.1100000e+00, 1.1000000e+00, 9.3497622e+10, 9.3497622e+10], [7.5900000e-01, 7.5610000e-01, 6.6906147e+10, 6.6906147e+10], [3.0610000e-01, 3.0380000e-01, 4.3560398e+10, 4.3560398e+10], [1.4090000e-01, 1.4050000e-01, 1.9253639e+10, 1.9253639e+10], [8.1000000e-01, 8.1000000e-01, 7.6299930e+10, 7.6299930e+10], [4.1870000e-01, 4.1710000e-01, 5.3962706e+10, 5.3962706e+10], [2.5540000e-01, 2.5440000e-01, 3.3387152e+10, 3.3387152e+10], [1.6240000e-01, 1.6200000e-01, 1.4675987e+10, 1.4675987e+10], [1.4000000e-01, 1.4000000e-01, 5.1111652e+10, 5.1111652e+10], [-8.9800000e-02, -8.9800000e-02, 3.4982614e+10, 3.4982614e+10], [-1.4440000e-01, -1.4440000e-01, 2.3542843e+10, 2.3542843e+10], [1.2910000e-01, 1.2860000e-01, 1.0412416e+10, 1.0412416e+10], [7.2000000e-01, 7.1000000e-01, 5.8685804e+10, 5.8685804e+10]] target_basic_eps_600748 = [[2.20000000e-01, 2.20000000e-01, 5.29423397e+09, 5.29423397e+09], [2.20000000e-01, 2.20000000e-01, 4.49275653e+09, 4.49275653e+09], [9.00000000e-02, 9.00000000e-02, 1.59067065e+09, 1.59067065e+09], [4.20000000e-01, 4.20000000e-01, 8.86555586e+09, 8.86555586e+09], [2.30000000e-01, 2.30000000e-01, 5.44850143e+09, 5.44850143e+09], [2.20000000e-01, 2.20000000e-01, 4.34978927e+09, 4.34978927e+09], [9.00000000e-02, 9.00000000e-02, 1.73793793e+09, 1.73793793e+09], [3.60000000e-01, 3.60000000e-01, 8.66375241e+09, 8.66375241e+09], [1.60000000e-01, 1.60000000e-01, 4.72875116e+09, 4.72875116e+09], [1.50000000e-01, 1.50000000e-01, 3.76879016e+09, 3.76879016e+09], [7.00000000e-02, 7.00000000e-02, 1.31785454e+09, 1.31785454e+09], [4.70000000e-01, 4.70000000e-01, 7.23391685e+09, 7.23391685e+09], [1.90000000e-01, 1.90000000e-01, 3.76072215e+09, 3.76072215e+09], [1.20000000e-01, 1.20000000e-01, 2.35845364e+09, 2.35845364e+09], [7.00000000e-02, 7.00000000e-02, 1.03831865e+09, 1.03831865e+09], [3.20000000e-01, 3.20000000e-01, 6.48880919e+09, 6.48880919e+09], [2.20000000e-01, 2.20000000e-01, 3.72209142e+09, 3.72209142e+09], [1.40000000e-01, 1.40000000e-01, 2.22563924e+09, 2.22563924e+09], [7.00000000e-02, 7.00000000e-02, 8.96647052e+08, 8.96647052e+08], [4.80000000e-01, 4.80000000e-01, 6.61917508e+09, 6.61917508e+09]] target_basic_eps_000040 = [[-1.34000000e-01, -1.34000000e-01, 2.50438755e+09, 2.50438755e+09], [-1.89000000e-01, -1.89000000e-01, 1.32692347e+09, 1.32692347e+09], [-3.60000000e-02, -3.60000000e-02, 5.59073338e+08, 5.59073338e+08], [-6.43700000e-01, -6.43700000e-01, 6.80576162e+09, 6.80576162e+09], [5.00000000e-02, 5.00000000e-02, 6.38891620e+09, 6.38891620e+09], [6.20000000e-02, 6.20000000e-02, 5.23267082e+09, 5.23267082e+09], [1.25000000e-02, 1.25000000e-02, 2.22420874e+09, 2.22420874e+09], [8.30000000e-01, 8.30000000e-01, 8.67628947e+09, 8.67628947e+09], [1.05000000e+00, 1.05000000e+00, 5.29431716e+09, 5.29431716e+09], [9.85000000e-01, 9.85000000e-01, 3.56822382e+09, 3.56822382e+09], [8.11000000e-01, 8.11000000e-01, 1.06613439e+09, 1.06613439e+09], [4.10000000e-01, 4.10000000e-01, 8.13102532e+09, 8.13102532e+09], [2.42000000e-01, 2.42000000e-01, 5.17971521e+09, 5.17971521e+09], [1.13000000e-01, 1.13000000e-01, 3.21704120e+09, 3.21704120e+09], [2.70000000e-02, 2.70000000e-02, 8.41966738e+08, 8.24272235e+08], [1.90000000e-01, 1.90000000e-01, 3.77350171e+09, 3.77350171e+09], [1.70000000e-01, 1.70000000e-01, 2.38643892e+09, 2.38643892e+09], [1.70000000e-01, 1.70000000e-01, 1.29127117e+09, 1.29127117e+09], [6.40000000e-02, 6.40000000e-02, 6.03256858e+08, 6.03256858e+08], [1.30000000e-01, 1.30000000e-01, 1.66572918e+09, 1.66572918e+09]] target_total_share_000039 = [[3.5950140e+09, 4.8005360e+09, 2.1573660e+10, 3.5823430e+09], [3.5860750e+09, 4.8402300e+09, 2.0750827e+10, 3.5823430e+09], [3.5860750e+09, 4.9053550e+09, 2.0791307e+10, 3.5823430e+09], [3.5845040e+09, 4.8813110e+09, 2.1482857e+10, 3.5823430e+09], [3.5831490e+09, 4.9764250e+09, 2.0926816e+10, 3.2825850e+09], [3.5825310e+09, 4.8501270e+09, 2.1020418e+10, 3.2825850e+09], [2.9851110e+09, 5.4241420e+09, 2.2438350e+10, 3.2825850e+09], [2.9849890e+09, 4.1284000e+09, 2.2082769e+10, 3.2825850e+09], [2.9849610e+09, 4.0838010e+09, 2.1045994e+10, 3.2815350e+09], [2.9849560e+09, 4.2491510e+09, 1.9694345e+10, 3.2815350e+09], [2.9846970e+09, 4.2351600e+09, 2.0016361e+10, 3.2815350e+09], [2.9828890e+09, 4.2096630e+09, 1.9734494e+10, 3.2815350e+09], [2.9813960e+09, 3.4564240e+09, 1.8562738e+10, 3.2793790e+09], [2.9803530e+09, 3.0759650e+09, 1.8076208e+10, 3.2793790e+09], [2.9792680e+09, 3.1376690e+09, 1.7994776e+10, 3.2793790e+09], [2.9785770e+09, 3.1265850e+09, 1.7495053e+10, 3.2793790e+09], [2.9783640e+09, 3.1343850e+09, 1.6740840e+10, 3.2035780e+09], [2.9783590e+09, 3.1273880e+09, 1.6578389e+10, 3.2035780e+09], [2.9782780e+09, 3.1169280e+09, 1.8047639e+10, 3.2035780e+09], [2.9778200e+09, 3.1818630e+09, 1.7663145e+10, 3.2035780e+09]] target_total_share_600748 = [[1.84456289e+09, 2.60058426e+09, 5.72443733e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.72096899e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.65738237e+09, 4.58026529e+08], [1.84456289e+09, 2.60058426e+09, 5.50257806e+09, 4.58026529e+08], [1.84456289e+09, 2.59868164e+09, 5.16741523e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 5.14677280e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 4.94955591e+09, 4.44998882e+08], [1.84456289e+09, 2.59684471e+09, 4.79001451e+09, 4.44998882e+08], [1.84456289e+09, 3.11401684e+09, 4.46326988e+09, 4.01064256e+08], [1.84456289e+09, 3.11596723e+09, 4.45419136e+09, 4.01064256e+08], [1.84456289e+09, 3.11596723e+09, 4.39652948e+09, 4.01064256e+08], [1.84456289e+09, 3.18007783e+09, 4.26608403e+09, 4.01064256e+08], [1.84456289e+09, 3.10935622e+09, 3.78417688e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.65806574e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.62063090e+09, 3.65651701e+08], [1.84456289e+09, 3.10935622e+09, 3.50063915e+09, 3.65651701e+08], [1.41889453e+09, 3.55940850e+09, 3.22272993e+09, 3.62124939e+08], [1.41889453e+09, 3.56129650e+09, 3.11477476e+09, 3.62124939e+08], [1.41889453e+09, 3.59632888e+09, 3.06836903e+09, 3.62124939e+08], [1.08337087e+09, 3.37400726e+07, 3.00918704e+09, 3.62124939e+08]] target_total_share_000040 = [[1.48687387e+09, 1.06757900e+10, 8.31900755e+08, 2.16091994e+08], [1.48687387e+09, 1.06757900e+10, 7.50177302e+08, 2.16091994e+08], [1.48687387e+09, 1.06757899e+10, 9.90255974e+08, 2.16123282e+08], [1.48687387e+09, 1.06757899e+10, 1.03109866e+09, 2.16091994e+08], [1.48687387e+09, 1.06757910e+10, 2.07704745e+09, 2.16123282e+08], [1.48687387e+09, 1.06757910e+10, 2.09608665e+09, 2.16123282e+08], [1.48687387e+09, 1.06803833e+10, 2.13354083e+09, 2.16123282e+08], [1.48687387e+09, 1.06804090e+10, 2.11489364e+09, 2.16123282e+08], [1.33717327e+09, 8.87361727e+09, 2.42939924e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 2.34220254e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 2.16390368e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 1.07961915e+09, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 8.58866066e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 6.87024393e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 5.71554565e+08, 1.88489589e+08], [1.33717327e+09, 8.87361727e+09, 5.54241222e+08, 1.88489589e+08], [1.33717327e+09, 8.87361726e+09, 5.10059576e+08, 1.88489589e+08], [1.33717327e+09, 8.87361726e+09, 4.59351639e+08, 1.88489589e+08], [4.69593364e+08, 2.78355875e+08, 4.13430814e+08, 1.88489589e+08], [4.69593364e+08, 2.74235459e+08, 3.83557678e+08, 1.88489589e+08]] target_net_profit_000039 = [[np.nan], [2.422180e+08], [np.nan], [2.510113e+09], [np.nan], [1.102220e+09], [np.nan], [4.068455e+09], [np.nan], [1.315957e+09], [np.nan], [3.158415e+09], [np.nan], [1.066509e+09], [np.nan], [7.349830e+08], [np.nan], [-5.411600e+08], [np.nan], [2.271961e+09]] target_net_profit_600748 = [[np.nan], [4.54341757e+08], [np.nan], [9.14476670e+08], [np.nan], [5.25360283e+08], [np.nan], [9.24502415e+08], [np.nan], [4.66560302e+08], [np.nan], [9.15265285e+08], [np.nan], [2.14639674e+08], [np.nan], [7.45093049e+08], [np.nan], [2.10967312e+08], [np.nan], [6.04572711e+08]] target_net_profit_000040 = [[np.nan], [-2.82458846e+08], [np.nan], [-9.57130872e+08], [np.nan], [9.22114527e+07], [np.nan], [1.12643819e+09], [np.nan], [1.31715269e+09], [np.nan], [5.39940093e+08], [np.nan], [1.51440838e+08], [np.nan], [1.75339071e+08], [np.nan], [8.04740415e+07], [np.nan], [6.20445815e+07]] print('test get financial data, in multi thread mode') df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=4) self.assertIsInstance(df_list, tuple) self.assertEqual(len(df_list), 4) self.assertEqual(len(df_list[0]), 3) self.assertEqual(len(df_list[1]), 3) self.assertEqual(len(df_list[2]), 3) self.assertEqual(len(df_list[3]), 3) # 检查确认所有数据类型正确 self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values())) # 检查是否有空数据 print(all(item.empty for subdict in df_list for item in subdict.values())) # 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略 if df_list[0]['000039.SZ'].empty: print(f'income data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039)) if df_list[0]['600748.SH'].empty: print(f'income data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748)) if df_list[0]['000040.SZ'].empty: print(f'income data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040)) if df_list[1]['000039.SZ'].empty: print(f'indicator data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039)) if df_list[1]['600748.SH'].empty: print(f'indicator data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748)) if df_list[1]['000040.SZ'].empty: print(f'indicator data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040)) if df_list[2]['000039.SZ'].empty: print(f'balance data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039)) if df_list[2]['600748.SH'].empty: print(f'balance data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748)) if df_list[2]['000040.SZ'].empty: print(f'balance data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000040.SZ'].values, target_total_share_000040)) if df_list[3]['000039.SZ'].empty: print(f'cash flow data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000039.SZ'].values, target_net_profit_000039, equal_nan=True)) if df_list[3]['600748.SH'].empty: print(f'cash flow data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[3]['600748.SH'].values, target_net_profit_600748, equal_nan=True)) if df_list[3]['000040.SZ'].empty: print(f'cash flow data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000040.SZ'].values, target_net_profit_000040, equal_nan=True)) print('test get financial data, in single thread mode') df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=0) self.assertIsInstance(df_list, tuple) self.assertEqual(len(df_list), 4) self.assertEqual(len(df_list[0]), 3) self.assertEqual(len(df_list[1]), 3) self.assertEqual(len(df_list[2]), 3) self.assertEqual(len(df_list[3]), 3) # 检查确认所有数据类型正确 self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values())) # 检查是否有空数据,因为网络问题,有可能会取到空数据 self.assertFalse(all(item.empty for subdict in df_list for item in subdict.values())) # 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略 if df_list[0]['000039.SZ'].empty: print(f'income data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039)) if df_list[0]['600748.SH'].empty: print(f'income data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748)) if df_list[0]['000040.SZ'].empty: print(f'income data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040)) if df_list[1]['000039.SZ'].empty: print(f'indicator data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039)) if df_list[1]['600748.SH'].empty: print(f'indicator data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748)) if df_list[1]['000040.SZ'].empty: print(f'indicator data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040)) if df_list[2]['000039.SZ'].empty: print(f'balance data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039)) if df_list[2]['600748.SH'].empty: print(f'balance data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748)) if df_list[2]['000040.SZ'].empty: print(f'balance data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[2]['000040.SZ'].values, target_total_share_000040)) if df_list[3]['000039.SZ'].empty: print(f'cash flow data for "000039.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000039.SZ'].values, target_net_profit_000039, equal_nan=True)) if df_list[3]['600748.SH'].empty: print(f'cash flow data for "600748.SH" is empty') else: self.assertTrue(np.allclose(df_list[3]['600748.SH'].values, target_net_profit_600748, equal_nan=True)) if df_list[3]['000040.SZ'].empty: print(f'cash flow data for "000040.SZ" is empty') else: self.assertTrue(np.allclose(df_list[3]['000040.SZ'].values, target_net_profit_000040, equal_nan=True)) def test_get_composite_type_raw_data(self): pass class TestUtilityFuncs(unittest.TestCase): def setUp(self): pass def test_time_string_format(self): print('Testing qt.time_string_format() function:') t = 3.14 self.assertEqual(time_str_format(t), '3s 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '3s ') self.assertEqual(time_str_format(t, short_form=True), '3"140') self.assertEqual(time_str_format(t, estimation=True, short_form=True), '3"') t = 300.14 self.assertEqual(time_str_format(t), '5min 140.0ms') self.assertEqual(time_str_format(t, estimation=True), '5min ') self.assertEqual(time_str_format(t, short_form=True), "5'140") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "5'") t = 7435.0014 self.assertEqual(time_str_format(t), '2hrs 3min 55s 1.4ms') self.assertEqual(time_str_format(t, estimation=True), '2hrs ') self.assertEqual(time_str_format(t, short_form=True), "2H3'55\"001") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "2H") t = 88425.0509 self.assertEqual(time_str_format(t), '1days 33min 45s 50.9ms') self.assertEqual(time_str_format(t, estimation=True), '1days ') self.assertEqual(time_str_format(t, short_form=True), "1D33'45\"051") self.assertEqual(time_str_format(t, estimation=True, short_form=True), "1D") def test_str_to_list(self): self.assertEqual(str_to_list('a,b,c,d,e'), ['a', 'b', 'c', 'd', 'e']) self.assertEqual(str_to_list('a, b, c '), ['a', 'b', 'c']) self.assertEqual(str_to_list('a, b: c', sep_char=':'), ['a,b', 'c']) self.assertEqual(str_to_list('abc'), ['abc']) self.assertEqual(str_to_list(''), []) self.assertRaises(AssertionError, str_to_list, 123) def test_list_or_slice(self): str_dict = {'close': 0, 'open': 1, 'high': 2, 'low': 3} self.assertEqual(list_or_slice(slice(1, 2, 1), str_dict), slice(1, 2, 1)) self.assertEqual(list_or_slice('open', str_dict), [1]) self.assertEqual(list(list_or_slice('close, high, low', str_dict)), [0, 2, 3]) self.assertEqual(list(list_or_slice('close:high', str_dict)), [0, 1, 2]) self.assertEqual(list(list_or_slice(['open'], str_dict)), [1]) self.assertEqual(list(list_or_slice(['open', 'high'], str_dict)), [1, 2]) self.assertEqual(list(list_or_slice(0, str_dict)), [0]) self.assertEqual(list(list_or_slice([0, 2], str_dict)), [0, 2]) self.assertEqual(list(list_or_slice([True, False, True, False], str_dict)), [0, 2]) def test_labels_to_dict(self): target_list = [0, 1, 10, 100] target_dict = {'close': 0, 'open': 1, 'high': 2, 'low': 3} target_dict2 = {'close': 0, 'open': 2, 'high': 1, 'low': 3} self.assertEqual(labels_to_dict('close, open, high, low', target_list), target_dict) self.assertEqual(labels_to_dict(['close', 'open', 'high', 'low'], target_list), target_dict) self.assertEqual(labels_to_dict('close, high, open, low', target_list), target_dict2) self.assertEqual(labels_to_dict(['close', 'high', 'open', 'low'], target_list), target_dict2) def test_input_to_list(self): """ test util function input_to_list()""" self.assertEqual(input_to_list(5, 3), [5, 5, 5]) self.assertEqual(input_to_list(5, 3, 0), [5, 5, 5]) self.assertEqual(input_to_list([5], 3, 0), [5, 0, 0]) self.assertEqual(input_to_list([5, 4], 3, 0), [5, 4, 0]) def test_regulate_date_format(self): self.assertEqual(regulate_date_format('2019/11/06'), '20191106') self.assertEqual(regulate_date_format('2019-11-06'), '20191106') self.assertEqual(regulate_date_format('20191106'), '20191106') self.assertEqual(regulate_date_format('191106'), '20061119') self.assertEqual(regulate_date_format('830522'), '19830522') self.assertEqual(regulate_date_format(datetime.datetime(2010, 3, 15)), '20100315') self.assertEqual(regulate_date_format(pd.Timestamp('2010.03.15')), '20100315') self.assertRaises(ValueError, regulate_date_format, 'abc') self.assertRaises(ValueError, regulate_date_format, '2019/13/43') def test_list_to_str_format(self): self.assertEqual(list_to_str_format(['close', 'open', 'high', 'low']), 'close,open,high,low') self.assertEqual(list_to_str_format(['letters', ' ', '123 4', 123, ' kk l']), 'letters,,1234,kkl') self.assertEqual(list_to_str_format('a string input'), 'a,string,input') self.assertEqual(list_to_str_format('already,a,good,string'), 'already,a,good,string') self.assertRaises(AssertionError, list_to_str_format, 123) def test_is_trade_day(self): """test if the funcion maybe_trade_day() and is_market_trade_day() works properly """ date_trade = '20210401' date_holiday = '20210102' date_weekend = '20210424' date_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertTrue(maybe_trade_day(date_trade)) self.assertFalse(maybe_trade_day(date_holiday)) self.assertFalse(maybe_trade_day(date_weekend)) self.assertTrue(maybe_trade_day(date_seems_trade_day)) self.assertTrue(maybe_trade_day(date_too_early)) self.assertTrue(maybe_trade_day(date_too_late)) self.assertTrue(maybe_trade_day(date_christmas)) self.assertTrue(is_market_trade_day(date_trade)) self.assertFalse(is_market_trade_day(date_holiday)) self.assertFalse(is_market_trade_day(date_weekend)) self.assertFalse(is_market_trade_day(date_seems_trade_day)) self.assertFalse(is_market_trade_day(date_too_early)) self.assertFalse(is_market_trade_day(date_too_late)) self.assertTrue(is_market_trade_day(date_christmas)) self.assertFalse(is_market_trade_day(date_christmas, exchange='XHKG')) date_trade = pd.to_datetime('20210401') date_holiday = pd.to_datetime('20210102') date_weekend = pd.to_datetime('20210424') self.assertTrue(maybe_trade_day(date_trade)) self.assertFalse(maybe_trade_day(date_holiday)) self.assertFalse(maybe_trade_day(date_weekend)) def test_weekday_name(self): """ test util func weekday_name()""" self.assertEqual(weekday_name(0), 'Monday') self.assertEqual(weekday_name(1), 'Tuesday') self.assertEqual(weekday_name(2), 'Wednesday') self.assertEqual(weekday_name(3), 'Thursday') self.assertEqual(weekday_name(4), 'Friday') self.assertEqual(weekday_name(5), 'Saturday') self.assertEqual(weekday_name(6), 'Sunday') def test_list_truncate(self): """ test util func list_truncate()""" l = [1,2,3,4,5] ls = list_truncate(l, 2) self.assertEqual(ls[0], [1, 2]) self.assertEqual(ls[1], [3, 4]) self.assertEqual(ls[2], [5]) self.assertRaises(AssertionError, list_truncate, l, 0) self.assertRaises(AssertionError, list_truncate, 12, 0) self.assertRaises(AssertionError, list_truncate, 0, l) def test_maybe_trade_day(self): """ test util function maybe_trade_day()""" self.assertTrue(maybe_trade_day('20220104')) self.assertTrue(maybe_trade_day('2021-12-31')) self.assertTrue(maybe_trade_day(pd.to_datetime('2020/03/06'))) self.assertFalse(maybe_trade_day('2020-01-01')) self.assertFalse(maybe_trade_day('2020/10/06')) self.assertRaises(TypeError, maybe_trade_day, 'aaa') def test_prev_trade_day(self): """test the function prev_trade_day() """ date_trade = '20210401' date_holiday = '20210102' prev_holiday = pd.to_datetime(date_holiday) - pd.Timedelta(2, 'd') date_weekend = '20210424' prev_weekend = pd.to_datetime(date_weekend) - pd.Timedelta(1, 'd') date_seems_trade_day = '20210217' prev_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertEqual(pd.to_datetime(prev_trade_day(date_trade)), pd.to_datetime(date_trade)) self.assertEqual(pd.to_datetime(prev_trade_day(date_holiday)), pd.to_datetime(prev_holiday)) self.assertEqual(pd.to_datetime(prev_trade_day(date_weekend)), pd.to_datetime(prev_weekend)) self.assertEqual(pd.to_datetime(prev_trade_day(date_seems_trade_day)), pd.to_datetime(prev_seems_trade_day)) self.assertEqual(pd.to_datetime(prev_trade_day(date_too_early)), pd.to_datetime(date_too_early)) self.assertEqual(pd.to_datetime(prev_trade_day(date_too_late)), pd.to_datetime(date_too_late)) self.assertEqual(pd.to_datetime(prev_trade_day(date_christmas)), pd.to_datetime(date_christmas)) def test_next_trade_day(self): """ test the function next_trade_day() """ date_trade = '20210401' date_holiday = '20210102' next_holiday = pd.to_datetime(date_holiday) + pd.Timedelta(2, 'd') date_weekend = '20210424' next_weekend = pd.to_datetime(date_weekend) + pd.Timedelta(2, 'd') date_seems_trade_day = '20210217' next_seems_trade_day = '20210217' date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' self.assertEqual(pd.to_datetime(next_trade_day(date_trade)), pd.to_datetime(date_trade)) self.assertEqual(pd.to_datetime(next_trade_day(date_holiday)), pd.to_datetime(next_holiday)) self.assertEqual(pd.to_datetime(next_trade_day(date_weekend)), pd.to_datetime(next_weekend)) self.assertEqual(pd.to_datetime(next_trade_day(date_seems_trade_day)), pd.to_datetime(next_seems_trade_day)) self.assertEqual(pd.to_datetime(next_trade_day(date_too_early)), pd.to_datetime(date_too_early)) self.assertEqual(pd.to_datetime(next_trade_day(date_too_late)), pd.to_datetime(date_too_late)) self.assertEqual(pd.to_datetime(next_trade_day(date_christmas)), pd.to_datetime(date_christmas)) def test_prev_market_trade_day(self): """ test the function prev_market_trade_day() """ date_trade = '20210401' date_holiday = '20210102' prev_holiday = pd.to_datetime(date_holiday) - pd.Timedelta(2, 'd') date_weekend = '20210424' prev_weekend = pd.to_datetime(date_weekend) - pd.Timedelta(1, 'd') date_seems_trade_day = '20210217' prev_seems_trade_day = pd.to_datetime(date_seems_trade_day) - pd.Timedelta(7, 'd') date_too_early = '19890601' date_too_late = '20230105' date_christmas = '20201225' prev_christmas_xhkg = '20201224' self.assertEqual(pd.to_datetime(prev_market_trade_day(date_trade)), pd.to_datetime(date_trade)) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_holiday)), pd.to_datetime(prev_holiday)) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_weekend)), pd.to_datetime(prev_weekend)) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_seems_trade_day)), pd.to_datetime(prev_seems_trade_day)) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_too_early)), None) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_too_late)), None) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_christmas, 'SSE')), pd.to_datetime(date_christmas)) self.assertEqual(pd.to_datetime(prev_market_trade_day(date_christmas, 'XHKG')), pd.to_datetime(prev_christmas_xhkg)) def test_next_market_trade_day(self): """ test the function next_market_trade_day() """ date_trade = '20210401' date_holiday = '20210102' next_holiday = pd.to_datetime(date_holiday) + pd.Timedelta(2, 'd') date_weekend = '20210424' next_weekend = pd.to_datetime(date_weekend) + pd.Timedelta(2, 'd') date_seems_trade_day = '20210217' next_seems_trade_day =
pd.to_datetime(date_seems_trade_day)
pandas.to_datetime
from datetime import datetime, timedelta import time import requests import json from matplotlib.pylab import date2num from matplotlib import pyplot as plt import mpl_finance as mpf from pandas import DataFrame import talib as ta import numpy as np import sys sys.path.append('..') import DictCode as dc plt.rcParams['font.family'] = 'sans-serif' #用来正常显示中文 plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示负号 def get_candles_data(url,contractSize): print(url) response = requests.get(url) data_arr = response.text.replace("[[",'').replace("]]",'').replace("\"","").split("],[") close = [] high = [] low = [] tradeTime = [] for item_str in reversed(data_arr): item = item_str.split(",") sdatetime_num = date2num(datetime.strptime(item[0].replace("T",' ').replace('.000Z',''),'%Y-%m-%d')) # datas = (sdatetime_num,float(item[1]),float(item[2]),float(item[3]),float(item[4])) # 按照 candlestick_ohlc 要求的数据结构准备数据 # quotes.append(datas) tradeTime.append(sdatetime_num) high.append(float(item[2])*contractSize) low.append(float(item[3])*contractSize) close.append(float(item[4])*contractSize) dt_dict = {'tradeTime':tradeTime, 'high':high, 'low':low, 'close':close} data_df =
DataFrame(dt_dict)
pandas.DataFrame
from unittest import TestCase import pandas as pd import numpy as np import pandas_validator as pv class DataFrameValidatorFixture(pv.DataFrameValidator): """Fixture for testing the validation of column type.""" integer_field = pv.IntegerColumnValidator('i') float_field = pv.FloatColumnValidator('f') class DataFrameValidatorTest(TestCase): """Testing the validation of column type.""" def setUp(self): self.validator = DataFrameValidatorFixture() def test_valid(self): df = pd.DataFrame({'i': [0, 1], 'f': [0., 1.]}) self.assertTrue(self.validator.is_valid(df)) def test_invalid_when_given_integer_series_to_float_column_validator(self): df = pd.DataFrame({'i': [0, 1], 'f': [0, 1]}) self.assertFalse(self.validator.is_valid(df)) class DataFrameValidatorFixtureWithSize(pv.DataFrameValidator): """Fixture for testing the validation of column and row number.""" row_num = 3 column_num = 2 class DataFrameValidatorSizeTest(TestCase): """Testing the validation of column and row number.""" def setUp(self): self.validator = DataFrameValidatorFixtureWithSize() def test_valid_when_matches_row_numbers(self): df = pd.DataFrame({'x': [0, 1, 2], 'y': [1., 2., 3.]}) self.assertTrue(self.validator.is_valid(df)) def test_invalid_when_not_matches_row_numbers(self): df = pd.DataFrame({'x': [0, 1], 'y': [1., 2.]}) self.assertFalse(self.validator.is_valid(df)) def test_invalid_when_not_matches_column_numbers(self): df = pd.DataFrame({'x': [0, 1, 2], 'y': [1., 2., 3.], 'z': [1, 2, 3]}) self.assertFalse(self.validator.is_valid(df)) class DataFrameValidatorFixtureWithIndex(pv.DataFrameValidator): """Fixture for testing the validation of index validator.""" index = pv.IndexValidator(size=3, type=np.int64) class DataFrameValidatorIndexTest(TestCase): """Testing the validation of index size and type.""" def setUp(self): self.validator = DataFrameValidatorFixtureWithIndex() def test_valid_when_matches_index_size_and_type(self): df = pd.DataFrame([0, 1, 2]) self.assertTrue(self.validator.is_valid(df)) def test_invalid_when_not_matches_index_size(self): df = pd.DataFrame([0, 1, 2, 3]) self.assertFalse(self.validator.is_valid(df)) def test_invalid_when_not_matches_index_type(self): df = pd.DataFrame([0, 1, 2], index=['a', 'b', 'c']) self.assertFalse(self.validator.is_valid(df)) class DataFrameValidatorFixtureWithColumns(pv.DataFrameValidator): """Fixture for testing the validation of columns validator.""" columns = pv.ColumnsValidator(size=2, type=np.object_) class DataFrameValidatorColumnsIndexTest(TestCase): """Testing the validation of columns size and type""" def setUp(self): self.validator = DataFrameValidatorFixtureWithColumns() def test_valid_when_matches_columns_size_and_type(self): df = pd.DataFrame({'x': [0, 1, 2], 'y': [1., 2., 3.]}) self.assertTrue(self.validator.is_valid(df)) def test_invalid_when_not_matches_columns_size(self): df = pd.DataFrame({'x': [0, 1, 2], 'y': [1., 2., 3.], 'z': [1, 2, 3]}) self.assertFalse(self.validator.is_valid(df)) def test_invalid_when_not_matches_columns_type(self): df =
pd.DataFrame([[0, 1, 2], [1., 2., 3.]])
pandas.DataFrame
import pandas as pd import json import bids import matplotlib.pyplot as plt import plotje # Download data from here: <NAME>. et al. Crowdsourced MRI quality metrics # and expert quality annotations for training of humans and machines. Sci Data 6, 30 (2019). # Then run make_distributions.py to summarize the data from this snapshot summary_path = './data/summary/bold_curated' dataset = '/home/william/datasets/es-fmri_v2/' dfd = pd.read_csv(summary_path + qc + '_summary.csv', index_col=[0]) layout = bids.BIDSLayout(dataset) layout.add_derivatives(dataset + '/derivatives/') layout = layout.to_df() keeprow = [] for i, n in layout.iterrows(): if 'mriqc_output' in n['path'] and n['path'].endswith('.json'): keeprow.append(i) layout = layout.loc[keeprow] layout_bold = layout[layout['suffix'] == 'bold'] params = [('pre', 'rest', 'preop'), ('es', 'es', 'postop')] qcmet = {} qcdesc = {} for p in params: qcmet[p[0]] = {} qcdesc[p[0]] = {} for n,_ in dfd.iteritems(): qcmet[p[0]][n] = [] layout_tmp = layout[layout['task'] == p[1]] layout_tmp = layout_tmp[layout_tmp['session'] == p[2]] for _, f in layout_tmp.iterrows(): with open(f['path']) as json_data: d = json.load(json_data) for n,_ in dfd.iteritems(): qcmet[p[0]][n].append(d[n]) for n,_ in dfd.iteritems(): qcdesc[p[0]][n] =
pd.Series(qcmet[p[0]][n])
pandas.Series
""" Momentum module containing methods to generate momentum features including RSI and rolling price return rank (monthly and yearly) """ import pandas as pd from talib import RSI import numpy as np import matplotlib.pyplot as plt import math START_DATE = '2011-01-03' END_DATE = '2019-04-03' RANK_RECALCULATE = 1 YEARLY_TRADING_DAYS = 252 MONTHLY_TRADING_DAYS = 21 def get_stock_rsi_daily(time_series_df, ticker): """ compute rolling RSI of stock prices using talib """ close = get_time_series_adjusted_close(time_series_df, ticker) rsi = RSI(close, timeperiod=20) rsi_series = pd.Series(rsi) tmpDf = pd.DataFrame(data=rsi_series, columns=['RSI']) time_series_df.loc[ticker, 'RSI'] = tmpDf['RSI'].values return time_series_df def get_stock_percent_off_52_week_high(): pass def update_rank_dataframe(df, stock_returns, period, date): """ For each stock trading day in the data range, update the rolling return rank based on the new monthly & yearly percent change value """ stock_period = str(period) + "_Return" rank_period = str(period) + "_Return_Rank" df_tmp = df.reset_index(level=0) returns_df = pd.DataFrame.from_dict(stock_returns, orient='index', columns=[stock_period]) returns_df.sort_values(by=[stock_period], ascending=False, inplace=True) returns_df.reset_index(level=0, inplace=True) returns_df[period] = returns_df.index returns_df.columns = ['Symbol', stock_period, rank_period] daily_adjusted_rank_df = pd.DataFrame() daily_adjusted_rank_df = pd.merge(df_tmp.loc[date], returns_df, on='Symbol', how='left') daily_adjusted_rank_df['Date'] = date daily_adjusted_rank_df.set_index(['Symbol', 'Date'], inplace=True) return daily_adjusted_rank_df def update_with_null_return_rankings(df, stocks_dict, period, date): """ Since the early dates do not have enough data to compute monthly/yearly percent chages, copy the data frame values """ stock_period = str(period) + "_Return" rank_period = str(period) + "_Return_Rank" df_tmp = df.reset_index(level=0) daily_rank_df = pd.DataFrame.from_dict(stocks_dict, orient='index', columns=[stock_period]) daily_rank_df.reset_index(level=0, inplace=True) daily_rank_df[rank_period] = np.nan daily_rank_df.columns = ['Symbol', stock_period, rank_period] updated_daily_subset_df = pd.DataFrame() updated_daily_subset_df = pd.merge(df_tmp.loc[date], daily_rank_df, on='Symbol', how='left') updated_daily_subset_df['Date'] = date updated_daily_subset_df.set_index(['Symbol', 'Date'], inplace=True) return updated_daily_subset_df def get_daily_adjusted_stock_return_rankings(df, ticker_list, date_list): """ The input df dataframe must contain monthly & yearly stock percent changes to compute a rolling return rank updated daily """ global yearl_rank_df, monthly_rank_df yearly_rank_df = pd.DataFrame() monthly_rank_df =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.generic import ABCIndexClass import pandas as pd import pandas._testing as tm from pandas.api.types import is_float, is_float_dtype, is_integer, is_scalar from pandas.core.arrays import IntegerArray, integer_array from pandas.core.arrays.integer import ( Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ) from pandas.tests.extension.base import BaseOpsUtil def make_data(): return list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100] @pytest.fixture( params=[ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ] ) def dtype(request): return request.param() @pytest.fixture def data(dtype): return integer_array(make_data(), dtype=dtype) @pytest.fixture def data_missing(dtype): return integer_array([np.nan, 1], dtype=dtype) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): """Parametrized fixture giving 'data' and 'data_missing'""" if request.param == "data": return data elif request.param == "data_missing": return data_missing def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize( "dtype, expected", [ (Int8Dtype(), "Int8Dtype()"), (Int16Dtype(), "Int16Dtype()"), (Int32Dtype(), "Int32Dtype()"), (Int64Dtype(), "Int64Dtype()"), (UInt8Dtype(), "UInt8Dtype()"), (UInt16Dtype(), "UInt16Dtype()"), (UInt32Dtype(), "UInt32Dtype()"), (UInt64Dtype(), "UInt64Dtype()"), ], ) def test_repr_dtype(dtype, expected): assert repr(dtype) == expected def test_repr_array(): result = repr(integer_array([1, None, 3])) expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64" assert result == expected def test_repr_array_long(): data = integer_array([1, 2, None] * 1000) expected = ( "<IntegerArray>\n" "[ 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>, 1,\n" " ...\n" " <NA>, 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>]\n" "Length: 3000, dtype: Int64" ) result = repr(data) assert result == expected class TestConstructors: def test_uses_pandas_na(self): a = pd.array([1, None], dtype=pd.Int64Dtype()) assert a[1] is pd.NA def test_from_dtype_from_float(self, data): # construct from our dtype & string dtype dtype = data.dtype # from float expected = pd.Series(data) result = pd.Series( data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype) ) tm.assert_series_equal(result, expected) # from int / list expected = pd.Series(data) result = pd.Series(np.array(data).tolist(), dtype=str(dtype)) tm.assert_series_equal(result, expected) # from int / array expected = pd.Series(data).dropna().reset_index(drop=True) dropped = np.array(data.dropna()).astype(np.dtype((dtype.type))) result = pd.Series(dropped, dtype=str(dtype)) tm.assert_series_equal(result, expected) class TestArithmeticOps(BaseOpsUtil): def _check_divmod_op(self, s, op, other, exc=None): super()._check_divmod_op(s, op, other, None) def _check_op(self, s, op_name, other, exc=None): op = self.get_op_from_name(op_name) result = op(s, other) # compute expected mask = s.isna() # if s is a DataFrame, squeeze to a Series # for comparison if isinstance(s, pd.DataFrame): result = result.squeeze() s = s.squeeze() mask = mask.squeeze() # other array is an Integer if isinstance(other, IntegerArray): omask = getattr(other, "mask", None) mask = getattr(other, "data", other) if omask is not None: mask |= omask # 1 ** na is na, so need to unmask those if op_name == "__pow__": mask = np.where(~s.isna() & (s == 1), False, mask) elif op_name == "__rpow__": other_is_one = other == 1 if isinstance(other_is_one, pd.Series): other_is_one = other_is_one.fillna(False) mask = np.where(other_is_one, False, mask) # float result type or float op if ( is_float_dtype(other) or is_float(other) or op_name in ["__rtruediv__", "__truediv__", "__rdiv__", "__div__"] ): rs = s.astype("float") expected = op(rs, other) self._check_op_float(result, expected, mask, s, op_name, other) # integer result type else: rs = pd.Series(s.values._data, name=s.name) expected = op(rs, other) self._check_op_integer(result, expected, mask, s, op_name, other) def _check_op_float(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in float dtypes expected[mask] = np.nan if "floordiv" in op_name: # Series op sets 1//0 to np.inf, which IntegerArray does not do (yet) mask2 = np.isinf(expected) & np.isnan(result) expected[mask2] = np.nan tm.assert_series_equal(result, expected) def _check_op_integer(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in integer dtypes # to compare properly, we convert the expected # to float, mask to nans and convert infs # if we have uints then we process as uints # then convert to float # and we ultimately want to create a IntArray # for comparisons fill_value = 0 # mod/rmod turn floating 0 into NaN while # integer works as expected (no nan) if op_name in ["__mod__", "__rmod__"]: if is_scalar(other): if other == 0: expected[s.values == 0] = 0 else: expected = expected.fillna(0) else: expected[ (s.values == 0).fillna(False) & ((expected == 0).fillna(False) | expected.isna()) ] = 0 try: expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) except ValueError: expected = expected.astype(float) expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) expected[mask] = pd.NA # assert that the expected astype is ok # (skip for unsigned as they have wrap around) if not s.dtype.is_unsigned_integer: original = pd.Series(original) # we need to fill with 0's to emulate what an astype('int') does # (truncation) for certain ops if op_name in ["__rtruediv__", "__rdiv__"]: mask |= original.isna() original = original.fillna(0).astype("int") original = original.astype("float") original[mask] = np.nan tm.assert_series_equal(original, expected.astype("float")) # assert our expected result tm.assert_series_equal(result, expected) def test_arith_integer_array(self, data, all_arithmetic_operators): # we operate with a rhs of an integer array op = all_arithmetic_operators s = pd.Series(data) rhs = pd.Series([1] * len(data), dtype=data.dtype) rhs.iloc[-1] = np.nan self._check_op(s, op, rhs) def test_arith_series_with_scalar(self, data, all_arithmetic_operators): # scalar op = all_arithmetic_operators s = pd.Series(data) self._check_op(s, op, 1, exc=TypeError) def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): # frame & scalar op = all_arithmetic_operators df = pd.DataFrame({"A": data}) self._check_op(df, op, 1, exc=TypeError) def test_arith_series_with_array(self, data, all_arithmetic_operators): # ndarray & other series op = all_arithmetic_operators s = pd.Series(data) other = np.ones(len(s), dtype=s.dtype.type) self._check_op(s, op, other, exc=TypeError) def test_arith_coerce_scalar(self, data, all_arithmetic_operators): op = all_arithmetic_operators s = pd.Series(data) other = 0.01 self._check_op(s, op, other) @pytest.mark.parametrize("other", [1.0, np.array(1.0)]) def test_arithmetic_conversion(self, all_arithmetic_operators, other): # if we have a float operand we should have a float result # if that is equal to an integer op = self.get_op_from_name(all_arithmetic_operators) s = pd.Series([1, 2, 3], dtype="Int64") result = op(s, other) assert result.dtype is np.dtype("float") def test_arith_len_mismatch(self, all_arithmetic_operators): # operating with a list-like with non-matching length raises op = self.get_op_from_name(all_arithmetic_operators) other = np.array([1.0]) s = pd.Series([1, 2, 3], dtype="Int64") with pytest.raises(ValueError, match="Lengths must match"): op(s, other) @pytest.mark.parametrize("other", [0, 0.5]) def test_arith_zero_dim_ndarray(self, other): arr = integer_array([1, None, 2]) result = arr + np.array(other) expected = arr + other tm.assert_equal(result, expected) def test_error(self, data, all_arithmetic_operators): # invalid ops op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) opa = getattr(data, op) # invalid scalars msg = ( r"(:?can only perform ops with numeric values)" r"|(:?IntegerArray cannot perform the operation mod)" ) with pytest.raises(TypeError, match=msg): ops("foo") with pytest.raises(TypeError, match=msg): ops(pd.Timestamp("20180101")) # invalid array-likes with pytest.raises(TypeError, match=msg): ops(pd.Series("foo", index=s.index)) if op != "__rpow__": # TODO(extension) # rpow with a datetimelike coerces the integer array incorrectly msg = ( "can only perform ops with numeric values|" "cannot perform .* with this index type: DatetimeArray|" "Addition/subtraction of integers and integer-arrays " "with DatetimeArray is no longer supported. *" ) with pytest.raises(TypeError, match=msg): ops(pd.Series(pd.date_range("20180101", periods=len(s)))) # 2d result = opa(pd.DataFrame({"A": s})) assert result is NotImplemented msg = r"can only perform ops with 1-d structures" with pytest.raises(NotImplementedError, match=msg): opa(np.arange(len(s)).reshape(-1, len(s))) @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)]) def test_divide_by_zero(self, zero, negative): # https://github.com/pandas-dev/pandas/issues/27398 a = pd.array([0, 1, -1, None], dtype="Int64") result = a / zero expected = np.array([np.nan, np.inf, -np.inf, np.nan]) if negative: expected *= -1 tm.assert_numpy_array_equal(result, expected) def test_pow_scalar(self): a = pd.array([-1, 0, 1, None, 2], dtype="Int64") result = a ** 0 expected = pd.array([1, 1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** 1 expected = pd.array([-1, 0, 1, None, 2], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** pd.NA expected = pd.array([None, None, 1, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** np.nan expected = np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) # reversed a = a[1:] # Can't raise integers to negative powers. result = 0 ** a expected = pd.array([1, 0, None, 0], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = 1 ** a expected = pd.array([1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = pd.NA ** a expected = pd.array([1, None, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = np.nan ** a expected = np.array([1, np.nan, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) def test_pow_array(self): a = integer_array([0, 0, 0, 1, 1, 1, None, None, None]) b = integer_array([0, 1, None, 0, 1, None, 0, 1, None]) result = a ** b expected = integer_array([1, 0, None, 1, 1, 1, 1, None, None]) tm.assert_extension_array_equal(result, expected) def test_rpow_one_to_na(self): # https://github.com/pandas-dev/pandas/issues/22022 # https://github.com/pandas-dev/pandas/issues/29997 arr = integer_array([np.nan, np.nan]) result = np.array([1.0, 2.0]) ** arr expected = np.array([1.0, np.nan]) tm.assert_numpy_array_equal(result, expected) class TestComparisonOps(BaseOpsUtil): def _compare_other(self, data, op_name, other): op = self.get_op_from_name(op_name) # array result = pd.Series(op(data, other)) expected = pd.Series(op(data._data, other), dtype="boolean") # fill the nan locations expected[data._mask] = pd.NA tm.assert_series_equal(result, expected) # series s = pd.Series(data) result = op(s, other) expected = op(pd.Series(data._data), other) # fill the nan locations expected[data._mask] = pd.NA expected = expected.astype("boolean") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("other", [True, False, pd.NA, -1, 0, 1]) def test_scalar(self, other, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([1, 0, None], dtype="Int64") result = op(a, other) if other is pd.NA: expected = pd.array([None, None, None], dtype="boolean") else: values = op(a._data, other) expected = pd.arrays.BooleanArray(values, a._mask, copy=True) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal(a, pd.array([1, 0, None], dtype="Int64")) def test_array(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([0, 1, 2, None, None, None], dtype="Int64") b = pd.array([0, 1, None, 0, 1, None], dtype="Int64") result = op(a, b) values = op(a._data, b._data) mask = a._mask | b._mask expected = pd.arrays.BooleanArray(values, mask) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal( a, pd.array([0, 1, 2, None, None, None], dtype="Int64") ) tm.assert_extension_array_equal( b, pd.array([0, 1, None, 0, 1, None], dtype="Int64") ) def test_compare_with_booleanarray(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([True, False, None] * 3, dtype="boolean") b = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype="Int64") other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean") expected = op(a, other) result = op(a, b) tm.assert_extension_array_equal(result, expected) def test_no_shared_mask(self, data): result = data + 1 assert np.shares_memory(result._mask, data._mask) is False def test_compare_to_string(self, any_nullable_int_dtype): # GH 28930 s = pd.Series([1, None], dtype=any_nullable_int_dtype) result = s == "a" expected = pd.Series([False, pd.NA], dtype="boolean") self.assert_series_equal(result, expected) def test_compare_to_int(self, any_nullable_int_dtype, all_compare_operators): # GH 28930 s1 = pd.Series([1, None, 3], dtype=any_nullable_int_dtype) s2 = pd.Series([1, None, 3], dtype="float") method = getattr(s1, all_compare_operators) result = method(2) method = getattr(s2, all_compare_operators) expected = method(2).astype("boolean") expected[s2.isna()] = pd.NA self.assert_series_equal(result, expected) class TestCasting: @pytest.mark.parametrize("dropna", [True, False]) def test_construct_index(self, all_data, dropna): # ensure that we do not coerce to Float64Index, rather # keep as Index all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Index(integer_array(other, dtype=all_data.dtype)) expected = pd.Index(other, dtype=object)
tm.assert_index_equal(result, expected)
pandas._testing.assert_index_equal
import pandas as pd import glob data_path = 'E:/GenderClassification/PycharmProjects/GenderClassification/home/abeer/Dropbox/Dataset_HAR project/*' addrs = glob.glob(data_path) for i in addrs: folders = glob.glob(i + '/Walk/Esphalt/Alone/*') for j in folders: csv_files = glob.glob(j + '/*') LUA = pd.read_csv('initAcc.csv') RC = pd.read_csv('initAcc.csv') LC = pd.read_csv('initAcc.csv') back = pd.read_csv('initAcc.csv') waist = pd.read_csv('initAcc.csv') RUA = pd.read_csv('initAcc.csv') LeftWatch = pd.read_csv('initAcc.csv') RightWatch = pd.read_csv('initAcc.csv') for k in csv_files: if '(1)' in k or '(2)' in k or '(3)' in k or '(4)' in k or '(5)' in k: continue elif 'Accelerometer' in k and 'F5-RC' in k: file = pd.read_csv(k) RC = RC.append(file.iloc[:, 3:]) RC = RC.reset_index(drop=True) print(RC.columns) elif 'Accelerometer' in k and "DE-Waist" in k: file = pd.read_csv(k) waist = waist.append(file.iloc[:, 3:]) waist = waist.reset_index(drop=True) elif 'Accelerometer' in k and "D5-LC" in k: file = pd.read_csv(k) LC = LC.append(file.iloc[:, 3:]) LC = LC.reset_index(drop=True) elif 'Accelerometer' in k and "D2-RUA" in k: file = pd.read_csv(k) RUA = RUA.append(file.iloc[:, 3:]) RUA = RUA.reset_index(drop=True) elif 'Accelerometer' in k and "C6-back" in k: file = pd.read_csv(k) back = back.append(file.iloc[:, 3:]) back = back.reset_index(drop=True) elif 'Accelerometer' in k and "C5-LUA" in k: file = pd.read_csv(k) LUA = LUA.append(file.iloc[:, 3:]) LUA = LUA.reset_index(drop=True) for k in csv_files: if '(1)' in k or '(2)' in k or '(3)' in k or '(4)' in k or '(5)' in k: continue elif 'Gyroscope' in k and 'F5-RC' in k: file = pd.read_csv(k) file = file.iloc[:, 3:] RC = pd.concat([RC, file], axis=1) print(RC.columns) print(RC.info()) elif 'Gyroscope' in k and "DE-Waist" in k: file = pd.read_csv(k) file = file.iloc[:, 3:] waist = pd.concat([waist, file], axis=1) elif 'Gyroscope' in k and "D5-LC" in k: file = pd.read_csv(k) file = file.iloc[:, 3:] LC =
pd.concat([LC, file], axis=1)
pandas.concat
import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt from statsmodels.tsa.stattools import acf, pacf import sklearn from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_log_error, r2_score from statsmodels.tsa.stattools import acf, pacf from sklearn.model_selection import GridSearchCV from sklearn.neural_network import MLPRegressor from scipy import integrate, optimize from scipy.signal import savgol_filter from dane import population as popu dias_restar = 5 #Los últimos días de información que no se tienen en cuenta dias_pred = 31 #Días sobre los cuáles se hará la predicción a corto plazo media_movil = 4 #Días que se promediaran en las series para mitigar errores en los datos Ciudades_dicc={'Bog': 'Bogotá D.C.', 'Mde': 'Medellín', 'Cal':'Cali', 'Brr':'Barranquilla', 'Ctg':'Cartagena de Indias'} Ciudades=['Bog', 'Mde', 'Cal', 'Brr', 'Ctg'] # Se realiza la limpieza y adecuación de los datos de entrada para los modelos. En esta función # se entegran los Data Frames para cada una de las 5 variables objetivo para cada ciudad. def limpieza_datos(): Covid_Col=pd.read_csv("https://www.datos.gov.co/api/views/gt2j-8ykr/rows.csv?accessType=DOWNLOAD", sep=',', encoding='utf-8', low_memory=False) #Covid_Col=pd.read_csv("C:\Users\danie\DS\vagrant4docker-master\laboratorios\covid-19-guaya-kilera\Casos_positivos_de_COVID-19_en_Colombia.csv", sep=',', encoding='utf-8', low_memory=False) Covid_Col.drop(['ID de caso', 'Código DIVIPOLA', 'Departamento o Distrito ', 'País de procedencia', 'Tipo', 'Codigo departamento', 'Codigo pais', 'Tipo recuperación', 'Pertenencia etnica', 'Nombre grupo etnico', 'atención'], axis=1, inplace=True) Covid_Col['FIS']=Covid_Col['FIS'].replace('Asintomático', np.nan) Covid_Col['FIS']=pd.to_datetime(Covid_Col['FIS'].str[:10]) Covid_Col['fecha reporte web']=pd.to_datetime(Covid_Col['fecha reporte web'].str[:10]) Covid_Col['Fecha de notificación']=pd.to_datetime(Covid_Col['Fecha de notificación'].str[:10]) Covid_Col['Fecha de muerte']=pd.to_datetime(Covid_Col['Fecha de muerte'].str[:10]) Covid_Col['Fecha diagnostico']=pd.to_datetime(Covid_Col['Fecha diagnostico'].str[:10]) Covid_Col['Fecha recuperado']=pd.to_datetime(Covid_Col['Fecha recuperado'].str[:10]) #Covid_Col[(Covid_Col['Fecha diagnostico']<Covid_Col['Fecha de notificación']) & Covid_Col['FIS'].isnull()] Covid_Col['Fecha contagio']=Covid_Col['FIS'] Covid_Col.loc[Covid_Col['Fecha contagio'].isnull(), 'Fecha contagio'] = Covid_Col['Fecha de notificación'] Covid_Col.drop(['Fecha de notificación', 'FIS', 'Fecha diagnostico', 'fecha reporte web'], axis=1, inplace=True) Covid_Col['Cantidad de personas']=1 Fecha_Inicio = Covid_Col['Fecha contagio'][0] Fecha_Fin = max(Covid_Col['Fecha contagio']) - pd.to_timedelta(dias_restar, unit='d') Fecha_Fin_pred = Fecha_Fin + pd.to_timedelta(dias_pred - 1, unit='d') Fecha_Fin_SIR = Fecha_Fin_pred + pd.to_timedelta(50, unit='d') globals()['Fechas_pred_i'] = pd.date_range(start=Fecha_Inicio, end=Fecha_Fin_pred) globals()['Fechas_SIR'] = pd.date_range(start=Fecha_Inicio, end=Fecha_Fin_SIR) Fechas_evaluar_i = pd.date_range(start=Fecha_Inicio, end=Fecha_Fin) Fechas_evaluar = pd.DataFrame(index=Fechas_evaluar_i) for ciudad in Ciudades: globals()["Covid_" + str(ciudad)]=Covid_Col[Covid_Col['Ciudad de ubicación']==Ciudades_dicc[ciudad]] globals()["nuevos_" + str(ciudad)] = globals()["Covid_" + str(ciudad)].groupby('Fecha contagio').sum() globals()["nuevos_" + str(ciudad)].drop(['Edad'], axis=1, inplace=True) globals()["nuevos_" + str(ciudad)]=pd.merge(Fechas_evaluar, globals()["nuevos_" + str(ciudad)], \ how='left', left_index=True, right_index=True) globals()["nuevos_" + str(ciudad)]=globals()["nuevos_" + str(ciudad)].replace(np.nan, 0) globals()["confirmados_" + str(ciudad)]=globals()["nuevos_" + str(ciudad)].cumsum() globals()["nuevos_" + str(ciudad)].rename(columns={'Cantidad de personas': "Casos_nuevos_" }, inplace=True) globals()["confirmados_" + str(ciudad)].rename(columns={'Cantidad de personas': "Casos_confirmados_" }, inplace=True) globals()["recuperados_" + str(ciudad)]=globals()["Covid_" + str(ciudad)].groupby('Fecha recuperado').sum() globals()["recuperados_" + str(ciudad)].drop(['Edad'], axis=1, inplace=True) globals()["recuperados_" + str(ciudad)]=pd.merge(Fechas_evaluar, globals()["recuperados_" + str(ciudad)], \ how='left', left_index=True, right_index=True) globals()["recuperados_" + str(ciudad)]=globals()["recuperados_" + str(ciudad)].replace(np.nan, 0) #globals()["recuperados_" + str(ciudad)]=globals()["recuperados_" + str(ciudad)].cumsum() globals()["recuperados_" + str(ciudad)].rename(columns={'Cantidad de personas': "Casos_recuperados_" }, inplace=True) globals()["muertes_" + str(ciudad)]=globals()["Covid_" + str(ciudad)].groupby('Fecha de muerte').sum() globals()["muertes_" + str(ciudad)].drop(['Edad'], axis=1, inplace=True) globals()["muertes_" + str(ciudad)]=pd.merge(Fechas_evaluar,globals()["muertes_" + str(ciudad)], how='left', \ left_index=True, right_index=True) globals()["muertes_" + str(ciudad)]=globals()["muertes_" + str(ciudad)].replace(np.nan, 0) #globals()["muertes_" + str(ciudad)]=globals()["muertes_" + str(ciudad)].cumsum() globals()["muertes_" + str(ciudad)].rename(columns={'Cantidad de personas': "muertes_" }, inplace=True) globals()["activos_" + str(ciudad)]=pd.concat([globals()["confirmados_" + str(ciudad)], \ globals()["recuperados_" + str(ciudad)], globals()["muertes_" + str(ciudad)], globals()["nuevos_" + str(ciudad)]], axis=1) globals()["activos_" + str(ciudad)]['Casos_activos_']=globals()["activos_" + str(ciudad)]["Casos_confirmados_"]- \ globals()["activos_" + str(ciudad)]["Casos_recuperados_"].cumsum()-globals()["activos_" + str(ciudad)]["muertes_"].cumsum() globals()["Casos_" + str(ciudad)]=globals()["activos_" + str(ciudad)].copy() globals()["activos_" + str(ciudad)].drop(["Casos_confirmados_", "Casos_recuperados_", "muertes_", "Casos_nuevos_"], axis=1, inplace=True) globals()["Casos_" + str(ciudad)]["Total_recuperados_"]=globals()["Casos_" + str(ciudad)]["Casos_recuperados_"].cumsum() globals()["Casos_" + str(ciudad)]["Total_muertes_"]=globals()["Casos_" + str(ciudad)]["muertes_"].cumsum() # Se realiza el pronóstico de las series de tiempo para los datos sin promediar, por medio de regresión # de perceptrón multicapa, la optimización de los parámetros se hace en un archivo aparte. # -- Como se encuentra que la siguiente función arroja mejores resultados, los archivos de salida de # -- está no son presentados en el dashboard def redes_neuronales(): limpieza_datos() for ciudad in Ciudades: for estado in ['nuevos_', 'recuperados_', 'muertes_']: globals()['lag_pacf_'+ str(estado) + str(ciudad)] = pacf(globals()[str(estado) +str(ciudad)], nlags=30, method='ols') globals()['umbral_' + str(estado) + str(ciudad)] = 1.96/np.sqrt(len(globals()[str(estado) +str(ciudad)])) #P=1 #for lag_pacf in list(globals()['lag_pacf_'+ str(estado) + str(ciudad)]): # if lag_pacf < globals()['umbral_' + str(estado) + str(ciudad)]: # break # P=P+1 P=4 scaler = MinMaxScaler() globals()[str(estado) + str(ciudad)+'_scaled'] = scaler.fit_transform(globals()[str(estado) + str(ciudad)]).reshape(-1, 1) globals()[str(estado) + str(ciudad)+'_scaled'] = pd.DataFrame(globals()[str(estado) + str(ciudad)+'_scaled']) globals()['X_'+ str(estado) + str(ciudad)] = [] for t in range(P-1, len(globals()[str(estado) + str(ciudad)+'_scaled'])-1): globals()['X_'+ str(estado) + str(ciudad)].append([globals()[str(estado) + str(ciudad)+'_scaled'].iloc[t-n][0] \ for n in range(P)]) if ciudad=='Bog': if estado=='nuevos_': lrning_rate_in=0.043 elif estado=='recuperados_': lrning_rate_in=0.097 elif estado=='muertes_': lrning_rate_in=0.062 elif ciudad=='Mde': if estado=='nuevos_': lrning_rate_in=0.0315 elif estado=='recuperados_': lrning_rate_in=0.095 elif estado=='muertes_': lrning_rate_in=0.065 elif ciudad=='Cal': if estado=='nuevos_': lrning_rate_in=0.075 elif estado=='recuperados_': lrning_rate_in=0.085 elif estado=='muertes_': lrning_rate_in=0.1 elif ciudad=='Brr': if estado=='nuevos_': lrning_rate_in=0.01 elif estado=='recuperados_': lrning_rate_in=0.043 elif estado=='muertes_': lrning_rate_in=0.022 elif ciudad=='Ctg': if estado=='nuevos_': lrning_rate_in=0.025 elif estado=='recuperados_': lrning_rate_in=0.085 elif estado=='muertes_': lrning_rate_in=0.082 H = 4 np.random.seed(12345) mlp = MLPRegressor( hidden_layer_sizes=(H, ), activation = 'relu', learning_rate = 'adaptive', alpha=0.0001, learning_rate_init = lrning_rate_in, max_iter = 100000, early_stopping=True) train_size= int(len(globals()[str(estado) + str(ciudad)+'_scaled'])*0.9) mlp.fit(globals()['X_'+ str(estado) + str(ciudad)][0:train_size], globals()[str(estado) + str(ciudad)+'_scaled'][P:train_size+P][0]) globals()[str(estado) + str(ciudad)+'_scaled_predict']= mlp.predict(globals()['X_'+ str(estado) + str(ciudad)]) globals()[str(estado) + str(ciudad)+'_scaled_predict']= np.asarray([ i if i>=0 else 0 for i \ in globals()[str(estado) + str(ciudad)+'_scaled_predict']]) y_pred=[] for dias_predict in range(dias_pred): if dias_predict ==0: X_pred=[j for j in globals()[str(estado) + str(ciudad)+'_scaled'][:-1-P:-1][0]] x_pred=[X_pred] else: X_pred =y_pred [-1] + X_pred[:P-1] x_pred=[X_pred] y_pred.append((mlp.predict(x_pred)).tolist()) y_pred=[i[0] if i[0]>=0 else 0 for i in y_pred] globals()[str(estado) + str(ciudad)+'_predict'] = [ n[0] for n in scaler.inverse_transform([[u] for u in list(globals()[str(estado) \ + str(ciudad)+'_scaled'][0])[0:P-1] + globals()[str(estado) + str(ciudad)+'_scaled_predict'].tolist()+ y_pred])] globals()[str(estado) + str(ciudad)+'_predict'] = pd.DataFrame(globals()[str(estado) + str(ciudad)+'_predict'],\ index = globals()['Fechas_pred_i']) globals()[str(estado) + str(ciudad)+'_MSLE_train']=mean_squared_log_error(globals()[str(estado) + str(ciudad)][:train_size], \ globals()[str(estado) + str(ciudad)+'_predict'][:train_size]) globals()[str(estado) + str(ciudad)+'_r2_train']=r2_score(globals()[str(estado) + str(ciudad)][:train_size], \ globals()[str(estado) + str(ciudad)+'_predict'][:train_size]) test_end=len(globals()[str(estado) + str(ciudad)]) globals()[str(estado) + str(ciudad)+'_MSLE_test']=mean_squared_log_error(globals()[str(estado) + str(ciudad)][train_size:test_end],\ globals()[str(estado) + str(ciudad)+'_predict'][train_size:test_end]) globals()[str(estado) + str(ciudad)+'_r2_test']=r2_score(globals()[str(estado) + str(ciudad)][train_size:test_end],\ globals()[str(estado) + str(ciudad)+'_predict'][train_size:test_end]) globals()[str(estado) + str(ciudad)+'_real_vs_pred']=globals()[str(estado) + str(ciudad)+'_predict'].copy() globals()[str(estado) + str(ciudad)+'_real_vs_pred']['reales']=globals()[str(estado) + str(ciudad)] globals()[str(estado) + str(ciudad)+'_real_vs_pred']=globals()[str(estado) + str(ciudad)+'_real_vs_pred'].rename(columns={0:'predicción'}) globals()[str(estado) + str(ciudad)+'_real_vs_pred'].plot(figsize=(17,10), linewidth=1.5, style=['-r', '.-k'], fontsize=15) plt.legend(fontsize='x-large') plt.title('{} en {} por día'.format(str(estado)[:-1].capitalize(), Ciudades_dicc[str(ciudad)]), fontsize=20) plt.xlabel('Month', fontsize=20) max_=(globals()[str(estado) + str(ciudad)+'_real_vs_pred'].max()).max() plt.vlines(globals()['Fechas_pred_i'][train_size],0, max_, colors='b', linestyles ='dashdot' ) plt.grid() plt.savefig("images/MLP"+ str(estado) + str(ciudad) + ".png") plt.close() # Realiza el mismo proceso que la función anterior, pero con datos suavizados. Esta función arroja # las gráficas para los valores reales y prónosticados para 3 de las variables de interés (casos nuevos # recuperados y muertes por días). En la gráfica se reportan los errores MSLE de entrenamiento y de # prueba y el coeficiente R2 de entrenamiento y de prueba. def redes_neuronales_suavizadas(): limpieza_datos() for ciudad in Ciudades: for estado in ['nuevos_', 'recuperados_', 'muertes_']: globals()['lag_pacf_'+ str(estado) + str(ciudad)] = pacf(globals()[str(estado) +str(ciudad)], nlags=30, method='ols') globals()['umbral_' + str(estado) + str(ciudad)] = 1.96/np.sqrt(len(globals()[str(estado) +str(ciudad)])) #P=1 #for lag_pacf in list(globals()['lag_pacf_'+ str(estado) + str(ciudad)]): # if lag_pacf < globals()['umbral_' + str(estado) + str(ciudad)]: # break # P=P+1 P=4 scaler = MinMaxScaler() globals()[str(estado) + str(ciudad)+ '_smoothed']=globals()[str(estado) + str(ciudad)].rolling(media_movil).mean() globals()[str(estado) + str(ciudad)+ '_smoothed'][globals()[str(estado) + str(ciudad)+ '_smoothed'].columns[0]][0:media_movil] = \ globals()[str(estado) + str(ciudad)+ '_smoothed'][globals()[str(estado) + str(ciudad)+ '_smoothed'].columns[0]][media_movil] globals()[str(estado) + str(ciudad)+'_scaled_smoothed'] = scaler.fit_transform(globals()[str(estado) + str(ciudad)+ '_smoothed']).reshape(-1, 1) globals()[str(estado) + str(ciudad)+'_scaled_smoothed'] = pd.DataFrame(globals()[str(estado) + str(ciudad)+'_scaled_smoothed']) globals()['X_smoothed'+ str(estado) + str(ciudad)] = [] for t in range(P-1, len(globals()[str(estado) + str(ciudad)+'_scaled_smoothed'])-1): globals()['X_smoothed'+ str(estado) + str(ciudad)].append([globals()[str(estado) + str(ciudad)+'_scaled_smoothed'].iloc[t-n][0] \ for n in range(P)]) if ciudad=='Bog': if estado=='nuevos_': lrning_rate_in=0.04 elif estado=='recuperados_': lrning_rate_in=0.004 elif estado=='muertes_': lrning_rate_in=0.071 elif ciudad=='Mde': if estado=='nuevos_': lrning_rate_in=0.0354 elif estado=='recuperados_': lrning_rate_in=0.09 elif estado=='muertes_': lrning_rate_in=0.065 elif ciudad=='Cal': if estado=='nuevos_': lrning_rate_in=0.02 elif estado=='recuperados_': lrning_rate_in=0.101 elif estado=='muertes_': lrning_rate_in=0.085 elif ciudad=='Brr': if estado=='nuevos_': lrning_rate_in=0.02 elif estado=='recuperados_': lrning_rate_in=0.01 elif estado=='muertes_': lrning_rate_in=0.1 elif ciudad=='Ctg': if estado=='nuevos_': lrning_rate_in=0.02 elif estado=='recuperados_': lrning_rate_in=0.1 elif estado=='muertes_': lrning_rate_in=0.075 H = 4 np.random.seed(12345) mlp = MLPRegressor( hidden_layer_sizes=(H, ), activation = 'relu', learning_rate = 'adaptive', alpha=0.0001, learning_rate_init = lrning_rate_in, max_iter = 100000, early_stopping=True) globals()['train_size']= int(len(globals()[str(estado) + str(ciudad)+'_scaled_smoothed'])*0.9) mlp.fit(globals()['X_smoothed'+ str(estado) + str(ciudad)][0:train_size], globals()[str(estado) + \ str(ciudad)+'_scaled_smoothed'][P:train_size+P][0]) globals()[str(estado) + str(ciudad)+'_scaled_predict_smoothed']= mlp.predict(globals()['X_smoothed'+ str(estado) + str(ciudad)]) globals()[str(estado) + str(ciudad)+'_scaled_predict_smoothed']= np.asarray([ i if i>=0 else 0 for i \ in globals()[str(estado) + str(ciudad)+'_scaled_predict_smoothed']]) y_pred=[] for dias_predict in range(dias_pred): if dias_predict ==0: X_pred=[j for j in globals()[str(estado) + str(ciudad)+'_scaled_smoothed'][:-1-P:-1][0]] x_pred=[X_pred] else: X_pred =y_pred [-1] + X_pred[:P-1] x_pred=[X_pred] y_pred.append((mlp.predict(x_pred)).tolist()) y_pred=[i[0] if i[0]>=0 else 0 for i in y_pred] globals()[str(estado) + str(ciudad)+'_predict_smoothed'] = [ n[0] for n in scaler.inverse_transform([[u] for u in list(globals()[str(estado) \ + str(ciudad)+'_scaled_smoothed'][0])[0:P-1] + globals()[str(estado) + str(ciudad)+'_scaled_predict_smoothed'].tolist()+ y_pred])] globals()[str(estado) + str(ciudad)+'_predict_smoothed'] = pd.DataFrame(globals()[str(estado) + str(ciudad)+'_predict_smoothed'],\ index = globals()['Fechas_pred_i']) globals()[str(estado) + str(ciudad)+'_MSLE_train_smoothed']=mean_squared_log_error(globals()[str(estado) + str(ciudad)+ '_smoothed']\ [:train_size], globals()[str(estado) + str(ciudad)+'_predict_smoothed'][:train_size]) globals()[str(estado) + str(ciudad)+'_r2_train_smoothed']=r2_score(globals()[str(estado) + str(ciudad)+ '_smoothed'][:train_size], \ globals()[str(estado) + str(ciudad)+'_predict_smoothed'][:train_size]) test_end=len(globals()[str(estado) + str(ciudad)+ '_smoothed']) globals()[str(estado) + str(ciudad)+'_MSLE_test_smoothed']=mean_squared_log_error(globals()[str(estado) + str(ciudad)+ '_smoothed']\ [train_size:test_end], globals()[str(estado) + str(ciudad)+'_predict_smoothed'][train_size:test_end]) globals()[str(estado) + str(ciudad)+'_r2_test_smoothed']=r2_score(globals()[str(estado) + str(ciudad)+ '_smoothed']\ [train_size:test_end], globals()[str(estado) + str(ciudad)+'_predict_smoothed'][train_size:test_end]) globals()[str(estado) + str(ciudad)+'_real_vs_pred_smoothed']=globals()[str(estado) + str(ciudad)+'_predict_smoothed'].copy() globals()[str(estado) + str(ciudad)+'_real_vs_pred_smoothed']['reales']=globals()[str(estado) + str(ciudad)+ '_smoothed'] globals()[str(estado) + str(ciudad)+'_real_vs_pred_smoothed']=globals()[str(estado) + str(ciudad)+'_real_vs_pred_smoothed'].rename(columns={0:'predicción'}) globals()[str(estado) + str(ciudad)+'_real_vs_pred_smoothed'].plot(figsize=(17,10), linewidth=1.5, style=['-r', '.-k'], fontsize=15) plt.legend(fontsize='x-large') plt.title('{} en {} por día (curva suavizada)'.format(str(estado)[:-1].capitalize(), Ciudades_dicc[str(ciudad)]), fontsize=20) plt.xlabel('Month', fontsize=20) max_=(globals()[str(estado) + str(ciudad)+'_real_vs_pred_smoothed'].max()).max() plt.vlines(globals()['Fechas_pred_i'][train_size],0, max_, colors='b', linestyles ='dashdot' ) plt.figtext(0.14,0.7,' MSLE train: {} \n MSLE test: {} \n R2 train: {} \n R2 test: {}'.\ format(round(globals()[str(estado) + str(ciudad)+'_MSLE_train_smoothed'],4),\ round(globals()[str(estado) + str(ciudad)+'_MSLE_test_smoothed'],4),\ round(globals()[str(estado) + str(ciudad)+'_r2_train_smoothed'],4),\ round(globals()[str(estado) + str(ciudad)+'_r2_test_smoothed'],4)), fontsize=13, color='k', \ bbox={'facecolor': 'blue', 'alpha': 0.25, 'pad': 1}) plt.grid() plt.savefig("images/images/im/MLP"+ str(estado) + str(ciudad) + "_suavizada.png") plt.close() # Saca las gráficas de los casos confirmados y casos activos para cada ciudad. def variables_derivadas(): redes_neuronales_suavizadas() for ciudad in Ciudades: globals()['confirmados_'+ str(ciudad)+'_real_vs_pred_smoothed']=globals()['nuevos_'+ str(ciudad)+'_real_vs_pred_smoothed'].cumsum() globals()['confirmados_'+ str(ciudad)+'_real_vs_pred_smoothed'].plot(figsize=(17,10), linewidth=1.5, style=['-r', '.-k'], fontsize=15) plt.legend(fontsize='x-large') plt.title('Casos confirmados en {} (curva suavizada)'.format(Ciudades_dicc[str(ciudad)]), fontsize=20) plt.xlabel('Month', fontsize=20) max_=(globals()['confirmados_'+ str(ciudad)+'_real_vs_pred_smoothed'].max()).max() plt.vlines(globals()['Fechas_pred_i'][train_size],0, max_, colors='b', linestyles ='dashdot' ) plt.grid() plt.savefig("images/images/im/MLP_confirmados" + str(ciudad) + "_suavizada.png") plt.close() globals()['activos_'+ str(ciudad)+'_real_vs_pred_smoothed']=(globals()['nuevos_'+ str(ciudad)+'_real_vs_pred_smoothed']- \ globals()['recuperados_'+ str(ciudad)+'_real_vs_pred_smoothed']-globals()['muertes_'+ str(ciudad)+'_real_vs_pred_smoothed']).cumsum() globals()['activos_'+ str(ciudad)+'_real_vs_pred_smoothed'][globals()['activos_'+ str(ciudad)+'_real_vs_pred_smoothed']<0]=0 globals()['activos_'+ str(ciudad)+'_real_vs_pred_smoothed'].plot(figsize=(17,10), linewidth=1.5, style=['-r', '.-k'], fontsize=15) plt.legend(fontsize='x-large') plt.title('Casos activos en {} (curva suavizada)'.format(Ciudades_dicc[str(ciudad)]), fontsize=20) plt.xlabel('Month', fontsize=20) max_=(globals()['activos_'+ str(ciudad)+'_real_vs_pred_smoothed'].max()).max() plt.vlines(globals()['Fechas_pred_i'][train_size],0, max_, colors='b', linestyles ='dashdot' ) plt.grid() plt.savefig("images/images/MLP_activos" + str(ciudad) + "_suavizada.png") plt.close() # La función se encarga de hacer el pronóstico a largo plazo usando el modelo SIR y con # base en funciones optimizadoras def casos(): for ciudad in Ciudades: globals()['N'+str(ciudad)] = popu(ciudad) globals()['real_'+str(ciudad)] = [i for i in globals()["activos_" + str(ciudad)]['Casos_activos_']] globals()['poly_pred_'+str(ciudad)] = savgol_filter(globals()['real_'+str(ciudad)], 51,3) # window size 51, polynomial order 1 globals()['df_pred_'+str(ciudad)] = pd.DataFrame(globals()['poly_pred_'+str(ciudad)]) globals()['df_real_'+str(ciudad)] = pd.DataFrame(globals()['real_'+str(ciudad)]) #Casos confirmados por día desde el caso 0 # return N,df_poly,df_vec_real,poly,vec_real_140,ciudad # plt.figure(figsize=(12,6)) # plt.plot(globals()['poly_pred_'+str(ciudad)]) # plt.plot(globals()['real_'+str(ciudad)]) # plt.legend(["Predicción","Real"], loc='upper left') # plt.title("Infecciones por COVID-19 desde el primer caso"+" "+ str(Ciudades_dicc.get(ciudad)), size=15) # plt.xlabel("Days", size=13) # plt.ylabel("Infecciones", size=13) # plt.ylim(0, max(globals()['real_'+str(ciudad)])+1000) # plt.show() N = globals()['N'+str(ciudad)] depart_df = pd.DataFrame() depart_df['ConfirmedCases'] = globals()['real_'+str(ciudad)] depart_df = depart_df[10:] depart_df['day_count'] = list(range(1,len(depart_df)+1)) ydata = [i for i in depart_df.ConfirmedCases] xdata = depart_df.day_count ydata = np.array(ydata, dtype=float) xdata = np.array(xdata, dtype=float) inf0 = ydata[0] sus0 = N - inf0 rec0 = 0.0 def sir_model(y, x, beta, gamma): sus = -beta * y[0] * y[1] / N rec = gamma * y[1] inf = -(sus + rec) return sus, inf, rec def fit_odeint(x, beta, gamma): return integrate.odeint(sir_model, (sus0, inf0, rec0), x, args=(beta, gamma))[:,1] if ciudad == 'Bogg': popt = np.array([0.2783922953043075, 0.2165019796859231]) else: popt, pcov = optimize.curve_fit(fit_odeint, xdata, ydata, maxfev=5000) xdata2=range(len(globals()['Fechas_SIR'])) xdata2 = np.array(xdata2, dtype=float) fitted = fit_odeint(xdata2, *popt) globals()['SIR_activos'+str(ciudad)]=pd.DataFrame(fitted, index=globals()['Fechas_SIR']) globals()['SIR_activos'+str(ciudad)]['reales']=globals()["activos_" + str(ciudad)]['Casos_activos_'] globals()['SIR_activos'+str(ciudad)]=globals()['SIR_activos'+str(ciudad)].rename(columns={0:'predicción', 'Casos_activos_':'reales'}) globals()['SIR_activos'+str(ciudad)].plot(figsize=(17,10), linewidth=1.5, style=['-r', '.-k'], fontsize=15) plt.legend(fontsize='x-large') plt.title("Modelo SIR, Casos activos en "+ str(Ciudades_dicc.get(ciudad)), fontsize=20) plt.xlabel('Month', fontsize=20) plt.grid() print("Optimal parameters: beta =", popt[0], " and gamma = ", popt[1]) plt.savefig("images/SIR_activos" + str(ciudad) + ".png") plt.close() # Se encarga de unir los modelos de corto y largo plazo asignando pesos de acuerdo # con la degradación evidenciada de estos def Unir_modelos(): variables_derivadas() casos() for ciudad in Ciudades: globals()['Union_activos_'+str(ciudad)]=globals()['SIR_activos'+str(ciudad)].copy() globals()['Union_activos_'+str(ciudad)]['corto_plazo']=globals()['activos_'+ str(ciudad)+'_real_vs_pred_smoothed']['predicción'] globals()['Union_activos_'+str(ciudad)]['pred']=np.where(globals()['Union_activos_'+str(ciudad)].index<pd.to_datetime('09/08/2020'),100,0) globals()['Union_activos_'+str(ciudad)]['pred'] = np.where((globals()['Union_activos_'+str(ciudad)].index >=
pd.to_datetime('09/08/2020')
pandas.to_datetime
#!/usr/bin/env python # # run phmmer against comma separated list of Uniprot IDs. # produce csv of pairwise match alignment. # # # import argparse import os import sys import logging import traceback import pandas as pd gitpath=os.path.expanduser("~/git/cshlwork") sys.path.append(gitpath) from protlib import uniprot from protlib import phmmer def indexbypacc(lod): logging.debug(f"indexing uniprot list of dicts len: {len(lod)}") upbypacc = {} for p in lod: pacc = p['proteinacc'] #if pacc == "A0A0J9YTW6": # logging.debug("Indexing later missing pacc! A0A0R4J0X7") seq = p['sequence'] upbypacc[pacc] = p logging.debug(f"produced indexed dict len: {len(upbypacc)}") return upbypacc def parse_pairfile(filename): f = open(filename) lines = f.readlines() dupelist = [] lnum = 0 knum = 0 for line in lines: (p1, p2) = line.split(',') p1 = p1.strip() p2 = p2.strip() if p2 != "NA": dupelist.append( (p1, p2) ) else: knum += 1 #logging.debug("skipping NA target. ") lnum += 1 logging.debug(f" processed {lnum} lines. skipped {knum} NAs. produced {len(dupelist)} items in dupelist[0] = {dupelist[0]}") #logging.debug(f"dupelist: {dupelist}") return dupelist def add_altcodes(upbypacc, infile): ''' upbypacc { <pacc> : { 'proteinacc' : <pacc>, 'sequence' : <seq> } , , , } altcodes: cat <uniprot>.dat | grep "^AC" > <altcodes>.txt AC Q9CQV8; O70455; Q3TY33; Q3UAN6; AC P35213; AC P62259; P29360; P42655; Q63631; ''' logging.debug(f"len upbypacc before: {len(upbypacc)}") nadded = 0 nmissing = 0 try: f = open(infile) lines = f.readlines() for line in lines: # remove leading AC fields = line.split()[1:] #logging.debug(f"fields: {fields}") if len(fields) > 1: #logging.debug("more than one field.") ecode = fields[0].replace(';','') try: entry = upbypacc[ecode] for alt in fields[1:]: alt = alt.replace(';','') upbypacc[alt] = entry #logging.debug(f"added alt {alt} for entry code {ecode}") nadded += 1 except KeyError: #logging.warn(f"entry {ecode} not found in upbypacc.") nmissing += 1 except IOError: logging.error(f"could not read file {infile}") traceback.print_exc(file=sys.stdout) finally: f.close() logging.debug(f"len ubypacc after: {len(upbypacc)} {nadded} alts added. {nmissing} missing.") def parse_filebase(filepath): ''' gives back filepath minus the last dot extension, or the same filepath if there is not extension. ''' return os.path.splitext(filepath)[0] def run_phmmer(pairlist, uniprot_fasta, uniprot_altcodes, pairtfa, targettfa): config = get_default_config() up = parse_uniprot_fasta(uniprot_fasta) logging.debug(f"up len: {len(up)}") upbypacc = indexbypacc(up) add_altcodes(upbypacc, uniprot_altcodes) logging.debug(f"upbypacc len: {len(upbypacc)}") write_sequences( pairlist, upbypacc, pairtfa, targettfa ) outfile, exclude_list, cidgidmap = execute_phmmer(config, pairtfa, version='current') logging.info(f"wrote phmmer output to {outfile}") df = get_phmmer_df(config, pairtfa) logging.debug(f"df: {df}") return df def get_match(query, target, df): logging.debug(f"query={query} target={target}") qdf = df[df['query'] == query] row = qdf[qdf['target'] == target] if len(row) > 1 : logging.warning(f'multiple matches for query={query} target={target} ') return None elif len(row) == 1: r = row.iloc[0] eval = r['eval'] score =r['score'] bias = r['bias'] return (eval, score, bias) else: logging.warning(f'no matches for query={query} target={target} ') return None def make_evaltable(pdf, pairlist, evalfile ): #config = get_default_config() #pdf = pd.read_csv(phmmerdf, index_col=0) pdf.drop_duplicates(inplace=True,ignore_index=True) #dupelist = parse_dupepairs() lod = [] for tup in pairlist: (p1, p2) = tup logging.debug(f"looking for {p1} -> {p2}") rv = get_match(p1, p2, pdf) if rv is not None: (eval, score, bias ) = rv lod.append( { 'query' : p1, 'target' : p2, 'eval' : eval, 'score' : score, 'bias' : bias, } ) logging.debug(f"dupelist length: {len(pairlist)}") logging.debug(f"matchlist length: {len(lod)}") edf =
pd.DataFrame(lod)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import timedelta from numpy import nan import numpy as np import pandas as pd from pandas import (Series, isnull, date_range, MultiIndex, Index) from pandas.tseries.index import Timestamp from pandas.compat import range from pandas.util.testing import assert_series_equal import pandas.util.testing as tm from .common import TestData def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') def _skip_if_no_akima(): try: from scipy.interpolate import Akima1DInterpolator # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.Akima1DInterpolator missing') class TestSeriesMissingData(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_timedelta_fillna(self): # GH 3371 s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) td = s.diff() # reg fillna result = td.fillna(0) expected = Series([timedelta(0), timedelta(0), timedelta(1), timedelta( days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) # interprested as seconds result = td.fillna(1) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(timedelta(days=1, seconds=1)) expected = Series([timedelta(days=1, seconds=1), timedelta( 0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(np.timedelta64(int(1e9))) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) from pandas import tslib result = td.fillna(tslib.NaT) expected = Series([tslib.NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)], dtype='m8[ns]') assert_series_equal(result, expected) # ffill td[2] = np.nan result = td.ffill() expected = td.fillna(0) expected[0] = np.nan assert_series_equal(result, expected) # bfill td[2] = np.nan result = td.bfill() expected = td.fillna(0) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) assert_series_equal(result, expected) def test_datetime64_fillna(self): s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) s[2] = np.nan # reg fillna result = s.fillna(Timestamp('20130104')) expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) from pandas import tslib result = s.fillna(tslib.NaT) expected = s assert_series_equal(result, expected) # ffill result = s.ffill() expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) # bfill result = s.bfill() expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01'), Timestamp( '20130103 9:01:01')]) assert_series_equal(result, expected) # GH 6587 # make sure that we are treating as integer when filling # this also tests inference of a datetime-like with NaT's s = Series([pd.NaT, pd.NaT, '2013-08-05 15:30:00.000001']) expected = Series( ['2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001'], dtype='M8[ns]') result = s.fillna(method='backfill') assert_series_equal(result, expected) def test_datetime64_tz_fillna(self): for tz in ['US/Eastern', 'Asia/Tokyo']: # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp( '2011-01-03 10:00'), pd.NaT]) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-02 10:00', tz=tz)]) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00'), 'AAA', Timestamp('2011-01-03 10:00'), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00'), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-04 10:00')]) self.assert_series_equal(expected, result) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz=tz) s = pd.Series(idx) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp( '2011-01-02 10:00', tz=tz).to_pydatetime()) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00', tz=tz), 'AAA', Timestamp('2011-01-03 10:00', tz=tz), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp( '2011-01-03 10:00', tz=tz), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00', tz=tz)}) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp( '2011-01-03 10:00', tz=tz), Timestamp('2011-01-04 10:00', tz=tz)]) self.assert_series_equal(expected, result) # filling with a naive/other zone, coerce to object result = s.fillna(Timestamp('20130101')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2013-01-01'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp( '2013-01-01')]) self.assert_series_equal(expected, result) result = s.fillna(Timestamp('20130101', tz='US/Pacific')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp('2013-01-01', tz='US/Pacific'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2013-01-01', tz='US/Pacific')]) self.assert_series_equal(expected, result) def test_fillna_int(self): s = Series(np.random.randint(-100, 100, 50)) s.fillna(method='ffill', inplace=True) assert_series_equal(s.fillna(method='ffill', inplace=False), s) def test_fillna_raise(self): s = Series(np.random.randint(-100, 100, 50)) self.assertRaises(TypeError, s.fillna, [1, 2]) self.assertRaises(TypeError, s.fillna, (1, 2)) def test_isnull_for_inf(self): s = Series(['a', np.inf, np.nan, 1.0]) with pd.option_context('mode.use_inf_as_null', True): r = s.isnull() dr = s.dropna() e = Series([False, True, True, False]) de = Series(['a', 1.0], index=[0, 3]) tm.assert_series_equal(r, e) tm.assert_series_equal(dr, de) def test_fillna(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) self.assert_series_equal(ts, ts.fillna(method='ffill')) ts[2] = np.NaN exp = Series([0., 1., 1., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(method='ffill'), exp) exp = Series([0., 1., 3., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(method='backfill'), exp) exp = Series([0., 1., 5., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(value=5), exp) self.assertRaises(ValueError, ts.fillna) self.assertRaises(ValueError, self.ts.fillna, value=0, method='ffill') # GH 5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.]) assert_series_equal(result, expected) result = s1.fillna({}) assert_series_equal(result, s1) result = s1.fillna(Series(())) assert_series_equal(result, s1) result = s2.fillna(s1) assert_series_equal(result, s2) result = s1.fillna({0: 1}) assert_series_equal(result, expected) result = s1.fillna({1: 1}) assert_series_equal(result, Series([np.nan])) result = s1.fillna({0: 1, 1: 1}) assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1})) assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) assert_series_equal(result, s1) s1 = Series([0, 1, 2], list('abc')) s2 = Series([0, np.nan, 2], list('bac')) result = s2.fillna(s1) expected = Series([0, 0, 2.], list('bac')) assert_series_equal(result, expected) # limit s = Series(np.nan, index=[0, 1, 2]) result = s.fillna(999, limit=1) expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) assert_series_equal(result, expected) result = s.fillna(999, limit=2) expected = Series([999, 999, np.nan], index=[0, 1, 2]) assert_series_equal(result, expected) # GH 9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ['0', '1.5', '-0.3'] for val in vals: s = Series([0, 1, np.nan, np.nan, 4], dtype='float64') result = s.fillna(val) expected = Series([0, 1, val, val, 4], dtype='object') assert_series_equal(result, expected) def test_fillna_bug(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) filled = x.fillna(method='ffill') expected = Series([nan, 1., 1., 3., 3.], x.index) assert_series_equal(filled, expected) filled = x.fillna(method='bfill') expected = Series([1., 1., 3., 3., nan], x.index) assert_series_equal(filled, expected) def test_fillna_inplace(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) y = x.copy() y.fillna(value=0, inplace=True) expected = x.fillna(value=0) assert_series_equal(y, expected) def test_fillna_invalid_method(self): try: self.ts.fillna(method='ffil') except ValueError as inst: self.assertIn('ffil', str(inst)) def test_ffill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.ffill(), ts.fillna(method='ffill')) def test_bfill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.bfill(), ts.fillna(method='bfill')) def test_timedelta64_nan(self): from pandas import tslib td = Series([timedelta(days=i) for i in range(10)]) # nan ops on timedeltas td1 = td.copy() td1[0] = np.nan self.assertTrue(isnull(td1[0])) self.assertEqual(td1[0].value, tslib.iNaT) td1[0] = td[0] self.assertFalse(isnull(td1[0])) td1[1] = tslib.iNaT self.assertTrue(isnull(td1[1])) self.assertEqual(td1[1].value, tslib.iNaT) td1[1] = td[1] self.assertFalse(isnull(td1[1])) td1[2] = tslib.NaT self.assertTrue(isnull(td1[2])) self.assertEqual(td1[2].value, tslib.iNaT) td1[2] = td[2] self.assertFalse(isnull(td1[2])) # boolean setting # this doesn't work, not sure numpy even supports it # result = td[(td>np.timedelta64(timedelta(days=3))) & # td<np.timedelta64(timedelta(days=7)))] = np.nan # self.assertEqual(isnull(result).sum(), 7) # NumPy limitiation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= self.ts <= 0.5 # expected = (self.ts >= -0.5) & (self.ts <= 0.5) # assert_series_equal(selector, expected) def test_dropna_empty(self): s = Series([]) self.assertEqual(len(s.dropna()), 0) s.dropna(inplace=True) self.assertEqual(len(s), 0) # invalid axis self.assertRaises(ValueError, s.dropna, axis=1) def test_datetime64_tz_dropna(self): # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp( '2011-01-03 10:00'), pd.NaT]) result = s.dropna() expected = Series([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-03 10:00')], index=[0, 2]) self.assert_series_equal(result, expected) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz='Asia/Tokyo') s = pd.Series(idx) self.assertEqual(s.dtype, 'datetime64[ns, Asia/Tokyo]') result = s.dropna() expected = Series([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-03 10:00', tz='Asia/Tokyo')], index=[0, 2]) self.assertEqual(result.dtype, 'datetime64[ns, Asia/Tokyo]') self.assert_series_equal(result, expected) def test_dropna_no_nan(self): for s in [Series([1, 2, 3], name='x'), Series( [False, True, False], name='x')]: result = s.dropna() self.assert_series_equal(result, s) self.assertFalse(result is s) s2 = s.copy() s2.dropna(inplace=True) self.assert_series_equal(s2, s) def test_valid(self): ts = self.ts.copy() ts[::2] = np.NaN result = ts.valid() self.assertEqual(len(result), ts.count()) tm.assert_series_equal(result, ts[1::2]) tm.assert_series_equal(result, ts[pd.notnull(ts)]) def test_isnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal(ser.isnull(), Series([False, False, False, True, False]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.isnull(), Series([False, False, True]).values) def test_notnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal(ser.notnull(), Series([True, True, True, False, True]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.notnull(), Series([True, True, False]).values) def test_pad_nan(self): x = Series([np.nan, 1., np.nan, 3., np.nan], ['z', 'a', 'b', 'c', 'd'], dtype=float) x.fillna(method='pad', inplace=True) expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], ['z', 'a', 'b', 'c', 'd'], dtype=float) assert_series_equal(x[1:], expected[1:]) self.assertTrue(np.isnan(x[0]), np.isnan(expected[0])) def test_dropna_preserve_name(self): self.ts[:5] = np.nan result = self.ts.dropna() self.assertEqual(result.name, self.ts.name) name = self.ts.name ts = self.ts.copy() ts.dropna(inplace=True) self.assertEqual(ts.name, name) def test_fill_value_when_combine_const(self): # GH12723 s = Series([0, 1, np.nan, 3, 4, 5]) exp = s.fillna(0).add(2) res = s.add(2, fill_value=0)
assert_series_equal(res, exp)
pandas.util.testing.assert_series_equal
from itertools import product import numpy as np import pandas as pd import pytest from cudf.core.dataframe import DataFrame, Series from cudf.tests.utils import INTEGER_TYPES, NUMERIC_TYPES, assert_eq, gen_rand params_sizes = [0, 1, 2, 5] def _gen_params(): for t, n in product(NUMERIC_TYPES, params_sizes): if (t == np.int8 or t == np.int16) and n > 20: # to keep data in range continue yield t, n @pytest.mark.parametrize("dtype,nelem", list(_gen_params())) def test_cumsum(dtype, nelem): if dtype == np.int8: # to keep data in range data = gen_rand(dtype, nelem, low=-2, high=2) else: data = gen_rand(dtype, nelem) decimal = 4 if dtype == np.float32 else 6 # series gs = Series(data) ps = pd.Series(data) np.testing.assert_array_almost_equal( gs.cumsum().to_array(), ps.cumsum(), decimal=decimal ) # dataframe series (named series) gdf = DataFrame() gdf["a"] = Series(data) pdf = pd.DataFrame() pdf["a"] = pd.Series(data) np.testing.assert_array_almost_equal( gdf.a.cumsum().to_array(), pdf.a.cumsum(), decimal=decimal ) def test_cumsum_masked(): data = [1, 2, None, 4, 5] float_types = ["float32", "float64"] for type_ in float_types: gs = Series(data).astype(type_) ps = pd.Series(data).astype(type_) assert_eq(gs.cumsum(), ps.cumsum()) for type_ in INTEGER_TYPES: gs = Series(data).astype(type_) got = gs.cumsum() expected = pd.Series([1, 3, np.nan, 7, 12], dtype="float64") assert_eq(got, expected) @pytest.mark.parametrize("dtype,nelem", list(_gen_params())) def test_cummin(dtype, nelem): if dtype == np.int8: # to keep data in range data = gen_rand(dtype, nelem, low=-2, high=2) else: data = gen_rand(dtype, nelem) decimal = 4 if dtype == np.float32 else 6 # series gs = Series(data) ps = pd.Series(data) np.testing.assert_array_almost_equal( gs.cummin().to_array(), ps.cummin(), decimal=decimal ) # dataframe series (named series) gdf = DataFrame() gdf["a"] = Series(data) pdf = pd.DataFrame() pdf["a"] = pd.Series(data) np.testing.assert_array_almost_equal( gdf.a.cummin().to_array(), pdf.a.cummin(), decimal=decimal ) def test_cummin_masked(): data = [1, 2, None, 4, 5] float_types = ["float32", "float64"] for type_ in float_types: gs = Series(data).astype(type_) ps = pd.Series(data).astype(type_) assert_eq(gs.cummin(), ps.cummin()) for type_ in INTEGER_TYPES: gs = Series(data).astype(type_) expected = pd.Series([1, 1, np.nan, 1, 1]).astype("float64") assert_eq(gs.cummin(), expected) @pytest.mark.parametrize("dtype,nelem", list(_gen_params())) def test_cummax(dtype, nelem): if dtype == np.int8: # to keep data in range data = gen_rand(dtype, nelem, low=-2, high=2) else: data = gen_rand(dtype, nelem) decimal = 4 if dtype == np.float32 else 6 # series gs = Series(data) ps =
pd.Series(data)
pandas.Series
import numpy as np import pandas as pd # List unique values in a DataFrame column # h/t @makmanalp for the updated syntax! df = pd.DataFrame() # TODO df['Column Name'].unique() # Convert Series datatype to numeric (will error if column has non-numeric values) # h/t @makmanalp pd.to_numeric(df['Column Name']) # Convert Series datatype to numeric, changing non-numeric values to NaN # h/t @makmanalp for the updated syntax! pd.to_numeric(df['Column Name'], errors='coerce') # Grab DataFrame rows where column has certain values valuelist = ['value1', 'value2', 'value3'] df = df[df.column.isin(valuelist)] # Grab DataFrame rows where column doesn't have certain values valuelist = ['value1', 'value2', 'value3'] df = df[~df.column.isin(valuelist)] # Delete column from DataFrame del df['column'] # Select from DataFrame using criteria from multiple columns # (use `|` instead of `&` to do an OR) newdf = df[(df['column_one']>2004) & (df['column_two']==9)] # Rename several DataFrame columns df = df.rename(columns = { 'col1 old name':'col1 new name', 'col2 old name':'col2 new name', 'col3 old name':'col3 new name', }) # Lower-case all DataFrame column names df.columns = map(str.lower, df.columns) # Even more fancy DataFrame column re-naming # lower-case all DataFrame column names (for example) df.rename(columns=lambda x: x.split('.')[-1], inplace=True) # Loop through rows in a DataFrame # (if you must) for index, row in df.iterrows(): print(index, row['some column']) # Much faster way to loop through DataFrame rows # if you can work with tuples # (h/t hughamacmullaniv) for row in df.itertuples(): print(row) # Next few examples show how to work with text data in Pandas. # Full list of .str functions: http://pandas.pydata.org/pandas-docs/stable/text.html # Slice values in a DataFrame column (aka Series) df.column.str[0:2] # Lower-case everything in a DataFrame column df.column_name = df.column_name.str.lower() # Get length of data in a DataFrame column df.column_name.str.len() # Sort dataframe by multiple columns df = df.sort(['col1','col2','col3'],ascending=[1,1,0]) # Get top n for each group of columns in a sorted dataframe # (make sure dataframe is sorted first) top5 = df.groupby(['groupingcol1', 'groupingcol2']).head(5) # Grab DataFrame rows where specific column is null/notnull newdf = df[df['column'].isnull()] # Select from DataFrame using multiple keys of a hierarchical index df.xs(('index level 1 value','index level 2 value'), level=('level 1','level 2')) # Change all NaNs to None (useful before # loading to a db) df = df.where((pd.notnull(df)), None) # More pre-db insert cleanup...make a pass through the dataframe, stripping whitespace # from strings and changing any empty values to None # (not especially recommended but including here b/c I had to do this in real life one time) df = df.applymap(lambda x: str(x).strip() if len(str(x).strip()) else None) # Get quick count of rows in a DataFrame len(df.index) # Pivot data (with flexibility about what what # becomes a column and what stays a row). # Syntax works on Pandas >= .14 pd.pivot_table( df,values='cell_value', index=['col1', 'col2', 'col3'], #these stay as columns; will fail silently if any of these cols have null values columns=['col4']) #data values in this column become their own column # Change data type of DataFrame column df.column_name = df.column_name.astype(np.int64) # Get rid of non-numeric values throughout a DataFrame: refunds = df for col in refunds.columns.values: refunds[col] = refunds[col].replace('[^0-9]+.-', '', regex=True) # Set DataFrame column values based on other column values (h/t: @mlevkov) some_value, some_other_value, new_value = 0, 99, 999 df.loc[(df['column1'] == some_value) & (df['column2'] == some_other_value), ['column_to_change']] = new_value # Clean up missing values in multiple DataFrame columns df = df.fillna({ 'col1': 'missing', 'col2': '99.999', 'col3': '999', 'col4': 'missing', 'col5': 'missing', 'col6': '99' }) # Concatenate two DataFrame columns into a new, single column # (useful when dealing with composite keys, for example) # (h/t @makmanalp for improving this one!) df['newcol'] = df['col1'].astype(str) + df['col2'].astype(str) # Doing calculations with DataFrame columns that have missing values # In example below, swap in 0 for df['col1'] cells that contain null df['new_col'] = np.where(pd.isnull(df['col1']),0,df['col1']) + df['col2'] # Split delimited values in a DataFrame column into two new columns df['new_col1'], df['new_col2'] = zip(*df['original_col'].apply(lambda x: x.split(': ', 1))) # Collapse hierarchical column indexes df.columns = df.columns.get_level_values(0) # Convert Django queryset to DataFrame DjangoModelName = None # TODO qs = DjangoModelName.objects.all() q = qs.values() df =
pd.DataFrame.from_records(q)
pandas.DataFrame.from_records
import re import unicodedata from collections import Counter from itertools import product import pickle import numpy as np import pandas as pd from sklearn.decomposition import TruncatedSVD from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import LabelEncoder import umap import pickle from src import sentence_splitter def get_umap(train, test, size=2): um = umap.UMAP(transform_seed=1, random_state=1, n_neighbors=size) um.fit(train.values) tr_em = um.transform(train.values) te_em = um.transform(test.values) return tr_em, te_em def LE(train, test): for col in train.columns: if train[col].dtypes == object: train[col].fillna("null") test[col].fillna("null") lbl = LabelEncoder() lbl.fit(list(train[col].values) + list(test[col].values)) train[col] = lbl.transform(list(train[col].values)) test[col] = lbl.transform(list(test[col].values)) # カウントエンコーディング def CE(train, test, cols, all_df): for col in cols: # all_df = pd.concat([train.drop(["y"], axis=1), test], ignore_index=True).reset_index() train[col + "_count"] = train[col].map(all_df[col].value_counts()) test[col + "_count"] = test[col].map(all_df[col].value_counts()) # ターゲットエンコーディング def TE(train, test, func, target, cols): funcs = ["max", "min", "mean", "std"] for col in cols: data_tmp = pd.DataFrame({col: train[col], "target": target}) target_dic = data_tmp.groupby(col)["target"].aggregate(func) test[col + "_TE_" + func] = test[col].map(target_dic) tmp = np.repeat(np.nan, train.shape[0]) # 学習データを分割 kf = StratifiedKFold(n_splits=5, shuffle=True, random_state=22) for idx_1, idx_2 in kf.split(train, train[col]): target_dic = data_tmp.iloc[idx_1].groupby(col)["target"].aggregate(func) tmp[idx_2] = train[col].iloc[idx_2].map(target_dic) train[col + "_TE_" + func] = tmp def group(train, test, col, target, all_df): mean_map = all_df.groupby(col)[target].mean() train["group_" + col + "_mean_" + target] = train[col].map(mean_map) test["group_" + col + "_mean_" + target] = test[col].map(mean_map) std_map = all_df.groupby(col)[target].std() train["group_" + col + "_std_" + target] = train[col].map(std_map) test["group_" + col + "_std_" + target] = test[col].map(std_map) sum_map = all_df.groupby(col)[target].sum() train["group_" + col + "_sum_" + target] = train[col].map(sum_map) test["group_" + col + "_sum_" + target] = test[col].map(sum_map) min_map = all_df.groupby(col)[target].min() train["group_" + col + "_min_" + target] = train[col].map(min_map) test["group_" + col + "_min_" + target] = test[col].map(min_map) max_map = all_df.groupby(col)[target].max() train["group_" + col + "_max_" + target] = train[col].map(max_map) test["group_" + col + "_max_" + target] = test[col].map(max_map) train["group_" + col + "_range_" + target] = \ train["group_" + col + "_max_" + target] - train["group_" + col + "_min_" + target] test["group_" + col + "_range_" + target] = \ test["group_" + col + "_max_" + target] - test["group_" + col + "_min_" + target] def calculate(df: pd.DataFrame): df["eval_count"] = df.likes + df.dislikes df["likes_ratio"] = df.likes / df.eval_count df["likes_ratio"].fillna(-1) df["dislikes_ratio"] = df.dislikes / df.eval_count df["dislikes_ratio"].fillna(-1) df["score"] = df["comment_count"] * df["eval_count"] df["score_2"] = df["comment_count"] / df["eval_count"] df["title_div_description"] = df["title_len"] / df["description_len"] df["title_mul_description"] = df["title_len"] * df["description_len"] def is_japanese(string): count = 0 for ch in str(string): try: name = unicodedata.name(ch) except: continue if "CJK UNIFIED" in name \ or "HIRAGANA" in name \ or "KATAKANA" in name: count += 1 return count def count_alphabet(string): r = re.compile(r"[a-z|A-Z]+") return len("".join(r.findall(str(string)))) def count_number(string): r = re.compile(r"[0-9]+") return len("".join(r.findall(str(string)))) def change_to_Date(train, test, input_column_name, output_column_name): train[output_column_name] = train[input_column_name].map(lambda x: x.split('.')) test[output_column_name] = test[input_column_name].map(lambda x: x.split('.')) train[output_column_name] = train[output_column_name].map( lambda x: '20' + x[0] + '-' + x[2] + '-' + x[1] + 'T00:00:00.000Z') test[output_column_name] = test[output_column_name].map( lambda x: '20' + x[0] + '-' + x[2] + '-' + x[1] + 'T00:00:00.000Z') def tag_counter(train, test, n=500, pca_size=None, drop=False, create=True): cols = [f"tags_{i}" for i in range(n)] if create: # tagのカウント tags = [] for tag in train["tags"]: tags.extend(str(tag).split("|")) tmp = Counter(tags) tmp = sorted(tmp.items(), key=lambda x: x[1], reverse=True)[:n] for i, item in enumerate(tmp): train[f"tags_{i}"] = train["tags"].apply(lambda x: 1 if item[0] in str(x).split("|") else 0) test[f"tags_{i}"] = test["tags"].apply(lambda x: 1 if item[0] in str(x).split("|") else 0) train[cols].to_csv("./data/input/train_tags.csv", index=False) test[cols].to_csv("./data/input/test_tags.csv", index=False) else: train_tags = pd.read_csv("./data/input/train_tags.csv") test_tags = pd.read_csv("./data/input/test_tags.csv") train = pd.concat([train, train_tags[cols]], axis=1) test = pd.concat([test, test_tags[cols]], axis=1) if pca_size: # pca = TruncatedSVD(n_components=pca_size, random_state=2) # pca.fit(train[cols]) # train_pca = pca.transform(train[cols]) # test_pca = pca.transform(test[cols]) train_pca, test_pca = get_umap(train[cols], test[cols], size=pca_size) pca_cols = [f"tangs_pca_{i}" for i in range(pca_size)] train = pd.concat([train, pd.DataFrame(train_pca, columns=pca_cols)], axis=1) test = pd.concat([test, pd.DataFrame(test_pca, columns=pca_cols)], axis=1) if drop: train = train.drop(cols, axis=1) test = test.drop(cols, axis=1) return train, test def title_counter(train, test, n=100, pca_size=None, drop=False, create=True): train["title_words"] = train.title.apply(lambda x: sentence_splitter.splitter(str(x))) test["title_words"] = test.title.apply(lambda x: sentence_splitter.splitter(str(x))) cols = [f"title_word_{i}" for i in range(n)] if create: # titleの単語のカウント word_list = [] for words in train["title_words"]: word_list.extend(words) tmp = Counter(word_list) tmp = sorted(tmp.items(), key=lambda x: x[1], reverse=True)[:n] for i, item in enumerate(tmp): train[f"title_word_{i}"] = train["title_words"].apply(lambda x: x.count(item[0])) test[f"title_word_{i}"] = test["title_words"].apply(lambda x: x.count(item[0])) train[cols].to_csv("./data/input/train_title_words.csv", index=False) test[cols].to_csv("./data/input/test_title_words.csv", index=False) else: train_tags = pd.read_csv("./data/input/train_title_words.csv") test_tags = pd.read_csv("./data/input/test_title_words.csv") train = pd.concat([train, train_tags[cols]], axis=1) test = pd.concat([test, test_tags[cols]], axis=1) if pca_size: # pca = TruncatedSVD(n_components=pca_size, random_state=2) # pca.fit(train[cols]) # train_pca = pca.transform(train[cols]) # test_pca = pca.transform(test[cols]) train_pca, test_pca = get_umap(train[cols], test[cols], size=pca_size) pca_cols = [f"title_pca_{i}" for i in range(pca_size)] train = pd.concat([train, pd.DataFrame(train_pca, columns=pca_cols)], axis=1) test = pd.concat([test, pd.DataFrame(test_pca, columns=pca_cols)], axis=1) if drop: train = train.drop(cols, axis=1) test = test.drop(cols, axis=1) train = train.drop(["title_words"], axis=1) test = test.drop(["title_words"], axis=1) return train, test def count_tag_in_title(tags, title): tag_list = str(tags).split("|") count = 0 for tag in tag_list: if tag in str(title): count += 1 return count def category_unstack(train, test, all_df, group, category, normalize=True, pca_size=2): use_columns = set(train[category].unique()) & set(test[category].unique()) unstack_df = all_df.groupby(group)[category].value_counts(normalize=normalize).unstack().fillna(0) for col in use_columns: train[f"{category}_{col}_ratio_in_{group}_group"] = train[group].map(unstack_df[col]) test[f"{category}_{col}_ratio_in_{group}_group"] = test[group].map(unstack_df[col]) cols = [f"{category}_{col}_ratio_in_{group}_group" for col in use_columns] pca_cols = [f"{category}_pca_{i}_in_{group}_group" for i in range(pca_size)] pca = TruncatedSVD(n_components=pca_size, random_state=2) pca.fit(train[cols]) train_pca = pca.transform(train[cols]) test_pca = pca.transform(test[cols]) train = pd.concat([train, pd.DataFrame(train_pca, columns=pca_cols)], axis=1) test = pd.concat([test, pd.DataFrame(test_pca, columns=pca_cols)], axis=1) return train, test def make_dataset(complement=True): train = pd.read_csv("./data/input/train_data.csv") test = pd.read_csv("./data/input/test_data.csv") if complement: complement_likes = pd.read_csv("./data/input/complement_likes.csv") complement_dislikes = pd.read_csv("./data/input/complement_dislikes.csv") complement_comment = pd.read_csv("./data/input/complement_comment.csv") likes_dict = dict(zip(complement_likes.video_id, complement_likes.y)) dislikes_dict = dict(zip(complement_dislikes.video_id, complement_dislikes.y)) comment_dict = dict(zip(complement_comment.video_id, complement_comment.y)) train["likes"] = train.apply( lambda x: likes_dict[x["video_id"]] if x["video_id"] in likes_dict.keys() else x["likes"], axis=1) train["dislikes"] = train.apply( lambda x: dislikes_dict[x["video_id"]] if x["video_id"] in dislikes_dict.keys() else x["dislikes"], axis=1) train["comment_count"] = train.apply( lambda x: comment_dict[x["video_id"]] if x["video_id"] in comment_dict.keys() else x["comment_count"], axis=1) test["likes"] = test.apply( lambda x: likes_dict[x["video_id"]] if x["video_id"] in likes_dict.keys() else x["likes"], axis=1) test["dislikes"] = test.apply( lambda x: dislikes_dict[x["video_id"]] if x["video_id"] in dislikes_dict.keys() else x["dislikes"], axis=1) test["comment_count"] = test.apply( lambda x: comment_dict[x["video_id"]] if x["video_id"] in comment_dict.keys() else x["comment_count"], axis=1) # サムネイルの色の平均 # train_thumbnail = pd.read_csv("./data/input/train_thumbnail.csv") # test_thumbnail = pd.read_csv("./data/input/test_thumbnail.csv") # train = train.merge(train_thumbnail, on="video_id") # test = test.merge(test_thumbnail, on="video_id") # サムネイル特徴量 # train_image_features = pd.read_csv("./data/input/train_image_features.csv") # test_image_features = pd.read_csv("./data/input/test_image_features.csv") # train_umap, test_umap = get_umap(train_image_features, test_image_features, size=2) # pca_cols = [f"image_features_umap_{i}" for i in range(2)] # train = pd.concat([train, pd.DataFrame(train_umap, columns=pca_cols)], axis=1) # test = pd.concat([test, pd.DataFrame(test_umap, columns=pca_cols)], axis=1) train.likes = train.likes.apply(np.log1p) test.likes = test.likes.apply(np.log1p) train.dislikes = train.dislikes.apply(np.log1p) test.dislikes = test.dislikes.apply(np.log1p) train.comment_count = train.comment_count.apply(np.log1p) test.comment_count = test.comment_count.apply(np.log1p) train["title_len"] = train.title.apply(lambda x: len(str(x))) test["title_len"] = test.title.apply(lambda x: len(str(x))) train["channelTitle_len"] = train.channelTitle.apply(lambda x: len(str(x))) test["channelTitle_len"] = test.channelTitle.apply(lambda x: len(str(x))) train["description_len"] = train.description.apply(lambda x: len(str(x))) test["description_len"] = test.description.apply(lambda x: len(str(x))) train["tags_count"] = train.tags.apply(lambda x: str(x).count("|")) test["tags_count"] = test.tags.apply(lambda x: str(x).count("|")) # 時間系 train["year"] = pd.to_datetime(train.publishedAt).apply(lambda x: x.year) test["year"] = pd.to_datetime(test.publishedAt).apply(lambda x: x.year) train["month"] = pd.to_datetime(train.publishedAt).apply(lambda x: x.month) test["month"] = pd.to_datetime(test.publishedAt).apply(lambda x: x.month) train["hour"] = pd.to_datetime(train.publishedAt).apply(lambda x: x.hour) test["hour"] = pd.to_datetime(test.publishedAt).apply(lambda x: x.hour) change_to_Date(train, test, "collection_date", "collectionAt") train["period"] = (
pd.to_datetime(train.collectionAt)
pandas.to_datetime
import requests, time from tqdm import tqdm import pandas as pd import numpy as np import spotipy import re import yaml import logging from spotipy import oauth2 from spotipy import SpotifyException cid = secret = lfkey = logPath = None # vars for config.yaml logger = None # global logger class lfmxtractplus: def __init__(self,cfgPath): self.load_cfg(cfgPath) self.init_logger() self.authenticate() def load_cfg(self, yaml_filepath): """ Load config vars from yaml :param yaml_filepath: path to config.yaml """ global cid, secret, lfkey, logPath with open(yaml_filepath, 'r') as stream: config = yaml.safe_load(stream) cid = config['sp_cid'] secret = config['sp_secret'] lfkey = config['lf_key'] logPath = config['log_path'] def init_logger(self): ''' Initialize logger globally ''' global logPath, logger logger = logging.getLogger() logger.setLevel(logging.DEBUG) handler = logging.FileHandler(logPath, 'w', 'utf-8') formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) def get_spotify_token(self): ''' Get OAuth token from spotify. :return token_info dict :return sp_oauth object ''' sp_oauth = oauth2.SpotifyOAuth(client_id=cid, client_secret=secret, redirect_uri='https://example.com/callback/') token_info = sp_oauth.get_cached_token() if not token_info: auth_url = sp_oauth.get_authorize_url() print(auth_url) response = input('Paste the above link into your browser, then paste the redirect url here: ') code = sp_oauth.parse_response_code(response) token_info = sp_oauth.get_access_token(code) return token_info, sp_oauth def token_refresh(self,token_info, sp_oauth): ''' Used to refresh OAuth token if token expired :param token_info dict :param sp_oauth object ''' global sp if sp_oauth._is_token_expired(token_info): token_info_ref = sp_oauth.refresh_access_token(token_info['refresh_token']) token_ref = token_info_ref['access_token'] sp = spotipy.Spotify(auth=token_ref) logger.info("________token refreshed________") def authenticate(self): ''' authenticate with spotify ''' global token_info, sp, sp_oauth token_info, sp_oauth = self.get_spotify_token() # authenticate with spotify sp = spotipy.Spotify(auth=token_info['access_token']) # create spotify object globally def clean_query(self,q): ''' optimizes queries for spotify for better chance of mapping spotifyID :param q: query string :return: optimized query string ''' def collapse_brackets(text, brackets="()[]"): count = [0] * (len(brackets) // 2) # count open/close brackets saved_chars = [] for character in text: for i, b in enumerate(brackets): if character == b: # found bracket kind, is_close = divmod(i, 2) count[kind] += (-1) ** is_close # `+1`: open, `-1`: close if count[kind] < 0: # unbalanced bracket count[kind] = 0 # keep it else: # found bracket to remove break else: # character is not a [balanced] bracket if not any(count): # outside brackets saved_chars.append(character) return ''.join(saved_chars) s = collapse_brackets(q) s = re.sub("'", '', s) return s #thanks to <NAME> : https://github.com/gboeing/data-visualization/blob/master/lastfm-listening-history/lastfm_downloader.ipynb def get_scrobbles(self,username, method='recenttracks', timezone='Asia/Kolkata', limit=200, page=1, pages=0): ''' Retrieves scrobbles from lastfm for a user :param method: api method :param username: last.fm username for retrieval :param timezone: timezone of the user (must correspond with the timezone in user's settings) :param limit: api lets you retrieve up to 200 records per call :param page: page of results to start retrieving at :param pages: how many pages of results to retrieve. if 0, get as many as api can return. :return dataframe with lastfm scrobbles ''' # initialize url and lists to contain response fields print("\nFetching data from last.fm for user " + username) url = 'https://ws.audioscrobbler.com/2.0/?method=user.get{}&user={}&api_key={}&limit={}&page={}&format=json' responses = [] artist_names = [] artist_mbids = [] album_names = [] album_mbids = [] track_names = [] track_mbids = [] timestamps = [] # read from loadCFG() key = lfkey # make first request, just to get the total number of pages request_url = url.format(method, username, key, limit, page) response = requests.get(request_url).json() # error handling if 'error' in response: print("Error code : " + str(response['error'])) logging.critical("Error code : " + str(response['error'])) print("Error message : " + response['message']) logging.critical("Error message : " + response['message']) return None total_pages = int(response[method]['@attr']['totalPages']) total_scrobbles = int(response[method]['@attr']['total']) if pages > 0: total_pages = min([total_pages, pages]) print('\n{} total tracks scrobbled by the user'.format(total_scrobbles)) print('\n{} total pages to retrieve'.format(total_pages)) # request each page of data one at a time for page in tqdm(range(1, int(total_pages) + 1, 1)): time.sleep(0.20) request_url = url.format(method, username, key, limit, page) responses.append(requests.get(request_url)) # parse the fields out of each scrobble in each page (aka response) of scrobbles for response in responses: scrobbles = response.json() if method in scrobbles.keys(): for scrobble in scrobbles[method]['track']: # only retain completed scrobbles (aka, with timestamp and not 'now playing') if 'date' in scrobble.keys(): artist_names.append(scrobble['artist']['#text']) artist_mbids.append(scrobble['artist']['mbid']) album_names.append(scrobble['album']['#text']) album_mbids.append(scrobble['album']['mbid']) track_names.append(scrobble['name']) track_mbids.append(scrobble['mbid']) timestamps.append(scrobble['date']['uts']) else: print("Error occured, rerun") logging.warning("Error occurred") # create and populate a dataframe to contain the data df = pd.DataFrame() df['timestamp'] = timestamps df['datetime'] = pd.to_datetime(df['timestamp'].astype(int), unit='s') df['datetime'] = df['datetime'].dt.tz_localize('UTC').dt.tz_convert(timezone) df['artist_name'] = artist_names df['artist_mbid'] = artist_mbids df['album_name'] = album_names df['album_mbid'] = album_mbids df['track_name'] = track_names df['track_mbid'] = track_mbids return df def map_to_spotify(self,scrobblesDF): """ Maps track names to spotifyID and adds track length,popularity,genre to dataframe. :param scrobblesDF : lastfm scrobbles dataframe :return scrobblesDF : dataframe with spotifyID ,track length,popularity,genre """ track_ids = [] length = [] pop = [] genre = [] print("\n\nFetching SpotifyID for tracks") for index, row in tqdm(scrobblesDF.iterrows(), total=scrobblesDF.shape[0]): #time.sleep(2.5) try: artist = self.clean_query(row['artist_name']) track = self.clean_query(row['track_name']) searchDict = sp.search(q='artist:' + artist + ' track:' + track, type='track', limit=1, market='US') # api call logging.debug("Mapping spotifyID for " + track) # logging.debug("Mapping spotifyID for " + str(index) + " out of " + str(len(scrobblesDF.index)-1)) if len(searchDict['tracks']['items']) != 0: track_ids.append(searchDict['tracks']['items'][0]['id']) length.append(searchDict['tracks']['items'][0]['duration_ms']) pop.append(searchDict['tracks']['items'][0]['popularity']) artist_id = searchDict['tracks']['items'][0]['artists'][0]['id'] artist = sp.artist(artist_id) # get genre from artist try: genreA = artist['genres'][0] # gets only the first genre from list of genres (may be inaccurate) genre.append(genreA) except IndexError: genre.append(np.nan) else: track_ids.append(np.nan) length.append(np.nan) pop.append(np.nan) genre.append(np.nan) logging.warning("failed to map " + track) except SpotifyException: if sp_oauth._is_token_expired(token_info): self.token_refresh(token_info, sp_oauth) # refresh OAuth token else: logging.critical("SpotifyException") scrobblesDF['trackID'] = pd.Series(track_ids) scrobblesDF['lengthMS'] = pd.Series(length) scrobblesDF['popularity'] = pd.Series(pop) scrobblesDF['genre_name'] = pd.Series(genre) unmapped_cnt = scrobblesDF['trackID'].isna().sum() print("\ntracks without spotifyID : " + str(unmapped_cnt)) return scrobblesDF # todo: [for v2]pass 50 IDs at once in chunks to sp.audio_features to speedup def map_audio_features(self, scrobblesDF): ''' Adds track features to dataframe with SpotifyID. :param scrobblesDF: dataframe with SpotifyID :return enriched dataframe with audio features ''' danceabilitySeries = [] energySeries = [] keySeries = [] loudnessSeries = [] modeSeries = [] speechinessSeries = [] acousticnessSeries = [] instrumentalnessSeries = [] livenessSeries = [] valenceSeries = [] tempoSeries = [] print("\nFetching audio features for tracks") for index, row in tqdm(scrobblesDF.iterrows(), total=scrobblesDF.shape[0]): try: logging.debug("Fetching features for " + str(index) + " out of " + str(len(scrobblesDF.index) - 1)) if row['trackID'] is not np.nan: search_id = [str(row['trackID'])] feature = sp.audio_features(search_id) # api call try: danceabilitySeries.append(feature[0]["danceability"]) energySeries.append(feature[0]["energy"]) keySeries.append(feature[0]["key"]) loudnessSeries.append(feature[0]["loudness"]) modeSeries.append(feature[0]["mode"]) speechinessSeries.append(feature[0]["speechiness"]) acousticnessSeries.append(feature[0]["acousticness"]) livenessSeries.append(feature[0]["liveness"]) valenceSeries.append(feature[0]["valence"]) tempoSeries.append(feature[0]["tempo"]) instrumentalnessSeries.append(feature[0]["instrumentalness"]) except (TypeError, AttributeError, IndexError): logging.warning("\nTrack feature fetch failed for " + row['track_name']) danceabilitySeries.append(np.nan) energySeries.append(np.nan) keySeries.append(np.nan) loudnessSeries.append(np.nan) modeSeries.append(np.nan) speechinessSeries.append(np.nan) acousticnessSeries.append(np.nan) livenessSeries.append(np.nan) valenceSeries.append(np.nan) tempoSeries.append(np.nan) instrumentalnessSeries.append(np.nan) else: logging.warning("\nTrack ID not available for " + row['track_name']) danceabilitySeries.append(np.nan) energySeries.append(np.nan) keySeries.append(np.nan) loudnessSeries.append(np.nan) modeSeries.append(np.nan) speechinessSeries.append(np.nan) acousticnessSeries.append(np.nan) livenessSeries.append(np.nan) valenceSeries.append(np.nan) tempoSeries.append(np.nan) instrumentalnessSeries.append(np.nan) continue except SpotifyException: if sp_oauth._is_token_expired(token_info): self.token_refresh(token_info, sp_oauth) # refresh OAuth token else: logging.critical("SpotifyException") scrobblesDF['danceability'] = danceabilitySeries scrobblesDF['energy'] = energySeries scrobblesDF['key'] = keySeries scrobblesDF['loudness'] = loudnessSeries scrobblesDF['mode'] = modeSeries scrobblesDF['speechiness'] = speechinessSeries scrobblesDF['acousticness'] = acousticnessSeries scrobblesDF['liveness'] = livenessSeries scrobblesDF['instrumentalness'] = instrumentalnessSeries scrobblesDF['valence'] = valenceSeries scrobblesDF['tempo'] = tempoSeries unmapped_cnt = scrobblesDF['trackID'].isna().sum() print("tracks without audio features : " + str(unmapped_cnt)) return scrobblesDF def get_playlist(self, user='billboard.com', playlist_id='6UeSakyzhiEt4NB3UAd6NQ'): ''' retrives audio features of a playlist (Billboard Hot 100 is the default playlist) :param user: username of the playlist owner :param playlist_id: playlist id (found at the end of a playlist url) :return: a dataframe with audio features of a playlist ''' trackID = [] track = [] artist = [] artistID = [] genre = [] lengthMS = [] popularity = [] try: playlist = sp.user_playlist(user=user, playlist_id=playlist_id) count = playlist['tracks']['total'] print("\n\nFetching playlist") for i in tqdm(range(count)): # print('fetching ' + str(i) + ' out of ' + str(count) + ' ' + playlist['tracks']['items'][i]['track']['id']) trackID.append(playlist['tracks']['items'][i]['track']['id']) track.append(playlist['tracks']['items'][i]['track']['name']) lengthMS.append(playlist['tracks']['items'][i]['track']['duration_ms']) popularity.append(playlist['tracks']['items'][i]['track']['popularity']) artist.append(playlist['tracks']['items'][i]['track']['artists'][0]['name']) artistID.append(playlist['tracks']['items'][i]['track']['artists'][0]['id']) artistOb = sp.artist(artistID[i]) try: genreA = artistOb['genres'][0] genre.append(genreA) except IndexError: genre.append(None) except SpotifyException: if sp_oauth._is_token_expired(token_info): self.token_refresh(token_info, sp_oauth) # refresh OAuth token else: logging.critical("SpotifyException") playlistDF = pd.DataFrame() playlistDF['track'] = pd.Series(track) playlistDF['trackID'] = pd.Series(trackID) playlistDF['artist'] =
pd.Series(artist)
pandas.Series
import matplotlib from pcpca import PCPCA import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import sys from sklearn.decomposition import PCA from numpy.linalg import slogdet from scipy import stats font = {"size": 20} matplotlib.rc("font", **font) matplotlib.rcParams["text.usetex"] = True inv = np.linalg.inv DATA_PATH = "../../../data/mouse_protein_expression/clean/Data_Cortex_Nuclear.csv" N_COMPONENTS = 10 N_GD_ITER = 10 LEARNING_RATE = 1e-2 n_repeats = 3 missing_p_range = np.arange(0.1, 0.8, 0.1) def mean_confidence_interval(data, confidence=0.95): n = data.shape[0] m, se = np.mean(data, axis=0), stats.sem(data, axis=0) width = se * stats.t.ppf((1 + confidence) / 2.0, n - 1) return width # Read in data data = pd.read_csv(DATA_PATH) # Separate into background and foreground data # In this case, # background data is data from mice who did not receive shock therapty # foreground data is from mice who did receive shock therapy # Get names of proteins protein_names = data.columns.values[1:78] # Fill NAs data = data.fillna(0) # Background Y_df = data[ (data.Behavior == "C/S") & (data.Genotype == "Control") & (data.Treatment == "Saline") ] Y = Y_df[protein_names].values Y -= np.nanmean(Y, axis=0) Y /= np.nanstd(Y, axis=0) Y_full = Y.T # Foreground X_df = data[(data.Behavior == "S/C") & (data.Treatment == "Saline")] X = X_df[protein_names].values X -= np.nanmean(X, axis=0) X /= np.nanstd(X, axis=0) X_full = X.T p, n = X_full.shape _, m = Y_full.shape # import ipdb; ipdb.set_trace() # n_subsample = 80 # X_full = X_full[:, np.random.choice(np.arange(n), size=n_subsample, replace=False)] # m_subsample = 80 # Y_full = Y_full[:, np.random.choice(np.arange(m), size=m_subsample, replace=False)] # rand_idx = np.random.choice(np.arange(p), size=10) # X_full = X_full[rand_idx, :] # Y_full = Y_full[rand_idx, :] p, n = X_full.shape _, m = Y_full.shape def abline(slope, intercept): """Plot a line from slope and intercept""" axes = plt.gca() x_vals = np.array(axes.get_xlim()) y_vals = intercept + slope * x_vals plt.plot(x_vals, y_vals, "--") def log_likelihood_fg(X, W, sigma2, gamma): p, n = X.shape Ls = [make_L(X[:, ii]) for ii in range(n)] As = [Ls[ii] @ (W @ W.T + sigma2 * np.eye(p)) @ Ls[ii].T for ii in range(n)] running_sum_X = 0 for ii in range(n): L = Ls[ii] A = As[ii] x = L @ np.nan_to_num(X[:, ii], nan=0) Di = L.shape[0] A_inv = inv(A) curr_summand = ( Di * np.log(2 * np.pi) + slogdet(A)[1] + np.trace(A_inv @ np.outer(x, x)) ) running_sum_X += curr_summand LL = -0.5 * running_sum_X return LL gamma = 0.9 # missing_p_range = np.arange(0.1, 0.3, 0.1) imputation_errors_pcpca = np.empty((n_repeats, len(missing_p_range))) imputation_errors_ppca = np.empty((n_repeats, len(missing_p_range))) imputation_errors_sample_means = np.empty((n_repeats, len(missing_p_range))) imputation_errors_feature_means = np.empty((n_repeats, len(missing_p_range))) # plt.figure(figsize=(7*len(missing_p_range), 6)) for repeat_ii in range(n_repeats): for ii, missing_p in enumerate(missing_p_range): # Mask out missing data X = X_full.copy() Y = Y_full.copy() missing_mask_X = np.random.choice( [0, 1], p=[1 - missing_p, missing_p], size=(p, n) ).astype(bool) missing_mask_Y = np.random.choice( [0, 1], p=[1 - missing_p, missing_p], size=(p, m) ).astype(bool) X[missing_mask_X] = np.nan Y[missing_mask_Y] = np.nan X_mean = np.nanmean(X, axis=1) Y_mean = np.nanmean(Y, axis=1) # X = (X.T - X_mean).T # X = (X.T / np.nanstd(X, axis=1)).T # Y = (Y.T - Y_mean).T # Y = (Y.T / np.nanstd(Y, axis=1)).T ### ----- Row and column means ------ sample_means = np.nanmean(X, axis=0) X_imputed_sample_means = X.copy() X_imputed_sample_means = pd.DataFrame(X_imputed_sample_means).fillna(pd.Series(sample_means)).values imputation_mse = np.mean( (X_full[missing_mask_X] - X_imputed_sample_means[missing_mask_X]) ** 2 ) imputation_errors_sample_means[repeat_ii, ii] = imputation_mse feature_means = np.nanmean(X, axis=1) X_imputed_feature_means = X.copy() X_imputed_feature_means = pd.DataFrame(X_imputed_feature_means.T).fillna(pd.Series(feature_means)).values.T imputation_mse = np.mean( (X_full[missing_mask_X] - X_imputed_feature_means[missing_mask_X]) ** 2 ) print("Feature means {} missing, error: {}".format(missing_p, imputation_mse)) imputation_errors_feature_means[repeat_ii, ii] = imputation_mse ### ----- PCPCA ------ pcpca = PCPCA(gamma=gamma, n_components=N_COMPONENTS) W, sigma2 = pcpca.gradient_descent_missing_data(X, Y, n_iter=N_GD_ITER) #, learning_rate=LEARNING_RATE) X_imputed = pcpca.impute_missing_data(X) # X_imputed = (X_imputed.T + X_mean).T imputation_mse = np.mean( (X_full[missing_mask_X] - X_imputed[missing_mask_X]) ** 2 ) print("PCPCA {} missing, error: {}".format(missing_p, imputation_mse)) imputation_errors_pcpca[repeat_ii, ii] = imputation_mse ### ----- PPCA ------ X = X_full.copy() Y = Y_full.copy() X[missing_mask_X] = np.nan Y[missing_mask_Y] = np.nan fg = np.concatenate([X, Y], axis=1) fg_mean = np.nanmean(fg, axis=1) # fg = (fg.T - fg_mean).T # fg = (fg.T / np.nanstd(fg, axis=1)).T pcpca = PCPCA(gamma=0, n_components=N_COMPONENTS) W, sigma2 = pcpca.gradient_descent_missing_data(fg, Y, n_iter=N_GD_ITER) #, learning_rate=LEARNING_RATE) X_imputed = pcpca.impute_missing_data(X) # X_imputed = (X_imputed.T + fg_mean).T imputation_mse = np.mean( (X_full[missing_mask_X] - X_imputed[missing_mask_X]) ** 2 ) print("PPCA {} missing, error: {}".format(missing_p, imputation_mse)) imputation_errors_ppca[repeat_ii, ii] = imputation_mse pcpca_results_df = pd.DataFrame(imputation_errors_pcpca, columns=missing_p_range - 0.015) pcpca_results_df["method"] = ["PCPCA"] * pcpca_results_df.shape[0] ppca_results_df =
pd.DataFrame(imputation_errors_ppca, columns=missing_p_range - 0.005)
pandas.DataFrame
# Extract the identified Liver proteins from the Tissue Atlas paper. # Use the Uniprot webservice to convert from Ensembl protein ID into uniprot accession import argparse import urllib.parse import urllib.request import pandas as pd import tqdm URL = "https://www.uniprot.org/uploadlists/" def main(): parser = argparse.ArgumentParser() parser.add_argument("--tissuedb", dest="tissuedb") parser.add_argument("dst") args = parser.parse_args() db =
pd.read_excel(args.tissuedb, sheet_name="A. Protein copies")
pandas.read_excel
import sys import os from flask import Flask, request from pprint import pprint import json import nltk import spacy import gensim import sklearn import keras import pandas as pd import numpy as np from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer, SnowballStemmer from nltk.stem.porter import * nltk.download('wordnet') # run once nltk.download('stopwords') # run once from gensim.parsing.preprocessing import STOPWORDS from gensim.utils import simple_preprocess from gensim import corpora, models from keras.preprocessing.text import text_to_word_sequence from sklearn.feature_extraction import stop_words from scipy.spatial import distance from random import randint import calendar, datetime """ SEARCH_APP: Launch search engine. Set host and port prior to running. Requires a corpus or sub-corpus with inferred topic vectors, i.e.: title raw tokens topics 0 https://en.wikipedia.org/wiki/Graphic_design graphic design is the process of visual commun... [graphic, design, process, visual, commun, pro... [(0, 0.63671833), (1, 0.0), (2, 0.0), (3, 0.29... 1 https://en.wikipedia.org/wiki/Design_fiction design fiction is a design practice aiming at ... [design, fiction, design, practic, aim, explor... [(0, 0.9217787), (1, 0.0), (2, 0.0), (3, 0.076... 2 https://en.wikipedia.org/wiki/Creativity_techn... creativity techniques are methods that encoura... [creativ, techniqu, method, encourag, creativ,... [(0, 0.9970473), (1, 0.0), (2, 0.0), (3, 0.0),... 3 https://en.wikipedia.org/wiki/Jewelry_design jewellery design is the art or profession of d... [jewelleri, design, art, profess, design, crea... [(0, 0.80666345), (1, 0.0), (2, 0.18880607), (... 4 https://en.wikipedia.org/wiki/Benjamin_Franklin <NAME> frs frsa frse january 17 170... [benjamin, franklin, fr, frsa, frse, januari, ... [(0, 0.9998033), (1, 0.0), (2, 0.0), (3, 0.0),... 5 https://en.wikipedia.org/wiki/Strategic_design strategic design is the application of future ... [strateg, design, applic, futur, orient, desig... [(0, 0.45011556), (1, 0.0), (2, 0.0), (3, 0.54... 6 https://en.wikipedia.org/wiki/Activity-centere... activity centered design acd is an extension o... [activ, center, design, acd, extens, human, ce... [(0, 0.6329251), (1, 0.0), (2, 0.0), (3, 0.344... 7 https://en.wikipedia.org/wiki/Architecture architecture latin architectura from the greek... [architectur, latin, architectura, greek, ἀρχι... [(0, 0.9993874), (1, 0.0), (2, 0.0), (3, 0.0),... 8 https://en.wikipedia.org/wiki/Web_developer a web developer is a programmer who specialize... [web, develop, programm, special, specif, enga... [(0, 0.0), (1, 0.0), (2, 0.0), (3, 0.8699879),... 9 https://en.wikipedia.org/wiki/Sonic_interactio... sonic interaction design is the study and expl... [sonic, interact, design, studi, exploit, soun... [(0, 0.8485447), (1, 0.0), (2, 0.0), (3, 0.0),... 10 https://en.wikipedia.org/wiki/Costume_design costume design is the investing of clothing an... [costum, design, invest, cloth, overal, appear... [(0, 0.9970691), (1, 0.0), (2, 0.0), (3, 0.0),... 11 https://en.wikipedia.org/wiki/Software_applica... application software app for short is software... [applic, softwar, app, short, softwar, design,... [(0, 0.0), (1, 0.0), (2, 0.0), (3, 0.9974447),... 12 https://en.wikipedia.org/wiki/Art_Nouveau art nouveau ˌɑːrt nuːˈvoʊ ˌɑːr french   aʁ nuv... [art, nouveau, ˌɑːrt, nuːˈvoʊ, ˌɑːr, french, n... [(0, 0.9998343), (1, 0.0), (2, 0.0), (3, 0.0),... 13 https://en.wikipedia.org/wiki/Philosophy_of_de... philosophy of design is the study of definitio... [philosophi, design, studi, definit, design, a... [(0, 0.9634965), (1, 0.0), (2, 0.0), (3, 0.0),... 14 https://en.wikipedia.org/wiki/Environmental_im... environmental impact design eid is the design ... [environment, impact, design, eid, design, dev... [(0, 0.67384595), (1, 0.3187163), (2, 0.0), (3... This serves as the pool of candidate results. Query text topics are derived from the pre-loaded model. The distance between the query's topic probability distribution and that of each of the candidate documents is measured using Jensen-Shannon Distance. The nearest 1% of candidate documents are returned as results to the user. These are returned in rank order from closest to furthest in terms of JSD, where the closest is 1.0 and the furthest is 0.0. This returns to the user the document with the highest relevance in terms of 'topic profile' from among the available candidate documents. """ # generate random query id def rand_id(n): n_digit_str = ''.join(["{}".format(randint(0, 9)) for num in range(0, n)]) return int(n_digit_str) # timestamp predictions def get_ts(): d = datetime.datetime.utcnow() ts = calendar.timegm(d.timetuple()) return ts # define stopwords def default_stop(): # intersection of gensim, nltk, spacy, and sklearn stopword lists default = ['me', 'inc', 'shan', "needn't", 'she', '‘s', 'therefore', 'find', 'down', 'thereupon', 'without', 'up', 'yourselves', 'many', 'eleven', 'full', 'de', 're', 'wherever', 'on', 'her', 'already', 'through', 'side', 'having', 'together', 't', 'take', "'m", 'therein', 'everyone', 'himself', 'whenever', 'them', "'s", 'once', 'forty', 'only', 'must', 'hereupon', 'moreover', 'my', 'very', 'say', 'whom', 'get', 'eg', 'does', 'll', 'indeed', 'everything', 'couldnt', '’m', 'not', 'each', 'using', 'do', 've', 'cant', 'if', 'various', 'throughout', 'otherwise', 'serious', 'd', 'regarding', 'mustn', 'yourself', 'noone', 'somewhere', 'twenty', 'most', 'thick', 'describe', 'however', 'fire', 'see', 'eight', 'while', 'besides', 'neither', 'well', 'us', 'below', 'is', "won't", 'might', 'mine', 'anywhere', 'weren', "'re", "n't", 'whereupon', 'becomes', 'should', 'hereafter', 'ours', 'during', 'a', 'ltd', 'con', 'isn', 'else', 'whither', 'shouldn', 'why', 'will', 'seems', 'ie', 'every', 'someone', 'bottom', 'ain', 'needn', 'then', 'thin', 'being', 'whereafter', 'via', 'never', 'same', "haven't", 'y', 'behind', 'name', 'give', 'move', 'some', 'six', 'we', 'whole', 'than', 'myself', 'our', "wasn't", 'now', 'whether', "mustn't", 'were', 'still', 'along', 'enough', 'for', 'yours', 'whereby', 'per', 'had', 'next', 'twelve', "doesn't", 'onto', 'cry', 'seeming', 'are', 'between', 'almost', 'third', 'latter', 'by', 'nevertheless', 'in', 'across', 'though', 'kg', 'somehow', 'out', 'show', 'no', 'either', 'didn', 'computer', '’ve', 'such', 'all', 'both', 'few', "weren't", 'from', '’d', 'doing', 'alone', 'nan', 'latterly', 's', 'although', 'fifteen', 'hasn', 'own', 'due', 'whereas', 'beyond', "you'd", "shouldn't", 'whose', 'who', 'n’t', 'unless', 'something', "shan't", 'other', 'also', 'they', 'make', 'three', 'been', 'found', 'whoever', 'doesn', 'first', 'made', 'ten', 'seem', '‘ll', 'of', 'your', 'at', 'the', 'where', 'further', 'has', 'former', 'their', 'or', 'four', 'so', 'wherein', 'empty', 'among', 'mill', 'be', 'hasnt', 'used', 'go', 'amongst', 'everywhere', 'fifty', "hadn't", '’ll', 'you', 'km', 'others', 'this', 'thru', 'may', 'wouldn', 'itself', "'d", 'please', 'could', 'done', 'several', 'afterwards', 'two', 'becoming', 'those', '‘ve', 'part', 'hundred', 'system', 'upon', "wouldn't", 'meanwhile', 'thus', '’s', 'herein', 'hadn', 'put', 'toward', 'hers', 'these', 'sometime', 'don', 'nine', 'have', 'won', 'least', 'thereafter', 'often', 'nobody', 'except', 'always', '’re', "you've", 'since', 'elsewhere', 'here', 'wasn', 'as', 'less', 'there', 'one', 'anyone', 'when', 'sometimes', 'its', 'formerly', 'ca', 'thence', 'm', "don't", 'rather', 'but', 'above', 'themselves', 'his', 'haven', 'what', 'too', 'aren', 'keep', "mightn't", 'top', 'he', 'anyhow', 'co', 'around', 'etc', 'about', 'nor', 'anyway', 'hence', '‘d', 'sixty', 'mostly', 'detail', 'anything', 'bill', 'much', "she's", 'ourselves', 'fify', 'that', 'last', 'theirs', 'really', 'back', 'un', 'yet', 'just', 'was', 'an', 'ma', "isn't", "you'll", "should've", 'until', 'off', 'perhaps', 'beside', 'nowhere', 'mightn', 'sincere', "'ll", "didn't", "it's", 'am', 'again', 'even', 'which', 'front', 'can', 'within', "aren't", 'him', "you're", 'and', 'namely', 'against', '‘re', "that'll", 'with', 'whence', 'five', 'amount', 'o', 'quite', 'call', 'interest', 'none', 'before', 'fill', 'how', 'it', 'ever', 'seemed', 'i', 'because', 'thereby', 'would', '‘m', 'couldn', "couldn't", 'did', "'ve", 'under', 'after', 'more', 'become', 'nothing', 'herself', 'to', 'any', 'over', 'into', "hasn't", 'hereby', 'towards', 'amoungst', 'whatever', 'became', 'n‘t', 'beforehand', 'another', 'cannot'] return default my_stopwords = default_stop() # preprocessing functions stemmer = PorterStemmer() def lemmatize_stemming(text): return stemmer.stem(WordNetLemmatizer().lemmatize(text, pos='v')) def preprocess(text): result = [] for token in gensim.utils.simple_preprocess(text): if token not in my_stopwords and len(token) > 2: result.append(lemmatize_stemming(token)) return result def word_split(doc): words = [] for word in doc.split(' '): words.append(word) return words def flatten_text(doc): output = ' '.join([w for w in text_to_word_sequence(str(doc))]) return output def gen_dict_vector(doc): query_text = doc tokens = preprocess(doc) vector = interp_topics(infer_topic(tokens)) source = "Search Bar" query_id = rand_id(10) query_ts = get_ts() q_dict = ({'source': f'{source}', 'query_id': f'{query_id}', 'query_ts': f'{query_ts}', 'query_text': f'{query_text}', 'tokens': f'{tokens}', 'topics': f'{vector}'}) return q_dict, vector def gen_json(q_dict): return json.dumps(q_dict) def infer_topic(tokens): dict_new = dictionary.doc2bow(tokens) vector = model[dict_new] return vector def interp_topics(vector): present = [] for i in vector: t = i[0] present.append(t) all_t = [x for x in range(num_topics)] missing = [x for x in all_t if x not in present] if len(missing) > 0: for i in missing: missing_i = (i, 0.0) vector.append(missing_i) fixed = sorted(vector) return fixed def jsdist(p, q): return distance.jensenshannon(p, q, base=None) def all_jsd(vector, tp): aj = [] for i in tp: j = jsdist(vector, i) aj.append(j[1]) return aj def pickle_df(df, pname): df.to_pickle(pname) def unpickle_df(pname, df): new_df = pd.read_pickle(pname) return new_df def load_model(): filepath = os.getcwd() filename_model = filepath + '/' + 'tf-lda.model' filename_dict = filepath + '/' + 'tf-lda.dict' model = gensim.models.LdaModel.load(filename_model) dictionary = corpora.Dictionary.load(filename_dict) return model, dictionary def load_compare_docs(pkl_filename): compare_docs = pkl_filename tdf = unpickle_df(compare_docs, 'tdf') tt = tdf['title'] rw = tdf['raw'] tp = tdf['topics'] return tt, rw, tp def gen_json_results(vector, compare_docs, thresh): r_titles = compare_docs[0] r_raw = compare_docs[1] r_topics = compare_docs[2] r_distances = all_jsd(vector, r_topics) # measure JSD between vector and all compare_docs rdf = pd.DataFrame({'title': [x for x in r_titles], 'raw': [x for x in r_raw], 'topics': [x for x in r_topics], 'distances': [x for x in r_distances]}) tt = rdf['title'] rw = rdf['raw'] tp = rdf['topics'] aj = rdf['distances'] pct_val = thresh pct_thresh = np.percentile(aj, pct_val) filtered = rdf[rdf['distances'] <= pct_thresh] filtered = filtered.sort_values(by=['distances']) tt = filtered['title'] rw = filtered['raw'] tp = filtered['topics'] aj = filtered['distances'] def confidence(n): pct = abs(n-1)*100 return pct ajc = aj.map(confidence) rwf = rw.map(flatten_text) # sort and jsonify results results_df =
pd.DataFrame({'title': [x for x in tt], 'score': [f'{x:.0f}' for x in ajc], 'text': [x[0:500] for x in rwf], 'topics': [x for x in tp]})
pandas.DataFrame
import pandas as pd import numpy as np import pickle from tqdm import tqdm_notebook import matplotlib.pyplot as plt import os from ml_utils.plot_utils import plot_scatter, get_subplot_rows_cols def covariate_shift(train, test, categorical_columns, n_samples, iterations = 200, weights_coef = 1, AUC_threshold = 0.8, importance_threshold = 0.9, max_loops = 20, test_size = 0.1, trys_all_influencer=5, calc_sample_weights=True, task_type="CPU", data_dir='', load_cov=False, save_cov=False, plot=True): """ Select features without Covariate Shift between training and test set using iteratively CatBoostClassifier to identify relation between train and test """ import seaborn as sns import catboost as cb from sklearn.model_selection import train_test_split if not os.path.exists(data_dir + 'cov_shift_features.pkl') or not load_cov: train_sample = train.sample(n_samples) train_sample.loc[:,'origin'] = 0 test_sample = test.sample(n_samples) test_sample.loc[:,'origin'] = 1 combined_train, combined_test = train_test_split( pd.concat([train_sample.reset_index(drop=True), test_sample.reset_index(drop=True)]), test_size = test_size, shuffle = True) try: influence_columns = [] count_all_influencer = 0 i = 0 AUC_score = 1 while i < max_loops and AUC_score > AUC_threshold: x_columns = combined_train.columns.drop(['origin',] + influence_columns) # Get the indexes for the categorical columns which CatBoost requires to out-perform other algorithms cat_features_index = [list(x_columns).index(col) for col in categorical_columns if col in list(x_columns)] # Do the feature selection once and only try again if no feature is selected cov_shift_feature_selection = [] while len(cov_shift_feature_selection) == 0 and count_all_influencer < trys_all_influencer: if count_all_influencer > 0: print("Try again because model has set any feature as influencer") cov_shift_model = cb.CatBoostClassifier(iterations = iterations, eval_metric = "AUC", cat_features = cat_features_index, task_type = task_type, verbose = False ) cov_shift_feature_selection, df_cov_shift_feature_selection = shadow_feature_selection( cov_shift_model, combined_train['origin'], combined_train[x_columns], need_cat_features_index=True, categorical_columns=categorical_columns, collinear_threshold = 1, n_iterations_mean = 1, times_no_change_features = 1 ) count_all_influencer += 1 if count_all_influencer == trys_all_influencer: cov_shift_feature_selection = list(x_columns) # Get the indexes for the categorical columns which CatBoost requires to out-perform other algorithms cat_features_index = [cov_shift_feature_selection.index(col) for col in categorical_columns if col in cov_shift_feature_selection] params = {'iterations' : 2*iterations, 'learning_rate' : 0.05, 'depth' : 6} cov_shift_model = cb.CatBoostClassifier(iterations = iterations, eval_metric = "AUC", cat_features = cat_features_index, scale_pos_weight = combined_train['origin'].value_counts()[0] / combined_train['origin'].value_counts()[1], task_type = task_type, verbose = False ) cov_shift_model.set_params(**params) cov_shift_model.fit(combined_train.drop('origin', axis = 1)[cov_shift_feature_selection], combined_train['origin'], eval_set = (combined_test.drop('origin', axis = 1)[cov_shift_feature_selection], combined_test['origin']), use_best_model = True, #sample_weight = sample_weight, #early_stopping_rounds = True, plot = False, verbose = False) AUC_score = cov_shift_model.get_best_score()['validation']['AUC'] print(f"Model score AUC of {AUC_score} on test") # Remove the features which cumulative importance is relevant to predict origin of data (train or test) if count_all_influencer != trys_all_influencer: df_cov_shift_importance = pd.DataFrame(cov_shift_model.feature_importances_, columns = ['importance'], index = cov_shift_feature_selection) df_cov_shift_importance['cumulative_importance'] = df_cov_shift_importance['importance'].cumsum() / df_cov_shift_importance['importance'].sum() new_influence_columns = list(df_cov_shift_importance[df_cov_shift_importance['cumulative_importance'] < importance_threshold].index) influence_columns = influence_columns + new_influence_columns print(f"New {len(new_influence_columns)} columns will be removed from model: ", new_influence_columns) print() count_all_influencer = 0 i = i + 1 finally: print() print(f"Due to difference of influence of features to distinguish between data and submission, {len(influence_columns)} columns are removed:") print(influence_columns) if calc_sample_weights: print("Calculating weights for each training sample") probs = cov_shift_model.predict_proba(train[cov_shift_model.feature_names_])[:, 1] #calculating the probability #print("Plot Train AUC") #plot_roc_auc(pd.Serie(1,index = train.index), probs) sample_weight = -np.log(probs) sample_weight /= max(sample_weight) # Normalizing the weights sample_weight = 1 + weights_coef * sample_weight if plot: plt.xlabel('Computed sample weight') plt.ylabel('# Samples') sns.distplot(sample_weight, kde=False) if save_cov: with open(data_dir + 'cov_shift_features.pkl', 'wb') as file: print("Saving data in ", data_dir + 'cov_shift_features.pkl') pickle.dump(influence_columns, file) else: print("Loading influence columns from ",data_dir) with open(data_dir + 'cov_shift_features.pkl', 'rb') as file: influence_columns = pickle.load(file) cov_shift_model = None sample_weight = [1,] * len(train) return influence_columns, cov_shift_model, sample_weight def stadistic_difference_distributions(data, submission, time_column, test_percentage=0.2, p_value_threshold=None, verbose=False): """ Calculate relation between initial and end part of the dataset for each column using Kolmogorov-Smirnov statistic on 2 samples """ from scipy import stats from sklearn.model_selection import train_test_split train, test = train_test_split(data.sort_values(time_column), test_size=test_percentage, shuffle=False) time_analysis_df = pd.DataFrame(False, columns=['train_test', 'train_submission', 'test_submission'], index=submission.columns.values) for col in tqdm_notebook(submission.columns.values): try: KS_stat_test, p_value_test = stats.ks_2samp(train[col], test[col]) KS_stat_submission, p_value_submission = stats.ks_2samp(train[col], submission[col]) KS_stat_test_submission, p_value_test_submission = stats.ks_2samp(test[col], submission[col]) time_analysis_df.loc[col] = [p_value_test, p_value_submission, p_value_test_submission] if verbose: if p_value_test <= p_value_threshold or p_value_submission <= p_value_threshold or p_value_test_submission <= p_value_threshold: print_s = f'Column {col} has different distribution' if p_value_test <= p_value_threshold: print_s = print_s + ' // train <--> test' if p_value_submission <= p_value_threshold: print_s = print_s + ' // train <--> submission' if p_value_test_submission <= p_value_threshold: print_s = print_s + ' // test <--> submission' print(print_s) except TypeError: time_analysis_df.loc[col] = [np.nan, np.nan, np.nan] if p_value_threshold == None: cond1 = time_analysis_df['train_test'] == 0 cond2 = time_analysis_df['train_submission'] == 0 cond3 = time_analysis_df['test_submission'] == 0 else: cond1 = time_analysis_df['train_test'] <= p_value_threshold cond2 = time_analysis_df['train_submission'] <= p_value_threshold cond3 = time_analysis_df['test_submission'] <= p_value_threshold cols_to_remove = list(time_analysis_df[cond1 | cond2 | cond3].index) return time_analysis_df, cols_to_remove def outliers_analysis(full_data, features_names=None, x_column=None, subplot_rows=None, subplot_cols=None, starting_index=0, index_offset=0, z_score_threshold=3.5, use_mean=False, plot=True, num_bins=50): """ Calculate and visualize outliers analysis from Modified Z-score with MAD """ # Compatibility with numpy arrays if type(full_data) == np.ndarray: assert len(full_data.shape) <= 2 if len(full_data.shape) == 1: columns = ['feature'] else: columns = ['feature_'+str(i) for i in range(full_data.shape[-1])] full_data = pd.DataFrame(full_data, columns=columns) # Features not provided, use all the columns if features_names is None: features_names = list(full_data.columns) if plot: # Set a good relation rows/cols for the plot if not specified if subplot_rows is None or subplot_cols is None: subplot_rows, subplot_cols = get_subplot_rows_cols(len(features_names), [3,4,5]) # Resize for better visualization of subplots plt.rcParams['figure.figsize'] = [subplot_cols * 5, subplot_rows * 4] fig, axes = plt.subplots(subplot_rows, subplot_cols, sharex=False, sharey=False) outliers_pd = full_data.copy() outliers_summary = {} i = starting_index while i < len(features_names): feature_name = features_names[i] data = outliers_pd.loc[outliers_pd[feature_name].notnull(), feature_name] # Modified Z-score with MAD (Median Absolute Deviation) if use_mean: outliers_pd.loc[outliers_pd[feature_name].notnull(), feature_name + '_zscore'] = 0.6745 * (data - data.mean()).abs() / ( data - data.mean()).abs().mean() else: outliers_pd.loc[outliers_pd[feature_name].notnull(), feature_name + '_zscore'] = 0.6745 * (data - data.median()).abs() / ( data - data.median()).abs().median() outliers_pd[feature_name + '_zscore_outliers'] = outliers_pd[feature_name + '_zscore'] > z_score_threshold if plot: # Take into account the case of only one plot if subplot_rows * subplot_cols == 1: ax = axes elif subplot_rows == 1: ax = axes[(i + index_offset) % subplot_cols] else: ax = axes[(i + index_offset) // subplot_cols, (i + index_offset) % subplot_cols] # If X_column provided plot scatter, otherwise histogram if x_column is None: bins = np.linspace(data.min(), data.max(), num_bins) ax.hist(data[~outliers_pd[feature_name + '_zscore_outliers']], bins=bins, density=False) ax.hist(data[outliers_pd[feature_name + '_zscore_outliers']], bins=bins, density=False) ax.set_title(feature_name) else: plot_scatter(outliers_pd[outliers_pd[feature_name].notnull()], x_column=x_column, y_column=feature_name, axes=ax, highlight_column=feature_name + '_zscore_outliers') outliers_percentage = 100 * outliers_pd[feature_name + '_zscore_outliers'].sum() / outliers_pd[ feature_name + '_zscore_outliers'].count() outliers_summary[feature_name] = outliers_percentage print("Feature: ", feature_name, " - Percentage of outliers using modified Z-score approach is: ", np.round(outliers_percentage, 2), "%") i = i + 1 if plot: fig.tight_layout() # Resize to original settings plt.rcParams['figure.figsize'] = [10, 6] outliers_summary =
pd.DataFrame.from_dict(outliers_summary, orient='index', columns=['Percentage'])
pandas.DataFrame.from_dict
#!/usr/bin/env/python import os import glob import logging import collections import numpy as np import pandas as pd import yaml import _utils as ikea_utils from mathtools import utils, pose from kinemparse.assembly import Assembly CAMERA_NAMES = ('upper', 'lower') POSE_VAR_NAMES = ['p_x', 'p_y', 'p_z', 'q_x', 'q_y', 'q_z', 'q_w'] logger = logging.getLogger(__name__) def collectMarkerPoses(marker_sample_seqs, marker_keys): marker_sample_seqs = [marker_sample_seqs[k] for k in marker_keys] min_len = min(x.shape[0] for x in marker_sample_seqs) for i in range(len(marker_sample_seqs)): num_samples = marker_sample_seqs[i].shape[0] if min_len < num_samples: marker_sample_seqs[i] = marker_sample_seqs[i][:min_len, :] logger.info( f"Truncated seq of len {num_samples} " f"to {marker_sample_seqs[i].shape[0]}" ) marker_index_seqs = tuple(seq[:, :1] for seq in marker_sample_seqs) marker_pose_seqs = tuple(seq[:, 1:] for seq in marker_sample_seqs) return marker_index_seqs, marker_pose_seqs def cameraIndices(frame_idx_seqs, marker_keys, camera_name): frame_indices = np.hstack(tuple( seq for seq, k in zip(frame_idx_seqs, marker_keys) if k[0] == camera_name )) if not np.all(frame_indices == frame_indices[:, 0:1]): # import pdb; pdb.set_trace() raise AssertionError() return frame_indices[:, 0] def readFrameFns(fn, names_as_int=False): frame_fns = pd.read_csv(fn, header=None).iloc[:, 0].tolist() if names_as_int: frame_fns = np.array([int(fn.strip('.png').strip('frame')) for fn in frame_fns]) return frame_fns def partLabelsToHoleLabels(labels, ignore_sibling_holes=True): correct_connections = ( (('left', 1), ('frontbeam', 1)), (('left', 2), ('backbeam', 1)), (('left', 3), ('backrest', 1)), (('right', 1), ('frontbeam', 2)), (('right', 2), ('backbeam', 2)), (('right', 3), ('backrest', 2)), (('cushion', 1), ('frontbeam', 3)), (('cushion', 2), ('backbeam', 3)), ) correct_connections += tuple((rhs, lhs) for lhs, rhs in correct_connections) if ignore_sibling_holes: part_pairs_to_hole_pairs = { (f'{part1}', f'{part2}'): ((f'{part1}_hole_{hole1}', f'{part2}_hole_{hole2}'),) for (part1, hole1), (part2, hole2) in correct_connections } else: part_pairs_to_hole_pairs = { (f'{part1}', f'{part2}'): tuple( (f'{part1}_hole_{hole1}_{i}', f'{part2}_hole_{hole2}_{i}') for i in (1, 2) ) for (part1, hole1), (part2, hole2) in correct_connections } rows = [] for i, (start_idx, end_idx, action, part1, part2) in labels.iterrows(): part_pairs = part_pairs_to_hole_pairs[part1, part2] for part1, part2 in part_pairs: rows.append([start_idx, end_idx, action, part1, part2]) labels =
pd.DataFrame(data=rows, columns=labels.columns)
pandas.DataFrame
# Data Collection and Updating CSV files import ssl from datetime import datetime, timedelta import pandas as pd import numpy as np import yfinance as yf from pytrends.request import TrendReq import requests import json import csv from bs4 import BeautifulSoup file = 'ITK Cases.csv' # ignore ssl errors when retrieving HTML or JSON files ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE # create list of all dates up that day current = datetime.now() df =
pd.read_csv(file)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Dec 12 16:53:59 2018 @author: xavier.qiu """ import pandas as pd import datetime import gc import numpy as np import featuretools as ft import os from util.util import compress_int, send_msg class DataSet(object): def __init__(self, data_dir='/content/EloMerchantKaggle/data/'): self.data_dir = data_dir self.train_x_path = os.path.join(self.data_dir, 'x_train_agg') self.test_x_path = os.path.join(self.data_dir, 'x_test_agg') self.train_y_path = os.path.join(self.data_dir, 'y_train') pass def get_train_dataset(self, reset=False, load=True): if load and os.path.isfile(self.train_x_path) and os.path.isfile(self.train_y_path): return pd.read_csv(self.train_x_path), pd.read_csv(self.train_y_path) train_df, hist_df_train, new_trans_df_train = split_trans_into_train_test(data_dir=self.data_dir, reset=reset) return agg(train_df, hist_df_train, new_trans_df_train, True, self.train_x_path, self.train_y_path) def get_test_dataset(self, load=True): if load and os.path.isfile(self.test_x_path): return pd.read_csv(self.test_x_path), None print("loading test.csv ...") d = {'feature_1': np.uint8, 'feature_2': np.uint8, 'feature_3': np.bool_} test_df = pd.read_csv(os.path.join(self.data_dir, "test.csv"), parse_dates=["first_active_month"], dtype=d) test_df.info(memory_usage='deep') hist_df_test = pd.read_csv(os.path.join(self.data_dir, "historical_transactions_test.csv"), parse_dates=["purchase_date"]) hist_df_test = compress_int(hist_df_test) new_trans_df_test = pd.read_csv(os.path.join(self.data_dir, "new_merchant_transactions_test.csv"), parse_dates=["purchase_date"]) new_trans_df_test = compress_int(new_trans_df_test) send_msg("load done") return agg(test_df, hist_df_test, new_trans_df_test, False, self.test_x_path, None) def agg(train_df, hist_df, new_trans_df, isTrain, x_save_path, y_save_path): train_df = train_df.copy(deep=True) if isTrain: target = train_df['target'] del train_df['target'] else: target = None es_train = ft.EntitySet(id='es_train') es_train = es_train.entity_from_dataframe(entity_id='train', dataframe=train_df, index='', time_index='first_active_month') es_train = es_train.entity_from_dataframe(entity_id='history', dataframe=hist_df, index='', time_index='purchase_date') es_train = es_train.entity_from_dataframe(entity_id='new_trans', dataframe=new_trans_df, index='', time_index='purchase_date') # Relationship between clients and previous loans r_client_previous = ft.Relationship(es_train['train']['card_id'], es_train['history']['card_id']) # Add the relationship to the entity set es_train = es_train.add_relationship(r_client_previous) r_client_previous = ft.Relationship(es_train['train']['card_id'], es_train['new_trans']['card_id']) # Add the relationship to the entity set es_train = es_train.add_relationship(r_client_previous) print(" dfs ing ... ") x_train, _ = ft.dfs(entityset=es_train, target_entity='train', max_depth=2) send_msg("dfs done! ") print("saving...") if target: target.to_csv(y_save_path) x_train['index'] = target.index x_train.set_index('index') x_train.to_csv(x_save_path) return x_train, target def split_trans_into_train_test(data_dir='/content/EloMerchantKaggle/data/', reset=False): d = {'feature_1': np.uint8, 'feature_2': np.uint8, 'feature_3': np.bool_} print("loading train.csv ...") train_df = pd.read_csv(os.path.join(data_dir, "train.csv"), parse_dates=["first_active_month"], dtype=d) train_df.info(memory_usage='deep') if not reset and os.path.isfile(os.path.join(data_dir, "historical_transactions_train.csv")) and os.path.isfile( os.path.join(data_dir, "new_merchant_transactions_train.csv")): hist_df_train = pd.read_csv(os.path.join(data_dir, "historical_transactions_train.csv"), parse_dates=["purchase_date"]) hist_df_train = compress_int(hist_df_train) new_trans_df_train = pd.read_csv(os.path.join(data_dir, "new_merchant_transactions_train.csv"), parse_dates=["purchase_date"]) new_trans_df_train = compress_int(new_trans_df_train) send_msg("load done") return train_df, hist_df_train, new_trans_df_train pass print("loading test.csv ...") test_df = pd.read_csv(os.path.join(data_dir, "test.csv"), parse_dates=["first_active_month"], dtype=d) test_df.info(memory_usage='deep') print("loading historical_transactions.csv ...") hist_df = pd.read_csv(os.path.join(data_dir, "historical_transactions.csv"), parse_dates=["purchase_date"]) print(' compressing ...') hist_df = compressByDType(hist_df) print(' split to get train hist ...') hist_df_train = hist_df[hist_df.card_id.isin(set(train_df['card_id'].unique()))] print(' saving ... ') hist_df_train.to_csv(os.path.join(data_dir, "historical_transactions_train.csv")) print(' split to get test hist ...') hist_df_test = hist_df[hist_df.card_id.isin(set(test_df['card_id'].unique()))] print(' saving ... ') hist_df_test.to_csv(os.path.join(data_dir, "historical_transactions_test.csv")) del hist_df_test del hist_df gc.collect() print("loading new_merchant_transactions.csv ...") new_trans_df = pd.read_csv(os.path.join(data_dir, "new_merchant_transactions.csv"), parse_dates=["purchase_date"]) print(' compressing ...') new_trans_df = compressByDType(new_trans_df) print(' split to get train new trans ...') new_trans_df_train = new_trans_df[new_trans_df.card_id.isin(set(train_df['card_id'].unique()))] print(' saving ... ') new_trans_df_train.to_csv(os.path.join(data_dir, "new_merchant_transactions_train.csv")) print(' split to get test new trans ...') new_trans_df_test = new_trans_df[new_trans_df.card_id.isin(set(test_df['card_id'].unique()))] print(' saving ... ') new_trans_df_test.to_csv(os.path.join(data_dir, "new_merchant_transactions_test.csv")) del new_trans_df_test del new_trans_df gc.collect() send_msg("split and save done") return train_df, hist_df_train, new_trans_df_train def agg2(df_train, df_test, df_hist_trans): aggs = {} for col in ['month', 'hour', 'weekofyear', 'dayofweek', 'year', 'subsector_id', 'merchant_category_id']: aggs[col] = ['nunique'] aggs['purchase_amount'] = ['sum', 'max', 'min', 'mean', 'var'] aggs['installments'] = ['sum', 'max', 'min', 'mean', 'var'] aggs['purchase_date'] = ['max', 'min'] aggs['month_lag'] = ['max', 'min', 'mean', 'var'] aggs['month_diff'] = ['mean'] aggs['authorized_flag'] = ['sum', 'mean'] aggs['weekend'] = ['sum', 'mean'] aggs['category_1'] = ['sum', 'mean'] aggs['card_id'] = ['size'] for col in ['category_2', 'category_3']: df_hist_trans[col + '_mean'] = df_hist_trans.groupby([col])['purchase_amount'].transform('mean') aggs[col + '_mean'] = ['mean'] new_columns = get_new_columns('hist', aggs) df_hist_trans_group = df_hist_trans.groupby('card_id').agg(aggs) df_hist_trans_group.columns = new_columns df_hist_trans_group.reset_index(drop=False, inplace=True) df_hist_trans_group['hist_purchase_date_diff'] = ( df_hist_trans_group['hist_purchase_date_max'] - df_hist_trans_group['hist_purchase_date_min']).dt.days df_hist_trans_group['hist_purchase_date_average'] = df_hist_trans_group['hist_purchase_date_diff'] / \ df_hist_trans_group['hist_card_id_size'] df_hist_trans_group['hist_purchase_date_uptonow'] = ( datetime.datetime.today() - df_hist_trans_group['hist_purchase_date_max']).dt.days df_train = df_train.merge(df_hist_trans_group, on='card_id', how='left') df_test = df_test.merge(df_hist_trans_group, on='card_id', how='left') del df_hist_trans_group gc.collect() return df_train, df_test def get_new_columns(name, aggs): return [name + '_' + k + '_' + agg for k in aggs.keys() for agg in aggs[k]] def compressByDType(df_new_merchant_trans): """ :param df_new_merchant_trans: :return: """ df_new_merchant_trans = df_new_merchant_trans.drop(columns=['merchant_id']) df_new_merchant_trans['category_2'].fillna(1.0, inplace=True) df_new_merchant_trans['category_3'].fillna('D', inplace=True) df_new_merchant_trans['authorized_flag'].fillna('Y', inplace=True) df_new_merchant_trans['authorized_flag'] = df_new_merchant_trans['authorized_flag'].map({'Y': 1, 'N': 0}) df_new_merchant_trans['category_1'] = df_new_merchant_trans['category_1'].map({'Y': 1, 'N': 0}) df_new_merchant_trans['category_3'] = df_new_merchant_trans['category_3'].map({'A': 0, 'B': 1, 'C': 2, 'D': 3}) df_new_merchant_trans['category_1'] = pd.to_numeric(df_new_merchant_trans['category_1'], downcast='integer') df_new_merchant_trans['category_2'] = pd.to_numeric(df_new_merchant_trans['category_2'], downcast='integer') df_new_merchant_trans['category_3'] = pd.to_numeric(df_new_merchant_trans['category_3'], downcast='integer') df_new_merchant_trans['merchant_category_id'] = pd.to_numeric(df_new_merchant_trans['merchant_category_id'], downcast='integer') df_new_merchant_trans['authorized_flag'] = pd.to_numeric(df_new_merchant_trans['authorized_flag'], downcast='integer') df_new_merchant_trans['city_id'] = pd.to_numeric(df_new_merchant_trans['city_id'], downcast='integer') df_new_merchant_trans['installments'] = pd.to_numeric(df_new_merchant_trans['installments'], downcast='integer') df_new_merchant_trans['state_id'] = pd.to_numeric(df_new_merchant_trans['state_id'], downcast='integer') df_new_merchant_trans['subsector_id'] = pd.to_numeric(df_new_merchant_trans['subsector_id'], downcast='integer') df_new_merchant_trans['month_lag'] =
pd.to_numeric(df_new_merchant_trans['month_lag'], downcast='integer')
pandas.to_numeric
import requests from typing import List import re # from nciRetriever.updateFC import updateFC # from nciRetriever.csvToArcgisPro import csvToArcgisPro # from nciRetriever.geocode import geocodeSites # from nciRetriever.createRelationships import createRelationships # from nciRetriever.zipGdb import zipGdb # from nciRetriever.updateItem import update # from nciRetriever.removeTables import removeTables from datetime import date import pandas as pd import logging from urllib.parse import urljoin import json import time import sys import os from pprint import pprint logger = logging.getLogger(__name__) handler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s', '%Y-%m-%d %H:%M:%S') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.DEBUG) today = date.today() # nciThesaurus = pd.read_csv('thesaurus.csv') # uniqueMainDiseasesDf = pd.read_csv('nciUniqueMainDiseasesReference.csv') # uniqueSubTypeDiseasesDf = pd.read_csv('nciUniqueSubTypeDiseasesReference.csv') # uniqueDiseasesWithoutSynonymsDf = pd.read_csv('nciUniqueDiseasesWithoutSynonymsReference.csv') def createTrialDict(trial: dict) -> dict: trialDict = {'nciId': trial['nci_id'], 'protocolId': trial['protocol_id'], 'nctId': trial['nct_id'], 'detailDesc': trial['detail_description'], 'officialTitle': trial['official_title'], 'briefTitle': trial['brief_title'], 'briefDesc': trial['brief_summary'], 'phase': trial['phase'], 'leadOrg': trial['lead_org'], 'amendmentDate': trial['amendment_date'], 'primaryPurpose': trial['primary_purpose'], 'currentTrialStatus': trial['current_trial_status'], 'startDate': trial['start_date']} if 'completion_date' in trial.keys(): trialDict.update({'completionDate': trial['completion_date']}) if 'active_sites_count' in trial.keys(): trialDict.update({'activeSitesCount': trial['active_sites_count']}) if 'max_age_in_years' in trial['eligibility']['structured'].keys(): trialDict.update({'maxAgeInYears': int(trial['eligibility']['structured']['max_age_in_years'])}) if 'min_age_in_years' in trial['eligibility']['structured'].keys(): trialDict.update({'minAgeInYears': int(trial['eligibility']['structured']['min_age_in_years']) if trial['eligibility']['structured']['min_age_in_years'] is not None else None}) if 'gender' in trial['eligibility']['structured'].keys(): trialDict.update({'gender': trial['eligibility']['structured']['gender']}) if 'accepts_healthy_volunteers' in trial['eligibility']['structured'].keys(): trialDict.update({'acceptsHealthyVolunteers': trial['eligibility']['structured']['accepts_healthy_volunteers']}) if 'study_source' in trial.keys(): trialDict.update({'studySource': trial['study_source']}) if 'study_protocol_type' in trial.keys(): trialDict.update({'studyProtocolType': trial['study_protocol_type']}) if 'record_verification_date' in trial.keys(): trialDict.update({'recordVerificationDate': trial['record_verification_date']}) return trialDict def createSiteDict(trial:dict, site:dict) -> dict: siteDict = {'nciId': trial['nci_id'], 'orgStateOrProvince': site['org_state_or_province'], 'contactName': site['contact_name'], 'contactPhone': site['contact_phone'], 'recruitmentStatusDate': site['recruitment_status_date'], 'orgAddressLine1': site['org_address_line_1'], 'orgAddressLine2': site['org_address_line_2'], 'orgVa': site['org_va'], 'orgTty': site['org_tty'], 'orgFamily': site['org_family'], 'orgPostalCode': site['org_postal_code'], 'contactEmail': site['contact_email'], 'recruitmentStatus': site['recruitment_status'], 'orgCity': site['org_city'], 'orgEmail': site['org_email'], 'orgCountry': site['org_country'], 'orgFax': site['org_fax'], 'orgPhone': site['org_phone'], 'orgName': site['org_name'] } # if 'org_coordinates' in site.keys(): # siteDict['lat'] = site['org_coordinates']['lat'] # siteDict['long'] = site['org_coordinates']['lon'] return siteDict def createBiomarkersDicts(trial:dict, marker:dict) -> List[dict]: parsedBiomarkers = [] for name in [*marker['synonyms'], marker['name']]: biomarkerDict = { 'nciId': trial['nci_id'], 'nciThesaurusConceptId': marker['nci_thesaurus_concept_id'], 'name': name, 'assayPurpose': marker['assay_purpose'] } if 'eligibility_criterion' in marker.keys(): biomarkerDict.update({'eligibilityCriterion': marker['eligibility_criterion']}) if 'inclusion_indicator' in marker.keys(): biomarkerDict.update({'inclusionIndicator': marker['inclusion_indicator']}) parsedBiomarkers.append(biomarkerDict) return parsedBiomarkers def createMainBiomarkersDict(trial:dict, marker:dict) -> dict: parsedBiomarker = { 'nciId': trial['nci_id'], 'nciThesaurusConceptId': marker['nci_thesaurus_concept_id'], 'name': marker['name'], 'assayPurpose': marker['assay_purpose'], } if 'eligibility_criterion' in marker.keys(): parsedBiomarker.update({'eligibilityCriterion': marker['eligibility_criterion']}) if 'inclusion_indicator' in marker.keys(): parsedBiomarker.update({'inclusionIndicator': marker['inclusion_indicator']}) return parsedBiomarker def createDiseasesDicts(trial:dict, disease:dict) -> List[dict]: parsedDiseases = [] try: names = [disease['name']] if 'synonyms' in disease.keys(): names.extend(disease['synonyms']) except KeyError: logger.error(f'Invalid key for diseases. Possible keys: {disease.keys()}') return parsedDiseases for name in names: diseaseDict = { 'inclusionIndicator': disease['inclusion_indicator'], 'isLeadDisease': disease['is_lead_disease'], 'name': name, 'nciThesaurusConceptId': disease['nci_thesaurus_concept_id'], 'nciId': trial['nci_id'] } parsedDiseases.append(diseaseDict) return parsedDiseases def createMainToSubTypeRelDicts(trial:dict, disease:dict) -> List[dict]: if 'subtype' not in disease['type']: return [] relDicts = [] for parent in disease['parents']: relDicts.append({ 'maintype': parent, 'subtype': disease['nci_thesaurus_concept_id'] }) return relDicts def createDiseasesWithoutSynonymsDict(trial:dict, disease:dict) -> dict: # diseaseDict = { # 'nciId': trial['nci_id'], # 'inclusionIndicator': disease['inclusion_indicator'], # 'isLeadDisease': disease['is_lead_disease'], # 'nciThesaurusConceptId': disease['nci_thesaurus_concept_id'] # } # correctDisease = uniqueDiseasesWithoutSynonymsDf.loc[uniqueDiseasesWithoutSynonymsDf['nciThesaurusConceptId'] == disease['nci_thesaurus_concept_id']] # if correctDisease.empty: # logger.error('Disease not found in full reference. Aborting insertion...') # return {} # # logger.debug(correctDisease['name'].values[0]) # # time.sleep(2) # diseaseDict.update({ # 'name': correctDisease['name'].values[0] # }) # return diseaseDict try: return { 'nciId': trial['nci_id'], 'name': disease['name'], 'isLeadDisease': disease['is_lead_disease'], 'nciThesaurusConceptId': disease['nci_thesaurus_concept_id'], 'inclusionIndicator': disease['inclusion_indicator'] } except KeyError: logger.error('Invalid key for main diseases. Not adding to list...') return {} def createMainDiseasesDict(trial:dict, disease:dict) -> dict: # diseaseDict = { # 'nciId': trial['nci_id'], # 'inclusionIndicator': disease['inclusion_indicator'], # 'isLeadDisease': disease['is_lead_disease'], # 'nciThesaurusConceptId': disease['nci_thesaurus_concept_id'] # } # correctDisease = uniqueMainDiseasesDf.loc[uniqueMainDiseasesDf['nciThesaurusConceptId'] == disease['nci_thesaurus_concept_id']] # if correctDisease.empty: # return {} # diseaseDict.update({ # 'name': correctDisease['name'].values[0] # }) # return diseaseDict # if 'type' not in disease.keys(): # return {} if 'maintype' not in disease['type']: return {} try: return { 'nciId': trial['nci_id'], 'name': disease['name'], 'isLeadDisease': disease['is_lead_disease'], 'nciThesaurusConceptId': disease['nci_thesaurus_concept_id'], 'inclusionIndicator': disease['inclusion_indicator'] } except KeyError: logger.error('Invalid key for main diseases. Not adding to list...') return {} def createSubTypeDiseasesDict(trial:dict, disease:dict) -> dict: # diseaseDict = { # 'nciId': trial['nci_id'], # 'inclusionIndicator': disease['inclusion_indicator'], # 'isLeadDisease': disease['is_lead_disease'], # 'nciThesaurusConceptId': disease['nci_thesaurus_concept_id'] # } # correctDisease = uniqueSubTypeDiseasesDf.loc[uniqueSubTypeDiseasesDf['nciThesaurusConceptId'] == disease['nci_thesaurus_concept_id']] # if correctDisease.empty: # return {} # diseaseDict.update({ # 'name': correctDisease['name'].values[0] # }) # return diseaseDict # if 'type' not in disease.keys(): # return {} if 'subtype' not in disease['type']: return {} try: return { 'nciId': trial['nci_id'], 'name': disease['name'], 'isLeadDisease': disease['is_lead_disease'], 'nciThesaurusConceptId': disease['nci_thesaurus_concept_id'], 'inclusionIndicator': disease['inclusion_indicator'] } except KeyError: logger.error('Invalid key for subtype diseases. Not adding to list...') return {} def createArmsDict(trial:dict, arm:dict) -> dict: parsedArm = re.sub(r'\(.+\)', '', arm['name']) parsedArm = re.sub(r'\s+', '_', parsedArm.strip()) return { 'nciId': trial['nci_id'], 'name': arm['name'], 'nciIdWithName': f'{trial["nci_id"]}_{parsedArm}', 'description': arm['description'], 'type': arm['type'] } def createInterventionsDicts(trial:dict, arm:dict) -> List[dict]: parsedInterventions = [] parsedArm = re.sub(r'\(.+\)', '', arm['name']) parsedArm = re.sub(r'\s+', '_', parsedArm.strip()) for intervention in arm['interventions']: names = intervention['synonyms'] if 'name' in intervention.keys(): names.append(intervention['name']) elif 'intervention_name' in intervention.keys(): names.append(intervention['intervention_name']) for name in names: try: interventionDict = { 'nciId': trial['nci_id'], 'arm': arm['name'], 'nciIdWithArm': f'{trial["nci_id"]}_{parsedArm}', 'type': intervention['intervention_type'], 'inclusionIndicator': intervention['inclusion_indicator'], 'name': name, 'category': intervention['category'], 'nciThesaurusConceptId': intervention['intervention_code'], 'description': intervention['intervention_description'] } except KeyError: try: interventionDict = { 'nciId': trial['nci_id'], 'arm': arm['name'], 'nciIdWithArm': f'{trial["nci_id"]}_{parsedArm}', 'type': intervention['type'], 'inclusionIndicator': intervention['inclusion_indicator'], 'name': name, 'category': intervention['category'], 'nciThesaurusConceptId': intervention['nci_thesaurus_concept_id'], 'description': intervention['description'] } except KeyError as e: logger.exception(e) logger.error(f'Invalid intervention keys. Possible keys are: {intervention.keys()}') continue parsedInterventions.append(interventionDict) return parsedInterventions def createMainInterventionDicts(trial:dict, arm:dict) -> List[dict]: parsedArm = re.sub(r'\(.+\)', '', arm['name']) parsedArm = re.sub(r'\s+', '_', parsedArm.strip()) parsedMainInterventions = [] for intervention in arm['interventions']: try: mainInterventionDict = { 'nciId': trial['nci_id'], 'arm': arm['name'], 'nciIdWithArm': f'{trial["nci_id"]}_{parsedArm}', 'type': intervention['intervention_type'], 'inclusionIndicator': intervention['inclusion_indicator'], 'name': intervention['intervention_name'], 'category': intervention['category'], 'nciThesaurusConceptId': intervention['intervention_code'], 'description': intervention['intervention_description'] } except KeyError: try: mainInterventionDict = { 'nciId': trial['nci_id'], 'arm': arm['name'], 'nciIdWithArm': f'{trial["nci_id"]}_{parsedArm}', 'type': intervention['type'], 'inclusionIndicator': intervention['inclusion_indicator'], 'name': intervention['name'], 'category': intervention['category'], 'nciThesaurusConceptId': intervention['nci_thesaurus_concept_id'], 'description': intervention['description'] } except KeyError: logger.error(f'Unexpected intervention keys: {intervention.keys()}. Not inserting...') continue parsedMainInterventions.append(mainInterventionDict) return parsedMainInterventions def deDuplicateTable(csvName:str, deduplicationList:List[str]): df = pd.read_csv(csvName) df.drop_duplicates(subset=deduplicationList, inplace=True) df.to_csv(csvName, index=False) def correctMainToSubTypeTable(today): mainDf = pd.read_csv(f'nciUniqueMainDiseases{today}.csv') subTypeDf = pd.read_csv(f'nciUniqueSubTypeDiseases{today}.csv') relDf = pd.read_csv(f'MainToSubTypeRelTable{today}.csv') for idx, row in relDf.iterrows(): parentId = row['maintype'] if parentId in mainDf['nciThesaurusConceptId'].values: continue elif parentId in subTypeDf['nciThesaurusConceptId'].values: while True: possibleMainTypesDf = relDf[relDf['subtype'] == parentId] if possibleMainTypesDf.empty: logger.error(f'Parent {parentId} not found in main diseases or subtype diseases') parentId = '' break #setting the parentId value with the parent of the subtype found for value in possibleMainTypesDf['maintype'].values: if parentId == value: continue parentId = value break else: logger.error(f'Parent {parentId} not found in main diseases or subtype diseases') parentId = '' break # parentId = possibleMainTypesDf['maintype'].values[0] if parentId in mainDf['nciThesaurusConceptId'].values: break if parentId == '': continue relDf.iloc[idx]['maintype'] = parentId else: pass relDf.to_csv(f'MainToSubTypeRelTable{today}.csv', index=False) # logger.error(f'maintype id {parentId} is not found in main diseases or subtype diseases') def createUniqueSitesCsv(today): logger.debug('Reading sites...') sitesDf = pd.read_csv(f'nciSites{today}.csv') logger.debug('Dropping duplicates and trial-depedent information...') sitesDf.drop_duplicates(subset='orgName', inplace=True) sitesDf.drop(['recruitmentStatusDate', 'recruitmentStatus', 'nciId'], axis=1, inplace=True) logger.debug('Saving unique sites table...') sitesDf.to_csv(f'nciUniqueSites{today}.csv', index=False) def createUniqueDiseasesWithoutSynonymsCsv(today): logger.debug('Reading diseases without synonyms...') diseasesWithoutSynonymsDf = pd.read_csv(f'nciDiseasesWithoutSynonyms{today}.csv') logger.debug('Dropping duplicates and trial-dependent information...') diseasesWithoutSynonymsDf.drop_duplicates(subset='nciThesaurusConceptId', inplace=True) diseasesWithoutSynonymsDf.drop(['isLeadDisease', 'inclusionIndicator', 'nciId'], axis=1, inplace=True) diseasesWithoutSynonymsDf.dropna() logger.debug('Saving unique diseases table...') diseasesWithoutSynonymsDf.to_csv(f'nciUniqueDiseasesWithoutSynonyms{today}.csv', index=False) def createUniqueMainDiseasesCsv(today): logger.debug('Reading main diseases...') mainDiseasesDf = pd.read_csv(f'nciMainDiseases{today}.csv') logger.debug('Dropping duplicates and trial-dependent information...') mainDiseasesDf.drop_duplicates(subset='nciThesaurusConceptId', inplace=True) mainDiseasesDf.drop(['isLeadDisease', 'inclusionIndicator', 'nciId'], axis=1, inplace=True) mainDiseasesDf.dropna() logger.debug('Saving unique diseases table...') mainDiseasesDf.to_csv(f'nciUniqueMainDiseases{today}.csv', index=False) def createUniqueSubTypeDiseasesCsv(today): logger.debug('Reading main diseases...') subTypeDiseasesDf = pd.read_csv(f'nciSubTypeDiseases{today}.csv') logger.debug('Dropping duplicates and trial-dependent information...') subTypeDiseasesDf.drop_duplicates(subset='nciThesaurusConceptId', inplace=True) subTypeDiseasesDf.drop(['isLeadDisease', 'inclusionIndicator', 'nciId'], axis=1, inplace=True) subTypeDiseasesDf.dropna() logger.debug('Saving unique diseases table...') subTypeDiseasesDf.to_csv(f'nciUniqueSubTypeDiseases{today}.csv', index=False) def createUniqueBiomarkersCsv(today): logger.debug('Reading main biomarkers...') mainBiomarkersDf = pd.read_csv(f'nciMainBiomarkers{today}.csv') logger.debug('Dropping duplicates and trial-dependent information...') mainBiomarkersDf.drop_duplicates(subset='nciThesaurusConceptId', inplace=True) mainBiomarkersDf.drop(['eligibilityCriterion', 'inclusionIndicator', 'assayPurpose', 'nciId'], axis=1, inplace=True) mainBiomarkersDf.dropna() logger.debug('Saving unique biomarkers table...') mainBiomarkersDf.to_csv(f'nciUniqueMainBiomarkers{today}.csv', index=False) def createUniqueInterventionsCsv(today): logger.debug('Reading main interventions...') mainInterventionsDf = pd.read_csv(f'nciMainInterventions{today}.csv') logger.debug('Dropping duplicates and trial-dependent information...') mainInterventionsDf.drop_duplicates(subset='nciThesaurusConceptId', inplace=True) mainInterventionsDf.drop(['nciId', 'inclusionIndicator', 'arm', 'nciIdWithArm'], axis=1, inplace=True) mainInterventionsDf.dropna() logger.debug('Saving unique interventions table...') mainInterventionsDf.to_csv(f'nciUniqueMainInterventions{today}.csv', index=False) def retrieveToCsv(): baseUrl = r'https://clinicaltrialsapi.cancer.gov/api/v2/' with open('./nciRetriever/secrets/key.txt', 'r') as f: apiKey = f.read() headers = { 'X-API-KEY': apiKey, 'Content-Type': 'application/json' } trialEndpoint = urljoin(baseUrl, 'trials') logger.debug(trialEndpoint) #sending initial request to get the total number of trials trialsResponse = requests.get(trialEndpoint, headers=headers, params={'trial_status': 'OPEN'}) trialsResponse.raise_for_status() trialJson = trialsResponse.json() totalNumTrials = trialJson['total'] logger.debug(f'Total number of trials: {totalNumTrials}') start = time.perf_counter() createdTrialCsv = False createdSiteCsv = False createdEligibilityCsv = False createdBiomarkerCsv = False createdMainBiomarkerCsv = False createdDiseaseCsv = False createdMainToSubTypeRelTableCsv = False createdDiseaseWithoutSynonymsCsv = False createdMainDiseaseCsv = False createdSubTypeDiseaseCsv = False createdArmsCsv = False createdInterventionCsv = False createdMainInterventionCsv = False for trialNumFrom in range(0, totalNumTrials, 50): sectionStart = time.perf_counter() #creating the dataframes again after every 50 trials to avoid using too much memory trialsDf = pd.DataFrame(columns=['protocolId', 'nciId', 'nctId', 'detailDesc', 'officialTitle', 'briefTitle', 'briefDesc', 'phase', 'leadOrg', 'amendmentDate', 'primaryPurpose', 'activeSitesCount', 'currentTrialStatus', 'startDate', 'completionDate', 'maxAgeInYears', 'minAgeInYears', 'gender', 'acceptsHealthyVolunteers', 'studySource', 'studyProtocolType', 'recordVerificationDate']) sitesDf = pd.DataFrame(columns=['nciId', 'orgStateOrProvince', 'contactName', 'contactPhone', 'recruitmentStatusDate', 'orgAddressLine1', 'orgAddressLine2', 'orgVa', 'orgTty', 'orgFamily', 'orgPostalCode', 'contactEmail', 'recruitmentStatus', 'orgCity', 'orgEmail', 'orgCounty', 'orgFax', 'orgPhone', 'orgName']) eligibilityDf = pd.DataFrame(columns=['nciId', 'inclusionIndicator', 'description']) biomarkersDf = pd.DataFrame(columns=[ 'nciId', 'eligibilityCriterion', 'inclusionIndicator', 'nciThesaurusConceptId', 'name', 'assayPurpose' ]) mainBiomarkersDf = pd.DataFrame(columns=[ 'nciId', 'eligibilityCriterion', 'inclusionIndicator', 'nciThesaurusConceptId', 'name', 'assayPurpose' ]) diseasesDf = pd.DataFrame(columns=[ 'nciId', 'inclusionIndicator', 'isLeadDisease', 'nciThesaurusConceptId', 'name' ]) mainToSubTypeRelsDf = pd.DataFrame(columns=[ 'maintype', 'subtype' ]) mainDiseasesDf = pd.DataFrame(columns=[ 'nciId', 'inclusionIndicator', 'isLeadDisease', 'nciThesaurusConceptId', 'name' ]) diseasesWithoutSynonymsDf = pd.DataFrame(columns=[ 'nciId', 'inclusionIndicator', 'isLeadDisease', 'nciThesaurusConceptId', 'name' ]) subTypeDiseasesDf = pd.DataFrame(columns=[ 'nciId', 'inclusionIndicator', 'isLeadDisease', 'nciThesaurusConceptId', 'name' ]) armsDf = pd.DataFrame(columns=[ 'nciId', 'name', 'nciIdWithName', 'description', 'type' ]) interventionsDf = pd.DataFrame(columns=[ 'nciId', 'arm', 'nciIdWithArm', 'type', 'inclusionIndicator', 'name', 'category', 'nciThesaurusConceptId', 'description' ]) mainInterventionsDf = pd.DataFrame(columns=[ 'nciId', 'arm', 'nciIdWithArm', 'type', 'inclusionIndicator', 'name', 'category', 'nciThesaurusConceptId', 'description' ]) payload = { 'size': 50, 'trial_status': 'OPEN', 'from': trialNumFrom } response = requests.get(trialEndpoint, headers=headers, params=payload) response.raise_for_status() sectionJson = response.json() trials = [] for trial in sectionJson['data']: trials.append(createTrialDict(trial)) if trial['eligibility']['unstructured'] is not None: #parsing the unstructured eligibility information from the trial eligibilityInfo = [] for condition in trial['eligibility']['unstructured']: eligibilityInfo.append({ 'nciId': trial['nci_id'], 'inclusionIndicator': condition['inclusion_indicator'], 'description': condition['description'] }) conditionDf = pd.DataFrame.from_records(eligibilityInfo) eligibilityDf = pd.concat([eligibilityDf, conditionDf], verify_integrity=True, ignore_index=True) if trial['sites'] is not None: #parsing the sites associated with the trial sites = [] for site in trial['sites']: sites.append(createSiteDict(trial, site)) siteDf = pd.DataFrame.from_records(sites) sitesDf = pd.concat([sitesDf, siteDf], ignore_index=True, verify_integrity=True) if trial['biomarkers'] is not None: #parsing the biomarkers associated with the trial biomarkers = [] mainBiomarkers = [] for biomarker in trial['biomarkers']: # biomarkers.extend(createBiomarkersDicts(trial, biomarker)) mainBiomarkersDict = createMainBiomarkersDict(trial, biomarker) if mainBiomarkersDict != {}: mainBiomarkers.append(mainBiomarkersDict) # biomarkerDf = pd.DataFrame.from_records(biomarkers) # biomarkersDf = pd.concat([biomarkersDf, biomarkerDf], ignore_index=True, verify_integrity=True) mainBiomarkerDf = pd.DataFrame.from_records(mainBiomarkers) mainBiomarkersDf = pd.concat([mainBiomarkersDf, mainBiomarkerDf], ignore_index=True, verify_integrity=True) if trial['diseases'] is not None: # diseases = [] mainToSubTypeRel = [] mainDiseases = [] subTypeDiseases = [] diseasesWithoutSynonyms = [] for disease in trial['diseases']: # diseasesDicts = createDiseasesDicts(trial, disease) # diseases.extend(diseasesDicts) mainDiseasesDict = createMainDiseasesDict(trial, disease) if mainDiseasesDict != {}: mainDiseases.append(mainDiseasesDict) subTypeDiseasesDict = createSubTypeDiseasesDict(trial, disease) if subTypeDiseasesDict != {}: subTypeDiseases.append(subTypeDiseasesDict) diseasesWithoutSynonymsDict = createDiseasesWithoutSynonymsDict(trial, disease) if diseasesWithoutSynonymsDict != {}: diseasesWithoutSynonyms.append(diseasesWithoutSynonymsDict) mainToSubTypeRel.extend(createMainToSubTypeRelDicts(trial, disease)) # diseaseDf = pd.DataFrame.from_records(diseases) # diseasesDf = pd.concat([diseasesDf, diseaseDf], ignore_index=True, verify_integrity=True) mainToSubTypeRelDf = pd.DataFrame.from_records(mainToSubTypeRel) mainToSubTypeRelsDf = pd.concat([mainToSubTypeRelsDf, mainToSubTypeRelDf], ignore_index=True, verify_integrity=True) mainDiseaseDf = pd.DataFrame.from_records(mainDiseases) mainDiseasesDf = pd.concat([mainDiseasesDf, mainDiseaseDf], ignore_index=True, verify_integrity=True) subTypeDiseaseDf =
pd.DataFrame.from_records(subTypeDiseases)
pandas.DataFrame.from_records
import pandas as pd import random from sklearn.neighbors import NearestNeighbors import math answer_list =
pd.read_csv("templates/meta_answers.csv")
pandas.read_csv
import itertools import string import numpy as np from numpy import random import pytest import pandas.util._test_decorators as td from pandas import DataFrame, MultiIndex, Series, date_range, timedelta_range import pandas._testing as tm from pandas.tests.plotting.common import TestPlotBase, _check_plot_works import pandas.plotting as plotting """ Test cases for .boxplot method """ @td.skip_if_no_mpl class TestDataFramePlots(TestPlotBase): @pytest.mark.slow def test_boxplot_legacy1(self): df = DataFrame( np.random.randn(6, 4), index=list(string.ascii_letters[:6]), columns=["one", "two", "three", "four"], ) df["indic"] = ["foo", "bar"] * 3 df["indic2"] = ["foo", "bar", "foo"] * 2 _check_plot_works(df.boxplot, return_type="dict") _check_plot_works(df.boxplot, column=["one", "two"], return_type="dict") # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): _check_plot_works(df.boxplot, column=["one", "two"], by="indic") _check_plot_works(df.boxplot, column="one", by=["indic", "indic2"]) with tm.assert_produces_warning(UserWarning): _check_plot_works(df.boxplot, by="indic") with tm.assert_produces_warning(UserWarning): _check_plot_works(df.boxplot, by=["indic", "indic2"]) _check_plot_works(plotting._core.boxplot, data=df["one"], return_type="dict") _check_plot_works(df.boxplot, notch=1, return_type="dict") with tm.assert_produces_warning(UserWarning): _check_plot_works(df.boxplot, by="indic", notch=1) @pytest.mark.slow def test_boxplot_legacy2(self): df = DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"]) df["X"] = Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) df["Y"] = Series(["A"] * 10) with tm.assert_produces_warning(UserWarning): _check_plot_works(df.boxplot, by="X") # When ax is supplied and required number of axes is 1, # passed ax should be used: fig, ax = self.plt.subplots() axes = df.boxplot("Col1", by="X", ax=ax) ax_axes = ax.axes assert ax_axes is axes fig, ax = self.plt.subplots() axes = df.groupby("Y").boxplot(ax=ax, return_type="axes") ax_axes = ax.axes assert ax_axes is axes["A"] # Multiple columns with an ax argument should use same figure fig, ax = self.plt.subplots() with tm.assert_produces_warning(UserWarning): axes = df.boxplot( column=["Col1", "Col2"], by="X", ax=ax, return_type="axes" ) assert axes["Col1"].get_figure() is fig # When by is None, check that all relevant lines are present in the # dict fig, ax = self.plt.subplots() d = df.boxplot(ax=ax, return_type="dict") lines = list(itertools.chain.from_iterable(d.values())) assert len(ax.get_lines()) == len(lines) @pytest.mark.slow def test_boxplot_return_type_none(self): # GH 12216; return_type=None & by=None -> axes result = self.hist_df.boxplot() assert isinstance(result, self.plt.Axes) @pytest.mark.slow def test_boxplot_return_type_legacy(self): # API change in https://github.com/pandas-dev/pandas/pull/7096 import matplotlib as mpl # noqa df = DataFrame( np.random.randn(6, 4), index=list(string.ascii_letters[:6]), columns=["one", "two", "three", "four"], ) with pytest.raises(ValueError): df.boxplot(return_type="NOTATYPE") result = df.boxplot() self._check_box_return_type(result, "axes") with tm.assert_produces_warning(False): result = df.boxplot(return_type="dict") self._check_box_return_type(result, "dict") with tm.assert_produces_warning(False): result = df.boxplot(return_type="axes") self._check_box_return_type(result, "axes") with tm.assert_produces_warning(False): result = df.boxplot(return_type="both") self._check_box_return_type(result, "both") @pytest.mark.slow def test_boxplot_axis_limits(self): def _check_ax_limits(col, ax): y_min, y_max = ax.get_ylim() assert y_min <= col.min() assert y_max >= col.max() df = self.hist_df.copy() df["age"] = np.random.randint(1, 20, df.shape[0]) # One full row height_ax, weight_ax = df.boxplot(["height", "weight"], by="category") _check_ax_limits(df["height"], height_ax) _check_ax_limits(df["weight"], weight_ax) assert weight_ax._sharey == height_ax # Two rows, one partial p = df.boxplot(["height", "weight", "age"], by="category") height_ax, weight_ax, age_ax = p[0, 0], p[0, 1], p[1, 0] dummy_ax = p[1, 1] _check_ax_limits(df["height"], height_ax) _check_ax_limits(df["weight"], weight_ax) _check_ax_limits(df["age"], age_ax) assert weight_ax._sharey == height_ax assert age_ax._sharey == height_ax assert dummy_ax._sharey is None @pytest.mark.slow def test_boxplot_empty_column(self): df = DataFrame(np.random.randn(20, 4)) df.loc[:, 0] = np.nan _check_plot_works(df.boxplot, return_type="axes") @pytest.mark.slow def test_figsize(self): df = DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"]) result = df.boxplot(return_type="axes", figsize=(12, 8)) assert result.figure.bbox_inches.width == 12 assert result.figure.bbox_inches.height == 8 def test_fontsize(self): df = DataFrame({"a": [1, 2, 3, 4, 5, 6]}) self._check_ticks_props( df.boxplot("a", fontsize=16), xlabelsize=16, ylabelsize=16 ) def test_boxplot_numeric_data(self): # GH 22799 df = DataFrame( { "a": date_range("2012-01-01", periods=100), "b": np.random.randn(100), "c": np.random.randn(100) + 2, "d": date_range("2012-01-01", periods=100).astype(str), "e": date_range("2012-01-01", periods=100, tz="UTC"), "f": timedelta_range("1 days", periods=100), } ) ax = df.plot(kind="box") assert [x.get_text() for x in ax.get_xticklabels()] == ["b", "c"] @pytest.mark.parametrize( "colors_kwd, expected", [ ( dict(boxes="r", whiskers="b", medians="g", caps="c"), dict(boxes="r", whiskers="b", medians="g", caps="c"), ), (dict(boxes="r"), dict(boxes="r")), ("r", dict(boxes="r", whiskers="r", medians="r", caps="r")), ], ) def test_color_kwd(self, colors_kwd, expected): # GH: 26214 df = DataFrame(random.rand(10, 2)) result = df.boxplot(color=colors_kwd, return_type="dict") for k, v in expected.items(): assert result[k][0].get_color() == v @pytest.mark.parametrize( "dict_colors, msg", [(dict(boxes="r", invalid_key="r"), "invalid key 'invalid_key'")], ) def test_color_kwd_errors(self, dict_colors, msg): # GH: 26214 df = DataFrame(random.rand(10, 2)) with pytest.raises(ValueError, match=msg): df.boxplot(color=dict_colors, return_type="dict") @pytest.mark.parametrize( "props, expected", [ ("boxprops", "boxes"), ("whiskerprops", "whiskers"), ("capprops", "caps"), ("medianprops", "medians"), ], ) def test_specified_props_kwd(self, props, expected): # GH 30346 df = DataFrame({k: np.random.random(100) for k in "ABC"}) kwd = {props: dict(color="C1")} result = df.boxplot(return_type="dict", **kwd) assert result[expected][0].get_color() == "C1" @td.skip_if_no_mpl class TestDataFrameGroupByPlots(TestPlotBase): @pytest.mark.slow def test_boxplot_legacy1(self): grouped = self.hist_df.groupby(by="gender") with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(grouped.boxplot, return_type="axes") self._check_axes_shape(list(axes.values), axes_num=2, layout=(1, 2)) axes =
_check_plot_works(grouped.boxplot, subplots=False, return_type="axes")
pandas.tests.plotting.common._check_plot_works
#!/usr/bin/env python # coding: utf-8 # In[42]: import pandas as pd from sklearn.linear_model import LinearRegression import pickle import matplotlib.pyplot as plt import pandas_datareader as pdr STOCK_NAME = "FB" # In[43]: yahoo_data_final = pdr.data.get_data_yahoo(STOCK_NAME, start='2020-01-01') yahoo_data_final.to_csv("df.csv") del yahoo_data_final df = pd.read_csv("df.csv") # In[44]: df.Open = df.Open.fillna(df.Open.median()) df.High = df.High.fillna(df.High.median()) df.Low = df.Low.fillna(df.Low.median()) df.Close = df.Close.fillna(df.Close.median()) # In[45]: regression = LinearRegression() regression.fit(df[["Open", "High", "Low"]], df.Close) # In[46]: PRE_CLOSE = [] for i in range(len(df["Close"])): temp = (df["Date"][i], (regression.predict([[df["Open"][i], df["High"][i], df["Low"][i]]]))) PRE_CLOSE.append(temp) perdicted =
pd.DataFrame(PRE_CLOSE, columns=["Date", "Close"])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Aug 25 10:41:54 2018 @author: priyansu """ import pandas as pd import numpy as np train=pd.read_csv("Train.csv") test=
pd.read_csv("Test.csv")
pandas.read_csv
""" test the scalar Timestamp """ import pytz import pytest import dateutil import calendar import locale import numpy as np from dateutil.tz import tzutc from pytz import timezone, utc from datetime import datetime, timedelta import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.tseries import offsets from pandas._libs.tslibs import conversion from pandas._libs.tslibs.timezones import get_timezone, dateutil_gettz as gettz from pandas.errors import OutOfBoundsDatetime from pandas.compat import long, PY3 from pandas.compat.numpy import np_datetime64_compat from pandas import Timestamp, Period, Timedelta, NaT class TestTimestampProperties(object): def test_properties_business(self): ts = Timestamp('2017-10-01', freq='B') control = Timestamp('2017-10-01') assert ts.dayofweek == 6 assert not ts.is_month_start # not a weekday assert not ts.is_quarter_start # not a weekday # Control case: non-business is month/qtr start assert control.is_month_start assert control.is_quarter_start ts = Timestamp('2017-09-30', freq='B') control = Timestamp('2017-09-30') assert ts.dayofweek == 5 assert not ts.is_month_end # not a weekday assert not ts.is_quarter_end # not a weekday # Control case: non-business is month/qtr start assert control.is_month_end assert control.is_quarter_end def test_fields(self): def check(value, equal): # that we are int/long like assert isinstance(value, (int, long)) assert value == equal # GH 10050 ts = Timestamp('2015-05-10 09:06:03.000100001') check(ts.year, 2015) check(ts.month, 5) check(ts.day, 10) check(ts.hour, 9) check(ts.minute, 6) check(ts.second, 3) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 100) check(ts.nanosecond, 1) check(ts.dayofweek, 6) check(ts.quarter, 2) check(ts.dayofyear, 130) check(ts.week, 19) check(ts.daysinmonth, 31) check(ts.daysinmonth, 31) # GH 13303 ts = Timestamp('2014-12-31 23:59:00-05:00', tz='US/Eastern') check(ts.year, 2014) check(ts.month, 12) check(ts.day, 31) check(ts.hour, 23) check(ts.minute, 59) check(ts.second, 0) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 0) check(ts.nanosecond, 0) check(ts.dayofweek, 2) check(ts.quarter, 4) check(ts.dayofyear, 365) check(ts.week, 1) check(ts.daysinmonth, 31) ts = Timestamp('2014-01-01 00:00:00+01:00') starts = ['is_month_start', 'is_quarter_start', 'is_year_start'] for start in starts: assert getattr(ts, start) ts = Timestamp('2014-12-31 23:59:59+01:00') ends = ['is_month_end', 'is_year_end', 'is_quarter_end'] for end in ends: assert getattr(ts, end) # GH 12806 @pytest.mark.parametrize('data', [Timestamp('2017-08-28 23:00:00'), Timestamp('2017-08-28 23:00:00', tz='EST')]) @pytest.mark.parametrize('time_locale', [ None] if tm.get_locales() is None else [None] + tm.get_locales()) def test_names(self, data, time_locale): # GH 17354 # Test .weekday_name, .day_name(), .month_name with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert data.weekday_name == 'Monday' if time_locale is None: expected_day = 'Monday' expected_month = 'August' else: with tm.set_locale(time_locale, locale.LC_TIME): expected_day = calendar.day_name[0].capitalize() expected_month = calendar.month_name[8].capitalize() assert data.day_name(time_locale) == expected_day assert data.month_name(time_locale) == expected_month # Test NaT nan_ts = Timestamp(NaT) assert np.isnan(nan_ts.day_name(time_locale)) assert np.isnan(nan_ts.month_name(time_locale)) @pytest.mark.parametrize('tz', [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']) def test_is_leap_year(self, tz): # GH 13727 dt = Timestamp('2000-01-01 00:00:00', tz=tz) assert dt.is_leap_year assert isinstance(dt.is_leap_year, bool) dt = Timestamp('1999-01-01 00:00:00', tz=tz) assert not dt.is_leap_year dt = Timestamp('2004-01-01 00:00:00', tz=tz) assert dt.is_leap_year dt = Timestamp('2100-01-01 00:00:00', tz=tz) assert not dt.is_leap_year def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013, 12, 31) result = Timestamp(d).week expected = 1 # ISO standard assert result == expected d = datetime(2008, 12, 28) result = Timestamp(d).week expected = 52 # ISO standard assert result == expected d = datetime(2009, 12, 31) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected d = datetime(2010, 1, 1) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected d = datetime(2010, 1, 3) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected result = np.array([Timestamp(datetime(*args)).week for args in [(2000, 1, 1), (2000, 1, 2), ( 2005, 1, 1), (2005, 1, 2)]]) assert (result == [52, 52, 53, 53]).all() class TestTimestampConstructors(object): def test_constructor(self): base_str = '2014-07-01 09:00' base_dt = datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calendar assert (calendar.timegm(base_dt.timetuple()) * 1000000000 == base_expected) tests = [(base_str, base_dt, base_expected), ('2014-07-01 10:00', datetime(2014, 7, 1, 10), base_expected + 3600 * 1000000000), ('2014-07-01 09:00:00.000008000', datetime(2014, 7, 1, 9, 0, 0, 8), base_expected + 8000), ('2014-07-01 09:00:00.000000005', Timestamp('2014-07-01 09:00:00.000000005'), base_expected + 5)] timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, date, expected in tests: for result in [Timestamp(date_str), Timestamp(date)]: # only with timestring assert result.value == expected assert conversion.pydt_to_i8(result) == expected # re-creation shouldn't affect to internal value result = Timestamp(result) assert result.value == expected assert conversion.pydt_to_i8(result) == expected # with timezone for tz, offset in timezones: for result in [Timestamp(date_str, tz=tz), Timestamp(date, tz=tz)]: expected_tz = expected - offset * 3600 * 1000000000 assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should preserve tz result = Timestamp(result) assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected - offset * 3600 * 1000000000 assert result.value == expected_utc assert conversion.pydt_to_i8(result) == expected_utc def test_constructor_with_stringoffset(self): # GH 7833 base_str = '2014-07-01 11:00:00+02:00' base_dt = datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calendar assert (calendar.timegm(base_dt.timetuple()) * 1000000000 == base_expected) tests = [(base_str, base_expected), ('2014-07-01 12:00:00+02:00', base_expected + 3600 * 1000000000), ('2014-07-01 11:00:00.000008000+02:00', base_expected + 8000), ('2014-07-01 11:00:00.000000005+02:00', base_expected + 5)] timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, expected in tests: for result in [Timestamp(date_str)]: # only with timestring assert result.value == expected assert conversion.pydt_to_i8(result) == expected # re-creation shouldn't affect to internal value result = Timestamp(result) assert result.value == expected assert conversion.pydt_to_i8(result) == expected # with timezone for tz, offset in timezones: result = Timestamp(date_str, tz=tz) expected_tz = expected assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should preserve tz result = Timestamp(result) assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected assert result.value == expected_utc assert conversion.pydt_to_i8(result) == expected_utc # This should be 2013-11-01 05:00 in UTC # converted to Chicago tz result = Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago') assert result.value == Timestamp('2013-11-01 05:00').value expected = "Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago')" # noqa assert repr(result) == expected assert result == eval(repr(result)) # This should be 2013-11-01 05:00 in UTC # converted to Tokyo tz (+09:00) result = Timestamp('2013-11-01 00:00:00-0500', tz='Asia/Tokyo') assert result.value == Timestamp('2013-11-01 05:00').value expected = "Timestamp('2013-11-01 14:00:00+0900', tz='Asia/Tokyo')" assert repr(result) == expected assert result == eval(repr(result)) # GH11708 # This should be 2015-11-18 10:00 in UTC # converted to Asia/Katmandu result = Timestamp("2015-11-18 15:45:00+05:45", tz="Asia/Katmandu") assert result.value == Timestamp("2015-11-18 10:00").value expected = "Timestamp('2015-11-18 15:45:00+0545', tz='Asia/Katmandu')" assert repr(result) == expected assert result == eval(repr(result)) # This should be 2015-11-18 10:00 in UTC # converted to Asia/Kolkata result = Timestamp("2015-11-18 15:30:00+05:30", tz="Asia/Kolkata") assert result.value == Timestamp("2015-11-18 10:00").value expected = "Timestamp('2015-11-18 15:30:00+0530', tz='Asia/Kolkata')" assert repr(result) == expected assert result == eval(repr(result)) def test_constructor_invalid(self): with tm.assert_raises_regex(TypeError, 'Cannot convert input'): Timestamp(slice(2)) with tm.assert_raises_regex(ValueError, 'Cannot convert Period'): Timestamp(Period('1000-01-01')) def test_constructor_invalid_tz(self): # GH#17690 with tm.assert_raises_regex(TypeError, 'must be a datetime.tzinfo'): Timestamp('2017-10-22', tzinfo='US/Eastern') with tm.assert_raises_regex(ValueError, 'at most one of'): Timestamp('2017-10-22', tzinfo=utc, tz='UTC') with tm.assert_raises_regex(ValueError, "Invalid frequency:"): # GH#5168 # case where user tries to pass tz as an arg, not kwarg, gets # interpreted as a `freq` Timestamp('2012-01-01', 'US/Pacific') def test_constructor_tz_or_tzinfo(self): # GH#17943, GH#17690, GH#5168 stamps = [Timestamp(year=2017, month=10, day=22, tz='UTC'), Timestamp(year=2017, month=10, day=22, tzinfo=utc), Timestamp(year=2017, month=10, day=22, tz=utc), Timestamp(datetime(2017, 10, 22), tzinfo=utc), Timestamp(datetime(2017, 10, 22), tz='UTC'), Timestamp(datetime(2017, 10, 22), tz=utc)] assert all(ts == stamps[0] for ts in stamps) def test_constructor_positional(self): # see gh-10758 with pytest.raises(TypeError): Timestamp(2000, 1) with pytest.raises(ValueError): Timestamp(2000, 0, 1) with pytest.raises(ValueError): Timestamp(2000, 13, 1) with pytest.raises(ValueError): Timestamp(2000, 1, 0) with pytest.raises(ValueError): Timestamp(2000, 1, 32) # see gh-11630 assert (repr(Timestamp(2015, 11, 12)) == repr(Timestamp('20151112'))) assert (repr(Timestamp(2015, 11, 12, 1, 2, 3, 999999)) == repr(Timestamp('2015-11-12 01:02:03.999999'))) def test_constructor_keyword(self): # GH 10758 with pytest.raises(TypeError): Timestamp(year=2000, month=1) with pytest.raises(ValueError): Timestamp(year=2000, month=0, day=1) with pytest.raises(ValueError): Timestamp(year=2000, month=13, day=1) with pytest.raises(ValueError): Timestamp(year=2000, month=1, day=0) with pytest.raises(ValueError): Timestamp(year=2000, month=1, day=32) assert (repr(Timestamp(year=2015, month=11, day=12)) == repr(Timestamp('20151112'))) assert (repr(Timestamp(year=2015, month=11, day=12, hour=1, minute=2, second=3, microsecond=999999)) == repr(Timestamp('2015-11-12 01:02:03.999999'))) def test_constructor_fromordinal(self): base = datetime(2000, 1, 1) ts = Timestamp.fromordinal(base.toordinal(), freq='D') assert base == ts assert ts.freq == 'D' assert base.toordinal() == ts.toordinal() ts = Timestamp.fromordinal(base.toordinal(), tz='US/Eastern') assert Timestamp('2000-01-01', tz='US/Eastern') == ts assert base.toordinal() == ts.toordinal() # GH#3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) assert ts.to_pydatetime() == dt # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(), tz='US/Eastern') assert ts.to_pydatetime() == dt_tz @pytest.mark.parametrize('result', [ Timestamp(datetime(2000, 1, 2, 3, 4, 5, 6), nanosecond=1), Timestamp(year=2000, month=1, day=2, hour=3, minute=4, second=5, microsecond=6, nanosecond=1), Timestamp(year=2000, month=1, day=2, hour=3, minute=4, second=5, microsecond=6, nanosecond=1, tz='UTC'), Timestamp(2000, 1, 2, 3, 4, 5, 6, 1, None), Timestamp(2000, 1, 2, 3, 4, 5, 6, 1, pytz.UTC)]) def test_constructor_nanosecond(self, result): # GH 18898 expected = Timestamp(datetime(2000, 1, 2, 3, 4, 5, 6), tz=result.tz) expected = expected + Timedelta(nanoseconds=1) assert result == expected @pytest.mark.parametrize('arg', ['year', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond']) def test_invalid_date_kwarg_with_string_input(self, arg): kwarg = {arg: 1} with pytest.raises(ValueError): Timestamp('2010-10-10 12:59:59.999999999', **kwarg) def test_out_of_bounds_value(self): one_us = np.timedelta64(1).astype('timedelta64[us]') # By definition we can't go out of bounds in [ns], so we # convert the datetime64s to [us] so we can go out of bounds min_ts_us = np.datetime64(Timestamp.min).astype('M8[us]') max_ts_us = np.datetime64(Timestamp.max).astype('M8[us]') # No error for the min/max datetimes Timestamp(min_ts_us) Timestamp(max_ts_us) # One us less than the minimum is an error with pytest.raises(ValueError): Timestamp(min_ts_us - one_us) # One us more than the maximum is an error with pytest.raises(ValueError): Timestamp(max_ts_us + one_us) def test_out_of_bounds_string(self): with pytest.raises(ValueError): Timestamp('1676-01-01') with pytest.raises(ValueError): Timestamp('2263-01-01') def test_barely_out_of_bounds(self): # GH#19529 # GH#19382 close enough to bounds that dropping nanos would result # in an in-bounds datetime with pytest.raises(OutOfBoundsDatetime): Timestamp('2262-04-11 23:47:16.854775808') def test_bounds_with_different_units(self): out_of_bounds_dates = ('1677-09-21', '2262-04-12') time_units = ('D', 'h', 'm', 's', 'ms', 'us') for date_string in out_of_bounds_dates: for unit in time_units: dt64 = np.datetime64(date_string, dtype='M8[%s]' % unit) with pytest.raises(ValueError): Timestamp(dt64) in_bounds_dates = ('1677-09-23', '2262-04-11') for date_string in in_bounds_dates: for unit in time_units: dt64 = np.datetime64(date_string, dtype='M8[%s]' % unit) Timestamp(dt64) def test_min_valid(self): # Ensure that Timestamp.min is a valid Timestamp Timestamp(Timestamp.min) def test_max_valid(self): # Ensure that Timestamp.max is a valid Timestamp Timestamp(Timestamp.max) def test_now(self): # GH#9000 ts_from_string = Timestamp('now') ts_from_method = Timestamp.now() ts_datetime = datetime.now() ts_from_string_tz = Timestamp('now', tz='US/Eastern') ts_from_method_tz = Timestamp.now(tz='US/Eastern') # Check that the delta between the times is less than 1s (arbitrarily # small) delta = Timedelta(seconds=1) assert abs(ts_from_method - ts_from_string) < delta assert abs(ts_datetime - ts_from_method) < delta assert abs(ts_from_method_tz - ts_from_string_tz) < delta assert (abs(ts_from_string_tz.tz_localize(None) - ts_from_method_tz.tz_localize(None)) < delta) def test_today(self): ts_from_string = Timestamp('today') ts_from_method = Timestamp.today() ts_datetime = datetime.today() ts_from_string_tz = Timestamp('today', tz='US/Eastern') ts_from_method_tz = Timestamp.today(tz='US/Eastern') # Check that the delta between the times is less than 1s (arbitrarily # small) delta = Timedelta(seconds=1) assert abs(ts_from_method - ts_from_string) < delta assert abs(ts_datetime - ts_from_method) < delta assert abs(ts_from_method_tz - ts_from_string_tz) < delta assert (abs(ts_from_string_tz.tz_localize(None) - ts_from_method_tz.tz_localize(None)) < delta) class TestTimestamp(object): def test_tz(self): tstr = '2014-02-01 09:00' ts = Timestamp(tstr) local = ts.tz_localize('Asia/Tokyo') assert local.hour == 9 assert local == Timestamp(tstr, tz='Asia/Tokyo') conv = local.tz_convert('US/Eastern') assert conv == Timestamp('2014-01-31 19:00', tz='US/Eastern') assert conv.hour == 19 # preserves nanosecond ts = Timestamp(tstr) + offsets.Nano(5) local = ts.tz_localize('Asia/Tokyo') assert local.hour == 9 assert local.nanosecond == 5 conv = local.tz_convert('US/Eastern') assert conv.nanosecond == 5 assert conv.hour == 19 def test_utc_z_designator(self): assert get_timezone(Timestamp('2014-11-02 01:00Z').tzinfo) == 'UTC' def test_asm8(self): np.random.seed(7960929) ns = [Timestamp.min.value, Timestamp.max.value, 1000] for n in ns: assert (Timestamp(n).asm8.view('i8') == np.datetime64(n, 'ns').view('i8') == n) assert (Timestamp('nat').asm8.view('i8') == np.datetime64('nat', 'ns').view('i8')) def test_class_ops_pytz(self): def compare(x, y): assert (int(Timestamp(x).value / 1e9) == int(Timestamp(y).value / 1e9)) compare(Timestamp.now(), datetime.now()) compare(Timestamp.now('UTC'), datetime.now(timezone('UTC'))) compare(Timestamp.utcnow(), datetime.utcnow()) compare(Timestamp.today(), datetime.today()) current_time = calendar.timegm(datetime.now().utctimetuple()) compare(Timestamp.utcfromtimestamp(current_time), datetime.utcfromtimestamp(current_time)) compare(Timestamp.fromtimestamp(current_time), datetime.fromtimestamp(current_time)) date_component = datetime.utcnow() time_component = (date_component + timedelta(minutes=10)).time() compare(Timestamp.combine(date_component, time_component), datetime.combine(date_component, time_component)) def test_class_ops_dateutil(self): def compare(x, y): assert (int(np.round(Timestamp(x).value / 1e9)) == int(np.round(Timestamp(y).value / 1e9))) compare(Timestamp.now(), datetime.now()) compare(Timestamp.now('UTC'), datetime.now(tzutc())) compare(Timestamp.utcnow(), datetime.utcnow()) compare(Timestamp.today(), datetime.today()) current_time = calendar.timegm(datetime.now().utctimetuple()) compare(Timestamp.utcfromtimestamp(current_time), datetime.utcfromtimestamp(current_time)) compare(Timestamp.fromtimestamp(current_time), datetime.fromtimestamp(current_time)) date_component = datetime.utcnow() time_component = (date_component + timedelta(minutes=10)).time() compare(Timestamp.combine(date_component, time_component), datetime.combine(date_component, time_component)) def test_basics_nanos(self): val = np.int64(946684800000000000).view('M8[ns]') stamp = Timestamp(val.view('i8') + 500) assert stamp.year == 2000 assert stamp.month == 1 assert stamp.microsecond == 0 assert stamp.nanosecond == 500 # GH 14415 val = np.iinfo(np.int64).min + 80000000000000 stamp = Timestamp(val) assert stamp.year == 1677 assert stamp.month == 9 assert stamp.day == 21 assert stamp.microsecond == 145224 assert stamp.nanosecond == 192 def test_unit(self): def check(val, unit=None, h=1, s=1, us=0): stamp = Timestamp(val, unit=unit) assert stamp.year == 2000 assert stamp.month == 1 assert stamp.day == 1 assert stamp.hour == h if unit != 'D': assert stamp.minute == 1 assert stamp.second == s assert stamp.microsecond == us else: assert stamp.minute == 0 assert stamp.second == 0 assert stamp.microsecond == 0 assert stamp.nanosecond == 0 ts =
Timestamp('20000101 01:01:01')
pandas.Timestamp
# Read the bitcoin blockchain data and extract their topological properties # Modify on 12.04.2021 from collections import defaultdict from multiprocessing import Pool, Queue import multiprocessing import datetime import math import time import pandas as pd import requests import numpy as np import json import os import torch begin_date = '2020-01-01' end_date = '2020-12-31' AMODATA_DIR = 'amoData/' AMOMAT_DIR = 'amoMat/' OCCMAT_DIR = 'occMat/' PERMAT_DIR = 'perMat/' BETTI_DIR = 'betti/' BETTI_0_DIR = 'betti/betti_0/' BETTI_1_DIR = 'betti/betti_1/' def getBetweenDay(begin_date, end_date): date_list = [] date_arr = [] date_unix_list = [] begin_date = datetime.datetime.strptime(begin_date, "%Y-%m-%d") print(type(begin_date)) print("begin_date:",begin_date) # end_date = datetime.datetime.strptime(time.strftime('%Y-%m-%d', time.localtime(time.time())), "%Y-%m-%d") end_date = datetime.datetime.strptime(end_date, "%Y-%m-%d") print("end_date:",end_date) while begin_date <= end_date: date_unix = math.trunc(begin_date.replace(tzinfo=datetime.timezone.utc).timestamp()*1000) date_unix_list.append(date_unix) date_str = begin_date.strftime("%Y-%m-%d") date_list.append(date_str) date_arr.append([date_str, date_unix]) begin_date += datetime.timedelta(days=1) return np.asarray(date_arr) def new_file(dir): list = os.listdir(dir) list.sort(key=lambda fn:os.path.getmtime(dir+fn)) filetime = datetime.datetime.fromtimestamp(os.path.getmtime(dir+list[-1])) filepath = os.path.join(dir, list[-1]) print("latest file is: ", list[-1]) print("time: ", filetime .strftime("%Y-%m-%d %H:%M:%S")) return filepath # Read block def read_block(block): tx_btc_total = [] print("block:", block['hash']) # Get every transaction data tx_api = 'https://blockchain.info/rawblock/'+block['hash'] tx_data = requests.get(tx_api) None_count = 0 for tx in tx_data.json()['tx']: # Extract its input size and output size # chain_data.append([tx['vin_sz'], tx['vout_sz']]) vin = tx['vin_sz'] vout = tx['vout_sz'] if vin > 20: vin = 20 if vout > 20: vout = 20 IOName = f'{vin:02}' + f'{vout:02}' tx_value = 0 for value in tx['inputs']: if ('prev_out' in value) & (value['prev_out'] is not None): #print("value:", value) tx_value = tx_value + value['prev_out']['value'] else: None_count = None_count + 1 tx_btc_total.append([IOName, tx_value]) tx_btc_total = pd.DataFrame(tx_btc_total) #print("None_count: ", None_count) return tx_btc_total # print(tx_btc_total) # create a IO-Name list def create_IONameList(): IONameList = [] for i in range(20): for j in range(20): IOName = f'{i:02}' + f'{j:02}' IONameList.append(IOName) return IONameList # Merge two dictionaries def mergeDict(dict1, dict2): ''' Merge dictionaries and keep values of common keys in list''' dict3 = {**dict1, **dict2} for key, value in dict3.items(): if key in dict1 and key in dict2: dict3[key] = [value , dict1[key]] return dict3 # with 10-quantiles # calculate the quantile of two nodes def calculate_quantile(amount_1, amount_2): # for quantile_ in range(quantile_value,1,quantile_value) # print("quantile;",amount_1.quantile([0.25, 0.5, 0.75])[0][0.25]) quantile_percentage = [ i/500 for i in range(1, 500, 1)] quantile_squar = (amount_1.quantile(quantile_percentage)[0]-amount_2.quantile(quantile_percentage)[0])**2 quantile_sum = quantile_squar.sum() # print(quantile_1, quantile_2, quantile_3) return (quantile_sum)**0.5 def getYearFromDate(date): Year = date.split("-")[0] return Year def getYearsFromDate(begin_date, end_date): begin_Year = begin_date.split("-")[0] end_Year = end_date.split("-")[0] YEARS = [str(i) for i in range(int(begin_Year), int(end_Year) + 1)] return YEARS # If any errors are encountered, it will automatically restart. def genOccMat(date_unix): time_now = time.time() Year = getYearFromDate(date_unix[0]) while True: try: print("check file {}...".format(date_unix[0]+".json")) if 'occ' + date_unix[0] + '.csv' in os.listdir(OCCMAT_DIR + YEAR + "/"): print(date_unix[0]+".csv already exists ...") # continue else: ''' # Get the daily block datum = "https://blockchain.info/blocks/"+date_unix[1]+"?format=json" amo_data_total = pd.DataFrame([]) res = requests.get(datum) for block in res.json()["blocks"]: block_data = read_block(block) amo_data_total = pd.concat([amo_data_total, block_data]) ''' # For 2018 data columns are [index,"0", "1"] # amo_data_total = pd.read_csv(AMODATA_DIR + YEAR + "/" + date_unix[0] + ".csv", index_col=0, converters={"0":str}) # amo_data_total.to_csv(AMODATA_DIR + YEAR + "/" + date_unix[0] + ".csv") # amo_data_total.columns = ['IOSize', 'tx_value'] # For 2020 data columns are [index,"IOSize", "tx_value", "tx_value_log"] ### amo_data_total = pd.read_csv(AMODATA_DIR + YEAR + "/" + date_unix[0] + ".csv", index_col=0, names=["IOSize","tx_value"], converters={"IOSize":str, "tx_value": float}) #amo_data_total_convert = amo_data_total[["IOSize", "tx_value"]] #amo_data_total_convert.columns = ["0","1"] #amo_data_total_convert.to_csv(AMODATA_DIR + YEAR + "/" + date_unix[0] + ".csv") #amo_data_total = amo_data_total_convert ############### # group the same address amo_data_total = pd.read_csv(AMODATA_DIR + YEAR + "/" + date_unix[0] + ".csv", names=["addr", "in_sz", "out_sz", "tx_value"], converters={"addr":str, "tx_value": float}) amo_data_total = pd.concat([amo_data_total.groupby(amo_data_total["addr"]).sum()], axis=1).reset_index(drop=True) eth_tx_total = [] for tx in amo_data_total.values: # Extract its input size and output size vin = int(tx[0]) vout = int(tx[1]) if math.floor(vin/2) > 19: vin = 19 else: vin = math.floor(vin/2) if math.floor(vout/2) > 19: vout = 19 else: vout = math.floor(vout/2) IOName = f'{vin:02}' + f'{vout:02}' tx_value = tx[2] eth_tx_total.append([IOName, tx_value]) amo_data_total = pd.DataFrame(eth_tx_total, columns=["IOSize", "tx_value"]) ############### ### amo_data_total.columns = ['IOSize', 'tx_value'] amo_data_total["tx_value_log"] = amo_data_total["tx_value"].map(lambda x: round(math.log(1 + x/(10**8)),5)) amo_data_total.reset_index(drop=True) amo_data_total_dict = amo_data_total.groupby('IOSize').tx_value_log.apply(list).to_dict() IONameList = create_IONameList() print("amo_data_total:", amo_data_total) MATRIX_SIZE = len(IONameList) amoMat = [[0] * MATRIX_SIZE] * MATRIX_SIZE amoMat_df = pd.DataFrame(amoMat, columns = IONameList, index = IONameList) for IO_1 in IONameList: if IO_1 in amo_data_total_dict: amount_1 = pd.DataFrame(amo_data_total_dict[IO_1]) else: amount_1 = pd.DataFrame([0]) for IO_2 in IONameList: if IO_2 in amo_data_total_dict: amount_2 = pd.DataFrame(amo_data_total_dict[IO_2]) else: amount_2 = pd.DataFrame([0]) amoMat_df.loc[IO_1, IO_2] = calculate_quantile(amount_1, amount_2) #print("amoMat_df:", amoMat_df) print("amoMat_df:", amoMat_df) # Calculate betti nummber # add parameter for perseus computing amoMat_df.apply(str) param_1 = pd.DataFrame([["400"]], columns=["0101"]) param_2 = pd.DataFrame([["1","1","101","1"]], columns=["0101", "0102", "0103", "0104"]) param_amoMat_df = pd.concat([param_1,param_2, amoMat_df], axis=0, sort=False) perMat_path = PERMAT_DIR + YEAR + "/" + date_unix[0] + ".csv" param_amoMat_df.to_csv(perMat_path, index=False, sep='\t', header=False) # use perseus to compute betti number betti_path = "betti/" + YEAR + "/" + date_unix[0] betti_0_path = "betti/betti_0/" + YEAR + "/" + date_unix[0] + "_betti_0.csv" betti_1_path = "betti/betti_1/" + YEAR + "/" + date_unix[0] + "_betti_1.csv" perseus_command = "perseus/perseus distmat " + perMat_path + " " + betti_path if(os.system(perseus_command) == 0): betti_number = pd.read_csv(betti_path +"_betti.txt", sep='\s+', index_col=0, names=["betti_0", "betti_1"]) init_betti_0 = pd.DataFrame([[0]]*101, columns=["betti_0"]) init_betti_1 = pd.DataFrame([[0]]*101, columns=["betti_1"]) betti_0 = (betti_number["betti_0"] + init_betti_0["betti_0"]).fillna(axis=0, method='ffill').fillna(0).astype(int) betti_1 = (betti_number["betti_1"] + init_betti_1["betti_1"]).fillna(axis=0, method='ffill').fillna(0).astype(int) betti_0.to_csv(betti_0_path) betti_1.to_csv(betti_1_path) print("Successfully calculated Betti number!") else: print("Failed to calculate Betti number!") # Calculate OccMat and AmoMat io_data_amo = amo_data_total['tx_value'].groupby(amo_data_total['IOSize']).sum() io_data_occ = amo_data_total.groupby(amo_data_total['IOSize']).count() io_data_occ = io_data_occ.iloc[:,1] occMat = torch.zeros(20,20) amoMat = torch.zeros(20,20) for i in range(20): for j in range(20): io_name = str(i).zfill(2) + str(j).zfill(2) if(io_name in io_data_amo.index): amoMat[i][j] = io_data_amo[io_name] if(io_name in io_data_occ.index): occMat[i][j] = io_data_occ[io_name] amoMat_np = amoMat.numpy() amoMat_df = pd.DataFrame(amoMat_np) #amoMat_df.to_csv(AMOMAT_DIR + 'amo2020' + str(day).zfill(3) + '.csv', float_format='%.0f', header=False, index=False) amoMat_df.to_csv(AMOMAT_DIR + YEAR + "/" + 'amo' + date_unix[0] + '.csv', float_format='%.0f', header=False, index=False) occMat_np = occMat.numpy() occMat_df = pd.DataFrame(occMat_np) #occMat_df.to_csv(OCCMAT_DIR + 'occ2020' + str(day).zfill(3) + '.csv', float_format='%.0f', header=False, index=False) occMat_df.to_csv(OCCMAT_DIR + YEAR + "/" + 'occ' + date_unix[0] + '.csv', float_format='%.0f', header=False, index=False) except Exception as ex: template = "An exception of type {0} occurred. Arguments: \n{1!r}" message = template.format(type(ex).__name__, ex.args) print(date_unix[0] + "\n" + message) continue break # count the time total_days = len(getBetweenDay(begin_date, end_date)) finished_days = len(os.listdir(BETTI_0_DIR + YEAR + "/")) - 1 left_days = total_days - finished_days finished_percentage = math.floor(finished_days / total_days * 100) single_file_time = time.time()-time_now left_time = single_file_time * left_days print('\tcost: {:.4f}s/file; left time: {:.4f}s; {} {}%'.format(single_file_time, left_time, "#"*finished_percentage+"."*(100-finished_percentage), finished_percentage)) # Create a directory if it does not exist YEARS = getYearsFromDate(begin_date, end_date) for YEAR in YEARS: amoData_Year_dir = AMODATA_DIR + YEAR + "/" amoMat_Year_dir = AMOMAT_DIR + YEAR + "/" occMat_Year_dir = OCCMAT_DIR + YEAR + "/" perMat_Year_dir = PERMAT_DIR + YEAR + "/" betti_Year_dir = BETTI_DIR + YEAR + "/" betti_0_Year_dir = BETTI_0_DIR + YEAR + "/" betti_1_Year_dir = BETTI_1_DIR + YEAR + "/" check_dir_list = [amoData_Year_dir, amoMat_Year_dir, occMat_Year_dir, perMat_Year_dir,betti_Year_dir, betti_0_Year_dir, betti_1_Year_dir] for dir_name in check_dir_list: if not os.path.exists(dir_name): print("Create "+dir_name) os.makedirs(dir_name) p = Pool(10) for date_unix in getBetweenDay(begin_date, end_date): p.apply_async(genOccMat, args=(date_unix,)) #genOccMat(date_unix) p.close() p.join() ''' for date_unix in getBetweenDay(begin_date, end_date): genOccMat(date_unix) ''' betti_0_total = pd.DataFrame([]) betti_1_total = pd.DataFrame([]) for date in getBetweenDay(begin_date,end_date): YEAR = getYearFromDate(date[0]) betti_0 =
pd.read_csv(BETTI_0_DIR + YEAR + "/" +date[0]+"_betti_0.csv", index_col=False, names=["id",date[0]])
pandas.read_csv
#!python # join hole intervals using the support of one # check manual for usage and important details # v1.0 05/2021 paulo.ernesto ''' usage: $0 target_db*csv,xlsx target_hid:target_db target_from:target_db target_to:target_db source_db*csv,xlsx source_hid:source_db source_from:source_db source_to:source_db variables#variable:source_db#ponderation=mean,major,sum,list output*csv,xlsx ''' import sys, os.path import numpy as np import pandas as pd # import modules from a pyz (zip) file with same name as scripts sys.path.append(os.path.splitext(sys.argv[0])[0] + '.pyz') from _gui import usage_gui, commalist, pd_load_dataframe, pd_save_dataframe from db_join_interval import pd_join_interval from bm_breakdown import pd_breakdown def db_join_support(target_db, target_hid, target_from, target_to, source_db, source_hid, source_from, source_to, variables, output): v_lut = [{},{}] v_lut[0]['hid'] = target_hid or 'hid' v_lut[1]['hid'] = source_hid or 'hid' v_lut[0]['from'] = target_from or 'from' v_lut[1]['from'] = source_from or 'from' v_lut[0]['to'] = target_to or 'to' v_lut[1]['to'] = source_to or 'to' dfs = [pd_load_dataframe(target_db), pd_load_dataframe(source_db)] dfs[0]['tmp_target_from'] = dfs[0][v_lut[0]['from']] odf = pd_join_interval(dfs, v_lut) odf.reset_index(drop=1, inplace=True) # pd_join_interval modifies the input array which is bad behavior # but datasets may be huge so its best to just cleanup after dfs[0].reset_index(drop=1, inplace=True) variables = commalist().parse(variables) ttf = 'tmp_target_from' vl_a = [[ttf], [v_lut[0]['hid']]] + [[_[0] + '=' + _[0], _[1]] for _ in variables] odf = pd_breakdown(odf, vl_a) odf =
pd.merge(dfs[0], odf, 'outer', [v_lut[0]['hid'], ttf])
pandas.merge
import sys, os import scipy.sparse import pandas as pd from load_public_data import anes_opinion_data, anes_codebook from find_public_opinion_question import find_anes_question PATH = ".\\data\\tf-idf\\public_opinion\\" #load tfidf matrix TFIDF_MATRIX_FILENAME = "tfidf_matrix.npz" TFIDF_MATRIX_PATH = os.path.join(PATH,TFIDF_MATRIX_FILENAME) tfidf_matrix = scipy.sparse.load_npz(TFIDF_MATRIX_PATH) #load {row index : opinion id} mapping OPINION_ID_FILENAME = "tfidf_rows.csv" OPINION_ID_PATH = os.path.join(PATH,OPINION_ID_FILENAME) opin_id_df =
pd.read_csv(OPINION_ID_PATH)
pandas.read_csv
import databricks.koalas as ks import pandas as pd import pytest from pandas.testing import assert_frame_equal from gators.data_cleaning.drop_datatype_columns import DropDatatypeColumns @pytest.fixture def data(): X = pd.DataFrame({"A": [1, 2], "B": [1.0, 2.0], "C": ["q", "w"]}) obj = DropDatatypeColumns(dtype=float).fit(X) X_expected = pd.DataFrame({"A": [1, 2], "C": ["q", "w"]}) return obj, X, X_expected @pytest.fixture def data_ks(): X = ks.DataFrame({"A": [1, 2], "B": [1.0, 2.0], "C": ["q", "w"]}) obj = DropDatatypeColumns(dtype=float).fit(X) X_expected = pd.DataFrame({"A": [1, 2], "C": ["q", "w"]}) return obj, X, X_expected def test_pd(data): obj, X, X_expected = data X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_ks(data_ks): obj, X, X_expected = data_ks X_new = obj.transform(X) assert_frame_equal(X_new.to_pandas(), X_expected) def test_pd_np(data): obj, X, X_expected = data X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new, columns=X_expected.columns) assert_frame_equal(X_new, X_expected.astype(object)) @pytest.mark.koalas def test_ks_np(data_ks): obj, X, X_expected = data_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new =
pd.DataFrame(X_numpy_new, columns=X_expected.columns)
pandas.DataFrame
# sw: script used to scrape travel time data from Google API. # No need to run the script for replication. # TBD: need to set up the global environment variables. import numpy as np import pandas as pd import matplotlib.pyplot as plt import geopandas as gpd import geoplot from pysal.lib import weights import networkx as nx from scipy.spatial import distance import googlemaps # system path import sys import os # util path utility_path = os.path.join(os.getcwd(),'src/d00_utils/') sys.path.append(utility_path) import utilities as util # data path raw_data_path = os.path.join(os.getcwd(),'data/01_raw/') intermediate_data_path = os.path.join(os.getcwd(),'data/02_intermediate/') # read files sa2_adelaide = gpd.read_file(intermediate_data_path + 'shapefiles/sa2_adelaide.shp') sa2_adelaide['centroids'] = sa2_adelaide.centroid sa2_adelaide['Lat'] = sa2_adelaide.centroids.y sa2_adelaide['Long'] = sa2_adelaide.centroids.x # # create a new dataframe OD = {} OD['o_idx'] = [] OD['d_idx'] = [] OD['o_sa2_idx'] = [] OD['d_sa2_idx'] = [] OD['o_lat'] = [] OD['o_long'] = [] OD['d_lat'] = [] OD['d_long'] = [] for i in range(sa2_adelaide.shape[0]): print("Origin Index is: ", i) o_idx = i o_sa2_idx = sa2_adelaide.loc[i, 'SA2_MAIN16'] o_lat = sa2_adelaide.loc[i, 'Lat'] o_long = sa2_adelaide.loc[i, 'Long'] for j in range(sa2_adelaide.shape[0]): d_idx = j d_sa2_idx = sa2_adelaide.loc[j, 'SA2_MAIN16'] d_lat = sa2_adelaide.loc[j, 'Lat'] d_long = sa2_adelaide.loc[j, 'Long'] # append OD['o_idx'].append(o_idx) OD['d_idx'].append(d_idx) OD['o_sa2_idx'].append(o_sa2_idx) OD['d_sa2_idx'].append(d_sa2_idx) OD['o_lat'].append(o_lat) OD['o_long'].append(o_long) OD['d_lat'].append(d_lat) OD['d_long'].append(d_long) # create the data frame OD_df = pd.DataFrame(OD) # Need to specify your API_key gmaps = googlemaps.Client(key=API_key) OD_time_dic = {} for idx in range(OD_df.shape[0]): # scraping codes - Google does not allow it. if idx%100 == 0: print(idx) o_lat,o_long,d_lat,d_long = OD_df.loc[idx, ['o_lat','o_long','d_lat','d_long']] origin = (o_lat,o_long) destination = (d_lat,d_long) result = gmaps.distance_matrix(origin, destination, mode = 'driving') OD_time_dic[idx] = result # Augment Google data OD_from_google_api = {} OD_from_google_api['idx'] = [] # Important for combining two dfs OD_from_google_api['d_address'] = [] OD_from_google_api['o_address'] = [] OD_from_google_api['od_duration_text'] = [] OD_from_google_api['od_duration_value'] = [] OD_from_google_api['od_distance_text'] = [] OD_from_google_api['od_distance_value'] = [] for key in OD_time_dic.keys(): if key%100 == 0: print(key) OD_from_google_api['idx'].append(key) OD_from_google_api['d_address'].append(OD_time_dic[key]['destination_addresses'][0]) OD_from_google_api['o_address'].append(OD_time_dic[key]['origin_addresses'][0]) OD_from_google_api['od_duration_text'].append(OD_time_dic[key]['rows'][0]['elements'][0]['duration']['text']) OD_from_google_api['od_duration_value'].append(OD_time_dic[key]['rows'][0]['elements'][0]['duration']['value']) OD_from_google_api['od_distance_text'].append(OD_time_dic[key]['rows'][0]['elements'][0]['distance']['text']) OD_from_google_api['od_distance_value'].append(OD_time_dic[key]['rows'][0]['elements'][0]['distance']['value']) OD_from_google_api_df =
pd.DataFrame(OD_from_google_api)
pandas.DataFrame
"""Tests suite for Period handling. Parts derived from scikits.timeseries code, original authors: - <NAME> & <NAME> - pierregm_at_uga_dot_edu - mattknow_ca_at_hotmail_dot_com """ from unittest import TestCase from datetime import datetime, timedelta from numpy.ma.testutils import assert_equal from pandas.tseries.period import Period, PeriodIndex from pandas.tseries.index import DatetimeIndex, date_range from pandas.tseries.tools import to_datetime import pandas.core.datetools as datetools import numpy as np from pandas import Series, TimeSeries from pandas.util.testing import assert_series_equal class TestPeriodProperties(TestCase): "Test properties such as year, month, weekday, etc...." # def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_interval_constructor(self): i1 = Period('1/1/2005', freq='M') i2 = Period('Jan 2005') self.assertEquals(i1, i2) i1 = Period('2005', freq='A') i2 = Period('2005') i3 = Period('2005', freq='a') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i4 = Period('2005', freq='M') i5 = Period('2005', freq='m') self.assert_(i1 != i4) self.assertEquals(i4, i5) i1 = Period.now('Q') i2 = Period(datetime.now(), freq='Q') i3 = Period.now('q') self.assertEquals(i1, i2) self.assertEquals(i1, i3) # Biz day construction, roll forward if non-weekday i1 = Period('3/10/12', freq='B') i2 = Period('3/12/12', freq='D') self.assertEquals(i1, i2.asfreq('B')) i3 = Period('3/10/12', freq='b') self.assertEquals(i1, i3) i1 = Period(year=2005, quarter=1, freq='Q') i2 = Period('1/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, quarter=3, freq='Q') i2 = Period('9/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, month=3, day=1, freq='D') i2 = Period('3/1/2005', freq='D') self.assertEquals(i1, i2) i3 = Period(year=2005, month=3, day=1, freq='d') self.assertEquals(i1, i3) i1 = Period(year=2012, month=3, day=10, freq='B') i2 = Period('3/12/12', freq='B') self.assertEquals(i1, i2) i1 = Period('2005Q1') i2 = Period(year=2005, quarter=1, freq='Q') i3 = Period('2005q1') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i1 = Period('05Q1') self.assertEquals(i1, i2) lower = Period('05q1') self.assertEquals(i1, lower) i1 = Period('1Q2005') self.assertEquals(i1, i2) lower = Period('1q2005') self.assertEquals(i1, lower) i1 = Period('1Q05') self.assertEquals(i1, i2) lower = Period('1q05') self.assertEquals(i1, lower) i1 = Period('4Q1984') self.assertEquals(i1.year, 1984) lower = Period('4q1984') self.assertEquals(i1, lower) i1 = Period('1982', freq='min') i2 = Period('1982', freq='MIN') self.assertEquals(i1, i2) i2 = Period('1982', freq=('Min', 1)) self.assertEquals(i1, i2) def test_freq_str(self): i1 = Period('1982', freq='Min') self.assert_(i1.freq[0] != '1') i2 = Period('11/30/2005', freq='2Q') self.assertEquals(i2.freq[0], '2') def test_to_timestamp(self): intv = Period('1982', freq='A') start_ts = intv.to_timestamp(which_end='S') aliases = ['s', 'StarT', 'BEGIn'] for a in aliases: self.assertEquals(start_ts, intv.to_timestamp(which_end=a)) end_ts = intv.to_timestamp(which_end='E') aliases = ['e', 'end', 'FINIsH'] for a in aliases: self.assertEquals(end_ts, intv.to_timestamp(which_end=a)) from_lst = ['A', 'Q', 'M', 'W', 'B', 'D', 'H', 'Min', 'S'] for i, fcode in enumerate(from_lst): intv = Period('1982', freq=fcode) result = intv.to_timestamp().to_period(fcode) self.assertEquals(result, intv) self.assertEquals(intv.start_time(), intv.to_timestamp('S')) self.assertEquals(intv.end_time(), intv.to_timestamp('E')) def test_properties_annually(self): # Test properties on Periods with annually frequency. a_date = Period(freq='A', year=2007) assert_equal(a_date.year, 2007) def test_properties_quarterly(self): # Test properties on Periods with daily frequency. qedec_date = Period(freq="Q-DEC", year=2007, quarter=1) qejan_date = Period(freq="Q-JAN", year=2007, quarter=1) qejun_date = Period(freq="Q-JUN", year=2007, quarter=1) # for x in range(3): for qd in (qedec_date, qejan_date, qejun_date): assert_equal((qd + x).qyear, 2007) assert_equal((qd + x).quarter, x + 1) def test_properties_monthly(self): # Test properties on Periods with daily frequency. m_date = Period(freq='M', year=2007, month=1) for x in range(11): m_ival_x = m_date + x assert_equal(m_ival_x.year, 2007) if 1 <= x + 1 <= 3: assert_equal(m_ival_x.quarter, 1) elif 4 <= x + 1 <= 6: assert_equal(m_ival_x.quarter, 2) elif 7 <= x + 1 <= 9: assert_equal(m_ival_x.quarter, 3) elif 10 <= x + 1 <= 12: assert_equal(m_ival_x.quarter, 4) assert_equal(m_ival_x.month, x + 1) def test_properties_weekly(self): # Test properties on Periods with daily frequency. w_date = Period(freq='WK', year=2007, month=1, day=7) # assert_equal(w_date.year, 2007) assert_equal(w_date.quarter, 1) assert_equal(w_date.month, 1) assert_equal(w_date.week, 1) assert_equal((w_date - 1).week, 52) def test_properties_daily(self): # Test properties on Periods with daily frequency. b_date = Period(freq='B', year=2007, month=1, day=1) # assert_equal(b_date.year, 2007) assert_equal(b_date.quarter, 1) assert_equal(b_date.month, 1) assert_equal(b_date.day, 1) assert_equal(b_date.weekday, 0) assert_equal(b_date.day_of_year, 1) # d_date = Period(freq='D', year=2007, month=1, day=1) # assert_equal(d_date.year, 2007) assert_equal(d_date.quarter, 1) assert_equal(d_date.month, 1) assert_equal(d_date.day, 1) assert_equal(d_date.weekday, 0) assert_equal(d_date.day_of_year, 1) def test_properties_hourly(self): # Test properties on Periods with hourly frequency. h_date = Period(freq='H', year=2007, month=1, day=1, hour=0) # assert_equal(h_date.year, 2007) assert_equal(h_date.quarter, 1) assert_equal(h_date.month, 1) assert_equal(h_date.day, 1) assert_equal(h_date.weekday, 0) assert_equal(h_date.day_of_year, 1) assert_equal(h_date.hour, 0) # def test_properties_minutely(self): # Test properties on Periods with minutely frequency. t_date = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) # assert_equal(t_date.quarter, 1) assert_equal(t_date.month, 1) assert_equal(t_date.day, 1) assert_equal(t_date.weekday, 0) assert_equal(t_date.day_of_year, 1) assert_equal(t_date.hour, 0) assert_equal(t_date.minute, 0) def test_properties_secondly(self): # Test properties on Periods with secondly frequency. s_date = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0, second=0) # assert_equal(s_date.year, 2007) assert_equal(s_date.quarter, 1) assert_equal(s_date.month, 1) assert_equal(s_date.day, 1) assert_equal(s_date.weekday, 0) assert_equal(s_date.day_of_year, 1) assert_equal(s_date.hour, 0) assert_equal(s_date.minute, 0) assert_equal(s_date.second, 0) def noWrap(item): return item class TestFreqConversion(TestCase): "Test frequency conversion of date objects" def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq='A', year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq='Q', year=2007, quarter=1) ival_A_to_Q_end = Period(freq='Q', year=2007, quarter=4) ival_A_to_M_start = Period(freq='M', year=2007, month=1) ival_A_to_M_end = Period(freq='M', year=2007, month=12) ival_A_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_A_to_W_end = Period(freq='WK', year=2007, month=12, day=31) ival_A_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_A_to_B_end = Period(freq='B', year=2007, month=12, day=31) ival_A_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_A_to_D_end = Period(freq='D', year=2007, month=12, day=31) ival_A_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_A_to_T_end = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_A_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_A_to_S_end = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_AJAN_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq='D', year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq='D', year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq='D', year=2006, month=12, day=1) assert_equal(ival_A.asfreq('Q', 'S'), ival_A_to_Q_start) assert_equal(ival_A.asfreq('Q', 'e'), ival_A_to_Q_end) assert_equal(ival_A.asfreq('M', 's'), ival_A_to_M_start) assert_equal(ival_A.asfreq('M', 'E'), ival_A_to_M_end) assert_equal(ival_A.asfreq('WK', 'S'), ival_A_to_W_start) assert_equal(ival_A.asfreq('WK', 'E'), ival_A_to_W_end) assert_equal(ival_A.asfreq('B', 'S'), ival_A_to_B_start) assert_equal(ival_A.asfreq('B', 'E'), ival_A_to_B_end) assert_equal(ival_A.asfreq('D', 'S'), ival_A_to_D_start) assert_equal(ival_A.asfreq('D', 'E'), ival_A_to_D_end) assert_equal(ival_A.asfreq('H', 'S'), ival_A_to_H_start) assert_equal(ival_A.asfreq('H', 'E'), ival_A_to_H_end) assert_equal(ival_A.asfreq('min', 'S'), ival_A_to_T_start) assert_equal(ival_A.asfreq('min', 'E'), ival_A_to_T_end) assert_equal(ival_A.asfreq('T', 'S'), ival_A_to_T_start) assert_equal(ival_A.asfreq('T', 'E'), ival_A_to_T_end) assert_equal(ival_A.asfreq('S', 'S'), ival_A_to_S_start) assert_equal(ival_A.asfreq('S', 'E'), ival_A_to_S_end) assert_equal(ival_AJAN.asfreq('D', 'S'), ival_AJAN_to_D_start) assert_equal(ival_AJAN.asfreq('D', 'E'), ival_AJAN_to_D_end) assert_equal(ival_AJUN.asfreq('D', 'S'), ival_AJUN_to_D_start) assert_equal(ival_AJUN.asfreq('D', 'E'), ival_AJUN_to_D_end) assert_equal(ival_ANOV.asfreq('D', 'S'), ival_ANOV_to_D_start) assert_equal(ival_ANOV.asfreq('D', 'E'), ival_ANOV_to_D_end) assert_equal(ival_A.asfreq('A'), ival_A) def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq='Q', year=2007, quarter=1) ival_Q_end_of_year = Period(freq='Q', year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq='A', year=2007) ival_Q_to_M_start = Period(freq='M', year=2007, month=1) ival_Q_to_M_end = Period(freq='M', year=2007, month=3) ival_Q_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq='WK', year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq='B', year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq='D', year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq='H', year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_Q_to_T_end = Period(freq='Min', year=2007, month=3, day=31, hour=23, minute=59) ival_Q_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_Q_to_S_end = Period(freq='S', year=2007, month=3, day=31, hour=23, minute=59, second=59) ival_QEJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq='D', year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq='D', year=2006, month=9, day=30) assert_equal(ival_Q.asfreq('A'), ival_Q_to_A) assert_equal(ival_Q_end_of_year.asfreq('A'), ival_Q_to_A) assert_equal(ival_Q.asfreq('M', 'S'), ival_Q_to_M_start) assert_equal(ival_Q.asfreq('M', 'E'), ival_Q_to_M_end) assert_equal(ival_Q.asfreq('WK', 'S'), ival_Q_to_W_start) assert_equal(ival_Q.asfreq('WK', 'E'), ival_Q_to_W_end) assert_equal(ival_Q.asfreq('B', 'S'), ival_Q_to_B_start) assert_equal(ival_Q.asfreq('B', 'E'), ival_Q_to_B_end) assert_equal(ival_Q.asfreq('D', 'S'), ival_Q_to_D_start) assert_equal(ival_Q.asfreq('D', 'E'), ival_Q_to_D_end) assert_equal(ival_Q.asfreq('H', 'S'), ival_Q_to_H_start) assert_equal(ival_Q.asfreq('H', 'E'), ival_Q_to_H_end) assert_equal(ival_Q.asfreq('Min', 'S'), ival_Q_to_T_start) assert_equal(ival_Q.asfreq('Min', 'E'), ival_Q_to_T_end) assert_equal(ival_Q.asfreq('S', 'S'), ival_Q_to_S_start) assert_equal(ival_Q.asfreq('S', 'E'), ival_Q_to_S_end) assert_equal(ival_QEJAN.asfreq('D', 'S'), ival_QEJAN_to_D_start) assert_equal(ival_QEJAN.asfreq('D', 'E'), ival_QEJAN_to_D_end) assert_equal(ival_QEJUN.asfreq('D', 'S'), ival_QEJUN_to_D_start) assert_equal(ival_QEJUN.asfreq('D', 'E'), ival_QEJUN_to_D_end) assert_equal(ival_Q.asfreq('Q'), ival_Q) def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq='M', year=2007, month=1) ival_M_end_of_year = Period(freq='M', year=2007, month=12) ival_M_end_of_quarter = Period(freq='M', year=2007, month=3) ival_M_to_A = Period(freq='A', year=2007) ival_M_to_Q = Period(freq='Q', year=2007, quarter=1) ival_M_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_M_to_W_end = Period(freq='WK', year=2007, month=1, day=31) ival_M_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_M_to_B_end = Period(freq='B', year=2007, month=1, day=31) ival_M_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_M_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_M_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_M_to_H_end = Period(freq='H', year=2007, month=1, day=31, hour=23) ival_M_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_M_to_T_end = Period(freq='Min', year=2007, month=1, day=31, hour=23, minute=59) ival_M_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_M_to_S_end = Period(freq='S', year=2007, month=1, day=31, hour=23, minute=59, second=59) assert_equal(ival_M.asfreq('A'), ival_M_to_A) assert_equal(ival_M_end_of_year.asfreq('A'), ival_M_to_A) assert_equal(ival_M.asfreq('Q'), ival_M_to_Q) assert_equal(ival_M_end_of_quarter.asfreq('Q'), ival_M_to_Q) assert_equal(ival_M.asfreq('WK', 'S'), ival_M_to_W_start) assert_equal(ival_M.asfreq('WK', 'E'), ival_M_to_W_end) assert_equal(ival_M.asfreq('B', 'S'), ival_M_to_B_start) assert_equal(ival_M.asfreq('B', 'E'), ival_M_to_B_end) assert_equal(ival_M.asfreq('D', 'S'), ival_M_to_D_start) assert_equal(ival_M.asfreq('D', 'E'), ival_M_to_D_end) assert_equal(ival_M.asfreq('H', 'S'), ival_M_to_H_start) assert_equal(ival_M.asfreq('H', 'E'), ival_M_to_H_end) assert_equal(ival_M.asfreq('Min', 'S'), ival_M_to_T_start) assert_equal(ival_M.asfreq('Min', 'E'), ival_M_to_T_end) assert_equal(ival_M.asfreq('S', 'S'), ival_M_to_S_start) assert_equal(ival_M.asfreq('S', 'E'), ival_M_to_S_end) assert_equal(ival_M.asfreq('M'), ival_M) def test_conv_weekly(self): # frequency conversion tests: from Weekly Frequency ival_W = Period(freq='WK', year=2007, month=1, day=1) ival_WSUN = Period(freq='WK', year=2007, month=1, day=7) ival_WSAT = Period(freq='WK-SAT', year=2007, month=1, day=6) ival_WFRI = Period(freq='WK-FRI', year=2007, month=1, day=5) ival_WTHU = Period(freq='WK-THU', year=2007, month=1, day=4) ival_WWED = Period(freq='WK-WED', year=2007, month=1, day=3) ival_WTUE = Period(freq='WK-TUE', year=2007, month=1, day=2) ival_WMON = Period(freq='WK-MON', year=2007, month=1, day=1) ival_WSUN_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_WSUN_to_D_end = Period(freq='D', year=2007, month=1, day=7) ival_WSAT_to_D_start = Period(freq='D', year=2006, month=12, day=31) ival_WSAT_to_D_end = Period(freq='D', year=2007, month=1, day=6) ival_WFRI_to_D_start = Period(freq='D', year=2006, month=12, day=30) ival_WFRI_to_D_end = Period(freq='D', year=2007, month=1, day=5) ival_WTHU_to_D_start = Period(freq='D', year=2006, month=12, day=29) ival_WTHU_to_D_end = Period(freq='D', year=2007, month=1, day=4) ival_WWED_to_D_start = Period(freq='D', year=2006, month=12, day=28) ival_WWED_to_D_end = Period(freq='D', year=2007, month=1, day=3) ival_WTUE_to_D_start = Period(freq='D', year=2006, month=12, day=27) ival_WTUE_to_D_end = Period(freq='D', year=2007, month=1, day=2) ival_WMON_to_D_start = Period(freq='D', year=2006, month=12, day=26) ival_WMON_to_D_end = Period(freq='D', year=2007, month=1, day=1) ival_W_end_of_year = Period(freq='WK', year=2007, month=12, day=31) ival_W_end_of_quarter = Period(freq='WK', year=2007, month=3, day=31) ival_W_end_of_month = Period(freq='WK', year=2007, month=1, day=31) ival_W_to_A = Period(freq='A', year=2007) ival_W_to_Q = Period(freq='Q', year=2007, quarter=1) ival_W_to_M = Period(freq='M', year=2007, month=1) if Period(freq='D', year=2007, month=12, day=31).weekday == 6: ival_W_to_A_end_of_year = Period(freq='A', year=2007) else: ival_W_to_A_end_of_year = Period(freq='A', year=2008) if Period(freq='D', year=2007, month=3, day=31).weekday == 6: ival_W_to_Q_end_of_quarter = Period(freq='Q', year=2007, quarter=1) else: ival_W_to_Q_end_of_quarter = Period(freq='Q', year=2007, quarter=2) if Period(freq='D', year=2007, month=1, day=31).weekday == 6: ival_W_to_M_end_of_month = Period(freq='M', year=2007, month=1) else: ival_W_to_M_end_of_month = Period(freq='M', year=2007, month=2) ival_W_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_W_to_B_end = Period(freq='B', year=2007, month=1, day=5) ival_W_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_W_to_D_end = Period(freq='D', year=2007, month=1, day=7) ival_W_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_W_to_H_end = Period(freq='H', year=2007, month=1, day=7, hour=23) ival_W_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_W_to_T_end = Period(freq='Min', year=2007, month=1, day=7, hour=23, minute=59) ival_W_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_W_to_S_end = Period(freq='S', year=2007, month=1, day=7, hour=23, minute=59, second=59) assert_equal(ival_W.asfreq('A'), ival_W_to_A) assert_equal(ival_W_end_of_year.asfreq('A'), ival_W_to_A_end_of_year) assert_equal(ival_W.asfreq('Q'), ival_W_to_Q) assert_equal(ival_W_end_of_quarter.asfreq('Q'), ival_W_to_Q_end_of_quarter) assert_equal(ival_W.asfreq('M'), ival_W_to_M) assert_equal(ival_W_end_of_month.asfreq('M'), ival_W_to_M_end_of_month) assert_equal(ival_W.asfreq('B', 'S'), ival_W_to_B_start) assert_equal(ival_W.asfreq('B', 'E'), ival_W_to_B_end) assert_equal(ival_W.asfreq('D', 'S'), ival_W_to_D_start) assert_equal(ival_W.asfreq('D', 'E'), ival_W_to_D_end) assert_equal(ival_WSUN.asfreq('D', 'S'), ival_WSUN_to_D_start) assert_equal(ival_WSUN.asfreq('D', 'E'), ival_WSUN_to_D_end) assert_equal(ival_WSAT.asfreq('D', 'S'), ival_WSAT_to_D_start) assert_equal(ival_WSAT.asfreq('D', 'E'), ival_WSAT_to_D_end) assert_equal(ival_WFRI.asfreq('D', 'S'), ival_WFRI_to_D_start) assert_equal(ival_WFRI.asfreq('D', 'E'), ival_WFRI_to_D_end) assert_equal(ival_WTHU.asfreq('D', 'S'), ival_WTHU_to_D_start) assert_equal(ival_WTHU.asfreq('D', 'E'), ival_WTHU_to_D_end) assert_equal(ival_WWED.asfreq('D', 'S'), ival_WWED_to_D_start) assert_equal(ival_WWED.asfreq('D', 'E'), ival_WWED_to_D_end) assert_equal(ival_WTUE.asfreq('D', 'S'), ival_WTUE_to_D_start) assert_equal(ival_WTUE.asfreq('D', 'E'), ival_WTUE_to_D_end) assert_equal(ival_WMON.asfreq('D', 'S'), ival_WMON_to_D_start) assert_equal(ival_WMON.asfreq('D', 'E'), ival_WMON_to_D_end) assert_equal(ival_W.asfreq('H', 'S'), ival_W_to_H_start) assert_equal(ival_W.asfreq('H', 'E'), ival_W_to_H_end) assert_equal(ival_W.asfreq('Min', 'S'), ival_W_to_T_start) assert_equal(ival_W.asfreq('Min', 'E'), ival_W_to_T_end) assert_equal(ival_W.asfreq('S', 'S'), ival_W_to_S_start) assert_equal(ival_W.asfreq('S', 'E'), ival_W_to_S_end) assert_equal(ival_W.asfreq('WK'), ival_W) def test_conv_business(self): # frequency conversion tests: from Business Frequency" ival_B = Period(freq='B', year=2007, month=1, day=1) ival_B_end_of_year = Period(freq='B', year=2007, month=12, day=31) ival_B_end_of_quarter = Period(freq='B', year=2007, month=3, day=30) ival_B_end_of_month = Period(freq='B', year=2007, month=1, day=31) ival_B_end_of_week = Period(freq='B', year=2007, month=1, day=5) ival_B_to_A = Period(freq='A', year=2007) ival_B_to_Q = Period(freq='Q', year=2007, quarter=1) ival_B_to_M = Period(freq='M', year=2007, month=1) ival_B_to_W = Period(freq='WK', year=2007, month=1, day=7) ival_B_to_D = Period(freq='D', year=2007, month=1, day=1) ival_B_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_B_to_H_end = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_B_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_B_to_T_end = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_B_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_B_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) assert_equal(ival_B.asfreq('A'), ival_B_to_A) assert_equal(ival_B_end_of_year.asfreq('A'), ival_B_to_A) assert_equal(ival_B.asfreq('Q'), ival_B_to_Q) assert_equal(ival_B_end_of_quarter.asfreq('Q'), ival_B_to_Q) assert_equal(ival_B.asfreq('M'), ival_B_to_M) assert_equal(ival_B_end_of_month.asfreq('M'), ival_B_to_M) assert_equal(ival_B.asfreq('WK'), ival_B_to_W) assert_equal(ival_B_end_of_week.asfreq('WK'), ival_B_to_W) assert_equal(ival_B.asfreq('D'), ival_B_to_D) assert_equal(ival_B.asfreq('H', 'S'), ival_B_to_H_start) assert_equal(ival_B.asfreq('H', 'E'), ival_B_to_H_end) assert_equal(ival_B.asfreq('Min', 'S'), ival_B_to_T_start) assert_equal(ival_B.asfreq('Min', 'E'), ival_B_to_T_end) assert_equal(ival_B.asfreq('S', 'S'), ival_B_to_S_start) assert_equal(ival_B.asfreq('S', 'E'), ival_B_to_S_end) assert_equal(ival_B.asfreq('B'), ival_B) def test_conv_daily(self): # frequency conversion tests: from Business Frequency" ival_D = Period(freq='D', year=2007, month=1, day=1) ival_D_end_of_year = Period(freq='D', year=2007, month=12, day=31) ival_D_end_of_quarter = Period(freq='D', year=2007, month=3, day=31) ival_D_end_of_month = Period(freq='D', year=2007, month=1, day=31) ival_D_end_of_week = Period(freq='D', year=2007, month=1, day=7) ival_D_friday = Period(freq='D', year=2007, month=1, day=5) ival_D_saturday = Period(freq='D', year=2007, month=1, day=6) ival_D_sunday = Period(freq='D', year=2007, month=1, day=7) ival_D_monday = Period(freq='D', year=2007, month=1, day=8) ival_B_friday = Period(freq='B', year=2007, month=1, day=5) ival_B_monday = Period(freq='B', year=2007, month=1, day=8) ival_D_to_A = Period(freq='A', year=2007) ival_Deoq_to_AJAN = Period(freq='A-JAN', year=2008) ival_Deoq_to_AJUN = Period(freq='A-JUN', year=2007) ival_Deoq_to_ADEC = Period(freq='A-DEC', year=2007) ival_D_to_QEJAN = Period(freq="Q-JAN", year=2007, quarter=4) ival_D_to_QEJUN = Period(freq="Q-JUN", year=2007, quarter=3) ival_D_to_QEDEC = Period(freq="Q-DEC", year=2007, quarter=1) ival_D_to_M = Period(freq='M', year=2007, month=1) ival_D_to_W = Period(freq='WK', year=2007, month=1, day=7) ival_D_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_D_to_H_end = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_D_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_D_to_T_end = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_D_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_D_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) assert_equal(ival_D.asfreq('A'), ival_D_to_A) assert_equal(ival_D_end_of_quarter.asfreq('A-JAN'), ival_Deoq_to_AJAN) assert_equal(ival_D_end_of_quarter.asfreq('A-JUN'), ival_Deoq_to_AJUN) assert_equal(ival_D_end_of_quarter.asfreq('A-DEC'), ival_Deoq_to_ADEC) assert_equal(ival_D_end_of_year.asfreq('A'), ival_D_to_A) assert_equal(ival_D_end_of_quarter.asfreq('Q'), ival_D_to_QEDEC) assert_equal(ival_D.asfreq("Q-JAN"), ival_D_to_QEJAN) assert_equal(ival_D.asfreq("Q-JUN"), ival_D_to_QEJUN) assert_equal(ival_D.asfreq("Q-DEC"), ival_D_to_QEDEC) assert_equal(ival_D.asfreq('M'), ival_D_to_M) assert_equal(ival_D_end_of_month.asfreq('M'), ival_D_to_M) assert_equal(ival_D.asfreq('WK'), ival_D_to_W) assert_equal(ival_D_end_of_week.asfreq('WK'), ival_D_to_W) assert_equal(ival_D_friday.asfreq('B'), ival_B_friday) assert_equal(ival_D_saturday.asfreq('B', 'S'), ival_B_friday) assert_equal(ival_D_saturday.asfreq('B', 'E'), ival_B_monday) assert_equal(ival_D_sunday.asfreq('B', 'S'), ival_B_friday) assert_equal(ival_D_sunday.asfreq('B', 'E'), ival_B_monday) assert_equal(ival_D.asfreq('H', 'S'), ival_D_to_H_start) assert_equal(ival_D.asfreq('H', 'E'), ival_D_to_H_end) assert_equal(ival_D.asfreq('Min', 'S'), ival_D_to_T_start) assert_equal(ival_D.asfreq('Min', 'E'), ival_D_to_T_end) assert_equal(ival_D.asfreq('S', 'S'), ival_D_to_S_start) assert_equal(ival_D.asfreq('S', 'E'), ival_D_to_S_end) assert_equal(ival_D.asfreq('D'), ival_D) def test_conv_hourly(self): # frequency conversion tests: from Hourly Frequency" ival_H = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_H_end_of_year = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_H_end_of_quarter = Period(freq='H', year=2007, month=3, day=31, hour=23) ival_H_end_of_month = Period(freq='H', year=2007, month=1, day=31, hour=23) ival_H_end_of_week = Period(freq='H', year=2007, month=1, day=7, hour=23) ival_H_end_of_day = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_H_end_of_bus = Period(freq='H', year=2007, month=1, day=1, hour=23) ival_H_to_A = Period(freq='A', year=2007) ival_H_to_Q = Period(freq='Q', year=2007, quarter=1) ival_H_to_M = Period(freq='M', year=2007, month=1) ival_H_to_W = Period(freq='WK', year=2007, month=1, day=7) ival_H_to_D = Period(freq='D', year=2007, month=1, day=1) ival_H_to_B = Period(freq='B', year=2007, month=1, day=1) ival_H_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_H_to_T_end = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=59) ival_H_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_H_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=59, second=59) assert_equal(ival_H.asfreq('A'), ival_H_to_A) assert_equal(ival_H_end_of_year.asfreq('A'), ival_H_to_A) assert_equal(ival_H.asfreq('Q'), ival_H_to_Q) assert_equal(ival_H_end_of_quarter.asfreq('Q'), ival_H_to_Q) assert_equal(ival_H.asfreq('M'), ival_H_to_M) assert_equal(ival_H_end_of_month.asfreq('M'), ival_H_to_M) assert_equal(ival_H.asfreq('WK'), ival_H_to_W) assert_equal(ival_H_end_of_week.asfreq('WK'), ival_H_to_W) assert_equal(ival_H.asfreq('D'), ival_H_to_D) assert_equal(ival_H_end_of_day.asfreq('D'), ival_H_to_D) assert_equal(ival_H.asfreq('B'), ival_H_to_B) assert_equal(ival_H_end_of_bus.asfreq('B'), ival_H_to_B) assert_equal(ival_H.asfreq('Min', 'S'), ival_H_to_T_start) assert_equal(ival_H.asfreq('Min', 'E'), ival_H_to_T_end) assert_equal(ival_H.asfreq('S', 'S'), ival_H_to_S_start) assert_equal(ival_H.asfreq('S', 'E'), ival_H_to_S_end) assert_equal(ival_H.asfreq('H'), ival_H) def test_conv_minutely(self): # frequency conversion tests: from Minutely Frequency" ival_T = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_T_end_of_year = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_T_end_of_quarter = Period(freq='Min', year=2007, month=3, day=31, hour=23, minute=59) ival_T_end_of_month = Period(freq='Min', year=2007, month=1, day=31, hour=23, minute=59) ival_T_end_of_week = Period(freq='Min', year=2007, month=1, day=7, hour=23, minute=59) ival_T_end_of_day = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_T_end_of_bus = Period(freq='Min', year=2007, month=1, day=1, hour=23, minute=59) ival_T_end_of_hour = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=59) ival_T_to_A = Period(freq='A', year=2007) ival_T_to_Q = Period(freq='Q', year=2007, quarter=1) ival_T_to_M = Period(freq='M', year=2007, month=1) ival_T_to_W = Period(freq='WK', year=2007, month=1, day=7) ival_T_to_D = Period(freq='D', year=2007, month=1, day=1) ival_T_to_B = Period(freq='B', year=2007, month=1, day=1) ival_T_to_H = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_T_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_T_to_S_end = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=59) assert_equal(ival_T.asfreq('A'), ival_T_to_A) assert_equal(ival_T_end_of_year.asfreq('A'), ival_T_to_A) assert_equal(ival_T.asfreq('Q'), ival_T_to_Q) assert_equal(ival_T_end_of_quarter.asfreq('Q'), ival_T_to_Q) assert_equal(ival_T.asfreq('M'), ival_T_to_M) assert_equal(ival_T_end_of_month.asfreq('M'), ival_T_to_M) assert_equal(ival_T.asfreq('WK'), ival_T_to_W) assert_equal(ival_T_end_of_week.asfreq('WK'), ival_T_to_W) assert_equal(ival_T.asfreq('D'), ival_T_to_D) assert_equal(ival_T_end_of_day.asfreq('D'), ival_T_to_D) assert_equal(ival_T.asfreq('B'), ival_T_to_B) assert_equal(ival_T_end_of_bus.asfreq('B'), ival_T_to_B) assert_equal(ival_T.asfreq('H'), ival_T_to_H) assert_equal(ival_T_end_of_hour.asfreq('H'), ival_T_to_H) assert_equal(ival_T.asfreq('S', 'S'), ival_T_to_S_start) assert_equal(ival_T.asfreq('S', 'E'), ival_T_to_S_end) assert_equal(ival_T.asfreq('Min'), ival_T) def test_conv_secondly(self): # frequency conversion tests: from Secondly Frequency" ival_S = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_S_end_of_year = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_S_end_of_quarter = Period(freq='S', year=2007, month=3, day=31, hour=23, minute=59, second=59) ival_S_end_of_month = Period(freq='S', year=2007, month=1, day=31, hour=23, minute=59, second=59) ival_S_end_of_week = Period(freq='S', year=2007, month=1, day=7, hour=23, minute=59, second=59) ival_S_end_of_day = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) ival_S_end_of_bus = Period(freq='S', year=2007, month=1, day=1, hour=23, minute=59, second=59) ival_S_end_of_hour = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=59, second=59) ival_S_end_of_minute = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=59) ival_S_to_A = Period(freq='A', year=2007) ival_S_to_Q = Period(freq='Q', year=2007, quarter=1) ival_S_to_M = Period(freq='M', year=2007, month=1) ival_S_to_W = Period(freq='WK', year=2007, month=1, day=7) ival_S_to_D = Period(freq='D', year=2007, month=1, day=1) ival_S_to_B = Period(freq='B', year=2007, month=1, day=1) ival_S_to_H = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_S_to_T = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) assert_equal(ival_S.asfreq('A'), ival_S_to_A) assert_equal(ival_S_end_of_year.asfreq('A'), ival_S_to_A) assert_equal(ival_S.asfreq('Q'), ival_S_to_Q) assert_equal(ival_S_end_of_quarter.asfreq('Q'), ival_S_to_Q) assert_equal(ival_S.asfreq('M'), ival_S_to_M) assert_equal(ival_S_end_of_month.asfreq('M'), ival_S_to_M) assert_equal(ival_S.asfreq('WK'), ival_S_to_W) assert_equal(ival_S_end_of_week.asfreq('WK'), ival_S_to_W) assert_equal(ival_S.asfreq('D'), ival_S_to_D) assert_equal(ival_S_end_of_day.asfreq('D'), ival_S_to_D) assert_equal(ival_S.asfreq('B'), ival_S_to_B) assert_equal(ival_S_end_of_bus.asfreq('B'), ival_S_to_B) assert_equal(ival_S.asfreq('H'), ival_S_to_H) assert_equal(ival_S_end_of_hour.asfreq('H'), ival_S_to_H) assert_equal(ival_S.asfreq('Min'), ival_S_to_T) assert_equal(ival_S_end_of_minute.asfreq('Min'), ival_S_to_T) assert_equal(ival_S.asfreq('S'), ival_S) class TestPeriodIndex(TestCase): def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_make_time_series(self): index = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') series = Series(1, index=index) self.assert_(isinstance(series, TimeSeries)) def test_to_timestamp(self): index = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') series = Series(1, index=index, name='foo') exp_index = date_range('1/1/2001', end='12/31/2009', freq='A-DEC') result = series.to_timestamp('D', 'end') self.assert_(result.index.equals(exp_index)) self.assertEquals(result.name, 'foo') exp_index = date_range('1/1/2001', end='1/1/2009', freq='AS-DEC') result = series.to_timestamp('D', 'start') self.assert_(result.index.equals(exp_index)) def _get_with_delta(delta, freq='A-DEC'): return date_range(to_datetime('1/1/2001') + delta, to_datetime('12/31/2009') + delta, freq=freq) delta = timedelta(hours=23) result = series.to_timestamp('H', 'end') exp_index = _get_with_delta(delta) self.assert_(result.index.equals(exp_index)) delta = timedelta(hours=23, minutes=59) result = series.to_timestamp('T', 'end') exp_index = _get_with_delta(delta) self.assert_(result.index.equals(exp_index)) result = series.to_timestamp('S', 'end') delta = timedelta(hours=23, minutes=59, seconds=59) exp_index = _get_with_delta(delta) self.assert_(result.index.equals(exp_index)) def test_constructor(self): ii = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') assert_equal(len(ii), 9) ii = PeriodIndex(freq='Q', start='1/1/2001', end='12/1/2009') assert_equal(len(ii), 4 * 9) ii = PeriodIndex(freq='M', start='1/1/2001', end='12/1/2009') assert_equal(len(ii), 12 * 9) ii = PeriodIndex(freq='D', start='1/1/2001', end='12/31/2009') assert_equal(len(ii), 365 * 9 + 2) ii = PeriodIndex(freq='B', start='1/1/2001', end='12/31/2009') assert_equal(len(ii), 261 * 9) ii = PeriodIndex(freq='H', start='1/1/2001', end='12/31/2001 23:00') assert_equal(len(ii), 365 * 24) ii = PeriodIndex(freq='Min', start='1/1/2001', end='1/1/2001 23:59') assert_equal(len(ii), 24 * 60) ii = PeriodIndex(freq='S', start='1/1/2001', end='1/1/2001 23:59:59') assert_equal(len(ii), 24 * 60 * 60) start = Period('02-Apr-2005', 'B') i1 = PeriodIndex(start=start, periods=20) assert_equal(len(i1), 20) assert_equal(i1.freq, start.freq) assert_equal(i1[0], start) end_intv = Period('2006-12-31', 'W') i1 = PeriodIndex(end=end_intv, periods=10) assert_equal(len(i1), 10) assert_equal(i1.freq, end_intv.freq) assert_equal(i1[-1], end_intv) end_intv = Period('2006-12-31', '1w') i2 = PeriodIndex(end=end_intv, periods=10) assert_equal(len(i1), len(i2)) self.assert_((i1 == i2).all()) assert_equal(i1.freq, i2.freq) end_intv = Period('2006-12-31', ('w', 1)) i2 = PeriodIndex(end=end_intv, periods=10) assert_equal(len(i1), len(i2)) self.assert_((i1 == i2).all()) assert_equal(i1.freq, i2.freq) try: PeriodIndex(start=start, end=end_intv) raise AssertionError('Cannot allow mixed freq for start and end') except ValueError: pass end_intv = Period('2005-05-01', 'B') i1 = PeriodIndex(start=start, end=end_intv) try: PeriodIndex(start=start) raise AssertionError('Must specify periods if missing start or end') except ValueError: pass def test_shift(self): ii1 = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') ii2 = PeriodIndex(freq='A', start='1/1/2002', end='12/1/2010') assert_equal(len(ii1), len(ii2)) assert_equal(ii1.shift(1).values, ii2.values) ii1 =
PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009')
pandas.tseries.period.PeriodIndex
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import os.path as osp import pickle import cv2 import numpy as np import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import jsk_apc2015_common def get_object_sizes(data_dir): cache_file = 'object_sizes.pkl' if osp.exists(cache_file): return pickle.load(open(cache_file, 'rb')) img_shape = None objects = jsk_apc2015_common.get_object_list() df = [] for obj in objects: mask_files = os.listdir(osp.join(data_dir, obj, 'masks')) for f in mask_files: if f.startswith('NP'): continue mask = cv2.imread(osp.join(data_dir, obj, 'masks', f), 0) if img_shape is None: img_shape = mask.shape else: assert img_shape == mask.shape mask = (mask > 127).astype(int) size = mask.sum() df.append([objects.index(obj), obj, f, size]) df =
pd.DataFrame(df)
pandas.DataFrame
"""Tests for the sdv.constraints.tabular module.""" import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( ColumnFormula, CustomConstraint, GreaterThan, UniqueCombinations) def dummy_transform(): pass def dummy_reverse_transform(): pass def dummy_is_valid(): pass class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid' # Run instance = CustomConstraint( transform=dummy_transform, reverse_transform=dummy_reverse_transform, is_valid=is_valid_fqn ) # Assert assert instance.transform == dummy_transform assert instance.reverse_transform == dummy_reverse_transform assert instance.is_valid == dummy_is_valid class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test__valid_separator_valid(self): """Test ``_valid_separator`` for a valid separator. If the separator and data are valid, result is ``True``. Input: - Table data (pandas.DataFrame) Output: - True (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert is_valid def test__valid_separator_non_valid_separator_contained(self): """Test ``_valid_separator`` passing a column that contains the separator. If any of the columns contains the separator string, result is ``False``. Input: - Table data (pandas.DataFrame) with a column that contains the separator string ('#') Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', '#', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert not is_valid def test__valid_separator_non_valid_name_joined_exists(self): """Test ``_valid_separator`` passing a column whose name is obtained after joining the column names using the separator. If the column name obtained after joining the column names using the separator already exists, result is ``False``. Input: - Table data (pandas.DataFrame) with a column name that will be obtained by joining the column names and the separator. Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'b#c': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data, instance._separator, columns) # Assert assert not is_valid def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b#c': ['d#g', 'e#h', 'f#i'] }) pd.testing.assert_frame_equal(expected_out, out) def test_transform_not_all_columns_provided(self): """Test the ``UniqueCombinations.transform`` method. If some of the columns needed for the transform are missing, and ``fit_columns_model`` is False, it will raise a ``MissingConstraintColumnError``. Input: - Table data (pandas.DataFrame) Output: - Raises ``MissingConstraintColumnError``. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns, fit_columns_model=False) instance.fit(table_data) # Run/Assert with pytest.raises(MissingConstraintColumnError): instance.transform(
pd.DataFrame({'a': ['a', 'b', 'c']})
pandas.DataFrame
import pandas as pd import pytest from datetime import timedelta, date, datetime from string import ascii_letters from pandas.testing import assert_frame_equal, assert_series_equal from siuba.dply.verbs import bind_cols, bind_rows from .helpers import data_frame @pytest.mark.skip def test_bind_cols_shallow_copies(): # https://github.com/tidyverse/dplyr/blob/main/tests/testthat/test-bind.R#L3 pass @pytest.mark.skip def test_bind_cols_lists(): # see https://github.com/tidyverse/dplyr/issues/1104 # the siuba analog would probably be dictionaries? exp = data_frame(x = 1, y = "a", z = 2) pass # Note: omitting other bind_cols list-based tests @pytest.mark.skip def test_that_bind_cols_repairs_names(): pass @pytest.mark.skip def test_that_bind_cols_honors_name_repair(): pass # rows ------------------------------------------------------------------------ @pytest.fixture def df_var(): today = date.today() now = datetime.now() return data_frame( l = [True, False, False], i = [1, 1, 2], d = [today + timedelta(days=i) for i in [1, 1, 2]], f = pd.Categorical(["a", "a", "b"]), n = [1.5, 1.5, 2.5], t = [now + timedelta(seconds=i) for i in [1, 1, 2]], c = ["a", "a", "b"], ) def test_bind_rows_equiv_to_concat(df_var): exp = pd.concat([df_var, df_var, df_var], axis=0) res = bind_rows(df_var, df_var, df_var) assert_frame_equal(res, exp) def test_bind_rows_reorders_columns(df_var): new_order = list(df_var.columns[3::-1]) + list(df_var.columns[:3:-1]) df_var_scramble = df_var[new_order] assert_frame_equal( bind_rows(df_var, df_var_scramble), bind_rows(df_var, df_var) ) @pytest.mark.skip def test_bind_rows_ignores_null(): pass def test_bind_rows_list_columns(): vals = [[1,2], [1,2,3]] dfl = data_frame(x = vals) res = bind_rows(dfl, dfl) exp = data_frame(x = vals*2, _index = [0,1]*2) assert_frame_equal(res, exp) @pytest.mark.xfail def test_bind_rows_list_of_dfs(): # https://github.com/tidyverse/dplyr/issues/1389 df = data_frame(x = 1) res = bind_rows([df, df], [df, df]) assert length(res) == 4 assert_frame_equal(res, bind_rows(*[df]*4)) def test_bind_rows_handles_dfs_no_rows(): df1 = data_frame(x = 1, y = pd.Categorical(["a"])) df0 = df1.loc[pd.Index([]), :] assert_frame_equal(bind_rows(df0), df0) assert_frame_equal(bind_rows(df0, df0), df0) assert_frame_equal(bind_rows(df0, df1), df1) def test_bind_rows_handles_dfs_no_cols(): df1 = data_frame(x = 1, y = pd.Categorical(["a"])) df0 = df1.loc[:,pd.Index([])] assert_frame_equal(bind_rows(df0), df0) assert bind_rows(df0, df0).shape == (2, 0) @pytest.mark.skip def test_bind_rows_lists_with_nulls(): pass @pytest.mark.skip def test_bind_rows_lists_with_list_values(): pass def test_that_bind_rows_order_even_no_cols(): df2 = data_frame(x = 2, y = "b") df1 = df2.loc[:, pd.Index([])] res = bind_rows(df1, df2).convert_dtypes() indx = [0,0] assert_series_equal(res.x, pd.Series([pd.NA, 2], index=indx, dtype="Int64", name="x")) assert_series_equal(res.y, pd.Series([pd.NA, "b"], index=indx, dtype="string", name="y")) # Column coercion ------------------------------------------------------------- # Note: I think most of these are handled by pandas or unavoidable @pytest.mark.xfail def test_bind_rows_creates_column_of_identifiers(): df = data_frame(x = [1,2,3], y = ["a", "b", "c"]) data1 = df.iloc[1:,] data2 = df.iloc[:1,] out = bind_rows(data1, data2, _id = "col") # Note: omitted test of bind_rows(list(...)) assert out.columns[0] == "col" # TODO(question): should it use 0 indexing? Would say yes, since then it just # corresponds to the arg index assert (out.col == ["0", "0", "1"]).all() out_labelled = bind_rows(zero = data1, one = data2) assert out_labelled.col == ["zero", "zero", "one"] @pytest.mark.xfail def test_bind_cols_accepts_null(): df1 = data_frame(a = list(range(10)), b = list(range(10))) df2 = data_frame(c = list(range(10)), d = list(range(10))) res1 = bind_cols(df1, df2) res2 = bind_cols(None, df1, df2) res3 = bind_cols(df1, None, df2) res4 = bind_cols(df1, df2, None) assert_frame_equal(res1, res2)
assert_frame_equal(res1, res3)
pandas.testing.assert_frame_equal
import re import requests import sys import pandas as pd import numpy as np from bs4 import BeautifulSoup from pdb import set_trace as pb max_fallback = 2 class Currency: def __init__(self): self.data = {} self.data_hist = {} def get(self, currency_pair): ''' Parameters ---------- currency_pair : str Returns ------- dictionary of the currency pair ''' if currency_pair not in self.data: curr = get_historical_currency(currency_pair) self.data[currency_pair] = curr.T.to_dict()[curr.index[0]] return self.data[currency_pair] def get_hist(self, currency_pair, dates): if currency_pair not in self.data_hist: self.data_hist[currency_pair] = get_historical_currency(currency_pair, dates) return self.data_hist[currency_pair] def fill(self): ''' Fill entire data cross pair ''' if self.data == {}: self.get('USD') i = self.data.keys()[0] for k in self.data[i].keys(): self.get(k) def get_historical_currency(base, date=pd.datetime.today().strftime('%Y-%m-%d')): ''' Parameters ---------- base : str currency base date : str/datetime - list list of dates Returns ------- pandas dataframe of currency pairs Example ------- get_historical_currency( 'USD', pd.bdate_range('2017-01-03', '2019-01-04') ) ''' if type(date) in [list, pd.Series, pd.core.indexes.datetimes.DatetimeIndex]: return pd.concat([get_historical_currency(base=base, date=d) for d in date]).sort_index() date = pd.to_datetime(date).strftime('%Y-%m-%d') url = 'https://www.xe.com/currencytables/?from={base_currency}&date={date}'.format( base_currency=base, date=date ) count = 0 while count<=10: try: curr = pd.read_html(url) assert curr.shape[1] >=4 break except: count+=1 curr = curr[0].iloc[:,] curr['date'] = date try: curr = curr.iloc[:,[4,0,2]] except: print(curr) print(date) assert False curr.columns=['date','currency','value'] curr = curr.pivot_table(values='value', index='date', columns='currency') return curr def _clean_bb_ticker(symbol, fallback): if fallback == 0: exchange_dict = { 'CN': 'TO', 'AU': 'AX', 'HK': 'HK', 'LN': 'L', 'TI': 'IS', 'SW': 'SW', 'US': None, } elif fallback == 1: exchange_dict = { 'CN': 'V', } else: exchange_dict = {} symbol = symbol.upper() symbol = symbol.replace(' EQUITY', '') str_split = symbol.split(' ') if len(str_split)==1: return symbol symb, exchange = str_split if exchange.upper() in exchange_dict: correct_symbol = exchange_dict[exchange.upper()] else: print('Did not find symbol: {} in exchange_dict ({})'.format(exchange.upper(), symb)) correct_symbol = exchange.upper() if correct_symbol != None: symbol = symb+'.'+correct_symbol else: symbol = symb return symbol def statistics(symbols, currency=None, date=None, **args): ''' Parameters ---------- symbols : str/list/pd.Series symbols convert_currency : None - str convert to currency e.g. ['USD', 'IDR', 'GBP', 'ETH', 'CAD', 'JPY', 'HUF', 'MYR', 'SEK', 'SGD', 'HKD', 'AUD', 'CHF', 'CNY', 'NZD', 'THB', 'EUR', 'RUB', 'INR', 'MXN', 'BTC', 'PHP', 'ZAR'] date : None, str/datetime convert market cap and other price measures to a previous date. Does not adjust for share count changes Returns ------- pandas dataframe of stats from ticker ''' convert_currency = currency if '_curr' in args: curr = args['_curr'] else: curr = None if type(symbols) in [list, pd.Series, set]: global _currency _currency = Currency() return pd.concat([statistics(symb, currency=currency) for symb in symbols], sort=True) elif not '_currency' in globals(): _currency = Currency() if 'fallback' in args: fallback = args['fallback'] else: fallback = 0 ticker = _clean_bb_ticker(symbols, fallback) url = 'https://finance.yahoo.com/quote/{ticker}/key-statistics'.format( ticker=ticker ) req = requests.get(url) soup = BeautifulSoup(req.text, 'lxml') main = soup.find_all('tr') data = {} dig_dict = {'B': 1000000000,'M': 1000000,'K': 1000} for i in main: table_cells = i.find_all('td') if len(table_cells)==2: k, v = table_cells k = str(k.find_all('span')[0].getText()) try: v = str(v.getText()) except: v = pd.np.nan try: pd.to_datetime(v) isdate = True except: isdate = False try: if v == pd.np.nan: pass elif str(v[-1]).upper() in dig_dict and str(v[:-1]).replace(',','').replace('.','').replace('-','').isdigit(): v = float(v[:-1])*dig_dict[v[-1].upper()] elif (str(v[-1]) == '%') and (str(v)[:-1].replace(',','').replace('.','').replace('-','').isdigit()): v = float(v[:-1])*1.0/100.0 elif (str(v).replace(',','').replace('.','').replace('-','').isdigit()): v = float(v) elif isdate: v = pd.to_datetime(v).date().strftime('%Y-%m-%d') except: pass data[k] = v if data == {} and 'retry' not in args and fallback < max_fallback: fallback += 1 data = statistics(symbols, fallback=fallback) data.index = [symbols] elif data == {} and 'retry' not in args: data = statistics(symbols.split(' ')[0]+' Equity', retry=True) else: data = pd.DataFrame([data], index=[symbols]) if 'local_currency' not in data.columns: spans = [i for i in soup.find_all('span') if 'Currency in' in i.get_text()] spans = [i.get_text().split('Currency in ')[-1] for i in spans] if spans!=[]: data['local_currency'] = spans[0] else: data['local_currency'] = None if convert_currency != None: currency_divider = [] for iid, row in data.iterrows(): curr = _currency.get(row['local_currency']) currency_divider.append(1/curr[convert_currency]) data['currency_divider'] = currency_divider for col in ['EBITDA', 'Gross Profit', 'Levered Free Cash Flow', 'Market Cap (intraday)', 'Revenue', 'Operating Cash Flow', 'Revenue Per Share', 'Gross Profit', 'Net Income Avi to Common', 'Diluted EPS', 'Total Cash', 'Total Cash Per Share', 'Total Debt']: if col in data.columns: data[col] = pd.to_numeric(data[col].replace('N/A', np.nan), errors='ignore')/data['currency_divider'] if date != None: prices = download(symbol=symbols, start_date=pd.to_datetime(date), end_date=pd.datetime.today().date()) multiplier = prices['Close'].iloc[0]/prices['Close'].iloc[-1] for col in ['Market Cap (intraday)']: if col in data.columns: data[col]*=multiplier return data def get_currency(ticker): ''' Parameters ---------- ticker : str ticker Returns ------- currency that the ticker is priced in ''' return statistics(ticker)['local_currency'].iloc[0] def download(symbol, start_date, end_date, interval='1d', events='history', currency=None, **args): ''' Parameters ---------- symbol : str/list/pd.Series list of symbols start_date : str/datetime start date end_date : str/datetime end date interval : str '1d' events : str 'history', 'div' currency : str currency to convert to Returns ------- pandas dataframe of prices Example ------- df = get_prices('AAPL', '2019-01-01', '2019-01-31') ''' if 'fallback' in args: fallback = args['fallback'] else: fallback = 0 if type(symbol) is pd.Series: symbol = symbol.tolist() if '_currency' in args: _currency = args['_currency'] else: _currency = Currency() if currency != None: dates = pd.bdate_range(start_date, end_date) _currency.get_hist(currency.upper(), dates) if type(symbol) is list: output = {} for symb in symbol: output[symb] = download( symbol=symb, start_date=start_date, end_date=end_date, interval=interval, events=events, currency=currency, _currency=_currency, ) comb = pd.concat(output, axis=1, sort=True) comb.columns.names=[None, None] comb.index.name='Date' return comb if not '_currency' in globals(): _currency = Currency() symbol = _clean_bb_ticker(symbol, fallback) sd = pd.to_datetime(start_date) sd = ((sd - pd.to_datetime('1970-01-01')).days)*24*60*60 ed = pd.to_datetime(end_date) ed = ((ed - pd.to_datetime('1970-01-01')).days)*24*60*60 crumble_link = 'https://finance.yahoo.com/quote/{0}/history?p={0}' crumble_regex = r'CrumbStore":{"crumb":"(.*?)"}' cookie_regex = r'set-cookie: (.*?);' quote_link = 'https://query1.finance.yahoo.com/v7/finance/download/{}?period1={}&period2={}&interval={}&events={}&crumb={}' link = crumble_link.format(symbol) session = requests.Session() proxy = '{}.{}.{}:{}'.format( pd.np.random.randint(10,99), pd.np.random.randint(10,99), pd.np.random.randint(0,9), pd.np.random.randint(10,999), pd.np.random.randint(1000,9999), ) response = session.get(link, proxies={'http': 'http://{}'.format(proxy)}) # get crumbs text = str(response.content) match = re.search(crumble_regex, text) try: crumbs = match.group(1) except: return
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/python # -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # License: BSD 3 clause """ This module provides ideas for evaluating some machine learning algorithms. """ from __future__ import print_function import operator import warnings import time import pickle import json import numpy as np import pandas as pd #import matplotlib.pyplot as plt # import plotly.plotly as py import plotly.graph_objs as go import cufflinks as cf # Needed #sklearn warning warnings.filterwarnings("ignore", category=DeprecationWarning) from collections import OrderedDict from plotly.offline.offline import _plot_html from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import train_test_split from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, classification_report from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 #Clasification algorithms from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier #Ensembles algorithms from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.ensemble import BaggingClassifier from xgboost import XGBClassifier from lightgbm import LGBMClassifier # Regression algorithms from sklearn.svm import SVR from sklearn.neural_network import MLPRegressor from sklearn.linear_model import BayesianRidge from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor #Ensembles algorithms from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import BaggingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import ExtraTreesRegressor from xgboost import XGBRegressor from lightgbm import LGBMRegressor class Evaluate: """ A class for resampling and evaluation """ def __init__(self, definer=None, preparer=None, selector=None): self.definer = definer self.preparer = preparer self.selector = selector if definer is not None: self.problem_type = definer.problem_type self.plot_html = None self.report = None self.raw_report = None self.best_pipelines = None self.pipelines = None self.estimators = None self.X_train = None self.y_train = None self.X_test = None self.y_test = None self.y_pred = None self.metrics = dict() self.feature_importance = dict() self.test_size = 0.3 self.num_folds = 10 self.seed = 7 def pipeline(self, list_models): self.build_pipelines(list_models) self.split_data(self.test_size, self.seed) self.evaluate_pipelines() self.set_best_pipelines() # self.plot_metrics('AdaBoostClassifier') #[m() for m in evaluators] return self def set_models(self, list_models=None): models = [] rs = 1 if self.problem_type == "classification": # Ensemble Methods if 'AdaBoostClassifier' in list_models: models.append( ('AdaBoostClassifier', AdaBoostClassifier(random_state=rs)) ) if 'GradientBoostingClassifier' in list_models: models.append( ('GradientBoostingClassifier', GradientBoostingClassifier(random_state=rs)) ) if 'BaggingClassifier' in list_models: models.append( ('BaggingClassifier', BaggingClassifier(random_state=rs))) if 'RandomForestClassifier' in list_models: models.append( ('RandomForestClassifier', RandomForestClassifier(random_state=rs)) ) if 'ExtraTreesClassifier' in list_models: models.append( ('ExtraTreesClassifier', ExtraTreesClassifier(random_state=rs)) ) # Non linear Methods if 'KNeighborsClassifier' in list_models: models.append( ('KNeighborsClassifier', KNeighborsClassifier()) ) if 'DecisionTreeClassifier' in list_models: models.append( ('DecisionTreeClassifier', DecisionTreeClassifier(random_state=rs)) ) if 'MLPClassifier' in list_models: models.append( ('MLPClassifier', MLPClassifier(max_iter=1000,random_state=rs)) ) if 'SVC' in list_models: models.append( ('SVC', SVC(random_state=rs)) ) # Linear Methods if 'LinearDiscriminantAnalysis' in list_models: models.append( ('LinearDiscriminantAnalysis', LinearDiscriminantAnalysis()) ) if 'GaussianNB' in list_models: models.append( ('GaussianNB', GaussianNB()) ) if 'LogisticRegression' in list_models: models.append( ('LogisticRegression', LogisticRegression()) ) if 'XGBoostClassifier' in list_models: models.append( ('XGBoostClassifier', XGBClassifier(n_jobs=-1)) ) if 'LGBMClassifier' in list_models: models.append( ('LGBMClassifier', LGBMClassifier()) ) # Voting estimators = list() estimators.append( ("Voting_GradientBoostingClassifier", GradientBoostingClassifier(random_state=rs)) ) estimators.append( ("Voting_ExtraTreesClassifier", ExtraTreesClassifier(random_state=rs)) ) voting = VotingClassifier(estimators) if 'VotingClassifier' in list_models: models.append( ('VotingClassifier', voting) ) elif self.problem_type == "regression": # Ensemble Methods if 'AdaBoostRegressor' in list_models: models.append( ('AdaBoostRegressor', AdaBoostRegressor(random_state=rs))) if 'GradientBoostingRegressor' in list_models: models.append( ('GradientBoostingRegressor', GradientBoostingRegressor(random_state=rs)) ) if 'BaggingRegressor' in list_models: models.append( ('BaggingRegressor', BaggingRegressor(random_state=rs))) if 'RandomForestRegressor' in list_models: models.append( ('RandomForestRegressor',RandomForestRegressor(random_state=rs)) ) if 'ExtraTreesRegressor' in list_models: models.append( ('ExtraTreesRegressor', ExtraTreesRegressor(random_state=rs)) ) # Non linear Methods if 'KNeighborsRegressor' in list_models: models.append( ('KNeighborsRegressor', KNeighborsRegressor()) ) if 'DecisionTreeRegressor' in list_models: models.append( ('DecisionTreeRegressor', DecisionTreeRegressor(random_state=rs)) ) if 'MLPRegressor' in list_models: models.append( ('MLPRegressor', MLPRegressor(max_iter=1000, random_state=rs)) ) if 'SVR' in list_models: models.append( ('SVR', SVR()) ) # Linear Methods if 'LinearRegression' in list_models: models.append( ('LinearRegression', LinearRegression()) ) if 'BayesianRidge' in list_models: models.append( ('BayesianRidge', BayesianRidge()) ) if 'XGBoostRegressor' in list_models: models.append( ('XGBoostRegressor', XGBRegressor(n_jobs=-1)) ) if 'LGBMRegressor' in list_models: models.append( ('LGBMRegressor', LGBMRegressor()) ) return models def split_data(self, test_size=0.30, seed=7): """ Need to fill """ X_train, X_test, y_train, y_test = train_test_split( self.definer.X, self.definer.y, test_size=test_size, random_state=seed) self.X_train = X_train self.X_test = X_test self.y_train = y_train self.y_test = y_test # return X_train, X_test, y_train, y_test def build_pipelines(self, list_models=None): pipelines = [] models = self.set_models(list_models) if self.definer.n_features > 200: for m in models: pipelines.append((m[0], Pipeline([ #('preparer', FunctionTransformer(self.preparer)), ('preparer', self.preparer), ('selector', self.selector), m, ]) )) else: for m in models: pipelines.append((m[0], Pipeline([ #('preparer', FunctionTransformer(self.preparer)), ('preparer', self.preparer), # ('selector', self.selector), m, ]) )) self.pipelines = pipelines return pipelines def evaluate_pipelines(self, ax=None): test_size = self.test_size num_folds = self.num_folds seed = self.seed if self.definer.problem_type == 'classification': scoring = 'accuracy' else: scoring = 'r2' #pipelines = self.build_pipelines(self.set_models()) #pipelines = self.pipelines #self.report = {} #report_element = {} self.report = [["Model", "Mean", "STD", "Time"]] results = [] names = [] grid_search = dict() for name, model in self.pipelines: print("Modeling...", name) kfold = KFold(n_splits=num_folds, random_state=seed) start = time.time() # cv_results = cross_val_score(model, self.X_train, self.y_train, cv=kfold, \ # scoring=scoring) params = dict() # name = 'LogisticRegression' for k, v in model.get_params().items(): # params[name+'__'+k] = [v] params[k] = [v] grid_search_t = GridSearchCV(model, params, n_jobs=-1, verbose=1, cv=kfold, return_train_score=True, scoring=scoring) grid_search_t.fit(self.X_train, self.y_train) end = time.time() duration = end - start # save the model to disk #filename = name+'.ml' #pickle.dump(model, open('./models/'+filename, 'wb')) # print(cv_results) #results.append(cv_results) mean = grid_search_t.cv_results_['mean_test_score'][0] std = grid_search_t.cv_results_['std_test_score'][0] # mean = cv_results.mean() # std = cv_results.std() cv_results = [] for i in range(num_folds): name_t = 'split' + str(i) + '_test_score' cv_results.append(grid_search_t.cv_results_[name_t][0]) d = {'name': name, 'values': cv_results, 'mean': round(mean, 3), 'std': round(std, 3)} results.append(d) grid_search[name] = grid_search_t.best_estimator_ #results['result'] = cv_results #names.append(name) #report_element[name] = {'mean':mean, 'std':std} #self.report.update(report_element) #report_print = "Model: {}, mean: {}, std: {}".format(name, #mean, std) self.report.append([name, round(mean, 3), round(std, 3), round(duration, 3)]) print("Score ", mean) print("---------------------") #print(report_print) self.raw_report = sorted(results, key=lambda k: k['mean'], reverse=True) self.estimators = grid_search #print(self.raw_report) headers = self.report.pop(0) df_report = pd.DataFrame(self.report, columns=headers) #print(df_report) #print(self.report) #self.sort_report(self.report) self.sort_report(df_report) #self.plotModels(results, names) def sort_report(self, report): """" Choose the best two algorithms""" #sorted_t = sorted(report.items(), key=operator.itemgetter(1)) report.sort_values(['Mean'], ascending=[False], inplace=True) #self.bestAlgorithms = sorted_t[-2:] self.report = report.copy() #print(self.report) def get_metrics(self): if self.problem_type == 'classification': models = self.estimators.keys() for name_model in models: metric_model = dict() estimator = self.estimators[name_model] y_pred = estimator.predict(self.X_test.values) # print(f'The accuracy of the {name_model} is:', accuracy_score(y_pred, self.y_test)) cm = confusion_matrix(list(self.y_test.reset_index(drop=True)), list(y_pred)) cm_n = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] metric_model['confusion_matrix_normalized'] = cm_n.tolist() metric_model['confusion_matrix'] = cm.tolist() metric_model['accuracy'] = accuracy_score(y_pred, self.y_test) metric_model['estimator_classes'] = estimator.classes_.tolist() self.metrics[name_model] = metric_model # print(self.metrics) def get_feature_importance(self): non_tree_based_models = ['KNeighborsClassifier', 'MLPClassifier', 'SVC', 'LinearDiscriminantAnalysis', 'GaussianNB', 'LogisticRegression', 'KNeighborsRegressor', 'MLPRegressor', 'SVR', 'LinearRegression', 'BayesianRidge'] models = self.estimators.keys() if self.problem_type == 'classification': for name_model in models: feature_imp = {'feature': [], 'importance':[]} if name_model in non_tree_based_models: # estimator = self.estimators[name_model] # y_pred = estimator.predict(self.X_test.values) kbest = SelectKBest(score_func=chi2, k=self.X_train.shape[1]) kbest = kbest.fit(self.X_train, self.y_train) print(kbest.scores_) feature_importance = kbest.scores_ feature_names = list(self.X_train.columns) for score, name in sorted(zip(feature_importance, feature_names), reverse=True): feature_imp['feature'].append(name) feature_imp['importance'].append(score) df_fi =
pd.DataFrame(feature_imp)
pandas.DataFrame
""" Discriminating GH13 ASs and SHs with Random Forest. """ # Imports #=====================# import pandas as pd import numpy as np from scipy import stats import random from Bio import SeqIO import os import subprocess from imblearn.under_sampling import RandomUnderSampler from Bio.Blast.Applications import NcbiblastpCommandline from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import KFold from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix import warnings warnings.filterwarnings("ignore") import bioinformatics as bioinf # Prepare sequences and data #=====================================================# GH13_df = pd.read_csv('results_final/ncbi_subtypes.csv') GH13_SH = GH13_df[(GH13_df.ncbi_pred_class==0)] accession_SH = GH13_SH.Accession.tolist() accession_all = bioinf.get_accession('fasta/initial_blast/nrblast_all.fasta') GH13 = [1 if x in accession_SH else 0 for x in accession_all] # class labels y = pd.Series(GH13) GH13_not_SH = y[y==0] GH13_yes_SH = y[y==1] # Derive features for machine learning with one-hot encoding #============================================================# cat_domain_fasta = 'fasta/GH13_positions_only/GH13_cat.fasta' sequence_df = bioinf.fasta_to_df(cat_domain_fasta) X_features = pd.DataFrame() # empty dataframe for storing features for i in range(len(sequence_df.columns)): # Convert amino acids to integers X_resid = list(sequence_df.iloc[:,i]) labelencoder = LabelEncoder() X_label = list(labelencoder.fit_transform(X_resid)) X_resid_unique = sorted(set(X_resid)) X_label_unique = sorted(set(X_label)) # Map integer labels to amino acids label_resid = [X_label.index(num) for num in X_label_unique] label_resid = [X_resid[num] for num in label_resid] # Convert labels to binary features (one-hot encoding) onehotencoder = OneHotEncoder() X_label = pd.DataFrame(X_label) # convert to 2D array X_encoded = onehotencoder.fit_transform(X_label).toarray() X_encoded = pd.DataFrame(X_encoded) # Name encoded features (residue + position, e.g G434) X_encoded.columns = ['{0}{1}'.format(res,i+1) for res in label_resid] if X_encoded.columns[0][0:1]=='-' : del X_encoded['-{0}'.format(i+1)] # remove encoded features from gaps # Append features to dataframe store for col in X_encoded.columns: X_features[col] = X_encoded[col] # Randomly split data to validation set and test set #====================================================# # Test set data (10% of total data) SH_test_size = int(0.1 * len(GH13_yes_SH)) AS_test_size = int(0.1 * len(GH13_not_SH)) SH_test_indices = random.sample(list(GH13_yes_SH.index), SH_test_size) AS_test_indices = random.sample(list(GH13_not_SH.index), AS_test_size) test_indices = SH_test_indices + AS_test_indices test_indices = sorted(test_indices) # Validation set data (90% of total data) val_indices = [x for x in list(y.index) if x not in test_indices] # X (features) and y for validation and test sets X_val = X_features.iloc[val_indices,:] y_val = y.iloc[val_indices] X_test_sep = X_features.iloc[test_indices,:] y_test_sep = y.iloc[test_indices] # Apply random forests to validation set using all features #=============================================================# # Empty lists for storing final results sens_store, spec_store, acc_store, mcc_store, featimp_store = [], [], [], [], [] # Function for evaluating performance def evalPerf(y_test, y_pred): '''Return (sensitivity, specificity, accuracy, MCC, p_value)''' cm = confusion_matrix(y_test, y_pred) tn, tp, fn, fp = cm[0][0], cm[1][1], cm[1][0], cm[0][1] n = tp + fp + tn + fn accuracy = (tp + tn)/n * 100 mcc = ((tp*tn) - (fp*fn))/np.sqrt((tp+fp)*(tn+fn)*(tp+fp)*(tn+fp)) sens = tp/(tp + fn) * 100 if tp + fp != 0 else 0 spec = tn/(tn + fp) * 100 if tn + fn != 0 else 0 if tp == 1 or fp == 0 or fn ==0 or tn == 1: p_value = 0 else: table = np.array([[tp, fp], [fn, tn]]) # AS and SH have same contingency table p_value = stats.chi2_contingency(table)[1] return [sens, spec, accuracy, mcc, p_value] # 100 repetitions of 10-fold cross validation for r in range(100): RUS = RandomUnderSampler(random_state=None) X_select, y_select = RUS.fit_resample(X_val, y_val) X_select, y_select = pd.DataFrame(X_select), pd.Series(y_select) # 10-fold cross validation kf = KFold(n_splits=10, shuffle=True, random_state=None) kf_indices = kf.split(X_select) for train_index, test_index in kf_indices: X_train, y_train = X_select.iloc[train_index, :], y_select.iloc[train_index] X_test, y_test = X_select.iloc[test_index, :], y_select.iloc[test_index] # Fit random forest classifier to training data classifier = RandomForestClassifier(n_estimators=800, n_jobs=-1) classifier.fit(X_train, y_train) # Test classifier and evaluate performance y_pred = classifier.predict(X_test) sens, spec, accuracy, mcc, pvalue = evalPerf(y_test, y_pred) featimp = list(classifier.feature_importances_) # Save results sens_store.append(sens) spec_store.append(spec) acc_store.append(accuracy) mcc_store.append(mcc) featimp_store.append(featimp) # Average results over all 500 repetitions store = [np.mean(sens_store), np.std(sens_store), np.mean(spec_store), np.std(spec_store), np.mean(acc_store), np.std(acc_store), np.mean(mcc_store), np.std(mcc_store)] store = pd.DataFrame(store, index=['sens_mean', 'sens_std', 'spec_mean', 'spec_std', 'acc_mean', 'acc_std', 'mcc_mean', 'mcc_std']) featimp_mean = pd.DataFrame(featimp_store).mean(axis=0) featimp_std = pd.DataFrame(featimp_store).std(axis=0) store_featimp = pd.DataFrame([X_val.columns, featimp_mean, featimp_std], index=['features', 'mean', 'std']).transpose() # Write results to spreadsheet store.to_csv('results_final/ml_rf_pred/perf_all.csv') store_featimp.to_csv('results_final/ml_rf_pred/featimp_all.csv') # Use only top 50 features #===================================# # Top 50 features top50_index = list(store_featimp.sort_values(by='mean', ascending=False).iloc[:50,:].index) X_val_top50 = X_val.iloc[:,top50_index] # Empty lists for storing final results sens_store, spec_store, acc_store, mcc_store, featimp_store = [], [], [], [], [] # 100 repetitions of 10-fold cross validation for r in range(100): RUS = RandomUnderSampler(random_state=None) X_select, y_select = RUS.fit_resample(X_val_top50, y_val) X_select, y_select = pd.DataFrame(X_select),
pd.Series(y_select)
pandas.Series
# Implementacja modelu Rabbits Grass Weeds w Python import simpy import random import pandas as pd import matplotlib.pyplot as plt import numpy as np import matplotlib.colors # Zarejestrowanie kolorow: bialy-krolik, zielony-trawa, fiolet-chwasty map_colors = matplotlib.colors.ListedColormap(["black", "white", "green", "violet"]) plt.register_cmap(cmap=map_colors) # Zdefiniowanie klasy krolika class Agent_rabbit: def __init__(self, color, energy, born_energy, born_p, grass_energy, weed_energy, city): self.city = city self.color = color self.first_energy = energy self.energy = energy self.born_energy = born_energy self.born_p = born_p self.grass_energy = grass_energy self.weed_energy = weed_energy self.loc = self.gen_loc() self.city.env.process(self.iteration()) def gen_loc(self): while True: loc = (random.randrange(self.city.city_dim), random.randrange(self.city.city_dim)) if loc not in self.city.occupied: self.city.occupied[loc] = self return(loc) # Krolik losuje miejsce dookola siebie, gdzie sprawdzi, czy jest jedzenie, jesli tak, to je def eating(self): dx = random.sample([-1,0,1],1)[0] dy = random.sample([-1,0,1],1)[0] if dx != 0 and dy != 0: ref_loc = ((self.loc[0] + dx) % self.city.city_dim, (self.loc[1] + dy) % self.city.city_dim) if ref_loc in self.city.occupied: # Warunek jesli napotkanym miejscem jest trawa if self.city.occupied[ref_loc].color == 2: self.energy += self.grass_energy self.city.occupied[ref_loc] = self del self.city.occupied[self.loc] self.loc = ref_loc # Warunek jesli napotkanym miejscem jest chwast if self.city.occupied[ref_loc].color == 3: self.energy += self.weed_energy self.city.occupied[ref_loc] = self del self.city.occupied[self.loc] self.loc = ref_loc # Dodatkowo, gdy krolik zje dany fragment - przenosi sie na jego miejsce return(self.energy > 0) def move(self): yield self.city.env.timeout(random.random()) new_loc = self.gen_loc() del self.city.occupied[self.loc] self.loc = new_loc def die(self): yield self.city.env.timeout(random.random()) del self.city.occupied[self.loc] def iteration(self): yield self.city.env.timeout(random.random()) while True: yield self.city.env.timeout(1) # Sprawdzam, czy krolik ma jeszcze jakakolwiek energie, jesli tak - ide dalej if self.energy>0: # Za kazdy ruch odejmuje jeden punkt energii krolika self.energy -= 1 # Krolik probuje cos zjesc, tj. zyskac energii self.eating() jedzenie = self.eating() if jedzenie: # Jesli krolik ma energie i los mu sprzyja (dla przyjetego prawdopodobienstwa), # reprodukuje sie :) if self.energy>self.born_energy and self.born_p>random.uniform(0,1): Agent_rabbit(self.color, self.first_energy, self.born_energy, self.born_p, self.grass_energy, self.weed_energy, self.city) # Za reprodukcje odejmujemy dodatkowa energie self.energy = self.energy-self.born_energy # Dodajemy nowego krolika do zliczonej populacji self.city.rabbit_final += 1 # Jesli krolik ma jeszcze sile, idzie dalej if self.energy >= 1: self.move() # Jesli krolik nie ma energii - umiera else: self.die() # Zdefiniowanie klasy dla rosnacej trawy i chwastow class Agent: def __init__(self, color, energy, prob, city): self.city = city self.color = color self.energy = energy self.prob = prob self.loc = self.gen_loc() self.city.env.process(self.born()) def gen_loc(self): while True: loc = (random.randrange(self.city.city_dim), random.randrange(self.city.city_dim)) if loc not in self.city.occupied: self.city.occupied[loc] = self return(loc) # Trawa lub chwast rosna w losowym miejscu z okreslonym prawdopodobienstwem def born(self): yield self.city.env.timeout(random.random()) if random.uniform(0, 1) < self.prob: Agent(self.color, self.energy, self.prob, self.city) class City: def __init__(self, city_dim, grass_density, weed_density, max_iter, rabbit_num, rabbit_energy, rabbit_born_energy, rabbit_born_p, grass_energy, weed_energy, grass_prob, weed_prob): self.city_dim = city_dim self.grass_density = grass_density self.weed_density = weed_density self.max_iter = max_iter self.rabbit_num = rabbit_num self.rabbit_energy = rabbit_energy self.rabbit_born_energy = rabbit_born_energy self.rabbit_born_p = rabbit_born_p self.grass_energy = grass_energy self.weed_energy = weed_energy self.grass_prob = grass_prob self.weed_prob = weed_prob self.rabbit_final = rabbit_num def plot(self, start): if start: plt.subplot(1, 2, 1) plt.title("Start") else: plt.subplot(1, 2, 2) plt.title("Stop") data = np.zeros((self.city_dim, self.city_dim)) for agent in self.occupied: data[agent[0], agent[1]] = self.occupied[agent].color plt.imshow(data, cmap=map_colors, interpolation="none") def run(self, plotting=True): self.occupied = dict() self.env = simpy.Environment() grass_count = int(self.city_dim * self.city_dim * self.grass_density) weed_count = int(self.city_dim * self.city_dim * self.weed_density) for i in range(self.rabbit_num): Agent_rabbit(1, self.rabbit_energy, self.rabbit_born_energy, self.rabbit_born_p, self.grass_energy, self.weed_energy, self) for i in range(grass_count): Agent(2, self.grass_energy, self.grass_prob, self) for i in range(weed_count): Agent(3, self.weed_energy, self.weed_prob, self) if plotting: plt.figure(1) self.plot(True) self.env.run(until=self.max_iter) if plotting: self.plot(False) plt.show() # Zwraca informacje o liczbie krolikow w populacji return(self.rabbit_final) ## Ustawienie parametrow DIM = 50 # Wymiar mapy GRASS_DENSITY_FROM = 0.02 # Minimalna procentowa zajetosc mapy przez trawe GRASS_DENSITY_TO = 0.13 # Maksymalna procentowa zajetosc mapy przez trawe WEED_DENSITY_FROM = 0.02 # Minimalna procentowa zajetosc mapy przez chwasty WEED_DENSITY_TO = 0.13 # Maksymalna procentowa zajetosc mapy przez chwasty RAB_EN_FROM = 5 # Minimalna poczatkowa energia, jaka ma krolik RAB_EN_TO = 11 # Maksymalna poczatkowa energia, jaka ma krolik RAB_NUM = 150 # Liczba krolikow w poczatkowej populacji MAX_ITER = 500 # Maksymalna liczba iteracji GRASS_P = 0.3 # Prawdopodobienstwo pojawienia sie nowej trawy WEED_P = 0.5 # Prawdopodobienstwo pojawienia sie nowego chwasta GRASS_EN = 3 # Energia, jaka daje jedzenie trawy WEED_EN = 1 # Energia, jak daje jedzenie chwasta RAB_BORN_EN = 7 # Energia, potrzebna krolikowi do reprodukcji RAB_P = 0.4 # Prawdopodobienstwo reprodukcji krolika ## Budowanie kombinacji grass_dt = pd.DataFrame({'grass_dt': np.arange(GRASS_DENSITY_FROM, GRASS_DENSITY_TO, 0.01)}) weed_dt = pd.DataFrame({'weed_dt': np.arange(WEED_DENSITY_FROM, WEED_DENSITY_TO, 0.01)}) rab_energy = pd.DataFrame({'rab_energy': np.arange(RAB_EN_FROM, RAB_EN_TO, 1)}) wyniki =
pd.DataFrame(columns=['grass_dt', 'weed_dt', 'rab_energy', 'rab_number'])
pandas.DataFrame
import pandas as __pd import datetime as __dt from dateutil import relativedelta as __rd from multiprocessing import Pool as __Pool import multiprocessing as __mp import requests as __requests from seffaflik.__ortak.__araclar import make_requests as __make_requests from seffaflik.__ortak import __dogrulama as __dogrulama __first_part_url = "production/" def santraller(tarih=__dt.datetime.now().strftime("%Y-%m-%d")): """ İlgili tarihte EPİAŞ sistemine kayıtlı YEKDEM santral bilgilerini vermektedir. Parametre ---------- tarih : %YYYY-%AA-%GG formatında tarih (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Santral Bilgileri(Id, Adı, EIC Kodu, Kısa Adı) """ if __dogrulama.__tarih_dogrulama(tarih): try: particular_url = __first_part_url + "renewable-sm-licensed-power-plant-list?period=" + tarih json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["powerPlantList"]) df.rename(index=str, columns={"id": "Id", "name": "Adı", "eic": "EIC Kodu", "shortName": "Kısa Adı"}, inplace=True) df = df[["Id", "Adı", "EIC Kodu", "Kısa Adı"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df def kurulu_guc(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığına tekabül eden aylar için EPİAŞ sistemine kayıtlı YEKDEM santrallerin kaynak bazlı toplam kurulu güç bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Kurulu Güç Bilgisi (Tarih, Kurulu Güç) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): ilk = __dt.datetime.strptime(baslangic_tarihi[:7], '%Y-%m') son = __dt.datetime.strptime(bitis_tarihi[:7], '%Y-%m') date_list = [] while ilk <= son and ilk <= __dt.datetime.today(): date_list.append(ilk.strftime("%Y-%m-%d")) ilk = ilk + __rd.relativedelta(months=+1) with __Pool(__mp.cpu_count()) as p: df_list = p.map(__yekdem_kurulu_guc, date_list) return __pd.concat(df_list, sort=False) def lisansli_uevm(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığı için saatlik YEKDEM kapsamındaki lisanslı santrallerin kaynak bazında uzlaştırmaya esas veriş miktarı (UEVM) bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Saatlik YEKDEM Lisanslı UEVM (MWh) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = \ __first_part_url + "renewable-sm-licensed-injection-quantity" + "?startDate=" + baslangic_tarihi + \ "&endDate=" + bitis_tarihi json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["renewableSMProductionList"]) df["Saat"] = df["date"].apply(lambda h: int(h[11:13])) df["Tarih"] = __pd.to_datetime(df["date"].apply(lambda d: d[:10])) df.rename(index=str, columns={"canalType": "Kanal Tipi", "riverType": "Nehir Tipi", "biogas": "Biyogaz", "biomass": "Biyokütle", "landfillGas": "Çöp Gazı", "sun": "Güneş", "geothermal": "Jeotermal", "reservoir": "Rezervuarlı", "wind": "Rüzgar", "total": "Toplam", "others": "Diğer"}, inplace=True) df = df[ ["Tarih", "Saat", "Rüzgar", "Jeotermal", "Rezervuarlı", "Kanal Tipi", "Nehir Tipi", "Çöp Gazı", "Biyogaz", "Güneş", "Biyokütle", "Diğer", "Toplam"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df def lisanssiz_uevm(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığı için saatlik YEKDEM kapsamındaki lisanssiz santrallerin kaynak bazında uzlaştırmaya esas veriş miktarı (UEVM) bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Saatlik YEKDEM Lisanssiz UEVM (MWh) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = \ __first_part_url + "renewable-unlicenced-generation-amount" + "?startDate=" + baslangic_tarihi + \ "&endDate=" + bitis_tarihi json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["renewableUnlicencedGenerationAmountList"]) df["Saat"] = df["date"].apply(lambda h: int(h[11:13])) df["Tarih"] = __pd.to_datetime(df["date"].apply(lambda d: d[:10])) df.rename(index=str, columns={"canalType": "Kanal Tipi", "riverType": "Nehir Tipi", "biogas": "Biyogaz", "biomass": "Biyokütle", "lfg": "Çöp Gazı", "sun": "Güneş", "geothermal": "Jeotermal", "reservoir": "Rezervuarlı", "wind": "Rüzgar", "total": "Toplam", "others": "Diğer"}, inplace=True) df = df[ ["Tarih", "Saat", "Rüzgar", "Kanal Tipi", "Biyogaz", "Güneş", "Biyokütle", "Diğer", "Toplam"]] except (KeyError, TypeError): return
__pd.DataFrame()
pandas.DataFrame
""" Matrix profile anomaly detection. Reference: <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>. (2016, December). Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In Data Mining (ICDM), 2016 IEEE 16th International Conference on (pp. 1317-1322). IEEE. """ # Authors: <NAME>, 2018. import math import numpy as np import pandas as pd import scipy.signal as sps from tqdm import tqdm from .BaseDetector import BaseDetector # ------------- # CLASSES # ------------- class MatrixProfileAD(BaseDetector): """ Anomaly detection in time series using the matrix profile Parameters ---------- m : int (default=10) Window size. contamination : float (default=0.1) Estimate of the expected percentage of anomalies in the data. Comments -------- - This only works on time series data. """ def __init__(self, m=10, contamination=0.1, tol=1e-8, verbose=False): super(MatrixProfileAD, self).__init__() self.m = int(m) self.contamination = float(contamination) self.tol = float(tol) self.verbose = bool(verbose) def ab_join(self, T, split): """ Compute the ABjoin and BAjoin side-by-side, where `split` determines the splitting point. """ # algorithm options excZoneLen = int(np.round(self.m * 0.5)) radius = 1.1 dataLen = len(T) proLen = dataLen - self.m + 1 # change Nan and Inf to zero T = np.nan_to_num(T) # precompute the mean, standard deviation s =
pd.Series(T)
pandas.Series
import ast import numpy as np import pandas as pd from pathlib import Path from itertools import zip_longest def from_np_array(array_string): array_string = ','.join(array_string.replace('[ ', '[').split()) return np.array(ast.literal_eval(array_string)) class Dataset: EPISODE = 'episode' REWARD = 'reward' STATE = 'state' ACTION = 'action' NEW = 'new_state' FAILED = 'failed' DONE = 'done' _INDEX = 'index' DEFAULT_COLUMNS = [EPISODE, REWARD, STATE, ACTION, NEW, FAILED, DONE] DEFAULT_COLUMNS_WO_EPISODE = [REWARD, STATE, ACTION, NEW, FAILED, DONE] DEFAULT_ARRAY_CAST = [STATE, ACTION, NEW] def __init__(self, *columns, group_name=None, name=None): self.group_name = group_name if group_name is not None\ else self.EPISODE self.columns = self.DEFAULT_COLUMNS if len(columns) == 0\ else list(columns) self.columns_wo_group = [cname for cname in self.columns if cname != self.group_name] self.columns = [self.group_name] + self.columns_wo_group self.df = pd.DataFrame(columns=self.columns) self.df.index.name = Dataset._INDEX self.name = name def __getattr__(self, item): if item in self.__dict__: return getattr(self, item) return getattr(self.df, item) def _complete_args(self, args): return [[arg] for _, arg in zip_longest(self.columns, args)] def _list_wrap(self, args): if isinstance(args, dict): return {argname: [arg] for argname, arg in args.items()} else: return [[arg] for arg in args] def add_entry(self, *args, **kwargs): entry = {kw: [arg] for kw, arg in zip(self.columns, args)} entry.update({kw: [arg] for kw, arg in kwargs.items()}) self.df = self.df.append(pd.DataFrame(entry), ignore_index=True) def add_group(self, group, group_number=None): if group.get(self.group_name) is None: if group_number is None: group_number = self.df[self.group_name].max() + 1 if
pd.isna(group_number)
pandas.isna
import pandas as pd import numpy as np import pickle from scipy.stats import ranksums, chisquare import numpy as np # PART 1 ---------------------------------------------------------------------- with open('/project/M-ABeICU176709/delirium/data/inputs/master/ids/ids_train.pickle', 'rb') as f : ids_train = pickle.load(f) with open('/project/M-ABeICU176709/delirium/data/inputs/master/ids/ids_validation.pickle', 'rb') as f : ids_validation = pickle.load(f) with open('/project/M-ABeICU176709/delirium/data/inputs/master/ids/ids_calibration.pickle', 'rb') as f : ids_calibration = pickle.load(f) with open('/project/M-ABeICU176709/delirium/data/inputs/master/ids/ids_test.pickle', 'rb') as f : ids_test = pickle.load(f) ids_all = ids_train + ids_validation + ids_calibration + ids_test ADMISSIONS = pd.read_pickle('/project/M-ABeICU176709/ABeICU/data/ADMISSIONS.pickle', compression = 'zip') ADMISSIONS = ADMISSIONS[(ADMISSIONS['ADMISSION_ID'].isin(ids_all))] ADMISSIONS['ICU_ADMIT_DATETIME'] = pd.to_datetime(ADMISSIONS['ICU_ADMIT_DATETIME']) ADMISSIONS['ICU_DISCH_DATETIME'] = pd.to_datetime(ADMISSIONS['ICU_DISCH_DATETIME']) ADMISSIONS = ADMISSIONS.loc[ADMISSIONS['ADMISSION_ID'].isin(ids_all)].reset_index(drop=True) ADMISSIONS = ADMISSIONS[['ADMISSION_ID', 'ICU_ADMIT_DATETIME', 'ICU_DISCH_DATETIME', 'ICU_EXPIRE_FLAG', 'DELIRIUM_FLAG']] ADMISSIONS['delta'] = ADMISSIONS.apply(lambda x: (x['ICU_DISCH_DATETIME'] - x['ICU_ADMIT_DATETIME']).total_seconds() / 86400, axis=1) wdel = list(ADMISSIONS.loc[ADMISSIONS['DELIRIUM_FLAG'] == 1]['ADMISSION_ID'].unique()) wodel = list(ADMISSIONS.loc[ADMISSIONS['DELIRIUM_FLAG'] == 0]['ADMISSION_ID'].unique()) p1_wdel = ADMISSIONS.loc[ADMISSIONS['ADMISSION_ID'].isin(wdel)].copy() p1_wodel = ADMISSIONS.loc[ADMISSIONS['ADMISSION_ID'].isin(wodel)].copy() # p-value LOS p1_wdel_np = p1_wdel['delta'].to_numpy() p1_wodel_np = p1_wodel['delta'].to_numpy() _, pval_los = ranksums(p1_wdel_np, p1_wodel_np) # PART 2 ---------------------------------------------------------------------- files = [ 'master_train.pickle', 'master_validation.pickle', 'master_calibration.pickle', 'master_test.pickle' ] PATH = '/project/M-ABeICU176709/delirium/data/inputs/master/' df = pd.DataFrame() for f in files: print(f) temp =
pd.read_pickle(PATH+f, compression='zip')
pandas.read_pickle
import requests import pandas as pd import numpy as np import time from pandas.tseries.offsets import Day from urllib import parse from selenium import webdriver from selenium.webdriver.chrome.options import Options from concurrent.futures import ThreadPoolExecutor import time import random class Driver(object): def __init__(self): chrome_options = Options() chrome_options.add_argument('--no-sandbox') # 解决DevToolsActivePort文件不存在的报错 chrome_options.add_argument('window-size=1920x3000') # 指定浏览器分辨率 # 加代理ip池 # chrome_options.add_argument("--proxy-server=http://172.16.17.32:8086") chrome_options.add_argument('--disable-gpu') # 谷歌文档提到需要加上这个属性来规避bug chrome_options.add_argument('--hide-scrollbars') # 隐藏滚动条, 应对一些特殊页面 chrome_options.add_argument('blink-settings=imagesEnabled=false') # 不加载图片, 提升速度 #chrome_options.add_argument('--headless') # 浏览器不提供可视化页面. linux下如果系统不支持可视化不加这条会启动失败 self.driver = webdriver.Chrome(options=chrome_options) class Load_Data(object): def __init__(self): ''' chrome_options = Options() chrome_options.add_argument('--no-sandbox') # 解决DevToolsActivePort文件不存在的报错 chrome_options.add_argument('window-size=1920x3000') # 指定浏览器分辨率 # 加代理ip池 # chrome_options.add_argument("--proxy-server=http://172.16.17.32:8086") chrome_options.add_argument('--disable-gpu') # 谷歌文档提到需要加上这个属性来规避bug chrome_options.add_argument('--hide-scrollbars') # 隐藏滚动条, 应对一些特殊页面 chrome_options.add_argument('blink-settings=imagesEnabled=false') # 不加载图片, 提升速度 chrome_options.add_argument('--headless') # 浏览器不提供可视化页面. linux下如果系统不支持可视化不加这条会启动失败 self.driver = webdriver.Chrome(options=chrome_options) ''' # 地区:树结构 self.area_tree={ "area_name":[], "area_parent":[], "area_price":[], "area_x_value":[], "area_y_value":[], "area_url_val":[], "area_stage":[] } # 小区详细数据 self.estate_obj={ 'estate_name':[], #小区名 'estate_house_resources':[], #房源数 'estate_sales_count':[], #销量 'estate_activity_rate':[], #活跃度评级 'estate_property_rate':[], #物业评级 'estate_education_rate':[], #教育评级 'estate_plate_rate':[], #板块评级 #'estate_search_rate':[], #搜索热度 'estate_basic_info':[], #基础信息 'estate_amenities_info':[], #配套设施信息 'estate_traffic_info':[], #交通信息信息 "estate_around_instrument_info":[] #周边设施信息 } # 月度房价数据 self.detail_obj={ 'detail_estate':[], #小区名 'detail_date':[], #日期 'detail_price':[] #价格 } def get_block_list(self): block_url='https://fangjia.fang.com/fangjia/map/getmapdata/hz?district=&commerce=&x1=undefined&y1=undefined&x2=undefined&y2=undefined&v=20150116&newcode=' block_res=self.get_req(block_url) self.block_list=block_res.json()['project'] print("杭州市区数:",len(self.block_list)) return self.block_list def load_block(self,block,driver): self.area_tree["area_name"].append(block["name"]) self.area_tree["area_price"].append(block["price"]) self.area_tree["area_x_value"].append(block["px"]) self.area_tree["area_y_value"].append(block["py"]) self.area_tree["area_url_val"].append(block["url"]) self.area_tree["area_parent"].append('杭州') self.area_tree["area_stage"].append(1) estate_url='https://fangjia.fang.com/fangjia/map/getmapdata/hz?district=%s&commerce=&x1=undefined&y1=undefined&x2=undefined&y2=undefined&v=20150116&newcode=' % parse.quote(block['name']) estate_res=self.get_req(estate_url) estate_list=estate_res.json() print(block["name"],"区有",len(estate_list['project']),"个片区") for estate in estate_list['project']: self.load_estate(estate,block,driver) def load_estate(self,estate,block,driver): self.area_tree["area_name"].append(estate["name"]) self.area_tree['area_price'].append(estate["price"]) self.area_tree['area_x_value'].append(estate["px"]) self.area_tree['area_y_value'].append(estate["py"]) self.area_tree['area_url_val'].append(estate["url"]) self.area_tree['area_parent'].append(block["name"]) self.area_tree['area_stage'].append(2) valiage_url='https://fangjia.fang.com/fangjia/map/getmapdata/hz?district=%s&commerce=%s&x1=%s&y1=%s&x2=%s&y2=%s&v=20150116&newcode=' % (parse.quote(block['name']),parse.quote(estate['name']),block['px'],block['py'],estate['px'],estate['py']) valiage_res=self.get_req(valiage_url) valiage_list=valiage_res.json() print(estate["name"],"片区有",len(valiage_list['project']),"个小区") for valiage in valiage_list['project']: self.load_valiage(valiage,estate,block,driver) def load_valiage(self,valiage,estate,block,driver): self.area_tree['area_name'].append(valiage["name"]) self.area_tree['area_price'].append(valiage["price"]) self.area_tree['area_x_value'].append(valiage["px"]) self.area_tree['area_y_value'].append(valiage["py"]) self.area_tree['area_url_val'].append(valiage["url"]) self.area_tree['area_parent'].append(estate["name"]) self.area_tree['area_stage'].append(3) self.estate_obj['estate_name'].append(valiage["name"]) print(valiage["name"]) url_res=self.get_page_url(valiage,driver) if url_res: pass else: # 验证码异常处理 self.load_valiage(valiage,estate,block,driver) return False star_res,estate_param = self.get_page_star(driver) detail_res=self.get_detail_info(estate_param,valiage,estate,driver) #self.get_grade_data() self.get_history_price(valiage) def get_page_url(self,valiage,driver): driver.get("http:%s" % valiage["url"]) return True # try: # self.estate_obj['estate_search_rate'].append(driver.find_element_by_xpath('/html/body/div[3]/div[3]/div[2]/div[3]/ul/li[1]/b').text) # except Exception as e: # print("获取搜索指数报错:",e) # if driver.current_url.find('code')>-1: # #driver.find_element_by_xpath('//*[@id="verify_page"]/div/div[2]/p').text=="请输入图片中的验证码:": # # 重新导入这条 # return False # else: # self.estate_obj['estate_search_rate'].append(" ") # return True def get_page_star(self,driver): try: estate_param=driver.find_element_by_xpath('//*[@id="pc<PASSWORD>"]').get_attribute('href') driver.get(estate_param) # 点击,获取静态元素 js = "document.getElementById('main').children[1].style.display='block'" driver.execute_script(js) self.estate_obj['estate_house_resources'].append(driver.find_element_by_xpath('//*[@id="<PASSWORD>C<PASSWORD>"]/a[1]/div/p[2]').text) self.estate_obj['estate_sales_count'].append(driver.find_element_by_xpath('//*[@id="<PASSWORD>"]/a[2]/div/p[2]').text) tag=driver.find_element_by_xpath('//*[@id="main"]/div[2]') try: driver.find_element_by_xpath('//*[@id="main"]/div[1]').click() self.estate_obj['estate_activity_rate'].append(tag.text.split('\n')[1].split(':')[1].replace(' ','')) #活跃度评级 self.estate_obj['estate_property_rate'].append(tag.text.split('\n')[2].split(':')[1].replace(' ','')) #物业评级 self.estate_obj['estate_education_rate'].append(tag.text.split('\n')[3].split(':')[1].replace(' ','')) #教育评级 self.estate_obj['estate_plate_rate'].append(tag.text.split('\n')[4].split(':')[1].replace(' ','')) #板块评级 except Exception as e: print("点击隐藏标签报错:",e) self.estate_obj['estate_activity_rate'].append(" ") self.estate_obj['estate_property_rate'].append(" ") self.estate_obj['estate_education_rate'].append(" ") self.estate_obj['estate_plate_rate'].append(" ") #===================请求次数多进入验证码模式=====================# #===================图像识别=====================# #===================或者打断点手动输入=====================# #===================验证码输入几次之后会失去作用,无法请求页面=====================# return True,estate_param except Exception as e: print("获取小区评星报错:",e) if driver.current_url.find('code')>-1: #driver.find_element_by_xpath('//*[@id="verify_page"]/div/div[2]/p').text=="请输入图片中的验证码:": # 重新导入这条 return False,'' else: self.estate_obj['estate_house_resources'].append(" ") self.estate_obj['estate_sales_count'].append(" ") return True,estate_param def get_detail_info(self,estate_param,valiage,estate,driver): try: #维度,全部信息,待清洗 #driver.get(estate_param+"/xiangqing/") de=driver.find_element_by_xpath('//*[@id="kesfxqxq_A01_03_01"]/a') driver.get(de.get_attribute('href')) basic_info=driver.find_element_by_xpath('/html/body/div[3]/div[4]/div/div[2]/div[2]').text amenities_info=driver.find_element_by_xpath('/html/body/div[3]/div[4]/div/div[3]/div[2]/dl').text traffic_info=driver.find_element_by_xpath('//*[@id="trafficBox"]/div[2]/dl/dt').text around_instrument=driver.find_element_by_xpath('/html/body/div[3]/div[4]/div/div[5]/div[2]/dl').text self.estate_obj['estate_basic_info'].append(basic_info) self.estate_obj['estate_amenities_info'].append(amenities_info) self.estate_obj['estate_traffic_info'].append(traffic_info) self.estate_obj['estate_around_instrument_info'].append(around_instrument) return True except Exception as e: print("获取小区信息报错:",e) if driver.current_url.find('code')>-1: #driver.find_element_by_xpath('//*[@id="verify_page"]/div/div[2]/p').text=="请输入图片中的验证码:": # 重新导入这条 #self.load_valiage(valiage,estate,block) return False else: self.estate_obj['estate_basic_info'].append(" ") self.estate_obj['estate_amenities_info'].append(" ") self.estate_obj['estate_traffic_info'].append(" ") self.estate_obj['estate_around_instrument_info'].append(" ") return True ''' def get_grade_data(self): try: # 评级数据完善 driver.get(estate_param+"/pingji/") basic_info=driver.find_element_by_xpath('/html/body/div[3]/div[4]/div[1]/div[2]/div[2]/dl').text amenities_info=driver.find_element_by_xpath('/html/body/div[3]/div[4]/div[1]/div[3]/div[2]/dl').text traffic_info=driver.find_element_by_xpath('/html/body/div[3]/div[4]/div[1]/div[4]/div[2]/dl').text around_instrument=driver.find_element_by_xpath('/html/body/div[3]/div[4]/div[1]/div[5]/div[2]/dl').text self.estate_obj['estate_basic_info'].append(basic_info) self.estate_obj['estate_amenities_info'].append(amenities_info) self.estate_obj['estate_traffic_info'].append(traffic_info) self.estate_obj['estate_around_instrument_info'].append(around_instrument) except Exception as e: print("获取小区评级报错:",e) ''' def get_history_price(self,valiage): detail_url='https://fangjia.fang.com/fangjia/common/ajaxdetailtrenddata/hz?dataType=proj&projcode=%s&year=100' % valiage["url"].split('/')[-1].split('.')[0] detail_res=self.get_req(detail_url) detail_list=detail_res.json() #两年的详细数据 for detail in detail_list: #print(valiage["name"],"小区数据",len(detail_list)) self.detail_obj['detail_estate'].append(valiage["name"]) self.detail_obj['detail_price'].append(detail[1]) timeArray = time.localtime(detail[0]/1000) otherStyleTime = time.strftime("%Y-%m", timeArray) self.detail_obj['detail_date'].append(otherStyleTime) def data2csv(self): geography_data = { "name":pd.Series(self.area_tree['area_name']), "parent":pd.Series(self.area_tree['area_parent']), "price": pd.Series(self.area_tree['area_price']), "longitude":pd.Series(self.area_tree['area_x_value']), "latitude": pd.Series(self.area_tree['area_y_value']), "url":pd.Series(self.area_tree['area_url_val']), "area_stage":pd.Series(self.area_tree['area_stage']) } geography_df = pd.DataFrame(geography_data,index=None) geography_df.to_csv('./data/geography_tree.csv',index=False) horse_info_data = { "name":pd.Series(self.estate_obj['estate_name']), "house_resources":pd.Series(self.estate_obj['estate_house_resources']), "sales_count":pd.Series(self.estate_obj['estate_sales_count']), "activity_rate":pd.Series(self.estate_obj['estate_activity_rate']), "property_rate":pd.Series(self.estate_obj['estate_property_rate']), "education_rate":pd.Series(self.estate_obj['estate_education_rate']), "plate_rate":pd.Series(self.estate_obj['estate_plate_rate']), #"search_rate":pd.Series(self.estate_obj['estate_search_rate']), "basic_info":pd.Series(self.estate_obj['estate_basic_info']), "amenities_info":pd.Series(self.estate_obj['estate_amenities_info']), "traffic_info":
pd.Series(self.estate_obj['estate_traffic_info'])
pandas.Series
""" test the scalar Timestamp """ import pytz import pytest import dateutil import calendar import locale import numpy as np from dateutil.tz import tzutc from pytz import timezone, utc from datetime import datetime, timedelta import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.tseries import offsets from pandas._libs.tslibs import conversion from pandas._libs.tslibs.timezones import get_timezone, dateutil_gettz as gettz from pandas.errors import OutOfBoundsDatetime from pandas.compat import long, PY3 from pandas.compat.numpy import np_datetime64_compat from pandas import Timestamp, Period, Timedelta, NaT class TestTimestampProperties(object): def test_properties_business(self): ts = Timestamp('2017-10-01', freq='B') control = Timestamp('2017-10-01') assert ts.dayofweek == 6 assert not ts.is_month_start # not a weekday assert not ts.is_quarter_start # not a weekday # Control case: non-business is month/qtr start assert control.is_month_start assert control.is_quarter_start ts = Timestamp('2017-09-30', freq='B') control = Timestamp('2017-09-30') assert ts.dayofweek == 5 assert not ts.is_month_end # not a weekday assert not ts.is_quarter_end # not a weekday # Control case: non-business is month/qtr start assert control.is_month_end assert control.is_quarter_end def test_fields(self): def check(value, equal): # that we are int/long like assert isinstance(value, (int, long)) assert value == equal # GH 10050 ts = Timestamp('2015-05-10 09:06:03.000100001') check(ts.year, 2015) check(ts.month, 5) check(ts.day, 10) check(ts.hour, 9) check(ts.minute, 6) check(ts.second, 3) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 100) check(ts.nanosecond, 1) check(ts.dayofweek, 6) check(ts.quarter, 2) check(ts.dayofyear, 130) check(ts.week, 19) check(ts.daysinmonth, 31) check(ts.daysinmonth, 31) # GH 13303 ts = Timestamp('2014-12-31 23:59:00-05:00', tz='US/Eastern') check(ts.year, 2014) check(ts.month, 12) check(ts.day, 31) check(ts.hour, 23) check(ts.minute, 59) check(ts.second, 0) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 0) check(ts.nanosecond, 0) check(ts.dayofweek, 2) check(ts.quarter, 4) check(ts.dayofyear, 365) check(ts.week, 1) check(ts.daysinmonth, 31) ts = Timestamp('2014-01-01 00:00:00+01:00') starts = ['is_month_start', 'is_quarter_start', 'is_year_start'] for start in starts: assert getattr(ts, start) ts = Timestamp('2014-12-31 23:59:59+01:00') ends = ['is_month_end', 'is_year_end', 'is_quarter_end'] for end in ends: assert getattr(ts, end) # GH 12806 @pytest.mark.parametrize('data', [Timestamp('2017-08-28 23:00:00'), Timestamp('2017-08-28 23:00:00', tz='EST')]) @pytest.mark.parametrize('time_locale', [ None] if tm.get_locales() is None else [None] + tm.get_locales()) def test_names(self, data, time_locale): # GH 17354 # Test .weekday_name, .day_name(), .month_name with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert data.weekday_name == 'Monday' if time_locale is None: expected_day = 'Monday' expected_month = 'August' else: with tm.set_locale(time_locale, locale.LC_TIME): expected_day = calendar.day_name[0].capitalize() expected_month = calendar.month_name[8].capitalize() assert data.day_name(time_locale) == expected_day assert data.month_name(time_locale) == expected_month # Test NaT nan_ts = Timestamp(NaT) assert np.isnan(nan_ts.day_name(time_locale)) assert np.isnan(nan_ts.month_name(time_locale)) @pytest.mark.parametrize('tz', [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']) def test_is_leap_year(self, tz): # GH 13727 dt = Timestamp('2000-01-01 00:00:00', tz=tz) assert dt.is_leap_year assert isinstance(dt.is_leap_year, bool) dt = Timestamp('1999-01-01 00:00:00', tz=tz) assert not dt.is_leap_year dt = Timestamp('2004-01-01 00:00:00', tz=tz) assert dt.is_leap_year dt = Timestamp('2100-01-01 00:00:00', tz=tz) assert not dt.is_leap_year def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013, 12, 31) result =
Timestamp(d)
pandas.Timestamp
import pandas import numpy import sys import unittest import os import copy import warnings import tempfile from isatools import isatab sys.path.append("..") import nPYc from nPYc.enumerations import AssayRole, SampleType from nPYc.utilities._nmr import qcCheckBaseline from generateTestDataset import generateTestDataset class test_nmrdataset_synthetic(unittest.TestCase): def setUp(self): self.noSamp = numpy.random.randint(50, high=100, size=None) self.noFeat = numpy.random.randint(200, high=400, size=None) self.dataset = generateTestDataset(self.noSamp, self.noFeat, dtype='NMRDataset', variableType=nPYc.enumerations.VariableType.Spectral, sop='GenericNMRurine') def test_getsamplemetadatafromfilename(self): """ Test we are parsing NPC MS filenames correctly (PCSOP.081). """ # Create an empty object with simple filenames dataset = nPYc.NMRDataset('', fileType='empty') dataset.sampleMetadata['Sample File Name'] = ['Test1_serum_Rack1_SLT_090114/101', 'Test_serum_Rack10_SLR_090114/10', 'Test2_serum_Rack100_DLT_090114/102', 'Test2_urine_Rack103_MR_090114/20', 'Test2_serum_Rack010_JTP_090114/80', 'Test1_water_Rack10_TMP_090114/90'] dataset._getSampleMetadataFromFilename(dataset.Attributes['filenameSpec']) rack = pandas.Series([1, 10, 100, 103, 10, 10], name='Rack', dtype=int) pandas.testing.assert_series_equal(dataset.sampleMetadata['Rack'], rack) study = pandas.Series(['Test1', 'Test', 'Test2', 'Test2', 'Test2', 'Test1'], name='Study', dtype=str) pandas.testing.assert_series_equal(dataset.sampleMetadata['Study'], study) def test_nmrdataset_raises(self): self.assertRaises(NotImplementedError, nPYc.NMRDataset, '', fileType='Unknown import type') self.assertRaises(TypeError, nPYc.NMRDataset, '', fileType='Bruker', bounds='not a list') self.assertRaises(TypeError, nPYc.NMRDataset, '', fileType='Bruker', calibrateTo='not a number') self.assertRaises(TypeError, nPYc.NMRDataset, '', fileType='Bruker', variableSize=0.1) def test_load_npc_lims_masking_reruns(self): limspath = os.path.join('..', '..', 'npc-standard-project', 'Derived_Worklists', 'UnitTest1_NMR_urine_PCSOP.011.csv') dataset = nPYc.NMRDataset('', 'empty') dataset.sampleMetadata = pandas.DataFrame([], columns=['Sample File Name']) dataset.sampleMetadata['Sample File Name'] = ['UnitTest1_Urine_Rack1_SLL_270814/10', 'UnitTest1_Urine_Rack1_SLL_270814/12', 'UnitTest1_Urine_Rack1_SLL_270814/20', 'UnitTest1_Urine_Rack1_SLL_270814/30', 'UnitTest1_Urine_Rack1_SLL_270814/40','UnitTest1_Urine_Rack1_SLL_270814/51', 'UnitTest1_Urine_Rack1_SLL_270814/52', 'UnitTest1_Urine_Rack1_SLL_270814/50', 'UnitTest1_Urine_Rack1_SLL_270814/60', 'UnitTest1_Urine_Rack1_SLL_270814/70', 'UnitTest1_Urine_Rack1_SLL_270814/80', 'UnitTest1_Urine_Rack1_SLL_270814/81', 'UnitTest1_Urine_Rack1_SLL_270814/90'] dataset.intensityData = numpy.zeros((13, 2)) dataset.intensityData[:, 0] = numpy.arange(1, 14, 1) dataset.initialiseMasks() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # warning dataset.addSampleInfo(descriptionFormat='NPC LIMS', filePath=limspath) # check assert issubclass(w[0].category, UserWarning) assert "previous acquisitions masked, latest is kept" in str(w[0].message) with self.subTest(msg='Masking of reruns'): expectedMask = numpy.array([False, True, True, True, True, False, True, False, True, True, False, True, True], dtype=bool) numpy.testing.assert_array_equal(dataset.sampleMask, expectedMask) def test_updateMasks_samples(self): from nPYc.enumerations import VariableType, DatasetLevel, AssayRole, SampleType dataset = generateTestDataset(18, 5, dtype='NMRDataset', variableType=nPYc.enumerations.VariableType.Spectral, sop='GenericNMRurine') dataset.Attributes.pop('LWFailThreshold', None) dataset.Attributes.pop('baselineCheckRegion', None) dataset.Attributes.pop('solventPeakCheckRegion', None) dataset.sampleMetadata['AssayRole'] = pandas.Series([AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.PrecisionReference, AssayRole.PrecisionReference], name='AssayRole', dtype=object) dataset.sampleMetadata['SampleType'] = pandas.Series([SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.ExternalReference, SampleType.MethodReference], name='SampleType', dtype=object) with self.subTest(msg='Default Parameters'): expectedSampleMask = numpy.array([True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], dtype=bool) dataset.initialiseMasks() dataset.updateMasks(filterFeatures=False) numpy.testing.assert_array_equal(expectedSampleMask, dataset.sampleMask) with self.subTest(msg='Export SP and ER'): expectedSampleMask = numpy.array([False, False, False, False, False, True, True, True, True, True, True, False, False, False, False, False, True, False], dtype=bool) dataset.initialiseMasks() dataset.updateMasks(filterFeatures=False, sampleTypes=[SampleType.StudyPool, SampleType.ExternalReference], assayRoles=[AssayRole.PrecisionReference]) numpy.testing.assert_array_equal(expectedSampleMask, dataset.sampleMask) with self.subTest(msg='Export Dilution Samples only'): expectedSampleMask = numpy.array([True, True, True, True, True, False, False, False, False, False, False, False, False, False, False, False, False, False], dtype=bool) dataset.initialiseMasks() dataset.updateMasks(filterFeatures=False, sampleTypes=[SampleType.StudyPool], assayRoles=[AssayRole.LinearityReference]) numpy.testing.assert_array_equal(expectedSampleMask, dataset.sampleMask) def test_updateMasks_features(self): noSamp = 10 noFeat = numpy.random.randint(1000, high=10000, size=None) dataset = generateTestDataset(noSamp, noFeat, dtype='NMRDataset', variableType=nPYc.enumerations.VariableType.Spectral, sop='GenericNMRurine') dataset.Attributes.pop('LWFailThreshold', None) dataset.Attributes.pop('baselineCheckRegion', None) dataset.Attributes.pop('solventPeakCheckRegion', None) ppm = numpy.linspace(-10, 10, noFeat) dataset.featureMetadata = pandas.DataFrame(ppm, columns=['ppm']) with self.subTest(msg='Single range'): ranges = (-1.1, 1.2) dataset.initialiseMasks() dataset.updateMasks(filterFeatures=True, filterSamples=False, exclusionRegions=ranges) expectedFeatureMask = numpy.logical_or(ppm < ranges[0], ppm > ranges[1]) numpy.testing.assert_array_equal(expectedFeatureMask, dataset.featureMask) with self.subTest(msg='Reversed range'): ranges = (7.1, 1.92) dataset.initialiseMasks() dataset.updateMasks(filterFeatures=True, filterSamples=False, exclusionRegions=ranges) expectedFeatureMask = numpy.logical_or(ppm < ranges[1], ppm > ranges[0]) numpy.testing.assert_array_equal(expectedFeatureMask, dataset.featureMask) with self.subTest(msg='list of ranges'): ranges = [(-5,-1), (1,5)] dataset.initialiseMasks() dataset.updateMasks(filterFeatures=True, filterSamples=False, exclusionRegions=ranges) expectedFeatureMask1 = numpy.logical_or(ppm < ranges[0][0], ppm > ranges[0][1]) expectedFeatureMask2 = numpy.logical_or(ppm < ranges[1][0], ppm > ranges[1][1]) expectedFeatureMask = numpy.logical_and(expectedFeatureMask1, expectedFeatureMask2) numpy.testing.assert_array_equal(expectedFeatureMask, dataset.featureMask) def test_updateMasks_raises(self): with self.subTest(msg='No Ranges'): self.dataset.Attributes['exclusionRegions'] = None self.assertRaises(ValueError, self.dataset.updateMasks, filterFeatures=True, filterSamples=False, exclusionRegions=None) def test_updateMasks_warns(self): with self.subTest(msg='Range low == high'): self.dataset.Attributes['exclusionRegions'] = None self.assertWarnsRegex(UserWarning, 'Low \(1\.10\) and high \(1\.10\) bounds are identical, skipping region', self.dataset.updateMasks, filterFeatures=True, filterSamples=False, exclusionRegions=(1.1,1.1)) def test_nmrQCchecks(self): self.dataset.Attributes.pop('LWFailThreshold', None) self.dataset.Attributes.pop('baselineCheckRegion', None) self.dataset.Attributes.pop('solventPeakCheckRegion', None) with self.subTest('Calibration'): bounds = numpy.std(self.dataset.sampleMetadata['Delta PPM']) * 3 self.dataset.sampleMetadata.loc[0::30, 'Delta PPM'] = bounds * 15 self.dataset._nmrQCChecks() # Check mask expected = numpy.zeros_like(self.dataset.sampleMask, dtype=bool) expected[0::30] = True numpy.testing.assert_array_equal(expected, self.dataset.sampleMetadata['CalibrationFail'].values) # Check other tests have not happened # Commented out assuming the test nmr dataset obtained with generateTestDataset always has these columns #for skipedCheck in ['LineWidthFail', 'BaselineFail', 'WaterPeakFail']: # self.assertFalse(skipedCheck in self.dataset.sampleMetadata.columns) with self.subTest('Line Width'): self.dataset.Attributes['LWFailThreshold'] = 2 self.dataset.sampleMetadata['Line Width (Hz)'] = 1.5 self.dataset.sampleMetadata.loc[0::5, 'Line Width (Hz)'] = 3 self.dataset._nmrQCChecks() expected = numpy.zeros_like(self.dataset.sampleMask, dtype=bool) expected[0::5] = True numpy.testing.assert_array_equal(expected, self.dataset.sampleMetadata['LineWidthFail'].values) # Check other tests have not happened # Commented out assuming the test nmr dataset obtained with generateTestDataset always has these columns #for skipedCheck in ['BaselineFail', 'WaterPeakFail']: # self.assertFalse(skipedCheck in self.dataset.sampleMetadata.columns) with self.subTest('Baseline'): self.dataset.Attributes['baselineCheckRegion'] = [(-2, -0.5), (9.5, 12.5)] self.dataset.intensityData[0,:] = 100 self.dataset.intensityData[2,:] = -100 self.dataset._nmrQCChecks() expected = numpy.zeros_like(self.dataset.sampleMask, dtype=bool) expected[0] = True expected[2] = True numpy.testing.assert_array_equal(expected, self.dataset.sampleMetadata['BaselineFail'].values) # Check other tests have not happened # Commented out assuming the test nmr dataset obtained with generateTestDataset always has these columns #self.assertFalse('WaterPeakFail' in self.dataset.sampleMetadata.columns) with self.subTest('Solvent Peak'): self.dataset.Attributes['solventPeakCheckRegion'] = [(-2, -0.5), (9.5, 12.5)] self.dataset._nmrQCChecks() expected = numpy.zeros_like(self.dataset.sampleMask, dtype=bool) expected[0] = True # expected[2] = True numpy.testing.assert_array_equal(expected, self.dataset.sampleMetadata['SolventPeakFail'].values) def test_baselineAreaAndNeg(self): """ Validate baseline/WP code, creates random spectra and values that should always fail ie <0 and high extreme and diagonal. """ variableSize = 20000 X = numpy.random.rand(86, variableSize)*1000 X = numpy.r_[X, numpy.full((1, variableSize), -10000)] # add a minus val row r_ shortcut notation for vstack X = numpy.r_[X, numpy.full((1, variableSize), 200000)] # add a minus val row r_ shortcut notation for vstack a1 = numpy.arange(0,variableSize,1)[numpy.newaxis] #diagonal ie another known fail X = numpy.concatenate((X, a1), axis=0)#concatenate into X X = numpy.r_[X, numpy.random.rand(2, variableSize)* 10000] #add more fails random but more variablility than the average 86 above #create ppm ppm = numpy.linspace(-1,10, variableSize) # ppm_high = numpy.where(ppm >= 9.5)[0] ppm_low = numpy.where(ppm <= -0.5)[0] high_baseline = qcCheckBaseline(X[:, ppm_high], 0.05) low_baseline = qcCheckBaseline(X[:, ppm_low], 0.05) baseline_fail_calculated = high_baseline | low_baseline baseline_fail_expected = numpy.zeros(91, dtype=bool) baseline_fail_expected[86:89] = True numpy.testing.assert_array_equal(baseline_fail_expected, baseline_fail_calculated) class test_nmrdataset_bruker(unittest.TestCase): def setUp(self): """ setup the pulseprogram and path for purpose of testing NMR bruker data functions """ self.pulseProgram = 'noesygppr1d' self.path = os.path.join('..', '..', 'npc-standard-project', 'unitTest_Data', 'nmr') def test_addSampleInfo_npclims(self): with self.subTest(msg='Urine dataset (UnitTest1).'): dataPath = os.path.join('..', '..', 'npc-standard-project', 'Raw_Data', 'nmr', 'UnitTest1') limsFilePath = os.path.join('..', '..', 'npc-standard-project', 'Derived_Worklists', 'UnitTest1_NMR_urine_PCSOP.011.csv') with warnings.catch_warnings(): warnings.simplefilter("ignore") dataset = nPYc.NMRDataset(dataPath, pulseProgram='noesygppr1d', sop='GenericNMRurine') dataset.sampleMetadata.sort_values('Sample File Name', inplace=True) sortIndex = dataset.sampleMetadata.index.values dataset.intensityData = dataset.intensityData[sortIndex, :] dataset.sampleMetadata = dataset.sampleMetadata.reset_index(drop=True) expected = copy.deepcopy(dataset.sampleMetadata) dataset.addSampleInfo(descriptionFormat='NPC LIMS', filePath=limsFilePath) testSeries = ['Sample ID', 'Status', 'AssayRole', 'SampleType'] expected['Sample ID'] = ['UT1_S2_u1', 'UT1_S3_u1', 'UT1_S4_u1', 'UT1_S4_u2', 'UT1_S4_u3', 'UT1_S4_u4', 'External Reference Sample', 'Study Pool Sample'] expected['Status'] = ['Sample', 'Sample', 'Sample', 'Sample', 'Sample', 'Sample', 'Long Term Reference', 'Study Reference'] expected['AssayRole'] = [AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.PrecisionReference, AssayRole.PrecisionReference] expected['SampleType'] = [SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.ExternalReference, SampleType.StudyPool] for series in testSeries: with self.subTest(msg='Testing %s' % series): pandas.testing.assert_series_equal(dataset.sampleMetadata[series], expected[series]) with self.subTest(msg='Serum dataset (UnitTest3).'): dataPath = os.path.join('..', '..', 'npc-standard-project', 'Raw_Data', 'nmr', 'UnitTest3') limsFilePath = os.path.join('..', '..', 'npc-standard-project', 'Derived_Worklists', 'UnitTest3_NMR_serum_PCSOP.012.csv') with warnings.catch_warnings(): warnings.simplefilter("ignore") dataset = nPYc.NMRDataset(dataPath, pulseProgram='cpmgpr1d', sop='GenericNMRurine') # Use blood sop to avoid calibration of empty spectra dataset.sampleMetadata.sort_values('Sample File Name', inplace=True) sortIndex = dataset.sampleMetadata.index.values dataset.intensityData = dataset.intensityData[sortIndex, :] dataset.sampleMetadata = dataset.sampleMetadata.reset_index(drop=True) expected = copy.deepcopy(dataset.sampleMetadata) dataset.addSampleInfo(descriptionFormat='NPC LIMS', filePath=limsFilePath) testSeries = ['Sample ID', 'Status', 'AssayRole', 'SampleType'] expected['Sample ID'] = ['UT3_S7', 'UT3_S8', 'UT3_S6', 'UT3_S5', 'UT3_S4', 'UT3_S3', 'UT3_S2', 'External Reference Sample', 'Study Pool Sample', 'UT3_S1'] expected['Status'] = ['Sample', 'Sample', 'Sample', 'Sample', 'Sample', 'Sample', 'Sample', 'Long Term Reference', 'Study Reference', 'nan'] expected['AssayRole'] = [AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.Assay] expected['SampleType'] = [SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.ExternalReference, SampleType.StudyPool, SampleType.StudySample] for series in testSeries: with self.subTest(msg='Testing %s' % series): pandas.testing.assert_series_equal(dataset.sampleMetadata[series], expected[series]) class test_nmrdataset_ISATAB(unittest.TestCase): def test_exportISATAB(self): nmrData = nPYc.NMRDataset('', fileType='empty') raw_data = { 'Acquired Time': ['2016-08-09 01:36:23', '2016-08-09 01:56:23', '2016-08-09 02:16:23', '2016-08-09 02:36:23', '2016-08-09 02:56:23'], 'AssayRole': ['AssayRole.LinearityReference', 'AssayRole.LinearityReference', 'AssayRole.LinearityReference', 'AssayRole.Assay', 'AssayRole.Assay'], #'SampleType': ['SampleType.StudyPool', 'SampleType.StudyPool', 'SampleType.StudyPool','SampleType.StudySample', 'SampleType.StudySample'], 'Status': ['SampleType.StudyPool', 'SampleType.StudyPool', 'SampleType.StudyPool','SampleType.StudySample', 'SampleType.StudySample'], 'Subject ID': ['', '', '', 'SCANS-120', 'SCANS-130'], 'Sampling ID': ['', '', '', 'T0-7-S', 'T0-9-S'], 'Sample File Name': ['sfn1', 'sfn2', 'sfn3', 'sfn4', 'sfn5'], 'Study': ['TestStudy', 'TestStudy', 'TestStudy', 'TestStudy', 'TestStudy'], 'Gender': ['', '', '', 'Female', 'Male'], 'Age': ['', '', '', '55', '66'], 'Sampling Date': ['', '', '', '27/02/2006', '28/02/2006'], 'Sample batch': ['', '', '', 'SB 1', 'SB 2'], 'Batch': ['1', '2', '3', '4', '5'], 'Run Order': ['0', '1', '2', '3', '4'], 'Instrument': ['QTOF 2', 'QTOF 2', 'QTOF 2', 'QTOF 2', 'QTOF 2'], 'Assay data name': ['', '', '', 'SS_LNEG_ToF02_S1W4', 'SS_LNEG_ToF02_S1W5'] } nmrData.sampleMetadata = pandas.DataFrame(raw_data, columns=['Acquired Time', 'AssayRole', 'Status', 'Subject ID', 'Sampling ID', 'Study', 'Gender', 'Age', 'Sampling Date', 'Sample batch', 'Batch', 'Run Order', 'Instrument', 'Assay data name','Sample File Name']) with tempfile.TemporaryDirectory() as tmpdirname: details = { 'investigation_identifier' : "i1", 'investigation_title' : "Give it a title", 'investigation_description' : "Add a description", 'investigation_submission_date' : "2016-11-03", #use today if not specified 'investigation_public_release_date' : "2016-11-03", 'first_name' : "Noureddin", 'last_name' : "Sadawi", 'affiliation' : "University", 'study_filename' : "my_nmr_study", 'study_material_type' : "Serum", 'study_identifier' : "s1", 'study_title' : "Give the study a title", 'study_description' : "Add study description", 'study_submission_date' : "2016-11-03", 'study_public_release_date' : "2016-11-03", 'assay_filename' : "my_nmr_assay" } nmrData.initialiseMasks() nmrData.exportDataset(destinationPath=tmpdirname, isaDetailsDict=details, saveFormat='ISATAB') investigatio_file = os.path.join(tmpdirname,'i_investigation.txt') numerrors = 0 with open(investigatio_file) as fp: report = isatab.validate(fp) numerrors = len(report['errors']) #self.assertTrue(os.path.exists(a)) self.assertEqual(numerrors, 0, msg="ISATAB Validator found {} errors in the ISA-Tab archive".format(numerrors)) class test_nmrdataset_initialiseFromCSV(unittest.TestCase): def test_init(self): noSamp = numpy.random.randint(5, high=10, size=None) noFeat = numpy.random.randint(500, high=1000, size=None) dataset = generateTestDataset(noSamp, noFeat, dtype='NMRDataset', sop='GenericNMRurine') dataset.name = 'Testing' with tempfile.TemporaryDirectory() as tmpdirname: dataset.exportDataset(destinationPath=tmpdirname, saveFormat='CSV', withExclusions=False) pathName = os.path.join(tmpdirname, 'Testing_sampleMetadata.csv') rebuitData = nPYc.NMRDataset(pathName, fileType='CSV Export') numpy.testing.assert_array_equal(rebuitData.intensityData, dataset.intensityData) for column in ['Sample File Name', 'SampleType', 'AssayRole', 'Acquired Time', 'Run Order']:
pandas.testing.assert_series_equal(rebuitData.sampleMetadata[column], dataset.sampleMetadata[column], check_dtype=False)
pandas.testing.assert_series_equal
#!/usr/bin/env python3 from __future__ import absolute_import from __future__ import print_function import numpy as np import util import pandas as pd import sklearn as skl from sklearn.model_selection import StratifiedKFold import scipy.optimize as optz from sklearn.metrics import auc, roc_curve #from sklearn.metrics import average_precision_score from sklearn.metrics import precision_recall_curve import sys import os from six.moves import range import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt #sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) class FindWeight(): def __init__(self): self.W=None @staticmethod def norm_weight(Weights=None): if Weights is None: return (0.5, 0.5) else: tot=sum(Weights) w1=Weights[0]*1.0/tot w2=Weights[1]*1.0/tot return (w1, w2) @staticmethod def auto_weight(y): w1=sum(y) w0=len(y)-w1 return FindWeight.norm_weight([1.0/w1, 1.0/w0]) @staticmethod def f(W, X, y, penalty, Weights=None): """If Weights [Weight(y==1), Weight(y==1)] array is None, samples are equally weight, otherwise, the LR prob is no longer the real probability of the sample, needs to be corrected by passing the same Weights array to predict()""" #l_weighted=False # if we weight, then the logistic formula no longer predicts the probability W2=np.sum(W[1:]*W[1:]) W=np.reshape(W,(-1,1)) q=np.exp(np.clip(np.dot(X, W), -100, 100)) q=np.clip(q/(1.0+q), 1e-15, 1-1e-15) # cross-entropy w1, w2 = FindWeight.norm_weight(Weights) return w1*np.sum(-np.log(q[y==1]))+w2*np.sum(-np.log(1-q[y==0]))+penalty*W2 @staticmethod def accuracy(W, X, y): q=np.exp(np.dot(X, W)) q=q/(1.0+q) y_pred=np.array(q>=0.5, dtype=int) n=len(y) pos=sum(y) neg=n-pos R_w=y*0.5/pos+(1-y)*0.5/neg #print pos, neg, sum(y_pred == y)*1.0/n, R_w r=1-np.sum((y_pred != y)*R_w) return r @staticmethod def F1(W, X, y): q=np.exp(np.dot(X, W)) q=q/(1.0+q) y_pred=np.array(q>=0.5, dtype=int) n=len(y) pos=sum(y) neg=n-pos tp=sum(y[y_pred>0.5]) precision=tp*1.0/(sum(y_pred)+1e-5) recall=tp*1.0/(pos+1e-5) f1=2*precision*recall/(precision+recall+1e-5) return f1 @staticmethod def metrics(W, X, y): q=np.exp(np.dot(X, W)) q=q/(1.0+q) y_pred=np.array(q>=0.5, dtype=int) n=len(y) P=sum(y) N=n-P TP=sum(y[y_pred>=0.5]) FP=sum(y_pred>=0.5)-TP TN=sum(1-y[y_pred<0.5]) FN=sum(y_pred<0.5)-TN precision=TP*1.0/(TP+FP+1e-5) recall=TP*1.0/(P+1e-5) accuracy=(TP+TN)/(n+1e-5) avg_accuracy=(TP/(P+1e-5)+TN/(N+1e-5))/2 F1=2*precision*recall/(precision+recall+1e-5) MCC=(TP*TN-FP*FN)/np.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)+1e-5) return {'accuracy':accuracy, 'avg_accuracy':avg_accuracy, 'F1':F1, 'MCC':MCC} def fit(self, X, y, penalty=0.0, signs=1, Weights=None): n,m=X.shape kwargs={'maxiter':1000, 'ftol':1e-6} bounds=[(None,None)] if type(signs) is int: signs=[signs]*(m-1) for x in signs: if x>0.01: bounds.append((0, None)) # must be >=0 elif x<-0.01: bounds.append((None, 0)) # must be <=0 else: bounds.append((None, None)) # no constrain #W0=np.zeros(m) # set initial vector to point from the center of 0 to 1 m0=X[y==0].mean(axis=0) m1=X[y==1].mean(axis=0) W0=m1-m0 W0/=np.sqrt(sum(W0*W0)) for j,x in enumerate(signs): if x>0: W0[j+1]=abs(W0[j+1]) else: W0[j+1]=-abs(W0[j+1]) res=optz.minimize(FindWeight.f, W0, (X, y, penalty, Weights), method='L-BFGS-B', bounds=bounds, options=kwargs) best_score=res.fun self.W=res.x def predict(self, X): q=np.exp(np.dot(X, self.W)) q=q/(1.0+q) return q def auc(self, y, y_pred): fpr, tpr, thresholds=roc_curve(y, y_pred, pos_label=1) return auc(fpr, tpr) @staticmethod def evidence_weight(X, y, signs=1, folds=5, lb_penalty=-5, ub_penalty=5, num_penalty=11, Weights=None): """Give X (n*m) and y (n*1), returns weights (n+1) elements, and estimated weighted accuracy Weights is for sample weight, for unbalanced case""" fw=FindWeight() R_penalty=np.logspace(lb_penalty, ub_penalty, num=num_penalty) out=[] n,m=X.shape #print(n,m) X=np.hstack([np.ones([n,1]), X]) # add 1 as a dummie column for bias kf=StratifiedKFold(folds, shuffle=True) for k_train, k_test in kf.split(X, y): X_train=X[k_train] y_train=y[k_train] X_test=X[k_test] y_test=y[k_test] for penalty in R_penalty: fw.fit(X_train, y_train, penalty=penalty, signs=signs, Weights=Weights) #y_pred=fw.predict(X_test) #score=fw.auc(y[k_test], y_pred) score_cross_entropy=FindWeight.f(fw.W, X_test, y_test, 0, Weights) #score_error_rate=1-FindWeight.accuracy(fw.W, X_test, y_test) #f1=FindWeight.F1(fw.W, X_test, y_test) c=FindWeight.metrics(fw.W, X_test, y_test) #print(c) out.append({'Penalty':penalty, 'ErrorRate':(1-c['avg_accuracy']), 'CrossEntropy':score_cross_entropy, 'F1':c['F1'], 'MCC':c['MCC']}) t_score=
pd.DataFrame(out)
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/2/14 18:19 Desc: 新浪财经-股票期权 https://stock.finance.sina.com.cn/option/quotes.html 期权-中金所-沪深 300 指数 https://stock.finance.sina.com.cn/futures/view/optionsCffexDP.php 期权-上交所-50ETF 期权-上交所-300ETF https://stock.finance.sina.com.cn/option/quotes.html """ import json import datetime from typing import Dict, List, Tuple import requests from bs4 import BeautifulSoup import pandas as pd # 期权-中金所-沪深300指数 def option_cffex_hs300_list_sina() -> Dict[str, List[str]]: """ 新浪财经-中金所-沪深300指数-所有合约, 返回的第一个合约为主力合约 目前新浪财经-中金所只有 沪深300指数 一个品种的数据 :return: 中金所-沪深300指数-所有合约 :rtype: dict """ url = "https://stock.finance.sina.com.cn/futures/view/optionsCffexDP.php" r = requests.get(url) soup = BeautifulSoup(r.text, "lxml") symbol = soup.find(attrs={"id": "option_symbol"}).find("li").text temp_attr = soup.find(attrs={"id": "option_suffix"}).find_all("li") contract = [item.text for item in temp_attr] return {symbol: contract} def option_cffex_hs300_spot_sina(symbol: str = "io2104") -> pd.DataFrame: """ 中金所-沪深300指数-指定合约-实时行情 https://stock.finance.sina.com.cn/futures/view/optionsCffexDP.php :param symbol: 合约代码; 用 option_cffex_hs300_list_sina 函数查看 :type symbol: str :return: 中金所-沪深300指数-指定合约-看涨看跌实时行情 :rtype: pd.DataFrame """ url = "https://stock.finance.sina.com.cn/futures/api/openapi.php/OptionService.getOptionData" params = { "type": "futures", "product": "io", "exchange": "cffex", "pinzhong": symbol, } r = requests.get(url, params=params) data_text = r.text data_json = json.loads(data_text[data_text.find("{") : data_text.rfind("}") + 1]) option_call_df = pd.DataFrame( data_json["result"]["data"]["up"], columns=[ "看涨合约-买量", "看涨合约-买价", "看涨合约-最新价", "看涨合约-卖价", "看涨合约-卖量", "看涨合约-持仓量", "看涨合约-涨跌", "行权价", "看涨合约-标识", ], ) option_put_df = pd.DataFrame( data_json["result"]["data"]["down"], columns=[ "看跌合约-买量", "看跌合约-买价", "看跌合约-最新价", "看跌合约-卖价", "看跌合约-卖量", "看跌合约-持仓量", "看跌合约-涨跌", "看跌合约-标识", ], ) data_df = pd.concat([option_call_df, option_put_df], axis=1) data_df['看涨合约-买量'] = pd.to_numeric(data_df['看涨合约-买量']) data_df['看涨合约-买价'] = pd.to_numeric(data_df['看涨合约-买价']) data_df['看涨合约-最新价'] = pd.to_numeric(data_df['看涨合约-最新价']) data_df['看涨合约-卖价'] = pd.to_numeric(data_df['看涨合约-卖价']) data_df['看涨合约-卖量'] = pd.to_numeric(data_df['看涨合约-卖量']) data_df['看涨合约-持仓量'] = pd.to_numeric(data_df['看涨合约-持仓量']) data_df['看涨合约-涨跌'] = pd.to_numeric(data_df['看涨合约-涨跌']) data_df['行权价'] = pd.to_numeric(data_df['行权价']) data_df['看跌合约-买量'] = pd.to_numeric(data_df['看跌合约-买量']) data_df['看跌合约-买价'] = pd.to_numeric(data_df['看跌合约-买价']) data_df['看跌合约-最新价'] = pd.to_numeric(data_df['看跌合约-最新价']) data_df['看跌合约-卖价'] = pd.to_numeric(data_df['看跌合约-卖价']) data_df['看跌合约-卖量'] = pd.to_numeric(data_df['看跌合约-卖量']) data_df['看跌合约-持仓量'] = pd.to_numeric(data_df['看跌合约-持仓量']) data_df['看跌合约-涨跌'] = pd.to_numeric(data_df['看跌合约-涨跌']) return data_df def option_cffex_hs300_daily_sina(symbol: str = "io2202P4350") -> pd.DataFrame: """ 新浪财经-中金所-沪深300指数-指定合约-日频行情 :param symbol: 具体合约代码(包括看涨和看跌标识), 可以通过 ak.option_cffex_hs300_spot_sina 中的 call-标识 获取 :type symbol: str :return: 日频率数据 :rtype: pd.DataFrame """ year = datetime.datetime.now().year month = datetime.datetime.now().month day = datetime.datetime.now().day url = f"https://stock.finance.sina.com.cn/futures/api/jsonp.php/var%20_{symbol}{year}_{month}_{day}=/FutureOptionAllService.getOptionDayline" params = {"symbol": symbol} r = requests.get(url, params=params) data_text = r.text data_df = pd.DataFrame( eval(data_text[data_text.find("[") : data_text.rfind("]") + 1]) ) data_df.columns = ["open", "high", "low", "close", "volume", "date"] data_df = data_df[[ "date", "open", "high", "low", "close", "volume", ]] data_df['date'] = pd.to_datetime(data_df['date']).dt.date data_df['open'] = pd.to_numeric(data_df['open']) data_df['high'] = pd.to_numeric(data_df['high']) data_df['low'] = pd.to_numeric(data_df['low']) data_df['close'] = pd.to_numeric(data_df['close']) data_df['volume'] = pd.to_numeric(data_df['volume']) return data_df # 期权-上交所-50ETF def option_sse_list_sina(symbol: str = "50ETF", exchange: str = "null") -> List[str]: """ 新浪财经-期权-上交所-50ETF-合约到期月份列表 https://stock.finance.sina.com.cn/option/quotes.html :param symbol: 50ETF or 300ETF :type symbol: str :param exchange: null :type exchange: str :return: 合约到期时间 :rtype: list """ url = "http://stock.finance.sina.com.cn/futures/api/openapi.php/StockOptionService.getStockName" params = {"exchange": f"{exchange}", "cate": f"{symbol}"} r = requests.get(url, params=params) data_json = r.json() date_list = data_json["result"]["data"]["contractMonth"] return ["".join(i.split("-")) for i in date_list][1:] def option_sse_expire_day_sina( trade_date: str = "202102", symbol: str = "50ETF", exchange: str = "null" ) -> Tuple[str, int]: """ 指定到期月份指定品种的剩余到期时间 :param trade_date: 到期月份: 202002, 20203, 20206, 20209 :type trade_date: str :param symbol: 50ETF or 300ETF :type symbol: str :param exchange: null :type exchange: str :return: (到期时间, 剩余时间) :rtype: tuple """ url = "http://stock.finance.sina.com.cn/futures/api/openapi.php/StockOptionService.getRemainderDay" params = { "exchange": f"{exchange}", "cate": f"{symbol}", "date": f"{trade_date[:4]}-{trade_date[4:]}", } r = requests.get(url, params=params) data_json = r.json() data = data_json["result"]["data"] if int(data["remainderDays"]) < 0: url = "http://stock.finance.sina.com.cn/futures/api/openapi.php/StockOptionService.getRemainderDay" params = { "exchange": f"{exchange}", "cate": f"{'XD' + symbol}", "date": f"{trade_date[:4]}-{trade_date[4:]}", } r = requests.get(url, params=params) data_json = r.json() data = data_json["result"]["data"] return data["expireDay"], int(data["remainderDays"]) def option_sse_codes_sina(symbol: str = "看涨期权", trade_date: str = "202202", underlying: str = "510050") -> pd.DataFrame: """ 上海证券交易所-所有看涨和看跌合约的代码 :param symbol: choice of {"看涨期权", "看跌期权"} :type symbol: str :param trade_date: 期权到期月份 :type trade_date: "202002" :param underlying: 标的产品代码 华夏上证 50ETF: 510050 or 华泰柏瑞沪深 300ETF: 510300 :type underlying: str :return: 看涨看跌合约的代码 :rtype: Tuple[List, List] """ if symbol == "看涨期权": url = "".join( ["http://hq.sinajs.cn/list=OP_UP_", underlying, str(trade_date)[-4:]] ) else: url = "".join( ["http://hq.sinajs.cn/list=OP_DOWN_", underlying, str(trade_date)[-4:]] ) headers = { 'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Host': 'hq.sinajs.cn', 'Pragma': 'no-cache', 'Referer': 'https://stock.finance.sina.com.cn/', 'sec-ch-ua': '" Not;A Brand";v="99", "Google Chrome";v="97", "Chromium";v="97"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', 'Sec-Fetch-Dest': 'script', 'Sec-Fetch-Mode': 'no-cors', 'Sec-Fetch-Site': 'cross-site', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36' } r = requests.get(url, headers=headers) data_text = r.text data_temp = data_text.replace('"', ",").split(",") temp_list = [i[7:] for i in data_temp if i.startswith("CON_OP_")] temp_df = pd.DataFrame(temp_list) temp_df.reset_index(inplace=True) temp_df['index'] = temp_df.index + 1 temp_df.columns = [ '序号', '期权代码', ] return temp_df def option_sse_spot_price_sina(symbol: str = "10003720") -> pd.DataFrame: """ 新浪财经-期权-期权实时数据 :param symbol: 期权代码 :type symbol: str :return: 期权量价数据 :rtype: pandas.DataFrame """ url = f"http://hq.sinajs.cn/list=CON_OP_{symbol}" headers = { 'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Host': 'hq.sinajs.cn', 'Pragma': 'no-cache', 'Referer': 'https://stock.finance.sina.com.cn/', 'sec-ch-ua': '" Not;A Brand";v="99", "Google Chrome";v="97", "Chromium";v="97"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', 'Sec-Fetch-Dest': 'script', 'Sec-Fetch-Mode': 'no-cors', 'Sec-Fetch-Site': 'cross-site', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36' } r = requests.get(url, headers=headers) data_text = r.text data_list = data_text[data_text.find('"') + 1 : data_text.rfind('"')].split(",") field_list = [ "买量", "买价", "最新价", "卖价", "卖量", "持仓量", "涨幅", "行权价", "昨收价", "开盘价", "涨停价", "跌停价", "申卖价五", "申卖量五", "申卖价四", "申卖量四", "申卖价三", "申卖量三", "申卖价二", "申卖量二", "申卖价一", "申卖量一", "申买价一", "申买量一 ", "申买价二", "申买量二", "申买价三", "申买量三", "申买价四", "申买量四", "申买价五", "申买量五", "行情时间", "主力合约标识", "状态码", "标的证券类型", "标的股票", "期权合约简称", "振幅", "最高价", "最低价", "成交量", "成交额", ] data_df = pd.DataFrame(list(zip(field_list, data_list)), columns=["字段", "值"]) return data_df def option_sse_underlying_spot_price_sina(symbol: str = "sh510300") -> pd.DataFrame: """ 期权标的物的实时数据 :param symbol: sh510050 or sh510300 :type symbol: str :return: 期权标的物的信息 :rtype: pandas.DataFrame """ url = f"http://hq.sinajs.cn/list={symbol}" headers = { 'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8', 'Cache-Control': 'no-cache', 'Host': 'hq.sinajs.cn', 'Pragma': 'no-cache', 'Proxy-Connection': 'keep-alive', 'Referer': 'http://vip.stock.finance.sina.com.cn/', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36' } r = requests.get(url, headers=headers) data_text = r.text data_list = data_text[data_text.find('"') + 1 : data_text.rfind('"')].split(",") field_list = [ "证券简称", "今日开盘价", "昨日收盘价", "最近成交价", "最高成交价", "最低成交价", "买入价", "卖出价", "成交数量", "成交金额", "买数量一", "买价位一", "买数量二", "买价位二", "买数量三", "买价位三", "买数量四", "买价位四", "买数量五", "买价位五", "卖数量一", "卖价位一", "卖数量二", "卖价位二", "卖数量三", "卖价位三", "卖数量四", "卖价位四", "卖数量五", "卖价位五", "行情日期", "行情时间", "停牌状态", ] data_df = pd.DataFrame(list(zip(field_list, data_list)), columns=["字段", "值"]) return data_df def option_sse_greeks_sina(symbol: str = "10003045") -> pd.DataFrame: """ 期权基本信息表 :param symbol: 合约代码 :type symbol: str :return: 期权基本信息表 :rtype: pandas.DataFrame """ url = f"http://hq.sinajs.cn/list=CON_SO_{symbol}" headers = { 'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8', 'Cache-Control': 'no-cache', 'Host': 'hq.sinajs.cn', 'Pragma': 'no-cache', 'Proxy-Connection': 'keep-alive', 'Referer': 'http://vip.stock.finance.sina.com.cn/', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36' } r = requests.get(url, headers=headers) data_text = r.text data_list = data_text[data_text.find('"') + 1: data_text.rfind('"')].split(",") field_list = [ "期权合约简称", "成交量", "Delta", "Gamma", "Theta", "Vega", "隐含波动率", "最高价", "最低价", "交易代码", "行权价", "最新价", "理论价值", ] data_df = pd.DataFrame( list(zip(field_list, [data_list[0]] + data_list[4:])), columns=["字段", "值"] ) return data_df def option_sse_minute_sina(symbol: str = "10003720") -> pd.DataFrame: """ 指定期权品种在当前交易日的分钟数据, 只能获取当前交易日的数据, 不能获取历史分钟数据 https://stock.finance.sina.com.cn/option/quotes.html :param symbol: 期权代码 :type symbol: str :return: 指定期权的当前交易日的分钟数据 :rtype: pandas.DataFrame """ url = "https://stock.finance.sina.com.cn/futures/api/openapi.php/StockOptionDaylineService.getOptionMinline" params = {"symbol": f"CON_OP_{symbol}"} headers = { 'accept': '*/*', 'accept-encoding': 'gzip, deflate, br', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', 'cache-control': 'no-cache', 'pragma': 'no-cache', 'referer': 'https://stock.finance.sina.com.cn/option/quotes.html', 'sec-ch-ua': '" Not;A Brand";v="99", "Google Chrome";v="97", "Chromium";v="97"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', 'sec-fetch-dest': 'script', 'sec-fetch-mode': 'no-cors', 'sec-fetch-site': 'same-origin', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36', } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = data_json["result"]["data"] data_df = pd.DataFrame(temp_df) data_df.columns = ["时间", "价格", "成交", "持仓", "均价", "日期"] data_df = data_df[[ "日期", "时间", "价格", "成交", "持仓", "均价" ]] data_df['日期'] = pd.to_datetime(data_df['日期']).dt.date data_df['日期'].ffill(inplace=True) data_df['价格'] = pd.to_numeric(data_df['价格']) data_df['成交'] = pd.to_numeric(data_df['成交']) data_df['持仓'] = pd.to_numeric(data_df['持仓']) data_df['均价'] = pd.to_numeric(data_df['均价']) return data_df def option_sse_daily_sina(symbol: str = "10003889") -> pd.DataFrame: """ 指定期权的日频率数据 :param symbol: 期权代码 :type symbol: str :return: 指定期权的所有日频率历史数据 :rtype: pandas.DataFrame """ url = "http://stock.finance.sina.com.cn/futures/api/jsonp_v2.php//StockOptionDaylineService.getSymbolInfo" params = {"symbol": f"CON_OP_{symbol}"} headers = { 'accept': '*/*', 'accept-encoding': 'gzip, deflate, br', 'accept-language': 'zh-CN,zh;q=0.9,en;q=0.8', 'cache-control': 'no-cache', 'pragma': 'no-cache', 'referer': 'https://stock.finance.sina.com.cn/option/quotes.html', 'sec-ch-ua': '" Not;A Brand";v="99", "Google Chrome";v="97", "Chromium";v="97"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', 'sec-fetch-dest': 'script', 'sec-fetch-mode': 'no-cors', 'sec-fetch-site': 'same-origin', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36', } r = requests.get(url, params=params, headers=headers) data_text = r.text data_json = json.loads(data_text[data_text.find("(") + 1 : data_text.rfind(")")]) temp_df = pd.DataFrame(data_json) temp_df.columns = ["日期", "开盘", "最高", "最低", "收盘", "成交量"] temp_df['日期'] = pd.to_datetime(temp_df['日期']).dt.date temp_df['开盘'] = pd.to_numeric(temp_df['开盘']) temp_df['最高'] = pd.to_numeric(temp_df['最高']) temp_df['最低'] = pd.to_numeric(temp_df['最低']) temp_df['收盘'] = pd.to_numeric(temp_df['收盘']) temp_df['成交量'] = pd.to_
numeric(temp_df['成交量'])
pandas.to_numeric
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import pytest import numpy as np import pandas from pandas.testing import assert_index_equal import matplotlib import modin.pandas as pd import sys from modin.pandas.test.utils import ( NROWS, RAND_LOW, RAND_HIGH, df_equals, arg_keys, name_contains, test_data, test_data_values, test_data_keys, axis_keys, axis_values, int_arg_keys, int_arg_values, create_test_dfs, eval_general, generate_multiindex, extra_test_parameters, ) from modin.config import NPartitions NPartitions.put(4) # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") def eval_setitem(md_df, pd_df, value, col=None, loc=None): if loc is not None: col = pd_df.columns[loc] value_getter = value if callable(value) else (lambda *args, **kwargs: value) eval_general( md_df, pd_df, lambda df: df.__setitem__(col, value_getter(df)), __inplace__=True ) @pytest.mark.parametrize( "dates", [ ["2018-02-27 09:03:30", "2018-02-27 09:04:30"], ["2018-02-27 09:03:00", "2018-02-27 09:05:00"], ], ) @pytest.mark.parametrize("subset", ["a", "b", ["a", "b"], None]) def test_asof_with_nan(dates, subset): data = {"a": [10, 20, 30, 40, 50], "b": [None, None, None, None, 500]} index = pd.DatetimeIndex( [ "2018-02-27 09:01:00", "2018-02-27 09:02:00", "2018-02-27 09:03:00", "2018-02-27 09:04:00", "2018-02-27 09:05:00", ] ) modin_where = pd.DatetimeIndex(dates) pandas_where = pandas.DatetimeIndex(dates) compare_asof(data, index, modin_where, pandas_where, subset) @pytest.mark.parametrize( "dates", [ ["2018-02-27 09:03:30", "2018-02-27 09:04:30"], ["2018-02-27 09:03:00", "2018-02-27 09:05:00"], ], ) @pytest.mark.parametrize("subset", ["a", "b", ["a", "b"], None]) def test_asof_without_nan(dates, subset): data = {"a": [10, 20, 30, 40, 50], "b": [70, 600, 30, -200, 500]} index = pd.DatetimeIndex( [ "2018-02-27 09:01:00", "2018-02-27 09:02:00", "2018-02-27 09:03:00", "2018-02-27 09:04:00", "2018-02-27 09:05:00", ] ) modin_where = pd.DatetimeIndex(dates) pandas_where = pandas.DatetimeIndex(dates) compare_asof(data, index, modin_where, pandas_where, subset) @pytest.mark.parametrize( "lookup", [ [60, 70, 90], [60.5, 70.5, 100], ], ) @pytest.mark.parametrize("subset", ["col2", "col1", ["col1", "col2"], None]) def test_asof_large(lookup, subset): data = test_data["float_nan_data"] index = list(range(NROWS)) modin_where = pd.Index(lookup) pandas_where = pandas.Index(lookup) compare_asof(data, index, modin_where, pandas_where, subset) def compare_asof( data, index, modin_where: pd.Index, pandas_where: pandas.Index, subset ): modin_df = pd.DataFrame(data, index=index) pandas_df = pandas.DataFrame(data, index=index) df_equals( modin_df.asof(modin_where, subset=subset), pandas_df.asof(pandas_where, subset=subset), ) df_equals( modin_df.asof(modin_where.values, subset=subset), pandas_df.asof(pandas_where.values, subset=subset), ) df_equals( modin_df.asof(list(modin_where.values), subset=subset), pandas_df.asof(list(pandas_where.values), subset=subset), ) df_equals( modin_df.asof(modin_where.values[0], subset=subset), pandas_df.asof(pandas_where.values[0], subset=subset), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_first_valid_index(data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.first_valid_index() == (pandas_df.first_valid_index()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("n", int_arg_values, ids=arg_keys("n", int_arg_keys)) def test_head(data, n): # Test normal dataframe head modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.head(n), pandas_df.head(n)) df_equals(modin_df.head(len(modin_df) + 1), pandas_df.head(len(pandas_df) + 1)) # Test head when we call it from a QueryCompilerView modin_result = modin_df.loc[:, ["col1", "col3", "col3"]].head(n) pandas_result = pandas_df.loc[:, ["col1", "col3", "col3"]].head(n) df_equals(modin_result, pandas_result) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iat(data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): modin_df.iat() @pytest.mark.gpu @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iloc(request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if not name_contains(request.node.name, ["empty_data"]): # Scaler np.testing.assert_equal(modin_df.iloc[0, 1], pandas_df.iloc[0, 1]) # Series df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.iloc[1:, 0], pandas_df.iloc[1:, 0]) df_equals(modin_df.iloc[1:2, 0], pandas_df.iloc[1:2, 0]) # DataFrame df_equals(modin_df.iloc[[1, 2]], pandas_df.iloc[[1, 2]]) # See issue #80 # df_equals(modin_df.iloc[[1, 2], [1, 0]], pandas_df.iloc[[1, 2], [1, 0]]) df_equals(modin_df.iloc[1:2, 0:2], pandas_df.iloc[1:2, 0:2]) # Issue #43 modin_df.iloc[0:3, :] # Write Item modin_df.iloc[[1, 2]] = 42 pandas_df.iloc[[1, 2]] = 42 df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.iloc[0] = modin_df.iloc[1] pandas_df.iloc[0] = pandas_df.iloc[1] df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.iloc[:, 0] = modin_df.iloc[:, 1] pandas_df.iloc[:, 0] = pandas_df.iloc[:, 1] df_equals(modin_df, pandas_df) # From issue #1775 df_equals( modin_df.iloc[lambda df: df.index.get_indexer_for(df.index[:5])], pandas_df.iloc[lambda df: df.index.get_indexer_for(df.index[:5])], ) else: with pytest.raises(IndexError): modin_df.iloc[0, 1] @pytest.mark.gpu @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_index(data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.index, pandas_df.index) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.index = [str(i) for i in modin_df_cp.index] pandas_df_cp.index = [str(i) for i in pandas_df_cp.index] df_equals(modin_df_cp.index, pandas_df_cp.index) @pytest.mark.gpu @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_indexing_duplicate_axis(data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.index = pandas_df.index = [i // 3 for i in range(len(modin_df))] assert any(modin_df.index.duplicated()) assert any(pandas_df.index.duplicated()) df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.loc[0], pandas_df.loc[0]) df_equals(modin_df.iloc[0, 0:4], pandas_df.iloc[0, 0:4]) df_equals( modin_df.loc[0, modin_df.columns[0:4]], pandas_df.loc[0, pandas_df.columns[0:4]], ) @pytest.mark.gpu @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_keys(data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.keys(), pandas_df.keys()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_loc(data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) key1 = modin_df.columns[0] key2 = modin_df.columns[1] # Scaler df_equals(modin_df.loc[0, key1], pandas_df.loc[0, key1]) # Series df_equals(modin_df.loc[0], pandas_df.loc[0]) df_equals(modin_df.loc[1:, key1], pandas_df.loc[1:, key1]) df_equals(modin_df.loc[1:2, key1], pandas_df.loc[1:2, key1]) # DataFrame df_equals(modin_df.loc[[1, 2]], pandas_df.loc[[1, 2]]) # List-like of booleans indices = [i % 3 == 0 for i in range(len(modin_df.index))] columns = [i % 5 == 0 for i in range(len(modin_df.columns))] modin_result = modin_df.loc[indices, columns] pandas_result = pandas_df.loc[indices, columns] df_equals(modin_result, pandas_result) modin_result = modin_df.loc[:, columns] pandas_result = pandas_df.loc[:, columns] df_equals(modin_result, pandas_result) modin_result = modin_df.loc[indices] pandas_result = pandas_df.loc[indices] df_equals(modin_result, pandas_result) # See issue #80 # df_equals(modin_df.loc[[1, 2], ['col1']], pandas_df.loc[[1, 2], ['col1']]) df_equals(modin_df.loc[1:2, key1:key2], pandas_df.loc[1:2, key1:key2]) # From issue #421 df_equals(modin_df.loc[:, [key2, key1]], pandas_df.loc[:, [key2, key1]]) df_equals(modin_df.loc[[2, 1], :], pandas_df.loc[[2, 1], :]) # From issue #1023 key1 = modin_df.columns[0] key2 = modin_df.columns[-2] df_equals(modin_df.loc[:, key1:key2], pandas_df.loc[:, key1:key2]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.loc[[1, 2]] = 42 pandas_df_copy.loc[[1, 2]] = 42 df_equals(modin_df_copy, pandas_df_copy) # From issue #1775 df_equals( modin_df.loc[lambda df: df.iloc[:, 0].isin(list(range(1000)))], pandas_df.loc[lambda df: df.iloc[:, 0].isin(list(range(1000)))], ) # From issue #1374 with pytest.raises(KeyError): modin_df.loc["NO_EXIST"] def test_loc_multi_index(): modin_df = pd.read_csv( "modin/pandas/test/data/blah.csv", header=[0, 1, 2, 3], index_col=0 ) pandas_df = pandas.read_csv( "modin/pandas/test/data/blah.csv", header=[0, 1, 2, 3], index_col=0 ) df_equals(modin_df.loc[1], pandas_df.loc[1]) df_equals(modin_df.loc[1, "Presidents"], pandas_df.loc[1, "Presidents"]) df_equals( modin_df.loc[1, ("Presidents", "Pure mentions")], pandas_df.loc[1, ("Presidents", "Pure mentions")], ) assert ( modin_df.loc[1, ("Presidents", "Pure mentions", "IND", "all")] == pandas_df.loc[1, ("Presidents", "Pure mentions", "IND", "all")] ) df_equals(modin_df.loc[(1, 2), "Presidents"], pandas_df.loc[(1, 2), "Presidents"]) tuples = [ ("bar", "one"), ("bar", "two"), ("bar", "three"), ("bar", "four"), ("baz", "one"), ("baz", "two"), ("baz", "three"), ("baz", "four"), ("foo", "one"), ("foo", "two"), ("foo", "three"), ("foo", "four"), ("qux", "one"), ("qux", "two"), ("qux", "three"), ("qux", "four"), ] modin_index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"]) pandas_index = pandas.MultiIndex.from_tuples(tuples, names=["first", "second"]) frame_data = np.random.randint(0, 100, size=(16, 100)) modin_df = pd.DataFrame( frame_data, index=modin_index, columns=["col{}".format(i) for i in range(100)], ) pandas_df = pandas.DataFrame( frame_data, index=pandas_index, columns=["col{}".format(i) for i in range(100)], ) df_equals(modin_df.loc["bar", "col1"], pandas_df.loc["bar", "col1"]) assert modin_df.loc[("bar", "one"), "col1"] == pandas_df.loc[("bar", "one"), "col1"] df_equals( modin_df.loc["bar", ("col1", "col2")], pandas_df.loc["bar", ("col1", "col2")], ) # From issue #1456 transposed_modin = modin_df.T transposed_pandas = pandas_df.T df_equals( transposed_modin.loc[transposed_modin.index[:-2], :], transposed_pandas.loc[transposed_pandas.index[:-2], :], ) # From issue #1610 df_equals(modin_df.loc[modin_df.index], pandas_df.loc[pandas_df.index]) df_equals(modin_df.loc[modin_df.index[:7]], pandas_df.loc[pandas_df.index[:7]]) @pytest.mark.parametrize("index", [["row1", "row2", "row3"]]) @pytest.mark.parametrize("columns", [["col1", "col2"]]) def test_loc_assignment(index, columns): md_df, pd_df = create_test_dfs(index=index, columns=columns) for i, ind in enumerate(index): for j, col in enumerate(columns): value_to_assign = int(str(i) + str(j)) md_df.loc[ind][col] = value_to_assign pd_df.loc[ind][col] = value_to_assign df_equals(md_df, pd_df) @pytest.fixture def loc_iter_dfs(): columns = ["col1", "col2", "col3"] index = ["row1", "row2", "row3"] return create_test_dfs( {col: ([idx] * len(index)) for idx, col in enumerate(columns)}, columns=columns, index=index, ) @pytest.mark.parametrize("reverse_order", [False, True]) @pytest.mark.parametrize("axis", [0, 1]) def test_loc_iter_assignment(loc_iter_dfs, reverse_order, axis): if reverse_order and axis: pytest.xfail( "Due to internal sorting of lookup values assignment order is lost, see GH-#2552" ) md_df, pd_df = loc_iter_dfs select = [slice(None), slice(None)] select[axis] = sorted(pd_df.axes[axis][:-1], reverse=reverse_order) select = tuple(select) pd_df.loc[select] = pd_df.loc[select] + pd_df.loc[select] md_df.loc[select] = md_df.loc[select] + md_df.loc[select] df_equals(md_df, pd_df) @pytest.mark.parametrize("reverse_order", [False, True]) @pytest.mark.parametrize("axis", [0, 1]) def test_loc_order(loc_iter_dfs, reverse_order, axis): md_df, pd_df = loc_iter_dfs select = [slice(None), slice(None)] select[axis] = sorted(pd_df.axes[axis][:-1], reverse=reverse_order) select = tuple(select) df_equals(pd_df.loc[select], md_df.loc[select]) @pytest.mark.gpu @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_loc_nested_assignment(data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) key1 = modin_df.columns[0] key2 = modin_df.columns[1] modin_df[key1].loc[0] = 500 pandas_df[key1].loc[0] = 500 df_equals(modin_df, pandas_df) modin_df[key2].loc[0] = None pandas_df[key2].loc[0] = None df_equals(modin_df, pandas_df) def test_iloc_assignment(): modin_df = pd.DataFrame(index=["row1", "row2", "row3"], columns=["col1", "col2"]) pandas_df = pandas.DataFrame( index=["row1", "row2", "row3"], columns=["col1", "col2"] ) modin_df.iloc[0]["col1"] = 11 modin_df.iloc[1]["col1"] = 21 modin_df.iloc[2]["col1"] = 31 modin_df.iloc[0]["col2"] = 12 modin_df.iloc[1]["col2"] = 22 modin_df.iloc[2]["col2"] = 32 pandas_df.iloc[0]["col1"] = 11 pandas_df.iloc[1]["col1"] = 21 pandas_df.iloc[2]["col1"] = 31 pandas_df.iloc[0]["col2"] = 12 pandas_df.iloc[1]["col2"] = 22 pandas_df.iloc[2]["col2"] = 32 df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iloc_nested_assignment(data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) key1 = modin_df.columns[0] key2 = modin_df.columns[1] modin_df[key1].iloc[0] = 500 pandas_df[key1].iloc[0] = 500 df_equals(modin_df, pandas_df) modin_df[key2].iloc[0] = None pandas_df[key2].iloc[0] = None df_equals(modin_df, pandas_df) def test_loc_series(): md_df, pd_df = create_test_dfs({"a": [1, 2], "b": [3, 4]}) pd_df.loc[pd_df["a"] > 1, "b"] = np.log(pd_df["b"]) md_df.loc[md_df["a"] > 1, "b"] = np.log(md_df["b"]) df_equals(pd_df, md_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pop(request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: key = modin_df.columns[0] temp_modin_df = modin_df.copy() temp_pandas_df = pandas_df.copy() modin_popped = temp_modin_df.pop(key) pandas_popped = temp_pandas_df.pop(key) df_equals(modin_popped, pandas_popped) df_equals(temp_modin_df, temp_pandas_df) def test_reindex(): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.reindex([0, 3, 2, 1]), pandas_df.reindex([0, 3, 2, 1])) df_equals(modin_df.reindex([0, 6, 2]), pandas_df.reindex([0, 6, 2])) df_equals( modin_df.reindex(["col1", "col3", "col4", "col2"], axis=1), pandas_df.reindex(["col1", "col3", "col4", "col2"], axis=1), ) df_equals( modin_df.reindex(["col1", "col7", "col4", "col8"], axis=1), pandas_df.reindex(["col1", "col7", "col4", "col8"], axis=1), ) df_equals( modin_df.reindex(index=[0, 1, 5], columns=["col1", "col7", "col4", "col8"]), pandas_df.reindex(index=[0, 1, 5], columns=["col1", "col7", "col4", "col8"]), ) df_equals( modin_df.T.reindex(["col1", "col7", "col4", "col8"], axis=0), pandas_df.T.reindex(["col1", "col7", "col4", "col8"], axis=0), ) def test_reindex_like(): df1 = pd.DataFrame( [ [24.3, 75.7, "high"], [31, 87.8, "high"], [22, 71.6, "medium"], [35, 95, "medium"], ], columns=["temp_celsius", "temp_fahrenheit", "windspeed"], index=pd.date_range(start="2014-02-12", end="2014-02-15", freq="D"), ) df2 = pd.DataFrame( [[28, "low"], [30, "low"], [35.1, "medium"]], columns=["temp_celsius", "windspeed"], index=pd.DatetimeIndex(["2014-02-12", "2014-02-13", "2014-02-15"]), ) with pytest.warns(UserWarning): df2.reindex_like(df1) def test_rename_sanity(): source_df = pandas.DataFrame(test_data["int_data"])[ ["col1", "index", "col3", "col4"] ] mapping = {"col1": "a", "index": "b", "col3": "c", "col4": "d"} modin_df = pd.DataFrame(source_df) df_equals(modin_df.rename(columns=mapping), source_df.rename(columns=mapping)) renamed2 = source_df.rename(columns=str.lower) df_equals(modin_df.rename(columns=str.lower), renamed2) modin_df = pd.DataFrame(renamed2) df_equals(modin_df.rename(columns=str.upper), renamed2.rename(columns=str.upper)) # index data = {"A": {"foo": 0, "bar": 1}} # gets sorted alphabetical df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) assert_index_equal( modin_df.rename(index={"foo": "bar", "bar": "foo"}).index, df.rename(index={"foo": "bar", "bar": "foo"}).index, ) assert_index_equal( modin_df.rename(index=str.upper).index, df.rename(index=str.upper).index ) # Using the `mapper` functionality with `axis` assert_index_equal( modin_df.rename(str.upper, axis=0).index, df.rename(str.upper, axis=0).index ) assert_index_equal( modin_df.rename(str.upper, axis=1).columns, df.rename(str.upper, axis=1).columns, ) # have to pass something with pytest.raises(TypeError): modin_df.rename() # partial columns renamed = source_df.rename(columns={"col3": "foo", "col4": "bar"}) modin_df = pd.DataFrame(source_df) assert_index_equal( modin_df.rename(columns={"col3": "foo", "col4": "bar"}).index, source_df.rename(columns={"col3": "foo", "col4": "bar"}).index, ) # other axis renamed = source_df.T.rename(index={"col3": "foo", "col4": "bar"}) assert_index_equal( source_df.T.rename(index={"col3": "foo", "col4": "bar"}).index, modin_df.T.rename(index={"col3": "foo", "col4": "bar"}).index, ) # index with name index = pandas.Index(["foo", "bar"], name="name") renamer = pandas.DataFrame(data, index=index) modin_df = pd.DataFrame(data, index=index) renamed = renamer.rename(index={"foo": "bar", "bar": "foo"}) modin_renamed = modin_df.rename(index={"foo": "bar", "bar": "foo"}) assert_index_equal(renamed.index, modin_renamed.index) assert renamed.index.name == modin_renamed.index.name def test_rename_multiindex(): tuples_index = [("foo1", "bar1"), ("foo2", "bar2")] tuples_columns = [("fizz1", "buzz1"), ("fizz2", "buzz2")] index = pandas.MultiIndex.from_tuples(tuples_index, names=["foo", "bar"]) columns = pandas.MultiIndex.from_tuples(tuples_columns, names=["fizz", "buzz"]) frame_data = [(0, 0), (1, 1)] df = pandas.DataFrame(frame_data, index=index, columns=columns) modin_df = pd.DataFrame(frame_data, index=index, columns=columns) # # without specifying level -> accross all levels renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) modin_renamed = modin_df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) assert_index_equal(renamed.index, modin_renamed.index) renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) assert_index_equal(renamed.columns, modin_renamed.columns) assert renamed.index.names == modin_renamed.index.names assert renamed.columns.names == modin_renamed.columns.names # # with specifying a level # dict renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0) modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0 ) assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz") modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz" ) assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1) modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=1 ) assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz") modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="buzz" ) assert_index_equal(renamed.columns, modin_renamed.columns) # function func = str.upper renamed = df.rename(columns=func, level=0) modin_renamed = modin_df.rename(columns=func, level=0) assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level="fizz") modin_renamed = modin_df.rename(columns=func, level="fizz") assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level=1) modin_renamed = modin_df.rename(columns=func, level=1) assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns=func, level="buzz") modin_renamed = modin_df.rename(columns=func, level="buzz") assert_index_equal(renamed.columns, modin_renamed.columns) # index renamed = df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) modin_renamed = modin_df.rename(index={"foo1": "foo3", "bar2": "bar3"}, level=0) assert_index_equal(modin_renamed.index, renamed.index) @pytest.mark.xfail(reason="Pandas does not pass this test") def test_rename_nocopy(): source_df = pandas.DataFrame(test_data["int_data"])[ ["col1", "index", "col3", "col4"] ] modin_df = pd.DataFrame(source_df) modin_renamed = modin_df.rename(columns={"col3": "foo"}, copy=False) modin_renamed["foo"] = 1 assert (modin_df["col3"] == 1).all() def test_rename_inplace(): source_df = pandas.DataFrame(test_data["int_data"])[ ["col1", "index", "col3", "col4"] ] modin_df = pd.DataFrame(source_df) df_equals( modin_df.rename(columns={"col3": "foo"}), source_df.rename(columns={"col3": "foo"}), ) frame = source_df.copy() modin_frame = modin_df.copy() frame.rename(columns={"col3": "foo"}, inplace=True) modin_frame.rename(columns={"col3": "foo"}, inplace=True) df_equals(modin_frame, frame) def test_rename_bug(): # rename set ref_locs, and set_index was not resetting frame_data = {0: ["foo", "bar"], 1: ["bah", "bas"], 2: [1, 2]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df = df.rename(columns={0: "a"}) df = df.rename(columns={1: "b"}) df = df.set_index(["a", "b"]) df.columns = ["2001-01-01"] modin_df = modin_df.rename(columns={0: "a"}) modin_df = modin_df.rename(columns={1: "b"}) modin_df = modin_df.set_index(["a", "b"]) modin_df.columns = ["2001-01-01"] df_equals(modin_df, df) def test_rename_axis(): data = {"num_legs": [4, 4, 2], "num_arms": [0, 0, 2]} index = ["dog", "cat", "monkey"] modin_df = pd.DataFrame(data, index) pandas_df = pandas.DataFrame(data, index) df_equals(modin_df.rename_axis("animal"), pandas_df.rename_axis("animal")) df_equals( modin_df.rename_axis("limbs", axis="columns"), pandas_df.rename_axis("limbs", axis="columns"), ) modin_df.rename_axis("limbs", axis="columns", inplace=True) pandas_df.rename_axis("limbs", axis="columns", inplace=True) df_equals(modin_df, pandas_df) new_index = pd.MultiIndex.from_product( [["mammal"], ["dog", "cat", "monkey"]], names=["type", "name"] ) modin_df.index = new_index pandas_df.index = new_index df_equals( modin_df.rename_axis(index={"type": "class"}), pandas_df.rename_axis(index={"type": "class"}), ) df_equals( modin_df.rename_axis(columns=str.upper), pandas_df.rename_axis(columns=str.upper), ) df_equals( modin_df.rename_axis(columns=[str.upper(o) for o in modin_df.columns.names]), pandas_df.rename_axis(columns=[str.upper(o) for o in pandas_df.columns.names]), ) with pytest.raises(ValueError): df_equals( modin_df.rename_axis(str.upper, axis=1), pandas_df.rename_axis(str.upper, axis=1), ) def test_rename_axis_inplace(): test_frame = pandas.DataFrame(test_data["int_data"]) modin_df = pd.DataFrame(test_frame) result = test_frame.copy() modin_result = modin_df.copy() no_return = result.rename_axis("foo", inplace=True) modin_no_return = modin_result.rename_axis("foo", inplace=True) assert no_return is modin_no_return df_equals(modin_result, result) result = test_frame.copy() modin_result = modin_df.copy() no_return = result.rename_axis("bar", axis=1, inplace=True) modin_no_return = modin_result.rename_axis("bar", axis=1, inplace=True) assert no_return is modin_no_return df_equals(modin_result, result) def test_reorder_levels(): data = np.random.randint(1, 100, 12) modin_df = pd.DataFrame( data, index=pd.MultiIndex.from_tuples( [ (num, letter, color) for num in range(1, 3) for letter in ["a", "b", "c"] for color in ["Red", "Green"] ], names=["Number", "Letter", "Color"], ), ) pandas_df = pandas.DataFrame( data, index=pandas.MultiIndex.from_tuples( [ (num, letter, color) for num in range(1, 3) for letter in ["a", "b", "c"] for color in ["Red", "Green"] ], names=["Number", "Letter", "Color"], ), ) df_equals( modin_df.reorder_levels(["Letter", "Color", "Number"]), pandas_df.reorder_levels(["Letter", "Color", "Number"]), ) def test_reindex_multiindex(): data1, data2 = np.random.randint(1, 20, (5, 5)), np.random.randint(10, 25, 6) index = np.array(["AUD", "BRL", "CAD", "EUR", "INR"]) modin_midx = pd.MultiIndex.from_product( [["Bank_1", "Bank_2"], ["AUD", "CAD", "EUR"]], names=["Bank", "Curency"] ) pandas_midx = pandas.MultiIndex.from_product( [["Bank_1", "Bank_2"], ["AUD", "CAD", "EUR"]], names=["Bank", "Curency"] ) modin_df1, modin_df2 = ( pd.DataFrame(data=data1, index=index, columns=index), pd.DataFrame(data2, modin_midx), ) pandas_df1, pandas_df2 = (
pandas.DataFrame(data=data1, index=index, columns=index)
pandas.DataFrame
''' (c) 2018, <EMAIL> - Fork from QSTK https://charlesg.github.io/pftk/ (c) 2011, 2012 Georgia Tech Research Corporation This source code is released under the New BSD license. @author: <NAME> @contact: <EMAIL> @summary: Backtester ''' # Python imports from datetime import timedelta # 3rd Party Imports import pandas as pand import numpy as np from copy import deepcopy # Pftk imports from pftk.pftkutil import tsutil as tsu def _calculate_leverage(values_by_stock, ts_leverage, ts_long_exposure, ts_short_exposure, ts_net_exposure): """ @summary calculates leverage based on the dataframe values_by_stock and returns the updated timeseries of leverage @param values_by_stock: Dataframe containing the values held in in each stock in the portfolio @param ts_leverage: time series of leverage values @return ts_leverage : updated time series of leverage values """ for r_index, r_val in values_by_stock.iterrows(): f_long = 0 f_short = 0 for val in r_val.values[:-1]: if np.isnan(val) == False: if val >= 0: f_long = f_long + val else: f_short = f_short + val f_lev = (f_long + abs(f_short)) / (f_long + r_val.values[-1] + f_short) f_net = (f_long - abs(f_short)) / (f_long + r_val.values[-1] + f_short) f_long_ex = (f_long) / (f_long + r_val.values[-1] + f_short) f_short_ex = (abs(f_short)) / (f_long + r_val.values[-1] + f_short) if np.isnan(f_lev): f_lev = 0 if np.isnan(f_net): f_net = 0 if np.isnan(f_long): f_long = 0 if np.isnan(f_short): f_short = 0 ts_leverage = ts_leverage.append(pand.Series(f_lev, index = [r_index] )) ts_long_exposure = ts_long_exposure.append(pand.Series(f_long_ex, index = [r_index] )) ts_short_exposure = ts_short_exposure.append(pand.Series(f_short_ex, index = [r_index] )) ts_net_exposure = ts_net_exposure.append(pand.Series(f_net, index = [r_index] )) return ts_leverage, ts_long_exposure, ts_short_exposure, ts_net_exposure def _monthly_turnover(ts_orders, ts_fund): order_val_month = 0 last_date = ts_orders.index[0] b_first_month = True ts_turnover = "None" for date in ts_orders.index: if last_date.month == date.month: order_val_month += ts_orders.ix[date] else: if b_first_month == True: ts_turnover = pand.Series(order_val_month, index=[last_date]) b_first_month = False else: ts_turnover = ts_turnover.append(pand.Series(order_val_month, index=[last_date])) order_val_month = ts_orders.ix[date] last_date = date if type(ts_turnover) != type("None"): ts_turnover = ts_turnover.append(
pand.Series(order_val_month, index=[last_date])
pandas.Series
#!/usr/bin.env/python # -*- coding: utf-8 -*- """ Gates are traditionally used to subset single cell data in one or two dimensional space by hand-drawn polygons in a manual and laborious process. cytopy attempts to emulate this using autonomous gates, driven by unsupervised learning algorithms. The gate module contains the classes that provide the infrastructure to apply these algorithms to the context of single cell data whilst interacting with the underlying database that houses our analysis. Copyright 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import typing from cytopy.flow.transform import apply_transform from .geometry import ThresholdGeom, PolygonGeom, inside_polygon, \ create_convex_hull, create_polygon, ellipse_to_polygon, probablistic_ellipse from .population import Population, merge_multiple_gate_populations from ..flow.sampling import faithful_downsampling, density_dependent_downsampling, upsample_knn, uniform_downsampling from ..flow.dim_reduction import dimensionality_reduction from ..flow.build_models import build_sklearn_model from sklearn.cluster import * from sklearn.mixture import * from hdbscan import HDBSCAN from shapely.geometry import Polygon as ShapelyPoly from shapely.ops import cascaded_union from string import ascii_uppercase from collections import Counter from typing import List, Dict from functools import reduce from KDEpy import FFTKDE from detecta import detect_peaks from scipy.signal import savgol_filter import pandas as pd import numpy as np import mongoengine __author__ = "<NAME>" __copyright__ = "Copyright 2020, cytopy" __credits__ = ["<NAME>", "<NAME>", "<NAME>", "<NAME>"] __license__ = "MIT" __version__ = "2.0.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" class Child(mongoengine.EmbeddedDocument): """ Base class for a gate child population. This is representative of the 'population' of cells identified when a gate is first defined and will be used as a template to annotate the populations identified in new data. """ name = mongoengine.StringField() signature = mongoengine.DictField() meta = {"allow_inheritance": True} class ChildThreshold(Child): """ Child population of a Threshold gate. This is representative of the 'population' of cells identified when a gate is first defined and will be used as a template to annotate the populations identified in new data. Attributes ----------- name: str Name of the child definition: str Definition of population e.g "+" or "-" for 1 dimensional gate or "++" etc for 2 dimensional gate geom: ThresholdGeom Geometric definition for this child population signature: dict Average of a population feature space (median of each channel); used to match children to newly identified populations for annotating """ definition = mongoengine.StringField() geom = mongoengine.EmbeddedDocumentField(ThresholdGeom) def match_definition(self, definition: str): """ Given a definition, return True or False as to whether it matches this ChildThreshold's definition. If definition contains multiples separated by a comma, or the ChildThreshold's definition contains multiple, first split and then compare. Return True if matches any. Parameters ---------- definition: str Returns ------- bool """ definition = definition.split(",") return any([x in self.definition.split(",") for x in definition]) class ChildPolygon(Child): """ Child population of a Polgon or Ellipse gate. This is representative of the 'population' of cells identified when a gate is first defined and will be used as a template to annotate the populations identified in new data. Attributes ----------- name: str Name of the child geom: ChildPolygon Geometric definition for this child population signature: dict Average of a population feature space (median of each channel); used to match children to newly identified populations for annotating """ geom = mongoengine.EmbeddedDocumentField(PolygonGeom) class Gate(mongoengine.Document): """ Base class for a Gate. A Gate attempts to separate single cell data in one or two-dimensional space using unsupervised learning algorithms. The algorithm is fitted to example data to generate "children"; the populations of cells a user expects to identify. These children are stored and then when the gate is 'fitted' to new data, the resulting populations are matched to the expected children. Attributes ----------- gate_name: str (required) Name of the gate parent: str (required) Parent population that this gate is applied to x: str (required) Name of the x-axis variable forming the one/two dimensional space this gate is applied to y: str (optional) Name of the y-axis variable forming the two dimensional space this gate is applied to transform_x: str, optional Method used to transform the X-axis dimension, supported methods are: logicle, hyperlog, asinh or log transform_y: str, optional Method used to transform the Y-axis dimension, supported methods are: logicle, hyperlog, asinh or log transform_x_kwargs: dict, optional Additional keyword arguments passed to Transformer object when transforming the x-axis dimension transform_y_kwargs: dict, optional Additional keyword arguments passed to Transformer object when transforming the y-axis dimension sampling: dict (optional) Options for downsampling data prior to application of gate. Should contain a key/value pair for desired method e.g ({"method": "uniform"). Available methods are: 'uniform', 'density' or 'faithful'. See cytopy.flow.sampling for details. Additional keyword arguments should be provided in the sampling dictionary. dim_reduction: dict (optional) Experimental feature. Allows for dimension reduction to be performed prior to applying gate. Gate will be applied to the resulting embeddings. Provide a dictionary with a key "method" and the value as any supported method in cytopy.flow.dim_reduction. Additional keyword arguments should be provided in this dictionary. ctrl_x: str (optional) If a value is given here it should be the name of a control specimen commonly associated to the samples in an Experiment. When given this signals that the gate should use the control data for the x-axis dimension when predicting population geometry. ctrl_y: str (optional) If a value is given here it should be the name of a control specimen commonly associated to the samples in an Experiment. When given this signals that the gate should use the control data for the y-axis dimension when predicting population geometry. ctrl_classifier: str (default='XGBClassifier') Ignored if both ctrl_x and ctrl_y are None. Specifies which Scikit-Learn or sklearn-like classifier to use when estimating the control population (see cytopy.data.fcs.FileGroup.load_ctrl_population_df) ctrl_classifier_params: dict, optional Parameters used when creating control population classifier ctrl_prediction_kwargs: dict, optional Additional keyword arguments passed to cytopy.data.fcs.FileGroup.load_ctrl_population_df call method: str (required) Name of the underlying algorithm to use. Should have a value of: "manual", "density", "quantile" or correspond to the name of an existing class in Scikit-Learn or HDBSCAN. If you have a method that follows the Scikit-Learn template but isn't currently present in cytopy and you would like it to be, please contribute to the respository on GitHub or contact <EMAIL> method_kwargs: dict Keyword arguments for initiation of the above method. """ gate_name = mongoengine.StringField(required=True) parent = mongoengine.StringField(required=True) x = mongoengine.StringField(required=True) y = mongoengine.StringField(required=False) transform_x = mongoengine.StringField(required=False, default=None) transform_y = mongoengine.StringField(required=False, default=None) transform_x_kwargs = mongoengine.DictField() transform_y_kwargs = mongoengine.DictField() sampling = mongoengine.DictField() dim_reduction = mongoengine.DictField() ctrl_x = mongoengine.StringField() ctrl_y = mongoengine.StringField() ctrl_classifier = mongoengine.StringField(default="XGBClassifier") ctrl_classifier_params = mongoengine.DictField() ctrl_prediction_kwargs = mongoengine.DictField() method = mongoengine.StringField(required=True) method_kwargs = mongoengine.DictField() children = mongoengine.EmbeddedDocumentListField(Child) meta = { 'db_alias': 'core', 'collection': 'gates', 'allow_inheritance': True } def __init__(self, *args, **values): method = values.get("method", None) assert method is not None, "No method given" err = f"Module {method} not supported. See docs for supported methods." assert method in ["manual", "density", "quantile", "time", "AND", "OR", "NOT"] + list(globals().keys()), err super().__init__(*args, **values) self.model = None self.x_transformer = None self.y_transformer = None if self.ctrl_classifier: params = self.ctrl_classifier_params or {} build_sklearn_model(klass=self.ctrl_classifier, **params) self.validate() def transform(self, data: pd.DataFrame) -> pd.DataFrame: """ Transform dataframe prior to gating Parameters ---------- data: Pandas.DataFrame Returns ------- Pandas.DataFrame Transformed dataframe """ if self.transform_x is not None: kwargs = self.transform_x_kwargs or {} data, self.x_transformer = apply_transform(data=data, features=[self.x], method=self.transform_x, return_transformer=True, **kwargs) if self.transform_y is not None and self.y is not None: kwargs = self.transform_y_kwargs or {} data, self.y_transformer = apply_transform(data=data, features=[self.y], method=self.transform_y, return_transformer=True, **kwargs) return data def transform_info(self) -> (dict, dict): """ Returns two dictionaries describing the transforms and transform settings applied to each variable this gate acts upon Returns ------- dict, dict Transform dict ({x-variable: transform, y-variable: transform}), Transform kwargs dict ({x-variable: transform kwargs, y-variable: transform kwargs}) """ transforms = [self.transform_x, self.transform_y] transform_kwargs = [self.transform_x_kwargs, self.transform_y_kwargs] transforms = {k: v for k, v in zip([self.x, self.y], transforms) if k is not None} transform_kwargs = {k: v for k, v in zip([self.x, self.y], transform_kwargs) if k is not None} return transforms, transform_kwargs def _downsample(self, data: pd.DataFrame) -> pd.DataFrame or None: """ Perform down-sampling prior to gating. Returns down-sampled dataframe or None if sampling method is undefined. Parameters ---------- data: Pandas.DataFrame Returns ------- Pandas.DataFrame or None Raises ------ AssertionError If sampling kwargs are missing """ data = data.copy() if self.sampling.get("method", None) == "uniform": n = self.sampling.get("n", None) or self.sampling.get("frac", None) assert n is not None, "Must provide 'n' or 'frac' for uniform downsampling" return uniform_downsampling(data=data, sample_size=n) if self.sampling.get("method", None) == "density": kwargs = {k: v for k, v in self.sampling.items() if k not in ["method", "features"]} features = [f for f in [self.x, self.y] if f is not None] return density_dependent_downsampling(data=data, features=features, **kwargs) if self.sampling.get("method", None) == "faithful": h = self.sampling.get("h", 0.01) return faithful_downsampling(data=data.values, h=h) raise ValueError("Invalid downsample method, should be one of: 'uniform', 'density' or 'faithful'") def _upsample(self, data: pd.DataFrame, sample: pd.DataFrame, populations: List[Population]) -> List[Population]: """ Perform up-sampling after gating using KNN. Returns list of Population objects with index updated to reflect the original data. Parameters ---------- data: Pandas.DataFrame Original data, prior to down-sampling sample: Pandas.DataFrame Sampled data populations: list List of populations with assigned indexes Returns ------- list """ sample = sample.copy() sample["label"] = None for i, p in enumerate(populations): sample.loc[sample.index.isin(p.index), "label"] = i sample["label"].fillna(-1, inplace=True) labels = sample["label"].values sample.drop("label", axis=1, inplace=True) new_labels = upsample_knn(sample=sample, original_data=data, labels=labels, features=[i for i in [self.x, self.y] if i is not None], verbose=self.sampling.get("verbose", True), scoring=self.sampling.get("upsample_scoring", "balanced_accuracy"), **self.sampling.get("knn_kwargs", {})) for i, p in enumerate(populations): new_idx = data.index.values[np.where(new_labels == i)] if len(new_idx) == 0: raise ValueError(f"Up-sampling failed, no events labelled for {p.population_name}") p.index = new_idx return populations def _dim_reduction(self, data: pd.DataFrame): """ Experimental! Perform dimension reduction prior to gating. Returns dataframe with appended columns for embeddings Parameters ---------- data: Pandas.DataFrame Data to reduce Returns ------- Pandas.DataFrame """ method = self.dim_reduction.get("method", None) if method is None: return data kwargs = {k: v for k, v in self.dim_reduction.items() if k != "method"} data = dimensionality_reduction(data=data, features=kwargs.get("features", data.columns.tolist()), method=method, n_components=2, return_embeddings_only=False, return_reducer=False, **kwargs) self.x = f"{method}1" self.y = f"{method}2" return data def _xy_in_dataframe(self, data: pd.DataFrame): """ Assert that the x and y variables defined for this gate are present in the given DataFrames columns Parameters ---------- data: Pandas.DataFrame Returns ------- None Raises ------- AssertionError If required columns missing from provided data """ assert self.x in data.columns, f"{self.x} missing from given dataframe" if self.y: assert self.y in data.columns, f"{self.y} missing from given dataframe" def reset_gate(self) -> None: """ Removes existing children and resets all parameters. Returns ------- None """ self.children = [] class ThresholdGate(Gate): """ ThresholdGate inherits from Gate. A Gate attempts to separate single cell data in one or two-dimensional space using unsupervised learning algorithms. The algorithm is fitted to example data to generate "children"; the populations of cells a user expects to identify. These children are stored and then when the gate is 'fitted' to new data, the resulting populations are matched to the expected children. The ThresholdGate subsets data based on the properties of the estimated probability density function of the underlying data. For each axis, kernel density estimation (KDEpy.FFTKDE) is used to estimate the PDF and a straight line "threshold" applied to the region of minimum density to separate populations. This is achieved using a peak finding algorithm and a smoothing procedure, until either: * Two predominant "peaks" are found and the threshold is taken as the local minima between there peaks * A single peak is detected and the threshold is applied as either the quantile given in method_kwargs or the inflection point on the descending curve. Alternatively the "method" can be "manual" for a static gate to be applied; user should provide x_threshold and y_threshold (if two-dimensional) to "method_kwargs", or "method" can be "quantile", where the threshold will be drawn at the given quantile, defined by "q" in "method_kwargs". Additional kwargs to control behaviour of ThresholdGate when method is "density" can be given in method_kwargs: * kernel (default="guassian") - kernel used for KDE calculation (see KDEpy.FFTKDE for avialable kernels) * bw (default="silverman") - bandwidth to use for KDE calculation, can either be "silverman" or "ISJ" or a float value (see KDEpy) * min_peak_threshold (default=0.05) - percentage of highest recorded peak below which peaks are ignored. E.g. 0.05 would mean any peak less than 5% of the highest peak would be ignored. * peak_boundary (default=0.1) - bounding window around which only the highest peak is considered. E.g. 0.1 would mean that peaks are assessed within a window the size of peak_boundary * length of probability vector and only highest peak within window is kept. * inflection_point_kwargs - dictionary; see cytopy.data.gate.find_inflection_point * smoothed_peak_finding_kwargs - dictionary; see cytopy.data.gate.smoothed_peak_finding ThresholdGate supports control gating, whereby thresholds are fitted to control data and then applied to primary data. Attributes ----------- gate_name: str (required) Name of the gate parent: str (required) Parent population that this gate is applied to x: str (required) Name of the x-axis variable forming the one/two dimensional space this gate is applied to y: str (optional) Name of the y-axis variable forming the two dimensional space this gate is applied to transform_x: str, optional Method used to transform the X-axis dimension, supported methods are: logicle, hyperlog, asinh or log transform_y: str, optional Method used to transform the Y-axis dimension, supported methods are: logicle, hyperlog, asinh or log transform_x_kwargs: dict, optional Additional keyword arguments passed to Transformer object when transforming the x-axis dimension transform_y_kwargs: dict, optional Additional keyword arguments passed to Transformer object when transforming the y-axis dimension sampling: dict (optional) Options for downsampling data prior to application of gate. Should contain a key/value pair for desired method e.g ({"method": "uniform"). Available methods are: 'uniform', 'density' or 'faithful'. See cytopy.flow.sampling for details. Additional keyword arguments should be provided in the sampling dictionary. dim_reduction: dict (optional) Experimental feature. Allows for dimension reduction to be performed prior to applying gate. Gate will be applied to the resulting embeddings. Provide a dictionary with a key "method" and the value as any supported method in cytopy.flow.dim_reduction. Additional keyword arguments should be provided in this dictionary. ctrl_x: str (optional) If a value is given here it should be the name of a control specimen commonly associated to the samples in an Experiment. When given this signals that the gate should use the control data for the x-axis dimension when predicting population geometry. ctrl_y: str (optional) If a value is given here it should be the name of a control specimen commonly associated to the samples in an Experiment. When given this signals that the gate should use the control data for the y-axis dimension when predicting population geometry. ctrl_classifier: str (default='XGBClassifier') Ignored if both ctrl_x and ctrl_y are None. Specifies which Scikit-Learn or sklearn-like classifier to use when estimating the control population (see cytopy.data.fcs.FileGroup.load_ctrl_population_df) ctrl_classifier_params: dict, optional Parameters used when creating control population classifier ctrl_prediction_kwargs: dict, optional Additional keyword arguments passed to cytopy.data.fcs.FileGroup.load_ctrl_population_df call method: str (required) Name of the underlying algorithm to use. Should have a value of: "manual", "density", or "quantile" method_kwargs: dict Keyword arguments for initiation of the above method. """ children = mongoengine.EmbeddedDocumentListField(ChildThreshold) def add_child(self, child: ChildThreshold) -> None: """ Add a new child for this gate. Checks that definition is valid and overwrites geom with gate information. Parameters ---------- child: ChildThreshold Returns ------- None Raises ------ AssertionError If invalid definition """ if self.y is not None: definition = child.definition.split(",") assert all(i in ["++", "+-", "-+", "--"] for i in definition), "Invalid child definition, should be one of: '++', '+-', '-+', or '--'" else: assert child.definition in ["+", "-"], "Invalid child definition, should be either '+' or '-'" child.geom.x = self.x child.geom.y = self.y child.geom.transform_x, child.geom.transform_y = self.transform_x, self.transform_y child.geom.transform_x_kwargs = self.transform_x_kwargs child.geom.transform_y_kwargs = self.transform_y_kwargs self.children.append(child) def _duplicate_children(self) -> None: """ Loop through the children and merge any with the same name. Returns ------- None """ child_counts = Counter([c.name for c in self.children]) if all([i == 1 for i in child_counts.values()]): return updated_children = [] for name, count in child_counts.items(): if count >= 2: updated_children.append(merge_children([c for c in self.children if c.name == name])) else: updated_children.append([c for c in self.children if c.name == name][0]) self.children = updated_children def label_children(self, labels: dict) -> None: """ Rename children using a dictionary of labels where the key correspond to the existing child name and the value is the new desired population name. If the same population name is given to multiple children, these children will be merged. If drop is True, then children that are absent from the given dictionary will be dropped. Parameters ---------- labels: dict Mapping for new children name Returns ------- None """ for c in self.children: c.name = labels.get(c.name) self._duplicate_children() def _match_to_children(self, new_populations: List[Population]) -> List[Population]: """ Given a list of newly create Populations, match the Populations to the gates children and return list of Populations with correct population names. Parameters ---------- new_populations: list List of newly created Population objects Returns ------- List """ labeled = list() for c in self.children: matching_populations = [p for p in new_populations if c.match_definition(p.definition)] if len(matching_populations) == 0: continue elif len(matching_populations) > 1: pop = merge_multiple_gate_populations(matching_populations, new_population_name=c.name) else: pop = matching_populations[0] pop.population_name = c.name labeled.append(pop) return labeled def _quantile_gate(self, data: pd.DataFrame) -> list: """ Fit gate to the given dataframe by simply drawing the threshold at the desired quantile. Parameters ---------- data: Pandas.DataFrame Returns ------- list List of thresholds (one for each dimension) Raises ------ AssertionError If 'q' argument not found in method kwargs and method is 'qunatile' """ q = self.method_kwargs.get("q", None) assert q is not None, "Must provide a value for 'q' in method kwargs when using quantile gate" if self.y is None: return [data[self.x].quantile(q)] return [data[self.x].quantile(q), data[self.y].quantile(q)] def _process_one_peak(self, x: np.ndarray, x_grid: np.array, p: np.array, peak_idx: int): """ Process the results of a single peak detected. Returns the threshold for the given dimension. Parameters ---------- d: str Name of the dimension (feature) under investigation. Must be a column in data. data: Pandas.DataFrame Events dataframe x_grid: numpy.ndarray x grid upon which probability vector is estimated by KDE p: numpy.ndarray probability vector as estimated by KDE Returns ------- float Raises ------ AssertionError If 'q' argument not found in method kwargs and method is 'qunatile' """ use_inflection_point = self.method_kwargs.get("use_inflection_point", True) if not use_inflection_point: q = self.method_kwargs.get("q", None) assert q is not None, "Must provide a value for 'q' in method kwargs " \ "for desired quantile if use_inflection_point is False" return np.quantile(x, q) inflection_point_kwargs = self.method_kwargs.get("inflection_point_kwargs", {}) return find_inflection_point(x=x_grid, p=p, peak_idx=peak_idx, **inflection_point_kwargs) def _fit(self, data: pd.DataFrame or dict) -> list: """ Internal method to fit threshold density gating to a given dataframe. Returns the list of thresholds generated and the dataframe the threshold were generated from (will be the downsampled dataframe if sampling methods defined). Parameters ---------- data: Pandas.DataFrame Returns ------- List """ if self.method == "manual": return self._manual() self._xy_in_dataframe(data=data) dims = [i for i in [self.x, self.y] if i is not None] if self.sampling.get("method", None) is not None: data = self._downsample(data=data) if self.method == "quantile": thresholds = self._quantile_gate(data=data) else: thresholds = list() for d in dims: thresholds.append(self._find_threshold(data[d].values)) return thresholds def _find_threshold(self, x: np.ndarray): """ Given a single dimension of data find the threshold point according to the methodology defined for this gate and the number of peaks detected. Parameters ---------- x: Numpy Array Returns ------- float Raises ------ AssertionError If no peaks are detected """ peaks, x_grid, p = self._density_peak_finding(x) assert len(peaks) > 0, "No peaks detected" if len(peaks) == 1: threshold = self._process_one_peak(x, x_grid=x_grid, p=p, peak_idx=peaks[0]) elif len(peaks) == 2: threshold = find_local_minima(p=p, x=x_grid, peaks=peaks) else: threshold = self._solve_threshold_for_multiple_peaks(x=x, p=p, x_grid=x_grid) return threshold def _solve_threshold_for_multiple_peaks(self, x: np.ndarray, p: np.ndarray, x_grid: np.ndarray): """ Handle the detection of > 2 peaks by smoothing the estimated PDF and rerunning the peak finding algorithm Parameters ---------- x: Numpy Array One dimensional PDF p: Numpy Array Indices of detected peaks x_grid: Numpy Array Grid space PDF was generated in Returns ------- float """ smoothed_peak_finding_kwargs = self.method_kwargs.get("smoothed_peak_finding_kwargs", {}) smoothed_peak_finding_kwargs["min_peak_threshold"] = smoothed_peak_finding_kwargs.get( "min_peak_threshold", self.method_kwargs.get("min_peak_threshold", 0.05)) smoothed_peak_finding_kwargs["peak_boundary"] = smoothed_peak_finding_kwargs.get("peak_boundary", self.method_kwargs.get( "peak_boundary", 0.1)) p, peaks = smoothed_peak_finding(p=p, **smoothed_peak_finding_kwargs) if len(peaks) == 1: return self._process_one_peak(x, x_grid=x_grid, p=p, peak_idx=peaks[0]) else: return find_local_minima(p=p, x=x_grid, peaks=peaks) def _density_peak_finding(self, x: np.ndarray): """ Estimate the underlying PDF of a single dimension using a convolution based KDE (KDEpy.FFTKDE), then run a peak finding algorithm (detecta.detect_peaks) Parameters ---------- x: Numpy Array Returns ------- (Numpy Array, Numpy Array, Numpy Array) Index of detected peaks, grid space that PDF is estimated on, and estimated PDF """ x_grid, p = (FFTKDE(kernel=self.method_kwargs.get("kernel", "gaussian"), bw=self.method_kwargs.get("bw", "silverman")) .fit(x) .evaluate()) peaks = find_peaks(p=p, min_peak_threshold=self.method_kwargs.get("min_peak_threshold", 0.05), peak_boundary=self.method_kwargs.get("peak_boundary", 0.1)) return peaks, x_grid, p def _manual(self) -> list: """ Wrapper called if manual gating method. Searches the method kwargs and returns static thresholds Returns ------- List Raises ------ AssertionError If x or y threshold is None when required """ x_threshold = self.method_kwargs.get("x_threshold", None) y_threshold = self.method_kwargs.get("y_threshold", None) assert x_threshold is not None, "Manual threshold gating requires the keyword argument 'x_threshold'" if self.transform_x: kwargs = self.transform_x_kwargs or {} x_threshold = apply_transform(pd.DataFrame({"x": [x_threshold]}), features=["x"], method=self.transform_x, **kwargs).x.values[0] if self.y: assert y_threshold is not None, "2D manual threshold gating requires the keyword argument 'y_threshold'" if self.transform_y: kwargs = self.transform_y_kwargs or {} y_threshold = apply_transform(pd.DataFrame({"y": [y_threshold]}), features=["y"], method=self.transform_y, **kwargs).y.values[0] thresholds = [i for i in [x_threshold, y_threshold] if i is not None] return [float(i) for i in thresholds] def _ctrl_fit(self, primary_data: pd.DataFrame, ctrl_data: pd.DataFrame): """ Estimate the thresholds to apply to dome primary data using the given control data Parameters ---------- primary_data: Pandas.DataFrame ctrl_data: Pandas.DataFrame Returns ------- List List of thresholds [x dimension threshold, y dimension threshold] """ self._xy_in_dataframe(data=primary_data) self._xy_in_dataframe(data=ctrl_data) ctrl_data = self.transform(data=ctrl_data) ctrl_data = self._dim_reduction(data=ctrl_data) dims = [i for i in [self.x, self.y] if i is not None] if self.sampling.get("method", None) is not None: primary_data, ctrl_data = self._downsample(data=primary_data), self._downsample(data=ctrl_data) thresholds = list() for d in dims: fmo_threshold = self._find_threshold(ctrl_data[d].values) peaks, x_grid, p = self._density_peak_finding(primary_data[d].values) if len(peaks) == 1: thresholds.append(fmo_threshold) else: if len(peaks) > 2: t = self._solve_threshold_for_multiple_peaks(x=primary_data[d].values, p=p, x_grid=x_grid) else: t = find_local_minima(p=p, x=x_grid, peaks=peaks) if t > fmo_threshold: thresholds.append(t) else: thresholds.append(fmo_threshold) return thresholds def fit(self, data: pd.DataFrame, ctrl_data: pd.DataFrame or None = None) -> None: """ Fit the gate using a given dataframe. If children already exist will raise an AssertionError and notify user to call `fit_predict`. Parameters ---------- data: Pandas.DataFrame Population data to fit threshold ctrl_data: Pandas.DataFrame, optional If provided, thresholds will be calculated using ctrl_data and then applied to data Returns ------- None Raises ------ AssertionError If gate Children have already been defined i.e. fit has been called previously """ data = data.copy() data = self.transform(data=data) data = self._dim_reduction(data=data) assert len(self.children) == 0, "Children already defined for this gate. Call 'fit_predict' to " \ "fit to new data and match populations to children, or call " \ "'predict' to apply static thresholds to new data. If you want to " \ "reset the gate and call 'fit' again, first call 'reset_gate'" if ctrl_data is not None: thresholds = self._ctrl_fit(primary_data=data, ctrl_data=ctrl_data) else: thresholds = self._fit(data=data) y_threshold = None if len(thresholds) > 1: y_threshold = thresholds[1] data = apply_threshold(data=data, x=self.x, x_threshold=thresholds[0], y=self.y, y_threshold=y_threshold) for definition, df in data.items(): self.add_child(ChildThreshold(name=definition, definition=definition, geom=ThresholdGeom(x_threshold=thresholds[0], y_threshold=y_threshold))) return None def fit_predict(self, data: pd.DataFrame, ctrl_data: pd.DataFrame or None = None) -> list: """ Fit the gate using a given dataframe and then associate predicted Population objects to existing children. If no children exist, an AssertionError will be raised prompting the user to call `fit` method. Parameters ---------- data: Pandas.DataFrame Population data to fit threshold to ctrl_data: Pandas.DataFrame, optional If provided, thresholds will be calculated using ctrl_data and then applied to data Returns ------- List List of predicted Population objects, labelled according to the gates child objects Raises ------ AssertionError If fit has not been called prior to fit_predict """ assert len(self.children) > 0, "No children defined for gate, call 'fit' before calling 'fit_predict'" data = data.copy() data = self.transform(data=data) data = self._dim_reduction(data=data) if ctrl_data is not None: thresholds = self._ctrl_fit(primary_data=data, ctrl_data=ctrl_data) else: thresholds = self._fit(data=data) y_threshold = None if len(thresholds) == 2: y_threshold = thresholds[1] results = apply_threshold(data=data, x=self.x, y=self.y, x_threshold=thresholds[0], y_threshold=y_threshold) pops = self._generate_populations(data=results, x_threshold=thresholds[0], y_threshold=y_threshold) return self._match_to_children(new_populations=pops) def predict(self, data: pd.DataFrame) -> list: """ Using existing children associated to this gate, the previously calculated thresholds of these children will be applied to the given data and then Population objects created and labelled to match the children of this gate. NOTE: the data will not be fitted and thresholds applied will be STATIC not data driven. For data driven gates call `fit_predict` method. Parameters ---------- data: Pandas.DataFrame Data to apply static thresholds too Returns ------- List List of Population objects Raises ------ AssertionError If fit has not been called prior to predict """ assert len(self.children) > 0, "Must call 'fit' prior to predict" self._xy_in_dataframe(data=data) data = self.transform(data=data) data = self._dim_reduction(data=data) if self.y is not None: data = threshold_2d(data=data, x=self.x, y=self.y, x_threshold=self.children[0].geom.x_threshold, y_threshold=self.children[0].geom.y_threshold) else: data = threshold_1d(data=data, x=self.x, x_threshold=self.children[0].geom.x_threshold) return self._generate_populations(data=data, x_threshold=self.children[0].geom.x_threshold, y_threshold=self.children[0].geom.y_threshold) def _generate_populations(self, data: dict, x_threshold: float, y_threshold: float or None) -> list: """ Generate populations from a standard dictionary of dataframes that have had thresholds applied. Parameters ---------- data: Pandas.DataFrame x_threshold: float y_threshold: float (optional) Returns ------- List List of Population objects """ pops = list() for definition, df in data.items(): pops.append(Population(population_name=definition, definition=definition, parent=self.parent, n=df.shape[0], source="gate", index=df.index.values, signature=df.mean().to_dict(), geom=ThresholdGeom(x=self.x, y=self.y, transform_x=self.transform_x, transform_y=self.transform_y, transform_x_kwargs=self.transform_x_kwargs, transform_y_kwargs=self.transform_y_kwargs, x_threshold=x_threshold, y_threshold=y_threshold))) return pops class PolygonGate(Gate): """ PolygonGate inherits from Gate. A Gate attempts to separate single cell data in one or two-dimensional space using unsupervised learning algorithms. The algorithm is fitted to example data to generate "children"; the populations of cells a user expects to identify. These children are stored and then when the gate is 'fitted' to new data, the resulting populations are matched to the expected children. The PolygonGate subsets data based on the results of an unsupervised learning algorithm such a clustering algorithm. PolygonGate supports any clustering algorithm from the Scikit-Learn machine learning library. Support is extended to any clustering library that follows the Scikit-Learn template, but currently this only includes HDBSCAN. Contributions to extend to other libraries are welcome. The name of the class to use should be provided in "method" along with keyword arguments for initiating this class in "method_kwargs". Alternatively the "method" can be "manual" for a static gate to be applied; user should provide x_values and y_values (if two-dimensional) to "method_kwargs" as two arrays, this will be interpreted as the x and y coordinates of the polygon to fit to the data. DOES NOT SUPPORT CONTROL GATING. Attributes ----------- gate_name: str (required) Name of the gate parent: str (required) Parent population that this gate is applied to x: str (required) Name of the x-axis variable forming the one/two dimensional space this gate is applied to y: str (optional) Name of the y-axis variable forming the two dimensional space this gate is applied to transform_x: str, optional Method used to transform the X-axis dimension, supported methods are: logicle, hyperlog, asinh or log transform_y: str, optional Method used to transform the Y-axis dimension, supported methods are: logicle, hyperlog, asinh or log transform_x_kwargs: dict, optional Additional keyword arguments passed to Transformer object when transforming the x-axis dimension transform_y_kwargs: dict, optional Additional keyword arguments passed to Transformer object when transforming the y-axis dimension sampling: dict (optional) Options for downsampling data prior to application of gate. Should contain a key/value pair for desired method e.g ({"method": "uniform"). Available methods are: 'uniform', 'density' or 'faithful'. See cytopy.flow.sampling for details. Additional keyword arguments should be provided in the sampling dictionary. dim_reduction: dict (optional) Experimental feature. Allows for dimension reduction to be performed prior to applying gate. Gate will be applied to the resulting embeddings. Provide a dictionary with a key "method" and the value as any supported method in cytopy.flow.dim_reduction. Additional keyword arguments should be provided in this dictionary. method: str (required) Name of the underlying algorithm to use. Should have a value of: "manual", or correspond to the name of an existing class in Scikit-Learn or HDBSCAN. If you have a method that follows the Scikit-Learn template but isn't currently present in cytopy and you would like it to be, please contribute to the respository on GitHub or contact <EMAIL> method_kwargs: dict Keyword arguments for initiation of the above method. """ children = mongoengine.EmbeddedDocumentListField(ChildPolygon) def __init__(self, *args, **values): super().__init__(*args, **values) assert self.y is not None, "Polygon gate expects a y-axis variable" def _generate_populations(self, data: pd.DataFrame, polygons: List[ShapelyPoly]) -> List[Population]: """ Given a dataframe and a list of Polygon shapes as generated from the '_fit' method, generate a list of Population objects. Parameters ---------- data: Pandas.DataFrame polygons: list Returns ------- List List of Population objects """ pops = list() for name, poly in zip(ascii_uppercase, polygons): pop_df = inside_polygon(df=data, x=self.x, y=self.y, poly=poly) geom = PolygonGeom(x=self.x, y=self.y, transform_x=self.transform_x, transform_y=self.transform_y, transform_x_kwargs=self.transform_x_kwargs, transform_y_kwargs=self.transform_y_kwargs, x_values=poly.exterior.xy[0], y_values=poly.exterior.xy[1]) pops.append(Population(population_name=name, source="gate", parent=self.parent, n=pop_df.shape[0], signature=pop_df.mean().to_dict(), geom=geom, index=pop_df.index.values)) return pops def label_children(self, labels: dict, drop: bool = True) -> None: """ Rename children using a dictionary of labels where the key correspond to the existing child name and the value is the new desired population name. If the same population name is given to multiple children, these children will be merged. If drop is True, then children that are absent from the given dictionary will be dropped. Parameters ---------- labels: dict Mapping for new children name drop: bool (default=True) If True, children absent from labels will be dropped Returns ------- None Raises ------ AssertionError If duplicate labels are provided """ assert len(set(labels.values())) == len(labels.values()), \ "Duplicate labels provided. Child merging not available for polygon gates" if drop: self.children = [c for c in self.children if c.name in labels.keys()] for c in self.children: c.name = labels.get(c.name) def add_child(self, child: ChildPolygon) -> None: """ Add a new child for this gate. Checks that child is valid and overwrites geom with gate information. Parameters ---------- child: ChildPolygon Returns ------- None Raises ------ TypeError x_values or y_values is not type list """ child.geom.x = self.x child.geom.y = self.y child.geom.transform_x = self.transform_x child.geom.transform_y = self.transform_y child.geom.transform_x_kwargs = self.transform_x_kwargs child.geom.transform_y_kwargs = self.transform_y_kwargs if not isinstance(child.geom.x_values, list): raise TypeError("ChildPolygon x_values should be of type list") if not isinstance(child.geom.y_values, list): raise TypeError("ChildPolygon y_values should be of type list") self.children.append(child) def _match_to_children(self, new_populations: List[Population]) -> List[Population]: """ Given a list of newly create Populations, match the Populations to the gates children and return list of Populations with correct population names. Populations are matched to children based on minimising the hausdorff distance between the set of polygon coordinates defining the gate as it was originally created and the newly generated gate fitted to new data. Parameters ----------- new_populations: list List of newly created Population objects Returns ------- List """ matched_populations = list() for child in self.children: hausdorff_distances = [child.geom.shape.hausdorff_distance(pop.geom.shape) for pop in new_populations] matching_population = new_populations[int(np.argmin(hausdorff_distances))] matching_population.population_name = child.name matched_populations.append(matching_population) return matched_populations def _manual(self) -> ShapelyPoly: """ Wrapper for manual polygon gating. Searches method kwargs for x and y coordinates and returns polygon. Returns ------- Shapely.geometry.Polygon Raises ------ AssertionError x_values or y_values missing from method kwargs """ x_values, y_values = self.method_kwargs.get("x_values", None), self.method_kwargs.get("y_values", None) assert x_values is not None and y_values is not None, "For manual polygon gate must provide x_values and " \ "y_values" if self.transform_x: kwargs = self.transform_x_kwargs or {} x_values = apply_transform(pd.DataFrame({"x": x_values}), features="x", method=self.transform_x, **kwargs).x.values if self.transform_y: kwargs = self.transform_y_kwargs or {} y_values = apply_transform(pd.DataFrame({"y": y_values}), features="y", method=self.transform_y, **kwargs).y.values return create_polygon(x_values, y_values) def _fit(self, data: pd.DataFrame) -> List[ShapelyPoly]: """ Internal method for fitting gate to the given data and returning geometric polygons for captured populations. Parameters ---------- data: Pandas.DataFrame Returns ------- List List of Shapely polygon's """ if self.method == "manual": return [self._manual()] kwargs = {k: v for k, v in self.method_kwargs.items() if k != "conf"} self.model = globals()[self.method](**kwargs) self._xy_in_dataframe(data=data) if self.sampling.get("method", None) is not None: data = self._downsample(data=data) labels = self.model.fit_predict(data[[self.x, self.y]]) hulls = [create_convex_hull(x_values=data.iloc[np.where(labels == i)][self.x].values, y_values=data.iloc[np.where(labels == i)][self.y].values) for i in np.unique(labels)] hulls = [x for x in hulls if len(x[0]) > 0] return [create_polygon(*x) for x in hulls] def fit(self, data: pd.DataFrame, ctrl_data: None = None) -> None: """ Fit the gate using a given dataframe. This will generate new children using the calculated polygons. If children already exist will raise an AssertionError and notify user to call `fit_predict`. Parameters ---------- data: Pandas.DataFrame Population data to fit gate to ctrl_data: None Redundant parameter, necessary for Gate signature. Ignore. Returns ------- None Raises ------ AssertionError If Children have already been defined i.e. fit has been called previously without calling 'reset_gate' """ assert len(self.children) == 0, "Gate is already defined, call 'reset_gate' to clear children" data = self.transform(data=data) data = self._dim_reduction(data=data) polygons = self._fit(data=data) for name, poly in zip(ascii_uppercase, polygons): self.add_child(ChildPolygon(name=name, geom=PolygonGeom(x_values=poly.exterior.xy[0].tolist(), y_values=poly.exterior.xy[1].tolist()))) def fit_predict(self, data: pd.DataFrame, ctrl_data: None = None) -> List[Population]: """ Fit the gate using a given dataframe and then associate predicted Population objects to existing children. If no children exist, an AssertionError will be raised prompting the user to call 'fit' method. Parameters ---------- data: Pandas.DataFrame Population data to fit gate to ctrl_data: None Redundant parameter, necessary for Gate signature. Ignore. Returns ------- List List of predicted Population objects, labelled according to the gates child objects Raises ------ AssertionError If fit has not been previously called """ assert len(self.children) > 0, "No children defined for gate, call 'fit' before calling 'fit_predict'" data = self.transform(data=data) data = self._dim_reduction(data=data) return self._match_to_children(self._generate_populations(data=data.copy(), polygons=self._fit(data=data))) def predict(self, data: pd.DataFrame) -> List[Population]: """ Using existing children associated to this gate, the previously calculated polygons of these children will be applied to the given data and then Population objects created and labelled to match the children of this gate. NOTE: the data will not be fitted and polygons applied will be STATIC not data driven. For data driven gates call `fit_predict` method. Parameters ---------- data: Pandas.DataFrame Data to apply static polygons to Returns ------- List List of Population objects Raises ------ AssertionError If fit has not been previously called """ data = self.transform(data=data) data = self._dim_reduction(data=data) polygons = [create_polygon(c.geom.x_values, c.geom.y_values) for c in self.children] populations = self._generate_populations(data=data, polygons=polygons) for p, name in zip(populations, [c.name for c in self.children]): p.population_name = name return populations class EllipseGate(PolygonGate): """ EllipseGate inherits from PolygonGate. A Gate attempts to separate single cell data in one or two-dimensional space using unsupervised learning algorithms. The algorithm is fitted to example data to generate "children"; the populations of cells a user expects to identify. These children are stored and then when the gate is 'fitted' to new data, the resulting populations are matched to the expected children. The EllipseGate uses probabilistic mixture models to subset data into "populations". For each component of the mixture model the covariance matrix is used to generate a confidence ellipse, surrounding data and emulating a gate. EllipseGate can use any of the methods from the Scikit-Learn mixture module. Keyword arguments for the initiation of a class from this module can be given in "method_kwargs". DOES NOT SUPPORT CONTROL GATING. Attributes ----------- gate_name: str (required) Name of the gate parent: str (required) Parent population that this gate is applied to x: str (required) Name of the x-axis variable forming the one/two dimensional space this gate is applied to y: str (optional) Name of the y-axis variable forming the two dimensional space this gate is applied to transform_x: str, optional Method used to transform the X-axis dimension, supported methods are: logicle, hyperlog, asinh or log transform_y: str, optional Method used to transform the Y-axis dimension, supported methods are: logicle, hyperlog, asinh or log transform_x_kwargs: dict, optional Additional keyword arguments passed to Transformer object when transforming the x-axis dimension transform_y_kwargs: dict, optional Additional keyword arguments passed to Transformer object when transforming the y-axis dimension sampling: dict (optional) Options for downsampling data prior to application of gate. Should contain a key/value pair for desired method e.g ({"method": "uniform"). Available methods are: 'uniform', 'density' or 'faithful'. See cytopy.flow.sampling for details. Additional keyword arguments should be provided in the sampling dictionary. dim_reduction: dict (optional) Experimental feature. Allows for dimension reduction to be performed prior to applying gate. Gate will be applied to the resulting embeddings. Provide a dictionary with a key "method" and the value as any supported method in cytopy.flow.dim_reduction. Additional keyword arguments should be provided in this dictionary. method: str (required) Name of the underlying algorithm to use. Should have a value of: "manual", or correspond to the name of an existing class in Scikit-Learn mixture module.. If you have a method that follows the Scikit-Learn template but isn't currently present in cytopy and you would like it to be, please contribute to the repository on GitHub or contact <EMAIL> method_kwargs: dict Keyword arguments for initiation of the above method. """ children = mongoengine.EmbeddedDocumentListField(ChildPolygon) def __init__(self, *args, **values): method = values.get("method", None) method_kwargs = values.get("method_kwargs", {}) assert method_kwargs.get("covariance_type", "full"), "EllipseGate only supports covariance_type of 'full'" valid = ["manual", "GaussianMixture", "BayesianGaussianMixture"] assert method in valid, f"Elliptical gating method should be one of {valid}" self.conf = method_kwargs.get("conf", 0.95) super().__init__(*args, **values) def _manual(self) -> ShapelyPoly: """ Wrapper for manual elliptical gating. Searches method kwargs for centroid, width, height, and angle, and returns polygon. Returns ------- Shapely.geometry.Polygon Raises ------ AssertionError If axis transformations do not match TypeError If centroid, width, height, or angle are of invalid type ValueError If centroid, width, height, or angle are missing from method kwargs """ centroid = self.method_kwargs.get("centroid", None) width = self.method_kwargs.get("width", None) height = self.method_kwargs.get("height", None) angle = self.method_kwargs.get("angle", None) if self.transform_x: assert self.transform_x == self.transform_y, "Manual elliptical gate requires that x and y axis are " \ "transformed to the same scale" kwargs = self.transform_x_kwargs or {} centroid = apply_transform(pd.DataFrame({"c": list(centroid)}), features=["c"], method=self.transform_x, **kwargs)["c"].values df = apply_transform(pd.DataFrame({"w": [width], "h": [height], "a": [angle]}), features=["w", "h", "a"], method=self.transform_x, **kwargs) width, height, angle = df["w"].values[0], df["h"].values[0], df["a"].values[0] if not all([x is not None for x in [centroid, width, height, angle]]): raise ValueError("Manual elliptical gate requires the following keyword arguments; " "width, height, angle and centroid") if not len(centroid) == 2 and not all(isinstance(x, float) for x in centroid): raise TypeError("Centroid should be a list of two float values") if not all(isinstance(x, float) for x in [width, height, angle]): raise TypeError("Width, height, and angle should be of type float") return ellipse_to_polygon(centroid=centroid, width=width, height=height, angle=angle) def _fit(self, data: pd.DataFrame) -> List[ShapelyPoly]: """ Internal method for fitting gate to the given data and returning geometric polygons for captured populations. Parameters ---------- data: Pandas.DataFrame Returns ------- list List of Shapely polygon's """ params = {k: v for k, v in self.method_kwargs.items() if k != "conf"} self.model = globals()[self.method](**params) if not self.method_kwargs.get("probabilistic_ellipse", True): return super()._fit(data=data) self._xy_in_dataframe(data=data) if self.sampling.get("method", None) is not None: data = self._downsample(data=data) self.model.fit_predict(data[[self.x, self.y]]) ellipses = [probablistic_ellipse(covar, conf=self.conf) for covar in self.model.covariances_] polygons = [ellipse_to_polygon(centroid, *ellipse) for centroid, ellipse in zip(self.model.means_, ellipses)] return polygons class BooleanGate(PolygonGate): """ The BooleanGate is a special class of Gate that allows for merging, subtraction, and intersection methods. A BooleanGate should be defined with one of the following string values as its 'method' and a set of population names as 'populations' in method_kwargs: * AND - generates a new population containing only events present in every population of a given set of populations * OR - generates a new population that is a merger of all unique events from all populations in a given set of populations * NOT - generates a new population that contains all events in some target population that are not present in some set of other populations (taken as the first member of 'populations') BooleanGate inherits from the PolygonGate and generates a Population with Polygon geometry. This allows the user to view the resulting 'gate' as a polygon structure. This means """ populations = mongoengine.ListField(required=True) def __init__(self, method: str, populations: list, *args, **kwargs): if method not in ["AND", "OR", "NOT"]: raise ValueError("method must be one of: 'OR', 'AND' or 'NOT'") super().__init__(*args, method=method, populations=populations, **kwargs) def _or(self, data: List[pd.DataFrame]) -> pd.DataFrame: """ OR operation, generates index of events that is a merger of all unique events from all populations in a given set of populations. Parameters ---------- data: list List of Pandas DataFrames Returns ------- Pandas.DataFrame New population dataframe """ idx = np.unique(np.concatenate([df.index.values for df in data], axis=0), axis=0) return
pd.concat(data)
pandas.concat
#coding=utf-8 import pandas as pd import numpy as np import sys import os from sklearn import preprocessing import datetime import scipy as sc from sklearn.preprocessing import MinMaxScaler,StandardScaler from sklearn.externals import joblib #import joblib class FEbase(object): """description of class""" def __init__(self, **kwargs): pass def create(self,*DataSetName): #print (self.__class__.__name__) (filepath, tempfilename) = os.path.split(DataSetName[0]) (filename, extension) = os.path.splitext(tempfilename) #bufferstring='savetest2017.csv' bufferstringoutput=filepath+'/'+filename+'_'+self.__class__.__name__+extension if(os.path.exists(bufferstringoutput)==False): #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) df_all=self.core(DataSetName) df_all.to_csv(bufferstringoutput) return bufferstringoutput def core(self,df_all,Data_adj_name=''): return df_all def real_FE(): return 0 class FEg30eom0110network(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): intflag=True df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) if(intflag): df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) if(intflag): df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) if(intflag): df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min',True) df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min',True) df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max',True) df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max',True) df_all,_=FEsingle.HighLowRange(df_all,8,True) df_all,_=FEsingle.HighLowRange(df_all,25,True) df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) if(intflag): df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) if(intflag): df_all['pct_chg_abs_rank']=df_all['pct_chg_abs_rank']*10//2 df_all=FEsingle.PctChgAbsSumRank(df_all,6,True) df_all=FEsingle.PctChgSumRank(df_all,3,True) df_all=FEsingle.PctChgSumRank(df_all,6,True) df_all=FEsingle.PctChgSumRank(df_all,12,True) df_all=FEsingle.AmountChgRank(df_all,12,True) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) if(intflag): df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],1) df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>18] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all class FEg30eom0110onlinew6d(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all['sm_amount_pos']=df_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['lg_amount_pos']=df_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['net_mf_amount_pos']=df_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['sm_amount_pos']=df_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_all['lg_amount_pos']=df_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_all['net_mf_amount_pos']=df_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_all['sm_amount']=df_all.groupby('ts_code')['sm_amount'].shift(1) df_all['lg_amount']=df_all.groupby('ts_code')['lg_amount'].shift(1) df_all['net_mf_amount']=df_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) ##排除科创版 #print(df_all) #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) #df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>18] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all class FE_a23(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>18] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a29(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>15] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) #df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a29_Volatility(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>15] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) #df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a31(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=
pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date'])
pandas.merge
''' pyjade A program to export, curate, and transform data from the MySQL database used by the Jane Addams Digital Edition. ''' import os import re import sys import json import string import datetime import mysql.connector from diskcache import Cache import pandas as pd import numpy as np from bs4 import BeautifulSoup from tqdm import tqdm from safeprint import print ''' Options ''' try: # Options file setup credit <NAME> with open(os.path.join('options.json')) as env_file: ENV = json.loads(env_file.read()) except: print('"Options.json" not found; please add "options.json" to the current directory.') ''' SQL Connection ''' DB = mysql.connector.connect( host=ENV['SQL']['HOST'], user=ENV['SQL']['USER'], passwd=ENV['SQL']['PASSWORD'], database=ENV['SQL']['DATABASE'] ) CUR = DB.cursor(buffered=True) ''' Setup ''' BEGIN = datetime.datetime.now() TS = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ITEM_ELEMENTS = ENV['ELEMENT_DICTIONARY']['DCTERMS_IN_USE'] ITEM_ELEMENTS.update(ENV['ELEMENT_DICTIONARY']['DESC_JADE_ELEMENTS']) TYPES = ENV['ELEMENT_DICTIONARY']['TYPES'] OUT_DIR = 'outputs/' if not os.path.exists(OUT_DIR): os.makedirs(OUT_DIR) DATASET_OPTIONS = ENV['DATASET_OPTIONS'] CRUMBS = DATASET_OPTIONS['EXPORT_SEPARATE_SQL_CRUMBS'] PROP_SET_LIST = DATASET_OPTIONS['PROPERTIES_TO_INCLUDE_FOR_EACH_TYPE'] INCLUDE_PROPS = DATASET_OPTIONS['PROPERTIES_TO_INCLUDE_FOR_EACH_TYPE'] class Dataset(): def __init__(self): ''' Start building the dataset objects by pulling IDs and types from omek_items ''' statement = ''' SELECT omek_items.id as item_id, omek_item_types.`name` as 'jade_type', collection_id as 'jade_collection' FROM omek_items JOIN omek_item_types on omek_items.item_type_id = omek_item_types.id WHERE public = 1 ORDER BY item_id; ''' self.omek_items = pd.read_sql(statement,DB) self.omek_items = self.omek_items.set_index('item_id',drop=False) self.objects = self.omek_items.copy() self.objects['item_id'] = self.objects['item_id'].apply( lambda x: self.convert_to_jade_id(x)) self.objects.rename(columns={'item_id': 'jade_id'},inplace=True) self.objects = self.objects.set_index('jade_id',drop=False) self.objects = self.objects[self.objects['jade_type'].isin( ['Text','Event','Person','Organization','Publication'] )] # Noise is an alternate dataset to record property values that dont fit the regular usage self.noise = self.objects.copy() self.noise.drop('jade_type',axis=1) self.noise.drop('jade_collection',axis=1) def ingest(self,limit=None): ''' Get the item element texts ''' statement = f''' SELECT et.id AS id, et.record_id AS record_id, et.element_id AS element_id, et.`text` AS el_text, items.item_type_id AS item_type FROM omek_element_texts as et JOIN omek_items AS items ON et.record_id = items.id WHERE record_type = "Item" ORDER BY id; ''' if limit != None: statement = statement.split(';')[0] + f' LIMIT {str(limit)};' self.element_texts = pd.read_sql(statement,DB) # Load environment variables ELEMENT_IDS = list(ITEM_ELEMENTS.keys()) # Set data structure: data = {} noise = {} # Iterate through the element_texts iter = tqdm(self.element_texts.iterrows()) iter.set_description("Ingesting item attributes") for tup in iter: row = tup[1] element_id = str(row.loc['element_id']) if row.loc['record_id'] in self.omek_items.index.values: jade_type = self.omek_items.loc[row.loc['record_id'],'jade_type'] jade_id = self.convert_to_jade_id(row.loc['record_id']) # Filter element texts through environment variables if element_id in ELEMENT_IDS: if jade_type in TYPES.values(): element_label = ITEM_ELEMENTS[element_id] # Filters property values through the sets designated in the options if element_label in INCLUDE_PROPS[jade_type]: compile_json(data,jade_id,element_label,row.loc['el_text']) else: compile_json(noise,jade_id,element_label,row.loc['el_text']) # if CRUMBS: # print('Excluded',element_label,'in type',jade_type) # Add accumulated data to DataFrame new_df = pd.DataFrame.from_dict(data,orient='index') new_noise_df = pd.DataFrame.from_dict(noise,orient='index') self.objects = pd.concat([self.objects,new_df],axis=1) self.noise = pd.concat([self.noise,new_noise_df],axis=1) # Add URLs base_url = "https://digital.janeaddams.ramapo.edu/items/show/" self.objects.insert(loc=1,column='jade_url',value=[ base_url+id.split('_')[-1] for id in self.objects.index.values ]) self.add_collections(limit) self.add_tags(limit) # Remove records with no title fields found self.objects = self.objects.dropna(subset=['dcterms_title']) def convert_to_jade_id(self,item_id): ''' Prepend the type string to the SQL primary key so that locations and items are unique in the same set of relations ''' if type(item_id) != type(str): if item_id in self.omek_items.index.values: the_type = self.omek_items.at[item_id,"jade_type"] if the_type in list(TYPES.values()): return the_type.lower()+"_"+str(item_id) else: return "unspecified_"+str(item_id) else: return "unpublished_"+str(item_id) else: return item_id def add_tags(self,limit): ''' Pull tags from the database ''' statement = f''' SELECT * FROM omek_records_tags JOIN omek_tags on omek_records_tags.tag_id = omek_tags.id; ''' self.tag_df = pd.read_sql(statement,DB) self.objects = self.objects[:limit].apply( lambda x : self.add_tag(x),axis=1) def add_tag(self, row_ser): ''' Add the tag to the list for each object ''' new_subj_field = [] id = row_ser.loc['jade_id'] try: tag_names = self.tag_df.loc[self.tag_df['record_id'] == int(id.split("_")[-1])] if not tag_names.empty: for name in tag_names['name'].to_list(): if name not in new_subj_field: new_subj_field.append(name) row_ser['dcterms_subject'] = new_subj_field return row_ser except: return row_ser def add_collections(self,limit): ''' Pull collections from the database ''' statement = ''' SELECT omek_collections.id as collection_id, `text` as collection_name FROM omek_collections JOIN omek_element_texts AS texts ON omek_collections.id = texts.record_id WHERE record_type = "Collection" AND element_id = 50 AND public = 1; ''' self.collection_df = pd.read_sql(statement,DB) self.collection_df = self.collection_df.set_index('collection_id') self.objects = self.objects[:limit].apply( lambda x : self.add_collection(x), axis=1 ) def add_collection(self,row_ser): ''' Add the collection to the list for each object ''' new_collection_field = [] ids = row_ser.loc['jade_collection'] if not isinstance(ids, list): ids = [ids] try: for coll_id in ids: matches = self.collection_df.at[coll_id,'collection_name'] if isinstance(matches,np.ndarray): match_list = matches.tolist() elif isinstance(matches,str): match_list = [matches] else: print("Unrecognized type of collection",type(matches)) for name in match_list: if name not in new_collection_field: new_collection_field.append(name) row_ser['jade_collection'] = new_collection_field return row_ser except: return row_ser def add_relations(self,limit=None): ''' Ingest relation data from SQL ''' # Read from SQL tables omek_item_relations_relations and omek_item_relations_properties statement = f''' SELECT relations.id as id, relations.subject_item_id AS subjId, properties.id as relId, properties.label AS relLabel, relations.object_item_id AS objId FROM omek_item_relations_relations AS relations JOIN omek_item_relations_properties AS properties ON relations.property_id = properties.id; ''' if limit != None: statement = statement.split(';')[0] + f' LIMIT {str(limit)};' self.relations = pd.read_sql(statement,DB,index_col='id') # Style relation labels with camel case self.relations['relLabel'] = self.relations['relLabel'].apply( lambda x: camel(x)) # Set up data structure data = {} noise = {} # Add the type prefix to the subject and object IDs self.relations['subjId'] = self.relations['subjId'].apply( lambda x: self.convert_to_jade_id(x)) self.relations['objId'] = self.relations['objId'].apply( lambda x: self.convert_to_jade_id(x)) # Iterate through the relation set iter = tqdm(self.relations.iterrows()) iter.set_description("Adding relations") for tup in iter: row = tup[1] subjId = row['subjId'] relLabel = row['relLabel'] objId = row['objId'] if ( subjId in self.objects.index.values ) and ( objId in self.objects.index.values ): # print(subjId,objId) compile_json(data,subjId,relLabel,objId) else: compile_json(noise,subjId,relLabel,objId) # Add locations to the relations # This is a thorny call bramble that should probably be untangled in a future iteration of the script locSet = LocationSet() locSet.ingest(self,limit=limit) data, noise = self.add_locations(locSet,data,noise) # Add the compiled relation data into the main DataFrame and the noise bin new_df = pd.DataFrame(data={"jade_relation":list(data.values())},index=list(data.keys())) self.objects = pd.concat([self.objects,new_df],sort=False,axis=1) new_noise_df = pd.DataFrame(data={"jade_relation":list(noise.values())},index=list(noise.keys())) self.noise = pd.concat([self.noise,new_noise_df],sort=False,axis=1) def add_locations(self,locSet,data,noise): ''' Add locations from class object already constructed ''' # Add the type prefix to the location and item IDs locSet.locations['loc_id'] = locSet.locations['loc_id'].astype(str) locSet.locations['loc_id'] = locSet.locations['loc_id'].apply( lambda x : "location_" + str(x)) locSet.locations.rename(columns={'loc_id': 'jade_id'},inplace=True) # Merge locations table into objects table self.objects = pd.concat([self.objects,locSet.locations],axis=0) self.objects = self.objects.set_index('jade_id',drop=False) self.objects.index.name = None dataset_ids = self.objects.index.values self.location_duplicates = locSet.location_duplicates # Iterate through the location set iter = tqdm(locSet.locations.iterrows()) iter.set_description("Adding locations") for tup in iter: row = tup[1] # Iterate through the collection of items for each location for rel in list(row.loc['loc_relation'].items()): loc_id = row.loc['jade_id'] desc_list = rel[1] item_id = rel[0] for desc in desc_list: # Build up the data structure for the later DataFrame if item_id in dataset_ids: compile_json(data,item_id,desc,loc_id) else: compile_json(noise,item_id,desc,loc_id) # Remove relations from locations table as they are now represented in item rows self.objects = self.objects.drop("loc_relation",axis=1) # Add location types self.objects = self.objects.apply( lambda ser : self.add_location_types(ser), axis=1 ) self.noise = self.noise.apply( lambda ser : self.add_location_types(ser), axis=1 ) self.objects = self.objects.dropna(subset=['jade_id']) return data, noise def add_location_types(self,row): ''' Look for null type values and adds location if location in jade_id prefix ''' try: if pd.isnull(row.loc['jade_type']): if type(row.loc['jade_id']) == type(""): if row.loc['jade_id'].split("_")[0] == "location": row.loc['jade_type'] = "Location" else: print("Type null but not location:",row) else: print('Dropped type not included:',row['jade_url']) return row except: print("Unknown problem during adding location type for:",row) def quantify(self): ''' Run counting functions on properties and relations to create descriptive statistics about the data ''' self.quant = {} # Items self.quant["item_property_count"] = self.objects.count() # Item properties self.quantify_properties() # Item properties by type self.quantify_properties_by_type() # Relations (including location relations) self.quantify_relations() # Data nesting self.quant['nesting'] = {} self.check_nesting(self.objects) def quantify_properties(self): ''' Run counts of properties ''' # Iterate through properties identified for faceting props = list(DATASET_OPTIONS['SUBSET_PROPERTIES_AND_QUANTITIES'].items()) iter = tqdm(props) iter.set_description("Quantifying subsets by facet") for prop, lim in iter: if prop in self.objects.columns.values: # Special cases if prop in ['dcterms_date']: # Date dc_dates_ser = self.objects[prop] dc_dates_ser = dc_dates_ser.apply(unwrap_list) dc_dates_ser = dc_dates_ser.dropna() for id in dc_dates_ser.index.values: try: date_val = dc_dates_ser[id] if not isinstance(date_val, list): date_list = [date_val] else: date_list = date_val for date_string in date_list: if not isinstance(date_string, str): date_string = str(date_string) yearlike = date_string.split('-')[0] if ( len(yearlike) == 4 ) and ( int(yearlike[0]) == 1 ) and ( yearlike[3] in '0123456789' ): year = yearlike dc_dates_ser[id] = str(year) else: dc_dates_ser.drop(id) print('Dropped unrecognized date value:',id,dc_dates_ser[id]) except: dc_dates_ser.drop(id) print('Dropped unrecognized date value:',id,dc_dates_ser[id]) if len(dc_dates_ser) > 1: self.add_to_quant( dc_dates_ser, sort_on_property_name=False) # All others / standard structure else: ser = self.objects[prop] ser = ser.dropna() if len(ser) > 1: self.add_to_quant(ser) def add_to_quant( self, series, # A named Series object whose index is the item or location IDs # and whose values are non-empty strings or lists of strings sort_on_property_name = False # Default False sorts by largest count. Optional True sorts alphabetically by property name ): ''' Index the DataFrame's IDs by value of passed property (column name) ''' property = series.name # Create an index of jade_ids by property value for the series (column) passed for id in series.index.values: cell = series[id] if isinstance(cell, np.ndarray): cell = cell.tolist() if not isinstance(cell, list): cell = [cell] for val in cell: compile_json( self.quant, property, val.strip() if isinstance(val, str) else val, id) # Create a dictionary of property values and instance counts for val in list(self.quant[property].keys()): compile_json(self.quant, property+"_count", val, len(self.quant[property][val])) # Sort the dictionary and add it to the dataset object if not sort_on_property_name: self.quant[property+"_count"] = dict( sort_by_item_counts(self.quant[property+"_count"])) self.quant[property+"_count"] = pd.Series( self.quant[property+"_count"], index=list(self.quant[property+"_count"].keys()), name=property+"_count") if sort_on_property_name: self.quant[property+"_count"] = self.quant[property+"_count"].sort_index() # Go ahead and unwrap the single-integer lists created by compile_json self.quant[property+"_count"] = self.quant[property+"_count"].apply(unwrap_list) def quantify_properties_by_type(self): ''' Create a table of property counts by object type ''' # Get a copy of the main DataFrame and send each row through the counter self.quant['prop_table'] = {} df = self.objects.copy() df = df.apply( lambda ser : self.compile_types_by_prop(ser), axis=1 ) # Make the resulting dict a DataFrame, sort it, and abbreviate column headers self.quant['prop_table'] = pd.DataFrame.from_dict( self.quant['prop_table'], orient='index') self.quant['prop_table'] = self.quant['prop_table'][[ 'Person', 'Text', 'Event', 'Organization', 'Publication', 'Location', 'All Types' ]] self.quant['prop_table'] = self.quant['prop_table'].sort_index() self.quant['prop_table'].rename(columns={'Organization':'Org.', 'Publication':'Pub.', 'Location':'Loc.'},inplace=True) def compile_types_by_prop(self,ser): ''' Count the properties in the passed series by object type ''' jade_type = ser.loc['jade_type'] jade_type = unwrap_list(jade_type) if jade_type in list(INCLUDE_PROPS.keys()): for prop in ser.index.values: if prop in INCLUDE_PROPS[jade_type]: cell = ser.loc[prop] if not isinstance(cell, list): cell = [cell] if not pd.isnull(cell).any(): if prop not in self.quant['prop_table']: self.quant['prop_table'][prop] = {} if "All Properties" not in self.quant['prop_table']: self.quant['prop_table']['All Properties'] = {} if jade_type not in self.quant['prop_table'][prop]: self.quant['prop_table'][prop][jade_type] = 1 else: self.quant['prop_table'][prop][jade_type] += 1 if "All Types" not in self.quant['prop_table'][prop]: self.quant['prop_table'][prop]["All Types"] = 1 else: self.quant['prop_table'][prop]["All Types"] += 1 if jade_type not in self.quant['prop_table']['All Properties']: self.quant['prop_table']['All Properties'][jade_type] = 1 else: self.quant['prop_table']['All Properties'][jade_type] += 1 return ser def quantify_relations(self): ''' Make a list of unique relation triples and a table of the most common subject–object pairs ''' # Iterate through relations in the Dataset uniq_rels = {} count_df_index = [] count_df_columns = [] iter = tqdm(self.objects.index.values) iter.set_description("Counting unique relations") for subjId in iter: row = self.objects.loc[subjId] row_rels_dict = row.loc['jade_relation'] if not pd.isnull(row_rels_dict): for relLabel, objIdList in row_rels_dict.items(): for objId in objIdList: # Find the types of each subject and object subjType = subjId.split('_')[0].capitalize() objType = objId.split('_')[0].capitalize() # Count the unique combinations of subject, relation, and object rel = " ".join([subjType,relLabel,objType]) if rel not in uniq_rels: uniq_rels[rel] = 1 else: uniq_rels[rel] += 1 # Make the dimensions for a dataframe if subjType not in count_df_index: count_df_index.append(subjType) if objType not in count_df_columns: count_df_columns.append(objType) # Sort and output simple list self.quant["unique_relation_list"] = pd.DataFrame.from_dict( dict(sort_by_item_counts(uniq_rels)),orient='index') # Make the dataframe count_df = pd.DataFrame(data=0,index=count_df_index,columns=count_df_columns) for rel in list(uniq_rels.keys()): count = uniq_rels[rel] try: subjType, relLabel, objType = rel.split(' ') count_df.at[subjType,objType] += count except: print("Error counting relation:",rel) self.quant["unique_relation_table"] = count_df def check_nesting(self,df): ''' Check whether each column in the passed df has repeating values in any of the rows ''' for prop in df.columns.values: column_ser = df[prop] column_ser = column_ser.dropna() self.is_nested(column_ser) def is_nested(self,ser): ''' Is the passed row repeating/nested? ''' nested = False for id, val in ser.iteritems(): if ( type(val) == type([]) ) or ( type(val) == type({}) ): if len(val) > 1: nested = True self.quant['nesting'][ser.name] = nested def unwrap_nonrepeating_columns(self): ''' If a column hasn't been marked as nested, take its values out of the list wrappers ''' for prop in self.objects.columns.values: if not self.quant['nesting'][prop]: self.objects[prop] = self.objects[prop].apply(unwrap_list) def segment_by_type(self,df): ''' Break up the passed dataframe by object type and return up to six separate frames that only have the properties belonging to their types ''' type_segments = {} for type_name in list(PROP_SET_LIST.keys()): prospective_props = PROP_SET_LIST[type_name] props_for_this_type = [] for prop in prospective_props: if prop in df.columns.values: props_for_this_type.append(prop) segment_df = df[props_for_this_type] segment_df = segment_df.loc[lambda text_df: text_df['jade_type'] == type_name, :] type_segments[type_name] = segment_df return type_segments def export_stats(self): ''' Export results from quantify to an XLSX file ''' filepath = f'{OUT_DIR}{TS}-batch/' if not os.path.exists(filepath): os.makedirs(filepath) with open( filepath+"jade_data_stats.md", 'w', encoding='utf-8' ) as md_writer: with pd.ExcelWriter( filepath+"jade_data_stats.xlsx", encoding='utf-8' ) as excel_writer: for k in list(self.quant.keys()): if k.split("_")[-1] in ["count", "list", "table"]: md_writer.write(f"\n\n## {k}\n"+self.quant[k].to_markdown()) if isinstance(self.quant[k], pd.Series): df = self.quant[k].apply(lambda x : colons_and_semicolons(x)) df = df.apply(lambda x: zap_illegal_characters(x)) else: df = self.quant[k].applymap(lambda x : colons_and_semicolons(x)) df = df.applymap(lambda x: zap_illegal_characters(x)) df.to_excel(excel_writer,sheet_name=k) def export_single_sheet(self): ''' Export one big sheet that has all the objects and all the properties and relations (contains a lot of blank cells) ''' filepath = f'{OUT_DIR}{TS}-batch/' if not os.path.exists(filepath): os.makedirs(filepath) with pd.ExcelWriter( filepath+"jade_data_single_sheet.xlsx", encoding='utf-8' ) as excel_writer: df = self.objects.applymap(lambda x : colons_and_semicolons(x)) df = df.applymap(lambda x: zap_illegal_characters(x)) df.to_excel(excel_writer,index=False,sheet_name='jade_data') def export_complete_dataset(self): ''' Export a complete, curated dataset, segmented by object type in the XLSX and CSV formats ''' self.type_segments = self.segment_by_type(self.objects) filepath = f'{OUT_DIR}{TS}-batch/complete_data/' self.run_outputs(self.type_segments,filepath) # filepath = f'{OUT_DIR}{TS}-batch/complete_data/Locations' # self.run_outputs(self.locations,filepath) def export_subsets(self): ''' Manage creation of subsets by property value, using quant information ''' props = list(DATASET_OPTIONS['SUBSET_PROPERTIES_AND_QUANTITIES'].items()) iter = tqdm(props) iter.set_description("Exporting subsets by facet") for prop, lim in iter: if prop in self.quant: self.create_subset( prop, self.quant[prop], self.quant[prop+'_count'], lim) def create_subset(self,prop,attr_dict,ranked_attr_counts,lim): ''' Create a subset for the passed property, using indexes in quant ''' ranked_attr_list = list(ranked_attr_counts.keys()) for val in ranked_attr_list[:lim]: filtered_jade_ids = attr_dict[val] count = str(ranked_attr_counts[val]) # Items df = self.objects[self.objects.index.isin(filtered_jade_ids)] segmented_subset_dfs = self.segment_by_type(df) safe_val_string = safen_string(val) filepath = f'{OUT_DIR}{TS}-batch/filtered_subsets/{prop}/{safe_val_string} {count}/' self.run_outputs(segmented_subset_dfs,filepath,filename=f'{prop} {safe_val_string} {count}') def export_crumbs(self): ''' Export a spreadsheet with noise from the RDBMS that did not conform to regular property usage. Does not yet contain relation noise. May have a bug with location noise, including too many locations. Also has a bug with respect to jade_id and jade_collection, leaving all of the regular values for those properties in. ''' filepath = f'{OUT_DIR}{TS}-batch/' if not os.path.exists(filepath): os.makedirs(filepath) with pd.ExcelWriter( filepath+"sql_crumbs.xlsx", encoding='utf-8' ) as excel_writer: df = self.noise.applymap(lambda x : colons_and_semicolons(x)) df = df.applymap(lambda x: zap_illegal_characters(x)) df.to_excel(excel_writer,index=False,sheet_name='item_noise') df = self.location_duplicates.applymap(lambda x : colons_and_semicolons(x)) df = df.applymap(lambda x: zap_illegal_characters(x)) df.to_excel(excel_writer,index=False,sheet_name='location_noise') def run_outputs(self,type_segment_dfs,filepath,filename='default'): ''' Manages the outputs specified for the dfs passed ''' if not os.path.exists(filepath): os.makedirs(filepath) tsdfs = type_segment_dfs if DATASET_OPTIONS['EXPORT_XLSX']: self.save_xlsx(tsdfs,filepath,filename) if DATASET_OPTIONS['EXPORT_CSV']: self.save_csv(tsdfs,filepath,filename) if DATASET_OPTIONS['EXPORT_JSON']: self.save_json(tsdfs,filepath,filename) text_df = tsdfs['Text'] if ( DATASET_OPTIONS['EXPORT_TXT'] ) or ( DATASET_OPTIONS['EXPORT_HTML'] ): if len(text_df) > 0: self.save_txt_and_html(text_df,filepath,filename) def save_xlsx(self,tsdfs,filepath,filename): ''' Run an XLSX export, putting multiple tables in a single workbook ''' with pd.ExcelWriter( f"{filepath}{'jade_data' if filename == 'default' else filename}.xlsx", encoding='utf-8' ) as excel_writer: for name, df in list(tsdfs.items()): df = df.applymap(lambda x : colons_and_semicolons(x)) df = df.applymap(lambda x: zap_illegal_characters(x)) if len(df) > 0: df.to_excel(excel_writer,index=False,sheet_name=name) def save_csv(self,tsdfs,filepath,filename): ''' Run a CSV export, using a subdirectory for multiples ''' filepath+=f"{'jade_data' if filename == 'default' else filename}_csv" if not os.path.exists(filepath): os.makedirs(filepath) for name, df in list(tsdfs.items()): if len(df) > 0: df.to_csv(f'{filepath}/jade_{name}.csv',index=False) def save_json(self,tsdfs,filepath,filename): ''' Run a JSON export, putting all the objects at the same level (no type segments) or wrapping them, depending on options ''' json_output = {} if DATASET_OPTIONS['WRAP_JSON_RECORDS_IN_TYPE_BRANCHES']: for name, df in list(tsdfs.items()): json_output[name] = json.loads(df.to_json(orient='index')) if not DATASET_OPTIONS['WRAP_JSON_RECORDS_IN_TYPE_BRANCHES']: for name, df in list(tsdfs.items()): json_output.update(json.loads(df.to_json(orient='index'))) with open(filepath+f"{'jade_data' if filename == 'default' else filename}.json",'w') as fileref: fileref.write(json.dumps(json_output)) def save_txt_and_html(self,df,filepath,filename): ''' Run export of texts, using subdirectories by format ''' if DATASET_OPTIONS['EXPORT_TXT']: txt_filepath = filepath+f"{'jade_texts' if filename == 'default' else filename}_txt/" if not os.path.exists(txt_filepath): os.makedirs(txt_filepath) if DATASET_OPTIONS['EXPORT_HTML']: html_filepath = filepath+f"{'jade_texts' if filename == 'default' else filename}_html/" if not os.path.exists(html_filepath): os.makedirs(html_filepath) # Iterate through the text column text_ser = df["jade_text"] text_ser = text_ser.dropna() text_ser = text_ser.apply(unwrap_list) for jade_id, val in text_ser.iteritems(): # Manage whether values are wrapped in lists if not isinstance(val, list): val_list = [val] for val in val_list: if not pd.isnull(val): # Check whether value is html is_html = False if "<" in val: if ">" in val: is_html = True # Run HTML and TXT exports if is_html: soup = BeautifulSoup(val,'html.parser') if DATASET_OPTIONS['EXPORT_HTML']: with open(html_filepath+jade_id+'.html','w',encoding='utf-8') as html_ref: html_ref.write(soup.prettify()) if DATASET_OPTIONS['EXPORT_TXT']: with open(txt_filepath+jade_id+'.txt','w',encoding='utf-8') as txt_ref: txt_ref.write(text_with_newlines(soup)) else: if DATASET_OPTIONS['EXPORT_TXT']: with open(txt_filepath+jade_id+'.txt','w',encoding='utf-8') as txt_ref: txt_ref.write(val) class LocationSet(): ''' A class to hold locations in the few seconds before they get subsumed into the dataset object ''' # A dummy init function def __init__(self): pass # Ingest location data from SQL def ingest(self,dataset,limit=None): # Read from SQL table omek_locations statement = f''' SELECT * FROM omek_locations; ''' if limit != None: statement = statement.split(';')[0] + f' LIMIT {str(limit)};' self.omek_locations = pd.read_sql(statement,DB) # Set up data structure for later DataFrame data = {} noise = {} ids = [] retrieved = [] # Convert item IDs self.omek_locations['item_id'] = self.omek_locations['item_id'].apply( lambda x: dataset.convert_to_jade_id(x)) # Read data retrieved from SQL iter = tqdm(self.omek_locations.iterrows()) iter.set_description("Ingesting locations") for tup in iter: row = tup[1] loc_id = row.loc['id'] if ( loc_id not in retrieved ) and ( row.loc['item_id'] in dataset.objects.index.values ): cluster_address_versions = {} # Check for duplicates addr_fp = fingerprint(row.loc["address"]) cluster_statement = f''' SELECT * FROM omek_locations WHERE latitude = {row.loc['latitude']} AND longitude = {row.loc['longitude']}; ''' cluster = pd.read_sql(cluster_statement,DB) # Combine duplicates for cluster_tup in cluster.iterrows(): cluster_row = cluster_tup[1] if fingerprint(cluster_row.loc['address']) == addr_fp: # Keep track of addresses to choose most common style below if cluster_row.loc["address"] not in cluster_address_versions: cluster_address_versions[cluster_row.loc["address"]] = 1 else: cluster_address_versions[cluster_row.loc["address"]] += 1 # Group item-location relations, styling descriptions with camel case and defining blanks cluster_loc_id = cluster_row.loc['id'] cluster_item_id = cluster_row.loc['item_id'] if (cluster_row.loc['description'] == '' or None): cluster_desc = 'noDescription' else: cluster_desc = camel(cluster_row.loc['description']) # Put approved forms in the curated data compile_json( data, loc_id, "loc_relation", dataset.convert_to_jade_id(cluster_item_id), cluster_desc) # Keep track of which rows have been combined compile_json( noise, loc_id, "set_of_dup_loc_ids_with_assoc_item_ids", cluster_loc_id, cluster_item_id) retrieved.append(cluster_loc_id) # Update address for row to most commonly used capitalization and punctuation chosen_style = sort_by_item_counts(cluster_address_versions)[0][0] data[loc_id]['jade_address'] = chosen_style noise[loc_id]['jade_address'] = chosen_style # Add in other properties data[loc_id]['loc_id'] = loc_id # data[loc_id]['jade_zoom_level'] = row.loc['zoom_level'] # data[loc_id]['jade_map_type'] = row.loc['map_type'] data[loc_id]['jade_latitude'] = row.loc['latitude'] data[loc_id]['jade_longitude'] = row.loc['longitude'] # Create DataFrame self.locations = pd.DataFrame.from_dict(data,orient='index') self.location_duplicates =
pd.DataFrame.from_dict(noise,orient='index')
pandas.DataFrame.from_dict
import os import sys sys.path = [os.path.join(os.path.abspath(os.getcwd()), 'auto_ml')] + sys.path os.environ['is_test_suite'] = 'True' import numpy as np import pandas as pd from sklearn.datasets import load_boston from sklearn.metrics import brier_score_loss, mean_squared_error from sklearn.model_selection import train_test_split from auto_ml import Predictor def get_boston_regression_dataset(): boston = load_boston() df_boston =
pd.DataFrame(boston.data)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd # In[2]: def add_taxi_Ndays_rolling(df, days, shift): """ This function calculates and adds additional columns for rolling average taxi_in/taxi_out time per airport/carrier per day. Args: df - df to process as DataFrame days - Days to calculate rolling number for taxi_in, taxi_out time shift - Days to offset calculation into the past. Output: processed DataFrame is returned back """ cols={'origin':['origin_airport_id', 'taxi_out'], 'destination':['dest_airport_id','taxi_in'], 'carrier_taxi_out':['mkt_carrier_fl_num', 'taxi_out'], 'carrier_taxi_in':['mkt_carrier_fl_num', 'taxi_in']} df = df.sort_values(['fl_date']) #Sorting by fl_date just in case it was not sorted before. #It is important for rolling average #Iterating the keys in cols which has columns we interested in. for key in cols.keys(): #First we calculate average taxi time per airport per day df_taxi=df[[cols[key][0], 'fl_date', cols[key][1]]].groupby([cols[key][0], 'fl_date']).mean().reset_index() #Based on our average taxi time we can calculate rolling average df_taxi_roll=df_taxi.groupby([cols[key][0]]).rolling(days, on='fl_date', min_periods=2 ).agg({cols[key][1]:'mean'}).shift(shift).reset_index() #Renaming column to avoid collision during merging df_taxi_roll.rename(columns={cols[key][1]: str(days) +'d ' + cols[key][1] + ' by ' + cols[key][0]}, inplace=True) #Merging with initial DataFrame df=df.merge(df_taxi_roll, on=[cols[key][0], 'fl_date' ] , how='left') return df # In[3]: def add_traffic_rolling(df, days, shift): """ This function calculates and adds additional column for rolling average number of flights per airport per day. Args: df - DataFrame to process. days - Days as integer to calculate rolling average shift - Days to offset calculation into the past. Output: dataframe - initial dataframe with additional column """ cols = ['origin_airport_id', 'dest_airport_id'] df = df.sort_values(['fl_date']) #Sorting by fl_date just in case it was not sorted before. #It is important for rolling average for item in cols: #Now calculating trafic per airport per day. Also will calculate N - days rolling average. count_flight=df[[item, 'fl_date', 'mkt_carrier']].groupby([item, 'fl_date' ]).count().reset_index() count_flights_roll= count_flight.groupby([item]).rolling(days, on='fl_date', min_periods=2 ).agg({'mkt_carrier':'mean'}).shift(shift).reset_index() #Renaming to avoid collision during merging count_flights_roll.rename(columns={'mkt_carrier': str(days) + 'd roll flts ' + item}, inplace=True) #Merging df=df.merge(count_flights_roll, on=[item, 'fl_date' ] , how='left') return df # In[4]: def return_outlier_limits(df,column): """ Function calculates Interquartile Range (IQR) in order to return upper and lower limits after which to consider a value an outlier. A limit is defined as 1.5 times the IQR below Quartile 1 (Q1) or above Quartile 3 (Q3). Args: df - Pandas DataFrame column - Column of DataFrame with the aforementioned outliers, input as a string. Output: List with lower and upper outlier limits. """ # The .describe() method for Pandas DataFrames outputs a Pandas Series; index number 4 corresponds to # Quartile 1, index number 6 to Quartile 3. The Inter-Quartile Range (IQR) is then calculated as Q3 - Q1. Q1 = df[column].describe()[4] Q3 = df[column].describe()[6] IQR = float(Q3 - Q1) # An outlier threshold is calculated as 1.5 times the IQR. outlier_threshold = 1.5 * IQR lower_limit = Q1 - outlier_threshold upper_limit = Q3 + outlier_threshold limits = [lower_limit, upper_limit] return limits # In[5]: def remove_outliers(df, column): """ Function removes rows with outliers from a dataframe, as defined by the return_outlier_limits function. Args: df - Pandas DataFrame column - Column of DataFrame with the aforementioned outliers, input as a string. Output: Processed DataFrame is returned (subset of original). """ # Call return_outlier_limits function to return list `limit` with two values, lower and upper: limit[0] corresponds to the lower limit, # limit[1] to the upper limit. limits = return_outlier_limits(df,column) # Use boolean operators to define subset of column values that exclude outliers df_no_outliers = df[(df[column] > limits[0]) & (df[column] < limits[1])] return df_no_outliers # In[6]: def replace_nan_with_mean(df,column,include_outliers=False): """ This function replaces all NaN values for a given column in a dataframe with the mean of the column values. Args: df - Pandas DataFrame column - Column of DataFrame, input as a string. include_outliers - If True, calculates mean of all values, if False, does not consider outliers when calculating mean. Defaults to False. Output: Processed DataFrame is returned. """ if include_outliers == False: df_no_outliers = remove_outliers(df,column) mean = df_no_outliers[column].mean() else: mean = df[column].mean() # Replace NaN values with previously calculated mean, using .fillna() Pandas method. df[column].fillna(mean,inplace=True) # Return processed DataFrame return df # In[7]: def make_dates_ordinal(df, dates_column): """ This function converts the dates of a DataFrame column to integers, in order to easily fit the data to a regression model. More specifically, the function toordinal() returns the proleptic Gregorian ordinal of a date. In simple terms datetime.toordinal() returns the day count from the date 01/01/01 Though Gregorian calendar was not followed before October 1582, several computer systems follow the Gregorian calendar for the dates that comes even before October 1582. Python's date class also does the same. Args: df - Pandas DataFrame dates_column - column of DataFrame, input as a string. All values in column must be of type datetime64[ns]. Output: Processed DataFrame is returned. """ # The function imports the required datetime module. import datetime as dt # Applies datetime.toordinal() function to desired column of DataFrame. df[dates_column] = df[dates_column].map(dt.datetime.toordinal) # Returns processed DataFrame return df # In[8]: def distill_features(df, desired_features = ['fl_date','mkt_carrier_fl_num','origin_airport_id','dest_airport_id','crs_dep_time', 'crs_arr_time','crs_elapsed_time','distance','arr_delay']): df = df[desired_features] return df # In[9]: def make_month_dummies(df, date_column): """ This function adds dummy variable columns for months. Args: df - Dataframe which needed to be processed. date_column as string. Column with dates Output: Dataframe with dummy varialbles. """ df['month']=df[date_column].dt.month df =
pd.get_dummies(df, columns=['month'])
pandas.get_dummies
import pandas as pd import numpy as np import statsmodels.api as sm from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from scipy import stats import plotly.graph_objs as go import cufflinks cufflinks.go_offline() def make_hist(df, x, category=None): """ Make an interactive histogram, optionally segmented by `category` :param df: dataframe of data :param x: string of column to use for plotting :param category: string representing column to segment by :return figure: a plotly histogram to show with iplot or plot """ if category is not None: data = [] for name, group in df.groupby(category): data.append(go.Histogram(dict(x=group[x], name=name))) else: data = [go.Histogram(dict(x=df[x]))] layout = go.Layout( yaxis=dict(title="Count"), xaxis=dict(title=x.replace("_", " ").title()), title=f"{x.replace('_', ' ').title()} Distribution by {category.replace('_', ' ').title()}" if category else f"{x.replace('_', ' ').title()} Distribution", ) figure = go.Figure(data=data, layout=layout) return figure def make_cum_plot(df, y, category=None, ranges=False): """ Make an interactive cumulative plot, optionally segmented by `category` :param df: dataframe of data, must have a `published_date` column :param y: string of column to use for plotting or list of two strings for double y axis :param category: string representing column to segment by :param ranges: boolean for whether to add range slider and range selector :return figure: a plotly plot to show with iplot or plot """ if category is not None: data = [] for i, (name, group) in enumerate(df.groupby(category)): group.sort_values("published_date", inplace=True) data.append( go.Scatter( x=group["published_date"], y=group[y].cumsum(), mode="lines+markers", text=group["title"], name=name, marker=dict(size=10, opacity=0.8, symbol=i + 2), ) ) else: df.sort_values("published_date", inplace=True) if len(y) == 2: data = [ go.Scatter( x=df["published_date"], y=df[y[0]].cumsum(), name=y[0].title(), mode="lines+markers", text=df["title"], marker=dict( size=10, color="blue", opacity=0.6, line=dict(color="black"), ), ), go.Scatter( x=df["published_date"], y=df[y[1]].cumsum(), yaxis="y2", name=y[1].title(), mode="lines+markers", text=df["title"], marker=dict( size=10, color="red", opacity=0.6, line=dict(color="black"), ), ), ] else: data = [ go.Scatter( x=df["published_date"], y=df[y].cumsum(), mode="lines+markers", text=df["title"], marker=dict( size=12, color="blue", opacity=0.6, line=dict(color="black"), ), ) ] if len(y) == 2: layout = go.Layout( xaxis=dict(title="Published Date", type="date"), yaxis=dict(title=y[0].replace("_", " ").title(), color="blue"), yaxis2=dict( title=y[1].replace("_", " ").title(), color="red", overlaying="y", side="right", ), font=dict(size=14), title=f"Cumulative {y[0].title()} and {y[1].title()}", ) else: layout = go.Layout( xaxis=dict(title="Published Date", type="date"), yaxis=dict(title=y.replace("_", " ").title()), font=dict(size=14), title=f"Cumulative {y.replace('_', ' ').title()} by {category.replace('_', ' ').title()}" if category is not None else f"Cumulative {y.replace('_', ' ').title()}", ) # Add a rangeselector and rangeslider for a data xaxis if ranges: rangeselector = dict( buttons=list( [ dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all"), ] ) ) rangeslider = dict(visible=True) layout["xaxis"]["rangeselector"] = rangeselector layout["xaxis"]["rangeslider"] = rangeslider layout["width"] = 1000 layout["height"] = 600 figure = go.Figure(data=data, layout=layout) return figure def make_scatter_plot( df, x, y, fits=None, xlog=False, ylog=False, category=None, scale=None, sizeref=2, annotations=None, ranges=False, title_override=None, ): """ Make an interactive scatterplot, optionally segmented by `category` :param df: dataframe of data :param x: string of column to use for xaxis :param y: string of column to use for yaxis :param fits: list of strings of fits :param xlog: boolean for making a log xaxis :param ylog boolean for making a log yaxis :param category: string representing categorical column to segment by, this must be a categorical :param scale: string representing numerical column to size and color markers by, this must be numerical data :param sizeref: float or integer for setting the size of markers according to the scale, only used if scale is set :param annotations: text to display on the plot (dictionary) :param ranges: boolean for whether to add a range slider and selector :param title_override: String to override the title :return figure: a plotly plot to show with iplot or plot """ if category is not None: title = f"{y.replace('_', ' ').title()} vs {x.replace('_', ' ').title()} by {category.replace('_', ' ').title()}" data = [] for i, (name, group) in enumerate(df.groupby(category)): data.append( go.Scatter( x=group[x], y=group[y], mode="markers", text=group["title"], name=name, marker=dict(size=8, symbol=i + 2), ) ) else: if scale is not None: title = f"{y.replace('_', ' ').title()} vs {x.replace('_', ' ').title()} Scaled by {scale.title()}" data = [ go.Scatter( x=df[x], y=df[y], mode="markers", text=df["title"], marker=dict( size=df[scale], line=dict(color="black", width=0.5), sizemode="area", sizeref=sizeref, opacity=0.8, colorscale="Viridis", color=df[scale], showscale=True, sizemin=2, ), ) ] else: df.sort_values(x, inplace=True) title = f"{y.replace('_', ' ').title()} vs {x.replace('_', ' ').title()}" data = [ go.Scatter( x=df[x], y=df[y], mode="markers", text=df["title"], marker=dict( size=12, color="blue", opacity=0.8, line=dict(color="black") ), name="observations", ) ] if fits is not None: for fit in fits: data.append( go.Scatter( x=df[x], y=df[fit], text=df["title"], mode="lines+markers", marker=dict(size=8, opacity=0.6), line=dict(dash="dash"), name=fit, ) ) title += " with Fit" layout = go.Layout( annotations=annotations, xaxis=dict( title=x.replace("_", " ").title() + (" (log scale)" if xlog else ""), type="log" if xlog else None, ), yaxis=dict( title=y.replace("_", " ").title() + (" (log scale)" if ylog else ""), type="log" if ylog else None, ), font=dict(size=14), title=title if title_override is None else title_override, ) # Add a rangeselector and rangeslider for a data xaxis if ranges: rangeselector = dict( buttons=list( [ dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all"), ] ) ) rangeslider = dict(visible=True) layout["xaxis"]["rangeselector"] = rangeselector layout["xaxis"]["rangeslider"] = rangeslider layout["width"] = 1000 layout["height"] = 600 figure = go.Figure(data=data, layout=layout) return figure def make_linear_regression(df, x, y, intercept_0): """ Create a linear regression, either with the intercept set to 0 or the intercept allowed to be fitted :param df: dataframe with data :param x: string or list of stringsfor the name of the column with x data :param y: string for the name of the column with y data :param intercept_0: boolean indicating whether to set the intercept to 0 """ if isinstance(x, list): lin_model = LinearRegression() lin_model.fit(df[x], df[y]) slopes, intercept, = ( lin_model.coef_, lin_model.intercept_, ) df["predicted"] = lin_model.predict(df[x]) r2 = lin_model.score(df[x], df[y]) rmse = np.sqrt(mean_squared_error(y_true=df[y], y_pred=df["predicted"])) equation = f'{y.replace("_", " ")} =' names = ["r2", "rmse", "intercept"] values = [r2, rmse, intercept] for i, (p, s) in enumerate(zip(x, slopes)): if (i + 1) % 3 == 0: equation += f'<br>{s:.2f} * {p.replace("_", " ")} +' else: equation += f' {s:.2f} * {p.replace("_", " ")} +' names.append(p) values.append(s) equation += f" {intercept:.2f}" annotations = [ dict( x=0.4 * df.index.max(), y=0.9 * df[y].max(), showarrow=False, text=equation, font=dict(size=10), ) ] df["index"] = list(df.index) figure = make_scatter_plot( df, x="index", y=y, fits=["predicted"], annotations=annotations ) summary = pd.DataFrame({"name": names, "value": values}) else: if intercept_0: lin_reg = sm.OLS(df[y], df[x]).fit() df["fit_values"] = lin_reg.fittedvalues summary = lin_reg.summary() slope = float(lin_reg.params) equation = f"${y.replace('_', ' ')} = {slope:.2f} * {x.replace('_', ' ')}$" else: lin_reg = stats.linregress(df[x], df[y]) intercept, slope = lin_reg.intercept, lin_reg.slope params = ["pvalue", "rvalue", "slope", "intercept"] values = [] for p in params: values.append(getattr(lin_reg, p)) summary = pd.DataFrame({"param": params, "value": values}) df["fit_values"] = df[x] * slope + intercept equation = f"${y.replace('_', ' ')} = {slope:.2f} * {x.replace('_', ' ')} + {intercept:.2f}$" annotations = [ dict( x=0.75 * df[x].max(), y=0.9 * df[y].max(), showarrow=False, text=equation, font=dict(size=32), ) ] figure = make_scatter_plot( df, x=x, y=y, fits=["fit_values"], annotations=annotations ) return figure, summary def make_poly_fits(df, x, y, degree=6): """ Generate fits and make interactive plot with fits :param df: dataframe with data :param x: string representing x data column :param y: string representing y data column :param degree: integer degree of fits to go up to :return fit_stats: dataframe with information about fits :return figure: interactive plotly figure that can be shown with iplot or plot """ # Don't want to alter original data frame df = df.copy() fit_list = [] rmse = [] fit_params = [] # Make each fit for i in range(1, degree + 1): fit_name = f"fit degree = {i}" fit_list.append(fit_name) z, res, *rest = np.polyfit(df[x], df[y], i, full=True) fit_params.append(z) df.loc[:, fit_name] = np.poly1d(z)(df[x]) rmse.append(np.sqrt(res[0])) fit_stats =
pd.DataFrame({"fit": fit_list, "rmse": rmse, "params": fit_params})
pandas.DataFrame
""" Tests for DatetimeIndex timezone-related methods """ from datetime import date, datetime, time, timedelta, tzinfo import dateutil from dateutil.tz import gettz, tzlocal import numpy as np import pytest import pytz from pandas._libs.tslibs import conversion, timezones import pandas.util._test_decorators as td import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, bdate_range, date_range, isna, to_datetime, ) import pandas._testing as tm class FixedOffset(tzinfo): """Fixed offset in minutes east from UTC.""" def __init__(self, offset, name): self.__offset = timedelta(minutes=offset) self.__name = name def utcoffset(self, dt): return self.__offset def tzname(self, dt): return self.__name def dst(self, dt): return timedelta(0) fixed_off = FixedOffset(-420, "-07:00") fixed_off_no_name = FixedOffset(-330, None) class TestDatetimeIndexTimezones: # ------------------------------------------------------------- # DatetimeIndex.tz_convert def test_tz_convert_nat(self): # GH#5546 dates = [pd.NaT] idx = DatetimeIndex(dates) idx = idx.tz_localize("US/Pacific") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Eastern")) idx = idx.tz_convert("UTC") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="UTC")) dates = ["2010-12-01 00:00", "2010-12-02 00:00", pd.NaT] idx = DatetimeIndex(dates) idx = idx.tz_localize("US/Pacific") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") expected = ["2010-12-01 03:00", "2010-12-02 03:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) idx = idx + pd.offsets.Hour(5) expected = ["2010-12-01 08:00", "2010-12-02 08:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) idx = idx.tz_convert("US/Pacific") expected = ["2010-12-01 05:00", "2010-12-02 05:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Pacific")) idx = idx + np.timedelta64(3, "h") expected = ["2010-12-01 08:00", "2010-12-02 08:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") expected = ["2010-12-01 11:00", "2010-12-02 11:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) @pytest.mark.parametrize("prefix", ["", "dateutil/"]) def test_dti_tz_convert_compat_timestamp(self, prefix): strdates = ["1/1/2012", "3/1/2012", "4/1/2012"] idx = DatetimeIndex(strdates, tz=prefix + "US/Eastern") conv = idx[0].tz_convert(prefix + "US/Pacific") expected = idx.tz_convert(prefix + "US/Pacific")[0] assert conv == expected def test_dti_tz_convert_hour_overflow_dst(self): # Regression test for: # https://github.com/pandas-dev/pandas/issues/13306 # sorted case US/Eastern -> UTC ts = ["2008-05-12 09:50:00", "2008-12-12 09:50:35", "2009-05-12 09:50:32"] tt = DatetimeIndex(ts).tz_localize("US/Eastern") ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # sorted case UTC -> US/Eastern ts = ["2008-05-12 13:50:00", "2008-12-12 14:50:35", "2009-05-12 13:50:32"] tt = DatetimeIndex(ts).tz_localize("UTC") ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) # unsorted case US/Eastern -> UTC ts = ["2008-05-12 09:50:00", "2008-12-12 09:50:35", "2008-05-12 09:50:32"] tt = DatetimeIndex(ts).tz_localize("US/Eastern") ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # unsorted case UTC -> US/Eastern ts = ["2008-05-12 13:50:00", "2008-12-12 14:50:35", "2008-05-12 13:50:32"] tt = DatetimeIndex(ts).tz_localize("UTC") ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"]) def test_dti_tz_convert_hour_overflow_dst_timestamps(self, tz): # Regression test for GH#13306 # sorted case US/Eastern -> UTC ts = [ Timestamp("2008-05-12 09:50:00", tz=tz), Timestamp("2008-12-12 09:50:35", tz=tz), Timestamp("2009-05-12 09:50:32", tz=tz), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # sorted case UTC -> US/Eastern ts = [ Timestamp("2008-05-12 13:50:00", tz="UTC"), Timestamp("2008-12-12 14:50:35", tz="UTC"), Timestamp("2009-05-12 13:50:32", tz="UTC"), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) # unsorted case US/Eastern -> UTC ts = [ Timestamp("2008-05-12 09:50:00", tz=tz), Timestamp("2008-12-12 09:50:35", tz=tz), Timestamp("2008-05-12 09:50:32", tz=tz), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # unsorted case UTC -> US/Eastern ts = [ Timestamp("2008-05-12 13:50:00", tz="UTC"), Timestamp("2008-12-12 14:50:35", tz="UTC"), Timestamp("2008-05-12 13:50:32", tz="UTC"), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) @pytest.mark.parametrize("freq, n", [("H", 1), ("T", 60), ("S", 3600)]) def test_dti_tz_convert_trans_pos_plus_1__bug(self, freq, n): # Regression test for tslib.tz_convert(vals, tz1, tz2). # See https://github.com/pandas-dev/pandas/issues/4496 for details. idx = date_range(datetime(2011, 3, 26, 23), datetime(2011, 3, 27, 1), freq=freq) idx = idx.tz_localize("UTC") idx = idx.tz_convert("Europe/Moscow") expected = np.repeat(np.array([3, 4, 5]), np.array([n, n, 1])) tm.assert_index_equal(idx.hour, Index(expected)) def test_dti_tz_convert_dst(self): for freq, n in [("H", 1), ("T", 60), ("S", 3600)]: # Start DST idx = date_range( "2014-03-08 23:00", "2014-03-09 09:00", freq=freq, tz="UTC" ) idx = idx.tz_convert("US/Eastern") expected = np.repeat( np.array([18, 19, 20, 21, 22, 23, 0, 1, 3, 4, 5]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) idx = date_range( "2014-03-08 18:00", "2014-03-09 05:00", freq=freq, tz="US/Eastern" ) idx = idx.tz_convert("UTC") expected = np.repeat( np.array([23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) # End DST idx = date_range( "2014-11-01 23:00", "2014-11-02 09:00", freq=freq, tz="UTC" ) idx = idx.tz_convert("US/Eastern") expected = np.repeat( np.array([19, 20, 21, 22, 23, 0, 1, 1, 2, 3, 4]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) idx = date_range( "2014-11-01 18:00", "2014-11-02 05:00", freq=freq, tz="US/Eastern" ) idx = idx.tz_convert("UTC") expected = np.repeat( np.array([22, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), np.array([n, n, n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) # daily # Start DST idx = date_range("2014-03-08 00:00", "2014-03-09 00:00", freq="D", tz="UTC") idx = idx.tz_convert("US/Eastern") tm.assert_index_equal(idx.hour, Index([19, 19])) idx = date_range( "2014-03-08 00:00", "2014-03-09 00:00", freq="D", tz="US/Eastern" ) idx = idx.tz_convert("UTC") tm.assert_index_equal(idx.hour, Index([5, 5])) # End DST idx = date_range("2014-11-01 00:00", "2014-11-02 00:00", freq="D", tz="UTC") idx = idx.tz_convert("US/Eastern") tm.assert_index_equal(idx.hour, Index([20, 20])) idx = date_range( "2014-11-01 00:00", "2014-11-02 000:00", freq="D", tz="US/Eastern" ) idx = idx.tz_convert("UTC") tm.assert_index_equal(idx.hour, Index([4, 4])) def test_tz_convert_roundtrip(self, tz_aware_fixture): tz = tz_aware_fixture idx1 = date_range(start="2014-01-01", end="2014-12-31", freq="M", tz="UTC") exp1 = date_range(start="2014-01-01", end="2014-12-31", freq="M") idx2 = date_range(start="2014-01-01", end="2014-12-31", freq="D", tz="UTC") exp2 = date_range(start="2014-01-01", end="2014-12-31", freq="D") idx3 = date_range(start="2014-01-01", end="2014-03-01", freq="H", tz="UTC") exp3 = date_range(start="2014-01-01", end="2014-03-01", freq="H") idx4 = date_range(start="2014-08-01", end="2014-10-31", freq="T", tz="UTC") exp4 = date_range(start="2014-08-01", end="2014-10-31", freq="T") for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3), (idx4, exp4)]: converted = idx.tz_convert(tz) reset = converted.tz_convert(None) tm.assert_index_equal(reset, expected) assert reset.tzinfo is None expected = converted.tz_convert("UTC").tz_localize(None) expected = expected._with_freq("infer") tm.assert_index_equal(reset, expected) def test_dti_tz_convert_tzlocal(self): # GH#13583 # tz_convert doesn't affect to internal dti = date_range(start="2001-01-01", end="2001-03-01", tz="UTC") dti2 = dti.tz_convert(dateutil.tz.tzlocal()) tm.assert_numpy_array_equal(dti2.asi8, dti.asi8) dti = date_range(start="2001-01-01", end="2001-03-01", tz=dateutil.tz.tzlocal()) dti2 = dti.tz_convert(None) tm.assert_numpy_array_equal(dti2.asi8, dti.asi8) @pytest.mark.parametrize( "tz", [ "US/Eastern", "dateutil/US/Eastern", pytz.timezone("US/Eastern"), gettz("US/Eastern"), ], ) def test_dti_tz_convert_utc_to_local_no_modify(self, tz): rng = date_range("3/11/2012", "3/12/2012", freq="H", tz="utc") rng_eastern = rng.tz_convert(tz) # Values are unmodified tm.assert_numpy_array_equal(rng.asi8, rng_eastern.asi8) assert timezones.tz_compare(rng_eastern.tz, timezones.maybe_get_tz(tz)) @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_tz_convert_unsorted(self, tzstr): dr = date_range("2012-03-09", freq="H", periods=100, tz="utc") dr = dr.tz_convert(tzstr) result = dr[::-1].hour exp = dr.hour[::-1] tm.assert_almost_equal(result, exp) # ------------------------------------------------------------- # DatetimeIndex.tz_localize def test_dti_tz_localize_nonexistent_raise_coerce(self): # GH#13057 times = ["2015-03-08 01:00", "2015-03-08 02:00", "2015-03-08 03:00"] index = DatetimeIndex(times) tz = "US/Eastern" with pytest.raises(pytz.NonExistentTimeError, match="|".join(times)): index.tz_localize(tz=tz) with pytest.raises(pytz.NonExistentTimeError, match="|".join(times)): index.tz_localize(tz=tz, nonexistent="raise") result = index.tz_localize(tz=tz, nonexistent="NaT") test_times = ["2015-03-08 01:00-05:00", "NaT", "2015-03-08 03:00-04:00"] dti = to_datetime(test_times, utc=True) expected = dti.tz_convert("US/Eastern") tm.assert_index_equal(result, expected) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_infer(self, tz): # November 6, 2011, fall back, repeat 2 AM hour # With no repeated hours, we cannot infer the transition dr = date_range(datetime(2011, 11, 6, 0), periods=5, freq=pd.offsets.Hour()) with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): dr.tz_localize(tz) # With repeated hours, we can infer the transition dr = date_range( datetime(2011, 11, 6, 0), periods=5, freq=pd.offsets.Hour(), tz=tz ) times = [ "11/06/2011 00:00", "11/06/2011 01:00", "11/06/2011 01:00", "11/06/2011 02:00", "11/06/2011 03:00", ] di = DatetimeIndex(times) localized = di.tz_localize(tz, ambiguous="infer") expected = dr._with_freq(None) tm.assert_index_equal(expected, localized) tm.assert_index_equal(expected, DatetimeIndex(times, tz=tz, ambiguous="infer")) # When there is no dst transition, nothing special happens dr = date_range(datetime(2011, 6, 1, 0), periods=10, freq=pd.offsets.Hour()) localized = dr.tz_localize(tz) localized_infer = dr.tz_localize(tz, ambiguous="infer") tm.assert_index_equal(localized, localized_infer) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_times(self, tz): # March 13, 2011, spring forward, skip from 2 AM to 3 AM dr = date_range(datetime(2011, 3, 13, 1, 30), periods=3, freq=pd.offsets.Hour()) with pytest.raises(pytz.NonExistentTimeError, match="2011-03-13 02:30:00"): dr.tz_localize(tz) # after dst transition, it works dr = date_range( datetime(2011, 3, 13, 3, 30), periods=3, freq=pd.offsets.Hour(), tz=tz ) # November 6, 2011, fall back, repeat 2 AM hour dr = date_range(datetime(2011, 11, 6, 1, 30), periods=3, freq=pd.offsets.Hour()) with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): dr.tz_localize(tz) # UTC is OK dr = date_range( datetime(2011, 3, 13), periods=48, freq=pd.offsets.Minute(30), tz=pytz.utc ) @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_dti_tz_localize_pass_dates_to_utc(self, tzstr): strdates = ["1/1/2012", "3/1/2012", "4/1/2012"] idx = DatetimeIndex(strdates) conv = idx.tz_localize(tzstr) fromdates = DatetimeIndex(strdates, tz=tzstr) assert conv.tz == fromdates.tz tm.assert_numpy_array_equal(conv.values, fromdates.values) @pytest.mark.parametrize("prefix", ["", "dateutil/"]) def test_dti_tz_localize(self, prefix): tzstr = prefix + "US/Eastern" dti = pd.date_range(start="1/1/2005", end="1/1/2005 0:00:30.256", freq="L") dti2 = dti.tz_localize(tzstr) dti_utc = pd.date_range( start="1/1/2005 05:00", end="1/1/2005 5:00:30.256", freq="L", tz="utc" ) tm.assert_numpy_array_equal(dti2.values, dti_utc.values) dti3 = dti2.tz_convert(prefix + "US/Pacific") tm.assert_numpy_array_equal(dti3.values, dti_utc.values) dti = pd.date_range(start="11/6/2011 1:59", end="11/6/2011 2:00", freq="L") with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): dti.tz_localize(tzstr) dti = pd.date_range(start="3/13/2011 1:59", end="3/13/2011 2:00", freq="L") with pytest.raises(pytz.NonExistentTimeError, match="2011-03-13 02:00:00"): dti.tz_localize(tzstr) @pytest.mark.parametrize( "tz", [ "US/Eastern", "dateutil/US/Eastern", pytz.timezone("US/Eastern"), gettz("US/Eastern"), ], ) def test_dti_tz_localize_utc_conversion(self, tz): # Localizing to time zone should: # 1) check for DST ambiguities # 2) convert to UTC rng = date_range("3/10/2012", "3/11/2012", freq="30T") converted = rng.tz_localize(tz) expected_naive = rng + pd.offsets.Hour(5) tm.assert_numpy_array_equal(converted.asi8, expected_naive.asi8) # DST ambiguity, this should fail rng = date_range("3/11/2012", "3/12/2012", freq="30T") # Is this really how it should fail?? with pytest.raises(pytz.NonExistentTimeError, match="2012-03-11 02:00:00"): rng.tz_localize(tz) def test_dti_tz_localize_roundtrip(self, tz_aware_fixture): # note: this tz tests that a tz-naive index can be localized # and de-localized successfully, when there are no DST transitions # in the range. idx = date_range(start="2014-06-01", end="2014-08-30", freq="15T") tz = tz_aware_fixture localized = idx.tz_localize(tz) # cant localize a tz-aware object with pytest.raises( TypeError, match="Already tz-aware, use tz_convert to convert" ): localized.tz_localize(tz) reset = localized.tz_localize(None) assert reset.tzinfo is None expected = idx._with_freq(None) tm.assert_index_equal(reset, expected) def test_dti_tz_localize_naive(self): rng = date_range("1/1/2011", periods=100, freq="H") conv = rng.tz_localize("US/Pacific") exp = date_range("1/1/2011", periods=100, freq="H", tz="US/Pacific") tm.assert_index_equal(conv, exp._with_freq(None)) def test_dti_tz_localize_tzlocal(self): # GH#13583 offset = dateutil.tz.tzlocal().utcoffset(datetime(2011, 1, 1)) offset = int(offset.total_seconds() * 1000000000) dti = date_range(start="2001-01-01", end="2001-03-01") dti2 = dti.tz_localize(dateutil.tz.tzlocal()) tm.assert_numpy_array_equal(dti2.asi8 + offset, dti.asi8) dti = date_range(start="2001-01-01", end="2001-03-01", tz=dateutil.tz.tzlocal()) dti2 = dti.tz_localize(None) tm.assert_numpy_array_equal(dti2.asi8 - offset, dti.asi8) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_nat(self, tz): times = [ "11/06/2011 00:00", "11/06/2011 01:00", "11/06/2011 01:00", "11/06/2011 02:00", "11/06/2011 03:00", ] di = DatetimeIndex(times) localized = di.tz_localize(tz, ambiguous="NaT") times = [ "11/06/2011 00:00", np.NaN, np.NaN, "11/06/2011 02:00", "11/06/2011 03:00", ] di_test = DatetimeIndex(times, tz="US/Eastern") # left dtype is datetime64[ns, US/Eastern] # right is datetime64[ns, tzfile('/usr/share/zoneinfo/US/Eastern')] tm.assert_numpy_array_equal(di_test.values, localized.values) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_flags(self, tz): # November 6, 2011, fall back, repeat 2 AM hour # Pass in flags to determine right dst transition dr = date_range( datetime(2011, 11, 6, 0), periods=5, freq=pd.offsets.Hour(), tz=tz ) times = [ "11/06/2011 00:00", "11/06/2011 01:00", "11/06/2011 01:00", "11/06/2011 02:00", "11/06/2011 03:00", ] # Test tz_localize di =
DatetimeIndex(times)
pandas.DatetimeIndex
import pytest import numpy as np import pandas as pd from six import StringIO from dae.tools.generate_histogram import ( ScoreHistogramInfo, GenerateScoresHistograms, ) # pytestmark = pytest.mark.xfail class MyStringIO(StringIO): def __add__(self, other): return "" @pytest.fixture def score_files(): score = pd.DataFrame({"SCORE": [1, 2, 3, 4, 4, 5, 6]}) rankscore = pd.DataFrame({"RANKSCORE": [1, 10, 100, 100, 1000, 10000]}) rankscore_zero_start = pd.DataFrame( {"RANKSCORE_0": [0, 1, 10, 100, 100, 1000, 10000]} ) return [score, rankscore, rankscore_zero_start] @pytest.fixture def score_files_by_chunks(): score = [
pd.DataFrame({"SCORE": [1, 2, 3]})
pandas.DataFrame
import warnings from pandas import Series # This warning is alerting that the regex uses a capturing group but the match is not used. warnings.filterwarnings("ignore", 'This pattern has match groups') class Evaluator: series: Series def __init__(self, series: Series): self.series = series self.unique_series = list(self.series.dropna().unique()) def series_match(self, pattern: str): """ Evaluate if all series match the pattern """ if len(self.unique_series) == 0: return False return Series( self.unique_series).astype(str).str.match(pattern).eq(True).all() def series_contains(self, pattern: str): """ Evaluate if the series contains the pattern """ return (
Series(self.unique_series)
pandas.Series
""" Module for data preprocessing. """ import datetime import warnings from typing import Any from typing import Callable from typing import Dict from typing import List from typing import Optional from typing import Set from typing import Union import numpy as np import pandas as pd from sklearn.base import BaseEstimator from sklearn.base import TransformerMixin from sklearn.utils.validation import check_is_fitted __all__ = [ 'ColumnSelector', 'ColumnDropper', 'ColumnRename', 'NaDropper', 'Clip', 'DatetimeTransformer', 'NumericTransformer', 'TimeframeExtractor', 'DateExtractor', 'ValueMapper', 'Sorter', 'Fill', 'TimeOffsetTransformer', 'ConditionedDropper', 'ZeroVarianceDropper', 'SignalSorter', 'ColumnSorter', 'DifferentialCreator' ] class ColumnSelector(BaseEstimator, TransformerMixin): """Transformer to select a list of columns by their name. Example: >>> data = pd.DataFrame({'a': [0], 'b': [0]}) >>> ColumnSelector(keys=['a']).transform(data) pd.DataFrame({'a': [0]}) """ def __init__(self, keys: List[str]): """Creates ColumnSelector. Transformer to select a list of columns for further processing. Args: keys (List[str]): List of columns to extract. """ self._keys = keys def fit(self, X, y=None): return self def transform(self, X): """Extracts the columns from `X`. Args: X (pd.DataFrame): Dataframe. Returns: pd.DataFrame: Returns a DataFrame only containing the selected features. """ return X.loc[:, self._keys] class ColumnDropper(BaseEstimator, TransformerMixin): """Transformer to drop a list of columns by their name. Example: >>> data = pd.DataFrame({'a': [0], 'b': [0]}) >>> ColumnDropper(columns=['b']).transform(data) pd.DataFrame({'a': [0]}) """ def __init__(self, *, columns: Union[List[str], Set[str]], verbose: bool = False): """Creates ColumnDropper. Transformer to drop a list of columns from the data frame. Args: keys (list): List of columns names to drop. """ self.columns = set(columns) self.verbose = verbose def fit(self, X, y=None): return self def transform(self, X): """Drops a list of columns of `X`. Args: X (pd.DataFrame): Dataframe. Returns: pd.DataFrame: Returns the dataframe without the dropped features. """ cols = set(X.columns.to_list()) if len(m := self.columns - cols) > 0: warnings.warn(f'Columns {m} not found in dataframe.') if self.verbose: print(f'New columns: {cols - self.columns}. ' f'Removed: {self.columns}.') return X.drop(self.columns, axis=1, errors='ignore') class ColumnRename(BaseEstimator, TransformerMixin): """Transformer to rename column with a function. Example: >>> data = pd.DataFrame({'a.b.c': [0], 'd.e.f': [0]}) >>> ColumnRename(lambda x: x.split('.')[-1]).transform(data) pd.DataFrame({'c': [0], 'f': [0]}) """ def __init__(self, mapper: Callable[[str], str]): """Create ColumnRename. Transformer to rename columns by a mapper function. Args: mapper (lambda): Mapper rename function. Example: Given column with name: a.b.c lambda x: x.split('.')[-1] Returns c """ self.mapper = mapper def fit(self, X, y=None): return self def transform(self, X): """Renames a columns in `X` with a mapper function. Args: X (pd.DataFrame): Dataframe. Returns: pd.DataFrame: Returns the dataframe with the renamed columns. """ # split the column name # use the last item as new name return X.rename(columns=self.mapper) class NaDropper(BaseEstimator, TransformerMixin): """Transformer that drops rows with na values. Example: >>> data = pd.DataFrame({'a': [0, 1], 'b': [0, np.nan]}) >>> NaDropper().transform(data) pd.DataFrame({'a': [0], 'b': [0]}) """ def __init__(self): pass def fit(self, X, y=None): return self def transform(self, X): return X.dropna() class Clip(BaseEstimator, TransformerMixin): """Transformer that clips values by a lower and upper bound. Example: >>> data = pd.DataFrame({'a': [-0.1, 1.2], 'b': [0.5, 0.6]}) >>> Clip().transform(data) pd.DataFrame({'a': [0, 1], 'b': [0.5, 0.6]}) """ def __init__(self, lower: float = 0.0, upper: float = 1.0): """Creates Clip. Transformer that clips a numeric column to the treshold if the threshold is exceeded. Works with an upper and lower threshold. Wrapper for pd.DataFrame.clip. Args: lower (float, optional): lower limit. Defaults to 0. upper (float, optional): upper limit. Defaults to 1. """ self.upper = upper self.lower = lower def fit(self, X, y=None): return self def transform(self, X): return X.clip(lower=self.lower, upper=self.upper, axis=0) class ColumnTSMapper(BaseEstimator, TransformerMixin): def __init__(self, cols: List[str], timedelta: pd.Timedelta = pd.Timedelta(250, 'ms'), classes: List[str] = None, verbose: bool = False): """Creates ColumnTSMapper. Expects the timestamp column to be of type pd.Timestamp. Args: cols (List[str]): names of [0] timestamp column, [1] sensor names, [2] sensor values. timedelta (pd.Timedelta): Timedelta to resample with. classes (List[str]): List of sensor names. verbose (bool, optional): Whether to allow prints. """ super().__init__() self._cols = cols self._timedelta = timedelta self._verbose = verbose if classes is not None: self.classes_ = classes def fit(self, X, y=None): """Gets the unique values in the sensor name column that are needed to expand the dataframe. Args: X (pd.DataFrame): Dataframe. y (array-like, optional): Labels. Defaults to None. Returns: ColumnTSMapper: Returns this. """ classes = X[self._cols[1]].unique() self.classes_ = np.hstack(['Timestamp', classes]) return self def transform(self, X): """Performs the mapping to equidistant timestamps. Args: X (pd.DataFrame): Dataframe. Raises: ValueError: Raised if column is not found in `X`. Returns: pd.DataFrame: Returns the remapped dataframe. """ # check is fit had been called check_is_fitted(self) # check if all columns exist if not all([item in X.columns for item in self._cols]): raise ValueError( f'Columns {self._cols} not found in DataFrame ' f'{X.columns.to_list()}.') # split sensors into individual columns # create new dataframe with all _categories # use timestamp index, to use resample later on # initialized with na sensors = pd.DataFrame( None, columns=self.classes_, index=X[self._cols[0]]) # group by sensor groups = X.groupby([self._cols[1]]) # write sensor values to sensors which is indexed by the timestamp for g in groups: sensors.loc[g[1][self._cols[0]], g[0] ] = g[1][self._cols[2]].to_numpy() sensors = sensors.apply(pd.to_numeric, errors='ignore') # fill na, important before resampling # otherwise mean affects more samples than necessary # first: forward fill to next valid observation # second: backward fill first missing rows sensors = sensors.fillna(method='ffill').fillna(method='bfill') # resamples to equidistant timeframe # take avg if multiple samples in the same timeframe sensors = sensors.resample(self._timedelta).mean() sensors = sensors.fillna(method='ffill').fillna(method='bfill') # FIXME: to avoid nans in model, but needs better fix sensors = sensors.fillna(value=0.0) # move index to column and use rangeindex sensors['Timestamp'] = sensors.index sensors.index = pd.RangeIndex(stop=sensors.shape[0]) if self._verbose: start, end = sensors.iloc[0, 0], sensors.iloc[-1, 0] print('ColumnTSMapper: ') print(f'{sensors.shape[0]} rows. ' f'Mapped to {self._timedelta.total_seconds()}s interval ' f'from {start} to {end}.') return sensors class DatetimeTransformer(BaseEstimator, TransformerMixin): """Transforms a list of columns to datetime. Example: >>> data = pd.DataFrame({'dt': ['2021-07-02 16:30:00']}) >>> data = DatetimeTransformer(columns=['dt']).transform(data) >>> data.dtypes dt datetime64[ns] """ def __init__(self, *, columns: List[str], dt_format: str = None): """Creates DatetimeTransformer. Parses a list of column to pd.Timestamp. Args: columns (list): List of columns names. dt_format (str): Optional format string. """ super().__init__() self._columns = columns self._format = dt_format def fit(self, X, y=None): return self def transform(self, X): """Parses `columns` to datetime. Args: X (pd.DataFrame): Dataframe. Raises: ValueError: Raised if columns are missing in `X`. Returns: pd.DataFrame: Returns the dataframe with datetime columns. """ X = X.copy() # check if columns in dataframe if len(diff := set(self._columns) - set(X.columns)): raise ValueError( f'Columns {diff} not found in DataFrame with columns' f'{X.columns.to_list()}.') # parse to pd.Timestamp X[self._columns] = X[self._columns].apply( lambda x: pd.to_datetime(x, format=self._format), axis=0) # column wise return X class NumericTransformer(BaseEstimator, TransformerMixin): """Transforms a list of columns to numeric datatype. Example: >>> data = pd.DataFrame({'a': [0], 'b': ['1']}) >>> data.dtypes a int64 b object >>> data = NumericTransformer().transform(data) >>> data.dtypes a int64 b int64 """ def __init__(self, *, columns: Optional[List[str]] = None): """Creates NumericTransformer. Parses a list of column to numeric datatype. If None, all are attempted to be parsed. Args: columns (list): List of columns names. dt_format (str): Optional format string. """ super().__init__() self._columns = columns def fit(self, X, y=None): return self def transform(self, X): """Parses `columns` to numeric. Args: X (pd.DataFrame): Dataframe. Raises: ValueError: Raised if columns are missing in `X`. Returns: pd.DataFrame: Returns the dataframe with datetime columns. """ X = X.copy() # transform all columns if self._columns is None: columns = X.columns.to_list() else: columns = self._columns if len((diff := list(set(columns) - set(cols := X.columns)))): raise ValueError(f'Columns found: {cols.to_list()}. ' f'Columns missing: {diff}.') # parse to numeric # column wise X[columns] = X[columns].apply(pd.to_numeric, axis=0) return X class TimeframeExtractor(BaseEstimator, TransformerMixin): """Drops sampes that are not between a given start and end time. Limits are inclusive. Example: >>> data = pd.DataFrame( {'dates': [datetime.datetime(2021, 7, 2, 9, 50, 0), datetime.datetime(2021, 7, 2, 11, 0, 0), datetime.datetime(2021, 7, 2, 12, 10, 0)], 'values': [0, 1, 2]}) >>> TimeframeExtractor(time_column='dates', start_time= datetime.time(10, 0, 0), end_time=datetime.time(12, 0, 0) ).transform(data) pd.DataFrame({'dates': datetime.datetime(2021, 7, 2, 11, 0, 0), 'values': [1]}) """ def __init__(self, *, time_column: str, start_time: datetime.time, end_time: datetime.time, invert: bool = False, verbose: bool = False): """Creates TimeframeExtractor. Drops samples that are not in between `start_time` and `end_time` in `time_column`. Args: time_column (str): Column name of the timestamp column. start_time (datetime.time): Start time. end_time (datetime.time): End time. invert(bool): Whether to invert the range. verbose (bool, optional): Whether to allow prints. """ super().__init__() self._start = start_time self._end = end_time self._column = time_column self._negate = invert self._verbose = verbose def fit(self, X, y=None): return self def transform(self, X): """Drops rows from the dataframe if they are not in between `start_time` and `end_time`. Limits are inclusive. Reindexes the dataframe. Args: X (pd.DataFrame): Dataframe. Returns: pd.DataFrame: Returns the new dataframe. """ X = X.copy() rows_before = X.shape[0] dates = pd.to_datetime(X[self._column]) if self._negate: X = X.loc[~((dates.dt.time >= self._start) & (dates.dt.time <= self._end)), :] else: X = X.loc[(dates.dt.time >= self._start) & (dates.dt.time <= self._end), :] X.index = pd.RangeIndex(0, X.shape[0]) rows_after = X.shape[0] if self._verbose: print( 'TimeframeExtractor: \n' f'{rows_after} rows. Dropped {rows_before - rows_after} ' f'rows which are {"in" if self._negate else "not in"} between ' f'{self._start} and {self._end}.' ) return X class DateExtractor(BaseEstimator, TransformerMixin): """ Drops rows that are not between a start and end date. Limits are inclusive. Example: >>> data = pd.DataFrame( {'dates': [datetime.datetime(2021, 7, 1, 9, 50, 0), datetime.datetime(2021, 7, 2, 11, 0, 0), datetime.datetime(2021, 7, 3, 12, 10, 0)], 'values': [0, 1, 2]}) >>> DateExtractor(date_column='dates', start_date=datetime.date(2021, 7, 2), end_date=datetime.date(2021, 7, 2)).transform(data) pd.DataFrame({'dates': datetime.datetime(2021, 07, 2, 11, 0, 0), 'values': [1]}) """ def __init__(self, *, date_column: str, start_date: datetime.date, end_date: datetime.date, invert: bool = False, verbose: bool = False): """Initializes `DateExtractor`. Args: date_column (str): Name of timestamp column. start_date (datetime.date): Start date. end_date (datetime.date): End date. invert (bool): Whether to invert the range. verbose (bool, optional): Whether to allow prints. """ super().__init__() self._start = start_date self._end = end_date self._column = date_column self._negate = invert self._verbose = verbose def fit(self, X, y=None): return self def transform(self, X): """Drops rows which date is not between `start` and end date. Bounds are inclusive. Dataframe is reindexed. Args: X (pd.Dataframe): Dataframe. Returns: pd.Dataframe: Returns the new dataframe. """ rows_before = X.shape[0] dates = pd.to_datetime(X[self._column]) if self._negate: X = X.loc[~((dates.dt.date >= self._start) & (dates.dt.date <= self._end)), :] else: X = X.loc[(dates.dt.date >= self._start) & (dates.dt.date <= self._end), :] X.index = pd.RangeIndex(0, X.shape[0]) rows_after = X.shape[0] if self._verbose: print( 'DateExtractor: \n' f'{rows_after} rows. Dropped {rows_before - rows_after} rows ' f'which are {"in" if self._negate else "not in"} between ' f'{self._start} and {self._end}.' ) return X class ValueMapper(BaseEstimator, TransformerMixin): """Maps values in `column` according to `classes`. Wrapper for pd.DataFrame.replace. Example: >>> data = pd.DataFrame({'a': [0.0, 1.0, 2.0]}) >>> ValueMapper(columns=['a'], classes={2.0: 1.0}).transform(data) pd.DataFrame({'a': [0.0, 1.0, 1.0]}) """ def __init__(self, *, columns: List[str], classes: Dict, verbose: bool = False): """Initialize `ValueMapper`. Args: columns (List[str]): Names of columns to remap. classes (Dict): Dictionary of old and new value. verbose (bool, optional): Whether to allow prints. """ super().__init__() self._columns = columns self._classes = classes self._verbose = verbose def fit(self, X, y=None): return self def transform(self, X): """Remaps values in `column` according to `classes`. Gives UserWarning if unmapped values are found. Args: X (pd.DataFrame): Dataframe. Returns: pd.DataFrame: Returns the new dataframe with remapped values. """ X = X.copy() # warning if unmapped values values = pd.unique(X[self._columns].values.ravel('K')) if not set(self._classes.keys()).issuperset(values): warnings.warn( f'Classes {set(self._classes.keys()) - set(values)} ignored.') X[self._columns] = X[self._columns].replace(self._classes) return X class Sorter(BaseEstimator, TransformerMixin): """Sorts the dataframe by a list of columns. Wrapper for pd.DataFrame.sort_values. Example: >>> data = pd.DataFrame({'a': [0, 1], 'b': [1, 0]}) >>> Sorter(columns=['b'], ascending=True).transform(data) pd.DataFrame({'a': [1, 0], 'b': [0, 1]}) """ def __init__(self, *, columns: List[str], ascending: bool = True, axis: int = 0): """Initialize `Sorter`. Args: columns (List[str]): List of column names to sort by. ascending (bool): Whether to sort ascending. axis (int): Axis to sort by. """ super().__init__() self._columns = columns self._ascending = ascending self._axis = axis def fit(self, X, y=None): return self def transform(self, X): """Sorts `X` by `columns`. Args: X (pd.DataFrame): Dataframe. Returns: pd.DataFrame: Returns the sorted Dataframe. """ X = X.copy() return X.sort_values(by=self._columns, ascending=self._ascending, axis=self._axis) class Fill(BaseEstimator, TransformerMixin): """Fills NA values with a constant or 'bfill' / 'ffill'. Wrapper for df.fillna. Example: >>> data = pd.DataFrame({'a': [0.0, np.nan]}) >>> Fill(value=1.0).transform(data) pd.DataFrame({'a': [0.0, 1.0]}) """ def __init__(self, *, value: Any, method: str = None): """Initialize `Fill`. Args: value (Any): Constant to fill NAs. method (str): method: 'ffill' or 'bfill'. """ super().__init__() self._value = value self._method = method def fit(self, X, y=None): return self def transform(self, X): """Fills NAs. Args: X (pd.DataFrame): Dataframe. Returns: pd.DataFrame: Returns the filled dataframe. """ X = X.copy() return X.fillna(self._value, method=self._method) class TimeOffsetTransformer(BaseEstimator, TransformerMixin): """`TimeOffsetTransformer` offsets a datetime by `timedelta`. Example: >>> data = pd.DataFrame( {'dates': [datetime.datetime(2021, 7, 1, 16, 0, 0)]}) >>> TimeOffsetTransformer(time_columns=['dates'], timedelta=pd.Timedelta(1, 'h') ).transform(data) pd.DataFrame({'dates': datetime.datetime(2021, 07, 2, 17, 0, 0)}) """ def __init__(self, *, time_columns: List[str], timedelta: pd.Timedelta): """ Initialize `TimeOffsetTransformer`. Args: time_column (List[str]): List of names of columns with timestamps to offset. timedelta (pd.Timedelta): Offset. """ super().__init__() self._time_columns = time_columns self._timedelta = timedelta def fit(self, X, y=None): return self def transform(self, X): """Offsets the timestamps in `time_columns` by `timedelta`- Args: X (pd.DataFrame): Dataframe. Returns: pd.DataFrame: Returns the dataframe. """ X = X.copy() for column in self._time_columns: X[column] = pd.to_datetime(X[column]) + self._timedelta return X class ConditionedDropper(BaseEstimator, TransformerMixin): """Module to drop rows in `column` that contain numeric values and are above `threshold`. If `inverted` is true, values below `threshold` are dropped. Example: >>> data = pd.DataFrame({'a': [0.0, 1.2, 0.5]}) >>> ConditionedDropper(column='a', threshold=0.5).transform(data) pd.DataFrame({'a': [0.0, 0.5]}) """ def __init__(self, *, column: str, threshold: float, invert: bool = False): """Initializes `ConditionedDropper`. Args: column (str): Column to match condition in. threshold (float): Threshold. inverted (bool, optional): If false, all values below `threshold` are dropped, otherwise all values above are dropped. """ super().__init__() self.column = column self.threshold = threshold self.inverted = invert def fit(self, X, y=None): return self def transform(self, X): """Drops rows if below or above a threshold. Args: X (pd.DataFrame): Dataframe. Returns: pd.DataFrame: Returns the dataframe. """ X = X.copy() if not self.inverted: X = X.drop(X[X[self.column] > self.threshold].index) else: X = X.drop(X[X[self.column] < self.threshold].index) X.index =
pd.RangeIndex(X.shape[0])
pandas.RangeIndex
''' Copyright 2022 Airbus SAS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' ''' mode: python; py-indent-offset: 4; tab-width: 4; coding: utf-8 ''' import unittest import pprint from numpy import array from numpy.testing import assert_array_equal, assert_array_almost_equal from pandas import DataFrame from pandas.testing import assert_frame_equal from sos_trades_core.execution_engine.execution_engine import ExecutionEngine class TestExtendDict(unittest.TestCase): """ Extend dict type for GEMSEO test class """ def setUp(self): self.name = 'EE' self.pp = pprint.PrettyPrinter(indent=4, compact=True) def test_01_sosdiscipline_simple_dict(self): exec_eng = ExecutionEngine(self.name) exec_eng.ns_manager.add_ns('ns_test', self.name) mod_list = 'sos_trades_core.sos_wrapping.test_discs.disc5dict.Disc5' disc5_builder = exec_eng.factory.get_builder_from_module( 'Disc5', mod_list) exec_eng.factory.set_builders_to_coupling_builder(disc5_builder) exec_eng.configure() # additional test to verify that values_in are used values_dict = {} values_dict['EE.z'] = [3., 0.] values_dict['EE.dict_out'] = {'key1': 0.5, 'key2': 0.5} exec_eng.dm.set_values_from_dict(values_dict) exec_eng.execute() target = { 'EE.z': [ 3.0, 0.0], 'EE.dict_out': [ 0.5, 0.5], 'EE.h': [ 0.75, 0.75]} res = {} for key in target: res[key] = exec_eng.dm.get_value(key) if target[key] is dict: self.assertDictEqual(res[key], target[key]) elif target[key] is array: self.assertListEqual(list(target[key]), list(res[key])) def test_02_sosdiscipline_simple_dict_and_dataframe(self): exec_eng = ExecutionEngine(self.name) exec_eng.ns_manager.add_ns('ns_test', self.name) mod_list = 'sos_trades_core.sos_wrapping.test_discs.disc4_dict_df.Disc4' disc4_builder = exec_eng.factory.get_builder_from_module( 'Disc4', mod_list) exec_eng.factory.set_builders_to_coupling_builder(disc4_builder) exec_eng.configure() # -- build input data values_dict = {} # built my_dict (private in) values_dict['EE.Disc4.mydict'] = {'md_1': array([3., 4.])} # build dict of dataframe (coupling in) h = {'dataframe': DataFrame(data={'col1': array([0.75, 0.75])})} values_dict['EE.h'] = h # store data exec_eng.dm.set_values_from_dict(values_dict) # -- exec exec_eng.execute() # compare output h (sos_trades format) to reference rp = exec_eng.root_process.sos_disciplines[0] z_out, dict_out = rp.get_sosdisc_outputs(["z", "dict_out"]) z_out_target = array([0.75, 1.5]) df_data = {'col1': [1, 2], 'col2': [3, 0.75]} df = DataFrame(data=df_data) dict_out_target = {'key1': {'key11': 0.75, 'key12': 0.5, 'key13': 8., 'key14': {'key141': df, 'key142': array([5])}}, 'key2': 10.} assert_array_equal( z_out, z_out_target, "wrong output z") self.assertSetEqual(set(dict_out.keys()), set(dict_out_target.keys()), "Incorrect dict_out keys") self.assertSetEqual(set(dict_out['key1'].keys()), set(dict_out_target['key1'].keys()), "Incorrect dict_out['key1'] keys") self.assertSetEqual(set(dict_out['key1']['key14'].keys()), set(dict_out_target['key1']['key14'].keys()), "Incorrect dict_out[key1][key14] keys") self.assertAlmostEqual( dict_out_target['key1']['key11'], dict_out['key1']['key11']) self.assertAlmostEqual( dict_out_target['key1']['key12'], dict_out['key1']['key12']) self.assertAlmostEqual( dict_out_target['key1']['key13'], dict_out['key1']['key13']) assert_array_equal( dict_out_target['key1']['key14']['key142'], dict_out['key1']['key14']['key142']) assert_frame_equal( dict_out_target['key1']['key14']['key141'], dict_out['key1']['key14']['key141']) def test_03_soscoupling_simple_dict(self): exec_eng = ExecutionEngine(self.name) exec_eng.ns_manager.add_ns('ns_test', self.name) mod_list = 'sos_trades_core.sos_wrapping.test_discs.disc4dict.Disc4' disc4_builder = exec_eng.factory.get_builder_from_module( 'Disc4', mod_list) mod_list = 'sos_trades_core.sos_wrapping.test_discs.disc5dict.Disc5' disc5_builder = exec_eng.factory.get_builder_from_module( 'Disc5', mod_list) exec_eng.factory.set_builders_to_coupling_builder( [disc4_builder, disc5_builder]) exec_eng.configure() values_dict = {f'{self.name}.dict_out': {'key1': 3., 'key2': 4.}, f'{self.name}.z': array([4., 5.]), f'{self.name}.h': array([8., 9.]), f'{self.name}.Disc4.mydict': {'md_1': array([3., 4.])} } exec_eng.dm.set_values_from_dict(values_dict) exec_eng.execute() target = {f'{self.name}.dict_out': {'key1': 0.7071119843035847, 'key2': 0.7071119843035847}, f'{self.name}.z': array([0.707111984, 1.41422397]), f'{self.name}.h': array([0.7071067811865475, 0.7071067811865475]), f'{self.name}.Disc4.mydict': {'md_1': array([3., 4.])}} res = {} for key in target: res[key] = exec_eng.dm.get_value(key) if target[key] is dict: self.assertDictEqual(res[key], target[key]) elif target[key] is array: self.assertListEqual(list(target[key]), list(res[key])) def test_04_sosdiscipline_nested_dict(self): exec_eng = ExecutionEngine(self.name) exec_eng.ns_manager.add_ns('ns_test', self.name) mod_list = 'sos_trades_core.sos_wrapping.test_discs.disc5_disc_df.Disc5' disc5_builder = exec_eng.factory.get_builder_from_module( 'Disc5', mod_list) exec_eng.factory.set_builders_to_coupling_builder(disc5_builder) exec_eng.configure() df_data = {'col1': [1, 2], 'col2': [3, 0.5]} df =
DataFrame(data=df_data)
pandas.DataFrame
""" Assignment 4 Before working on this assignment please read these instructions fully. In the submission area, you will notice that you can click the link to Preview the Grading for each step of the assignment. This is the criteria that will be used for peer grading. Please familiarize yourself with the criteria before beginning the assignment. This assignment requires that you to find at least two datasets on the web which are related, and that you visualize these datasets to answer a question with the broad topic of weather phenomena (see below) for the region of Ann Arbor, Michigan, United States, or United States more broadly. You can merge these datasets with data from different regions if you like! For instance, you might want to compare Ann Arbor, Michigan, United States to Ann Arbor, USA. In that case at least one source file must be about Ann Arbor, Michigan, United States. You are welcome to choose datasets at your discretion, but keep in mind they will be shared with your peers, so choose appropriate datasets. Sensitive, confidential, illicit, and proprietary materials are not good choices for datasets for this assignment. You are welcome to upload datasets of your own as well, and link to them using a third party repository such as github, bitbucket, pastebin, etc. Please be aware of the Coursera terms of service with respect to intellectual property. Also, you are welcome to preserve data in its original language, but for the purposes of grading you should provide english translations. You are welcome to provide multiple visuals in different languages if you would like! As this assignment is for the whole course, you must incorporate principles discussed in the first week, such as having as high data-ink ratio (Tufte) and aligning with Cairo’s principles of truth, beauty, function, and insight. Here are the assignment instructions: State the region and the domain category that your data sets are about (e.g., Ann Arbor, Michigan, United States and weather phenomena). You must state a question about the domain category and region that you identified as being interesting. You must provide at least two links to available datasets. These could be links to files such as CSV or Excel files, or links to websites which might have data in tabular form, such as Wikipedia pages. You must upload an image which addresses the research question you stated. In addition to addressing the question, this visual should follow Cairo's principles of truthfulness, functionality, beauty, and insightfulness. You must contribute a short (1-2 paragraph) written justification of how your visualization addresses your stated research question. What do we mean by weather phenomena? For this category you might want to consider seasonal changes, natural disasters, or historical trends. Tips Wikipedia is an excellent source of data, and I strongly encourage you to explore it for new data sources. Many governments run open data initiatives at the city, region, and country levels, and these are wonderful resources for localized data sources. Several international agencies, such as the United Nations, the World Bank, the Global Open Data Index are other great places to look for data. This assignment requires you to convert and clean datafiles. Check out the discussion forums for tips on how to do this from various sources, and share your successes with your fellow students! Example Looking for an example? Here's what our course assistant put together for the Ann Arbor, MI, USA area using sports and athletics as the topic. Example Solution File """ # pip3 install mplleaflet from matplotlib import cm from matplotlib.ticker import FuncFormatter import mpl_toolkits.axes_grid1.inset_locator as mpl_il import pandas as pd import mplleaflet from matplotlib.artist import Artist from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import sys """ 1. region and domain region: China, Japan, Korea domain: Air transport, passengers carried (1970~2017) 2. Create a research question about the domain category and region that you identified. Since 1970, How many passengers carried by air transport in China, Japan and Korea. 3. Links china http://data.un.org/Data.aspx?d=WDI&f=Indicator_Code:IS.AIR.PSGR;Country_Code:CHN;Time_Code:1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017&c=0,1,2,3,4,5&s=Country_Name:asc,Year:desc&v=1 japan http://data.un.org/Data.aspx?d=WDI&f=Indicator_Code:IS.AIR.PSGR;Country_Code:JPN;Time_Code:1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017&c=0,1,2,3,4,5&s=Country_Name:asc,Year:desc&v=1 korea http://data.un.org/Data.aspx?d=WDI&f=Indicator_Code:IS.AIR.PSGR;Country_Code:KOR;Time_Code:1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017&c=0,1,2,3,4,5&s=Country_Name:asc,Year:desc&v=1 4.Provide a short (1-2 paragraphs) justification of how your visual addresses your research question. This visualization was concerned with answering the question how many people carried by air transport. Due to the large difference in passenger numbers by country, the y-axis of the graph is displayed as 'e' by default, which is expressed in millions(M) for better readability. The x-axis of the graph used vertical lines to represent the last 2017 years of data. And I used the dot grid to guide you through the yearly data. This graph shows the increase in aircraft use by Korean, Chinese and Japanese passengers from 1970 to 2017. Korean and Japanese passenger growth has been modest, while Chinese passengers have increased rapidly since 2000. 5.Describe your design choices for your visual in regards to Cairo's principle of truthfulness. Describe your design choices for your visual in regards to Cairo's principle of beauty. Describe your design choices for your visual in regards to Cairo's principle of functionality. Describe your design choices for your visual in regards to Cairo's principle of insightfulness. truthfulness : The number of passengers in different countries is expressed as it is. beauty : I used harmonious colors. functionality : Different country colors and legends were used to distinguish them. insightfulness : It clearly shows the difference between the number of Chinese passengers and the number of passengers in other countries. """ # dataframe 에서 필요없는 컬럼, 로우 제거 def remove_extra_cols_rows(df): df = df[df['Indicator Code'] != 'footnoteSeqID'] df = df[df['Indicator Code'] != '1'] # axis=1:컬럼, 0:로우 df.drop(['Indicator Code', 'Time Code', 'Value Footnotes'], axis=1, inplace=True) return df # 너쿠 커서 자연상수(e) 표시를 M(million,100만) 단위로 포맷팅 # https://matplotlib.org/examples/pylab_examples/custom_ticker1.html def millions(x, pos): # return '%1.1fM' % (x*1e-6) return '%1dM' % (x*1e-6) plt.figure() plt.style.use('seaborn-colorblind') df1 = pd.read_csv('UNdata_Export_china.csv') df1 = remove_extra_cols_rows(df1) df2 = pd.read_csv('UNdata_Export_japan.csv') df2 = remove_extra_cols_rows(df2) df3 =
pd.read_csv('UNdata_Export_korea.csv')
pandas.read_csv
from datetime import datetime import numpy as np import pandas as pd import pytest from numba import njit import vectorbt as vbt from tests.utils import record_arrays_close from vectorbt.generic.enums import range_dt, drawdown_dt from vectorbt.portfolio.enums import order_dt, trade_dt, log_dt day_dt = np.timedelta64(86400000000000) example_dt = np.dtype([ ('id', np.int64), ('col', np.int64), ('idx', np.int64), ('some_field1', np.float64), ('some_field2', np.float64) ], align=True) records_arr = np.asarray([ (0, 0, 0, 10, 21), (1, 0, 1, 11, 20), (2, 0, 2, 12, 19), (3, 1, 0, 13, 18), (4, 1, 1, 14, 17), (5, 1, 2, 13, 18), (6, 2, 0, 12, 19), (7, 2, 1, 11, 20), (8, 2, 2, 10, 21) ], dtype=example_dt) records_nosort_arr = np.concatenate(( records_arr[0::3], records_arr[1::3], records_arr[2::3] )) group_by = pd.Index(['g1', 'g1', 'g2', 'g2']) wrapper = vbt.ArrayWrapper( index=['x', 'y', 'z'], columns=['a', 'b', 'c', 'd'], ndim=2, freq='1 days' ) wrapper_grouped = wrapper.replace(group_by=group_by) records = vbt.records.Records(wrapper, records_arr) records_grouped = vbt.records.Records(wrapper_grouped, records_arr) records_nosort = records.replace(records_arr=records_nosort_arr) records_nosort_grouped = vbt.records.Records(wrapper_grouped, records_nosort_arr) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# col_mapper.py ############# # class TestColumnMapper: def test_col_arr(self): np.testing.assert_array_equal( records['a'].col_mapper.col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( records.col_mapper.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_get_col_arr(self): np.testing.assert_array_equal( records.col_mapper.get_col_arr(), records.col_mapper.col_arr ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]) ) def test_col_range(self): np.testing.assert_array_equal( records['a'].col_mapper.col_range, np.array([ [0, 3] ]) ) np.testing.assert_array_equal( records.col_mapper.col_range, np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) def test_get_col_range(self): np.testing.assert_array_equal( records.col_mapper.get_col_range(), np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_range(), np.array([[0, 6]]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_range(), np.array([[0, 6], [6, 9]]) ) def test_col_map(self): np.testing.assert_array_equal( records['a'].col_mapper.col_map[0], np.array([0, 1, 2]) ) np.testing.assert_array_equal( records['a'].col_mapper.col_map[1], np.array([3]) ) np.testing.assert_array_equal( records.col_mapper.col_map[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records.col_mapper.col_map[1], np.array([3, 3, 3, 0]) ) def test_get_col_map(self): np.testing.assert_array_equal( records.col_mapper.get_col_map()[0], records.col_mapper.col_map[0] ) np.testing.assert_array_equal( records.col_mapper.get_col_map()[1], records.col_mapper.col_map[1] ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[1], np.array([6]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[1], np.array([6, 3]) ) def test_is_sorted(self): assert records.col_mapper.is_sorted() assert not records_nosort.col_mapper.is_sorted() # ############# mapped_array.py ############# # mapped_array = records.map_field('some_field1') mapped_array_grouped = records_grouped.map_field('some_field1') mapped_array_nosort = records_nosort.map_field('some_field1') mapped_array_nosort_grouped = records_nosort_grouped.map_field('some_field1') mapping = {x: 'test_' + str(x) for x in pd.unique(mapped_array.values)} mp_mapped_array = mapped_array.replace(mapping=mapping) mp_mapped_array_grouped = mapped_array_grouped.replace(mapping=mapping) class TestMappedArray: def test_config(self, tmp_path): assert vbt.MappedArray.loads(mapped_array.dumps()) == mapped_array mapped_array.save(tmp_path / 'mapped_array') assert vbt.MappedArray.load(tmp_path / 'mapped_array') == mapped_array def test_mapped_arr(self): np.testing.assert_array_equal( mapped_array['a'].values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( mapped_array.values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) def test_id_arr(self): np.testing.assert_array_equal( mapped_array['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.id_arr, np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) def test_col_arr(self): np.testing.assert_array_equal( mapped_array['a'].col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( mapped_array.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_idx_arr(self): np.testing.assert_array_equal( mapped_array['a'].idx_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.idx_arr, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2]) ) def test_is_sorted(self): assert mapped_array.is_sorted() assert mapped_array.is_sorted(incl_id=True) assert not mapped_array_nosort.is_sorted() assert not mapped_array_nosort.is_sorted(incl_id=True) def test_sort(self): assert mapped_array.sort().is_sorted() assert mapped_array.sort().is_sorted(incl_id=True) assert mapped_array.sort(incl_id=True).is_sorted(incl_id=True) assert mapped_array_nosort.sort().is_sorted() assert mapped_array_nosort.sort().is_sorted(incl_id=True) assert mapped_array_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = mapped_array['a'].values >= mapped_array['a'].values.mean() np.testing.assert_array_equal( mapped_array['a'].apply_mask(mask_a).id_arr, np.array([1, 2]) ) mask = mapped_array.values >= mapped_array.values.mean() filtered = mapped_array.apply_mask(mask) np.testing.assert_array_equal( filtered.id_arr, np.array([2, 3, 4, 5, 6]) ) np.testing.assert_array_equal(filtered.col_arr, mapped_array.col_arr[mask]) np.testing.assert_array_equal(filtered.idx_arr, mapped_array.idx_arr[mask]) assert mapped_array_grouped.apply_mask(mask).wrapper == mapped_array_grouped.wrapper assert mapped_array_grouped.apply_mask(mask, group_by=False).wrapper.grouper.group_by is None def test_map_to_mask(self): @njit def every_2_nb(inout, idxs, col, mapped_arr): inout[idxs[::2]] = True np.testing.assert_array_equal( mapped_array.map_to_mask(every_2_nb), np.array([True, False, True, True, False, True, True, False, True]) ) def test_top_n_mask(self): np.testing.assert_array_equal( mapped_array.top_n_mask(1), np.array([False, False, True, False, True, False, True, False, False]) ) def test_bottom_n_mask(self): np.testing.assert_array_equal( mapped_array.bottom_n_mask(1), np.array([True, False, False, True, False, False, False, False, True]) ) def test_top_n(self): np.testing.assert_array_equal( mapped_array.top_n(1).id_arr, np.array([2, 4, 6]) ) def test_bottom_n(self): np.testing.assert_array_equal( mapped_array.bottom_n(1).id_arr, np.array([0, 3, 8]) ) def test_to_pd(self): target = pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), index=wrapper.index, columns=wrapper.columns ) pd.testing.assert_series_equal( mapped_array['a'].to_pd(), target['a'] ) pd.testing.assert_frame_equal( mapped_array.to_pd(), target ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0.), target.fillna(0.) ) mapped_array2 = vbt.MappedArray( wrapper, records_arr['some_field1'].tolist() + [1], records_arr['col'].tolist() + [2], idx_arr=records_arr['idx'].tolist() + [2] ) with pytest.raises(Exception): _ = mapped_array2.to_pd() pd.testing.assert_series_equal( mapped_array['a'].to_pd(ignore_index=True), pd.Series(np.array([10., 11., 12.]), name='a') ) pd.testing.assert_frame_equal( mapped_array.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0, ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., 0.], [11., 14., 11., 0.], [12., 13., 10., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 12.], [11., 11.], [12., 10.], [13., np.nan], [14., np.nan], [13., np.nan], ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_apply(self): @njit def cumsum_apply_nb(idxs, col, a): return np.cumsum(a) np.testing.assert_array_equal( mapped_array['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( mapped_array.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert mapped_array_grouped.apply(cumsum_apply_nb).wrapper == \ mapped_array.apply(cumsum_apply_nb, group_by=group_by).wrapper assert mapped_array.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_reduce(self): @njit def mean_reduce_nb(col, a): return np.mean(a) assert mapped_array['a'].reduce(mean_reduce_nb) == 11. pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0.), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0., wrap_kwargs=dict(dtype=np.int_)), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, wrap_kwargs=dict(to_timedelta=True)), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') * day_dt ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(mean_reduce_nb), pd.Series([12.166666666666666, 11.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) assert mapped_array_grouped['g1'].reduce(mean_reduce_nb) == 12.166666666666666 pd.testing.assert_series_equal( mapped_array_grouped[['g1']].reduce(mean_reduce_nb), pd.Series([12.166666666666666], index=pd.Index(['g1'], dtype='object')).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), mapped_array_grouped.reduce(mean_reduce_nb, group_by=False) ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, group_by=group_by), mapped_array_grouped.reduce(mean_reduce_nb) ) def test_reduce_to_idx(self): @njit def argmin_reduce_nb(col, a): return np.argmin(a) assert mapped_array['a'].reduce(argmin_reduce_nb, returns_idx=True) == 'x' pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True), pd.Series(np.array(['x', 'x', 'z', np.nan], dtype=object), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 0, 2, -1], dtype=int), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 2], dtype=int), index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) def test_reduce_to_array(self): @njit def min_max_reduce_nb(col, a): return np.array([np.min(a), np.max(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.Series([10., 12.], index=pd.Index(['min', 'max'], dtype='object'), name='a') ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), index=pd.Index(['min', 'max'], dtype='object'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, fill_value=0.), pd.DataFrame( np.array([ [10., 13., 10., 0.], [12., 14., 12., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(to_timedelta=True)), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), columns=wrapper.columns ) * day_dt ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame( np.array([ [10., 10.], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True, group_by=False) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, group_by=group_by), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True) ) pd.testing.assert_series_equal( mapped_array_grouped['g1'].reduce(min_max_reduce_nb, returns_array=True), pd.Series([10., 14.], name='g1') ) pd.testing.assert_frame_equal( mapped_array_grouped[['g1']].reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame([[10.], [14.]], columns=pd.Index(['g1'], dtype='object')) ) def test_reduce_to_idx_array(self): @njit def idxmin_idxmax_reduce_nb(col, a): return np.array([np.argmin(a), np.argmax(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['min', 'max'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.DataFrame( { 'a': ['x', 'z'], 'b': ['x', 'y'], 'c': ['z', 'x'], 'd': [np.nan, np.nan] }, index=pd.Index(['min', 'max'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 0, 2, -1], [2, 1, 0, -1] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 2], [1, 0] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_nth(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth(0), pd.Series(np.array([10., 13., 12., np.nan]), index=wrapper.columns).rename('nth') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth(-1), pd.Series(np.array([12., 13., 10., np.nan]), index=wrapper.columns).rename('nth') ) with pytest.raises(Exception): _ = mapped_array.nth(10) pd.testing.assert_series_equal( mapped_array_grouped.nth(0), pd.Series(np.array([10., 12.]), index=pd.Index(['g1', 'g2'], dtype='object')).rename('nth') ) def test_nth_index(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth_index(0), pd.Series( np.array(['x', 'x', 'x', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth_index(-1), pd.Series( np.array(['z', 'z', 'z', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) with pytest.raises(Exception): _ = mapped_array.nth_index(10) pd.testing.assert_series_equal( mapped_array_grouped.nth_index(0), pd.Series( np.array(['x', 'x'], dtype='object'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('nth_index') ) def test_min(self): assert mapped_array['a'].min() == mapped_array['a'].to_pd().min() pd.testing.assert_series_equal( mapped_array.min(), mapped_array.to_pd().min().rename('min') ) pd.testing.assert_series_equal( mapped_array_grouped.min(), pd.Series([10., 10.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('min') ) def test_max(self): assert mapped_array['a'].max() == mapped_array['a'].to_pd().max() pd.testing.assert_series_equal( mapped_array.max(), mapped_array.to_pd().max().rename('max') ) pd.testing.assert_series_equal( mapped_array_grouped.max(), pd.Series([14., 12.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('max') ) def test_mean(self): assert mapped_array['a'].mean() == mapped_array['a'].to_pd().mean() pd.testing.assert_series_equal( mapped_array.mean(), mapped_array.to_pd().mean().rename('mean') ) pd.testing.assert_series_equal( mapped_array_grouped.mean(), pd.Series([12.166667, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('mean') ) def test_median(self): assert mapped_array['a'].median() == mapped_array['a'].to_pd().median() pd.testing.assert_series_equal( mapped_array.median(), mapped_array.to_pd().median().rename('median') ) pd.testing.assert_series_equal( mapped_array_grouped.median(), pd.Series([12.5, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('median') ) def test_std(self): assert mapped_array['a'].std() == mapped_array['a'].to_pd().std() pd.testing.assert_series_equal( mapped_array.std(), mapped_array.to_pd().std().rename('std') ) pd.testing.assert_series_equal( mapped_array.std(ddof=0), mapped_array.to_pd().std(ddof=0).rename('std') ) pd.testing.assert_series_equal( mapped_array_grouped.std(), pd.Series([1.4719601443879746, 1.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('std') ) def test_sum(self): assert mapped_array['a'].sum() == mapped_array['a'].to_pd().sum() pd.testing.assert_series_equal( mapped_array.sum(), mapped_array.to_pd().sum().rename('sum') ) pd.testing.assert_series_equal( mapped_array_grouped.sum(), pd.Series([73.0, 33.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('sum') ) def test_count(self): assert mapped_array['a'].count() == mapped_array['a'].to_pd().count() pd.testing.assert_series_equal( mapped_array.count(), mapped_array.to_pd().count().rename('count') ) pd.testing.assert_series_equal( mapped_array_grouped.count(), pd.Series([6, 3], index=pd.Index(['g1', 'g2'], dtype='object')).rename('count') ) def test_idxmin(self): assert mapped_array['a'].idxmin() == mapped_array['a'].to_pd().idxmin() pd.testing.assert_series_equal( mapped_array.idxmin(), mapped_array.to_pd().idxmin().rename('idxmin') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmin(), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmin') ) def test_idxmax(self): assert mapped_array['a'].idxmax() == mapped_array['a'].to_pd().idxmax() pd.testing.assert_series_equal( mapped_array.idxmax(), mapped_array.to_pd().idxmax().rename('idxmax') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmax(), pd.Series( np.array(['y', 'x'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmax') ) def test_describe(self): pd.testing.assert_series_equal( mapped_array['a'].describe(), mapped_array['a'].to_pd().describe() ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=None), mapped_array.to_pd().describe(percentiles=None) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=[]), mapped_array.to_pd().describe(percentiles=[]) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=np.arange(0, 1, 0.1)), mapped_array.to_pd().describe(percentiles=np.arange(0, 1, 0.1)) ) pd.testing.assert_frame_equal( mapped_array_grouped.describe(), pd.DataFrame( np.array([ [6., 3.], [12.16666667, 11.], [1.47196014, 1.], [10., 10.], [11.25, 10.5], [12.5, 11.], [13., 11.5], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object'), index=mapped_array.describe().index ) ) def test_value_counts(self): pd.testing.assert_series_equal( mapped_array['a'].value_counts(), pd.Series( np.array([1, 1, 1]), index=pd.Float64Index([10.0, 11.0, 12.0], dtype='float64'), name='a' ) ) pd.testing.assert_series_equal( mapped_array['a'].value_counts(mapping=mapping), pd.Series( np.array([1, 1, 1]), index=pd.Index(['test_10.0', 'test_11.0', 'test_12.0'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.value_counts(), pd.DataFrame( np.array([ [1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0], [0, 2, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.value_counts(), pd.DataFrame( np.array([ [1, 1], [1, 1], [1, 1], [2, 0], [1, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) mapped_array2 = mapped_array.replace(mapped_arr=[4, 4, 3, 2, np.nan, 4, 3, 2, 1]) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=False), pd.DataFrame( np.array([ [2, 1, 0, 0], [1, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 3.0, 2.0, 1.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([1.0, 2.0, 3.0, 4.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True), pd.DataFrame( np.array([ [2, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, ascending=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0] ]), index=pd.Float64Index([1.0, np.nan, 2.0, 3.0, 4.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True), pd.DataFrame( np.array([ [0.2222222222222222, 0.1111111111111111, 0.0, 0.0], [0.0, 0.1111111111111111, 0.1111111111111111, 0.0], [0.1111111111111111, 0.0, 0.1111111111111111, 0.0], [0.0, 0.0, 0.1111111111111111, 0.0], [0.0, 0.1111111111111111, 0.0, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True, dropna=True), pd.DataFrame( np.array([ [0.25, 0.125, 0.0, 0.0], [0.0, 0.125, 0.125, 0.0], [0.125, 0.0, 0.125, 0.0], [0.0, 0.0, 0.125, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0], dtype='float64'), columns=wrapper.columns ) ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: ma = mapped_array_nosort ma_grouped = mapped_array_nosort_grouped else: ma = mapped_array ma_grouped = mapped_array_grouped np.testing.assert_array_equal( ma['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( ma['a'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) np.testing.assert_array_equal( ma['b'].id_arr, np.array([3, 4, 5]) ) np.testing.assert_array_equal( ma['b'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['b'].wrapper.columns, pd.Index(['b'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'a']].id_arr, np.array([0, 1, 2, 0, 1, 2]) ) np.testing.assert_array_equal( ma[['a', 'a']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'a']].wrapper.columns, pd.Index(['a', 'a'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'b']].id_arr, np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( ma[['a', 'b']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'b']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) with pytest.raises(Exception): _ = ma.iloc[::2, :] # changing time not supported pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped['g1'].wrapper.ndim == 2 assert ma_grouped['g1'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.columns, pd.Index(['c', 'd'], dtype='object') ) assert ma_grouped['g2'].wrapper.ndim == 2 assert ma_grouped['g2'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.grouper.group_by, pd.Index(['g2', 'g2'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped[['g1']].wrapper.ndim == 2 assert ma_grouped[['g1']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.columns, pd.Index(['a', 'b', 'c', 'd'], dtype='object') ) assert ma_grouped[['g1', 'g2']].wrapper.ndim == 2 assert ma_grouped[['g1', 'g2']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.grouper.group_by, pd.Index(['g1', 'g1', 'g2', 'g2'], dtype='object') ) def test_magic(self): a = vbt.MappedArray( wrapper, records_arr['some_field1'], records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) a_inv = vbt.MappedArray( wrapper, records_arr['some_field1'][::-1], records_arr['col'][::-1], id_arr=records_arr['id'][::-1], idx_arr=records_arr['idx'][::-1] ) b = records_arr['some_field2'] a_bool = vbt.MappedArray( wrapper, records_arr['some_field1'] > np.mean(records_arr['some_field1']), records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) b_bool = records_arr['some_field2'] > np.mean(records_arr['some_field2']) assert a ** a == a ** 2 with pytest.raises(Exception): _ = a * a_inv # binary ops # comparison ops np.testing.assert_array_equal((a == b).values, a.values == b) np.testing.assert_array_equal((a != b).values, a.values != b) np.testing.assert_array_equal((a < b).values, a.values < b) np.testing.assert_array_equal((a > b).values, a.values > b) np.testing.assert_array_equal((a <= b).values, a.values <= b) np.testing.assert_array_equal((a >= b).values, a.values >= b) # arithmetic ops np.testing.assert_array_equal((a + b).values, a.values + b) np.testing.assert_array_equal((a - b).values, a.values - b) np.testing.assert_array_equal((a * b).values, a.values * b) np.testing.assert_array_equal((a ** b).values, a.values ** b) np.testing.assert_array_equal((a % b).values, a.values % b) np.testing.assert_array_equal((a // b).values, a.values // b) np.testing.assert_array_equal((a / b).values, a.values / b) # __r*__ is only called if the left object does not have an __*__ method np.testing.assert_array_equal((10 + a).values, 10 + a.values) np.testing.assert_array_equal((10 - a).values, 10 - a.values) np.testing.assert_array_equal((10 * a).values, 10 * a.values) np.testing.assert_array_equal((10 ** a).values, 10 ** a.values) np.testing.assert_array_equal((10 % a).values, 10 % a.values) np.testing.assert_array_equal((10 // a).values, 10 // a.values) np.testing.assert_array_equal((10 / a).values, 10 / a.values) # mask ops np.testing.assert_array_equal((a_bool & b_bool).values, a_bool.values & b_bool) np.testing.assert_array_equal((a_bool | b_bool).values, a_bool.values | b_bool) np.testing.assert_array_equal((a_bool ^ b_bool).values, a_bool.values ^ b_bool) np.testing.assert_array_equal((True & a_bool).values, True & a_bool.values) np.testing.assert_array_equal((True | a_bool).values, True | a_bool.values) np.testing.assert_array_equal((True ^ a_bool).values, True ^ a_bool.values) # unary ops np.testing.assert_array_equal((-a).values, -a.values) np.testing.assert_array_equal((+a).values, +a.values) np.testing.assert_array_equal((abs(-a)).values, abs((-a.values))) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Mean', 'Std', 'Min', 'Median', 'Max', 'Min Index', 'Max Index' ], dtype='object') pd.testing.assert_series_equal( mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 11.777777777777779, 0.859116756396542, 11.0, 11.666666666666666, 12.666666666666666 ], index=stats_index[:-2], name='agg_func_mean' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 11.0, 1.0, 10.0, 11.0, 12.0, 'x', 'z' ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 12.166666666666666, 1.4719601443879746, 10.0, 12.5, 14.0, 'x', 'y' ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 11) pd.testing.assert_index_equal(stats_df.index, mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) def test_stats_mapping(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Value Counts: test_10.0', 'Value Counts: test_11.0', 'Value Counts: test_12.0', 'Value Counts: test_13.0', 'Value Counts: test_14.0' ], dtype='object') pd.testing.assert_series_equal( mp_mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 0.5, 0.5, 0.5, 0.5, 0.25 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 1, 1, 1, 0, 0 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 1, 1, 1, 2, 1 ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(), mapped_array.stats(settings=dict(mapping=mapping)) ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mp_mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 9) pd.testing.assert_index_equal(stats_df.index, mp_mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# base.py ############# # class TestRecords: def test_config(self, tmp_path): assert vbt.Records.loads(records['a'].dumps()) == records['a'] assert vbt.Records.loads(records.dumps()) == records records.save(tmp_path / 'records') assert vbt.Records.load(tmp_path / 'records') == records def test_records(self): pd.testing.assert_frame_equal( records.records, pd.DataFrame.from_records(records_arr) ) def test_recarray(self): np.testing.assert_array_equal(records['a'].recarray.some_field1, records['a'].values['some_field1']) np.testing.assert_array_equal(records.recarray.some_field1, records.values['some_field1']) def test_records_readable(self): pd.testing.assert_frame_equal( records.records_readable, pd.DataFrame([ [0, 'a', 'x', 10.0, 21.0], [1, 'a', 'y', 11.0, 20.0], [2, 'a', 'z', 12.0, 19.0], [3, 'b', 'x', 13.0, 18.0], [4, 'b', 'y', 14.0, 17.0], [5, 'b', 'z', 13.0, 18.0], [6, 'c', 'x', 12.0, 19.0], [7, 'c', 'y', 11.0, 20.0], [8, 'c', 'z', 10.0, 21.0] ], columns=pd.Index(['Id', 'Column', 'Timestamp', 'some_field1', 'some_field2'], dtype='object')) ) def test_is_sorted(self): assert records.is_sorted() assert records.is_sorted(incl_id=True) assert not records_nosort.is_sorted() assert not records_nosort.is_sorted(incl_id=True) def test_sort(self): assert records.sort().is_sorted() assert records.sort().is_sorted(incl_id=True) assert records.sort(incl_id=True).is_sorted(incl_id=True) assert records_nosort.sort().is_sorted() assert records_nosort.sort().is_sorted(incl_id=True) assert records_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = records['a'].values['some_field1'] >= records['a'].values['some_field1'].mean() record_arrays_close( records['a'].apply_mask(mask_a).values, np.array([ (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) mask = records.values['some_field1'] >= records.values['some_field1'].mean() filtered = records.apply_mask(mask) record_arrays_close( filtered.values, np.array([ (2, 0, 2, 12., 19.), (3, 1, 0, 13., 18.), (4, 1, 1, 14., 17.), (5, 1, 2, 13., 18.), (6, 2, 0, 12., 19.) ], dtype=example_dt) ) assert records_grouped.apply_mask(mask).wrapper == records_grouped.wrapper def test_map_field(self): np.testing.assert_array_equal( records['a'].map_field('some_field1').values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( records.map_field('some_field1').values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) assert records_grouped.map_field('some_field1').wrapper == \ records.map_field('some_field1', group_by=group_by).wrapper assert records_grouped.map_field('some_field1', group_by=False).wrapper.grouper.group_by is None def test_map(self): @njit def map_func_nb(record): return record['some_field1'] + record['some_field2'] np.testing.assert_array_equal( records['a'].map(map_func_nb).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map(map_func_nb).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map(map_func_nb).wrapper == \ records.map(map_func_nb, group_by=group_by).wrapper assert records_grouped.map(map_func_nb, group_by=False).wrapper.grouper.group_by is None def test_map_array(self): arr = records_arr['some_field1'] + records_arr['some_field2'] np.testing.assert_array_equal( records['a'].map_array(arr[:3]).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map_array(arr).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map_array(arr).wrapper == \ records.map_array(arr, group_by=group_by).wrapper assert records_grouped.map_array(arr, group_by=False).wrapper.grouper.group_by is None def test_apply(self): @njit def cumsum_apply_nb(records): return np.cumsum(records['some_field1']) np.testing.assert_array_equal( records['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( records.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert records_grouped.apply(cumsum_apply_nb).wrapper == \ records.apply(cumsum_apply_nb, group_by=group_by).wrapper assert records_grouped.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_count(self): assert records['a'].count() == 3 pd.testing.assert_series_equal( records.count(), pd.Series( np.array([3, 3, 3, 0]), index=wrapper.columns ).rename('count') ) assert records_grouped['g1'].count() == 6 pd.testing.assert_series_equal( records_grouped.count(), pd.Series( np.array([6, 3]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('count') ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: r = records_nosort r_grouped = records_nosort_grouped else: r = records r_grouped = records_grouped record_arrays_close( r['a'].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) pd.testing.assert_index_equal( r['b'].wrapper.columns, pd.Index(['b'], dtype='object') ) record_arrays_close( r[['a', 'a']].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.), (0, 1, 0, 10., 21.), (1, 1, 1, 11., 20.), (2, 1, 2, 12., 19.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r[['a', 'a']].wrapper.columns, pd.Index(['a', 'a'], dtype='object') ) record_arrays_close( r[['a', 'b']].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.), (3, 1, 0, 13., 18.), (4, 1, 1, 14., 17.), (5, 1, 2, 13., 18.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r[['a', 'b']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) with pytest.raises(Exception): _ = r.iloc[::2, :] # changing time not supported pd.testing.assert_index_equal( r_grouped['g1'].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert r_grouped['g1'].wrapper.ndim == 2 assert r_grouped['g1'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( r_grouped['g1'].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( r_grouped['g2'].wrapper.columns, pd.Index(['c', 'd'], dtype='object') ) assert r_grouped['g2'].wrapper.ndim == 2 assert r_grouped['g2'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( r_grouped['g2'].wrapper.grouper.group_by, pd.Index(['g2', 'g2'], dtype='object') ) pd.testing.assert_index_equal( r_grouped[['g1']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert r_grouped[['g1']].wrapper.ndim == 2 assert r_grouped[['g1']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( r_grouped[['g1']].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( r_grouped[['g1', 'g2']].wrapper.columns, pd.Index(['a', 'b', 'c', 'd'], dtype='object') ) assert r_grouped[['g1', 'g2']].wrapper.ndim == 2 assert r_grouped[['g1', 'g2']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( r_grouped[['g1', 'g2']].wrapper.grouper.group_by, pd.Index(['g1', 'g1', 'g2', 'g2'], dtype='object') ) def test_filtering(self): filtered_records = vbt.Records(wrapper, records_arr[[0, -1]]) record_arrays_close( filtered_records.values, np.array([(0, 0, 0, 10., 21.), (8, 2, 2, 10., 21.)], dtype=example_dt) ) # a record_arrays_close( filtered_records['a'].values, np.array([(0, 0, 0, 10., 21.)], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['a'].map_field('some_field1').id_arr, np.array([0]) ) assert filtered_records['a'].map_field('some_field1').min() == 10. assert filtered_records['a'].count() == 1. # b record_arrays_close( filtered_records['b'].values, np.array([], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['b'].map_field('some_field1').id_arr, np.array([]) ) assert np.isnan(filtered_records['b'].map_field('some_field1').min()) assert filtered_records['b'].count() == 0. # c record_arrays_close( filtered_records['c'].values, np.array([(8, 0, 2, 10., 21.)], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['c'].map_field('some_field1').id_arr, np.array([8]) ) assert filtered_records['c'].map_field('some_field1').min() == 10. assert filtered_records['c'].count() == 1. # d record_arrays_close( filtered_records['d'].values, np.array([], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['d'].map_field('some_field1').id_arr, np.array([]) ) assert np.isnan(filtered_records['d'].map_field('some_field1').min()) assert filtered_records['d'].count() == 0. def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count' ], dtype='object') pd.testing.assert_series_equal( records.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( records.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( records.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6 ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( records['c'].stats(), records.stats(column='c') ) pd.testing.assert_series_equal( records['c'].stats(), records.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( records_grouped['g2'].stats(), records_grouped.stats(column='g2') ) pd.testing.assert_series_equal( records_grouped['g2'].stats(), records.stats(column='g2', group_by=group_by) ) stats_df = records.stats(agg_func=None) assert stats_df.shape == (4, 4) pd.testing.assert_index_equal(stats_df.index, records.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# ranges.py ############# # ts = pd.DataFrame({ 'a': [1, -1, 3, -1, 5, -1], 'b': [-1, -1, -1, 4, 5, 6], 'c': [1, 2, 3, -1, -1, -1], 'd': [-1, -1, -1, -1, -1, -1] }, index=[ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5), datetime(2020, 1, 6) ]) ranges = vbt.Ranges.from_ts(ts, wrapper_kwargs=dict(freq='1 days')) ranges_grouped = vbt.Ranges.from_ts(ts, wrapper_kwargs=dict(freq='1 days', group_by=group_by)) class TestRanges: def test_mapped_fields(self): for name in range_dt.names: np.testing.assert_array_equal( getattr(ranges, name).values, ranges.values[name] ) def test_from_ts(self): record_arrays_close( ranges.values, np.array([ (0, 0, 0, 1, 1), (1, 0, 2, 3, 1), (2, 0, 4, 5, 1), (3, 1, 3, 5, 0), (4, 2, 0, 3, 1) ], dtype=range_dt) ) assert ranges.wrapper.freq == day_dt pd.testing.assert_index_equal( ranges_grouped.wrapper.grouper.group_by, group_by ) def test_records_readable(self): records_readable = ranges.records_readable np.testing.assert_array_equal( records_readable['Range Id'].values, np.array([ 0, 1, 2, 3, 4 ]) ) np.testing.assert_array_equal( records_readable['Column'].values, np.array([ 'a', 'a', 'a', 'b', 'c' ]) ) np.testing.assert_array_equal( records_readable['Start Timestamp'].values, np.array([ '2020-01-01T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-01T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['End Timestamp'].values, np.array([ '2020-01-02T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-04T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Status'].values, np.array([ 'Closed', 'Closed', 'Closed', 'Open', 'Closed' ]) ) def test_to_mask(self): pd.testing.assert_series_equal( ranges['a'].to_mask(), ts['a'] != -1 ) pd.testing.assert_frame_equal( ranges.to_mask(), ts != -1 ) pd.testing.assert_frame_equal( ranges_grouped.to_mask(), pd.DataFrame( [ [True, True], [False, True], [True, True], [True, False], [True, False], [True, False] ], index=ts.index, columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_duration(self): np.testing.assert_array_equal( ranges['a'].duration.values, np.array([1, 1, 1]) ) np.testing.assert_array_equal( ranges.duration.values, np.array([1, 1, 1, 3, 3]) ) def test_avg_duration(self): assert ranges['a'].avg_duration() == pd.Timedelta('1 days 00:00:00') pd.testing.assert_series_equal( ranges.avg_duration(), pd.Series( np.array([86400000000000, 259200000000000, 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('avg_duration') ) pd.testing.assert_series_equal( ranges_grouped.avg_duration(), pd.Series( np.array([129600000000000, 259200000000000], dtype='timedelta64[ns]'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('avg_duration') ) def test_max_duration(self): assert ranges['a'].max_duration() == pd.Timedelta('1 days 00:00:00') pd.testing.assert_series_equal( ranges.max_duration(), pd.Series( np.array([86400000000000, 259200000000000, 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('max_duration') ) pd.testing.assert_series_equal( ranges_grouped.max_duration(), pd.Series( np.array([259200000000000, 259200000000000], dtype='timedelta64[ns]'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('max_duration') ) def test_coverage(self): assert ranges['a'].coverage() == 0.5 pd.testing.assert_series_equal( ranges.coverage(), pd.Series( np.array([0.5, 0.5, 0.5, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges.coverage(), ranges.replace(records_arr=np.repeat(ranges.values, 2)).coverage() ) pd.testing.assert_series_equal( ranges.replace(records_arr=np.repeat(ranges.values, 2)).coverage(overlapping=True), pd.Series( np.array([1.0, 1.0, 1.0, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges.coverage(normalize=False), pd.Series( np.array([3.0, 3.0, 3.0, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges.replace(records_arr=np.repeat(ranges.values, 2)).coverage(overlapping=True, normalize=False), pd.Series( np.array([3.0, 3.0, 3.0, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges_grouped.coverage(), pd.Series( np.array([0.4166666666666667, 0.25]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('coverage') ) pd.testing.assert_series_equal( ranges_grouped.coverage(), ranges_grouped.replace(records_arr=np.repeat(ranges_grouped.values, 2)).coverage() ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Coverage', 'Overlap Coverage', 'Total Records', 'Duration: Min', 'Duration: Median', 'Duration: Max', 'Duration: Mean', 'Duration: Std' ], dtype='object') pd.testing.assert_series_equal( ranges.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), 1.25, pd.Timedelta('2 days 08:00:00'), pd.Timedelta('2 days 08:00:00'), pd.Timedelta('2 days 08:00:00'), pd.Timedelta('2 days 08:00:00'), pd.Timedelta('0 days 00:00:00') ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( ranges.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), 3, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00') ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( ranges.stats(column='g1', group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), pd.Timedelta('5 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 4, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('1 days 12:00:00'), pd.Timedelta('1 days 00:00:00') ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( ranges['c'].stats(), ranges.stats(column='c') ) pd.testing.assert_series_equal( ranges['c'].stats(), ranges.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( ranges_grouped['g2'].stats(), ranges_grouped.stats(column='g2') ) pd.testing.assert_series_equal( ranges_grouped['g2'].stats(), ranges.stats(column='g2', group_by=group_by) ) stats_df = ranges.stats(agg_func=None) assert stats_df.shape == (4, 11) pd.testing.assert_index_equal(stats_df.index, ranges.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# drawdowns.py ############# # ts2 = pd.DataFrame({ 'a': [2, 1, 3, 1, 4, 1], 'b': [1, 2, 1, 3, 1, 4], 'c': [1, 2, 3, 2, 1, 2], 'd': [1, 2, 3, 4, 5, 6] }, index=[ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5), datetime(2020, 1, 6) ]) drawdowns = vbt.Drawdowns.from_ts(ts2, wrapper_kwargs=dict(freq='1 days')) drawdowns_grouped = vbt.Drawdowns.from_ts(ts2, wrapper_kwargs=dict(freq='1 days', group_by=group_by)) class TestDrawdowns: def test_mapped_fields(self): for name in drawdown_dt.names: np.testing.assert_array_equal( getattr(drawdowns, name).values, drawdowns.values[name] ) def test_ts(self): pd.testing.assert_frame_equal( drawdowns.ts, ts2 ) pd.testing.assert_series_equal( drawdowns['a'].ts, ts2['a'] ) pd.testing.assert_frame_equal( drawdowns_grouped['g1'].ts, ts2[['a', 'b']] ) assert drawdowns.replace(ts=None)['a'].ts is None def test_from_ts(self): record_arrays_close( drawdowns.values, np.array([ (0, 0, 0, 1, 1, 2, 2.0, 1.0, 3.0, 1), (1, 0, 2, 3, 3, 4, 3.0, 1.0, 4.0, 1), (2, 0, 4, 5, 5, 5, 4.0, 1.0, 1.0, 0), (3, 1, 1, 2, 2, 3, 2.0, 1.0, 3.0, 1), (4, 1, 3, 4, 4, 5, 3.0, 1.0, 4.0, 1), (5, 2, 2, 3, 4, 5, 3.0, 1.0, 2.0, 0) ], dtype=drawdown_dt) ) assert drawdowns.wrapper.freq == day_dt pd.testing.assert_index_equal( drawdowns_grouped.wrapper.grouper.group_by, group_by ) def test_records_readable(self): records_readable = drawdowns.records_readable np.testing.assert_array_equal( records_readable['Drawdown Id'].values, np.array([ 0, 1, 2, 3, 4, 5 ]) ) np.testing.assert_array_equal( records_readable['Column'].values, np.array([ 'a', 'a', 'a', 'b', 'b', 'c' ]) ) np.testing.assert_array_equal( records_readable['Peak Timestamp'].values, np.array([ '2020-01-01T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-03T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Start Timestamp'].values, np.array([ '2020-01-02T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-04T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Valley Timestamp'].values, np.array([ '2020-01-02T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-05T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['End Timestamp'].values, np.array([ '2020-01-03T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-06T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Peak Value'].values, np.array([ 2., 3., 4., 2., 3., 3. ]) ) np.testing.assert_array_equal( records_readable['Valley Value'].values, np.array([ 1., 1., 1., 1., 1., 1. ]) ) np.testing.assert_array_equal( records_readable['End Value'].values, np.array([ 3., 4., 1., 3., 4., 2. ]) ) np.testing.assert_array_equal( records_readable['Status'].values, np.array([ 'Recovered', 'Recovered', 'Active', 'Recovered', 'Recovered', 'Active' ]) ) def test_drawdown(self): np.testing.assert_array_almost_equal( drawdowns['a'].drawdown.values, np.array([-0.5, -0.66666667, -0.75]) ) np.testing.assert_array_almost_equal( drawdowns.drawdown.values, np.array([-0.5, -0.66666667, -0.75, -0.5, -0.66666667, -0.66666667]) ) pd.testing.assert_frame_equal( drawdowns.drawdown.to_pd(), pd.DataFrame( np.array([ [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [-0.5, np.nan, np.nan, np.nan], [np.nan, -0.5, np.nan, np.nan], [-0.66666669, np.nan, np.nan, np.nan], [-0.75, -0.66666669, -0.66666669, np.nan] ]), index=ts2.index, columns=ts2.columns ) ) def test_avg_drawdown(self): assert drawdowns['a'].avg_drawdown() == -0.6388888888888888 pd.testing.assert_series_equal( drawdowns.avg_drawdown(), pd.Series( np.array([-0.63888889, -0.58333333, -0.66666667, np.nan]), index=wrapper.columns ).rename('avg_drawdown') ) pd.testing.assert_series_equal( drawdowns_grouped.avg_drawdown(), pd.Series( np.array([-0.6166666666666666, -0.6666666666666666]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('avg_drawdown') ) def test_max_drawdown(self): assert drawdowns['a'].max_drawdown() == -0.75 pd.testing.assert_series_equal( drawdowns.max_drawdown(), pd.Series( np.array([-0.75, -0.66666667, -0.66666667, np.nan]), index=wrapper.columns ).rename('max_drawdown') ) pd.testing.assert_series_equal( drawdowns_grouped.max_drawdown(), pd.Series( np.array([-0.75, -0.6666666666666666]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('max_drawdown') ) def test_recovery_return(self): np.testing.assert_array_almost_equal( drawdowns['a'].recovery_return.values, np.array([2., 3., 0.]) ) np.testing.assert_array_almost_equal( drawdowns.recovery_return.values, np.array([2., 3., 0., 2., 3., 1.]) ) pd.testing.assert_frame_equal( drawdowns.recovery_return.to_pd(), pd.DataFrame( np.array([ [np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan], [2.0, np.nan, np.nan, np.nan], [np.nan, 2.0, np.nan, np.nan], [3.0, np.nan, np.nan, np.nan], [0.0, 3.0, 1.0, np.nan] ]), index=ts2.index, columns=ts2.columns ) ) def test_avg_recovery_return(self): assert drawdowns['a'].avg_recovery_return() == 1.6666666666666667 pd.testing.assert_series_equal( drawdowns.avg_recovery_return(), pd.Series( np.array([1.6666666666666667, 2.5, 1.0, np.nan]), index=wrapper.columns ).rename('avg_recovery_return') ) pd.testing.assert_series_equal( drawdowns_grouped.avg_recovery_return(), pd.Series( np.array([2.0, 1.0]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('avg_recovery_return') ) def test_max_recovery_return(self): assert drawdowns['a'].max_recovery_return() == 3.0 pd.testing.assert_series_equal( drawdowns.max_recovery_return(), pd.Series( np.array([3.0, 3.0, 1.0, np.nan]), index=wrapper.columns ).rename('max_recovery_return') ) pd.testing.assert_series_equal( drawdowns_grouped.max_recovery_return(), pd.Series( np.array([3.0, 1.0]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('max_recovery_return') ) def test_duration(self): np.testing.assert_array_almost_equal( drawdowns['a'].duration.values, np.array([1, 1, 1]) ) np.testing.assert_array_almost_equal( drawdowns.duration.values, np.array([1, 1, 1, 1, 1, 3]) ) def test_avg_duration(self): assert drawdowns['a'].avg_duration() == pd.Timedelta('1 days 00:00:00') pd.testing.assert_series_equal( drawdowns.avg_duration(), pd.Series( np.array([86400000000000, 86400000000000, 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('avg_duration') ) pd.testing.assert_series_equal( drawdowns_grouped.avg_duration(), pd.Series( np.array([86400000000000, 259200000000000], dtype='timedelta64[ns]'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('avg_duration') ) def test_max_duration(self): assert drawdowns['a'].max_duration() == pd.Timedelta('1 days 00:00:00') pd.testing.assert_series_equal( drawdowns.max_duration(), pd.Series( np.array([86400000000000, 86400000000000, 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('max_duration') ) pd.testing.assert_series_equal( drawdowns_grouped.max_duration(), pd.Series( np.array([86400000000000, 259200000000000], dtype='timedelta64[ns]'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('max_duration') ) def test_coverage(self): assert drawdowns['a'].coverage() == 0.5 pd.testing.assert_series_equal( drawdowns.coverage(), pd.Series( np.array([0.5, 0.3333333333333333, 0.5, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( drawdowns_grouped.coverage(), pd.Series( np.array([0.4166666666666667, 0.25]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('coverage') ) def test_decline_duration(self): np.testing.assert_array_almost_equal( drawdowns['a'].decline_duration.values, np.array([1., 1., 1.]) ) np.testing.assert_array_almost_equal( drawdowns.decline_duration.values, np.array([1., 1., 1., 1., 1., 2.]) ) def test_recovery_duration(self): np.testing.assert_array_almost_equal( drawdowns['a'].recovery_duration.values, np.array([1, 1, 0]) ) np.testing.assert_array_almost_equal( drawdowns.recovery_duration.values, np.array([1, 1, 0, 1, 1, 1]) ) def test_recovery_duration_ratio(self): np.testing.assert_array_almost_equal( drawdowns['a'].recovery_duration_ratio.values, np.array([1., 1., 0.]) ) np.testing.assert_array_almost_equal( drawdowns.recovery_duration_ratio.values, np.array([1., 1., 0., 1., 1., 0.5]) ) def test_active_records(self): assert isinstance(drawdowns.active, vbt.Drawdowns) assert drawdowns.active.wrapper == drawdowns.wrapper record_arrays_close( drawdowns['a'].active.values, np.array([ (2, 0, 4, 5, 5, 5, 4., 1., 1., 0) ], dtype=drawdown_dt) ) record_arrays_close( drawdowns['a'].active.values, drawdowns.active['a'].values ) record_arrays_close( drawdowns.active.values, np.array([ (2, 0, 4, 5, 5, 5, 4.0, 1.0, 1.0, 0), (5, 2, 2, 3, 4, 5, 3.0, 1.0, 2.0, 0) ], dtype=drawdown_dt) ) def test_recovered_records(self): assert isinstance(drawdowns.recovered, vbt.Drawdowns) assert drawdowns.recovered.wrapper == drawdowns.wrapper record_arrays_close( drawdowns['a'].recovered.values, np.array([ (0, 0, 0, 1, 1, 2, 2.0, 1.0, 3.0, 1), (1, 0, 2, 3, 3, 4, 3.0, 1.0, 4.0, 1) ], dtype=drawdown_dt) ) record_arrays_close( drawdowns['a'].recovered.values, drawdowns.recovered['a'].values ) record_arrays_close( drawdowns.recovered.values, np.array([ (0, 0, 0, 1, 1, 2, 2.0, 1.0, 3.0, 1), (1, 0, 2, 3, 3, 4, 3.0, 1.0, 4.0, 1), (3, 1, 1, 2, 2, 3, 2.0, 1.0, 3.0, 1), (4, 1, 3, 4, 4, 5, 3.0, 1.0, 4.0, 1) ], dtype=drawdown_dt) ) def test_active_drawdown(self): assert drawdowns['a'].active_drawdown() == -0.75 pd.testing.assert_series_equal( drawdowns.active_drawdown(), pd.Series( np.array([-0.75, np.nan, -0.3333333333333333, np.nan]), index=wrapper.columns ).rename('active_drawdown') ) with pytest.raises(Exception): drawdowns_grouped.active_drawdown() def test_active_duration(self): assert drawdowns['a'].active_duration() == np.timedelta64(86400000000000) pd.testing.assert_series_equal( drawdowns.active_duration(), pd.Series( np.array([86400000000000, 'NaT', 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('active_duration') ) with pytest.raises(Exception): drawdowns_grouped.active_duration() def test_active_recovery(self): assert drawdowns['a'].active_recovery() == 0. pd.testing.assert_series_equal( drawdowns.active_recovery(), pd.Series( np.array([0., np.nan, 0.5, np.nan]), index=wrapper.columns ).rename('active_recovery') ) with pytest.raises(Exception): drawdowns_grouped.active_recovery() def test_active_recovery_return(self): assert drawdowns['a'].active_recovery_return() == 0. pd.testing.assert_series_equal( drawdowns.active_recovery_return(), pd.Series( np.array([0., np.nan, 1., np.nan]), index=wrapper.columns ).rename('active_recovery_return') ) with pytest.raises(Exception): drawdowns_grouped.active_recovery_return() def test_active_recovery_duration(self): assert drawdowns['a'].active_recovery_duration() == pd.Timedelta('0 days 00:00:00') pd.testing.assert_series_equal( drawdowns.active_recovery_duration(), pd.Series( np.array([0, 'NaT', 86400000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('active_recovery_duration') ) with pytest.raises(Exception): drawdowns_grouped.active_recovery_duration() def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Coverage [%]', 'Total Records', 'Total Recovered Drawdowns', 'Total Active Drawdowns', 'Active Drawdown [%]', 'Active Duration', 'Active Recovery [%]', 'Active Recovery Return [%]', 'Active Recovery Duration', 'Max Drawdown [%]', 'Avg Drawdown [%]', 'Max Drawdown Duration', 'Avg Drawdown Duration', 'Max Recovery Return [%]', 'Avg Recovery Return [%]', 'Max Recovery Duration', 'Avg Recovery Duration', 'Avg Recovery Duration Ratio' ], dtype='object') pd.testing.assert_series_equal( drawdowns.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), 44.444444444444436, 1.5, 1.0, 0.5, 54.166666666666664, pd.Timedelta('2 days 00:00:00'), 25.0, 50.0, pd.Timedelta('0 days 12:00:00'), 66.66666666666666, 58.33333333333333, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 300.0, 250.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 1.0 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( drawdowns.stats(settings=dict(incl_active=True)), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), 44.444444444444436, 1.5, 1.0, 0.5, 54.166666666666664, pd.Timedelta('2 days 00:00:00'), 25.0, 50.0, pd.Timedelta('0 days 12:00:00'), 69.44444444444444, 62.962962962962955, pd.Timedelta('1 days 16:00:00'), pd.Timedelta('1 days 16:00:00'), 300.0, 250.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 1.0 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( drawdowns.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), 50.0, 3, 2, 1, 75.0, pd.Timedelta('1 days 00:00:00'), 0.0, 0.0, pd.Timedelta('0 days 00:00:00'), 66.66666666666666, 58.33333333333333, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 300.0, 250.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 1.0 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( drawdowns.stats(column='g1', group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-06 00:00:00'), pd.Timedelta('6 days 00:00:00'), 41.66666666666667, 5, 4, 1, 66.66666666666666, 58.33333333333333, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 300.0, 250.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), 1.0 ], index=pd.Index([ 'Start', 'End', 'Period', 'Coverage [%]', 'Total Records', 'Total Recovered Drawdowns', 'Total Active Drawdowns', 'Max Drawdown [%]', 'Avg Drawdown [%]', 'Max Drawdown Duration', 'Avg Drawdown Duration', 'Max Recovery Return [%]', 'Avg Recovery Return [%]', 'Max Recovery Duration', 'Avg Recovery Duration', 'Avg Recovery Duration Ratio' ], dtype='object'), name='g1' ) ) pd.testing.assert_series_equal( drawdowns['c'].stats(), drawdowns.stats(column='c') ) pd.testing.assert_series_equal( drawdowns['c'].stats(), drawdowns.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( drawdowns_grouped['g2'].stats(), drawdowns_grouped.stats(column='g2') ) pd.testing.assert_series_equal( drawdowns_grouped['g2'].stats(), drawdowns.stats(column='g2', group_by=group_by) ) stats_df = drawdowns.stats(agg_func=None) assert stats_df.shape == (4, 21) pd.testing.assert_index_equal(stats_df.index, drawdowns.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# orders.py ############# # close = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=[ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5), datetime(2020, 1, 6), datetime(2020, 1, 7), datetime(2020, 1, 8) ]).vbt.tile(4, keys=['a', 'b', 'c', 'd']) size = np.full(close.shape, np.nan, dtype=np.float_) size[:, 0] = [1, 0.1, -1, -0.1, np.nan, 1, -1, 2] size[:, 1] = [-1, -0.1, 1, 0.1, np.nan, -1, 1, -2] size[:, 2] = [1, 0.1, -1, -0.1, np.nan, 1, -2, 2] orders = vbt.Portfolio.from_orders(close, size, fees=0.01, freq='1 days').orders orders_grouped = orders.regroup(group_by) class TestOrders: def test_mapped_fields(self): for name in order_dt.names: np.testing.assert_array_equal( getattr(orders, name).values, orders.values[name] ) def test_close(self): pd.testing.assert_frame_equal( orders.close, close ) pd.testing.assert_series_equal( orders['a'].close, close['a'] ) pd.testing.assert_frame_equal( orders_grouped['g1'].close, close[['a', 'b']] ) assert orders.replace(close=None)['a'].close is None def test_records_readable(self): records_readable = orders.records_readable np.testing.assert_array_equal( records_readable['Order Id'].values, np.array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]) ) np.testing.assert_array_equal( records_readable['Timestamp'].values, np.array([ '2020-01-01T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-02T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Column'].values, np.array([ 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'b', 'b', 'b', 'c', 'c', 'c', 'c', 'c', 'c', 'c' ]) ) np.testing.assert_array_equal( records_readable['Size'].values, np.array([ 1.0, 0.1, 1.0, 0.1, 1.0, 1.0, 2.0, 1.0, 0.1, 1.0, 0.1, 1.0, 1.0, 2.0, 1.0, 0.1, 1.0, 0.1, 1.0, 2.0, 2.0 ]) ) np.testing.assert_array_equal( records_readable['Price'].values, np.array([ 1.0, 2.0, 3.0, 4.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0, 6.0, 7.0, 8.0 ]) ) np.testing.assert_array_equal( records_readable['Fees'].values, np.array([ 0.01, 0.002, 0.03, 0.004, 0.06, 0.07, 0.16, 0.01, 0.002, 0.03, 0.004, 0.06, 0.07, 0.16, 0.01, 0.002, 0.03, 0.004, 0.06, 0.14, 0.16 ]) ) np.testing.assert_array_equal( records_readable['Side'].values, np.array([ 'Buy', 'Buy', 'Sell', 'Sell', 'Buy', 'Sell', 'Buy', 'Sell', 'Sell', 'Buy', 'Buy', 'Sell', 'Buy', 'Sell', 'Buy', 'Buy', 'Sell', 'Sell', 'Buy', 'Sell', 'Buy' ]) ) def test_buy_records(self): assert isinstance(orders.buy, vbt.Orders) assert orders.buy.wrapper == orders.wrapper record_arrays_close( orders['a'].buy.values, np.array([ (0, 0, 0, 1., 1., 0.01, 0), (1, 0, 1, 0.1, 2., 0.002, 0), (4, 0, 5, 1., 6., 0.06, 0), (6, 0, 7, 2., 8., 0.16, 0) ], dtype=order_dt) ) record_arrays_close( orders['a'].buy.values, orders.buy['a'].values ) record_arrays_close( orders.buy.values, np.array([ (0, 0, 0, 1., 1., 0.01, 0), (1, 0, 1, 0.1, 2., 0.002, 0), (4, 0, 5, 1., 6., 0.06, 0), (6, 0, 7, 2., 8., 0.16, 0), (9, 1, 2, 1., 3., 0.03, 0), (10, 1, 3, 0.1, 4., 0.004, 0), (12, 1, 6, 1., 7., 0.07, 0), (14, 2, 0, 1., 1., 0.01, 0), (15, 2, 1, 0.1, 2., 0.002, 0), (18, 2, 5, 1., 6., 0.06, 0), (20, 2, 7, 2., 8., 0.16, 0) ], dtype=order_dt) ) def test_sell_records(self): assert isinstance(orders.sell, vbt.Orders) assert orders.sell.wrapper == orders.wrapper record_arrays_close( orders['a'].sell.values, np.array([ (2, 0, 2, 1., 3., 0.03, 1), (3, 0, 3, 0.1, 4., 0.004, 1), (5, 0, 6, 1., 7., 0.07, 1) ], dtype=order_dt) ) record_arrays_close( orders['a'].sell.values, orders.sell['a'].values ) record_arrays_close( orders.sell.values, np.array([ (2, 0, 2, 1., 3., 0.03, 1), (3, 0, 3, 0.1, 4., 0.004, 1), (5, 0, 6, 1., 7., 0.07, 1), (7, 1, 0, 1., 1., 0.01, 1), (8, 1, 1, 0.1, 2., 0.002, 1), (11, 1, 5, 1., 6., 0.06, 1), (13, 1, 7, 2., 8., 0.16, 1), (16, 2, 2, 1., 3., 0.03, 1), (17, 2, 3, 0.1, 4., 0.004, 1), (19, 2, 6, 2., 7., 0.14, 1) ], dtype=order_dt) ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Total Records', 'Total Buy Orders', 'Total Sell Orders', 'Min Size', 'Max Size', 'Avg Size', 'Avg Buy Size', 'Avg Sell Size', 'Avg Buy Price', 'Avg Sell Price', 'Total Fees', 'Min Fees', 'Max Fees', 'Avg Fees', 'Avg Buy Fees', 'Avg Sell Fees' ], dtype='object') pd.testing.assert_series_equal( orders.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), 5.25, 2.75, 2.5, 0.10000000000000002, 2.0, 0.9333333333333335, 0.9166666666666666, 0.9194444444444446, 4.388888888888889, 4.527777777777779, 0.26949999999999996, 0.002, 0.16, 0.051333333333333335, 0.050222222222222224, 0.050222222222222224 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( orders.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), 7, 4, 3, 0.1, 2.0, 0.8857142857142858, 1.025, 0.7000000000000001, 4.25, 4.666666666666667, 0.33599999999999997, 0.002, 0.16, 0.047999999999999994, 0.057999999999999996, 0.03466666666666667 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( orders.stats(column='g1', group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), 14, 7, 7, 0.1, 2.0, 0.8857142857142858, 0.8857142857142856, 0.8857142857142858, 4.428571428571429, 4.428571428571429, 0.672, 0.002, 0.16, 0.048, 0.048, 0.047999999999999994 ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( orders['c'].stats(), orders.stats(column='c') ) pd.testing.assert_series_equal( orders['c'].stats(), orders.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( orders_grouped['g2'].stats(), orders_grouped.stats(column='g2') ) pd.testing.assert_series_equal( orders_grouped['g2'].stats(), orders.stats(column='g2', group_by=group_by) ) stats_df = orders.stats(agg_func=None) assert stats_df.shape == (4, 19) pd.testing.assert_index_equal(stats_df.index, orders.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# trades.py ############# # exit_trades = vbt.ExitTrades.from_orders(orders) exit_trades_grouped = vbt.ExitTrades.from_orders(orders_grouped) class TestExitTrades: def test_mapped_fields(self): for name in trade_dt.names: if name == 'return': np.testing.assert_array_equal( getattr(exit_trades, 'returns').values, exit_trades.values[name] ) else: np.testing.assert_array_equal( getattr(exit_trades, name).values, exit_trades.values[name] ) def test_close(self): pd.testing.assert_frame_equal( exit_trades.close, close ) pd.testing.assert_series_equal( exit_trades['a'].close, close['a'] ) pd.testing.assert_frame_equal( exit_trades_grouped['g1'].close, close[['a', 'b']] ) assert exit_trades.replace(close=None)['a'].close is None def test_records_arr(self): record_arrays_close( exit_trades.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1), (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2), (4, 1, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, -1.95, -1.7875, 1, 1, 3), (5, 1, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, -0.296, -2.71333333, 1, 1, 3), (6, 1, 1., 5, 6., 0.06, 6, 7., 0.07, -1.13, -0.18833333, 1, 1, 4), (7, 1, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 1, 0, 5), (8, 2, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 6), (9, 2, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 6), (10, 2, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 7), (11, 2, 1., 6, 7., 0.07, 7, 8., 0.08, -1.15, -0.16428571, 1, 1, 8), (12, 2, 1., 7, 8., 0.08, 7, 8., 0., -0.08, -0.01, 0, 0, 9) ], dtype=trade_dt) ) reversed_col_orders = orders.replace(records_arr=np.concatenate(( orders.values[orders.values['col'] == 2], orders.values[orders.values['col'] == 1], orders.values[orders.values['col'] == 0] ))) record_arrays_close( vbt.ExitTrades.from_orders(reversed_col_orders).values, exit_trades.values ) def test_records_readable(self): records_readable = exit_trades.records_readable np.testing.assert_array_equal( records_readable['Exit Trade Id'].values, np.array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ]) ) np.testing.assert_array_equal( records_readable['Column'].values, np.array([ 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b', 'c', 'c', 'c', 'c', 'c' ]) ) np.testing.assert_array_equal( records_readable['Size'].values, np.array([ 1.0, 0.10000000000000009, 1.0, 2.0, 1.0, 0.10000000000000009, 1.0, 2.0, 1.0, 0.10000000000000009, 1.0, 1.0, 1.0 ]) ) np.testing.assert_array_equal( records_readable['Entry Timestamp'].values, np.array([ '2020-01-01T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-01T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Avg Entry Price'].values, np.array([ 1.0909090909090908, 1.0909090909090908, 6.0, 8.0, 1.0909090909090908, 1.0909090909090908, 6.0, 8.0, 1.0909090909090908, 1.0909090909090908, 6.0, 7.0, 8.0 ]) ) np.testing.assert_array_equal( records_readable['Entry Fees'].values, np.array([ 0.010909090909090908, 0.0010909090909090918, 0.06, 0.16, 0.010909090909090908, 0.0010909090909090918, 0.06, 0.16, 0.010909090909090908, 0.0010909090909090918, 0.06, 0.07, 0.08 ]) ) np.testing.assert_array_equal( records_readable['Exit Timestamp'].values, np.array([ '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-07T00:00:00.000000000', '2020-01-08T00:00:00.000000000', '2020-01-08T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Avg Exit Price'].values, np.array([ 3.0, 4.0, 7.0, 8.0, 3.0, 4.0, 7.0, 8.0, 3.0, 4.0, 7.0, 8.0, 8.0 ]) ) np.testing.assert_array_equal( records_readable['Exit Fees'].values, np.array([ 0.03, 0.004, 0.07, 0.0, 0.03, 0.004, 0.07, 0.0, 0.03, 0.004, 0.07, 0.08, 0.0 ]) ) np.testing.assert_array_equal( records_readable['PnL'].values, np.array([ 1.8681818181818182, 0.2858181818181821, 0.8699999999999999, -0.16, -1.9500000000000002, -0.29600000000000026, -1.1300000000000001, -0.16, 1.8681818181818182, 0.2858181818181821, 0.8699999999999999, -1.1500000000000001, -0.08 ]) ) np.testing.assert_array_equal( records_readable['Return'].values, np.array([ 1.7125000000000001, 2.62, 0.145, -0.01, -1.7875000000000003, -2.7133333333333334, -0.18833333333333335, -0.01, 1.7125000000000001, 2.62, 0.145, -0.1642857142857143, -0.01 ]) ) np.testing.assert_array_equal( records_readable['Direction'].values, np.array([ 'Long', 'Long', 'Long', 'Long', 'Short', 'Short', 'Short', 'Short', 'Long', 'Long', 'Long', 'Short', 'Long' ]) ) np.testing.assert_array_equal( records_readable['Status'].values, np.array([ 'Closed', 'Closed', 'Closed', 'Open', 'Closed', 'Closed', 'Closed', 'Open', 'Closed', 'Closed', 'Closed', 'Closed', 'Open' ]) ) np.testing.assert_array_equal( records_readable['Position Id'].values, np.array([ 0, 0, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9 ]) ) def test_duration(self): np.testing.assert_array_almost_equal( exit_trades['a'].duration.values, np.array([2, 3, 1, 1]) ) np.testing.assert_array_almost_equal( exit_trades.duration.values, np.array([2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1]) ) def test_winning_records(self): assert isinstance(exit_trades.winning, vbt.ExitTrades) assert exit_trades.winning.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].winning.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1) ], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].winning.values, exit_trades.winning['a'].values ) record_arrays_close( exit_trades.winning.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1), (8, 2, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 6), (9, 2, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 6), (10, 2, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 7) ], dtype=trade_dt) ) def test_losing_records(self): assert isinstance(exit_trades.losing, vbt.ExitTrades) assert exit_trades.losing.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].losing.values, np.array([ (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2) ], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].losing.values, exit_trades.losing['a'].values ) record_arrays_close( exit_trades.losing.values, np.array([ (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2), (4, 1, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, -1.95, -1.7875, 1, 1, 3), (5, 1, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, -0.296, -2.71333333, 1, 1, 3), (6, 1, 1., 5, 6., 0.06, 6, 7., 0.07, -1.13, -0.18833333, 1, 1, 4), (7, 1, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 1, 0, 5), (11, 2, 1., 6, 7., 0.07, 7, 8., 0.08, -1.15, -0.16428571, 1, 1, 8), (12, 2, 1., 7, 8., 0.08, 7, 8., 0., -0.08, -0.01, 0, 0, 9) ], dtype=trade_dt) ) def test_win_rate(self): assert exit_trades['a'].win_rate() == 0.75 pd.testing.assert_series_equal( exit_trades.win_rate(), pd.Series( np.array([0.75, 0., 0.6, np.nan]), index=close.columns ).rename('win_rate') ) pd.testing.assert_series_equal( exit_trades_grouped.win_rate(), pd.Series( np.array([0.375, 0.6]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('win_rate') ) def test_winning_streak(self): np.testing.assert_array_almost_equal( exit_trades['a'].winning_streak.values, np.array([1, 2, 3, 0]) ) np.testing.assert_array_almost_equal( exit_trades.winning_streak.values, np.array([1, 2, 3, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0]) ) def test_losing_streak(self): np.testing.assert_array_almost_equal( exit_trades['a'].losing_streak.values, np.array([0, 0, 0, 1]) ) np.testing.assert_array_almost_equal( exit_trades.losing_streak.values, np.array([0, 0, 0, 1, 1, 2, 3, 4, 0, 0, 0, 1, 2]) ) def test_profit_factor(self): assert exit_trades['a'].profit_factor() == 18.9 pd.testing.assert_series_equal( exit_trades.profit_factor(), pd.Series( np.array([18.9, 0., 2.45853659, np.nan]), index=ts2.columns ).rename('profit_factor') ) pd.testing.assert_series_equal( exit_trades_grouped.profit_factor(), pd.Series( np.array([0.81818182, 2.45853659]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('profit_factor') ) def test_expectancy(self): assert exit_trades['a'].expectancy() == 0.716 pd.testing.assert_series_equal( exit_trades.expectancy(), pd.Series( np.array([0.716, -0.884, 0.3588, np.nan]), index=ts2.columns ).rename('expectancy') ) pd.testing.assert_series_equal( exit_trades_grouped.expectancy(), pd.Series( np.array([-0.084, 0.3588]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('expectancy') ) def test_sqn(self): assert exit_trades['a'].sqn() == 1.634155521947584 pd.testing.assert_series_equal( exit_trades.sqn(), pd.Series( np.array([1.63415552, -2.13007307, 0.71660403, np.nan]), index=ts2.columns ).rename('sqn') ) pd.testing.assert_series_equal( exit_trades_grouped.sqn(), pd.Series( np.array([-0.20404671, 0.71660403]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('sqn') ) def test_long_records(self): assert isinstance(exit_trades.long, vbt.ExitTrades) assert exit_trades.long.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].long.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1), (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2) ], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].long.values, exit_trades.long['a'].values ) record_arrays_close( exit_trades.long.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1), (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2), (8, 2, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 6), (9, 2, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 6), (10, 2, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 7), (12, 2, 1., 7, 8., 0.08, 7, 8., 0., -0.08, -0.01, 0, 0, 9) ], dtype=trade_dt) ) def test_short_records(self): assert isinstance(exit_trades.short, vbt.ExitTrades) assert exit_trades.short.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].short.values, np.array([], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].short.values, exit_trades.short['a'].values ) record_arrays_close( exit_trades.short.values, np.array([ (4, 1, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, -1.95, -1.7875, 1, 1, 3), (5, 1, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, -0.296, -2.71333333, 1, 1, 3), (6, 1, 1., 5, 6., 0.06, 6, 7., 0.07, -1.13, -0.18833333, 1, 1, 4), (7, 1, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 1, 0, 5), (11, 2, 1., 6, 7., 0.07, 7, 8., 0.08, -1.15, -0.16428571, 1, 1, 8) ], dtype=trade_dt) ) def test_open_records(self): assert isinstance(exit_trades.open, vbt.ExitTrades) assert exit_trades.open.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].open.values, np.array([ (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2) ], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].open.values, exit_trades.open['a'].values ) record_arrays_close( exit_trades.open.values, np.array([ (3, 0, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 0, 0, 2), (7, 1, 2., 7, 8., 0.16, 7, 8., 0., -0.16, -0.01, 1, 0, 5), (12, 2, 1., 7, 8., 0.08, 7, 8., 0., -0.08, -0.01, 0, 0, 9) ], dtype=trade_dt) ) def test_closed_records(self): assert isinstance(exit_trades.closed, vbt.ExitTrades) assert exit_trades.closed.wrapper == exit_trades.wrapper record_arrays_close( exit_trades['a'].closed.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1) ], dtype=trade_dt) ) record_arrays_close( exit_trades['a'].closed.values, exit_trades.closed['a'].values ) record_arrays_close( exit_trades.closed.values, np.array([ (0, 0, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 0), (1, 0, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 0), (2, 0, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 1), (4, 1, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, -1.95, -1.7875, 1, 1, 3), (5, 1, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, -0.296, -2.71333333, 1, 1, 3), (6, 1, 1., 5, 6., 0.06, 6, 7., 0.07, -1.13, -0.18833333, 1, 1, 4), (8, 2, 1., 0, 1.09090909, 0.01090909, 2, 3., 0.03, 1.86818182, 1.7125, 0, 1, 6), (9, 2, 0.1, 0, 1.09090909, 0.00109091, 3, 4., 0.004, 0.28581818, 2.62, 0, 1, 6), (10, 2, 1., 5, 6., 0.06, 6, 7., 0.07, 0.87, 0.145, 0, 1, 7), (11, 2, 1., 6, 7., 0.07, 7, 8., 0.08, -1.15, -0.16428571, 1, 1, 8) ], dtype=trade_dt) ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'First Trade Start', 'Last Trade End', 'Coverage', 'Overlap Coverage', 'Total Records', 'Total Long Trades', 'Total Short Trades', 'Total Closed Trades', 'Total Open Trades', 'Open Trade PnL', 'Win Rate [%]', 'Max Win Streak', 'Max Loss Streak', 'Best Trade [%]', 'Worst Trade [%]', 'Avg Winning Trade [%]', 'Avg Losing Trade [%]', 'Avg Winning Trade Duration', 'Avg Losing Trade Duration', 'Profit Factor', 'Expectancy', 'SQN' ], dtype='object') pd.testing.assert_series_equal( exit_trades.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-08 00:00:00'), pd.Timedelta('8 days 00:00:00'), pd.Timestamp('2020-01-01 00:00:00'),
pd.Timestamp('2020-01-08 00:00:00')
pandas.Timestamp
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from datetime import datetime, timedelta import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.ticker as tck import matplotlib.font_manager as fm import math as m import matplotlib.dates as mdates import netCDF4 as nc from netCDF4 import Dataset id import itertools import datetime from scipy.stats import ks_2samp import matplotlib.colors as colors import matplotlib.cm as cm import os Path_save = '/home/nacorreasa/Maestria/Datos_Tesis/Arrays/' Horizonte = 'Anio' ##-->'Anio' para los datos del 2018 y 2019y 'EXP' para los datos a partir del experimento. #------------------------------------------------------------------------------ # Motivación codigo ----------------------------------------------------------- 'Código para la derteminacion de la frecuencia y a demas de la dimension fractal (con el fin de revelar relaciones' 'entre ambos conceptos). En la entrada anteriore se define el horizonte de tiempo con el cual se quiere trabajar.' 'Además se obtiene el scatter q relaciona las reflectancias con las anomalías de la radiación.' #----------------------------------------------------------------------------- # Rutas para las fuentes ----------------------------------------------------- prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ########################################################################################## ## ----------------LECTURA DE LOS DATOS DE LAS ANOMALIAS DE LA RADIACION--------------- ## ########################################################################################## Anomal_df_975 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/df_AnomalRad_pix975_2018_2019.csv', sep=',') Anomal_df_348 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/df_AnomalRad_pix348_2018_2019.csv', sep=',') Anomal_df_350 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Arrays/df_AnomalRad_pix350_2018_2019.csv', sep=',') Anomal_df_975['fecha_hora'] = pd.to_datetime(Anomal_df_975['fecha_hora'], format="%Y-%m-%d %H:%M", errors='coerce') Anomal_df_975.index = Anomal_df_975['fecha_hora'] Anomal_df_975 = Anomal_df_975.drop(['fecha_hora'], axis=1) Anomal_df_975 = Anomal_df_975.between_time('06:00', '18:00') ##--> Seleccionar solo los datos de horas del dia Anomal_df_975_h = Anomal_df_975.groupby(
pd.Grouper(freq="H")
pandas.Grouper
import os import sys import warnings if not sys.warnoptions: warnings.simplefilter("ignore") with warnings.catch_warnings(): warnings.simplefilter("ignore") import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.neural_network import MLPRegressor from sklearn.impute import SimpleImputer from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler from sklearn.metrics import mean_squared_log_error from sklearn.model_selection import GridSearchCV, cross_val_score print(os.listdir("data")) train_data = pd.read_csv('data/train.csv') test_data = pd.read_csv('data/test.csv') def get_cat_cols(df): return [col for col in df.columns if df[col].dtype == 'object'] y = np.log1p(train_data.SalePrice) cand_train_predictors = train_data.drop(['Id', 'SalePrice'], axis=1) cand_test_predictors = test_data.drop(['Id'], axis=1) cat_cols = get_cat_cols(cand_train_predictors) cand_train_predictors[cat_cols] = cand_train_predictors[cat_cols].fillna('NotAvailable') cand_test_predictors[cat_cols] = cand_test_predictors[cat_cols].fillna('NotAvailable') encoders = {} for col in cat_cols: encoders[col] = LabelEncoder() val = cand_train_predictors[col].tolist() val.extend(cand_test_predictors[col].tolist()) encoders[col].fit(val) cand_train_predictors[col] = encoders[col].transform(cand_train_predictors[col]) + 1 cand_test_predictors[col] = encoders[col].transform(cand_test_predictors[col]) + 1 corr_matrix = cand_train_predictors.corr().abs() upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool)) cols_to_drop = [column for column in upper.columns if any(upper[column] > 0.8)] print('correlated features(will be droped):', cols_to_drop) cand_train_predictors = cand_train_predictors.drop(cols_to_drop, axis=1) cand_test_predictors = cand_test_predictors.drop(cols_to_drop, axis=1) print(cand_train_predictors.shape) print(cand_test_predictors.shape) train_set, test_set = cand_train_predictors.align(cand_test_predictors, join='left', axis=1) train_set = np.log1p(train_set) test_set = np.log1p(test_set) from sklearn.feature_selection import SelectFromModel from sklearn.linear_model import LassoCV from sklearn.model_selection import KFold params = {} train_set.fillna('NaN', inplace=True) score_results = [] kfold = KFold(n_splits=10, random_state=1) imputer = SimpleImputer() # scaler = RobustScaler(with_scaling=True, with_centering=True, quantile_range=(20., 80.)) scaler = RobustScaler() select = SelectFromModel(LassoCV(cv=kfold, random_state=1), threshold='median') regressor = MLPRegressor(early_stopping=True, activation='identity', max_iter=10000) my_model = make_pipeline(imputer, scaler, select, regressor) scores = np.sqrt( -1 * cross_val_score(my_model, train_set, y, scoring='neg_mean_squared_log_error', verbose=0, n_jobs=2, cv=kfold)) mean_score = scores.mean() print(mean_score) print(scores.std()) regressor = MLPRegressor(early_stopping=True, activation='identity', max_iter=10000) my_model = make_pipeline(imputer, scaler, select, regressor) my_model.fit(train_set, y) print(my_model.score(train_set, y)) # sgd # 0.010535126813418304 # 0.0014979832026646835 # 0.8753998274053919 # adam # 0.01042968407581037 # 0.0015518828940809886 # 0.8953275894476386 # rmsle: 0.009936016739047336 # rmse: 30724.85212172329 # mae: 16180.395157871164 # [120197.07675005 158456.00818102 180513.20130843 194200.42489418 # 180857.53842551] train_pred = my_model.predict(train_set) print('rmsle: ', np.sqrt(mean_squared_log_error(y, train_pred))) print('rmse: ', np.sqrt(mean_squared_error(train_data.SalePrice, np.expm1(train_pred)))) print('mae: ', mean_absolute_error(train_data.SalePrice, np.expm1(train_pred))) test_set.fillna('NaN', inplace=True) predicted_prices = np.expm1(my_model.predict(test_set)) print(predicted_prices[:5]) my_submission =
pd.DataFrame({'Id': test_data.Id, 'SalePrice': predicted_prices})
pandas.DataFrame
import os import json import pandas as pd statements = [] evidences = [] adjective_frequencies = {'sub': {}, 'obj': {}} _adjective_frequencies = {'sub': {}, 'obj': {}} adjective_names = {'sub': {}, 'obj': {}} _adjective_names = {'sub': {}, 'obj': {}} adjective_pairs = {} _adjective_pairs = {} with open('../../data/causemos_indra_statements/CauseMos_indra_statements.json', 'r') as f: lines = f.readlines() for idx, line in enumerate(lines, 1): statement = json.loads(line) #print(json.dumps(statement, indent=4, sort_keys=True)) belief = statement["_source"]["belief"] evidence = statement["_source"]["evidence"] for evid_idx, evid in enumerate(evidence, 1): text = evid["evidence_context"]["text"] _adjectives = [] for key in ["subj_adjectives", "obj_adjectives"]: _adj = evid["evidence_context"][key] _adj = _adj if _adj else [] _adjectives.append(_adj) _polarities = [] for key in ["subj_polarity", "obj_polarity"]: _pol = evid["evidence_context"][key] _pol = _pol if _pol else 0 _polarities.append(_pol) evidences.append({ 'Statement #': idx, 'Evidence #': evid_idx, '_Sub Adj': ', '.join(_adjectives[0]), '_Obj Adj': ', '.join(_adjectives[1]), '_Sub Pol': _polarities[0], '_Obj Pol': _polarities[1], '# _Sub Adj': len(_adjectives[0]), '# _Obj Adj': len(_adjectives[1]), 'Text': text }) for idx2, key in enumerate(['sub', 'obj']): if len(_adjectives[idx2]) in _adjective_frequencies[key].keys(): _adjective_frequencies[key][len(_adjectives[idx2])] += 1 else: _adjective_frequencies[key][len(_adjectives[idx2])] = 1 _adjectives[0] = ['None'] if len(_adjectives[0]) == 0 else _adjectives[0] _adjectives[1] = ['None'] if len(_adjectives[1]) == 0 else _adjectives[1] for adj in _adjectives[0]: if adj in _adjective_names['sub'].keys(): _adjective_names['sub'][adj] += 1 else: _adjective_names['sub'][adj] = 1 for adj in _adjectives[1]: if adj in _adjective_names['obj'].keys(): _adjective_names['obj'][adj] += 1 else: _adjective_names['obj'][adj] = 1 for sub in _adjectives[0]: for obj in _adjectives[1]: adj_pair = (sub, obj) if adj_pair in _adjective_pairs.keys(): _adjective_pairs[adj_pair] += 1 else: _adjective_pairs[adj_pair] = 1 # print(len(evidence)) # print(json.dumps(statement, indent=4, sort_keys=True)) # exit() # # continue text = evidence[0]["evidence_context"]["text"] _adjectives = [] for key in ["subj_adjectives", "obj_adjectives"]: _adj = evidence[0]["evidence_context"][key] _adj = _adj if _adj else [] _adjectives.append(_adj) _polarities = [] for key in ["subj_polarity", "obj_polarity"]: _pol = evidence[0]["evidence_context"][key] _pol = _pol if _pol else 0 _polarities.append(_pol) concepts = [] for key in ["subj", "obj"]: con = statement["_source"][key]["concept"] concepts.append(con) adjectives = [] for key in ["subj", "obj"]: adj = statement["_source"][key]["adjectives"] adjectives.append(adj) polarities = [] for key in ["subj", "obj"]: pol = statement["_source"][key]["polarity"] polarities.append(pol) statements.append({ 'Statement #': idx, 'Belief': belief, 'Subject': concepts[0], 'Object': concepts[1], 'Sub Adj': ', '.join(adjectives[0]), 'Obj Adj': ', '.join(adjectives[1]), 'Sub Pol': polarities[0], 'Obj Pol': polarities[1], '_Sub Adj': ', '.join(_adjectives[0]), '_Obj Adj': ', '.join(_adjectives[1]), '_Sub Pol': _polarities[0], '_Obj Pol': _polarities[1], '# Sub Adj': len(adjectives[0]), '# Obj Adj': len(adjectives[1]), '# _Sub Adj': len(_adjectives[0]), '# _Obj Adj': len(_adjectives[1]), '# _Evidence': len(evidence), 'Text': text }) if len(adjectives[0]) > 1 or len(adjectives[1]) > 1: with open(f'../../data/causemos_indra_statements/multi_adjective/{idx}.json', 'w') as out: out.write(json.dumps(statement, indent=4, sort_keys=True)) for idx2, key in enumerate(['sub', 'obj']): if len(adjectives[idx2]) in adjective_frequencies[key].keys(): adjective_frequencies[key][len(adjectives[idx2])] += 1 else: adjective_frequencies[key][len(adjectives[idx2])] = 1 adjectives[0] = ['None'] if len(adjectives[0]) == 0 else adjectives[0] adjectives[1] = ['None'] if len(adjectives[1]) == 0 else adjectives[1] for adj in adjectives[0]: if adj in adjective_names['sub'].keys(): adjective_names['sub'][adj] += 1 else: adjective_names['sub'][adj] = 1 for adj in adjectives[1]: if adj in adjective_names['obj'].keys(): adjective_names['obj'][adj] += 1 else: adjective_names['obj'][adj] = 1 for sub in adjectives[0]: for obj in adjectives[1]: adj_pair = (sub, obj) if adj_pair in adjective_pairs.keys(): adjective_pairs[adj_pair] += 1 else: adjective_pairs[adj_pair] = 1 # print(belief) # print(text) # print(_adjectives) # print(_polarities) # print(adjectives) # print(_polarities) # print(concepts) df_statements = pd.DataFrame(statements) df_evidences = pd.DataFrame(evidences) df_statements.to_csv('../../data/causemos_indra_statements/statements.csv', index=False, columns=['Statement #', 'Sub Adj', '_Sub Adj', 'Sub Pol', '_Sub Pol', 'Subject', 'Obj Adj', '_Obj Adj', 'Obj Pol', '_Obj Pol', '# Sub Adj', '# _Sub Adj', '# Obj Adj', '# _Obj Adj', '# _Evidence', 'Text']) df_evidences.to_csv('../../data/causemos_indra_statements/evidence.csv', index=False, columns=['Statement #', 'Evidence #', '_Sub Adj', '_Sub Pol', '_Obj Adj', '_Obj Pol', '# _Sub Adj', '# _Obj Adj', 'Text']) # df_sub_adj_counts = df_statements.groupby(by='# Sub Adj').count() # df_obj_adj_counts = df_statements.groupby(by='# Obj Adj').count() # # _df_sub_adj_counts = df_statements.groupby(by='# _Sub Adj').count() # _df_obj_adj_counts = df_statements.groupby(by='# _Obj Adj').count() # # df_sub_adj_counts.to_csv('../../data/causemos_indra_statements/sub_adj_counts.csv', index=False) # df_obj_adj_counts.to_csv('../../data/causemos_indra_statements/obj_adj_counts.csv', index=False) # # _df_sub_adj_counts.to_csv('../../data/causemos_indra_statements/_sub_adj_counts.csv', index=False) # _df_obj_adj_counts.to_csv('../../data/causemos_indra_statements/_obj_adj_counts.csv', index=False) for idx2, key in enumerate(['sub', 'obj']): multiplicity = [] frequency = [] for mult, freq in adjective_frequencies[key].items(): multiplicity.append(mult) frequency.append(freq) df_freq = pd.DataFrame({'# Adjectives': multiplicity, 'frequency': frequency}) df_freq.to_csv(f'../../data/causemos_indra_statements/{key}_adj_counts.csv', index=False) multiplicity = [] frequency = [] for mult, freq in _adjective_frequencies[key].items(): multiplicity.append(mult) frequency.append(freq) df_freq = pd.DataFrame({'# Adjectives': multiplicity, 'frequency': frequency}) df_freq.to_csv(f'../../data/causemos_indra_statements/_{key}_adj_counts.csv', index=False) adjective = [] frequency = [] for adj, freq in adjective_names[key].items(): adjective.append(adj) frequency.append(freq) df_freq = pd.DataFrame({'Adjective': adjective, 'frequency': frequency}) df_freq.to_csv(f'../../data/causemos_indra_statements/{key}_adjectives.csv', index=False) adjective = [] frequency = [] for adj, freq in _adjective_names[key].items(): adjective.append(adj) frequency.append(freq) df_freq = pd.DataFrame({'Adjective': adjective, 'frequency': frequency}) df_freq.to_csv(f'../../data/causemos_indra_statements/_{key}_adjectives.csv', index=False) sub = [] obj = [] freq = [] for adj_pair, count in adjective_pairs.items(): sub.append(adj_pair[0]) obj.append(adj_pair[1]) freq.append(count) df_pair =
pd.DataFrame({'Subject': sub, 'Object': obj, 'frequency': freq})
pandas.DataFrame
# Author: <NAME> # Email: <EMAIL> # License: MIT License import numpy as np import pandas as pd import hiplot as hip import plotly.express as px import plotly.graph_objects as go import matplotlib.pyplot as plt import seaborn as sns color_scale = px.colors.sequential.Jet def plot_missing_values(df, _st_): import plotly.express as px color_scale = [ [0.0, "rgba(0, 255, 0, 0.25)"], [0.5, "rgba(0, 255, 0, 0.25)"], [0.5, "rgba(255, 0, 0, 0.75)"], [1, "rgba(255, 0, 0, 0.75)"], ] df_miss_o = df.isnull() fig = px.imshow( df_miss_o, color_continuous_scale=color_scale, ) fig.update(layout_coloraxis_showscale=False) _st_.plotly_chart(fig) def plot_duplicate_rows(df, _st_): color_scale = [ [0.0, "rgba(0, 0, 0, 0.25)"], [0.5, "rgba(0, 0, 0, 0.25)"], [0.5, "rgba(255, 255, 255, 0.75)"], [1, "rgba(255, 255, 255, 0.75)"], ] color_scale = [ [0.0, "rgba(255, 0, 0, 0.75)"], [0.5, "rgba(255, 0, 0, 0.75)"], [0.5, "rgba(0, 255, 0, 0.25)"], [1, "rgba(0, 255, 0, 0.25)"], ] dupl = df.duplicated() n_col = len(df.columns) df_dupl_o =
pd.DataFrame([[i] * n_col for i in dupl])
pandas.DataFrame
''' This module contains all functions relating to feature engineering ''' import pandas as pd import numpy as np from .structdata import get_cat_feats, get_num_feats, get_date_cols def drop_missing(data=None, percent=99): ''' Drops missing columns with [percent] of missing data. Parameters: ------------------------- data: Pandas DataFrame or Series. percent: float, Default 99 Percentage of missing values to be in a column before it is eligible for removal. Returns: Pandas DataFrame or Series. ''' if data is None: raise ValueError("data: Expecting a DataFrame/ numpy2d array, got 'None'") missing_percent = (data.isna().sum() / data.shape[0]) * 100 cols_2_drop = missing_percent[missing_percent.values > percent].index print("Dropped {}".format(list(cols_2_drop))) #Drop missing values data.drop(cols_2_drop, axis=1, inplace=True) def drop_redundant(data): ''' Removes features with the same value in all cell. Drops feature If Nan is the second unique class as well. Parameters: ----------------------------- data: DataFrame or named series. Returns: DataFrame or named series. ''' if data is None: raise ValueError("data: Expecting a DataFrame/ numpy2d array, got 'None'") #get columns cols_2_drop = _nan_in_class(data) print("Dropped {}".format(cols_2_drop)) data.drop(cols_2_drop, axis=1, inplace=True) def _nan_in_class(data): cols = [] for col in data.columns: if len(data[col].unique()) == 1: cols.append(col) if len(data[col].unique()) == 2: if np.nan in list(data[col].unique()): cols.append(col) return cols def fill_missing_cats(data=None, cat_features=None, missing_encoding=None): ''' Fill missing values using the mode of the categorical features. Parameters: ------------------------ data: DataFrame or name Series. Data set to perform operation on. cat_features: List, Series, Array. categorical features to perform operation on. If not provided, we automatically infer the categoricals from the dataset. missing_encoding: List, Series, Array. Values used in place of missing. Popular formats are [-1, -999, -99, '', ' '] ''' if data is None: raise ValueError("data: Expecting a DataFrame/ numpy2d array, got 'None'") if cat_features is None: cat_features = get_cat_feats(data) temp_data = data.copy() #change all possible missing values to NaN if missing_encoding is None: missing_encoding = ['', ' ', -99, -999] temp_data.replace(missing_encoding, np.NaN, inplace=True) for col in cat_features: most_freq = temp_data[col].mode()[0] temp_data[col] = temp_data[col].replace(np.NaN, most_freq) return temp_data def fill_missing_num(data=None, features=None, method='mean'): ''' fill missing values in numerical columns with specified [method] value Parameters: ------------------------------ data: DataFrame or name Series. The data set to fill features: list. List of columns to fill method: str, Default 'mean'. method to use in calculating fill value. ''' if data is None: raise ValueError("data: Expecting a DataFrame/ numpy2d array, got 'None'") if features is None: #get numerical features with missing values num_feats = get_num_feats(data) temp_data = data[num_feats].isna().sum() features = list(temp_data[num_feats][temp_data[num_feats] > 0].index) print("Found {} with missing values.".format(features)) for feat in features: if method is 'mean': mean = data[feat].mean() data[feat].fillna(mean, inplace=True) elif method is 'median': median = data[feat].median() data[feat].fillna(median, inplace=True) elif method is 'mode': mode = data[feat].mode()[0] data[feat].fillna(mode, inplace=True) return "Filled all missing values successfully" def merge_groupby(data=None, cat_features=None, statistics=None, col_to_merge=None): ''' Performs a groupby on the specified categorical features and merges the result to the original dataframe. Parameter: ----------------------- data: DataFrame Data set to perform operation on. cat_features: list, series, 1D-array categorical features to groupby. statistics: list, series, 1D-array, Default ['mean', 'count] aggregates to perform on grouped data. col_to_merge: str The column to merge on the dataset. Must be present in the data set. Returns: Dataframe. ''' if data is None: raise ValueError("data: Expecting a DataFrame/ numpy2d array, got 'None'") if statistics is None: statistics = ['mean', 'count'] if cat_features is None: cat_features = get_num_feats(data) if col_to_merge is None: raise ValueError("col_to_merge: Expecting a string [column to merge on], got 'None'") df = data.copy() for cat in cat_features: temp = df.groupby([cat]).agg(statistics)[col_to_merge] #rename columns temp = temp.rename(columns={'mean': cat + '_' + col_to_merge + '_mean', 'count': cat + '_' + col_to_merge + "_count"}) #merge the data sets df = df.merge(temp, how='left', on=cat) return df def get_qcut(data=None, col=None, q=None, duplicates='drop', return_type='float64'): ''' Cuts a series into bins using the pandas qcut function and returns the resulting bins as a series for merging. Parameter: ------------- data: DataFrame, named Series Data set to perform operation on. col: str column to cut/binnarize. q: integer or array of quantiles Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles. duplicates: Default 'drop', If bin edges are not unique drop non-uniques. return_type: dtype, Default (float64) Dtype of series to return. One of [float64, str, int64] Returns: -------- Series, 1D-Array ''' temp_df = pd.qcut(data[col], q=q, duplicates=duplicates).to_frame().astype('str') #retrieve only the qcut categories df = temp_df[col].str.split(',').apply(lambda x: x[0][1:]).astype(return_type) return df def create_balanced_data(data=None, target=None, categories=None, class_sizes=None, replacement=False ): ''' Creates a balanced data set from an imbalanced one. Used in a classification task. Parameter: ---------------------------- data: DataFrame, name series. The imbalanced dataset. target: str Name of the target column. categories: list Unique categories in the target column. If not set, we use infer the unique categories in the column. class_sizes: list Size of each specified class. Must be in order with categoriess parameter. replacement: bool, Default True. samples with or without replacement. ''' if data is None: raise ValueError("data: Expecting a DataFrame/ numpy2d array, got 'None'") if target is None: raise ValueError("target: Expecting a String got 'None'") if categories is None: categories = list(data[target].unique()) if class_sizes is None: #set size for each class to same value temp_val = int(data.shape[0] / len(data[target].unique())) class_sizes = [temp_val for _ in list(data[target].unique())] temp_data = data.copy() data_category = [] data_class_indx = [] #get data corrresponding to each of the categories for cat in categories: data_category.append(temp_data[temp_data[target] == cat]) #sample and get the index corresponding to each category for class_size, cat in zip(class_sizes, data_category): data_class_indx.append(cat.sample(class_size, replace=True).index) #concat data together new_data = pd.concat([temp_data.loc[indx] for indx in data_class_indx], ignore_index=True).sample(sum(class_sizes)).reset_index(drop=True) if not replacement: for indx in data_class_indx: temp_data.drop(indx, inplace=True) return new_data def to_date(data): ''' Automatically convert all date time columns to pandas Datetime format ''' date_cols = get_date_cols(data) for col in date_cols: data[col] = pd.to_datetime(data[col]) return data def haversine_distance(lat1, long1, lat2, long2): ''' Calculates the Haversine distance between two location with latitude and longitude. The haversine distance is the great-circle distance between two points on a sphere given their longitudes and latitudes. Parameter: --------------------------- lat1: scalar,float Start point latitude of the location. lat2: scalar,float End point latitude of the location. long1: scalar,float Start point longitude of the location. long2: scalar,float End point longitude of the location. Returns: Series: The Harversine distance between (lat1, lat2), (long1, long2) ''' lat1, long1, lat2, long2 = map(np.radians, (lat1, long1, lat2, long2)) AVG_EARTH_RADIUS = 6371 # in km lat = lat2 - lat1 lng = long2 - long1 distance = np.sin(lat * 0.5) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(lng * 0.5) ** 2 harvesine_distance = 2 * AVG_EARTH_RADIUS * np.arcsin(np.sqrt(distance)) harvesine_distance_df = pd.Series(harvesine_distance) return harvesine_distance_df def manhattan_distance(lat1, long1, lat2, long2): ''' Calculates the Manhattan distance between two points. It is the sum of horizontal and vertical distance between any two points given their latitudes and longitudes. Parameter: ------------------- lat1: scalar,float Start point latitude of the location. lat2: scalar,float End point latitude of the location. long1: scalar,float Start point longitude of the location. long2: scalar,float End point longitude of the location. Returns: Series The Manhattan distance between (lat1, lat2) and (long1, long2) ''' a = np.abs(lat2 -lat1) b = np.abs(long1 - long2) manhattan_distance = a + b manhattan_distance_df = pd.Series(manhattan_distance) return manhattan_distance_df def bearing(lat1, long1, lat2, long2): ''' Calculates the Bearing between two points. The bearing is the compass direction to travel from a starting point, and must be within the range 0 to 360. Parameter: ------------------------- lat1: scalar,float Start point latitude of the location. lat2: scalar,float End point latitude of the location. long1: scalar,float Start point longitude of the location. long2: scalar,float End point longitude of the location. Returns: Series The Bearing between (lat1, lat2) and (long1, long2) ''' AVG_EARTH_RADIUS = 6371 long_delta = np.radians(long2 - long1) lat1, long1, lat2, long2 = map(np.radians, (lat1, long1, lat2, long2)) y = np.sin(long_delta) * np.cos(lat2) x = np.cos(lat1) * np.sin(lat2) - np.sin(lat1) * np.cos(lat2) * np.cos(long_delta) bearing = np.degrees(np.arctan2(y, x)) bearing_df =
pd.Series(bearing)
pandas.Series
from datetime import timedelta from functools import partial from operator import attrgetter import dateutil import numpy as np import pytest import pytz from pandas._libs.tslibs import OutOfBoundsDatetime, conversion import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, date_range, datetime, offsets, to_datetime) from pandas.core.arrays import DatetimeArray, period_array import pandas.util.testing as tm class TestDatetimeIndex(object): @pytest.mark.parametrize('dt_cls', [DatetimeIndex, DatetimeArray._from_sequence]) def test_freq_validation_with_nat(self, dt_cls): # GH#11587 make sure we get a useful error message when generate_range # raises msg = ("Inferred frequency None from passed values does not conform " "to passed frequency D") with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01')], freq='D') with pytest.raises(ValueError, match=msg): dt_cls([pd.NaT, pd.Timestamp('2011-01-01').value], freq='D') def test_categorical_preserves_tz(self): # GH#18664 retain tz when going DTI-->Categorical-->DTI # TODO: parametrize over DatetimeIndex/DatetimeArray # once CategoricalIndex(DTA) works dti = pd.DatetimeIndex( [pd.NaT, '2015-01-01', '1999-04-06 15:14:13', '2015-01-01'], tz='US/Eastern') ci = pd.CategoricalIndex(dti) carr = pd.Categorical(dti) cser = pd.Series(ci) for obj in [ci, carr, cser]: result = pd.DatetimeIndex(obj) tm.assert_index_equal(result, dti) def test_dti_with_period_data_raises(self): # GH#23675 data = pd.PeriodIndex(['2016Q1', '2016Q2'], freq='Q') with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(data) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): DatetimeIndex(period_array(data)) with pytest.raises(TypeError, match="PeriodDtype data is invalid"): to_datetime(period_array(data)) def test_dti_with_timedelta64_data_deprecation(self): # GH#23675 data = np.array([0], dtype='m8[ns]') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(data) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning): result = DatetimeIndex(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = to_datetime(pd.TimedeltaIndex(data)) assert result[0] == Timestamp('1970-01-01') def test_construction_caching(self): df = pd.DataFrame({'dt': pd.date_range('20130101', periods=3), 'dttz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'dt_with_null': [pd.Timestamp('20130101'), pd.NaT, pd.Timestamp('20130103')], 'dtns': pd.date_range('20130101', periods=3, freq='ns')}) assert df.dttz.dtype.tz.zone == 'US/Eastern' @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} result = DatetimeIndex(i, **kwargs) tm.assert_index_equal(i, result) @pytest.mark.parametrize('kwargs', [ {'tz': 'dtype.tz'}, {'dtype': 'dtype'}, {'dtype': 'dtype', 'tz': 'dtype.tz'}]) def test_construction_with_alt_tz_localize(self, kwargs, tz_aware_fixture): tz = tz_aware_fixture i = pd.date_range('20130101', periods=5, freq='H', tz=tz) kwargs = {key: attrgetter(val)(i) for key, val in kwargs.items()} if str(tz) in ('UTC', 'tzutc()'): warn = None else: warn = FutureWarning with tm.assert_produces_warning(warn, check_stacklevel=False): result = DatetimeIndex(i.tz_localize(None).asi8, **kwargs) expected = DatetimeIndex(i, **kwargs) tm.assert_index_equal(result, expected) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') tm.assert_index_equal(i2, expected) # incompat tz/dtype pytest.raises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_construction_index_with_mixed_timezones(self): # gh-11488: no tz results in DatetimeIndex result = Index([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # Different tz results in Index(dtype=object) result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) # length = 1 result = Index([Timestamp('2011-01-01')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # length = 1 with tz result = Index( [Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz def test_construction_index_with_mixed_timezones_with_NaT(self): # see gh-11488 result = Index([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01'), pd.NaT, Timestamp('2011-01-02')], name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is None # Same tz results in DatetimeIndex result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00')], tz='Asia/Tokyo', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), pd.NaT, Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') tm.assert_index_equal(result, exp, exact=True) assert isinstance(result, DatetimeIndex) assert result.tz is not None assert result.tz == exp.tz # different tz results in Index(dtype=object) result = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT, Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') tm.assert_index_equal(result, exp, exact=True) assert not isinstance(result, DatetimeIndex) result = Index([pd.NaT, Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), pd.NaT, Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([pd.NaT,
Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')
pandas.Timestamp
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import unicode_literals, division import os import copy import unittest import csv import json import numpy as np import pandas as pd from multiprocessing import set_start_method from sklearn.exceptions import NotFittedError from pymatgen import Structure, Lattice, Molecule from pymatgen.util.testing import PymatgenTest from matminer.featurizers.composition import ElementProperty from matminer.featurizers.site import SiteElementalProperty from matminer.featurizers.structure import DensityFeatures, \ RadialDistributionFunction, PartialRadialDistributionFunction, \ ElectronicRadialDistributionFunction, \ MinimumRelativeDistances, SiteStatsFingerprint, CoulombMatrix, \ SineCoulombMatrix, OrbitalFieldMatrix, GlobalSymmetryFeatures, \ EwaldEnergy, BondFractions, BagofBonds, StructuralHeterogeneity, \ MaximumPackingEfficiency, ChemicalOrdering, StructureComposition, \ Dimensionality, XRDPowderPattern, CGCNNFeaturizer, JarvisCFID, \ GlobalInstabilityIndex, \ StructuralComplexity # For the CGCNNFeaturizer try: import torch import cgcnn except ImportError: torch, cgcnn = None, None test_dir = os.path.join(os.path.dirname(__file__)) class StructureFeaturesTest(PymatgenTest): def setUp(self): self.diamond = Structure( Lattice([[2.189, 0, 1.264], [0.73, 2.064, 1.264], [0, 0, 2.528]]), ["C0+", "C0+"], [[2.554, 1.806, 4.423], [0.365, 0.258, 0.632]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=True, site_properties=None) self.diamond_no_oxi = Structure( Lattice([[2.189, 0, 1.264], [0.73, 2.064, 1.264], [0, 0, 2.528]]), ["C", "C"], [[2.554, 1.806, 4.423], [0.365, 0.258, 0.632]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=True, site_properties=None) self.nacl = Structure( Lattice([[3.485, 0, 2.012], [1.162, 3.286, 2.012], [0, 0, 4.025]]), ["Na1+", "Cl1-"], [[0, 0, 0], [2.324, 1.643, 4.025]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=True, site_properties=None) self.cscl = Structure( Lattice([[4.209, 0, 0], [0, 4.209, 0], [0, 0, 4.209]]), ["Cl1-", "Cs1+"], [[2.105, 2.1045, 2.1045], [0, 0, 0]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=True, site_properties=None) self.ni3al = Structure( Lattice([[3.52, 0, 0], [0, 3.52, 0], [0, 0, 3.52]]), ["Al", ] + ["Ni"] * 3, [[0, 0, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=False, site_properties=None) self.sc = Structure(Lattice([[3.52, 0, 0], [0, 3.52, 0], [0, 0, 3.52]]), ["Al"], [[0, 0, 0]], validate_proximity=False, to_unit_cell=False, coords_are_cartesian=False) self.bond_angles = range(5, 180, 5) def test_density_features(self): df = DensityFeatures() f = df.featurize(self.diamond) self.assertAlmostEqual(f[0], 3.49, 2) self.assertAlmostEqual(f[1], 5.71, 2) self.assertAlmostEqual(f[2], 0.25, 2) f = df.featurize(self.nacl) self.assertAlmostEqual(f[0], 2.105, 2) self.assertAlmostEqual(f[1], 23.046, 2) self.assertAlmostEqual(f[2], 0.620, 2) nacl_disordered = copy.deepcopy(self.nacl) nacl_disordered.replace_species({"Cl1-": "Cl0.99H0.01"}) self.assertFalse(df.precheck(nacl_disordered)) structures = [self.diamond, self.nacl, nacl_disordered] df2 = pd.DataFrame({"structure": structures}) self.assertAlmostEqual(df.precheck_dataframe(df2, "structure"), 2 / 3) def test_global_symmetry(self): gsf = GlobalSymmetryFeatures() self.assertEqual(gsf.featurize(self.diamond), [227, "cubic", 1, True]) def test_dimensionality(self): cscl = PymatgenTest.get_structure("CsCl") df = Dimensionality(bonds={("Cs", "Cl"): 3.5}) self.assertEqual(df.featurize(cscl)[0], 1) df = Dimensionality(bonds={("Cs", "Cl"): 3.7}) self.assertEqual(df.featurize(cscl)[0], 3) def test_rdf_and_peaks(self): ## Test diamond rdforig = RadialDistributionFunction().featurize( self.diamond) rdf = rdforig[0] # Make sure it the last bin is cutoff-bin_max self.assertAlmostEqual(max(rdf['distances']), 19.9) # Verify bin sizes self.assertEqual(len(rdf['distribution']), 200) # Make sure it gets all of the peaks self.assertEqual(np.count_nonzero(rdf['distribution']), 116) # Check the values for a few individual peaks self.assertAlmostEqual( rdf['distribution'][int(round(1.5 / 0.1))], 15.12755155) self.assertAlmostEqual( rdf['distribution'][int(round(2.9 / 0.1))], 12.53193948) self.assertAlmostEqual( rdf['distribution'][int(round(19.9 / 0.1))], 0.822126129) # Repeat test with NaCl (omitting comments). Altering cutoff distance rdforig = RadialDistributionFunction(cutoff=10).featurize(self.nacl) rdf = rdforig[0] self.assertAlmostEqual(max(rdf['distances']), 9.9) self.assertEqual(len(rdf['distribution']), 100) self.assertEqual(np.count_nonzero(rdf['distribution']), 11) self.assertAlmostEqual( rdf['distribution'][int(round(2.8 / 0.1))], 27.09214168) self.assertAlmostEqual( rdf['distribution'][int(round(4.0 / 0.1))], 26.83338723) self.assertAlmostEqual( rdf['distribution'][int(round(9.8 / 0.1))], 3.024406467) # Repeat test with CsCl. Altering cutoff distance and bin_size rdforig = RadialDistributionFunction( cutoff=8, bin_size=0.5).featurize(self.cscl) rdf = rdforig[0] self.assertAlmostEqual(max(rdf['distances']), 7.5) self.assertEqual(len(rdf['distribution']), 16) self.assertEqual(np.count_nonzero(rdf['distribution']), 5) self.assertAlmostEqual( rdf['distribution'][int(round(3.5 / 0.5))], 6.741265585) self.assertAlmostEqual( rdf['distribution'][int(round(4.0 / 0.5))], 3.937582548) self.assertAlmostEqual( rdf['distribution'][int(round(7.0 / 0.5))], 1.805505363) def test_prdf(self): # Test a few peaks in diamond # These expected numbers were derived by performing # the calculation in another code distances, prdf = PartialRadialDistributionFunction().compute_prdf(self.diamond) self.assertEqual(len(prdf.values()), 1) self.assertAlmostEqual(prdf[('C', 'C')][int(round(1.4 / 0.1))], 0) self.assertAlmostEqual(prdf[('C', 'C')][int(round(1.5 / 0.1))], 1.32445167622) self.assertAlmostEqual(max(distances), 19.9) self.assertAlmostEqual(prdf[('C', 'C')][int(round(19.9 / 0.1))], 0.07197902) # Test a few peaks in CsCl, make sure it gets all types correctly distances, prdf = PartialRadialDistributionFunction(cutoff=10).compute_prdf(self.cscl) self.assertEqual(len(prdf.values()), 4) self.assertAlmostEqual(max(distances), 9.9) self.assertAlmostEqual(prdf[('Cs', 'Cl')][int(round(3.6 / 0.1))], 0.477823197) self.assertAlmostEqual(prdf[('Cl', 'Cs')][int(round(3.6 / 0.1))], 0.477823197) self.assertAlmostEqual(prdf[('Cs', 'Cs')][int(round(3.6 / 0.1))], 0) # Do Ni3Al, make sure it captures the antisymmetry of Ni/Al sites distances, prdf = PartialRadialDistributionFunction(cutoff=10, bin_size=0.5)\ .compute_prdf(self.ni3al) self.assertEqual(len(prdf.values()), 4) self.assertAlmostEqual(prdf[('Ni', 'Al')][int(round(2 / 0.5))], 0.125236677) self.assertAlmostEqual(prdf[('Al', 'Ni')][int(round(2 / 0.5))], 0.37571003) self.assertAlmostEqual(prdf[('Al', 'Al')][int(round(2 / 0.5))], 0) # Check the fit operation featurizer = PartialRadialDistributionFunction() featurizer.fit([self.diamond, self.cscl, self.ni3al]) self.assertEqual({'Cs', 'Cl', 'C', 'Ni', 'Al'}, set(featurizer.elements_)) featurizer.exclude_elems = ['Cs', 'Al'] featurizer.fit([self.diamond, self.cscl, self.ni3al]) self.assertEqual({'Cl', 'C', 'Ni'}, set(featurizer.elements_)) featurizer.include_elems = ['H'] featurizer.fit([self.diamond, self.cscl, self.ni3al]) self.assertEqual({'H', 'Cl', 'C', 'Ni'}, set(featurizer.elements_)) # Check the feature labels featurizer.exclude_elems = () featurizer.include_elems = () featurizer.elements_ = ['Al', 'Ni'] labels = featurizer.feature_labels() n_bins = len(featurizer._make_bins()) - 1 self.assertEqual(3 * n_bins, len(labels)) self.assertIn('Al-Ni PRDF r=0.00-0.10', labels) # Check the featurize method featurizer.elements_ = ['C'] features = featurizer.featurize(self.diamond) prdf = featurizer.compute_prdf(self.diamond)[1] self.assertArrayAlmostEqual(features, prdf[('C', 'C')]) # Check the featurize_dataframe df = pd.DataFrame.from_dict({"structure": [self.diamond, self.cscl]}) featurizer.fit(df["structure"]) df = featurizer.featurize_dataframe(df, col_id="structure") self.assertEqual(df["Cs-Cl PRDF r=0.00-0.10"][0], 0.0) self.assertAlmostEqual(df["Cl-Cl PRDF r=19.70-19.80"][1], 0.049, 3) self.assertEqual(df["Cl-Cl PRDF r=19.90-20.00"][0], 0.0) # Make sure labels and features are in the same order featurizer.elements_ = ['Al', 'Ni'] features = featurizer.featurize(self.ni3al) labels = featurizer.feature_labels() prdf = featurizer.compute_prdf(self.ni3al)[1] self.assertEqual((n_bins * 3,), features.shape) self.assertTrue(labels[0].startswith('Al-Al')) self.assertTrue(labels[n_bins].startswith('Al-Ni')) self.assertTrue(labels[2 * n_bins].startswith('Ni-Ni')) self.assertArrayAlmostEqual(features, np.hstack( [prdf[('Al', 'Al')], prdf[('Al', 'Ni')], prdf[('Ni', 'Ni')]])) def test_redf(self): d = ElectronicRadialDistributionFunction().featurize( self.diamond)[0] self.assertAlmostEqual(int(1000 * d["distances"][0]), 25) self.assertAlmostEqual(int(1000 * d["distribution"][0]), 0) self.assertAlmostEqual(int(1000 * d["distances"][len( d["distances"]) - 1]), 6175) self.assertAlmostEqual(int(1000 * d["distribution"][len( d["distances"]) - 1]), 0) d = ElectronicRadialDistributionFunction().featurize( self.nacl)[0] self.assertAlmostEqual(int(1000 * d["distances"][0]), 25) self.assertAlmostEqual(int(1000 * d["distribution"][0]), 0) self.assertAlmostEqual(int(1000 * d["distances"][56]), 2825) self.assertAlmostEqual(int(1000 * d["distribution"][56]), -2108) self.assertAlmostEqual(int(1000 * d["distances"][len( d["distances"]) - 1]), 9875) d = ElectronicRadialDistributionFunction().featurize( self.cscl)[0] self.assertAlmostEqual(int(1000 * d["distances"][0]), 25) self.assertAlmostEqual(int(1000 * d["distribution"][0]), 0) self.assertAlmostEqual(int(1000 * d["distances"][72]), 3625) self.assertAlmostEqual(int(1000 * d["distribution"][72]), -2194) self.assertAlmostEqual(int(1000 * d["distances"][len( d["distances"]) - 1]), 7275) def test_coulomb_matrix(self): # flat cm = CoulombMatrix(flatten=True) df = pd.DataFrame({"s": [self.diamond, self.nacl]}) with self.assertRaises(NotFittedError): df = cm.featurize_dataframe(df, "s") df = cm.fit_featurize_dataframe(df, "s") labels = cm.feature_labels() self.assertListEqual(labels, ["coulomb matrix eig 0", "coulomb matrix eig 1"]) self.assertArrayAlmostEqual(df[labels].iloc[0], [49.169453, 24.546758], decimal=5) self.assertArrayAlmostEqual(df[labels].iloc[1], [153.774731, 452.894322], decimal=5) # matrix species = ["C", "C", "H", "H"] coords = [[0, 0, 0], [0, 0, 1.203], [0, 0, -1.06], [0, 0, 2.263]] acetylene = Molecule(species, coords) morig = CoulombMatrix(flatten=False).featurize(acetylene) mtarget = [[36.858, 15.835391290, 2.995098235, 1.402827813], \ [15.835391290, 36.858, 1.4028278132103624, 2.9950982], \ [2.9368896127, 1.402827813, 0.5, 0.159279959], \ [1.4028278132, 2.995098235, 0.159279959, 0.5]] self.assertAlmostEqual( int(np.linalg.norm(morig - np.array(mtarget))), 0) m = CoulombMatrix(diag_elems=False, flatten=False).featurize(acetylene)[0] self.assertAlmostEqual(m[0][0], 0.0) self.assertAlmostEqual(m[1][1], 0.0) self.assertAlmostEqual(m[2][2], 0.0) self.assertAlmostEqual(m[3][3], 0.0) def test_sine_coulomb_matrix(self): # flat scm = SineCoulombMatrix(flatten=True) df = pd.DataFrame({"s": [self.sc, self.ni3al]}) with self.assertRaises(NotFittedError): df = scm.featurize_dataframe(df, "s") df = scm.fit_featurize_dataframe(df, "s") labels = scm.feature_labels() self.assertEqual(labels[0], "sine coulomb matrix eig 0") self.assertArrayAlmostEqual( df[labels].iloc[0], [235.740418, 0.0, 0.0, 0.0], decimal=5) self.assertArrayAlmostEqual( df[labels].iloc[1], [232.578562, 1656.288171, 1403.106576, 1403.106576], decimal=5) # matrix scm = SineCoulombMatrix(flatten=False) sin_mat = scm.featurize(self.diamond) mtarget = [[36.8581, 6.147068], [6.147068, 36.8581]] self.assertAlmostEqual( np.linalg.norm(sin_mat - np.array(mtarget)), 0.0, places=4) scm = SineCoulombMatrix(diag_elems=False, flatten=False) sin_mat = scm.featurize(self.diamond)[0] self.assertEqual(sin_mat[0][0], 0) self.assertEqual(sin_mat[1][1], 0) def test_orbital_field_matrix(self): ofm_maker = OrbitalFieldMatrix(flatten=False) ofm = ofm_maker.featurize(self.diamond)[0] mtarget = np.zeros((32, 32)) mtarget[1][1] = 1.4789015 # 1.3675444 mtarget[1][3] = 1.4789015 # 1.3675444 mtarget[3][1] = 1.4789015 # 1.3675444 mtarget[3][3] = 1.4789015 # 1.3675444 if for a coord# of exactly 4 for i in range(32): for j in range(32): if not i in [1, 3] and not j in [1, 3]: self.assertEqual(ofm[i, j], 0.0) mtarget = np.matrix(mtarget) self.assertAlmostEqual( np.linalg.norm(ofm - mtarget), 0.0, places=4) ofm_maker = OrbitalFieldMatrix(True, flatten=False) ofm = ofm_maker.featurize(self.diamond)[0] mtarget = np.zeros((39, 39)) mtarget[1][1] = 1.4789015 mtarget[1][3] = 1.4789015 mtarget[3][1] = 1.4789015 mtarget[3][3] = 1.4789015 mtarget[1][33] = 1.4789015 mtarget[3][33] = 1.4789015 mtarget[33][1] = 1.4789015 mtarget[33][3] = 1.4789015 mtarget[33][33] = 1.4789015 mtarget = np.matrix(mtarget) self.assertAlmostEqual( np.linalg.norm(ofm - mtarget), 0.0, places=4) ofm_flat = OrbitalFieldMatrix(period_tag=False, flatten=True) self.assertEqual(len(ofm_flat.feature_labels()), 1024) ofm_flat = OrbitalFieldMatrix(period_tag=True, flatten=True) self.assertEqual(len(ofm_flat.feature_labels()), 1521) ofm_vector = ofm_flat.featurize(self.diamond) for ix in [40, 42, 72, 118, 120, 150, 1288, 1320]: self.assertAlmostEqual(ofm_vector[ix], 1.4789015345821415) def test_min_relative_distances(self): self.assertAlmostEqual(MinimumRelativeDistances().featurize( self.diamond_no_oxi)[0][0], 1.1052576) self.assertAlmostEqual(MinimumRelativeDistances().featurize( self.nacl)[0][0], 0.8891443) self.assertAlmostEqual(MinimumRelativeDistances().featurize( self.cscl)[0][0], 0.9877540) def test_sitestatsfingerprint(self): # Test matrix. op_struct_fp = SiteStatsFingerprint.from_preset("OPSiteFingerprint", stats=None) opvals = op_struct_fp.featurize(self.diamond) oplabels = op_struct_fp.feature_labels() self.assertAlmostEqual(opvals[10][0], 0.9995, places=7) self.assertAlmostEqual(opvals[10][1], 0.9995, places=7) opvals = op_struct_fp.featurize(self.nacl) self.assertAlmostEqual(opvals[18][0], 0.9995, places=7) self.assertAlmostEqual(opvals[18][1], 0.9995, places=7) opvals = op_struct_fp.featurize(self.cscl) self.assertAlmostEqual(opvals[22][0], 0.9995, places=7) self.assertAlmostEqual(opvals[22][1], 0.9995, places=7) # Test stats. op_struct_fp = SiteStatsFingerprint.from_preset("OPSiteFingerprint") opvals = op_struct_fp.featurize(self.diamond) print(opvals, '**') self.assertAlmostEqual(opvals[0], 0.0005, places=7) self.assertAlmostEqual(opvals[1], 0, places=7) self.assertAlmostEqual(opvals[2], 0.0005, places=7) self.assertAlmostEqual(opvals[3], 0.0, places=7) self.assertAlmostEqual(opvals[4], 0.0005, places=7) self.assertAlmostEqual(opvals[18], 0.0805, places=7) self.assertAlmostEqual(opvals[20], 0.9995, places=7) self.assertAlmostEqual(opvals[21], 0, places=7) self.assertAlmostEqual(opvals[22], 0.0075, places=7) self.assertAlmostEqual(opvals[24], 0.2355, places=7) self.assertAlmostEqual(opvals[-1], 0.0, places=7) # Test coordination number cn_fp = SiteStatsFingerprint.from_preset("JmolNN", stats=("mean",)) cn_vals = cn_fp.featurize(self.diamond) self.assertEqual(cn_vals[0], 4.0) # Test the covariance prop_fp = SiteStatsFingerprint(SiteElementalProperty(properties=["Number", "AtomicWeight"]), stats=["mean"], covariance=True) # Test the feature labels labels = prop_fp.feature_labels() self.assertEqual(3, len(labels)) # Test a structure with all the same type (cov should be zero) features = prop_fp.featurize(self.diamond) self.assertArrayAlmostEqual(features, [6, 12.0107, 0]) # Test a structure with only one atom (cov should be zero too) features = prop_fp.featurize(self.sc) self.assertArrayAlmostEqual([13, 26.9815386, 0], features) # Test a structure with nonzero covariance features = prop_fp.featurize(self.nacl) self.assertArrayAlmostEqual([14, 29.22138464, 37.38969216], features) def test_ewald(self): # Add oxidation states to all of the structures for s in [self.nacl, self.cscl, self.diamond]: s.add_oxidation_state_by_guess() # Test basic ewald = EwaldEnergy(accuracy=2) self.assertArrayAlmostEqual(ewald.featurize(self.diamond), [0]) self.assertAlmostEqual(ewald.featurize(self.nacl)[0], -8.84173626, 2) self.assertLess(ewald.featurize(self.nacl), ewald.featurize(self.cscl)) # Atoms are closer in NaCl # Perform Ewald summation by "hand", # Using the result from GULP self.assertArrayAlmostEqual([-8.84173626], ewald.featurize(self.nacl), 2) def test_bondfractions(self): # Test individual structures with featurize bf_md = BondFractions.from_preset("MinimumDistanceNN") bf_md.no_oxi = True bf_md.fit([self.diamond_no_oxi]) self.assertArrayEqual(bf_md.featurize(self.diamond), [1.0]) self.assertArrayEqual(bf_md.featurize(self.diamond_no_oxi), [1.0]) bf_voronoi = BondFractions.from_preset("VoronoiNN") bf_voronoi.bbv = float("nan") bf_voronoi.fit([self.nacl]) bond_fracs = bf_voronoi.featurize(self.nacl) bond_names = bf_voronoi.feature_labels() ref = {'Na+ - Na+ bond frac.': 0.25, 'Cl- - Na+ bond frac.': 0.5, 'Cl- - Cl- bond frac.': 0.25} self.assertDictEqual(dict(zip(bond_names, bond_fracs)), ref) # Test to make sure dataframe behavior is as intended s_list = [self.diamond_no_oxi, self.ni3al] df = pd.DataFrame.from_dict({'s': s_list}) bf_voronoi.fit(df['s']) df = bf_voronoi.featurize_dataframe(df, 's') # Ensure all data is properly labelled and organized self.assertArrayEqual(df['C - C bond frac.'].as_matrix(), [1.0, np.nan]) self.assertArrayEqual(df['Al - Ni bond frac.'].as_matrix(), [np.nan, 0.5]) self.assertArrayEqual(df['Al - Al bond frac.'].as_matrix(), [np.nan, 0.0]) self.assertArrayEqual(df['Ni - Ni bond frac.'].as_matrix(), [np.nan, 0.5]) # Test to make sure bad_bond_values (bbv) are still changed correctly # and check inplace behavior of featurize dataframe. bf_voronoi.bbv = 0.0 df =
pd.DataFrame.from_dict({'s': s_list})
pandas.DataFrame.from_dict
"""Unit tests for the reading functionality in dframeio.parquet""" # pylint: disable=redefined-outer-name from pathlib import Path import pandas as pd import pandera as pa import pandera.typing import pytest from pandas.testing import assert_frame_equal import dframeio class SampleDataSchema(pa.SchemaModel): """pandera schema of the parquet test dataset""" registration_dttm: pa.typing.Series[pa.typing.DateTime] id: pa.typing.Series[pd.Int64Dtype] = pa.Field(nullable=True, coerce=True) first_name: pa.typing.Series[pa.typing.String] last_name: pa.typing.Series[pa.typing.String] email: pa.typing.Series[pa.typing.String] gender: pa.typing.Series[pa.typing.String] = pa.Field(coerce=True) ip_address: pa.typing.Series[pa.typing.String] cc: pa.typing.Series[pa.typing.String] country: pa.typing.Series[pa.typing.String] birthdate: pa.typing.Series[pa.typing.String] salary: pa.typing.Series[pa.typing.Float64] = pa.Field(nullable=True) title: pa.typing.Series[pa.typing.String] comments: pa.typing.Series[pa.typing.String] = pa.Field(nullable=True) @staticmethod def length(): """Known length of the data""" return 5000 @staticmethod def n_salary_over_150000(): """Number of rows with salary > 150000""" return 2384 @pytest.fixture(params=["multifile", "singlefile.parquet", "multifolder"]) def sample_data_path(request): """Path of a parquet dataset for testing""" return Path(__file__).parent / "data" / "parquet" / request.param def read_sample_dataframe(): """Read the sample dataframe to pandas and return a cached copy""" if not hasattr(read_sample_dataframe, "df"): parquet_file = Path(__file__).parent / "data" / "parquet" / "singlefile.parquet" backend = dframeio.ParquetBackend(str(parquet_file.parent)) read_sample_dataframe.df = backend.read_to_pandas(parquet_file.name) return read_sample_dataframe.df.copy() @pytest.fixture(scope="function") def sample_dataframe(): """Provide the sample dataframe""" return read_sample_dataframe() @pytest.fixture(scope="function") def sample_dataframe_dict(): """Provide the sample dataframe""" parquet_file = Path(__file__).parent / "data" / "parquet" / "singlefile.parquet" backend = dframeio.ParquetBackend(str(parquet_file.parent)) return backend.read_to_dict(parquet_file.name) @pytest.mark.parametrize( "kwargs, exception", [ ({"base_path": "/some/dir", "partitions": -1}, TypeError), ({"base_path": "/some/dir", "partitions": 2.2}, TypeError), ({"base_path": "/some/dir", "partitions": "abc"}, TypeError), ({"base_path": "/some/dir", "partitions": b"abc"}, TypeError), ({"base_path": "/some/dir", "rows_per_file": b"abc"}, TypeError), ({"base_path": "/some/dir", "rows_per_file": 1.1}, TypeError), ({"base_path": "/some/dir", "rows_per_file": -5}, ValueError), ], ) def test_init_argchecks(kwargs, exception): """Challenge the argument validation of the constructor""" with pytest.raises(exception): dframeio.ParquetBackend(**kwargs) def test_read_to_pandas(sample_data_path): """Read a sample dataset into a pandas dataframe""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name) SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_pandas_some_columns(sample_data_path): """Read a sample dataset into a pandas dataframe, selecting some columns""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, columns=["id", "first_name"]) SampleDataSchema.to_schema().select_columns(["id", "first_name"]).validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_pandas_some_rows(sample_data_path): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, row_filter="salary > 150000") SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.n_salary_over_150000() def test_read_to_pandas_sample(sample_data_path): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, sample=10) SampleDataSchema.to_schema().validate(df) assert len(df) == 10 @pytest.mark.parametrize("limit", [0, 10]) def test_read_to_pandas_limit(sample_data_path, limit): """Read a sample dataset into a pandas dataframe, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_pandas(sample_data_path.name, limit=limit) SampleDataSchema.to_schema().validate(df) assert len(df) == limit def test_read_to_pandas_base_path_check(sample_data_path): """Try if it isn't possible to read from outside the base path""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) with pytest.raises(ValueError): backend.read_to_pandas("/tmp") def test_read_to_dict(sample_data_path): """Read a sample dataset into a dictionary""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name) assert isinstance(df, dict) assert set(df.keys()) == SampleDataSchema.to_schema().columns.keys() df = pd.DataFrame(df) SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_dict_some_columns(sample_data_path): """Read a sample dataset into a dictionary, filtering some columns""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, columns=["id", "first_name"]) assert isinstance(df, dict) assert set(df.keys()) == {"id", "first_name"} df = pd.DataFrame(df) SampleDataSchema.to_schema().select_columns(["id", "first_name"]).validate(df) assert len(df) == SampleDataSchema.length() def test_read_to_dict_some_rows(sample_data_path): """Read a sample dataset into a dictionary, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, row_filter="salary > 150000") assert isinstance(df, dict) assert set(df.keys()) == SampleDataSchema.to_schema().columns.keys() df = pd.DataFrame(df) SampleDataSchema.to_schema().validate(df) assert len(df) == SampleDataSchema.n_salary_over_150000() def test_read_to_dict_limit(sample_data_path): """Read a sample dataset into a dictionary, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, columns=["id", "first_name"], limit=10) assert isinstance(df, dict) assert set(df.keys()) == {"id", "first_name"} df = pd.DataFrame(df) SampleDataSchema.to_schema().select_columns(["id", "first_name"]).validate(df) assert len(df) == 10 def test_read_to_dict_sample(sample_data_path): """Read a sample dataset into a dictionary, filtering some rows""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) df = backend.read_to_dict(sample_data_path.name, sample=10) assert isinstance(df, dict) assert set(df.keys()) == SampleDataSchema.to_schema().columns.keys() df = pd.DataFrame(df) SampleDataSchema.to_schema().validate(df) assert len(df) == 10 def test_read_to_dict_base_path_check(sample_data_path): """Try if it isn't possible to read from outside the base path""" backend = dframeio.ParquetBackend(str(sample_data_path.parent)) with pytest.raises(ValueError): backend.read_to_dict("/tmp") @pytest.mark.parametrize("old_content", [False, True]) def test_write_replace_df(sample_dataframe, tmp_path_factory, old_content): """Write the dataframe, read it again and check identity""" tempdir = tmp_path_factory.mktemp("test_write_replace_df") if old_content: (tempdir / "data.parquet").open("w").close() backend = dframeio.ParquetBackend(str(tempdir)) backend.write_replace("data.parquet", sample_dataframe) backend2 = dframeio.ParquetBackend(str(tempdir)) dataframe_after = backend2.read_to_pandas("data.parquet") assert_frame_equal(dataframe_after, sample_dataframe) @pytest.mark.parametrize("old_content", [False, True]) def test_write_replace_df_multifile(sample_dataframe, tmp_path_factory, old_content): """Write the dataframe, read it again and check identity""" tempdir = tmp_path_factory.mktemp("test_write_replace_df") if old_content: (tempdir / "data").mkdir() (tempdir / "data" / "old.parquet").open("w").close() backend = dframeio.ParquetBackend(str(tempdir), rows_per_file=1000) backend.write_replace("data", sample_dataframe) assert sum(1 for _ in (tempdir / "data").glob("*")) == 5, "There should be 5 files" if old_content: assert not (tempdir / "data" / "old.parquet").exists() backend2 = dframeio.ParquetBackend(str(tempdir)) dataframe_after = backend2.read_to_pandas("data") assert_frame_equal(dataframe_after, sample_dataframe) @pytest.mark.parametrize("old_content", [False, True]) def test_write_replace_df_partitioned(sample_dataframe, tmp_path_factory, old_content): """Write the dataframe, read it again and check identity""" tempdir = tmp_path_factory.mktemp("test_write_replace_df") if old_content: (tempdir / "data").mkdir() (tempdir / "data" / "old.parquet").open("w").close() backend = dframeio.ParquetBackend(str(tempdir), partitions=["gender"]) backend.write_replace("data", sample_dataframe) created_partitions = {f.name for f in (tempdir / "data").glob("*=*")} assert created_partitions == {"gender=", "gender=Female", "gender=Male"} if old_content: assert not (tempdir / "data" / "old.parquet").exists() backend2 = dframeio.ParquetBackend(str(tempdir)) dataframe_after = backend2.read_to_pandas("data") # It is o.k. to get the partition keys back as categoricals, because # that's more efficient. For comparison we make the column string again. dataframe_after = dataframe_after.assign(gender=dataframe_after["gender"].astype(str)) assert_frame_equal( dataframe_after, sample_dataframe, check_like=True, ) @pytest.mark.parametrize("partitions", [[5], ["foobar"]]) def test_write_replace_df_invalid_partitions(tmp_path_factory, partitions): """Write the dataframe, read it again and check identity""" tempdir = tmp_path_factory.mktemp("test_write_replace_df") backend = dframeio.ParquetBackend(str(tempdir), partitions=partitions) with pytest.raises(ValueError): backend.write_replace("data.parquet", pd.DataFrame()) @pytest.mark.parametrize("old_content", [False, True]) def test_write_replace_dict(sample_dataframe_dict, tmp_path_factory, old_content): """Write the dataframe, read it again and check identity""" tempdir = tmp_path_factory.mktemp("test_write_replace_df") if old_content: (tempdir / "data.parquet").open("w").close() backend = dframeio.ParquetBackend(str(tempdir)) backend.write_replace("data.parquet", sample_dataframe_dict) backend2 = dframeio.ParquetBackend(str(tempdir)) dataframe_after = backend2.read_to_dict("data.parquet") assert dataframe_after == sample_dataframe_dict @pytest.mark.parametrize("old_content", [False, True]) def test_write_replace_dict_multifile(sample_dataframe_dict, tmp_path_factory, old_content): """Write the dataframe, read it again and check identity""" tempdir = tmp_path_factory.mktemp("test_write_replace_df") if old_content: (tempdir / "data").mkdir() (tempdir / "data" / "old.parquet").open("w").close() backend = dframeio.ParquetBackend(str(tempdir), rows_per_file=1000) backend.write_replace("data", sample_dataframe_dict) assert sum(1 for _ in (tempdir / "data").glob("*")) == 5, "There should be 5 files" if old_content: assert not (tempdir / "data" / "old.parquet").exists() backend2 = dframeio.ParquetBackend(str(tempdir)) dataframe_after = backend2.read_to_dict("data") assert dataframe_after == sample_dataframe_dict @pytest.mark.parametrize("old_content", [False, True]) def test_write_replace_dict_partitioned(sample_dataframe_dict, tmp_path_factory, old_content): """Write the dataframe, read it again and check identity""" tempdir = tmp_path_factory.mktemp("test_write_replace_df") if old_content: (tempdir / "data").mkdir() (tempdir / "data" / "old.parquet").open("w").close() backend = dframeio.ParquetBackend(str(tempdir), partitions=["gender"]) backend.write_replace("data", sample_dataframe_dict) created_partitions = {f.name for f in (tempdir / "data").glob("*=*")} assert created_partitions == {"gender=", "gender=Female", "gender=Male"} if old_content: assert not (tempdir / "data" / "old.parquet").exists() backend2 = dframeio.ParquetBackend(str(tempdir)) dataframe_after = backend2.read_to_pandas("data") # It is o.k. to get the partition keys back as categoricals, because # that's more efficient. For comparison we make the column string again. dataframe_after = dataframe_after.assign(gender=dataframe_after["gender"].astype(str)) cols = list(dataframe_after.columns) assert_frame_equal( dataframe_after.sort_values(by=cols).reset_index(drop=True), pd.DataFrame(sample_dataframe_dict).sort_values(by=cols).reset_index(drop=True), check_like=True, ) @pytest.mark.parametrize("partitions", [[5], ["foobar"]]) def test_write_replace_dict_invalid_partitions(tmp_path_factory, partitions): """Write the dataframe, read it again and check identity""" tempdir = tmp_path_factory.mktemp("test_write_replace_df") backend = dframeio.ParquetBackend(str(tempdir), partitions=partitions) with pytest.raises(ValueError): backend.write_replace("data.parquet", {}) @pytest.fixture(params=["pandas", "dict"]) def first_chunk(request): """First n lines of the sample dataframe""" if request.param == "pandas": return read_sample_dataframe().iloc[:100] return read_sample_dataframe().iloc[:100].to_dict("list") @pytest.fixture(params=["pandas", "dict"]) def second_chunk(request): if request.param == "pandas": return read_sample_dataframe().iloc[100:] return read_sample_dataframe().iloc[100:].to_dict("list") def test_write_append_df(sample_dataframe, first_chunk, second_chunk, tmp_path_factory): """Write the dataframe in two pieces, read it again and check identity""" tempdir = tmp_path_factory.mktemp("test_write_append_df") # Write first chunk backend = dframeio.ParquetBackend(str(tempdir)) backend.write_append("data.parquet", first_chunk) # Write second chunk backend = dframeio.ParquetBackend(str(tempdir)) backend.write_append("data.parquet", second_chunk) # Read and compare results backend = dframeio.ParquetBackend(str(tempdir)) dataframe_after = backend.read_to_pandas("data.parquet")
assert_frame_equal(dataframe_after, sample_dataframe)
pandas.testing.assert_frame_equal
import pandas as pd import yfinance as yf import time table=pd.read_html('https://en.wikipedia.org/wiki/List_of_S%26P_500_companies') df = table[0] sp_ticks = df["Symbol"].to_list() sp_ticks_forYF = [tick.replace(".","-") for tick in sp_ticks] closes =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from pathlib import Path from genomic_benchmarks.loc2seq.with_biopython import CACHE_PATH, DATASET_DIR_PATH from genomic_benchmarks.loc2seq.with_biopython import _guess_location, _check_dataset_existence, _get_dataset_name # TODO: Many of these functions are not prepared for the case when the folder in DATASET_DIR_PATH is not one benchmark but a set of benchmarks. def info(interval_list_dataset, version=None): ''' Print info about the bechmark. Parameters: interval_list_dataset (str or Path): Either a path or a name of dataset included in this package. Returns: DataFrame with counts of seqeunces for each class in a training and testing sets. ''' interval_list_dataset = _guess_location(interval_list_dataset) metadata = _check_dataset_existence(interval_list_dataset, version) dataset_name = _get_dataset_name(interval_list_dataset) dfs = {} for c in metadata['classes']: dfs[c] = {} for t in ['train', 'test']: dt_filename = Path(interval_list_dataset) / t / (c + '.csv.gz') dfs[c][t] =
pd.read_csv(dt_filename, compression="gzip")
pandas.read_csv
import streamlit as st import numpy as np import pandas as pd import datetime import plotly.express as px HOST = "postgres_streams" PORT = "5432" USER = "postgres" #! DO NOT DO THIS IN A PRODUCTION ENVIRONMENT! PASSWORD = "<PASSWORD>" DB = "bahn" conn_string = f'postgresql://{USER}:{PASSWORD}@{HOST}:{PORT}/{DB}' from sqlalchemy import create_engine conn = create_engine(conn_string, echo = True).connect() query = """SELECT * FROM delays;""" result = pd.read_sql(query, con = conn) # * Data wrangling on results df result["n"] = result["n"].astype("int64") result["delay"] = result["delay"].fillna(0).astype(np.int64) result.drop(["stop_id", "timestamp", "ct"], axis = 1, inplace = True) result.set_index("pt", inplace = True, drop = False) result["minute"] = result.index.minute.fillna(0).astype(np.int16) result["hour"] = result.index.hour.fillna(0).astype(np.int16) result["day"] = result.index.day.fillna(0).astype(np.int16) result["weekday"] = result.index.day_name() result["month"] = result.index.month_name() result["year"] = result.index.strftime("%Y").astype(str) # * Define sidebars st.set_page_config(layout="wide") st.sidebar.header("Filter") # Datum today = datetime.date.today() date_from = st.sidebar.date_input("Start date", result.index.min()) date_to = st.sidebar.date_input("End date", today) filtered_days = result.loc[date_from.strftime("%Y-%m-%d"):date_to.strftime("%Y-%m-%d")] # Journey type # "f": "string", # filter flags. Siehe 1.2.26. D = external, F = long distance, N = regional, S = SBahn # journey_type = st.sidebar.multiselect("Filter journey types", # pd.unique(result["f"]), # default = pd.unique(result["f"])) # filtered_journeys = filtered_days[filtered_days["f"].isin(journey_type)] # Train type train_type = st.sidebar.multiselect("Filter train types", pd.unique(filtered_days["c"]), default =
pd.unique(filtered_days["c"])
pandas.unique
import pandas as pd def load_data(portfolio_data_absolute_path="/home/chris/Dropbox/Finance/data/portfolio_trades.ods", stock_data_absolute_path="/home/chris/Dropbox/Finance/data/stock_trades.ods", income_data_absolute_path="/home/chris/Dropbox/Finance/data/income.ods", etf_master_data_absolute_path="/home/chris/Dropbox/Finance/data/generated/master_data_stocks.ods", stock_price_data_absolute_path="/home/chris/Dropbox/Finance/data/generated/stock_prices.ods", cashflow_path = "/home/chris/Dropbox/Finance/data/data_cashflow/bilanz_full.csv", crypto_path = "/home/chris/Dropbox/Finance/data/crypto/crypto_trades_manual.ods", include_speculation=False): """ Needs odfpy library to load .ods files! Loads all necessary data sources of the given portfolio: ETF savings portfolio data, speculation data (stocks, cryptos, etc). :param order_data__absolute_path: path to source data for ETF portfolio (filetype: .ods) :param etf_master_data_absolute_path: path to master data of ETFs (filetype: .ods) :param stock_price_data_absolute_path: path to price data of ETFs (filetype: .ods) :param include_speculation: Whether orders of speculation portfolio should be included in output :param cashflow_path: csv file of cashflow data :return: tupel of pd.DataFrames with portfolio transactions and master data """ orders_portfolio = pd.read_excel(portfolio_data_absolute_path, engine="odf", sheet_name="Buys") dividends_portfolio = pd.read_excel(portfolio_data_absolute_path, engine="odf", sheet_name="Dividends") orders_speculation = pd.read_excel(stock_data_absolute_path, engine="odf", sheet_name="Buys") income = pd.read_excel(income_data_absolute_path, engine="odf") stock_prices = pd.read_csv(stock_price_data_absolute_path) etf_master = pd.read_csv(etf_master_data_absolute_path) cashflow_init = pd.read_csv(cashflow_path) df_crypto_deposits = pd.read_excel(crypto_path, engine="odf", sheet_name="Deposits", skiprows=2, usecols="A:G") df_crypto_trades = pd.read_excel(crypto_path, engine="odf", sheet_name="Trades", skiprows=1) if include_speculation == True: return ((etf_master, orders_portfolio, dividends_portfolio, income, stock_prices, cashflow_init, orders_speculation, df_crypto_deposits, df_crypto_trades)) else: return ((etf_master, orders_portfolio, dividends_portfolio, income, stock_prices, cashflow_init, None, df_crypto_deposits, df_crypto_trades)) def cleaning_cashflow(df_input: pd.DataFrame) -> pd.DataFrame: """ Data cleaning and preprocessing of cashflow data. :param df_input: Multiple toshl monthly-exports appended into a single dataframe :return: preprocessed dataframe """ import numpy as np assert df_input.drop("Description", axis=1).isna().sum().sum() == 0, \ f"There are NaN values in inputfile: {path_data}{filename_cashflow}" ### Data cleaning df_init = df_input.copy() df_init['Date'] = pd.to_datetime(df_init['Date'], format='%m/%d/%y') df_init.drop(columns=['Account', 'Currency', 'Main currency', 'Description'], inplace=True) df_init['Expense amount'] = df_init['Expense amount'].str.replace(',', '') df_init['Income amount'] = df_init['Income amount'].str.replace(',', '').astype(np.float64) df_init['In main currency'] = df_init['In main currency'].str.replace(',', '') df_init['Expense amount'] = df_init['Expense amount'].astype(np.float64) df_init['In main currency'] = df_init['In main currency'].astype(np.float64) ### Preprocessing of cashflow amounts df_init['Amount'] = pd.Series([-y if x > 0. else y for x, y in zip(df_init['Expense amount'], df_init['In main currency'] ) ] ) assert df_init[(~df_init["Income amount"].isin(["0.0", "0"])) & (df_init["In main currency"] != df_init["Amount"]) ].count().sum() == 0, "Income amount does not match with main currency amount!" assert df_init[(~df_init["Expense amount"].isin(["0.0", "0"])) & (-df_init["In main currency"] != df_init["Amount"]) ].count().sum() == 0, "Expense amount does not match with main currency amount!" ### Remap all tags with category "Urlaub" to "old-tag, Urlaub" and map afterwards all double-tags ### containing "Urlaub" to the Urlaub tag df_init.loc[df_init["Category"] == "Urlaub", "Tags"] = df_init["Tags"].apply(lambda tag: tag + ", Urlaub") df_init["split_tags"] = df_init["Tags"].apply(lambda x: x.split(",")) assert df_init[df_init["split_tags"].apply(len) > 1]["split_tags"].apply(lambda x: \ "Urlaub" in [s.strip() for s in x] ).all() == True,\ 'Some entries with multiple tags do not contain "Urlaub"! Mapping not possible!' df_init.loc[df_init["split_tags"].apply(len) > 1, "Tags"] = "Urlaub" df_init = df_init[["Date", "Category", "Tags", "Amount"]] return(df_init) def split_cashflow_data(df_cleaned: pd.DataFrame) -> pd.DataFrame: """ Splits whole cashflow data into incomes and expenses and groups it monthly and sums amounts per tag :param df_cleaned: Cleaned dataframe of cashflow :return: Tuple of dataframes holding incomes and expenses, each grouped by month """ needed_columns = ["Tags", "Date", "Amount"] assert set(needed_columns).intersection(set(df_cleaned.columns)) == set(needed_columns), \ "Columns missing! Need: {0}, Have: {1}".format(needed_columns, list(df_cleaned.columns)) df_grouped = df_cleaned.groupby([pd.Grouper(key='Date', freq='1M'), 'Tags']).sum() incomes = df_grouped[df_grouped["Amount"] > 0.].copy() expenses = df_grouped[df_grouped["Amount"] <= 0.].copy() return((incomes, expenses)) def preprocess_cashflow(df: pd.DataFrame) -> pd.DataFrame: """ Remap tags of input data to custom categories, and change the format of the dataframe in order to easily to computations and plots of the cashflow data. :param df: Dataframe, holding either incomes or expenses (cleaned) and grouped by month (tags as rows) :return: dataframe, where each row consists of cashflow data of of a month, each column represents a custom category """ assert isinstance(df.index, pd.core.indexes.multi.MultiIndex) and \ set(df.index.names) == set(["Date", "Tags"]) and \ list(df.columns) == ["Amount"], "Dataframe is not grouped by month!" ### Define custom categories for all tags of Toshl: Make sure category names differ from tag-names, ### otherwise column is dropped and aggregate is wrong category_dict = { "home": ['rent', 'insurance', 'Miete'], "food_healthy": ['restaurants', 'Lebensmittel', 'groceries', 'Restaurants', 'Restaurant Mittag'], "food_unhealthy": ['Fast Food', 'Süßigkeiten'], "alcoholic_drinks": ['alcohol', 'Alkohol'], "non-alcoholic_drinks": ['Kaffee und Tee', 'Erfrischungsgetränke', 'coffee & tea', 'soft drinks'], "travel_vacation": ['sightseeing', 'Sightseeing', 'Beherbergung', 'accommodation', 'Urlaub'], "transportation": ['bus', 'Bus', 'taxi', 'Taxi', 'metro', 'Metro', 'Eisenbahn', 'train', 'car', 'Auto', 'parking', 'airplane', 'fuel', 'Flugzeug'], "sports": ['training', 'Training', 'MoTu', 'Turnier', 'sport equipment', 'Billard', 'Konsum Training'], "events_leisure_books_abos": ['events', 'Events', 'adult fun', 'Spaß für Erwachsene', 'games', 'sport venues', 'membership fees', 'apps', 'music', 'books'], "clothes_medicine": ['clothes', 'accessories', 'cosmetics', 'medicine', 'hairdresser', 'medical services', 'medical servies', "shoes"], "private_devices": ['devices', 'bike', 'bicycle', 'movies & TV', 'mobile phone', 'home improvement', 'internet', 'landline phone', 'furniture'], "presents": ['birthday', 'X-Mas'], "other": ['wechsel', 'income tax', 'tuition', 'publications', 'Spende'], "stocks": ['equity purchase'], #### Income categories "compensation_caution": ["Entschädigung"], "salary": ["Salary", "Gehalt Vorschuss"], "present": ["Geschenk"], "tax_compensation": ["Kirchensteuer Erstattung", "Steuerausgleich"], "investment_profit": ["Investing"] } from functools import reduce category_list = reduce(lambda x, y: x + y, category_dict.values()) ### Need another format of the table, fill NaNs with zero and drop level 0 index "Amount" pivot_init = df.unstack() pivot_init.fillna(0, inplace=True) pivot_init.columns = pivot_init.columns.droplevel() #### Extract expenses and incomes from building-upkeep (caution) when switching flats if 'building upkeep' in pivot_init.columns: building_upkeep = pivot_init['building upkeep'] pivot_init.drop(columns=['building upkeep'], inplace=True) elif 'Wechsel' in pivot_init.columns: building_upkeep = pivot_init['Wechsel'] pivot_init.drop(columns=['Wechsel'], inplace=True) else: building_upkeep = None ### Apply custom category definition to dataframe not_categorized = [tag for tag in pivot_init.columns if tag not in category_list] assert len(not_categorized) == 0, "There are some tags, which are not yet categorized: {}".format(not_categorized) pivot = pivot_init.copy() for category, tag_list in category_dict.items(): tag_list_in_data = list(set(tag_list).intersection(set(pivot.columns))) pivot[category] = pivot[tag_list_in_data].sum(axis=1) pivot.drop(columns=tag_list_in_data, inplace=True) ### Keep only categories with non-zero total amount in dataframe category_sum = pivot.sum().reset_index() nonzero_categories = list(category_sum[category_sum[0] != 0.]["Tags"]) pivot = pivot[nonzero_categories] return((building_upkeep, pivot)) def combine_incomes(toshl_income, excel_income): """ Combines two data sources of incomes: toshl incomes and incomes from cashflow excel. :param toshl_income: Preprocessed dataframe of toshl incomes (after cleaning and splitting) :param excel_income: Raw excel income data :return: Total income data """ df_in = toshl_income.reset_index().copy() df_in["Tags"] = df_in["Tags"].apply(lambda x: "Salary" if x in ["Privat", "NHK", "OL"] else x) df_in2 = excel_income.copy() df_in2 = df_in2[["Datum", "Art", "Betrag"]].rename(columns={"Datum": "Date", "Art": "Tags", "Betrag": "Amount"}).dropna() df_in2["Date"] = pd.to_datetime(df_in2["Date"], format="%d.%m.%Y") df_in2["Tags"] = df_in2["Tags"].apply(lambda x: "Salary" if x in ["Gehalt", "Sodexo"] else x) df_income = pd.concat([df_in, df_in2], ignore_index=True) assert df_income.count()[0] == df_in.count()[0] + df_in2.count()[0], "Some income rows were lost!" df_income = df_income.groupby([pd.Grouper(key='Date', freq='1M'), 'Tags']).sum() return(df_income) def preprocess_prices(df_prices: pd.DataFrame) -> pd.DataFrame: """ Preprocessing of price dataframe. Get latest available price. :param df_prices: Needed columns: ISIN, Price, Datum, Currency :return: dataframe containing prices of stocks defined by ISIN on latest available date """ dfp = df_prices.copy() assert dfp["Currency"].drop_duplicates().count() == 1, "Multiple currencies used for price data!" assert dfp["Currency"].iloc[0] == "EUR", "Currency is not Euro!" dfp["Date"] = pd.to_datetime(dfp["Date"], format="%d.%m.%Y") latest_date = dfp["Date"].max() df_current_prices = dfp[dfp["Date"] == latest_date].reset_index(drop=True) return(df_current_prices) def preprocess_orders(df_orders: pd.DataFrame) -> pd.DataFrame: """ Set datatypes of columns and split input into dividends transactions and savings-plan transactions. :param df_orders: Includes all transaction data of the portfolio, all columns in list portfolio_columns need to be present, Kommentar column needs to be either "monatlich" (transaction of the savings plan, an ETF is bought) or "Dividende" (income) :return: tuple of orders- and dividend transaction entries """ orders_portfolio = df_orders.copy() portfolio_columns = ["Index", "Datum", "Kurs", "Betrag", "Kosten", "Anbieter", "Name", "ISIN"] new_portfolio_columns = ["Index", "Date", "Price", "Investment", "Ordercost", "Depotprovider", "Name", "ISIN"] rename_columns = {key: value for key, value in zip(portfolio_columns, new_portfolio_columns)} orders_portfolio = orders_portfolio.rename(columns=rename_columns) assert set(orders_portfolio.columns).intersection(set(new_portfolio_columns)) == set(new_portfolio_columns), \ "Some necessary columns are missing in the input dataframe!" ### Keep only valid entries orders_portfolio = orders_portfolio[~orders_portfolio["Investment"].isna()] orders_portfolio = orders_portfolio[orders_portfolio["Art"] == "ETF Sparplan"] orders_portfolio = orders_portfolio[new_portfolio_columns] orders_portfolio = orders_portfolio[~orders_portfolio["Date"].isna()] orders_portfolio["Date"] =
pd.to_datetime(orders_portfolio["Date"], format="%d.%m.%Y")
pandas.to_datetime
import pandas as pd import copy import argparse import helper env_data = helper.fetch_maze() def is_move_valid_visited(env_data,visit_map,loc,act): """ Judge wether the robot can take action act at location loc. Keyword arguments: env -- list, the environment data loc -- tuple, robots current location act -- string, robots meant action """ nextloc=list(loc) if act=='u': nextloc[0]=nextloc[0]-1 elif act=='d': nextloc[0]=nextloc[0]+1 elif act=='r': nextloc[1]=nextloc[1]+1 elif act=='l': nextloc[1]=nextloc[1]-1 else: return False if (nextloc[0] in range(len(env_data))) and (nextloc[1] in range(len(env_data[0]))): if env_data[nextloc[0]][nextloc[1]]==0 or env_data[nextloc[0]][nextloc[1]]==1 or env_data[nextloc[0]][nextloc[1]]==3: if visit_map[nextloc[0]][nextloc[1]]==0 or visit_map[nextloc[0]][nextloc[1]]==1 or visit_map[nextloc[0]][nextloc[1]]==3: return True else: return False else: return False else: return False def valid_novisit_actions(env_data,visit_map,loc): valid_action=[] ''' Follow u,d,r,l direction to move around ''' for i in ['u','d','r','l']: if is_move_valid_visited(env_data,visit_map,loc,i): valid_action.append(i) return valid_action def get_valid_neighbor_loc(loc,action_list): neighbor_list=list() ''' Follow u,d,r,l direction to move around ''' for i in action_list: new_loc=list(loc) if i=='u': new_loc[0]=new_loc[0]-1 elif i=='d': new_loc[0]=new_loc[0]+1 elif i=='r': new_loc[1]=new_loc[1]+1 elif i=='l': new_loc[1]=new_loc[1]-1 neighbor_list.append((new_loc[0],new_loc[1])) return neighbor_list def move_robot(loc, act): move_dict ={ 'u': (-1,0), 'd': (1,0), 'l': (0,-1), 'r': (0,1) } return loc[0] + move_dict[act][0], loc[1] + move_dict[act][1] def bfs_move_robot(env_data,visit_map,loc,act_list,route_table): #algorithm reference: https://blog.csdn.net/raphealguo/article/details/7523411 for act in act_list: new_loc=list(loc) if act=='u': new_loc[0]=new_loc[0]-1 elif act=='d': new_loc[0]=new_loc[0]+1 elif act=='r': new_loc[1]=new_loc[1]+1 elif act=='l': new_loc[1]=new_loc[1]-1 mark_visit(visit_map,(new_loc[0],new_loc[1]),'gray') route_table=route_table.append(pd.DataFrame(data={'source_loc':[(list(loc)[0],list(loc)[1])],'move_direct':act,'next_loc':[(new_loc[0],new_loc[1])],'route_type':'forward'}),ignore_index=True) if env_data[new_loc[0]][new_loc[1]]==3: return route_table else: Source_loc=new_loc new_loc=move_back_robot(new_loc,act) act=roll_back_direction(act) route_table=route_table.append(pd.DataFrame(data={'source_loc':[(Source_loc[0],Source_loc[1])],'move_direct':act,'next_loc':[(new_loc[0],new_loc[1])],'route_type':'backward'}),ignore_index=True) continue return route_table def move_back_robot(loc,act): '''Rollback need not check visit_map''' new_loc=list(loc) if act=='u': new_loc[0]=new_loc[0]+1 elif act=='d': new_loc[0]=new_loc[0]-1 elif act=='r': new_loc[1]=new_loc[1]-1 elif act=='l': new_loc[1]=new_loc[1]+1 return (new_loc[0],new_loc[1]) def roll_back_direction(act): '''Rollback need not check visit_map''' if act=='u': new_act='d' elif act=='d': new_act='u' elif act=='l': new_act='r' elif act=='r': new_act='l' return new_act def mark_visit(visit_map,loc,color): new_loc=list(loc) if color=='dark': visit_map[new_loc[0]][new_loc[1]]=4 elif color=='gray': visit_map[new_loc[0]][new_loc[1]]=5 else: print('Only accept color:dark or gray!') def trace_route(route_table,initial_loc,from_loc,to_loc): back_route=pd.DataFrame(columns=['source_loc','move_direct','next_loc','route_type']) forward_route=
pd.DataFrame(columns=['source_loc','move_direct','next_loc','route_type'])
pandas.DataFrame
# -*- coding: UTF-8 -*- import pandas as pd import config from config import engine # 今日注册用户 def registUser(self, files): f1 = pd.DataFrame(pd.read_csv(files, sep='\t', header=None, names=config.name)) # 简化时间至年月日 f1['daytime'] = pd.to_datetime(f1['daytime']).dt.normalize() # register = f1.drop_duplicates('user_id', 'first')['event_id'].count() a = f1['user_id'].unique() for i in a: if i not in self.registuser: self.registuser.append(i) self.register += 1 # 日活 def startUser(self, files): f1 = pd.DataFrame(pd.read_csv(files, sep='\t', header=None, names=config.name)) # start = f1.drop_duplicates('user_id', 'first')['event_id'].count() user = f1['user_id'].unique() for i in user: if i not in self.liveuser: self.liveuser.append(i) self.live += 1 # 留存率 def retentRate(self, file): f1 = pd.DataFrame(
pd.read_csv(file, sep='\t', header=None, names=config.name)
pandas.read_csv
import numpy as np import pandas as pd # Create and populate a 5x2 NumPy array. my_data = np.array([[0, 3], [10, 7], [20, 9], [30, 14], [40, 15]]) # Create a Python list that holds the names of the two columns. my_column_names = ['temperature', 'activity'] # Create a DataFrame. my_dataframe =
pd.DataFrame(data=my_data, columns=my_column_names)
pandas.DataFrame
import sys import unittest import pandas as pd from src.preprocessing import format_ocean_proximity class FormattingTestCase(unittest.TestCase): def setUp(self): self.ref_df = pd.read_csv("housing.csv") def test_format_ocean_proximity(self): ref_output = format_ocean_proximity(
pd.DataFrame(self.ref_df)
pandas.DataFrame
"""Predictor..""" import os import shutil import json import pandas as pd import numpy as np import torch import torch.nn as nn import matplotlib.pyplot as plt from aircraft_detector.utils.utils import ( retrieve_files, get_feature_directory_name, refresh_directory, print_verbose, load_spectrum_settings, load_state_settings, ) import aircraft_detector.utils.feature_helper as fh import aircraft_detector.utils.pytorch_earlystopping as es from aircraft_detector.utils.dynamic_net import Net import aircraft_detector.utils.plot_helper as ph from aircraft_detector.utils.dynamic_net import ( set_net_configuration, train_network, test_network, _create_network, ) class EgoNoisePredictor: def __init__( self, root_directory, spectrum_settings=None, states_settings=None, ): # set root directory self._dir_root = root_directory # set the missing feature settings to their defaults if spectrum_settings is None: spectrum_settings = {} self._spectrum = load_spectrum_settings(spectrum_settings) # set the missing states settings to their defaults if states_settings is None: states_settings = {} self._states = load_state_settings(states_settings) # derive root input directory (feature dataset) from parameters self._dir_root_set = os.path.join( self._dir_root, "Ego-Noise Prediction", "Parameter Sets", get_feature_directory_name(self._spectrum), ) # verbosity self.verbose = True self.super_verbose = False # parts of the dataset (initialized in load_datasets) self._train_set = None self._val_set = None self._test_set = None # network configuration (initialized in set_net_configuration) self._net_config = None # set loss to MSE loss self._loss_fn = nn.MSELoss() # train settings (supplied in train_model) self._train_settings = None def load_datasets(self): # load training, validation, test data self._train_set = self._load_data( os.path.join(self._dir_root_set, "Dataset", "Train") ) self._val_set = self._load_data( os.path.join(self._dir_root_set, "Dataset", "Val") ) self._test_set = self._load_data( os.path.join(self._dir_root_set, "Dataset", "Test") ) def _load_data(self, dir_split): # load N files files_X = retrieve_files(os.path.join(dir_split, "States")) # input files_Y = retrieve_files(os.path.join(dir_split, "Spectra")) # output # load states: NxTxS data_X = [pd.read_csv(f, header=None).to_numpy().transpose() for f in files_X] # extract only relevant states data_X = [ fh.extract_relevant_states(data, self._states["states"]) for data in data_X ] # load spectra: NxTxF data_Y = [pd.read_csv(f, header=None).to_numpy().transpose() for f in files_Y] if self._states["context_frames"] > 0: # add context to the dataset: (NxTxS, NxTxF) -> (NxT-CxCxS, NxT-CxCxF) data_X, data_Y = list( zip(*[self._add_context(dX, dY) for dX, dY in zip(data_X, data_Y)]) ) else: # add placeholder dim. for X: NxTxS -> NxTx1xS data_X = [np.expand_dims(X, 1) for X in data_X] # concatenate N and T axes to get 3D set data_X = np.concatenate(data_X, axis=0) data_Y = np.concatenate(data_Y, axis=0) # convert to torch dataset X = torch.from_numpy(data_X).float() Y = torch.from_numpy(data_Y).float() dataset = torch.utils.data.TensorDataset(X, Y) return dataset def _add_context(self, states, spectra=None): # 3D copy of 'original' state data: TxS -> Tx1xS states_extended = np.expand_dims(states, 1) # shift states in time dim., then add to extended array n = 0 while n < self._states["context_frames"]: # get states at previous time index states_prev = np.roll(states, n + 1, axis=0) # add prev. states to 2nd axis of extended states states_extended = np.concatenate( (np.expand_dims(states_prev, 1), states_extended), axis=1 ) n += 1 # remove first C time indices for causality: T-CxCxS states_extended = states_extended[self._states["context_frames"] :] if spectra is None: return states_extended else: # remove first C time indices to match length of states_extended spectra_modified = spectra[self._states["context_frames"] :] return states_extended, spectra_modified def set_net_configuration(self, layers): assert ( self._test_set is not None ), "Please load the data via load_datasets before setting a network configuration." self._net_config = set_net_configuration(layers, self._test_set) def tune_hyperparameters(self, parameterization_dict, training_settings=None): """Use for Bayesian Optimization. parameterization_dict: contains ax ranges.. """ # convert the parameterization to the class config representation new_config = _convert_parameterization_to_config(parameterization_dict) self.set_net_configuration(new_config) # train, evaluate model _, losses, _ = self.train_network(training_settings) val_loss = losses[1] return val_loss def train_network(self, train_settings): # verify that network config has been set assert ( self._net_config is not None ), "Please set a network configuration via set_net_configuration before training the network." # store train settings self._train_settings = train_settings # train network network, loss, loss_history = train_network( train_settings, self._train_set, self._val_set, self._net_config, self._loss_fn, self.verbose, self.super_verbose, ) return network, loss, loss_history def test_network(self, network): loss = test_network( network, self._test_set, self._net_config["device"], self._loss_fn ) return loss def save_network(self, network, loss, overwrite=False): # generate output filename and directory for model and config network_id = "%.6f_c%d" % (loss, self._states["context_frames"]) dir_model = os.path.join(self._dir_root_set, "Models", network_id) fn_model = "enp_model.pt" fn_config = "enp_config.json" # create or overwrite directory if os.path.exists(dir_model) and not overwrite: print_verbose(self.verbose, "Network already exists.") return dir_model refresh_directory(dir_model) # save network torch.save(network.state_dict(), os.path.join(dir_model, fn_model)) # save network config and settings config_file = open(os.path.join(dir_model, fn_config), "w") json.dump( [self._net_config, self._spectrum, self._states, self._train_settings], config_file, ) config_file.close() return dir_model def save_network_output(self, model, dir_model, subset, plot=True): # refresh the output directories output_subdirs = ["Original", "Predicted", "Residual"] for subdir in output_subdirs: refresh_directory(os.path.join(dir_model, "Output", subset, subdir)) # load the original files (states, spectra) in the subset dir_states = os.path.join(self._dir_root_set, "Dataset", subset, "States") files_states = retrieve_files(dir_states) dir_spectra = os.path.join(self._dir_root_set, "Dataset", subset, "Spectra") files_spectra = retrieve_files(dir_spectra) for i in range(len(files_states)): # load original spectra and cut-off context original = pd.read_csv(files_spectra[i], header=None).to_numpy() if self._states["context_frames"] > 0: original = original[:, self._states["context_frames"] :] # predict spectra from states file predicted = self._predict(model, files_states[i], original.shape) # compute residual residual = original - predicted # plot if desired if plot: self._plot_model_output(original, predicted, residual) # save output fn = os.path.split(files_states[i])[-1] # target filename output_spectra = [original, predicted, residual] for spectrum, subdir in zip(output_spectra, output_subdirs): # save spectrum dir_out = os.path.join(dir_model, "Output", subset, subdir) pd.DataFrame(spectrum).to_csv( os.path.join(dir_out, fn), index=False, header=False ) def _predict(self, network, file_states, out_shape): # load states S =
pd.read_csv(file_states, header=None)
pandas.read_csv
"""Logs what the user is working on and for how long at a time. Every second time it logs the starting time and the other time it logs the time elapsed and the project being worked on. """ import os import csv import subprocess import pandas as pd import tkinter as tk from datetime import datetime import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg as agg import widgets import config increment = config.worklog['INCREMENT'] now = datetime.now() SUM_LAST_MONTH = True class WorkLog: """Contains the module functionality.""" def __init__(self): self.ts = 'timestamp.csv' def __enter__(self): return self def __exit__(self, exc_type, exc_val, tb): pass def manual_entry(self): """Opens the log file for editing mistakes in logging.""" subprocess.call(f'{os.getcwd()}/worklog.csv', shell=True) def check_timestamp(self): """Checks the latest timestamp. If empty then it throws a pd.errors.EmptyDataError, which we then catch, write a new timestamp, give feedback and take no further action. """ try: df_timestamp = pd.read_csv(self.ts, header=None) return df_timestamp except pd.errors.EmptyDataError: with open(self.ts, mode='w') as f: w = csv.writer(f) w.writerow([now]) self.feedback() @staticmethod def feedback(): """Feedback Box for the user to know that the logging has successfully started. """ widget = widgets.Widget(config=config.feedback) root = widget.root_mkr() widget.frm_mkr() timestamp = now.strftime(r'%Y-%m-%d %H:%M') msg = f'Logging\nStarted\n{timestamp}' widget.lbl_mkr(rel_y=0.3, txt=msg, anchor='c') root.after(3000, root.destroy) root.mainloop() @staticmethod def log_work(): """Logs the project being worked on.""" project = Setup.entry_project.get() comment = Setup.entry_comment.get() t_start = Setup.entry_start.get() t_end = Setup.entry_end.get() t_i = datetime.strptime(t_start, config.worklog['DT_FORMAT']) t_f = datetime.strptime(t_end, config.worklog['DT_FORMAT']) delta = t_f-t_i # Somehow there isn't a command for formatting # timedeltas like there is strptime for datetimes??? delta = str(delta) if delta.seconds/3600 > 9 else '0'+str(delta) with open('worklog.csv', mode='a') as f: w = csv.writer(f, delimiter="\t", lineterminator="\n") w.writerow([t_start, t_end, delta, project, comment]) # Rewrite the timestamp file as empty with open('timestamp.csv', 'w'): pass Setup.root.destroy() def sum_month(self): """Logs and plots the total hours worked last month.""" def plot_sum(): """Bar chart displaying the total hours logged last month.""" root = tk.Tk() root.title('Work Logger') df_plt =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python import pandas as pd import os def process_remaining_images(edition_name, existing_rt): # open directory containing remaining images dirpath = os.path.join("output", "edition " + str(edition_name), "images") images = [f for f in os.listdir(dirpath) if not f.startswith('.')] images = list(map(lambda filename: filename.removesuffix('.png'), images)) images.sort(key=lambda filename: int(filename)) new_rt =
pd.DataFrame([], columns=existing_rt.columns)
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import pandas.testing as pdt import pyarrow as pa import pytest from kartothek.core.cube.conditions import ( C, Condition, Conjunction, EqualityCondition, GreaterEqualCondition, GreaterThanCondition, InequalityCondition, InIntervalCondition, IsInCondition, LessEqualCondition, LessThanCondition, ) class TestVirtualColumn: def test_convert(self): c = C(b"foo") assert c.name == "foo" assert isinstance(c.name, str) def test_frozen(self): c = C("foo") with pytest.raises(AttributeError): c.name = "bar" class TestSimpleCondition: @pytest.mark.parametrize( "f,t,op,value", [ ( # f lambda c: c == 42, # t EqualityCondition, # op "==", # value 42, ), ( # f lambda c: c != 42, # t InequalityCondition, # op "!=", # value 42, ), ( # f lambda c: c < 42, # t LessThanCondition, # op "<", # value 42, ), ( # f lambda c: c <= 42, # t LessEqualCondition, # op "<=", # value 42, ), ( # f lambda c: c > 42, # t GreaterThanCondition, # op ">", # value 42, ), ( # f lambda c: c >= 42, # t GreaterEqualCondition, # op ">=", # value 42, ), ( # f lambda c: c.isin(42), # t IsInCondition, # op "in", # value (42,), ), ], ) def test_op(self, f, t, op, value): c = C("foö") cond = f(c) assert isinstance(cond, t) assert cond.OP == op assert str(cond) == "foö {} {}".format(op, value) assert cond.predicate_part == [("foö", op, value)] assert cond.active hash(cond) def test_frozen(self): cond = C("foö") == 42 with pytest.raises(AttributeError): cond.column = "bar" with pytest.raises(AttributeError): cond.value = 1337 with pytest.raises(AttributeError): cond.OP = "x" def test_filter_df(self): cond = C("foö") == 42 df = pd.DataFrame({"foö": [13, 42, 42, 100], "bar": 0.0}) df_actual = cond.filter_df(df) df_expected = df.loc[df["foö"] == 42] pdt.assert_frame_equal(df_actual, df_expected) def test_fails_null_scalar(self): with pytest.raises(ValueError) as exc: C("foö") == None # noqa assert str(exc.value) == 'Cannot use NULL-value to compare w/ column "foö"' def test_fails_null_list(self): with pytest.raises(ValueError) as exc: C("foö").isin([0, None, 1]) assert str(exc.value) == 'Cannot use NULL-value to compare w/ column "foö"' def test_fails_colcol_scalar(self): c1 = C("foö") c2 = C("bar") with pytest.raises(TypeError) as exc: c1 == c2 assert str(exc.value) == "Cannot compare two columns." def test_fails_colcol_list(self): c1 = C("foö") c2 = C("bar") with pytest.raises(TypeError) as exc: c1.isin([c2]) assert str(exc.value) == "Cannot compare two columns." def test_fails_colcond_scalar(self): c1 = C("foö") c2 = C("bar") cond = c2 == 42 with pytest.raises(TypeError) as exc: c1 == cond assert str(exc.value) == "Cannot use nested conditions." def test_fails_colcond_list(self): c1 = C("foö") c2 = C("bar") cond = c2 == 42 with pytest.raises(TypeError) as exc: c1.isin([cond]) assert str(exc.value) == "Cannot use nested conditions." def test_fails_colconj_scalar(self): c1 = C("foö") c2 = C("bar") conj = (c2 == 42) & (c2 == 10) with pytest.raises(TypeError) as exc: c1 == conj assert str(exc.value) == "Cannot use nested conditions." def test_fails_colconj_list(self): c1 = C("foö") c2 = C("bar") conj = (c2 == 42) & (c2 == 10) with pytest.raises(TypeError) as exc: c1.isin([conj]) assert str(exc.value) == "Cannot use nested conditions." def test_fails_doublecompare(self): with pytest.raises(TypeError) as exc: 1 < C("foö") <= 5 assert str(exc.value).startswith("Cannot check if a condition is non-zero.") @pytest.mark.parametrize( "s,expected", [ ("sö == a", C("sö") == "a"), ("sö = a", C("sö") == "a"), ("sö==a", C("sö") == "a"), ("sö=='a b'", C("sö") == "a b"), ("iö != 10", C("iö") != 10), ("iö > 10", C("iö") > 10), ("iö < 10", C("iö") < 10), ("iö >= 10", C("iö") >= 10), ("iö <= 10", C("iö") <= 10), (" sö == a ", C("sö") == "a"), ("( sö == a )", C("sö") == "a"), ("tö == 2018-01-01", C("tö") == pd.Timestamp("2018-01-01")), ], ) def test_from_string_ok(self, s, expected): all_types = { "sö": pa.string(), "bö": pa.bool_(), "iö": pa.int16(), "tö": pa.timestamp("ns"), } actual = Condition.from_string(s, all_types) assert actual == expected s2 = str(actual) actual2 = Condition.from_string(s2, all_types) assert actual2 == actual @pytest.mark.parametrize( "s,expected", [ ("zö == a", 'Unknown column "zö" in condition "zö == a"'), ("sö ==", 'Cannot parse condition "sö =="'), ("== a", 'Cannot parse condition "== a"'), ("sö <=", 'Cannot parse condition "sö <="'), ], ) def test_from_string_error(self, s, expected): all_types = {"sö": pa.string(), "bö": pa.bool_(), "iö": pa.int16()} with pytest.raises(ValueError) as exc: Condition.from_string(s, all_types) assert str(exc.value) == expected class TestInIntervaCondition: def test_simple(self): cond = C("foö").in_interval(10, 20) assert isinstance(cond, InIntervalCondition) assert str(cond) == "foö.in_interval(10, 20)" assert cond.predicate_part == [("foö", ">=", 10), ("foö", "<", 20)] assert cond.active hash(cond) def test_begin_null(self): cond = C("foö").in_interval(stop=20) assert isinstance(cond, InIntervalCondition) assert str(cond) == "foö.in_interval(None, 20)" assert cond.predicate_part == [("foö", "<", 20)] assert cond.active def test_end_null(self): cond = C("foö").in_interval(10) assert isinstance(cond, InIntervalCondition) assert str(cond) == "foö.in_interval(10, None)" assert cond.predicate_part == [("foö", ">=", 10)] assert cond.active def test_both_null(self): cond = C("foö").in_interval() assert isinstance(cond, InIntervalCondition) assert str(cond) == "foö.in_interval(None, None)" assert cond.predicate_part == [] assert not cond.active def test_fails_null(self): col1 = C("foö") with pytest.raises(ValueError) as exc: col1.in_interval(10, np.nan) assert str(exc.value) == 'Cannot use NULL-value to compare w/ column "foö"' def test_fails_colcol(self): col1 = C("foö") col2 = C("bar") with pytest.raises(TypeError) as exc: col1.in_interval(10, col2) assert str(exc.value) == "Cannot compare two columns." def test_fails_colcond(self): col1 = C("foö") col2 = C("bar") cond = col2 == 42 with pytest.raises(TypeError) as exc: col1.in_interval(10, cond) assert str(exc.value) == "Cannot use nested conditions." def test_fails_colconj(self): col1 = C("foö") col2 = C("bar") conj = (col2 == 42) & (col2 == 10) with pytest.raises(TypeError) as exc: col1.in_interval(10, conj) assert str(exc.value) == "Cannot use nested conditions." class TestConjunction: def test_simple(self): col = C("foö") cond1 = col < 10 cond2 = col > 0 conj = cond1 & cond2 assert isinstance(conj, Conjunction) assert conj.conditions == (cond1, cond2) assert str(conj) == "(foö < 10) & (foö > 0)" assert conj.columns == {"foö"} assert conj.predicate == [("foö", "<", 10), ("foö", ">", 0)] assert conj.split_by_column() == {"foö": conj} def test_nested_conj_cond(self): col = C("foö") cond1 = col < 10 cond2 = col > 0 cond3 = col != 10 conj1 = cond1 & cond2 conj2 = conj1 & cond3 assert isinstance(conj2, Conjunction) assert conj2.conditions == (cond1, cond2, cond3) assert str(conj2) == "(foö < 10) & (foö > 0) & (foö != 10)" assert conj2.columns == {"foö"} assert conj2.predicate == [ ("foö", "<", 10), ("foö", ">", 0), ("foö", "!=", 10), ] assert conj2.split_by_column() == {"foö": conj2} def test_nested_cond_conj(self): col = C("foö") cond1 = col < 10 cond2 = col > 0 cond3 = col != 10 conj1 = cond2 & cond3 conj2 = cond1 & conj1 assert isinstance(conj2, Conjunction) assert conj2.conditions == (cond1, cond2, cond3) def test_nested_conj_conj(self): col = C("foö") cond1 = col < 10 cond2 = col > 0 cond3 = col != 10 cond4 = col != 11 conj1 = cond1 & cond2 conj2 = cond3 & cond4 conj3 = conj1 & conj2 assert isinstance(conj3, Conjunction) assert conj3.conditions == (cond1, cond2, cond3, cond4) def test_fails_nocond(self): col = C("foö") cond1 = col < 10 with pytest.raises(TypeError) as exc: cond1 & col assert str(exc.value) == "Can only build conjunction out of conditions." def test_multicol(self): col1 = C("foö") col2 = C("bar") cond1 = col1 < 10 cond2 = col1 > 0 cond3 = col2 != 10 conj1 = cond1 & cond2 conj2 = conj1 & cond3 assert isinstance(conj2, Conjunction) assert conj2.conditions == (cond1, cond2, cond3) assert str(conj2) == "(foö < 10) & (foö > 0) & (bar != 10)" assert conj2.columns == {"foö", "bar"} assert conj2.predicate == [ ("foö", "<", 10), ("foö", ">", 0), ("bar", "!=", 10), ] assert conj2.split_by_column() == {"foö": conj1, "bar": Conjunction([cond3])} def test_empty_real(self): conj = Conjunction([]) assert conj.conditions == () assert str(conj) == "" assert conj.columns == set() assert conj.predicate is None assert conj.split_by_column() == {} def test_empty_pseudo(self): cond = InIntervalCondition("x") conj = Conjunction([cond]) assert conj.conditions == (cond,) assert str(conj) == "(x.in_interval(None, None))" assert conj.columns == set() assert conj.predicate is None assert conj.split_by_column() == {} def test_filter_df_some(self): cond = (C("foö") == 42) & (C("bar") == 2) df = pd.DataFrame({"foö": [13, 42, 42, 100], "bar": [1, 2, 3, 4], "z": 0.0}) df_actual = cond.filter_df(df) df_expected = df.loc[(df["foö"] == 42) & (df["bar"] == 2)] pdt.assert_frame_equal(df_actual, df_expected) def test_filter_df_empty(self): cond = Conjunction([]) df = pd.DataFrame({"foö": [13, 42, 42, 100], "bar": [1, 2, 3, 4], "z": 0.0}) df_actual = cond.filter_df(df) pdt.assert_frame_equal(df_actual, df) def test_filter_df_nulls(self): cond = (C("foö") != 42.0) & (C("bar") != 2.0) df = pd.DataFrame( {"foö": [13, 42, np.nan, np.nan], "bar": [1, 2, 3, np.nan], "z": np.nan} ) df_actual = cond.filter_df(df) df_expected = pd.DataFrame({"foö": [13.0], "bar": [1.0], "z": [np.nan]})
pdt.assert_frame_equal(df_actual, df_expected)
pandas.testing.assert_frame_equal
# coding: utf-8 # # Visualize Networks # In[78]: import pandas as pd import igraph as ig from timeUtils import clock, elapsed, getTimeSuffix, getDateTime, addDays, printDateTime, getFirstLastDay from pandasUtils import castDateTime, castInt64, cutDataFrameByDate, convertToDate, isSeries, isDataFrame, getColData from network import makeNetworkDir, distHash #import geohash import pygeohash as geohash from haversine import haversine from vertexData import vertex from edgeData import edge from networkCategories import categories def getLoc(ghash): loc = geohash.decode_exactly(ghash)[:2] loc = [round(x, 4) for x in loc] return loc def getVertexViews(dn, vtxmetrics, homeMetrics, metric='HubScore'): from numpy import tanh, amax from pandas import Series from seaborn import cubehelix_palette from seaborn import color_palette, light_palette g = dn.getNetwork() if metric == "HubScore": vertexData = Series(g.hub_score()) elif metric == "Centrality": vertexData = Series(g.centrality()) elif metric == "Degree": vertexData = Series(g.degree()) else: raise ValueError("metric {0} was not recognized".format(metric)) qvals = vertexData.quantile([0, 0.687, 0.955, 0.997, 1]) cols = cubehelix_palette(n_colors=7, start=2.8, rot=.1) #cols = color_palette("OrRd", 7) #cols = cubehelix_palette(7) vcols =
Series(vertexData.shape[0]*[0])
pandas.Series
import datetime import re import csv import numpy as np import pandas as pd import sklearn from sklearn.metrics import accuracy_score, classification_report from sklearn.metrics import confusion_matrix from challenge.agoda_cancellation_estimator import AgodaCancellationEstimator from IMLearn.utils import split_train_test # from __future__ import annotations # from typing import NoReturn from IMLearn.base import BaseEstimator import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier def make_condition_to_sum(cond: str, full_price: float, night_price: float) -> float: sum = 0 cond1 = re.split("D", cond) days_before_checking = int(cond1[0]) if cond1[1].find("P") != -1: percent = int(re.split("P", cond1[1])[0]) / 100 sum += full_price * percent * days_before_checking else: num_nights = int(re.split("N", cond1[1])[0]) sum += night_price * num_nights * days_before_checking return sum def f10(cancellation: str, full_price: float, night_price: float) -> (float, float): if cancellation == "UNKNOWN": return 0, 0 sum = 0 no_show = 0 cond = re.split("_", cancellation) if len(cond) == 1: sum += make_condition_to_sum(cond[0], full_price, night_price) else: sum += make_condition_to_sum(cond[0], full_price, night_price) if cond[1].find("D") != -1: sum += make_condition_to_sum(cond[1], full_price, night_price) else: if cond[1].find("P") != -1: percent = int(re.split("P", cond[1])[0]) / 100 no_show += full_price * percent else: num_nights = int(re.split("N", cond[1])[0]) no_show += night_price * num_nights return sum, no_show def get_cancellation(features: pd.DataFrame): sum = [] no_show = [] for index, row in features.iterrows(): a,b = f10(row.cancellation_policy_code, row.original_selling_amount, row.price_per_night) sum.append(a) no_show.append(b) return sum, no_show def load_data(filename: str, with_lables = True): """ Load Agoda booking cancellation dataset Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector in either of the following formats: 1) Single dataframe with last column representing the response 2) Tuple of pandas.DataFrame and Series 3) Tuple of ndarray of shape (n_samples, n_features) and ndarray of shape (n_samples,) """ # TODO - replace below code with any desired preprocessing full_data = pd.read_csv(filename).drop_duplicates() features = full_data[["booking_datetime", "checkin_date", "checkout_date", "hotel_city_code", "hotel_star_rating", "charge_option", "accommadation_type_name", "hotel_star_rating", "customer_nationality", "guest_is_not_the_customer", "cancellation_policy_code", "is_user_logged_in", "original_payment_method", "no_of_adults", "no_of_children", "original_selling_amount", "customer_nationality", "original_payment_type"]] features["checkin_date"] = pd.to_datetime(features["checkin_date"]) features["checkout_date"] = pd.to_datetime(features["checkout_date"]) features["booking_datetime"] = pd.to_datetime(features["booking_datetime"]) features["duration"] = (features["checkout_date"] - features["checkin_date"]).dt.days.astype(int) features['checkin_date_day_of_year'] = (features['checkin_date'].dt.dayofyear).astype(int) features["booking_hour"] = (pd.DatetimeIndex(features['booking_datetime']).hour).astype(int) features["price_per_night"] = (features["original_selling_amount"] / features["duration"]) # fixing dummies features features = pd.get_dummies(features, prefix="hotel_star_rating_", columns=["hotel_star_rating"]) features = pd.get_dummies(features, prefix="accommadation_type_name_", columns=["accommadation_type_name"]) features = pd.get_dummies(features, prefix="charge_option_", columns=["charge_option"]) features = pd.get_dummies(features, prefix="customer_nationality_", columns=["customer_nationality"]) features = pd.get_dummies(features, prefix="no_of_adults_", columns=["no_of_adults"]) features = pd.get_dummies(features, prefix="no_of_children_", columns=["no_of_children"]) features = pd.get_dummies(features, prefix="original_payment_type_", columns=["original_payment_type"]) features = pd.get_dummies(features, prefix="original_payment_method_", columns=["original_payment_method"]) features = pd.get_dummies(features, prefix="hotel_city_code_", columns=["hotel_city_code"]) features[features["is_user_logged_in"] == "FALSE"] = 0 features[features["is_user_logged_in"] == "TRUE"] = 1 features["cancellation_sum"], features["cancellation_no_show"] = get_cancellation(features) # removing old features for f in ["checkout_date", "booking_datetime", "checkin_date", "cancellation_policy_code"]: features.drop(f, axis=1, inplace=True) labels = None if with_lables: # making label_for_regression labels = full_data["cancellation_datetime"] labels = pd.to_datetime(labels.fillna(
pd.Timestamp('21000101')
pandas.Timestamp
from pathlib import Path from random import Random import pandas as pd from pyspark import SparkContext from pyspark.sql import SparkSession from index import Indexer, compress_group, PAGE_SIZE DATA_PATH = Path(__file__).parent / 'data' / 'data.warc.gz' random = Random(1) def test_indexer(spark_context: SparkContext): indexer = Indexer() indexer.init_accumulators(spark_context) sql_context = SparkSession.builder.getOrCreate() data = spark_context.parallelize([f'file:{DATA_PATH}']) processed = indexer.create_index(data, sql_context).collect() assert len(processed) > 0 def shuffle(s): l = list(s) random.shuffle(l) return ''.join(l) def make_test_data(num_items): data = { 'term_hash': [37] * num_items, 'term': ['boring'] * num_items, 'uri': [f'https://{shuffle("somethingwebsiteidontknow")}.com' for _ in range(num_items)], 'title': [shuffle('Some Really Long and Boring Title About St.') for _ in range(num_items)], 'extract': [shuffle('Instructors of “Introduction to programming” courses know that ' 'students are willing to blame the failures of their programs on ' 'anything. Sorting routine discards half of the data? ' '“That might be a Windows virus!” Binary search always fails?') for _ in range(num_items)], } data_frame = pd.DataFrame(data) return data_frame def test_compress_group_too_big(): num_items = 100 data_frame = make_test_data(num_items) compressed = compress_group(data_frame) data = compressed['data'].iloc[0] print("Compressed", data) assert 0 < len(data) < PAGE_SIZE def test_compress_group_large_item(): num_items = 5 data = { 'term_hash': [37] * num_items, 'term': ['boring'] * num_items, 'uri': [f'https://{shuffle("somethingwebsiteidontknow")}.com' for _ in range(num_items)], 'title': [shuffle('Some Really Long and Boring Title About St.') for _ in range(num_items)], 'extract': [shuffle('Instructors of “Introduction to programming” courses know that ' 'students are willing to blame the failures of their programs on ' 'anything. Sorting routine discards half of the data? ' '“That might be a Windows virus!” Binary search always fails?'*5000) for _ in range(num_items)], } data_frame =
pd.DataFrame(data)
pandas.DataFrame
import numpy as np import pandas as pd import pytest from rulelist.datastructure.attribute.nominal_attribute import activation_nominal, NominalAttribute class TestNominalAttribute(object): def test_normal(self): dictdata = {"column1" : np.array(["below50" if i < 50 else "above49" for i in range(100)]), "column2" : np.ones(100)} test_dataframe = pd.DataFrame(data=dictdata) input_name = "column1" input_max_operators = 1 input_minsupp = 0 expected_number_items = 2 expected_cardinality_operator = {1: 2} output_attribute = NominalAttribute(input_name, test_dataframe[input_name], input_max_operators,input_minsupp) actual_number_items= len(output_attribute.items) actual_cardinality_operator = output_attribute.cardinality_operator pd.testing.assert_series_equal(output_attribute.values, test_dataframe[input_name]) assert expected_number_items == actual_number_items assert expected_cardinality_operator == actual_cardinality_operator def test_onlyonevalue(self): dictdata = {"column1" : np.array(["below100" for i in range(100)]), "column2" : np.ones(100)} test_dataframe = pd.DataFrame(data=dictdata) input_name = "column1" input_max_operators = 1 input_minsupp = 0 expected_number_items = 1 expected_cardinality_operator = {1: 1} expected_n_cutpoints = 3 output_attribute = NominalAttribute(input_name, test_dataframe[input_name], input_max_operators,input_minsupp) actual_number_items= len(output_attribute.items) actual_cardinality_operator = output_attribute.cardinality_operator pd.testing.assert_series_equal(output_attribute.values, test_dataframe[input_name]) assert expected_number_items == actual_number_items assert expected_cardinality_operator == actual_cardinality_operator class TestActivationNominal(object): def test_left_interval(self): dictdata = {"column1" : np.array(["below50" if i < 50 else "above49" for i in range(100)]), "column2" : np.ones(100)} test_dataframe = pd.DataFrame(data=dictdata) input_attribute_name = "column1" input_category = "below50" expected_vector = pd.Series(name= "column1", data = [True if i < 50 else False for i in range(100)]) actual_vector = activation_nominal(test_dataframe,input_attribute_name,input_category) pd.testing.assert_series_equal(actual_vector, expected_vector, check_exact=True) def test_right_interval(self): dictdata = {"column1": np.array(["below50" if i < 50 else "above49" for i in range(100)]), "column2": np.ones(100)} test_dataframe =
pd.DataFrame(data=dictdata)
pandas.DataFrame
import numpy as np import pandas as pd import spacy from spacy.lang.de.stop_words import STOP_WORDS from nltk.tokenize import sent_tokenize from itertools import groupby import copy import re import sys import textstat # Method to create a matrix with contains only zeroes and a index starting by 0 def create_matrix_index_zeros(rows, columns): arr = np.zeros((rows, columns)) for r in range(0, rows): arr[r, 0] = r return arr # Method to get all authors with a given number of texts. Used in chapter 5.1 to get a corpus with 100 Texts for 25 # authors def get_balanced_df_all_authors(par_df, par_num_text): author_count = par_df["author"].value_counts() author_list = [] df_balanced_text = pd.DataFrame(columns=['label_encoded', 'author', 'genres', 'release_date', 'text']) for i in range(0, len(author_count)): if author_count[i] >= par_num_text and not author_count.index[i] == "Gast-Rezensent": author_list.append(author_count.index[i]) texts = [par_num_text for i in range(0, len(author_count))] for index, row in par_df.iterrows(): if row['author'] in author_list: if texts[author_list.index(row['author'])] != 0: d = {'author': [row['author']], 'genres': [row['genres']], 'release_date': [row['release_date']], 'text': [row['text']]} df_balanced_text = df_balanced_text.append(pd.DataFrame.from_dict(d), ignore_index=True) texts[author_list.index(row['author'])] -= 1 if sum(texts) == 0: break # Label encoding and delete author column after dic_author_mapping = author_encoding(df_balanced_text) df_balanced_text['label_encoded'] = get_encoded_author_vector(df_balanced_text, dic_author_mapping)[:, 0] df_balanced_text.drop("author", axis=1, inplace=True) # Print author mapping in file original_stdout = sys.stdout with open('author_mapping.txt', 'w') as f: sys.stdout = f print(dic_author_mapping) sys.stdout = original_stdout for i in range(0, len(author_list)): print(f"Autor {i+1}: {par_num_text - texts[i]} Texte") return df_balanced_text # Method to get a specific number of authors with a given number of texts. Used later on to get results for different # combinations of authors and texts def get_balanced_df_by_texts_authors(par_df, par_num_text, par_num_author): author_count = par_df["author"].value_counts() author_list = [] df_balanced_text = pd.DataFrame(columns=['label_encoded', 'author', 'genres', 'release_date', 'text']) loop_count, loops = 0, par_num_author while loop_count < loops: if author_count[loop_count] >= par_num_text and not author_count.index[loop_count] == "Gast-Rezensent": author_list.append(author_count.index[loop_count]) # Skip the Author "Gast-Rezensent" if its not the last round and increase the loops by 1 elif author_count.index[loop_count] == "Gast-Rezensent": loops += 1 loop_count += 1 texts = [par_num_text for i in range(0, len(author_list))] for index, row in par_df.iterrows(): if row['author'] in author_list: if texts[author_list.index(row['author'])] != 0: d = {'author': [row['author']], 'genres': [row['genres']], 'release_date': [row['release_date']], 'text': [row['text']]} df_balanced_text = df_balanced_text.append(pd.DataFrame.from_dict(d), ignore_index=True) texts[author_list.index(row['author'])] -= 1 if sum(texts) == 0: break # Label encoding and delete author column after dic_author_mapping = author_encoding(df_balanced_text) df_balanced_text['label_encoded'] = get_encoded_author_vector(df_balanced_text, dic_author_mapping)[:, 0] df_balanced_text.drop("author", axis=1, inplace=True) # Print author mapping in file original_stdout = sys.stdout with open('author_mapping.txt', 'w') as f: sys.stdout = f print(dic_author_mapping) sys.stdout = original_stdout for i in range(0, len(author_list)): print(f"Autor {i+1}: {par_num_text - texts[i]} Texte") return df_balanced_text # Feature extraction of the feature described in chapter 5.6.1 def get_bow_matrix(par_df): nlp = spacy.load("de_core_news_sm") d_bow = {} d_bow_list = [] function_pos = ["ADP", "AUX", "CONJ", "CCONJ", "DET", "PART", "PRON", "SCONJ"] for index, row in par_df.iterrows(): tokens = nlp(row['text']) tokens = [word for word in tokens if not word.is_punct and not word.is_space and not word.is_digit and word.lemma_ not in STOP_WORDS and word.pos_ not in function_pos] for word in tokens: try: d_bow["bow:"+word.lemma_.lower()] += 1 except KeyError: d_bow["bow:"+word.lemma_.lower()] = 1 d_bow_list.append(copy.deepcopy(d_bow)) d_bow.clear() return pd.DataFrame(d_bow_list) # Feature extraction of the feature described in chapter 5.6.2 def get_word_n_grams(par_df, n): nlp = spacy.load("de_core_news_sm") d_word_ngram = {} d_word_ngram_list = [] function_pos = ["ADP", "AUX", "CONJ", "CCONJ", "DET", "PART", "PRON", "SCONJ"] for index, row in par_df.iterrows(): tokens = nlp(row['text']) tokens = [word for word in tokens if not word.is_punct and not word.is_space and not word.is_digit and word.lemma_ not in STOP_WORDS and word.pos_ not in function_pos] tokens = [token.lemma_.lower() for token in tokens] for w in range(0, len(tokens)): if w + n <= len(tokens): try: d_word_ngram["w" + str(n) + "g" + ":" + '|'.join(tokens[w:w + n])] += 1 except KeyError: d_word_ngram["w" + str(n) + "g" + ":" + '|'.join(tokens[w:w + n])] = 1 d_word_ngram_list.append(copy.deepcopy(d_word_ngram)) d_word_ngram.clear() return pd.DataFrame(d_word_ngram_list) # Feature extraction of the feature described in chapter 5.6.3 def get_word_count(par_df): arr_wordcount = np.zeros((len(par_df), 1)) nlp = spacy.load("de_core_news_sm") only_words = [] for index, row in par_df.iterrows(): tokens = nlp(row['text']) for t in tokens: if not t.is_punct and not t.is_space: only_words.append(t) arr_wordcount[index] = len(only_words) only_words.clear() return pd.DataFrame(data=arr_wordcount, columns=["word_count"]) # Feature extraction of the feature described in chapter 5.6.4 with some variations # Count all word lengths individually def get_word_length_matrix(par_df): nlp = spacy.load("de_core_news_sm") d_word_len = {} d_word_len_list = [] for index, row in par_df.iterrows(): tokens = nlp(row['text']) tokens = [word for word in tokens if not word.is_punct and not word.is_space and not word.is_digit] for word in tokens: try: d_word_len["w_len:"+str(len(word.text))] += 1 except KeyError: d_word_len["w_len:"+str(len(word.text))] = 1 d_word_len_list.append(copy.deepcopy(d_word_len)) d_word_len.clear() return pd.DataFrame(d_word_len_list) # Count word lengths and set 2 intervals def get_word_length_matrix_with_interval(par_df, border_1, border_2): arr_wordcount_with_interval = np.zeros((len(par_df), border_1 + 2)) nlp = spacy.load("de_core_news_sm") for index, row in par_df.iterrows(): tokens = nlp(row['text']) for word in tokens: if len(word.text) <= border_1 and not word.is_punct and not word.is_space and not word.is_digit: arr_wordcount_with_interval[index, len(word.text) - 1] += 1 elif border_1 < len( word.text) <= border_2 and not word.is_punct and not word.is_space and not word.is_digit: arr_wordcount_with_interval[index, -2] += 1 elif not word.is_punct and not word.is_space and not word.is_digit: arr_wordcount_with_interval[index, -1] += 1 word_length_labels = [str(i) for i in range(1, border_1+1)] word_length_labels.append(f"{border_1+1}-{border_2}") word_length_labels.append(f">{border_2}") return pd.DataFrame(data=arr_wordcount_with_interval, columns=word_length_labels) # Count word lengths and sum all above a defined margin def get_word_length_matrix_with_margin(par_df, par_margin): arr_wordcount_with_interval = np.zeros((len(par_df), par_margin + 1)) nlp = spacy.load("de_core_news_sm") for index, row in par_df.iterrows(): tokens = nlp(row['text']) for word in tokens: if len(word.text) <= par_margin and not word.is_punct and not word.is_space and not word.is_digit: arr_wordcount_with_interval[index, len(word.text) - 1] += 1 elif par_margin < len(word.text) and not word.is_punct and not word.is_space and not word.is_digit: arr_wordcount_with_interval[index, -1] += 1 word_length_labels = [str(i) for i in range(1, par_margin+1)] word_length_labels.append(f">{par_margin}") return pd.DataFrame(data=arr_wordcount_with_interval, columns=word_length_labels) # Count the average word length of the article def get_average_word_length(par_df): arr_avg_word_len_vector = np.zeros((len(par_df), 1)) nlp = spacy.load("de_core_news_sm") for index, row in par_df.iterrows(): symbol_sum = 0 words = 0 tokens = nlp(row['text']) for word in tokens: if not word.is_punct and not word.is_space and not word.is_digit: symbol_sum += len(word.text) words += 1 arr_avg_word_len_vector[index, 0] = symbol_sum / words return pd.DataFrame(data=arr_avg_word_len_vector, columns=["avg_word_length"]) # Feature extraction of the feature described in chapter 5.6.5 def get_yules_k(par_df): d = {} nlp = spacy.load("de_core_news_sm") arr_yulesk = np.zeros((len(par_df), 1)) for index, row in par_df.iterrows(): tokens = nlp(row['text']) for t in tokens: if not t.is_punct and not t.is_space and not t.is_digit: w = t.lemma_.lower() try: d[w] += 1 except KeyError: d[w] = 1 s1 = float(len(d)) s2 = sum([len(list(g)) * (freq ** 2) for freq, g in groupby(sorted(d.values()))]) try: k = 10000 * (s2 - s1) / (s1 * s1) arr_yulesk[index] = k except ZeroDivisionError: pass d.clear() return pd.DataFrame(data=arr_yulesk, columns=["yulesk"]) # Feature extraction of the feature described in chapter 5.6.6 # Get a vector of all special characters def get_special_char_label_vector(par_df): nlp = spacy.load("de_core_news_sm") special_char_label_vector = [] for index, row in par_df.iterrows(): tokens = nlp(row['text']) for t in tokens: chars = ' '.join([c for c in t.text]) chars = nlp(chars) for c in chars: if c.is_punct and c.text not in special_char_label_vector: special_char_label_vector.append(c.text) return special_char_label_vector # Get a matrix of all special character by a given vector of special chars def get_special_char_matrix(par_df, par_special_char_label_vector): nlp = spacy.load("de_core_news_sm") arr_special_char = np.zeros((len(par_df), len(par_special_char_label_vector))) for index, row in par_df.iterrows(): tokens = nlp(row['text']) for t in tokens: chars = ' '.join([c for c in t.text]) chars = nlp(chars) for c in chars: if c.text in par_special_char_label_vector: arr_special_char[index, par_special_char_label_vector.index(c.text)] += 1 return arr_special_char # Feature extraction of the feature described in chapter 5.6.7 # Get the char-affix-n-grams by a defined n def get_char_affix_n_grams(par_df, n): d_prefix_list, d_suffix_list, d_space_prefix_list, d_space_suffix_list = [], [], [], [] d_prefix, d_suffix, d_space_prefix, d_space_suffix = {}, {}, {}, {} nlp = spacy.load("de_core_news_sm") for index, row in par_df.iterrows(): tokens = nlp(row['text']) for w in range(0, len(tokens)): # Prefix if len(tokens[w].text) >= n + 1: try: d_prefix["c" + str(n) + "_p: " + tokens[w].text.lower()[0:n]] += 1 except KeyError: d_prefix["c" + str(n) + "_p: " + tokens[w].text.lower()[0:n]] = 1 # Suffix if len(tokens[w].text) >= n + 1: try: d_suffix["c" + str(n) + "_s: " + tokens[w].text.lower()[-n:]] += 1 except KeyError: d_suffix["c" + str(n) + "_s: " + tokens[w].text.lower()[-n:]] = 1 d_prefix_list.append(copy.deepcopy(d_prefix)) d_suffix_list.append(copy.deepcopy(d_suffix)) d_prefix.clear() d_suffix.clear() for i in range(0, len(row['text'])): if row['text'][i] == " " and i + n <= len(row['text']) and i - n >= 0: # Space-prefix try: d_space_prefix["c" + str(n) + "_sp: " + row['text'].lower()[i:n + i]] += 1 except KeyError: d_space_prefix["c" + str(n) + "_sp: " + row['text'].lower()[i:n + i]] = 1 # Space-suffix try: d_space_suffix["c" + str(n) + "_ss: " + row['text'].lower()[i - n + 1:i + 1]] += 1 except KeyError: d_space_suffix["c" + str(n) + "_ss: " + row['text'].lower()[i - n + 1:i + 1]] = 1 d_space_prefix_list.append(copy.deepcopy(d_space_prefix)) d_space_suffix_list.append(copy.deepcopy(d_space_suffix)) d_space_prefix.clear() d_space_suffix.clear() df_pre = pd.DataFrame(d_prefix_list) df_su = pd.DataFrame(d_suffix_list) df_s_pre = pd.DataFrame(d_space_prefix_list) df_s_su = pd.DataFrame(d_space_suffix_list) df_affix = pd.concat([df_pre, df_su, df_s_pre, df_s_su], axis=1) return df_affix # Get the char-word-n-grams by a defined n def get_char_word_n_grams(par_df, n): d_whole_word_list, d_mid_word_list, d_multi_word_list = [], [], [] d_whole_word, d_mid_word, d_multi_word = {}, {}, {} match_list = [] nlp = spacy.load("de_core_news_sm") for index, row in par_df.iterrows(): tokens = nlp(row['text']) for w in range(0, len(tokens)): # Whole-word if len(tokens[w].text) == n: try: d_whole_word["c" + str(n) + "_ww: " + tokens[w].text.lower()] += 1 except KeyError: d_whole_word["c" + str(n) + "_ww: " + tokens[w].text.lower()] = 1 # Mid-word if len(tokens[w].text) >= n + 2: for i in range(1, len(tokens[w].text) - n): try: d_mid_word["c" + str(n) + "_miw: " + tokens[w].text.lower()[i:i + n]] += 1 except KeyError: d_mid_word["c" + str(n) + "_miw: " + tokens[w].text.lower()[i:i + n]] = 1 d_whole_word_list.append(copy.deepcopy(d_whole_word)) d_mid_word_list.append(copy.deepcopy(d_mid_word)) d_whole_word.clear() d_mid_word.clear() # Multi-word # ignore special character trimmed_text = re.sub(r'[\s]+', ' ', re.sub(r'[^\w ]+', '', row['text'])) match_list.clear() for i in range(1, n - 1): regex = r"\w{" + str(i) + r"}\s\w{" + str(n - 1 - i) + r"}" match_list += re.findall(regex, trimmed_text.lower()) for match in match_list: try: d_multi_word["c" + str(n) + "_mw: " + match] += 1 except KeyError: d_multi_word["c" + str(n) + "_mw: " + match] = 1 d_multi_word_list.append(copy.deepcopy(d_multi_word)) d_multi_word.clear() df_ww =
pd.DataFrame(d_whole_word_list)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 25 17:13:22 2018 @author: kitreatakataglushkoff Kitrea's hand-written copied/adjusted version of the analyze_massredistribution.py, which was last significantly edited Thursday July 18. UPDATE - Oct 9, 2018 - Kitrea double-checked code, added some comments. last updated Wed Nov 14 - to clean out bad data in the new large dataset. """ import pandas as pd import numpy as np import os import glob import matplotlib.pyplot as plt import copy import pygem_input as input import pygemfxns_modelsetup as modelsetup # Tips, comments, and old portions of code no longer used have been moved to bottom of file #%% ===== REGION AND GLACIER FILEPATH OPTIONS ===== # User defines regions of interest rgi_regionO1 = [13, 14, 15] #rgi_regionO1 = [15] search_binnedcsv_fn = (input.main_directory + '/../DEMs/Shean_2018_1109/aster_2000-2018_20181109_bins/*_mb_bins.csv') #%% ===== PLOT OPTIONS ===== # Option to save figures option_savefigs = 1 fig_fp = input.main_directory + '/../Output/figures/massredistribution/' # Plot histogram options option_plot_histogram = 0 histogram_parameters = ['Area', 'Zmed', 'Slope', 'PercDebris'] #histogram_parameters = ['Area', 'Zmin', 'Zmax', 'Zmed', 'Slope', 'Aspect', 'Lmax', 'PercDebris'] # Plot dhdt of each glacier options option_plot_eachglacier = 0 # Plot glaciers above and below a given parameter threshold (*MAIN FUNCTION TO RUN) option_plot_multipleglaciers_single_thresholds = 0 # run for specific parameter or all parameters option_run_specific_pars = 0 # Plot glaciers above and below a given set of multiple thresholds option_plot_multipleglaciers_multiplethresholds = 0 # Plot glacier characteristics to see if parameters are related option_plot_compareparameters = 1 #option_plot_multipleglaciers_binned_parameter = 0 #glaciers within a characteristic's defined range #option_plot_multipleglaciers_indiv_subdivisions = 0 #glaciers binned into 6 categories. (NOT USED) #option_plots_threshold = 0 #scatter plots relating glacier stats # Columns to use for mass balance and dhdt (specify mean or median) mb_cn = 'mb_bin_med_mwea' dhdt_cn = 'dhdt_bin_med_ma' dhdt_max = 2.5 dhdt_min = -4 # Threshold for tossing glaciers with too much missing data perc_area_valid_threshold = 90 # Switch to use merged data or not (0 = don't use, 1 = use merged data) option_use_mergedata = 0 # Remove glacier options (surging, all positive dhdt, etc.) option_remove_surge_glac = 1 option_remove_all_pos_dhdt = 1 option_remove_dhdt_acc = 1 acc_dhdt_threshold = 0.5 # Legend option (switch to show legend on multi-glacier figures or not) option_show_legend = 0 # Transparency value (between 0 & 1: 0 = no plot, 1 = full opaque) glacier_plots_transparency = 0.3 #user-defined stored variables for ideal thresholds, for each region and parameter Area_15_thresholds = list(range(5,40, 5)) Area_13_thresholds = list(range(5, 120, 5)) Area_13_thresholds.extend([150, 200, 250, 300, 350]) #if histogram has 2 separate ranges use .extend Slope_15_thresholds = list(range(10,26,2)) Slope_13_thresholds = list(range(5, 40, 2)) PercDebris_13_thresholds = list(range(0,65,5)) PercDebris_15_thresholds = list(range(0, 65, 5)) Zmin_13_thresholds = list(range(2600,5800, 200)) Zmin_15_thresholds = list(range(3500, 6500, 500)) Zmed_13_thresholds = list(range(3800, 6600, 200)) Zmed_15_thresholds = list(range(4750, 7000, 500)) Aspect_13_thresholds = list(range(0, 450, 90)) Aspect_15_thresholds = list(range(0, 450, 90)) Zmax_15_thresholds = list(range(6000, 7600, 200)) Zmax_13_thresholds = list(range(4000, 7600, 200)) Lmax_15_thresholds = list(range(4000, 14000, 2000)) Lmax_13_thresholds = list(range(4400, 40000, 2000)) Lmax_13_thresholds.extend([56000, 58000, 6000]) dhdt_13_thresholds = [1] Area_14_thresholds = list(range(5, 120, 5,)) Area_14_thresholds.extend([150, 200, 250, 300, 350]) Zmin_14_thresholds = list(range(2600, 5800, 200)) Zmax_14_thresholds = list(range(5000, 7600, 200)) Zmed_14_thresholds = list(range(3800,6400, 200)) Slope_14_thresholds = list(range(10, 42, 2)) Aspect_14_thresholds = list(range(0,450,90)) Lmax_14_thresholds = list(range(4000, 45000,2000)) PercDebris_14_thresholds = list(range(0, 65,5)) #For plotting one parameter at a time #User defines parameter for multi-glacier and histogram runs #set the threshold equal to one of the above, defined thresholds, depending on the current #keep in mind for threshold, that the subplots are examining >= and < the threshold #If you have not yet evaluated the histograms to define the threshold ranges, #then you must define the following variable #For plotting multiple parameters in one run #Create dictionary. key = parameter found in main_glac_rgi, value = thresholds all_13_pars = {'Area': Area_13_thresholds, 'Zmin': Zmin_13_thresholds , 'Zmax':Zmax_13_thresholds, 'Zmed': Zmed_13_thresholds, 'Slope': Slope_13_thresholds, 'Aspect': Aspect_13_thresholds, 'Lmax': Lmax_13_thresholds, 'PercDebris': PercDebris_13_thresholds} all_14_pars = {'Area': Area_14_thresholds, 'Zmin': Zmin_14_thresholds , 'Zmax':Zmax_14_thresholds, 'Zmed': Zmed_14_thresholds, 'Slope': Slope_14_thresholds, 'Aspect': Aspect_14_thresholds, 'Lmax': Lmax_14_thresholds, 'PercDebris': PercDebris_14_thresholds} all_15_pars = {'Area': Area_15_thresholds , 'Zmin': Zmin_15_thresholds , 'Zmax':Zmax_15_thresholds, 'Zmed': Zmed_15_thresholds, 'Slope': Slope_15_thresholds, 'Aspect': Aspect_15_thresholds, 'Lmax': Lmax_15_thresholds, 'PercDebris': PercDebris_15_thresholds} #If only plotting one parameter in the run, define the parameter of interest pars_dict = {'PercDebris': PercDebris_13_thresholds} if option_run_specific_pars == 1: region_pars = pars_dict else: if rgi_regionO1[0] == 13: region_pars = all_13_pars elif rgi_regionO1[0] == 14: region_pars = all_14_pars elif rgi_regionO1[0] == 15: region_pars = all_15_pars else: print("Please Check Region Specification") #Binned CSV column name conversion dictionary # change column names so they are easier to work with (remove spaces, etc.) sheancoldict = {'# bin_center_elev_m': 'bin_center_elev_m', ' z1_bin_count_valid': 'z1_bin_count_valid', ' z1_bin_area_valid_km2': 'z1_bin_area_valid_km2', ' z1_bin_area_perc': 'z1_bin_area_perc', ' z2_bin_count_valid': 'z2_bin_count_valid', ' z2_bin_area_valid_km2': 'z2_bin_area_valid_km2', ' z2_bin_area_perc': 'z2_bin_area_perc', ' dhdt_bin_count' : 'dhdt_bin_count', ' dhdt_bin_area_valid_km2' : 'dhdt_bin_area_valid_km2', ' dhdt_bin_area_perc' : 'dhdt_bin_area_perc', ' dhdt_bin_med_ma': 'dhdt_bin_med_ma', ' dhdt_bin_mad_ma': 'dhdt_bin_mad_ma', ' dhdt_bin_mean_ma': 'dhdt_bin_mean_ma', ' dhdt_bin_std_ma': 'dhdt_bin_std_ma', ' mb_bin_med_mwea': 'mb_bin_med_mwea', ' mb_bin_mad_mwea': 'mb_bin_mad_mwea', ' mb_bin_mean_mwea': 'mb_bin_mean_mwea', ' mb_bin_std_mwea': 'mb_bin_std_mwea', ' debris_thick_med_m': 'debris_thick_med_m', ' debris_thick_mad_m': 'debris_thick_mad_m', ' perc_debris': 'perc_debris', ' perc_pond': 'perc_pond', ' perc_clean': 'perc_clean', ' dhdt_debris_med' : 'dhdt_debris_med', ' dhdt_pond_med' : 'dhdt_pond_med', ' dhdt_clean_med' : 'dhdt_clean_med', ' vm_med' : 'vm_med', ' vm_mad' : 'vm_mad', ' H_mean' : 'H_mean', ' H_std' : 'H_std'} #%% Select Files # Find files for analysis; create list of all binnedcsv filenames (fn) binnedcsv_files_all = glob.glob(search_binnedcsv_fn) # Fill in dataframe of glacier names and RGI IDs, of ALL glaciers with binnedcsv, regardless of the region df_glacnames_all =
pd.DataFrame()
pandas.DataFrame
''' Old Script of assessing classifier models that were trained and evaluated individually on multiple patient-stay-slices. (Deprecated) ''' import os import argparse import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import glob import re if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--clf_performance_dir', default=None, type=str, help='Directory where classifeir performance csvs are saved') args = parser.parse_args() models = ['random_forest', 'logistic_regression', 'mews'] #models = ['random_forest'] # get performance vals for classifiers at tstep=2,4,6,10,14,-1 etc. -1 is full history final_perf_df_list=list() for model in models: model_tstep_folders = glob.glob(os.path.join(args.clf_performance_dir, model, '*')) for tstep_folder in model_tstep_folders: #perf_csv = os.path.join(tstep_folder, 'performance_df.csv') perf_csvs = glob.glob(os.path.join(tstep_folder, 'performance_df_random_seed*.csv')) for perf_csv in perf_csvs: if os.path.exists(perf_csv): perf_df =
pd.read_csv(perf_csv)
pandas.read_csv