prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from datetime import datetime from sktime.transformations.panel.rocket import MiniRocket as MiniRKT from sktime.classification.shapelet_based import MrSEQLClassifier from convst.utils import load_sktime_arff_file_resample_id, return_all_dataset_names, UCR_stratified_resample from convst.transformers import ConvolutionalShapeletTransformer from sklearn.linear_model import RidgeClassifierCV from sklearn.pipeline import make_pipeline from sklearn.model_selection import cross_validate from sklearn.metrics import f1_score, make_scorer from sklearn.metrics import accuracy_score from wildboar.ensemble import ShapeletForestClassifier from numba import set_num_threads #Can use this to resume to last dataset if a problem occured resume = False #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # Modify this to your path to the UCR resamples, check README for how to get them. # Another splitter is also provided in dataset_utils to make random resamples base_UCR_resamples_path = r"/home/prof/guillaume/Shapelets/resamples/" #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! print("Imports OK") #n_cv = 1 to test on original train test split. n_cv=30 n_trees=200 max_ft=1.0 P=80 n_bins=11 random_state = None run_RKT = True run_CST = True run_MrSEQL = True run_SFC = True #Machine parameters, to change with yours. available_memory_bytes = 60 * 1e9 n_cores = 32 def get_n_jobs_n_threads(nbytes, size_mult=3000): nbytes *= size_mult n_jobs = min(max(available_memory_bytes//nbytes,1),n_cv//2) n_threads = min(max(n_cores//n_jobs,1),n_cores//2) return int(n_jobs), int(n_threads) csv_name = 'CV_{}_results_({},{})_{}_{}.csv'.format( n_cv, n_trees, max_ft, n_bins, P) dataset_names = return_all_dataset_names() if resume: df = pd.read_csv(csv_name) df = df.set_index('Unnamed: 0') df = df.drop(df.index[np.where(~df.index.isin(dataset_names))[0]], axis=0) df.to_csv(csv_name) else: df = pd.DataFrame(index=dataset_names) df['CST_f1_mean'] = pd.Series(0, index=df.index) df['CST_f1_std'] =
pd.Series(0, index=df.index)
pandas.Series
# Original implementation by <NAME> can be found using the following link: https://github.com/ryansmcgee/seirsplus # Copyright (c) 2020 by <NAME>, <NAME>, BIOMATH, Ghent University. All Rights Reserved. from __future__ import absolute_import from __future__ import division from __future__ import print_function import networkx as networkx import numpy as numpy import scipy as scipy import scipy.integrate import pandas as pd from random import choices import matplotlib import matplotlib.pyplot as plt import matplotlib.dates as mdates import datetime from scipy import interpolate as inter import copy import pso import multiprocessing # set color schemes #From Color Universal Design (CUD): https://jfly.uni-koeln.de/color/ orange = "#E69F00" light_blue = "#56B4E9" green = "#009E73" yellow = "#F0E442" blue = "#0072B2" red = "#D55E00" pink = "#CC79A7" black = "#000000" Okabe_Ito = (orange, light_blue, green, yellow, blue, red, pink, black) plt.rcParams["axes.prop_cycle"] = matplotlib.cycler('color', Okabe_Ito) # increase font sizes # the code below is not wrong, but kinda annoying if you continuously import # this model in a notebook using the load_ext magic #multiplier = 1.5 #keys = ("font.size", ) #for key in keys: # plt.rcParams[key] *= multiplier plt.rcParams["font.size"] = 15 plt.rcParams["lines.linewidth"] = 3 class SEIRSAgeModel(): """ A class to simulate the Deterministic extended SEIRS Model with optionl age-structuring ======================================================================================= Params: """ def __init__(self, initN, beta, sigma, Nc=0, zeta=0,sm=0,m=0,h=0,c=0,dsm=0,dm=0,dhospital=0,dh=0,dcf=0,dcr=0,mc0=0,ICU=0,totalTests=0, psi_FP=0,psi_PP=0,dq=14,initE=0,initSM=0,initM=0,initH=0,initC=0,initHH=0,initCH=0,initR=0, initF=0,initSQ=0,initEQ=0,initSMQ=0,initMQ=0,initRQ=0,monteCarlo=False,n_samples=1): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Model Parameters: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Clinical parameters self.beta = beta self.sigma = sigma self.Nc = Nc self.zeta = zeta self.sm = sm self.m = m self.h = h self.c = c self.dsm = dsm self.dm = dm self.dhospital = dhospital self.dh = dh self.dcf = dcf self.dcr = dcr self.mc0 = mc0 self.ICU = ICU # Testing-related parameters: self.totalTests = totalTests self.psi_FP = psi_FP self.psi_PP = psi_PP self.dq = dq # monte-carlo sampling is an attribute of the model self.monteCarlo = monteCarlo self.n_samples = n_samples #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Reshape inital condition in Nc.shape[0] x 1 2D arrays: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # initial condition must be an attribute of class: WAS NOT ADDED ORIGINALLY self.initN = numpy.reshape(initN,[Nc.shape[0],1]) self.initE = numpy.reshape(initE,[Nc.shape[0],1]) self.initSM = numpy.reshape(initSM,[Nc.shape[0],1]) self.initM = numpy.reshape(initM,[Nc.shape[0],1]) self.initH = numpy.reshape(initH,[Nc.shape[0],1]) self.initC = numpy.reshape(initH,[Nc.shape[0],1]) self.initHH = numpy.reshape(initHH,[Nc.shape[0],1]) self.initCH = numpy.reshape(initCH,[Nc.shape[0],1]) self.initR = numpy.reshape(initR,[Nc.shape[0],1]) self.initF = numpy.reshape(initF,[Nc.shape[0],1]) self.initSQ = numpy.reshape(initSQ,[Nc.shape[0],1]) self.initEQ = numpy.reshape(initEQ,[Nc.shape[0],1]) self.initSMQ = numpy.reshape(initSMQ,[Nc.shape[0],1]) self.initMQ = numpy.reshape(initMQ,[Nc.shape[0],1]) self.initRQ = numpy.reshape(initRQ,[Nc.shape[0],1]) #~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Timekeeping: #~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tmax = 0 # will be set when run() is called self.tseries = numpy.array([0]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # per age category: self.N = self.initN.astype(int) self.numE = self.initE.astype(int) self.numSM = self.initSM.astype(int) self.numM = self.initM.astype(int) self.numH = self.initH.astype(int) self.numC = self.initC.astype(int) self.numHH = self.initHH.astype(int) self.numCH = self.initCH.astype(int) self.numR = self.initR.astype(int) self.numF = self.initF.astype(int) self.numSQ = self.initSQ.astype(int) self.numEQ = self.initEQ.astype(int) self.numSMQ = self.initSMQ.astype(int) self.numMQ = self.initMQ.astype(int) self.numRQ = self.initRQ.astype(int) self.numS = numpy.reshape(self.N[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numE[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numSM[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numM[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numH[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numC[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numHH[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numCH[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numR[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numF[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numSQ[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numEQ[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numEQ[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numSMQ[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numMQ[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numRQ[:,-1],[Nc.shape[0],1]) def reset(self): Nc = self.Nc #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Reset Timekeeping: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.t = 0 self.tmax = 0 # will be set when run() is called self.tseries = numpy.array([0]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Reshape inital condition in Nc.shape[0] x 1 2D arrays: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ self.initN = numpy.reshape(self.initN,[self.Nc.shape[0],1]) self.initE = numpy.reshape(self.initE,[self.Nc.shape[0],1]) self.initSM = numpy.reshape(self.initSM,[self.Nc.shape[0],1]) self.initM = numpy.reshape(self.initM,[self.Nc.shape[0],1]) self.initH = numpy.reshape(self.initH,[self.Nc.shape[0],1]) self.initC = numpy.reshape(self.initC,[self.Nc.shape[0],1]) self.initHH = numpy.reshape(self.initHH,[self.Nc.shape[0],1]) self.initCH = numpy.reshape(self.initCH,[self.Nc.shape[0],1]) self.initR = numpy.reshape(self.initR,[self.Nc.shape[0],1]) self.initF = numpy.reshape(self.initF,[self.Nc.shape[0],1]) self.initSQ = numpy.reshape(self.initSQ,[self.Nc.shape[0],1]) self.initEQ = numpy.reshape(self.initEQ,[self.Nc.shape[0],1]) self.initSMQ = numpy.reshape(self.initSMQ,[self.Nc.shape[0],1]) self.initMQ = numpy.reshape(self.initMQ,[self.Nc.shape[0],1]) self.initRQ = numpy.reshape(self.initRQ,[self.Nc.shape[0],1]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Initialize Counts of inidividuals with each state: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # per age category: self.N = self.initN.astype(int) self.numE = self.initE.astype(int) self.numSM = self.initSM.astype(int) self.numM = self.initM.astype(int) self.numH = self.initH.astype(int) self.numC = self.initC.astype(int) self.numHH = self.initHH.astype(int) self.numCH = self.initCH.astype(int) self.numR = self.initR.astype(int) self.numF = self.initF.astype(int) self.numSQ = self.initSQ.astype(int) self.numEQ = self.initEQ.astype(int) self.numSMQ = self.initSMQ.astype(int) self.numMQ = self.initMQ.astype(int) self.numRQ = self.initRQ.astype(int) self.numS = numpy.reshape(self.N[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numE[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numSM[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numM[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numH[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numC[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numHH[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numCH[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numR[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numF[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numSQ[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numEQ[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numEQ[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numSMQ[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numMQ[:,-1],[Nc.shape[0],1]) - numpy.reshape(self.numRQ[:,-1],[Nc.shape[0],1]) #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ @staticmethod def system_dfes(t, variables, beta, sigma, Nc, zeta, sm, m, h, c, dsm, dm, dhospital, dh, dcf, dcr, mc0, ICU, totalTests, psi_FP, psi_PP, dq): # input is a 1D-array # first extract seperate variables in 1D-array S,E,SM,M,H,C,HH,CH,R,F,SQ,EQ,SMQ,MQ,RQ = variables.reshape(15,Nc.shape[0]) # reshape all variables to a Nc.shape[0]x1 2D-array S = numpy.reshape(S,[Nc.shape[0],1]) E = numpy.reshape(E,[Nc.shape[0],1]) SM = numpy.reshape(SM,[Nc.shape[0],1]) M = numpy.reshape(M,[Nc.shape[0],1]) H = numpy.reshape(H,[Nc.shape[0],1]) C = numpy.reshape(C,[Nc.shape[0],1]) HH = numpy.reshape(HH,[Nc.shape[0],1]) CH = numpy.reshape(CH,[Nc.shape[0],1]) R = numpy.reshape(R,[Nc.shape[0],1]) F = numpy.reshape(F,[Nc.shape[0],1]) SQ = numpy.reshape(SQ,[Nc.shape[0],1]) EQ = numpy.reshape(EQ,[Nc.shape[0],1]) SMQ = numpy.reshape(SMQ,[Nc.shape[0],1]) MQ = numpy.reshape(MQ,[Nc.shape[0],1]) RQ = numpy.reshape(RQ,[Nc.shape[0],1]) # calculate total population per age bin using 2D array N = S + E + SM + M + H + C + HH + CH + R + SQ + EQ + SMQ + MQ + RQ # calculate the test rates for each pool using the total number of available tests nT = S + E + SM + M + R theta_S = totalTests/nT theta_S[theta_S > 1] = 1 theta_E = totalTests/nT theta_E[theta_E > 1] = 1 theta_SM = totalTests/nT theta_SM[theta_SM > 1] = 1 theta_M = totalTests/nT theta_M[theta_M > 1] = 1 theta_R = totalTests/nT theta_R[theta_R > 1] = 1 # calculate rates of change using the 2D arrays dS = - beta*numpy.matmul(Nc,((E+SM)/N)*S) - theta_S*psi_FP*S + SQ/dq + zeta*R dE = beta*numpy.matmul(Nc,((E+SM)/N)*S) - E/sigma - theta_E*psi_PP*E dSM = sm/sigma*E - SM/dsm - theta_SM*psi_PP*SM dM = m/sigma*E - M/dm - theta_M*psi_PP*M dH = h/sigma*E - H/dhospital + h/sigma*EQ dC = c/sigma*E - C/dhospital + c/sigma*EQ dHH = H/dhospital - HH/dh dCH = C/dhospital - mc0*CH/dcf - (1-mc0)*CH/dcr dR = SM/dsm + M/dm + HH/dh + (1-mc0)*CH/dcr + SMQ/dsm + MQ/dm + RQ/dq - zeta*R dF = mc0*CH/dcf dSQ = theta_S*psi_FP*S - SQ/dq dEQ = theta_E*psi_PP*E - EQ/sigma dSMQ = theta_SM*psi_PP*SM + sm/sigma*EQ - SMQ/dsm dMQ = theta_M*psi_PP*M + m/sigma*EQ - MQ/dm dRQ = theta_R*psi_FP*R - RQ/dq # reshape output back into a 1D array of similar dimension as input out = numpy.array([dS,dE,dSM,dM,dH,dC,dHH,dCH,dR,dF,dSQ,dEQ,dSMQ,dMQ,dRQ]) out = numpy.reshape(out,15*Nc.shape[0]) return out #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run_epoch(self, runtime, dt=1): #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Create a list of times at which the ODE solver should output system values. # Append this list of times as the model's timeseries t_eval = numpy.arange(start=self.t+1, stop=self.t+runtime, step=dt) # Define the range of time values for the integration: t_span = (self.t, self.t+runtime) # Define the initial conditions as the system's current state: # (which will be the t=0 condition if this is the first run of this model, # else where the last sim left off) init_cond = numpy.array([self.numS[:,-1], self.numE[:,-1], self.numSM[:,-1], self.numM[:,-1], self.numH[:,-1], self.numC[:,-1], self.numHH[:,-1], self.numCH[:,-1], self.numR[:,-1], self.numF[:,-1], self.numSQ[:,-1], self.numEQ[:,-1], self.numSMQ[:,-1], self.numMQ[:,-1], self.numRQ[:,-1]]) init_cond = numpy.reshape(init_cond,15*self.Nc.shape[0]) #init_cond = [self.numS[-1], self.numE[-1], self.numSM[-1], self.numM[-1], self.numH[-1], self.numC[-1], self.numHH[-1], self.numCH[-1],self.numR[-1], self.numF[-1], self.numSQ[-1],self.numEQ[-1], self.numSMQ[-1], self.numMQ[-1], self.numRQ[-1]] #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Solve the system of differential eqns: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ solution = scipy.integrate.solve_ivp(lambda t, X: SEIRSAgeModel.system_dfes(t, X, self.beta, self.sigma, self.Nc, self.zeta, self.sm, self.m, self.h, self.c, self.dsm,self.dm, self.dhospital,self.dh,self.dcf,self.dcr,self.mc0,self.ICU,self.totalTests,self.psi_FP,self.psi_PP,self.dq), t_span=[self.t, self.tmax], y0=init_cond, t_eval=t_eval ) # output of size (nTimesteps * Nc.shape[0]) S,E,SM,M,H,C,HH,CH,R,F,SQ,EQ,SMQ,MQ,RQ = numpy.split(numpy.transpose(solution['y']),15,axis=1) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Store the solution output as the model's time series and data series: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # transpose before appending # append per category: self.tseries = numpy.append(self.tseries, solution['t']) self.numS = numpy.append(self.numS, numpy.transpose(S),axis=1) self.numE = numpy.append(self.numE, numpy.transpose(E),axis=1) self.numSM = numpy.append(self.numSM, numpy.transpose(SM),axis=1) self.numM = numpy.append(self.numM, numpy.transpose(M),axis=1) self.numH = numpy.append(self.numH, numpy.transpose(H),axis=1) self.numC = numpy.append(self.numC, numpy.transpose(C),axis=1) self.numHH = numpy.append(self.numHH, numpy.transpose(HH),axis=1) self.numCH = numpy.append(self.numCH, numpy.transpose(CH),axis=1) self.numR = numpy.append(self.numR, numpy.transpose(R),axis=1) self.numF = numpy.append(self.numF, numpy.transpose(F),axis=1) self.numSQ = numpy.append(self.numSQ, numpy.transpose(SQ),axis=1) self.numEQ = numpy.append(self.numEQ, numpy.transpose(EQ),axis=1) self.numSMQ = numpy.append(self.numSMQ, numpy.transpose(SMQ),axis=1) self.numMQ = numpy.append(self.numMQ, numpy.transpose(MQ),axis=1) self.numRQ = numpy.append(self.numRQ, numpy.transpose(RQ),axis=1) self.t = self.tseries[-1] #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ def run(self, T, checkpoints, dt=1, verbose=False): #def run(self, T, dt=1, checkpoints=None, verbose=False): if(T>0): self.tmax += T + 1 else: return False #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Pre-process checkpoint values: #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if(checkpoints): numCheckpoints = len(checkpoints['t']) paramNames = ['beta', 'sigma', 'Nc', 'zeta', 'sm', 'm', 'h', 'c','dsm','dm','dhospital','dh','dcf','dcr','mc0','ICU','totalTests', 'psi_FP','psi_PP','dq'] for param in paramNames: # For params that don't have given checkpoint values (or bad value given), # set their checkpoint values to the value they have now for all checkpoints. if(param not in list(checkpoints.keys()) or not isinstance(checkpoints[param], (list, numpy.ndarray)) or len(checkpoints[param])!=numCheckpoints): checkpoints[param] = [getattr(self, param)]*numCheckpoints # Before using checkpoints, save variables to be changed by method beforeChk=[] for key in checkpoints.keys(): if key is not 't': beforeChk.append(getattr(self,key)) #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run the simulation loop: #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if(not checkpoints): self.run_epoch(runtime=self.tmax, dt=dt) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #print("t = %.2f" % self.t) if(verbose): print("\t S = " + str(self.numS[:,-1])) print("\t E = " + str(self.numE[:,-1])) print("\t SM = " + str(self.numSM[:,-1])) print("\t M = " + str(self.numM[:,-1])) print("\t H = " + str(self.numH[:,-1])) print("\t C = " + str(self.numC[:,-1])) print("\t HH = " + str(self.numHH[:,-1])) print("\t CH = " + str(self.numCH[:,-1])) print("\t R = " + str(self.numR[:,-1])) print("\t F = " + str(self.numF[:,-1])) print("\t SQ = " + str(self.numSQ[:,-1])) print("\t EQ = " + str(self.numEQ[:,-1])) print("\t SMQ = " + str(self.numSMQ[:,-1])) print("\t MQ = " + str(self.numMQ[:,-1])) print("\t RQ = " + str(self.numRQ[:,-1])) else: # checkpoints provided for checkpointIdx, checkpointTime in enumerate(checkpoints['t']): # Run the sim until the next checkpoint time: self.run_epoch(runtime=checkpointTime-self.t, dt=dt) # Having reached the checkpoint, update applicable parameters: #print("[Checkpoint: Updating parameters]") for param in paramNames: setattr(self, param, checkpoints[param][checkpointIdx]) #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #print("t = %.2f" % self.t) if(verbose): print("\t S = " + str(self.numS[:,-1])) print("\t E = " + str(self.numE[:,-1])) print("\t SM = " + str(self.numSM[:,-1])) print("\t M = " + str(self.numM[:,-1])) print("\t H = " + str(self.numH[:,-1])) print("\t C = " + str(self.numC[:,-1])) print("\t HH = " + str(self.numHH[:,-1])) print("\t CH = " + str(self.numCH[:,-1])) print("\t R = " + str(self.numR[:,-1])) print("\t F = " + str(self.numF[:,-1])) print("\t SQ = " + str(self.numSQ[:,-1])) print("\t EQ = " + str(self.numEQ[:,-1])) print("\t SMQ = " + str(self.numSMQ[:,-1])) print("\t MQ = " + str(self.numMQ[:,-1])) print("\t RQ = " + str(self.numRQ[:,-1])) if(self.t < self.tmax): self.run_epoch(runtime=self.tmax-self.t, dt=dt) # Reset all parameter values that were changed back to their original value i = 0 for key in checkpoints.keys(): if key is not 't': setattr(self,key,beforeChk[i]) i = i+1 return self def sim(self, T, dt=1, checkpoints=None, verbose=False): tN = int(T) + 1 if self.monteCarlo==False: sigmavect = numpy.array([5.2]) self.n_samples = 1 else: if self.n_samples is 1: self.n_samples = 100 # sample a total of n_samples from distribution of sigmavect = self.sampleFromDistribution('../data/corona_incubatie_data.csv',self.n_samples) # pre-allocate a 3D matrix for the raw results self.S = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.E = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.SM = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.M = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.H = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.C = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.HH = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.CH = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.R = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.F = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.SQ = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.EQ = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.SMQ = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.MQ = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) self.RQ = numpy.zeros([self.Nc.shape[0],tN,self.n_samples]) # pre-allocate a 2D matrix for the results summed over all age bins self.sumS = numpy.zeros([tN,self.n_samples]) self.sumE = numpy.zeros([tN,self.n_samples]) self.sumSM = numpy.zeros([tN,self.n_samples]) self.sumM = numpy.zeros([tN,self.n_samples]) self.sumH = numpy.zeros([tN,self.n_samples]) self.sumC = numpy.zeros([tN,self.n_samples]) self.sumHH = numpy.zeros([tN,self.n_samples]) self.sumCH = numpy.zeros([tN,self.n_samples]) self.sumR = numpy.zeros([tN,self.n_samples]) self.sumF = numpy.zeros([tN,self.n_samples]) self.sumSQ = numpy.zeros([tN,self.n_samples]) self.sumEQ = numpy.zeros([tN,self.n_samples]) self.sumSMQ = numpy.zeros([tN,self.n_samples]) self.sumMQ = numpy.zeros([tN,self.n_samples]) self.sumRQ = numpy.zeros([tN,self.n_samples]) # simulation loop i=0 for self.sigma in sigmavect: # reset self to initial conditioin self.reset() # perform simulation self.run(int(T),checkpoints) # append raw results to 3D matrix self.S[:,:,i] = self.numS self.E[:,:,i] = self.numE self.SM[:,:,i] = self.numSM self.M[:,:,i] = self.numM self.H[:,:,i] = self.numH self.C[:,:,i] = self.numC self.HH[:,:,i] = self.numHH self.CH[:,:,i] = self.numCH self.R[:,:,i] = self.numR self.F[:,:,i] = self.numF self.SQ[:,:,i] = self.numSQ self.EQ[:,:,i] = self.numEQ self.SMQ[:,:,i] = self.numSMQ self.MQ[:,:,i] = self.numMQ self.RQ[:,:,i] = self.numRQ # convert raw results to sums of all age categories self.sumS[:,i] = self.numS.sum(axis=0) self.sumE[:,i] = self.numE.sum(axis=0) self.sumSM[:,i] = self.numSM.sum(axis=0) self.sumM[:,i] = self.numM.sum(axis=0) self.sumH[:,i] = self.numH.sum(axis=0) self.sumC[:,i] = self.numC.sum(axis=0) self.sumHH[:,i] = self.numHH.sum(axis=0) self.sumCH[:,i] = self.numCH.sum(axis=0) self.sumR[:,i] = self.numR.sum(axis=0) self.sumF[:,i] = self.numF.sum(axis=0) self.sumSQ[:,i] = self.numSQ.sum(axis=0) self.sumEQ[:,i] = self.numEQ.sum(axis=0) self.sumSMQ[:,i] = self.numSMQ.sum(axis=0) self.sumMQ[:,i] = self.numMQ.sum(axis=0) self.sumRQ[:,i] = self.numRQ.sum(axis=0) i = i + 1 return self def sampleFromDistribution(self,filename,k): df =
pd.read_csv(filename)
pandas.read_csv
import pandas as pd import numpy as np import h5py from tqdm import tqdm class PredExpr: def __init__(self, fn): self.fn = fn with h5py.File(self.fn, 'r') as f: tmp = f['samples'][:].astype(str) self.samples = pd.DataFrame({ 'eid': tmp, 'idx': [ i for i in range(len(tmp)) ] }) tmp = f['genes'][:].astype(str) self.genes = pd.DataFrame({ 'gene': tmp, 'idx': [ i for i in range(len(tmp)) ] }) @staticmethod def _get_range(n, chunksize=500): tmp = list(np.arange(0, n, chunksize)) if tmp[-1] != n: tmp = list(tmp) + [ n ] return tmp[:-1].copy(), tmp[1:].copy() def mul_weights(self, df_weight, samples, max_n=None, chunksize=1000): df_sample_sub = pd.merge( self.samples, pd.DataFrame({'eid': samples}), on='eid' ) if max_n is not None and max_n < df_sample_sub.shape[0]: df_sample_sub = df_sample_sub.iloc[:max_n, :].reset_index(drop=True) df_weight_sub = pd.merge( self.genes[['gene']], df_weight, on='gene', how='left' ) df_weight_sub.fillna(0, inplace=True) weight_mat = df_weight_sub.drop(columns=['gene']).values header = list(df_weight_sub.drop(columns=['gene']).columns) sample_idx = df_sample_sub.idx.values starts, ends = self._get_range(sample_idx.shape[0], chunksize=chunksize) o = [] f = h5py.File(self.fn, 'r') for s, e in tqdm(zip(starts, ends), total=len(starts)): mat = f['pred_expr'][:, sample_idx[s:e]] mat = mat.T @ weight_mat o.append(mat) f.close() o = np.concatenate(o, axis=0) o =
pd.DataFrame(o, columns=header)
pandas.DataFrame
import pandas as pd import sys from suds.client import Client as sudsclient import ssl import os if "PYFLASKI" in os.environ: from pyflaski.routines import fuzzy_search else: from flaski.routines import fuzzy_search david_categories = [ 'GOTERM_BP_FAT', 'GOTERM_CC_FAT', 'GOTERM_MF_FAT', 'KEGG_PATHWAY', 'BIOCARTA', 'PFAM', 'PROSITE' ] david_fields = [ 'categoryName', 'termName', 'listHits', 'percent', 'ease', 'geneIds', 'listTotals', 'popHits', 'popTotals', 'foldEnrichment', 'bonferroni', 'benjamini', 'afdr'] # include: # 'fisher' # 'termName' to 'term' and 'term_name' DEBUG_GENES="ENSMUSG00000092622,ENSMUSG00000004415,ENSMUSG00000017144,ENSMUSG00000028972,ENSMUSG00000031026,ENSMUSG00000006360,ENSMUSG00000039106,ENSMUSG00000038932,\ ENSMUSG00000040629,ENSMUSG00000044254,ENSMUSG00000060675,ENSMUSG00000037465,ENSMUSG00000033998,ENSMUSG00000030785,ENSMUSG00000042808,ENSMUSG00000034612,ENSMUSG00000032883,\ ENSMUSG00000037820,ENSMUSG00000052955,ENSMUSG00000005892,ENSMUSG00000086228,ENSMUSG00000035504,ENSMUSG00000074063,ENSMUSG00000085682,ENSMUSG00000048376,ENSMUSG00000018865,\ ENSMUSG00000025104,ENSMUSG00000022763,ENSMUSG00000030800,ENSMUSG00000021226,ENSMUSG00000038188,ENSMUSG00000038507,ENSMUSG00000014776,ENSMUSG00000029151,ENSMUSG00000030549,\ ENSMUSG00000063430,ENSMUSG00000021194,ENSMUSG00000028836,ENSMUSG00000003849,ENSMUSG00000017493,ENSMUSG00000001506,ENSMUSG00000059991,ENSMUSG00000058454,ENSMUSG00000024962,\ ENSMUSG00000020042,ENSMUSG00000037035,ENSMUSG00000058301,ENSMUSG00000058741,ENSMUSG00000039814,ENSMUSG00000026807,ENSMUSG00000046607,ENSMUSG00000004341,ENSMUSG00000038291,\ ENSMUSG00000070000,ENSMUSG00000029718,ENSMUSG00000026114,ENSMUSG00000032946,ENSMUSG00000022505,ENSMUSG00000034450,ENSMUSG00000067261,ENSMUSG00000022432,ENSMUSG00000022048,\ ENSMUSG00000032494,ENSMUSG00000026418,ENSMUSG00000051455,ENSMUSG00000018411,ENSMUSG00000009596,ENSMUSG00000022469,ENSMUSG00000087283,ENSMUSG00000073779,ENSMUSG00000031379,\ ENSMUSG00000034573,ENSMUSG00000008090,ENSMUSG00000046500,ENSMUSG00000013418,ENSMUSG00000028760,ENSMUSG00000003848,ENSMUSG00000040428,ENSMUSG00000004891,ENSMUSG00000030350,\ ENSMUSG00000003037,ENSMUSG00000055553,ENSMUSG00000034112,ENSMUSG00000025196,ENSMUSG00000034324,ENSMUSG00000026775,ENSMUSG00000056537,ENSMUSG00000029168,ENSMUSG00000031410,\ ENSMUSG00000034880,ENSMUSG00000034731,ENSMUSG00000031584,ENSMUSG00000084807,ENSMUSG00000031861,ENSMUSG00000022265,ENSMUSG00000031438,ENSMUSG00000033658,ENSMUSG00000059456,\ ENSMUSG00000042249,ENSMUSG00000024331,ENSMUSG00000034807,ENSMUSG00000030747,ENSMUSG00000031660,ENSMUSG00000023800,ENSMUSG00000070880,ENSMUSG00000023045,ENSMUSG00000052724,\ ENSMUSG00000061815,ENSMUSG00000032068,ENSMUSG00000030310,ENSMUSG00000013766,ENSMUSG00000063903,ENSMUSG00000023951,ENSMUSG00000030137,ENSMUSG00000015994,ENSMUSG00000040624,\ ENSMUSG00000048644,ENSMUSG00000038840,ENSMUSG00000032015,ENSMUSG00000028949,ENSMUSG00000037971,ENSMUSG00000048371,ENSMUSG00000047264,ENSMUSG00000015243,ENSMUSG00000039865,\ ENSMUSG00000031683,ENSMUSG00000032643,ENSMUSG00000074593,ENSMUSG00000032540,ENSMUSG00000040280,ENSMUSG00000024036,ENSMUSG00000074365,ENSMUSG00000021266,ENSMUSG00000104968,\ ENSMUSG00000006205,ENSMUSG00000043419,ENSMUSG00000032020,ENSMUSG00000039395,ENSMUSG00000062939,ENSMUSG00000031985,ENSMUSG00000034486,ENSMUSG00000034863,ENSMUSG00000047502,\ ENSMUSG00000050737,ENSMUSG00000024012,ENSMUSG00000008892,ENSMUSG00000015652,ENSMUSG00000022178,ENSMUSG00000048373,ENSMUSG00000022292,ENSMUSG00000019312,ENSMUSG00000039831,\ ENSMUSG00000026458,ENSMUSG00000020122,ENSMUSG00000031924,ENSMUSG00000004565,ENSMUSG00000037669,ENSMUSG00000005267,ENSMUSG00000002949,ENSMUSG00000048988,ENSMUSG00000053856,\ ENSMUSG00000090363,ENSMUSG00000009670,ENSMUSG00000056515,ENSMUSG00000036442,ENSMUSG00000031751,ENSMUSG00000030263,ENSMUSG00000022040,ENSMUSG00000031749,ENSMUSG00000038742,\ ENSMUSG00000070780,ENSMUSG00000070708,ENSMUSG00000003808,ENSMUSG00000037997,ENSMUSG00000026773,ENSMUSG00000022099,ENSMUSG00000081593,ENSMUSG00000045467,ENSMUSG00000031509,\ ENSMUSG00000031672,ENSMUSG00000030413,ENSMUSG00000042757,ENSMUSG00000031508,ENSMUSG00000022180,ENSMUSG00000037355,ENSMUSG00000035561,ENSMUSG00000106647,ENSMUSG00000063049,\ ENSMUSG00000028785,ENSMUSG00000031453,ENSMUSG00000111147,ENSMUSG00000003283,ENSMUSG00000063488,ENSMUSG00000046774,ENSMUSG00000036054,ENSMUSG00000024042,ENSMUSG00000039157,\ ENSMUSG00000038060,ENSMUSG00000030283,ENSMUSG00000038521,ENSMUSG00000038393,ENSMUSG00000030772,ENSMUSG00000030428,ENSMUSG00000041180,ENSMUSG00000031729,ENSMUSG00000054850,\ ENSMUSG00000025931,ENSMUSG00000039384,ENSMUSG00000022479,ENSMUSG00000029287,ENSMUSG00000025743,ENSMUSG00000042386,ENSMUSG00000096210,ENSMUSG00000050288,ENSMUSG00000019261,\ ENSMUSG00000040537,ENSMUSG00000026185,ENSMUSG00000029761,ENSMUSG00000027071,ENSMUSG00000005705,ENSMUSG00000008450,ENSMUSG00000018604,ENSMUSG00000060038,ENSMUSG00000006585,\ ENSMUSG00000086236,ENSMUSG00000054408,ENSMUSG00000029122,ENSMUSG00000025742,ENSMUSG00000004319,ENSMUSG00000052675,ENSMUSG00000031948,ENSMUSG00000081044,ENSMUSG00000039830,\ ENSMUSG00000030411,ENSMUSG00000045010,ENSMUSG00000039616,ENSMUSG00000011837,ENSMUSG00000022211,ENSMUSG00000001472,ENSMUSG00000000738,ENSMUSG00000042659,ENSMUSG00000071076,\ ENSMUSG00000031838,ENSMUSG00000020256,ENSMUSG00000028017,ENSMUSG00000063659,ENSMUSG00000046718,ENSMUSG00000032715,ENSMUSG00000023495,ENSMUSG00000099370,ENSMUSG00000031486,\ ENSMUSG00000038292,ENSMUSG00000031760,ENSMUSG00000007950,ENSMUSG00000039617,ENSMUSG00000057672,ENSMUSG00000031622,ENSMUSG00000025432,ENSMUSG00000055835,ENSMUSG00000031665,\ ENSMUSG00000008206,ENSMUSG00000063018,ENSMUSG00000091568,ENSMUSG00000033931,ENSMUSG00000021701,ENSMUSG00000022016,ENSMUSG00000023995,ENSMUSG00000030630,ENSMUSG00000032796,\ ENSMUSG00000029603,ENSMUSG00000048126,ENSMUSG00000053604,ENSMUSG00000097757,ENSMUSG00000087084,ENSMUSG00000018796,ENSMUSG00000037103,ENSMUSG00000017652,ENSMUSG00000020184,\ ENSMUSG00000050914,ENSMUSG00000031765,ENSMUSG00000068758,ENSMUSG00000061126,ENSMUSG00000004952,ENSMUSG00000031731,ENSMUSG00000022754,ENSMUSG00000030523,ENSMUSG00000002668" def debug_david(user,DEBUG_GENES=DEBUG_GENES, ids=None): ssl._create_default_https_context = ssl._create_unverified_context url = 'https://david.ncifcrf.gov/webservice/services/DAVIDWebService?wsdl' client = sudsclient(url) client.wsdl.services[0].setlocation('https://david.ncifcrf.gov/webservice/services/DAVIDWebService.DAVIDWebServiceHttpSoap11Endpoint/') client_auth = client.service.authenticate(user) if not ids: ids=DEBUG_GENES database="ENSEMBL_GENE_ID" name="target" categories="GOTERM_BP_FAT,GOTERM_CC_FAT,GOTERM_MF_FAT,PFAM,KEGG_PATHWAY,OMIM_DISEASE" p=0.1 n=2 size = client.service.addList(ids, database, name, 0) #| inputListIds,idType,listName,listType) client_categories = client.service.setCategories(categories) client_report = client.service.getChartReport(p, n) size_report = len(client_report) report="Success: "+str(size)+"; "+str(size_report) return report def run_david(pa, path_to_ensembl_maps="/flaski/data/david"): #database, categories, user, ids, ids_bg = None, name = '', name_bg = '', verbose = False, p = 0.1, n = 2): # Modified from https://david.ncifcrf.gov/content.jsp?file=WS.html # by courtesy of HuangYi @ 20110424 """Queries the DAVID database for an enrichment analysis Check https://david.ncifcrf.gov/content.jsp?file=DAVID_API.html for database == "type" tag and categories == "annot" tag. Args: pa (dict): A dictionary of the style { "argument":"value"} as outputted by `figure_defaults`. Returns: None if no ids match the queried database, or a Pandas DataFrame with results. """ database=pa["database_value"] categories_=[ s for s in list( pa.keys() ) ] categories_=[ s for s in categories_ if "categories_" in s ] categories_=[ s for s in categories_ if "_value" in s ] categories=[] for k in categories_: categories=categories+pa[k] categories=",".join(categories) user=pa["user"] ids=pa["ids"].split("\n") ids=[ s.rstrip("\r").strip(" ") for s in ids if s != " "] ids=[ s for s in ids if s != " "] ids=[ s for s in ids if len(s) > 0 ] ids=[ s.split("\t") for s in ids ] idsdf=pd.DataFrame(ids) idsdf[0]=idsdf[0].apply( lambda x: str(x).split(";")[0] ) names_dbs=["name_hsa_ensembl", "name_mus_ensembl", "name_cel_ensembl","name_dros_ensembl" ] if database in names_dbs: file_dic={"name_hsa_ensembl":"Homo_sapiens.GRCh38.92.tsv", "name_mus_ensembl":"Mus_musculus.GRCm38.92.tsv", "name_cel_ensembl":"Caenorhabditis_elegans.WBcel235.92.tsv","name_dros_ensembl":"Drosophila_melanogaster.BDGP6.28.92.tsv"} id_name=pd.read_csv(path_to_ensembl_maps+"/"+file_dic[database],sep="\t") db_names=id_name["gene_name"].tolist() query_names=idsdf[0].tolist() query_names=",".join(query_names) found_values, emsg=fuzzy_search(query_names,db_names) if emsg: return None, None, emsg newcol=idsdf.columns.tolist()[-1]+1 id_name["gene_name"]=id_name["gene_name"].apply(lambda x: str(x).lower() ) id_name.index=id_name["gene_name"].tolist() id_name=id_name.to_dict()["gene_id"] idsdf[newcol]=idsdf[0] idsdf[0]=idsdf[0].apply(lambda x: id_name[ str(x).lower() ]) # insert mapping of ensembl gene name to gene id here annotations=idsdf.columns.tolist() ids=idsdf[0].tolist() ids_map={} if len(annotations) > 1: idsdf[0]=idsdf[0].apply(lambda x: x.upper() ) idsdf.index=idsdf[0].tolist() idsdf=idsdf.drop([0],axis=1) ids_map=idsdf.to_dict() if " ".join( pa["ids_bg"].split(" ")[:12] ) != "Leave empty if you want to use all annotated genes for your": ids_bg=pa["ids_bg"].split("\n") ids_bg=[ s.rstrip("\r").strip(" ") for s in ids_bg ] ids_bg=[ s for s in ids_bg if s != " "] ids_bg=[ s for s in ids_bg if len(s) > 0 ] if len(ids_bg) == 0: ids_bg = None else: if database in names_dbs: file_dic={"name_hsa_ensembl":"Homo_sapiens.GRCh38.92.tsv", "name_mus_ensembl":"Mus_musculus.GRCm38.92.tsv", "name_cel_ensembl":"Caenorhabditis_elegans.WBcel235.92.tsv","name_dros_ensembl":"Drosophila_melanogaster.BDGP6.92.tsv"} id_name=pd.read_csv(path_to_ensembl_maps+file_dic[database],sep="\t") id_name_=id_name.copy() db_names=id_name["gene_name"].tolist() query_names=",".join(ids_bg) found_values, emsg=fuzzy_search(query_names,db_names) if emsg: return None, None, emsg id_name["gene_name"]=id_name["gene_name"].apply(lambda x: str(x).lower() ) id_name.index=id_name["gene_name"].tolist() id_name=id_name.to_dict()["gene_id"] ids_bg=[ id_name[ str(x).lower() ] for x in ids_bg ] id_name_=id_name_[ id_name_["gene_id"].isin(ids_bg) ] id_name_["gene_id"]=id_name_["gene_id"].apply(lambda x: str(x).upper() ) id_name_.index=id_name_["gene_id"].tolist() id_name_=id_name_.to_dict()["gene_name"] else: id_name_=None # bg_gene_names= keep on here else: ids_bg=None name=pa["name"] if ids_bg is not None: name_bg=pa["name_bg"] else: name_bg="" p=pa["p"] n=pa["n"] #, categories, user, ids, ids_bg = None, name = '', name_bg = '', verbose = False, p = 0.1, n = 2 verbose=False ids = ','.join([str(i) for i in ids]) use_bg = 0 if database in names_dbs: database="ENSEMBL_GENE_ID" # print("Testing") # test=debug_david(pa["user"],ids=ids) # print(test) if ids_bg: ids_bg = ','.join([str(i) for i in ids_bg]) ssl._create_default_https_context = ssl._create_unverified_context url = 'https://david.ncifcrf.gov/webservice/services/DAVIDWebService?wsdl' try: client = sudsclient(url) except: return None, None, "Could not connect to DAVID. Server might be down." client.wsdl.services[0].setlocation('https://david.ncifcrf.gov/webservice/services/DAVIDWebService.DAVIDWebServiceHttpSoap11Endpoint/') try: client_auth = client.service.authenticate(user) except: return None, None, "Could not connect to DAVID. Server might be down." if str(client_auth) == "Failed. For user registration, go to http://david.abcc.ncifcrf.gov/webservice/register.htm" : return None, None, str(client_auth) if verbose: print('User Authentication:', client_auth) sys.stdout.flush() # if ids_bg : # size = client.service.addList(ids_bg, database, name, 0) # if float(size) > float(0): # client_report=client.service.getListReport() # bg_mapped=[] # for r in client_report: # d = dict(r) # bg_mapped.append(d["values"][0]) # bg_not_mapped=[ s for s in ids_bg.split(",") if s not in bg_mapped ] size = client.service.addList(ids, database, name, 0) #| inputListIds,idType,listName,listType) report_stats=[['Mapping rate of ids: ', str(size)]] if verbose: print('Mapping rate of ids: ', str(size)) sys.stdout.flush() if float(size) <= float(0): msg='Mapping rate of ids: %s.' %str(size) return None, None, msg # client_report=client.service.getListReport() # mapped=[] # for r in client_report: # d = dict(r) # mapped.append(d["values"][0]) # not_mapped=[ s for s in ids.split(",") if s not in mapped ] #print("Finished retrieving list report.") #sys.stdout.flush() if ids_bg: #print("User given BG.") #sys.stdout.flush() size_bg = client.service.addList(ids_bg, database, name_bg, 1) report_stats.append(['Mapping rate of background ids: ', str(size_bg)]) if verbose: print('Mapping rate of background ids: ', str(size_bg)) sys.stdout.flush() if float(size_bg) <= float(0): msg='Mapping rate of background ids: %s' %str(size_bg) return None, None, msg client_categories = client.service.setCategories(categories) report_stats.append(['Categories used: ', client_categories]) if verbose: print('Categories used: ', client_categories) sys.stdout.flush() client_report = client.service.getChartReport(p, n) size_report = len(client_report) report_stats.append(['Records reported: ', str(size_report)]) if verbose: print('Records reported: ', str(size_report)) sys.stdout.flush() def get_map(x,ids_map): genes=x.split(", ") genes=[ str(ids_map[gene.upper()]) for gene in genes ] genes=", ".join(genes) return genes if size_report > 0: df = [] for r in client_report: d = dict(r) line = [] for f in david_fields: line.append(str(d[f]).encode('ascii','ignore')) df.append(line) df = pd.DataFrame(df) df.columns=david_fields for col in david_fields: df[col] = df[col].apply(lambda x: x.decode()) df.columns=["Category","Term","Count","%","PValue","Genes","List Total","Pop Hits","Pop Total","Fold Enrichment","Bonferroni","Benjamini","FDR"] # insert ensembl gene name to gene id here if len(list(ids_map.keys())) > 0: for annotation in list(ids_map.keys()): genes_to_annotation=ids_map[annotation] df["annotation_%s" %str(annotation)]=df["Genes"].apply(lambda x:get_map(x,ids_map=genes_to_annotation) ) else: df=
pd.DataFrame(columns=["Category","Term","Count","%","PValue","Genes","List Total","Pop Hits","Pop Total","Fold Enrichment","Bonferroni","Benjamini","FDR"])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import subprocess import os import pandas as pd import requests from bs4 import BeautifulSoup import json pd.set_option('display.max_rows', 500) # ![CRISP_DM](../reports/figures/CRISP_DM.png) # # Data Understanding # * RKI, webscrape (webscraping) https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Fallzahlen.html # * <NAME> (GITHUB) https://github.com/CSSEGISandData/COVID-19.git # * REST API services to retreive data https://npgeo-corona-npgeo-de.hub.arcgis.com/ # ## GITHUB csv data # # git clone/pull https://github.com/CSSEGISandData/COVID-19.git # In[2]: git_pull = subprocess.Popen( "/usr/bin/git pull" , cwd = os.path.dirname( '../data/raw/COVID-19/' ), shell = True, stdout = subprocess.PIPE, stderr = subprocess.PIPE ) (out, error) = git_pull.communicate() print("Error : " + str(error)) print("out : " + str(out)) # In[3]: data_path='../data/raw/COVID-19/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' pd_raw=
pd.read_csv(data_path)
pandas.read_csv
""" Functions for processing/analysing ARNA campaign observations """ import os import sys import gc import glob import xarray as xr import numpy as np import AC_tools as AC import pandas as pd from netCDF4 import Dataset from datetime import datetime as datetime_ import datetime as datetime import time from time import gmtime, strftime # Import from elsewhere in ARNA module from . core import * from . utils import * def get_coordinates_from_NetCDF_file(ds=None, folder=None, filename=None, falt_var='PS_RVSM', flat_var='LAT_GIN', flon_var='LON_GIN', AltVar='hPa', LonVar='lon', LatVar='lat', ftime_var='Time', TimeVar='time', convert_m2hPa=False, drop_NaNs=True): """ Get locations (lat, lon, alt) from NetCDF files """ import pandas as pd # Make a dataframne of locations from NEtCDF file if isinstance(ds, type(None)): ds = xr.open_dataset(folder+filename) df = pd.DataFrame() df[AltVar] = ds[falt_var].values df[LonVar] = ds[flon_var].values df[LatVar] = ds[flat_var].values df.index = ds[ftime_var].values # Convert metres of height to hPa # NOTE: The below conversion is not advised. # Use the external pressure variable instead (PS_RVSM). if convert_m2hPa: df.loc[:, AltVar] = AC.hPa_to_Km(df[AltVar].values/1E3, reverse=True, ) # Drop where there are not values for all coordinates if drop_NaNs: df = df.dropna() return df def get_ARNA_flights_as_dfs(): """ Retrieve the ARNA flights as a list of dataframes """ flight_nums = [216, 217, 218, 219, 220, 221, 222, 223, 224, 225] flight_IDs = ['C{}'.format(i) for i in flight_nums] dfs = {} for flight_ID in flight_IDs: print(flight_ID) try: df = AC.get_FAAM_locations_as_df(flight_ID=flight_ID) dfs[flight_ID] = df except: print('WARNING: failed for {}'.format(flight_ID)) return dfs def set_flagged_data2NaNs(ds, VarName='no_mr', flag2use=0, FlagName='no_flag'): """ Set the flagged data in a dataset to be NaNs """ # What do the flags mean? (copied from FAAM NetCDF metadata) # ( file: 'core-nitrates_faam_20200211_v002_r1_c224.nc') # Flag=0 indicates good data. # Flag=1 indicates reduced quality data. # Flag=2 indicates suspect data. # Flag=3 indicates missing or invalid data. # Create a boolean bool = ds[FlagName].values != flag2use # Make values without the flagged value into NaNs ds[VarName].loc[bool] = np.NaN return ds def get_SWAS_data4flight(flight_ID=None): """ Retrieve SWAS data for ARNA flights """ # Where is the data? folder = '{}/{}/'.format(get_local_folder('ARNA_data'), 'SWAS') # filename = 'ARNA-FIRSTLOOK-SWAS_JDL_typo_fix.csv' # var2use = 'comments4' # format = '%d/%m/%Y %H:%M:%S' # Or use latest file (NOTE: issue with column formating) # filename = 'ARNA-SECONDLOOK-SWAS.csv' # Use the updated second look file filename = 'ARNA-SECONDLOOK-SWAS_v2.csv' df = pd.read_csv(folder+filename) print(filename) # Update the index to use the SWAS fire fime var2use = 'SAMPLE START TIME' format = '%d/%m/%Y %H:%M:%S' df.index = pd.to_datetime(df[var2use].values, format=format) # If a flight ID stated, then only return points for that flight if isinstance(flight_ID, type(None)): pass else: # Get the beginning and end of the flight dfS = get_summary4flight(flight_ID=flight_ID) sdate = dfS.index.min() edate = dfS.index.max() # Only consider samples within this time df = df.loc[df.index >= sdate, :] df = df.loc[df.index <= edate, :] return df def map_SWAS_var2GEOS_var(var, invert=False): """ Map variables names from SWAS to GEOS variable names """ d = { # '1_3_butadiene':, # '1_butene':, # '2_3_methylpentane':, # '224_tmp':, 'acetaldehyde': 'ALD2', 'acetone': 'ACET', # 'acetylene':, 'benzene': 'BENZ', # GEOSChem, but not GEOS-CF output # 'benzenechb':, 'cis_2_butene': 'PRPE', # NOTE: lumped tracer for >= C3 alkenes 'cyclo_pentane': 'ALK4', # NOTE: lumped tracer for >= C4 Alkanes 'dms': 'DMS', # GEOSChem, but not GEOS-CF output # 'dmschb':, 'ethane': 'C2H6', # 'ethene':, # 'ethylbenzene':, # 'extra_1':, # 'extra_2':, # 'extra_3':, # 'extra_4':, # 'extra_5':, # 'extra_l2':, 'iso_butane': 'ALK4', # NOTE: lumped tracer for >= C4 Alkanes 'iso_butene': 'PRPE', # NOTE: lumped tracer for >= C3 alkenes 'iso_pentane': 'ALK4', # NOTE: lumped tracer for >= C4 Alkanes 'isoprene': 'PRPE', # NOTE: lumped tracer for >= C3 alkenes 'methanol': 'MOH', 'mp_xylene': 'XYLE', 'n_butane': 'ALK4', # NOTE: lumped tracer for >= C4 Alkanes 'n_heptane': 'ALK4', # NOTE: lumped tracer for >= C4 Alkanes 'n_hexane': 'ALK4', # NOTE: lumped tracer for >= C4 Alkanes 'n_octane': 'ALK4', # NOTE: lumped tracer for >= C4 Alkanes 'n_pentane': 'ALK4', # NOTE: lumped tracer for >= C4 Alkanes 'o_xylene': 'XYLE', 'pent_1_ene': 'PRPE', # NOTE: lumped tracer for >= C3 alkenes 'propane': 'C3H8', 'propene': 'PRPE', # NOTE: lumped tracer for >= C3 alkenes 'toluene': 'TOLU', # 'toluenechb':, 'trans_2_butene': 'PRPE', # NOTE: lumped tracer for >= C3 alkenes 'trans_2_pentene': 'PRPE', # NOTE: lumped tracer for >= C3 alkenes } # Invert the dictionary? if invert: d = {v: k for k, v in list(d.items())} return d[var] def get_ARNA_flight_log_as_df(): """ Make a single pd.DataFrame with all flight summaries """ flight_nums = [ # 216, 217, 218, 219, 220, 221, 222, 223, 224, 225 ] flight_IDs = ['C{}'.format(i) for i in flight_nums] dfs = [] for flight_ID in flight_IDs: dfs += [get_summary4flight(flight_ID=flight_ID)] # Combine and return as a single dataframe sorted by time df = pd.concat(dfs) df = df.sort_index() return df def get_summary4flight(flight_ID='C217'): """ retrieve a FAAM flight summary as a dataframe """ folder = '{}/{}/'.format(get_local_folder('ARNA_data'), 'CEDA/v2020_06') filename = 'flight-sum_faam_*_*_{}.csv'.format(flight_ID.lower()) file2use = glob.glob(folder+filename) ass_str = 'WARNING: {} flight summaries found present for flight {}!' assert len(file2use) == 1, ass_str.format(file2use, flight_ID) # Add Gotcha for missing header in FAAM file archived at CEDA columns = [ 'Event', 'Start', 'Start Hdg / ยฐ', 'Start Hgt / kft', 'Start Lat / ยฐ', 'Start Long / ยฐ', 'Stop', 'Stop Hdg / ยฐ', 'Stop Hgt / kft', 'Stop Lat / ยฐ', ' Stop Long / ยฐ', 'Comment', ] if flight_ID == 'C217': header = None names = columns else: header = 0 names = None # Read file df = pd.read_csv(file2use[0], header=header, names=names) # Add a flight ID column df['flight_ID'] = flight_ID # Update start column to be in datatime format var2use = 'Start' format = '%Y-%m-%d %H:%M:%S' df.index = pd.to_datetime(df[var2use].values, format=format) return df def get_filters_data4flight(flight_ID='C217', all_flights=True): """ Retrieve filters data from ARNA flights """ # Where is the data? folder = '{}/{}/'.format(get_local_folder('ARNA_data'), 'Filters') # What is the name of the sheet in the excel file? # filename = 'Overview_all_filters_ACSIS_5_and_ARNA-1.xlsx' # filename = 'Overview_filters_ARNA_2.xlsx' filename = 'Overview_filters_ARNA_2_TMS_edits.xlsx' sheet_name = 'Sheet1' dfFULL = pd.read_excel(folder + filename, sheet_name=sheet_name) # Now Just look at core data of interest CoreCols = [ 'Day', 'Flight', 'Filter', 'height', 'Time on', 'Time off', 'Airflow (stL)', ] # - Select nitrate data # Yes, GEOS-CF has sulfate variables output - 'NIT', 'NITs' NO3cols = [i for i in dfFULL.columns if 'NO3' in i] dfN = dfFULL[CoreCols + NO3cols] # # NO3_var = 'NO3.total' NO3_var2use = ['NO3.2', 'NO3.5'] units = 'nanomoles/m3' # NO3_idx = [list(dfFULL.columns).index(i) for i in var2inc] # - Also save sulfate? # Yes, GEOS-CF has sulfate variables output - 'SO4', 'SO4s' # SO4cols = [i for i in dfFULL.columns if 'SO4' in i] # dfS = dfFULL[CoreCols + SO4cols] SO4_var2use = ['SO4.2', 'SO4.5'] units = 'nanomoles/m3' # SO4_idx = [list(dfFULL.columns).index(i) for i in SO4_var2use] # - Now chop off excess headers and make sure formats are correct df = dfFULL.loc[dfFULL.index[2:], :] # # idx2use = [list(dfFULL.columns).index(i) for i in CoreCols] # idx2use += NO3_idx + SO4_idx # cols2use = [list(dfFULL.columns)[i] for i in idx2use ] df = df[CoreCols + NO3_var2use + SO4_var2use] # Replace values less than black/NaNs with np.NaN df = df.replace('lower than blank', np.NaN) df = df.replace('NaN', np.NaN) # Remove blanks (as these are NaNs) df = df.rename_axis(None) df = df.loc[(df['height'] != 'blank').values, :] # Update sampling times to date times # Start time TimeOnVar = 'Time on' sdate_var = 'Sample Start' df[sdate_var] = df['Day'].astype(str) + ' ' + df[TimeOnVar].astype(str) format = '%Y-%m-%d %H:%M:%S' df[sdate_var] = pd.to_datetime(df[sdate_var].values, format=format) del df[TimeOnVar] # End time TimeOffVar = 'Time off' edate_var = 'Sample End' df[edate_var] = df['Day'].astype(str) + ' ' + df[TimeOffVar].astype(str) format = '%Y-%m-%d %H:%M:%S' df[edate_var] = pd.to_datetime(df[edate_var].values, format=format) del df[TimeOffVar] # calculate mid point of sampling and set this as index interval_var = 'Sample interval' df[interval_var] = df[edate_var] - df[sdate_var] # Just use the middle of the timestep df.index = df[sdate_var] + (df[interval_var]/2) df = df.rename_axis(None) # - Just consider totals for species of interest NO3_var = 'NO3.total' df[NO3_var] = df[NO3_var2use].sum(axis=1) SO4_var = 'SO4.total' df[SO4_var] = df[SO4_var2use].sum(axis=1) del dfFULL # Convert to ug/m3 from 'nanomoles/m3' df[NO3_var] = df[NO3_var].values / 1E9 * AC.species_mass('NIT') * 1E6 df[SO4_var] = df[SO4_var].values / 1E9 * AC.species_mass('SO4') * 1E6 # Return all flights unless a specific flight requested if all_flights: return df else: return df.loc[df['Flight'] == flight_ID, :] def get_CIMS_data4flight(flight_ID='C225', resample_data=True, debug=False): """ Retrieve ToF-CIMS data from ARNA flights """ # Where is the data? folder = '{}/{}/'.format(get_local_folder('ARNA_data'), 'CIMS') # What is the name of the sheet in the excel file? sheet_name = flight_ID # - Setup a shared (1Hz) time axis to merge onto # Use time index for timings of flight, then add a 2 hour buffer dfS = get_summary4flight(flight_ID=flight_ID) sdate = dfS.index.values.min() edate = dfS.index.values.max() sdate, edate = AC.dt64_2_dt([sdate, edate]) sdate = AC.add_hrs(sdate, -2) edate = AC.add_hrs(sdate, 2) index = pd.date_range(start=sdate, end=edate, freq='1S') dfM = pd.DataFrame(index=index) # - Retrive the core CIMS observations (use the time coordinate for index) try: filename = 'ACSIS6_0.1hz_Bromine.xlsx' format = '%m/%d/%Y %H:%M:%S' df = pd.read_excel(folder + filename, sheet_name=sheet_name, date_parser=format) xl = pd.ExcelFile(folder + filename) if debug: print(xl.sheet_names) dt_var = 'Date:Time' dates = AC.dt64_2_dt(df[dt_var].values) dates = [i.strftime(format) for i in dates] dates = [datetime_.strptime(i, '%d/%m/%Y %H:%M:%S') for i in dates] df.index = dates del df[dt_var] # Merge the files dfM = pd.concat([dfM, df], axis="index") except: pstr = "WARNING: failed to include CIMS halogen data for '{}' in df" print(pstr.format(flight_ID)) # - Also get HNO3 / HONO (use the time coordinate for index) try: filename = 'ACSIS6_ARNA_1hz_HNO3_HONO_ToSend.xlsx' df2 = pd.read_excel(folder + filename, sheet_name=sheet_name) xl = pd.ExcelFile(folder + filename) if debug: print(xl.sheet_names) dt_var = 'date' # df2.index = pd.to_datetime( df2[dt_var].values, format='%m/%d/%Y %H:%M:%S') dates = AC.dt64_2_dt(df2[dt_var].values) dates = [i.strftime(format) for i in dates] dates = [datetime_.strptime(i, '%d/%m/%Y %H:%M:%S') for i in dates] df2.index = dates del df2[dt_var] # Merge the files dfM =
pd.concat([dfM, df2], axis="index")
pandas.concat
# Import necessary packages import pymeasure from pymeasure.instruments.keithley import Keithley2400 import numpy as np import pandas as pd from time import sleep from time import time from matplotlib import pyplot as plt import datetime import os print('JVfunctions Loaded Without Error') ##Basic JV scan function ############################################################################# #define function with inputs def JVscan(cell_name, cell_area, v_in, v_fin, averages, data_points, plc, bufdelay, prebias, biasV, biastime, pulse, pulsedelay): direc = 'C:/Users/IECs Finest/Desktop/Jupyter/JV/' os.chdir(direc) now = datetime.datetime.now() #Get date and time currtime = now.strftime("%m%d%y%H%M") #get formatted time foldtime = now.strftime("%m-%d-%y") if os.path.isdir(foldtime) is False: os.mkdir(foldtime) os.chdir(foldtime) if os.path.isdir(cell_name) is False: os.mkdir(cell_name) os.chdir(cell_name) # Connect and configure the instrument sourcemeter = Keithley2400('GPIB0::24::INSTR') sourcemeter.reset() #reset meter sourcemeter.use_front_terminals() #sets to use front terminals sourcemeter.compliance_voltage = 10 # Sets the compliance voltage to 10 V sourcemeter.apply_voltage() #set meter to apply voltage sourcemeter.measure_current(nplc=plc, current=1e-2, auto_range=True) #set meter to measure current #sourcemeter.config_voltage_source() sleep(bufdelay) # wait here to give the instrument time to react sourcemeter.config_buffer(averages,bufdelay) #configure the buffer # Allocate arrays to store the measurement results voltagedown = np.linspace(v_fin, v_in, num=data_points) currentdown = [] currentdown_stds = [] powerdown=[] voltageup = np.linspace(v_in, v_fin, num=data_points) currentup = [] currentup_stds = [] powerup=[] now = datetime.datetime.now() #Get date and time currtime = now.strftime("%m%d%y%H%M") #get formatted time foldtime = now.strftime("%m-%d-%y") print('scan1') sourcemeter.enable_source() # enable the source #Prebias the cell for steady state or bias pretreatment if prebias== True: print('Prebiasing at ') print(str(biasV)+' volts') sourcemeter.source_voltage= biasV #prebias at "final voltage" sourcemeter.measure_current(nplc=plc, current=1e-2, auto_range=True) #set meter to measure current sleep(biastime) #Begin the actual scan # Loop through each voltage point, measure and record the current density print('Scan Down') for i in range(data_points): sourcemeter.source_voltage= voltagedown[i] sourcemeter.measure_current(nplc=plc, current=1e-2,auto_range=True) sourcemeter.reset_buffer() #sleep(0.1) sourcemeter.start_buffer() sleep(bufdelay) #sourcemeter.wait_for_buffer(timeout=1, interval=0.05) # Record the average and standard deviation of the current density currentdown.append(sourcemeter.means[1]/cell_area) currentdown_stds.append(sourcemeter.standard_devs[1]/cell_area) #Calculate the power (which in this case is equal to efficiency) powerdown.append(voltagedown[i]*sourcemeter.means[1]/cell_area*-1000) if pulse==True: sourcemeter.source_voltage = biasV sourcemeter.measure_current(nplc=plc, current=1e-2,auto_range=True) sleep(pulsedelay) # Loop through each voltage point, measure and record the current density print('Scan Up') for i in range(data_points): sourcemeter.source_voltage = voltageup[i] sourcemeter.reset_buffer() #sleep(0.1) sourcemeter.start_buffer() sleep(bufdelay) #sourcemeter.wait_for_buffer(timeout=1, interval=0.05) # Record the average and standard deviation of the current density currentup.append(sourcemeter.means[1]/cell_area) currentup_stds.append(sourcemeter.standard_devs[1]/cell_area) #Calculate the power (which in this case is equal to efficiency) powerup.append(voltageup[i]*sourcemeter.means[1]*-1000/cell_area) if pulse==True: sourcemeter.source_voltage = biasV sourcemeter.measure_current(nplc=plc, current=1e-2,auto_range=True) sleep(pulsedelay) data1 = pd.DataFrame({ 'Currentup (A)': currentup, 'Voltageup (V)': voltageup, 'Powerup (mW/cm2)': powerup, 'Currentup Std (V)': currentup_stds, 'Currentdown (A)': currentdown, 'Voltagedown (V)': voltagedown, 'Power down (mW/cm2)': powerdown, 'Currentdown Std (V)': currentdown_stds, }) filename=cell_name+currtime+str(data_points)+'_pts'+str(averages)+'_avg'+str(plc)+'_plcs'+'_JV.csv' data1.to_csv(filename) plt.plot(data1['Voltageup (V)'],data1['Currentup (A)']) plt.plot(data1['Voltagedown (V)'],data1['Currentdown (A)']) plt.xlim(-.6,1.2) plt.ylim(-25/1000,25/1000) sourcemeter.shutdown() #JVscan(v_in, v_fin, averages, data_points, plc, bufdelay, prebias) ################################################################################################################ #MPPT function def MPPT(cell_name,cell_area,plc,averages, data_points, i_volt, timedelay): #define some variables and get current date and time bufdelay=0.1 # delay time to ensure there is enough time to communicate with SMU #i_volt=0.001 #initial guess voltage, can be changed to start mppt scan at fwd bias or near mppt instead of near 0 now = datetime.datetime.now() #Get date and time currtime = now.strftime("%m%d%y%H%M") #get formatted time foldtime = now.strftime("%m-%d-%y") # Connect and configure the instrument sourcemeter = Keithley2400('GPIB0::24::INSTR') #Connect sourcemeter.reset() sourcemeter.use_front_terminals() sourcemeter.compliance_voltage = 2 # Sets the compliance voltage to 2V sourcemeter.apply_voltage() sourcemeter.measure_current(nplc=plc, current=1e-2, auto_range=True) sleep(bufdelay) # wait here to give the instrument time to react sourcemeter.config_buffer(averages,bufdelay) #set voltage to initial voltage setpoint volt=i_volt sourcemeter.source_voltage = volt pval=0.1 #initial value for power pscale=0.01 #scaling factor scale=0.01 #scaling factor sourcemeter.enable_source() voltnew=volt start_time = time() # get start time of measurement for time tracking try: #inside a try loop so you can interrupt the kernel and still save the current measurement while True: #This makes the mppt scan go until you press abort, you could set it to do a number of scans instead sourcemeter.enable_source() # enable source # Allocate arrays to store the measurement results voltages = [] currents = [] current_stds = [] powers= [] meas_num=[] sourcemeter.source_voltage = volt pval=0.1 pscale=0.01 scale=0.01 #this value scales the random number the voltage is scaled by: smaller number will result in more stable mppt but slower time to reach mppt sourcemeter.enable_source() voltnew=volt now = datetime.datetime.now() currtime = now.strftime("%m%d%y%H%M") for i in range(data_points): direc = 'C:/Users/<NAME>/Desktop/Jupyter/MPPT/' os.chdir(direc) now = datetime.datetime.now() #Get date and time currtime = now.strftime("%m%d%y%H%M") #get formatted time foldtime = now.strftime("%m-%d-%y") if os.path.isdir(foldtime) is False: os.mkdir(foldtime) os.chdir(foldtime) if os.path.isdir(cell_name) is False: os.mkdir(cell_name) os.chdir(cell_name) random_val=scale*np.random.rand(1).tolist()[0] #a random value to increase the voltage set point between 0 and 10mV #increase new voltage based on random number sourcemeter.source_voltage=voltnew #set voltage sourcemeter.reset_buffer() #reset buffer sleep(bufdelay) #wait sourcemeter.start_buffer() sleep(bufdelay) # Record the average and standard deviation voltages.append(voltnew) #record the voltage the cell is at currents.append(sourcemeter.means[1]*1000/cell_area) #record the average current measurement of the number of averages current_stds.append(sourcemeter.standard_devs[1]) #record the standard deviation powers.append(currents[i]*voltnew*-1) #calculate and record the power pvalnew=powers[i] #update pval to calculate the scaling factor pscale=pvalnew-pval #the difference in power from the last to new measurement, tells wether the voltage iteration made power higher or lower vscale=voltnew-volt #the difference in voltage from last to new measurement, telling whether you increased or decreased the voltga sleep(timedelay) #allows you to slow down measurements by adding a wait time (you will get fewer points) meas_num.append(time()-start_time) #record the time since the measurement started volt=voltnew #update the old voltage with the new voltage since the measurement cycle is over #control algorithm using the perturb and observe method if pscale>0: if vscale>0: voltnew=volt+random_val else: voltnew=volt-random_val elif pscale<0: if vscale>0: voltnew=volt-random_val else: voltnew=volt+random_val else: voltnew=volt pval=pvalnew print('Pmax = '+str(round(pval,3))+'%'+' ',end='\r') #prints the power sourcemeter.shutdown() #shuts down source at end of measurement tempdict = { 'Measurement_Number' : meas_num, 'Voltage' : voltages, 'Currents' : currents, 'current_stds' : current_stds, 'powers' : powers } #put arrays of values in a temporary dictionary to save data data=pd.DataFrame(tempdict) #put into a pandas dataframe to save data filename= currtime+'_'+str(cell_name)+'MPPT'+'.csv' #define file name data.to_csv(filename) #save file sleep(1) except: #KeyboardInterrupt #this is so the data will save for the current scan you're doing when you interrupt the kernel print('Interrupted ') if len(meas_num)<len(voltages): meas_num.append(time()-start_time) if len(currents)<len(voltages): currents.append(np.nan) if len(current_stds)<len(currents): current_stds.append(np.nan) if len(powers)<len(current_stds): powers.append(np.nan) sourcemeter.shutdown() tempdict = { 'Measurement_Number' : meas_num, 'Voltage' : voltages, 'Currents' : currents, 'current_stds' : current_stds, 'powers' : powers } data=pd.DataFrame(tempdict) filename= currtime+'_'+str(cell_name)+'MPPT'+'.csv' data.to_csv(filename) plt.scatter(tempdict['Measurement_Number'],tempdict['powers']) print('Measurement complete') print('Files saved: ') print(filename) ################################################################################################################ #MPPTJV function def MPPTJV(plc,averages, data_points, i_volt, timedelay, cell_name, cell_area, v_in, v_fin, bufdelay, prebias, biasV, biastime, pulse, pulsedelay): #define some variables and get current date and time bufdelay=0.1 # delay time to ensure there is enough time to communicate with SMU #i_volt=0.001 #initial guess voltage, can be changed to start mppt scan at fwd bias or near mppt instead of near 0 now = datetime.datetime.now() #Get date and time currtime = now.strftime("%m%d%y%H%M") #get formatted time foldtime = now.strftime("%m-%d-%y") # Connect and configure the instrument sourcemeter = Keithley2400('GPIB0::24::INSTR') #Connect sourcemeter.reset() sourcemeter.use_front_terminals() sourcemeter.compliance_voltage = 2 # Sets the compliance voltage to 2V sourcemeter.apply_voltage() sourcemeter.measure_current(nplc=plc, current=1e-2, auto_range=True) sleep(bufdelay) # wait here to give the instrument time to react sourcemeter.config_buffer(averages,bufdelay) #set voltage to initial voltage setpoint volt=i_volt sourcemeter.source_voltage = volt pval=0.1 #initial value for power pscale=0.01 #scaling factor scale=0.01 #scaling factor sourcemeter.enable_source() voltnew=volt start_time = time() # get start time of measurement for time tracking try: #inside a try loop so you can interrupt the kernel and still save the current measurement while True: #This makes the mppt scan go until you press abort, you could set it to do a number of scans instead sourcemeter.enable_source() # enable source # Allocate arrays to store the measurement results voltages = [] currents = [] current_stds = [] powers= [] meas_num=[] sourcemeter.source_voltage = volt pval=0.1 pscale=0.01 scale=0.01 #this value scales the random number the voltage is scaled by: smaller number will result in more stable mppt but slower time to reach mppt sourcemeter.enable_source() voltnew=volt now = datetime.datetime.now() currtime = now.strftime("%m%d%y%H%M") for i in range(data_points): direc = 'C:/Users/IECs Finest/Desktop/Jupyter/MPPT/' os.chdir(direc) now = datetime.datetime.now() #Get date and time currtime = now.strftime("%m%d%y%H%M") #get formatted time foldtime = now.strftime("%m-%d-%y") if os.path.isdir(foldtime) is False: os.mkdir(foldtime) os.chdir(foldtime) if os.path.isdir(cell_name) is False: os.mkdir(cell_name) os.chdir(cell_name) random_val=scale*np.random.rand(1).tolist()[0] #a random value to increase the voltage set point between 0 and 10mV #increase new voltage based on random number sourcemeter.source_voltage=voltnew #set voltage sourcemeter.reset_buffer() #reset buffer sleep(bufdelay) #wait sourcemeter.start_buffer() sleep(bufdelay) # Record the average and standard deviation voltages.append(voltnew) #record the voltage the cell is at currents.append(sourcemeter.means[1]*1000/cell_area) #record the average current measurement of the number of averages current_stds.append(sourcemeter.standard_devs[1]) #record the standard deviation powers.append(currents[i]*voltnew*-1) #calculate and record the power pvalnew=powers[i] #update pval to calculate the scaling factor pscale=pvalnew-pval #the difference in power from the last to new measurement, tells wether the voltage iteration made power higher or lower vscale=voltnew-volt #the difference in voltage from last to new measurement, telling whether you increased or decreased the voltga sleep(timedelay) #allows you to slow down measurements by adding a wait time (you will get fewer points) meas_num.append(time()-start_time) #record the time since the measurement started volt=voltnew #update the old voltage with the new voltage since the measurement cycle is over #control algorithm using the perturb and observe method if pscale>0: if vscale>0: voltnew=volt+random_val else: voltnew=volt-random_val elif pscale<0: if vscale>0: voltnew=volt-random_val else: voltnew=volt+random_val else: voltnew=volt pval=pvalnew print('Pmax = '+str(round(pval,3))+'%'+' ',end='\r') #prints the power sourcemeter.shutdown() #shuts down source at end of measurement tempdict = { 'Measurement_Number' : meas_num, 'Voltage' : voltages, 'Currents' : currents, 'current_stds' : current_stds, 'powers' : powers } #put arrays of values in a temporary dictionary to save data data=
pd.DataFrame(tempdict)
pandas.DataFrame
#Copyright July 2021 Ontocord LLC. Licensed under Apache v2 https://www.apache.org/licenses/LICENSE-2.0 #datastore.py from collections.abc import Iterable from dataclasses import dataclass, field, fields from typing import Any, ClassVar, Dict, List, Optional, Sequence, Tuple, Union from typing import TYPE_CHECKING, Any, BinaryIO, Callable, Dict, Iterator, List, Optional, Tuple, Union import numpy as np import pandas as pd import pyarrow as pa from datasets.info import DatasetInfo from datasets.features import PandasArrayExtensionArray, PandasArrayExtensionDtype, Features, Value, cast_to_python_objects, pandas_types_mapper from datasets import utils, Dataset from datasets.splits import NamedSplit from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence import os import json from pathlib import Path from datasets.utils.typing import PathLike from datasets.arrow_dataset import transmit_format# , replayable_table_alteration #from transformers import PreTrainedModel, PretrainedConfig import copy import shutil from datasets.fingerprint import ( fingerprint_transform, generate_fingerprint, generate_random_fingerprint, get_temporary_cache_files_directory, is_caching_enabled, update_fingerprint, ) from datasets.dataset_dict import DatasetDict from torch import nn import pickle import glob, shutil, os, time import indexed_gzip as igzip #import zstandard, io #from gzip_stream import GZIPCompressedStream import fsspec.compression from flask_sqlalchemy import SQLAlchemy from flask import Flask import dataset import six from six.moves.urllib.parse import parse_qs, urlparse from datastore_utils import * ### NOTE: dataset is a different package than datasets. We are using both packages. ### We want to have mutliple types of storage that ideally can be ### transported as a file transfer with an arrow dataset. So if we ### have <signature>.arrow, we may have fts_<signature>.db (for full ### text indexing) and db_<signature>.db (sqlite database), and ### <siganture>.mmap (mmap file reprsenting a tensor), and ### <singature>.igz (if we wish to store some portion of the text ### columns in igzip format for compression and legacy purposes. class FeaturesWithViews(Features): def copy(self): ret= FeaturesWithViews(super().copy()) if hasattr(self, "features_map"): ret.features_map = copy.deepcopy(self.features_map) return ret def __repr__(self): ret = "{"+"\n".join([f"'{a[0]}': {a[1]}" for a in self.items() if a[0] not in self.features_map]) if self.features_map: ret = ret+"\n"+"\n".join(f"'{a[0]}': View({a[1]})" for a in self.features_map.items()) ret +="}" return ret class Datastore(Dataset): #, dict """ A class that wraps a Huggingface arrow based Dataset to provide some optimized reading and *writing* in various persistance backends. Currently provides support for columns bound to memmap, igzip file, and sqlalchemy databases. """ @property def features(self): ret = FeaturesWithViews(self._info.features) ret.features_map = {} if not hasattr(self, "features_map") else self.features_map return ret def __repr__(self): return f"Datastore({{\n features: {list(self.features.keys())},\n num_rows: {self.num_rows}\n}})" @classmethod def from_dataset(cls, dataset, features_map=None, shared_dir=None): self = cls( arrow_table=dataset._data, indices_table=dataset._indices, info=dataset._info, split=dataset._split, fingerprint=dataset._fingerprint, ) if hasattr(dataset, "mmap_access_cnt"): self.mmap_access_cnt=dataset.mmap_access_cnt else: self.mmap_access_cnt=0 if hasattr(dataset, "features_map"): self.features_map=copy.deepcopy(dataset.features_map) if features_map is not None: self.features_map = copy.deepcopy(features_map) if not hasattr(self, "features_map"): self.features_map = {} if hasattr(dataset, "shared_dir"): self.shared_dir=shared_dir if shared_dir is not None: self.shared_dir = shared_dir if not hasattr(self, "shared_dir"): self.shared_dir = {} return self def _get_mmap(self, mmap_file_path, dtype, shape): if shape[0] < len(self): shape[0] = len(self) # what happens when the datastore shrinks?? if os.path.exists(mmap_file_path): ret= np.memmap(filename=mmap_file_path, mode="r+", dtype=np.dtype(dtype), shape=tuple(shape)) else: ret = np.memmap(filename=mmap_file_path, mode="w+", dtype=np.dtype(dtype), shape=tuple(shape)) if self.mmap_access_cnt % 100==0: #let's flush intermittently just in case the OS needs to synch. ret.flush() self.mmap_access_cnt=0 self.mmap_access_cnt+=1 return ret # we use class variables because we don't want it serialized in an instance of this dataset igzip_fobj = {} def _get_igzip_fobj(self, file_path): if file_path in igzip_fobj: return igzip_fobj[file_path] igzip_fobj[file_path] = fobj = get_igzip_obj(file_path) return fobj # we use class variables because we don't want it serialized in this instance db_table = {} db_connection = {} def _get_db_table(self, table_name, connection_url): if (table_name, connection_url) in db_table: table = db_table[(table_name, connection_url)] else: if connection_url in db_connection: db = db_connection[connection_url] else: db_connection[connection_url] = db = DatabaseExt(connection_url) db_table[(table_name, connection_url)] = table = db[table_name] return table # todo, change the id key from "id" to something custom. this needs to be stored in the table meta-data. @staticmethod def _add_idx(batch, indices, idx,): batch[idx] = indices # will this be shuffled if we are in shuffled mode? return batch #mapping a columun to a memmap array accessed by row def set_mmap_feature_view(self, feature_view, shape, mmap_path=None, dtype='float32', dtype_str_len=1000, idx_column="id", batch_size=100000, num_proc=4, map_fn=None): dataset_path = os.path.dirname(self.cache_files[0]['filename']) if mmap_path is None: mmap_path = os.path.abspath(os.path.join(dataset_path, feature_view+".mmap")) shape = list(shape) shape[0] = len(self) if idx_column not in self.features: self = self.map(Datastore._add_idx, with_indices=True, batch_size=batch_size, batched=True, num_proc=num_proc, fn_kwargs={'idx': idx_column}) if not isinstance(dtype, str): dtype =np.dtype(dtype).name self.features_map[feature_view] = {'type':"mmap", 'path': mmap_path, 'dtype': dtype, 'shape': shape} return self #mapping a column to an indexed gzip file accesed by line def set_igzip_feature_view(self, feature_view, path, idx_column="id", batch_size=100000, num_proc=4, map_fn=None): fobj = self._get_igzip_fobj(path) if idx_column not in self.features: self = self.map(Datastore._add_idx, with_indices=True, batch_size=batch_size, batched=True, num_proc=num_proc, fn_kwargs={'idx': idx_column}) if len(fobj) > len(self): self.add_item({idx_column: range(learn(self), len(fobj))}) self.features_map[feature_view] = {'type':"igzip", 'path': path} return self # mapping columns to a sql database. creates a sqlalchmey/dataset dynamically with idx_column as the primary key. def set_sql_feature_view(self, table_name, connection_url, columns=None, idx_column="id", batch_size=100000, num_proc=4, map_fn=None): table = _get_db_table(table_name, connection_url) if table.columns: columns = table.columns elif not columns: raise RuntimeError(f"No column definition for table view {table_name}") if idx_column not in self.features: self = self.map(Datastore._add_idx, with_indices=True, batch_size=batch_size, batched=True, num_proc=num_proc, fn_kwargs={'feature_view': idx_column}) if len(table) > len(self): self.add_item({idx_column: range(len(self), len(table))}) for col in columns: if col == idx_column: continue if col in self.features: raise RuntimeError(f"Column {col} already in the dataset") self.features_map[column] = {'type':'sql', 'connection_url': connection_url, 'table_name': table_name, 'column': column} return self # note that while the id column corresponds to an index into an external storage, accessing an arrow dataset by index # will not be guranteed to get the corresponding id. a[0] will return the first item in the current subset of the dataset. # but a[0] may return {'id': 10, 'mmap_embed': <array correponding to the 10th location in the mmap file>} def _getitem( self, key: Union[int, slice, str], # should this be list as well?? format_type=None, format_columns=None, output_all_columns=False, format_kwargs=None, ) -> Union[Dict, List]: # assumine we do error checking re format_columns and output_all_columns at a higher level?? format_columns = copy.copy(format_columns) # this is the case where we are not getting any views. if (not hasattr(self, "features_map")) or (hasattr(self, "features_map") and not self.features_map) or (hasattr(self, "features_map") and type(key) is str and key not in self.features_map): return super()._getitem( key, format_type=format_type, format_columns=format_columns, output_all_columns=output_all_columns, format_kwargs=format_kwargs) # this is the case where there are more than one columns, some of which might # be an arrow column and at least one view. For the view, we need to also get the "id". # let's prepare the parameters to get just the arrow portion of the dataset orig_key = key if type(key) is str: if not format_columns: format_columns = [key] else: format_columns.append(key) if key in self.features_map: key = "id" missing=[] if format_columns: for c in copy.copy(format_columns): if c in self.features_map: missing.append(c) format_columns.remove(c) if "id" not in format_columns: format_columns.append("id") else: missing.append("id") # let's get the data that is in the arrow data first, including the id outputs = super()._getitem( key, format_type=format_type, format_columns=format_columns, output_all_columns=output_all_columns, format_kwargs=format_kwargs) # this is the case where we are only getting view data, so the only arrow data returned is the 'id'. # so we need the id column identified so we can index into the view data source. if type(outputs) in (np.array, list): outputs = {'id': outputs} # do some cleanup. if type(orig_key) is str and format_columns and "id" in format_columns: format_columns.remove("id") if format_columns is not None: format_columns.extend(missing) # now get the views and combine views and arrow data return self._format_views(outputs, format_columns=format_columns, format_type=format_type, output_all_columns=output_all_columns, format_kwargs=format_kwargs) def _format_views(self, outputs_or_keys, format_type=None, format_columns=None, output_all_columns=False, format_kwargs=None): def getitems(self, outputs, keys, contiguous, start, end, format_columns, output_all_columns, mmap_by_items): if not format_columns: items = list(self.features_map.items()) else: items = [(column, self.features_map[column]) for column in format_columns if column in self.features_map] sql_results = {} for feature, val in items: if val['type'] == 'mmap': if mmap_by_items: if contiguous: outputs[feature] = [ self._get_mmap(val['path'], val['dtype'], val['shape']) for i in range(start, end)] else: outputs[feature] = [ self._get_mmap(val['path'], val['dtype'], val['shape']) for i in keys] else: if contiguous: outputs[feature] = self._get_mmap(val['path'], val['dtype'], val['shape'])[start:end] else: outputs[feature] = self._get_mmap(val['path'], val['dtype'], val['shape'])[keys] elif val['type'] == 'igzip': if contiguous: outputs[feature] = self._get_igzip_fobj(val['path'])[start:end] else: outputs[feature] = self._get_igzip_fobj(val['path'])[keys] elif val['type'] == 'sql': sql_results[(val['table_name'], val['connection_url'])] = sql_results.get((val['table_name'], val['connection_url']),[])+[feature] for table_connection, features in sql_results: table_name, connection_url = table_connection table= self._get_db_table(table_name, connection_url) if contiguous: for row in table.find((table.id, 'between', (start, end)), _columns=features): for feature in features: outputs[feature] = output.get(feature,[]) + row[feature] else: for row in table.find((table.id, 'in', keys), _columns=features): for feature in features: outputs[feature] = output.get(feature,[]) + row[feature] return outputs format_kwargs = format_kwargs if format_kwargs is not None else {} format_columns = format_columns if format_columns is not None else [] start = end = 0 contiguous = False if format_type in ("custom", "torch", "tensorflow", None) and type(outputs_or_keys) is not pd.DataFrame: transform = format_kwargs.get('transform') if isinstance(outputs_or_keys, str): keys = slice(0, len(self)) outputs = {} contiguous=True elif isinstance(outputs_or_keys, slice): keys = outputs_or_keys outputs = {} contiguous=True elif isinstance(outputs_or_keys, dict): keys = outputs_or_keys["id"] outputs = outputs_or_keys else: keys = outputs_or_keys outputs = {} if not contiguous: if isinstance(keys, int): contiguous = False else: contiguous, start, end = is_contiguous(keys) else: if isinstance(keys, slice): start = 0 if keys.start is None else keys.start end = len(self) if keys.stop is None else keys.stop else: start = keys[0] end = keys[-1]+1 outputs = getitems(self, outputs, keys, contiguous, start, end, format_columns, output_all_columns, mmap_by_items=False) if transform is not None: outputs = transform(outputs) if "id" in outputs and format_columns and "id" not in format_columns: del outputs["id"] # is this right. will custom ever return a dict type if there is only one column, or do we # default to returning the only column. if len(outputs) == 1: outputs = list(outputs.values())[0] if format_type == "torch": import torch return torch.tensor(outputs, **format_kwargs) elif format_type == "tensorflow": import tensorflow return tensorflow.ragged.constant(outputs, **format_kwargs) else: return outputs elif format_type == "pandas" or isinstance(outputs_or_keys, pd.DataFrame): # do we do transforms for this case?? if isinstance(outputs_or_keys, str): start = 0 end = len(self) keys = range(start, stop) outputs = None contiguous=True elif isinstance(outputs_or_keys, slice): start = 0 if outputs_or_keys.start is None else outputs_or_keys.start end = len(self) if outputs_or_keys.stop is None else outputs_or_keys.stop keys = range(outputs_or_keys.start, outputs_or_keys.stop) outputs = None contiguous=True elif isinstance(outputs_or_keys, dict) or isinstance(outputs_or_keys, pd.DataFrame): outputs = outputs_or_keys outputs = pd.DataFrame(outputs) keys = outputs_or_keys["id"] contiguous, start, end = is_contiguous(keys) else: raise RuntimeError("got unknown outputs or keys type") if outputs is None: outputs = pd.DataFrame() outputs = getitems(self, outputs, keys, contiguous, start, end, format_columns, output_all_columns, mmap_by_items=True) if "id" in outputs and format_columns and "id" not in format_columns: outputs.drop("id", axis=1) if len(format_columns) == 1: outputs = outputs[format_columns[0]] return outputs raise RuntimeError("got unknown outputs or keys type") def to_csv( self, path_or_buf: Union[PathLike, BinaryIO], batch_size: Optional[int] = None, **to_csv_kwargs, ) -> int: pass def to_dict(self, batch_size: Optional[int] = None, batched: bool = False) -> Union[dict, Iterator[dict]]: if (not hasattr(self, "features_map") or not self.features_map) and len(self.features) == 1 and "id" in self.features: return {} #TODO - put back direct mmap access method here? ret = super().to_dict(batch_size=batch_size, batched=batched) if isinstance(ret, Iterator): for r in ret: yield self._format_views(r, contiguous=True) return return self._format_views(ret, contiguous=True) def to_pandas( self, batch_size: Optional[int] = None, batched: bool = False ) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]: if (not hasattr(self, "features_map") or not self.features_map) and len(self.features) == 1 and "id" in self.features: return
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python """ Copyright 2019 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pandas as pd from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from io import BytesIO, StringIO from google.cloud import storage import tensorflow as tf import numpy as np import os import argparse PROJECT = 'loan-delinq-kubeflow' BUCKET = 'loan-delinq-bucket' def obtain_train_eval(PROJECT, BUCKET): # # All of the data is in a file called Step10_Final_dataset.csv print('reading the data file from gcs...') ###################################################################### ###################################################################### ### Datalab doesn't support ` from google.cloud import storage ` so if not using ### datalab, use the following (uncomment the following line) to import data ### differently # # The following was derived from the contents of this reply: https://stackoverflow.com/a/50201179 storage_client = storage.Client(project=PROJECT, credentials=None) bucket = storage_client.get_bucket(BUCKET) blob = bucket.blob('input/Step10_Final_dataset.csv') byte_stream = BytesIO() blob.download_to_file(byte_stream) byte_stream.seek(0) df = pd.read_csv(byte_stream) # # # We need to rearrange the columns below just as they shall be expected by the estimator print('rearranging data...') KEY_COLUMN = 'LOAN_SEQUENCE_NUMBER' LABEL_COLUMN = 'TARGET' bool_cols = [] int_cols = ['credit_score', 'mortgage_insurance_percentage', 'Number_of_units', 'cltv', 'original_upb', 'ltv', 'original_loan_term', 'number_of_borrowers','min_CURRENT_DEFERRED_UPB'] str_cols = ['first_time_home_buyer_flag', 'occupancy_status', 'channel', 'property_state', 'property_type', 'loan_purpose', 'seller_name', 'service_name'] str_nuniques = [2, 3, 3, 52, 5, 2, 20, 24] float_cols = ['metropolitan_division', 'original_interest_rate', 'min_CURRENT_ACTUAL_UPB', 'max_CURRENT_ACTUAL_UPB', 'Range_CURRENT_ACTUAL_UPB', 'stdev_CURRENT_ACTUAL_UPB', 'mode_CURRENT_ACTUAL_UPB', 'average_CURRENT_ACTUAL_UPB', 'max_CURRENT_DEFERRED_UPB', 'Range_CURRENT_DEFERRED_UPB', 'mode_CURRENT_DEFERRED_UPB', 'average_CURRENT_DEFERRED_UPB', 'stdev_CURRENT_DEFERRED_UPB', 'min_CURRENT_INTEREST_RATE', 'max_CURRENT_INTEREST_RATE', 'Range_CURRENT_INTEREST_RATE', 'mode_CURRENT_INTEREST_RATE', 'stdev_CURRENT_INTEREST_RATE', 'average_CURRENT_INTEREST_RATE', 'PREFINAL_LOAN_DELINQUENCY_STATUS', 'frequency_0', 'frequency_1', 'frequency_2', 'frequency_3', 'Recency_0', 'Recency_1', 'Recency_2', 'Recency_3'] DEFAULTS = [[''] for col in bool_cols] + [[0] for col in int_cols] + [[0.0] for col in float_cols] + \ [[''] for col in str_cols] + [[''],[0]] CSV_COLUMNS = bool_cols + int_cols + float_cols + str_cols + [KEY_COLUMN,LABEL_COLUMN] traindata = df[CSV_COLUMNS] # # Here, we'll split with a small test size so as to allow our model to train on more data print('splitting...') X_train, X_test, y_train, y_test = train_test_split( traindata.drop(LABEL_COLUMN, axis=1), traindata[LABEL_COLUMN], stratify=traindata[LABEL_COLUMN], shuffle=True, test_size=0.1) traindf = pd.concat([X_train, y_train], axis=1) evaldf = pd.concat([X_test, y_test], axis=1) alld =
pd.concat([traindf, evaldf])
pandas.concat
import unittest from unittest.mock import MagicMock import pandas as pd from pandas.testing import assert_frame_equal from data_export.models import DATA from data_export.pipeline.formatters import ( DictFormatter, FastTextCategoryFormatter, JoinedCategoryFormatter, ListedCategoryFormatter, RenameFormatter, TupledSpanFormatter, ) TARGET_COLUMN = "labels" class TestDictFormatter(unittest.TestCase): def setUp(self): self.return_value = {"label": "Label"} label = MagicMock() label.to_dict.return_value = self.return_value self.dataset = pd.DataFrame([{TARGET_COLUMN: [label]}]) def test_format(self): formatter = DictFormatter(TARGET_COLUMN) dataset = formatter.format(self.dataset) expected_dataset = pd.DataFrame([{TARGET_COLUMN: [self.return_value]}]) assert_frame_equal(dataset, expected_dataset) class TestJoinedCategoryFormatter(unittest.TestCase): def setUp(self): self.return_value = "Label" label = MagicMock() label.to_string.return_value = self.return_value self.dataset =
pd.DataFrame([{TARGET_COLUMN: [label]}])
pandas.DataFrame
import os import datetime import pandas as pd import matplotlib.pyplot as plt from matplotlib.dates import DateFormatter curr_dir = os.getcwd() project_result_dir = '\\project_result' full_project_result_dir = curr_dir+project_result_dir+'\\' input_filename_core = 'disease_model_merged_data_vFinal_p' output_filename_core = 'Graph' start_prediction_date = datetime.datetime(2020, 5, 26) # Setting def main(graph_switch=False, save_switch=False): pandas_output_setting() cols = {'Predicted cumulative count of infected cases in Alberta (Demo only)': 'cumulative_cases', 'Predicted cumulative count of deaths in Alberta (Demo only)': 'cumulative_deaths' } df_master = get_merged_project_data() df_master['Date'] = pd.to_datetime(df_master['Date']) df_id_list = df_master['Run'].unique().tolist() if graph_switch: for key, col_label in cols.items(): # Draw graphs fig, ax = plt.subplots() for df_id in df_id_list: df_master_sliced = df_master[df_master['Run'] == df_id] row_index = df_master_sliced[df_master_sliced['Date'] == \ start_prediction_date].index.item() ax.plot(df_master_sliced['Date'][row_index:], df_master_sliced[col_label][row_index:]) ax.plot(df_master_sliced['Date'][:row_index+1], df_master_sliced[col_label][:row_index+1]) # Set formats and labels date_format = DateFormatter('%Y-%m') ax.xaxis.set_major_formatter(date_format) ax.xaxis.set_minor_formatter(date_format) ax.set_title('Title: {}'.format(key), fontsize=12) plt.xlabel('Time in Year and Month') plt.ylabel('Count') plt.figtext(0.99, 0.005, '(Simulated predictions started: {})'.format(start_prediction_date), horizontalalignment='right') fig.autofmt_xdate() if save_switch: output_file_name = '{}{}_{}.png'.format(full_project_result_dir, output_filename_core, key) plt.savefig(output_file_name) plt.show() ### Helper functions ### def pandas_output_setting(): '''Set pandas output display setting''' pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 170) pd.options.mode.chained_assignment = None # default='warn' def get_merged_project_data(): dfs_merged = None for filename in os.listdir(path=full_project_result_dir): if (input_filename_core in filename): path = full_project_result_dir+filename df = pd.read_csv(path, encoding='utf-8', low_memory=False) if dfs_merged is None: dfs_merged = df else: dfs_merged =
pd.concat([dfs_merged, df])
pandas.concat
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import inspect import numpy as np import pandas as pd import pyspark import databricks.koalas as ks from databricks.koalas.exceptions import PandasNotImplementedError from databricks.koalas.missing.indexes import _MissingPandasLikeIndex, _MissingPandasLikeMultiIndex from databricks.koalas.testing.utils import ReusedSQLTestCase, TestUtils class IndexesTest(ReusedSQLTestCase, TestUtils): @property def pdf(self): return pd.DataFrame({ 'a': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [4, 5, 6, 3, 2, 1, 0, 0, 0], }, index=[0, 1, 3, 5, 6, 8, 9, 9, 9]) @property def kdf(self): return ks.from_pandas(self.pdf) def test_index(self): for pdf in [pd.DataFrame(np.random.randn(10, 5), index=list('abcdefghij')), pd.DataFrame(np.random.randn(10, 5), index=pd.date_range('2011-01-01', freq='D', periods=10)), pd.DataFrame(np.random.randn(10, 5), columns=list('abcde')).set_index(['a', 'b'])]: if LooseVersion(pyspark.__version__) < LooseVersion('2.4'): # PySpark < 2.4 does not support struct type with arrow enabled. with self.sql_conf({'spark.sql.execution.arrow.enabled': False}): kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index, pdf.index) else: kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index, pdf.index) def test_to_series(self): pidx = self.pdf.index kidx = self.kdf.index self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(kidx.to_series(name='a'), pidx.to_series(name='a')) pidx = self.pdf.set_index('b', append=True).index kidx = self.kdf.set_index('b', append=True).index if LooseVersion(pyspark.__version__) < LooseVersion('2.4'): # PySpark < 2.4 does not support struct type with arrow enabled. with self.sql_conf({'spark.sql.execution.arrow.enabled': False}): self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(kidx.to_series(name='a'), pidx.to_series(name='a')) else: self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(kidx.to_series(name='a'), pidx.to_series(name='a')) def test_index_names(self): kdf = self.kdf self.assertIsNone(kdf.index.name) idx =
pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name='x')
pandas.Index
from collections import defaultdict from pandas import Series, pivot_table, DataFrame, notnull from typing import List, Dict, Tuple, Union, Callable, Optional from ux.actions.user_action import UserAction from ux.sequences.action_sequence import ActionSequence from ux.actions.action_template import ActionTemplatePair from ux.compound_types import StrPair def count_action_transitions( action_sequences: List[ActionSequence] ) -> Dict[ActionTemplatePair, int]: """ Count the transitions from each action to each other action in the given sequences. :param action_sequences: List of IActionSequence to count transitions in. :return: Dictionary of {(from, to) => count} """ transitions = defaultdict(int) # count transitions for sequence in action_sequences: for a in range(len(sequence) - 1): from_action = sequence[a].template() to_action = sequence[a + 1].template() transitions[(from_action, to_action)] += 1 return transitions def count_location_transitions( action_sequences: List[ActionSequence] ) -> Dict[StrPair, int]: """ Count the transitions from each location to each other location in actions in the given sequences. :param action_sequences: List of IActionSequence to count transitions in. """ transitions = defaultdict(int) # count transitions for sequence in action_sequences: for action in sequence: source = action.source_id target = action.target_id if notnull(source) and
notnull(target)
pandas.notnull
import types from functools import wraps import numpy as np import datetime import collections from pandas.compat import( zip, builtins, range, long, lzip, OrderedDict, callable ) from pandas import compat from pandas.core.base import PandasObject from pandas.core.categorical import Categorical from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.index import Index, MultiIndex, _ensure_index, _union_indexes from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.core.panel import Panel from pandas.util.decorators import cache_readonly, Appender import pandas.core.algorithms as algos import pandas.core.common as com from pandas.core.common import(_possibly_downcast_to_dtype, isnull, notnull, _DATELIKE_DTYPES, is_numeric_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_categorical_dtype, _values_from_object) from pandas.core.config import option_context from pandas import _np_version_under1p7 import pandas.lib as lib from pandas.lib import Timestamp import pandas.tslib as tslib import pandas.algos as _algos import pandas.hashtable as _hash _agg_doc = """Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If passed a dict, the keys must be DataFrame column names. Notes ----- Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)). Returns ------- aggregated : DataFrame """ # special case to prevent duplicate plots when catching exceptions when # forwarding methods from NDFrames _plotting_methods = frozenset(['plot', 'boxplot', 'hist']) _common_apply_whitelist = frozenset([ 'last', 'first', 'head', 'tail', 'median', 'mean', 'sum', 'min', 'max', 'cumsum', 'cumprod', 'cummin', 'cummax', 'cumcount', 'resample', 'describe', 'rank', 'quantile', 'count', 'fillna', 'mad', 'any', 'all', 'irow', 'take', 'idxmax', 'idxmin', 'shift', 'tshift', 'ffill', 'bfill', 'pct_change', 'skew', 'corr', 'cov', 'diff', ]) | _plotting_methods _series_apply_whitelist = \ (_common_apply_whitelist - set(['boxplot'])) | \ frozenset(['dtype', 'value_counts', 'unique', 'nunique', 'nlargest', 'nsmallest']) _dataframe_apply_whitelist = \ _common_apply_whitelist | frozenset(['dtypes', 'corrwith']) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass def _groupby_function(name, alias, npfunc, numeric_only=True, _convert=False): def f(self): self._set_selection_from_grouper() try: return self._cython_agg_general(alias, numeric_only=numeric_only) except AssertionError as e: raise SpecificationError(str(e)) except Exception: result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) if _convert: result = result.convert_objects() return result f.__doc__ = "Compute %s of group values" % name f.__name__ = name return f def _first_compat(x, axis=0): def _first(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[0] if isinstance(x, DataFrame): return x.apply(_first, axis=axis) else: return _first(x) def _last_compat(x, axis=0): def _last(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[-1] if isinstance(x, DataFrame): return x.apply(_last, axis=axis) else: return _last(x) def _count_compat(x, axis=0): try: return x.size except: return x.count() class Grouper(object): """ A Grouper allows the user to specify a groupby instruction for a target object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the groupby itself. Parameters ---------- key : string, defaults to None groupby key, which selects the grouping column of the target level : name/number, defaults to None the level for the target index freq : string / freqency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to None sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex Returns ------- A specification for a groupby instruction Examples -------- >>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A') >>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date' >>> df.groupby(Grouper(level='date',freq='60s',axis=1)) : specify a resample on the level 'date' on the columns axis with a frequency of 60s """ def __new__(cls, *args, **kwargs): if kwargs.get('freq') is not None: from pandas.tseries.resample import TimeGrouper cls = TimeGrouper return super(Grouper, cls).__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=None, sort=False): self.key=key self.level=level self.freq=freq self.axis=axis self.sort=sort self.grouper=None self.obj=None self.indexer=None self.binner=None self.grouper=None @property def ax(self): return self.grouper def _get_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".format(key)) ax =
Index(obj[key],name=key)
pandas.core.index.Index
import sys import numpy as np import pandas as pd import sqlalchemy from sqlalchemy import create_engine # import sqlite3 def load_data(messages_filepath, categories_filepath): ''' Function to load data and merge them into one file Args: messages_filepath: Filepath to load the messages.csv categories_filepath: Filepath to load the categories.csv Output: df: combined dataFrame ''' messages = pd.read_csv(messages_filepath) categories=pd.read_csv(categories_filepath) df = messages.merge(categories,how='outer',on=['id']) return df def clean_data(df): ''' Function to clean the combined DataFrame and have columns for each category with binary inputs Args: df: Merged dataFrame Output: df : Clean dataFrame ''' categories = pd.DataFrame(df['categories'].str.split(';',expand=True)) row = categories.iloc[0,:] category_colnames =row.apply(lambda x:x[:-2]) # rename the columns of `categories` categories.columns = category_colnames for column in categories: # set each value to be the last character of the string categories[column] = categories[column].apply(lambda x:str(x)[-1]) # convert column from string to numeric categories[column] = categories[column].apply(lambda x:int(x)) #converting categories into binary format of 1's and 0's categories=categories.apply(lambda x:(x!=0).astype(int)) # drop the original categories column from `df` df=df.drop(['categories'],axis=1,inplace=False) # concatenate the original dataframe with the new `categories` dataframe df =
pd.concat([df,categories],axis=1)
pandas.concat
import base64 import numpy as np import os import pandas as pd import streamlit as st from streamlit.uploaded_file_manager import UploadedFile import streamlit.components.v1 as components import json from datetime import datetime from pathlib import Path from .repo import get_all_commits DATE_COLUMN = 'last_updated' ### COINGECKO @st.experimental_memo def load_coingecko_data(): # coin_file_path = "streamlit_app/coin_info/coin_socials.json" coin_file_path = './data/coin_socials.json' pkl_path = './data/merged_on_name_cg_agg.pkl' print(f"reading file from {coin_file_path}") try: with open(coin_file_path, "r") as file: jj = json.load(file) coin_social_data_df = pd.DataFrame.from_dict(jj,orient = "index") print(f"Read df with {coin_social_data_df.shape} rows ") # lowercase = lambda x: str(x).lower() # data.rename(lowercase, axis='columns', inplace=True) coin_social_data_df[DATE_COLUMN] = pd.to_datetime(coin_social_data_df[DATE_COLUMN]) # Add in repo info from electricCapital additional_repo_info_df = pd.read_pickle(pkl_path) # st.dataframe(additional_repo_info_df) # print("Shape") coin_social_data_df_merged = pd.merge(coin_social_data_df, additional_repo_info_df, left_on = 'name', right_on= 'name_coingecko', how = 'left') return coin_social_data_df_merged except Exception as e: # Notify the reader that the data was successfully loaded. st.sidebar.error('Error loading data :(') return None @st.experimental_memo def get_one_token_latest(coin_choice): import pandas as pd from pycoingecko import CoinGeckoAPI import time pkl_path = './data/merged_on_name_cg_agg.pkl' # coin_data = {} cg = CoinGeckoAPI() coin_json = cg.get_coin_by_id(id=coin_choice, localization = False) required_cols = ['id', 'symbol', 'name', 'asset_platform_id', 'platforms', 'block_time_in_minutes', 'hashing_algorithm', 'categories', 'public_notice', 'additional_notices', 'description', 'links', 'image', 'country_origin', 'genesis_date', 'sentiment_votes_up_percentage', 'sentiment_votes_down_percentage', 'market_cap_rank', 'coingecko_rank', 'coingecko_score', 'developer_score', 'community_score', 'liquidity_score', 'public_interest_score', 'market_data', 'community_data', 'developer_data', 'public_interest_stats', 'status_updates', 'last_updated', 'tickers', 'ico_data', 'contract_address'] df = pd.DataFrame.from_dict({coin_choice: coin_json}, orient="index") for col in required_cols: if col not in df.columns: df[col] = np.nan additional_repo_info_df = pd.read_pickle(pkl_path) # st.dataframe(additional_repo_info_df) # print("Shape") coin_social_data_df_merged =
pd.merge(df, additional_repo_info_df, left_on = 'name', right_on= 'name_coingecko', how = 'left')
pandas.merge
import numpy as np from typing import Callable, Tuple from dataprocessing import F1Dataset import pandas as pd import GPy import datetime processed_laps = dict() processed_pits = dict() def get_or_load_data(year: int) -> Tuple[pd.DataFrame, pd.DataFrame]: # return data if it was already processed global processed_laps global processed_pits if year in processed_pits: print("already processed") return processed_laps[year], processed_pits[year] data = F1Dataset('data') races = data.races years_races = races.loc[races['year'] == year][['raceId', 'circuitId']] # load qualification data,obtain fastest quali time at each race for normalisation purposes qualis = data.qualifying qrs = qualis.merge(years_races, on='raceId') qrs = qrs.loc[~pd.isnull(qrs['q3'])] top_time_idx = qrs.groupby(['raceId'])['q3'].transform(min) == qrs['q3'] top_times = qrs[top_time_idx][['q3', 'raceId']] top_times['q3'] =
pd.to_datetime(top_times['q3'], format='%M:%S.%f')
pandas.to_datetime
import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt import sys from math import sqrt, log from scipy.stats import zscore from scipy.stats import percentileofscore from collections import Counter def get_indication(df): indication =[] for sample in df.index: name = sample[sample.rfind('IPI')+3:sample.find('.')-3] if name == 'MELB': name = 'MEL' indication.append(name.strip()) return indication def make_plot(s,title,MIN,MAX,comp): ''' input: series of flow scores Min Max for y axis output: boxplot of flow scores by indication sorted for highest median to lowest ''' df = s.to_frame(name='Population_Percent') sns.set_style("whitegrid") f, ax = plt.subplots(figsize=(20,10)) indication = get_indication(df) print (len(indication)) colors = { 'LUNG':'MidnightBlue', 'KID':'Red', 'HNSC':'OliveDrab', 'CRC':'DarkTurquoise', 'GYN':'Coral', 'BLAD':'Gold', 'MEL':'Maroon', 'HEP':'DodgerBlue', 'SRC':'DeepPink', 'PNET':'DarkOrchid', 'PDAC' : 'Yellow', 'GALL':'Green', 'ADR':'Purple', 'GSTR':'Yellow', 'SI' : 'Black', 'GBM': 'Grey' } df['Indication'] = indication my_order = df.groupby(by=["Indication"]).median().iloc[::-1] my_order = my_order.sort_values(by=["Population_Percent"],ascending=False).index print (my_order.tolist()) ax = sns.boxplot(x="Indication", y="Population_Percent", data=df, whis=np.inf,palette=colors,order=my_order,saturation=0.45) ax = sns.swarmplot(x='Indication',y='Population_Percent',data=df, size =10, palette=colors,order=my_order,edgecolor='gray') plt.ylabel('Score',fontsize= 30, fontweight='bold') plt.xlabel('') plt.ylim((MIN,MAX)) plt.setp(ax.yaxis.get_majorticklabels(), fontsize=15, fontweight='bold',rotation=0) plt.setp(ax.xaxis.get_majorticklabels(), fontsize=25, fontweight='bold',rotation=0) plt.title(comp+' score from Flow Cytometry' ,fontsize=20,fontweight='bold') #plt.show() plt.savefig(title+'.pdf',format='pdf',dpi=500) plt.savefig(title+'.svg',format='svg',dpi=500) plt.close() return my_order def main(): title="Flow_score_Sept10_2020" for comp in ['Tcell','Myeloid','Stroma']: df =
pd.read_csv('../files_used_for_plots/feature_flow_population_percents/'+comp+'_flow_population_percents.tsv',sep='\t',index_col=[0],header=0,skipinitialspace=True)
pandas.read_csv
"""Script to get data for core functions.""" from BackEnd import core from timeit import default_timer as timer import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import os sns.set_theme(color_codes=True) # time it takes creating share packages with variable secret length number_of_bytes = range(1, 50) number_of_packages = 5 number_threshold = 5 data_points = None for i in range(0, len(number_of_bytes)): mock_secret = os.urandom(number_of_bytes[i]) start = timer() core.split_large_secret_into_share_packages(mock_secret, number_threshold, number_of_packages) stop = timer() if i == 0: data_points = np.array([[number_of_bytes[i], stop - start]]) else: data_points = np.append(data_points, np.array([[number_of_bytes[i], stop - start]]), axis=0) print(pd.DataFrame(data_points)) dataframe = pd.DataFrame(data=data_points[:, 1:]) sns.lineplot(data=dataframe) plt.title('Large Secret: Time per length of secret in bytes.') plt.legend('Data') plt.ylabel('Time') plt.xlabel('Bytes') plt.show() x = data_points[0:, 0] y = data_points[0:, 1] x, y = pd.Series(x), pd.Series(y) sns.regplot(x=x, y=y) plt.title('Large Secret: Time per length of secret in bytes.') plt.legend('Data') plt.ylabel('Time') plt.xlabel('Bytes') plt.show() # time it takes creating share packages with variable package number number_of_bytes = 32 number_threshold = 5 number_of_packages = range(2, 100) data_points = None for i in range(0, len(number_of_packages)): mock_secret = os.urandom(number_of_bytes) start = timer() core.split_large_secret_into_share_packages(mock_secret, number_threshold, number_of_packages[i]) stop = timer() if i == 0: data_points = np.array([[number_of_packages[i], stop - start]]) else: data_points = np.append(data_points, np.array([[number_of_packages[i], stop - start]]), axis=0) print(pd.DataFrame(data_points)) dataframe = pd.DataFrame(data=data_points[:, 1:]) sns.lineplot(data=dataframe) plt.title('Large Secret: Time per number of packages created.') plt.legend('Data') plt.ylabel('Time') plt.xlabel('Packages') plt.show() x = data_points[0:, 0] y = data_points[0:, 1] x, y = pd.Series(x), pd.Series(y) sns.regplot(x=x, y=y) plt.title('Large Secret: Time per number of packages created.') plt.legend('Data') plt.ylabel('Time') plt.xlabel('Packages') plt.show() plt.show() # time it takes creating share packages with variable threshold number number_of_bytes = 32 number_threshold = range(2, 100) number_of_packages = 5 data_points = None for i in range(0, len(number_threshold)): mock_secret = os.urandom(number_of_bytes) start = timer() core.split_large_secret_into_share_packages(mock_secret, number_threshold[i], number_of_packages) stop = timer() if i == 0: data_points = np.array([[number_threshold[i], stop - start]]) else: data_points = np.append(data_points, np.array([[number_threshold[i], stop - start]]), axis=0) print(pd.DataFrame(data_points)) dataframe = pd.DataFrame(data=data_points[:, 1:]) sns.lineplot(data=dataframe) plt.title('Large Secret: Time per threshold of shamir algorithm.') plt.legend('Data') plt.ylabel('Time') plt.xlabel('Threshold') plt.show() x = data_points[0:, 0] y = data_points[0:, 1] x, y = pd.Series(x), pd.Series(y) sns.regplot(x=x, y=y, color="g") plt.title('Large Secret: Time per threshold of shamir algorithm.') plt.legend('Data') plt.ylabel('Time') plt.xlabel('Threshold') plt.show() # time it takes to restore packages from minimum threshold number_of_bytes = 32 number_threshold = range(2, 50) number_of_packages = 100 data_points = None for i in range(0, len(number_threshold)): mock_secret = os.urandom(number_of_bytes) packages = core.split_large_secret_into_share_packages(mock_secret, number_threshold[i], number_of_packages) start = timer() core.recover_large_secret(packages) stop = timer() if i == 0: data_points = np.array([[number_threshold[i], stop - start]]) else: data_points = np.append(data_points, np.array([[number_threshold[i], stop - start]]), axis=0) print(
pd.DataFrame(data_points)
pandas.DataFrame
import os try: import fool except: print("็ผบๅฐ‘foolๅทฅๅ…ท") import math import pandas as pd import numpy as np import random import tensorflow as tf import re np.random.seed(1) def add2vocab(path,word): vocab_data=pd.read_csv(path) idx_to_chars=list(vocab_data['vocabulary'])+[word] df_data = pd.DataFrame(idx_to_chars, columns=['vocabulary']) df_data.to_csv(path,index=0) def get_corpus_indices(data,chars_to_idx,mlm=False,nsp=False): """ ่ฝฌๅŒ–ๆˆ่ฏๅบ“็ดขๅผ• """ corpus_indices=[] keys=chars_to_idx.keys() #print(data) for d in data: if nsp==True: corpus_chars=d corpus_chars_idx=[] if len(d)>0 and len(d[0])==1: corpus_chars=['[cls]']+corpus_chars index=-1 for word in corpus_chars: index=index+1 if word not in keys: corpus_chars[index]='[mask]'#็”จ[mask]ๆ›ฟๆขไธๅญ˜ๅœจ่ฏๅบ“ไธญ็š„ๅ•่ฏ corpus_chars_idx=[chars_to_idx[char] for char in corpus_chars] find_end=np.where(np.asarray(corpus_chars_idx)==chars_to_idx['ใ€‚']) for i in range(find_end[0].shape[0]): corpus_chars_idx.insert(find_end[0][i]+i+1,chars_to_idx['[sep]']) else: corpus_chars_idx=[chars_to_idx[char] for char in corpus_chars] elif mlm==True: d=d.replace('\n','').replace('\r','').replace(' ','').replace('\u3000','') corpus_chars=list(d) corpus_chars_idx=[] #print(2) ''' index=-1 for word in corpus_chars: index=index+1 if word not in keys: corpus_chars[index]='[mask]'#็”จ[mask]ๆ›ฟๆขไธๅญ˜ๅœจ่ฏๅบ“ไธญ็š„ๅ•่ฏ ''' index=-1 for word in corpus_chars: index=index+1 if word not in keys: corpus_chars[index]='[mask]'#็”จ[mask]ๆ›ฟๆขไธๅญ˜ๅœจ่ฏๅบ“ไธญ็š„ๅ•่ฏ corpus_chars_idx=[chars_to_idx[char] for char in corpus_chars] else: corpus_chars=d if isinstance(corpus_chars,(list)):#corpus_charsๅฟ…้กปๆ˜ฏๅˆ—่กจlist index=-1 for word in corpus_chars: index=index+1 if word not in keys: corpus_chars[index]='[mask]'#็”จ[mask]ๆ›ฟๆขไธๅญ˜ๅœจ่ฏๅบ“ไธญ็š„ๅ•่ฏ else: corpus_chars=[corpus_chars]#่ฝฌๅŒ–ๆˆlist corpus_chars_idx=[chars_to_idx[char] for char in corpus_chars] corpus_indices.append(corpus_chars_idx)#่ฏญๆ–™็ดขๅผ•๏ผŒๆ—ข่ฏปๅ…ฅ็š„ๆ–‡ๆœฌ๏ผŒๅนถ้€š่ฟ‡chars_to_idx่ฝฌๅŒ–ๆˆ็ดขๅผ• return corpus_indices def data_format(data,labels): ''' ๆ•ฐๆฎๆ ผๅผๅŒ–๏ผŒๆŠŠๆ•ดไธชๆ‰นๆฌก็š„ๆ•ฐๆฎ่ฝฌๅŒ–ๆˆๆœ€ๅคงๆ•ฐๆฎ้•ฟๅบฆ็š„ๆ•ฐๆฎ็›ธๅŒ็š„ๆ•ฐๆฎ้•ฟๅบฆ๏ผˆไปฅ-1่ฟ›่กŒๅกซๅ……๏ผ‰ ''' def format_inner(inputs,max_size): new_data=[] for x_t in inputs: if(abs(len(x_t)-max_size)!=0): for i in range(abs(len(x_t)-max_size)): x_t.extend([-1]) new_data.append(tf.reshape(x_t,[1,-1])) return new_data max_size=0 new_data=[] mask=[] masks=[] new_labels = [] #่Žทๅ–ๆœ€ๅคงๆ•ฐๆฎ้•ฟๅบฆ for x in data: if(max_size<len(x)): max_size=len(x) #ๅพ—ๅˆฐmasks for d in data: for i in range(max_size): if(i<len(d)): mask.append(1.0) else: mask.append(0.0) masks.append(tf.reshape(mask,[1,-1])) mask=[] #print(masks,"max_size") if data is not None: new_data=format_inner(data,max_size)#ๆ ผๅผๅŒ–ๆ•ฐๆฎ if labels is not None: new_labels=format_inner(labels,max_size) #ๆ ผๅผๅŒ–ๆ ‡็ญพ #print(new_labels) #print(new_data) return new_data,new_labels,masks def get_data(data,labels,chars_to_idx,label_chars_to_idx,batch_size,char2idx=True,mlm=False,nsp=False): ''' function: ไธ€ไธชๆ‰นๆฌกไธ€ไธชๆ‰นๆฌก็š„yieldๆ•ฐๆฎ parameter: data:้œ€่ฆๆ‰นๆฌกๅŒ–็š„ไธ€็ป„ๆ•ฐๆฎ labels:dataๅฏนๅบ”็š„ๆƒ…ๆ„Ÿ็ฑปๅž‹ chars_to_idx;่ฏๆฑ‡ๅˆฐ็ดขๅผ•็š„ๆ˜ ๅฐ„ label_chars_to_idx;ๆ ‡็ญพๅˆฐ็ดขๅผ•็š„ๆ˜ ๅฐ„ batch_size;ๆ‰นๆฌกๅคงๅฐ ''' num_example=math.ceil(len(data)/batch_size) example_indices=list(range(num_example)) random.shuffle(example_indices) #print(data,"get_data") for i in example_indices: start=i*batch_size if start >(len(data)-1): start=(len(data)-1) end=i*batch_size+batch_size if end >(len(data)-1): end=(len(data)-1)+1 X=data[start:end] Y=labels[start:end] #print(chars_to_idx,"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa") #print(char2idx," ",mlm," ",nsp,"่ฟ›1") if char2idx==True: #print("่ฟ›") X=get_corpus_indices(X,chars_to_idx,mlm=mlm,nsp=nsp) if mlm==True: Y=X else: Y=get_corpus_indices(Y,label_chars_to_idx,mlm=mlm,nsp=nsp) #print(X,"XXXXXX") yield X,Y #ๅชๆ˜ฏ็ดขๅผ•ๅŒ–็š„ๆ–‡ๆœฌ๏ผŒไธ”้•ฟๅบฆไธไธ€ def nsp_vocab(folder,name): path=folder+"\\"+name df = pd.read_csv(path) data = list(df["evaluation"]) #print(len(data)) datas=[] labels=[] for i in range(len(data)): if data[i].find("ใ€‚")==-1: continue #print(data[i]) x,y=build_sample_nsp(data[i]) if x==-1: continue datas.extend(x) labels.extend(y) #print(datas[-1]) #print(labels[-1]) datas=[list(d) for d in datas] df_data = pd.DataFrame(datas) df_data.to_csv(folder+"\\"+"nsp_data.csv",index=0,header=0)#ไธๅญ˜ๅˆ—ๅๅ’Œ่กŒๅ df_label = pd.DataFrame(labels) df_label.to_csv(folder+"\\"+"nsp_label.csv",index=0,header=0)#ไธๅญ˜ๅˆ—ๅๅ’Œ่กŒๅ #print(datas[-1][:]) def nsp_load_data(folder,data_name,label_name): path_data=folder+"\\"+data_name path_name=folder+"\\"+label_name df_data = pd.read_csv(path_data,header=None,low_memory=False) df_label = pd.read_csv(path_name,header=None,low_memory=False) data=df_data.values.tolist() #print(data[0:10][:]) data=[[d for d in sentence if pd.notna(d)] for sentence in data ]#ๅŽป้™คnan #print(df_label,"####") label=df_label.values.tolist() return data,label def build_sample_nsp(data): ''' function: ไบง็”Ÿ็”ฑไธคๅฅ่ฏ็ป„ๅˆ็š„ๆ•ฐๆฎ๏ผŒlabel่กจ็คบ่ฟ™ไธคๅฅ่ฏๆ˜ฏๅฆๆ˜ฏๅœจๅŽŸๆ–‡ๆœฌ่ฟžๅœจไธ€่ตท็š„ใ€‚ ๆฏ”ๅฆ‚ไธ€ไธชๆ–‡ๆกฃๆœ‰3ๅฅ่ฏ๏ผŒไธบ๏ผš(ๆ–‡1)(ๆ–‡2)(ๆ–‡3)๏ผŒ่ฟžๅœจไธ€่ตท็š„๏ผˆๆญฃๆ ทๆœฌ๏ผ‰ๆ˜ฏ(ๆ–‡1)(ๆ–‡2)๏ผŒ(ๆ–‡2)(ๆ–‡3)๏ผŒ่ดŸๆ ทๆœฌๆ˜ฏ(ๆ–‡1)(ๆ–‡3)๏ผŒ(ๆ–‡3)(ๆ–‡1)๏ผŒ(ๆ–‡3)(ๆ–‡2)๏ผŒ(ๆ–‡2)(ๆ–‡1)ใ€‚ ไธบไบ†ไฟ่ฏๆญฃ่ดŸๆ ทๆœฌๆ•ฐ้‡ไธ€่‡ด๏ผŒๆ‰€ไปฅ่ฏฅๅ‡ฝๆ•ฐ่ฟ”ๅ›žๆ‰€ๆœ‰็š„ๆ ทๆœฌไธญ๏ผŒๆญฃ่ดŸๆ ทๆœฌๅ„ๅ 50% parameter: data:ไธ€ไธชๆ–‡ๆกฃใ€‚ไธ€ไธชๆ–‡ๆกฃๅŒ…ๅซๅพˆๅคšๅฅๅญ ''' def dw_nsp(sentence): front=0 back=1 pos_data=[] pos_label=[] neg_data=[] neg_label=[] if(len(sentence)>1): while back<len(sentence): #print(back) pos_data.append(sentence[front]+"ใ€‚"+sentence[back]+"ใ€‚") pos_label.append("ๆญฃ้ข")#1ไปฃ่กจๆญฃๆ ทๆœฌ back=back+1 front=front+1 #print(len(pos_data),"pos_data") for i in range(len(pos_data)): front=random.randint(0,len(sentence)-1) back=random.randint(0,len(sentence)-1) #print(back) while (back-front)==1: front=random.randint(0,len(sentence)-1) back=random.randint(0,len(sentence)-1) #print(back) neg_data.append(sentence[front]+"ใ€‚"+sentence[back]+"ใ€‚") neg_label.append("่ดŸ้ข")#0ไปฃ่กจ่ดŸๆ ทๆœฌ return pos_data+neg_data,pos_label+neg_label pattern=r'[ใ€‚|๏ผ]'#ไปฅๅฅๅทๅˆ†ๅ‰ฒๆ‰€ๆœ‰ๆ–‡ๆœฌ #print(data) corpus=data sentence=re.split(pattern,corpus) if len(sentence[-1])==0: sentence=sentence[0:-1]#็”ฑไบŽๆœ€ๅŽไธ€ไธชๅ…ƒ็ด ๆ˜ฏ็ฉบ็š„ๆ‰€ไปฅๆŠŠๅฎƒๅŽป้™ค #print(sentence) #print(sentence) if len(sentence)>2: inputs,labels=dw_nsp(sentence) #print(inputs) #print(labels) #random.shuffle(zip(inputs,labels))#ๅˆ†ๅผ€ๆ‰“ไนฑไผšๆœ‰้—ฎ้ข˜ inputs_labels = list(zip(inputs, labels)) random.shuffle(inputs_labels) inputs[:], labels[:] = zip(*inputs_labels) return inputs,labels else: return -1,-1 def chinese_token_vocab(path): df = pd.read_csv(path, header=None) chinese_token=list(df.iloc[:,-1])+["ใ€‚","๏ผŸ","๏ผ","๏ผŒ","ใ€","๏ผ›","๏ผš","โ€™","โ€˜","โ€","โ€œ","๏ผˆ","๏ผ‰","ใ€","ใ€‘","โ€”","โ€ฆ","ยท","ใ€”","ใ€•","[","]",".","0","1","2","3","4","5","6","7","8","9"]+['[cls]','[sep]','[mask]']#ๅŠ ๅ…ฅไธ€ไบ›ๅธธ่งไธญๆ–‡็ฌฆๅท df_data=pd.DataFrame(chinese_token, columns=['token']) df_data=pd.DataFrame(df_data['token'].unique(), columns=['token']) df_data.to_csv("data\\chinese_token.csv",index=0) def bild_vocab_token(path): ''' ่ฏปๅ–tokenๆ•ฐๆฎ้›† ''' df = pd.read_csv(path) chinese_token=list(df['token']) char_to_idx=dict([(char,i) for i,char in enumerate(chinese_token)]) vocab_size=len(chinese_token) return chinese_token,char_to_idx,vocab_size def ner_vocab(folder,name):#tokenize ''' func: ๆŠŠๆ•ฐๆฎ้›†ๆž„ๅปบๆˆไธ€่กŒไปฃ่กจไธ€ไธชๅฅๅญใ€‚dataๅ’Œlabelๅˆ†ๅผ€ๆˆไธคไธชๆ–‡ๆกฃใ€‚ ''' name_1="ner_label_num_"+name+".csv" name_2="ner_data_"+name+".csv" name_3="ner_label_"+name+".csv" name_4="tokenize_label_num_"+name+".csv" name_5="tokenize_label_"+name+".csv" path = folder+"\\" df = pd.read_csv(folder+"\\"+name,sep='\t', header=None,encoding='utf-8') corpus=list(df[0]) corpus_label=list(df[1]) token=[] tokenize=[] tokenizes=[] tokens=[] label=[] labels=[] #ๆž„ๅปบๆ•ฐๆฎ้›†๏ผŒๆŠŠtokenๅ’Œๅฏนๅบ”็š„labelๅญ˜ๅˆฐไธ€ไธชๆ–‡ไปถ้‡Œ for i in range(len(corpus)): chars=list(corpus[i]) token.append(chars[0]) #print(chars[0],i) if(int(chars[1])>0): tokenize.append("I") else: tokenize.append("B") label.append(corpus_label[i]) #tokenize.append(i[1]) if chars[0]=="ใ€‚":#ไปฅๅฅๅทไปฃ่กจไธ€ๅฅ่ฏ็ป“ๆŸ tokens.append(token) labels.append(label) tokenizes.append(tokenize) #token.clear() #label.clear() token=[] label=[] tokenize=[] #data={"token":token,"tokenize":tokenize,"ner_label":ner_label} #print(tokens) df_data = pd.DataFrame(tokens) df_data.to_csv(path+name_2,index=0,header=0)#ไธๅญ˜ๅˆ—ๅๅ’Œ่กŒๅ df_label = pd.DataFrame(labels) df_label.to_csv(path+name_3,index=0,header=0)#ไธๅญ˜ๅˆ—ๅๅ’Œ่กŒๅ #print(tokenizes) df_label_tokenize = pd.DataFrame(tokenizes) df_label_tokenize.to_csv(path+name_5,index=0,header=0)#ไธๅญ˜ๅˆ—ๅๅ’Œ่กŒๅ #ๆž„ๅปบcharๅˆฐidx็š„ๆ˜ ๅฐ„๏ผŒๅนถไฟๅญ˜ๅค‡็”จ ner_label_num=list(df[1].unique())#+["<START>","<END>"] df_label = pd.DataFrame(ner_label_num, columns=['label']) df_label.to_csv(path+name_1,index=0) #ๆŠŠๅตŒๅฅ—็š„listๆ•ดๅˆๆˆไธ€ไธชlist T=[] for t in tokenizes: T.extend(t) df_label_tnum = pd.DataFrame(list(set(T)), columns=['label'])#+["<START>","<END>"] df_label_tnum.to_csv(path+name_4,index=0) def build_vocab_label(folder,name): df = pd.read_csv(folder+"\\"+name) #print(df) try: label_idx_to_char=list(df["label"].unique()) except: label_idx_to_char=list(df.iloc[:,0].unique()) label_char_to_idx=dict([(char,i) for i,char in enumerate(label_idx_to_char)]) label_vocab_size=len(label_idx_to_char) return label_idx_to_char,label_char_to_idx,label_vocab_size def ner_load_data(folder,name,low_memory=False): path_1=folder+"\\"+name df = pd.read_csv(path_1,header=None,low_memory=False) data=df.values.tolist() data=[[d for d in sentence if
pd.notna(d)
pandas.notna
import quandl mydata = quandl.get("YAHOO/INDEX_DJI", start_date="2005-12-01", end_date="2005-12-05") import pandas as pd authtoken = '<PASSWORD>' def get_data_quandl(symbol, start_date, end_date): data = quandl.get(symbol, start_date=start_date, end_date=end_date, authtoken=authtoken) return data def generate_features(df): """ Generate features for a stock/index based on historical price and performance Args: df (dataframe with columns "Open", "Close", "High", "Low", "Volume", "Adjusted Close") Returns: dataframe, data set with new features """ df_new =
pd.DataFrame()
pandas.DataFrame
import requests import pandas as pd import numpy as np import configparser from datetime import timedelta, datetime from dateutil import relativedelta, parser, rrule from dateutil.rrule import WEEKLY class whoop_login: '''A class object to allow a user to login and store their authorization code, then perform pulls using the code in order to access different types of data''' def __init__(self, auth_code=None, whoop_id=None,current_datetime=datetime.utcnow()): self.auth_code=auth_code self.whoop_id=whoop_id self.current_datetime=current_datetime self.start_datetime=None self.all_data=None self.all_activities=None self.sport_dict=None self.all_sleep=None self.all_sleep_events=None def pull_api(self, url,df=False): auth_code=self.auth_code headers={'authorization':auth_code} pull=requests.get(url,headers=headers) if pull.status_code==200 and len(pull.content)>1: if df: d=pd.json_normalize(pull.json()) return d else: return pull.json() else: return "no response" def pull_sleep_main(self,sleep_id): athlete_id=self.whoop_id sleep=self.pull_api('https://api-7.whoop.com/users/{}/sleeps/{}'.format(athlete_id,sleep_id)) main_df=pd.json_normalize(sleep) return main_df def pull_sleep_events(self,sleep_id): athlete_id=self.whoop_id sleep=self.pull_api('https://api-7.whoop.com/users/{}/sleeps/{}'.format(athlete_id,sleep_id)) events_df=pd.json_normalize(sleep['events']) events_df['id']=sleep_id return events_df def get_authorization(self,user_ini): ''' Function to get the authorization token and user id. This must be completed before a user can query the api ''' config=configparser.ConfigParser() config.read(user_ini) username=config['whoop']['username'] password=config['whoop']['password'] headers={ "username": username, "password": password, "grant_type": "password", "issueRefresh": False} auth = requests.post("https://api-7.whoop.com/oauth/token", json=headers) if auth.status_code==200: content=auth.json() user_id=content['user']['id'] token=content['access_token'] start_time=content['user']['profile']['createdAt'] self.whoop_id=user_id self.auth_code='bearer ' + token self.start_datetime=start_time print("Authentication successful") else: print("Authentication failed - please double check your credentials") def get_keydata_all(self): ''' This function returns a dataframe of WHOOP metrics for each day of WHOOP membership. In the resulting dataframe, each day is a row and contains strain, recovery, and sleep information ''' if self.start_datetime: if self.all_data is not None: ## All data already pulled return self.all_data else: start_date=parser.isoparse(self.start_datetime).replace(tzinfo=None) end_time='T23:59:59.999Z' start_time='T00:00:00.000Z' intervals=rrule.rrule(freq=WEEKLY,interval=1,until=self.current_datetime, dtstart=start_date) date_range=[[d.strftime('%Y-%m-%d') + start_time, (d+relativedelta.relativedelta(weeks=1)).strftime('%Y-%m-%d') + end_time] for d in intervals] all_data=pd.DataFrame() for dates in date_range: cycle_url='https://api-7.whoop.com/users/{}/cycles?end={}&start={}'.format(self.whoop_id, dates[1], dates[0]) data=self.pull_api(cycle_url,df=True) all_data=pd.concat([all_data,data]) all_data.reset_index(drop=True,inplace=True) ## fixing the day column so it's not a list all_data['days']=all_data['days'].map(lambda d: d[0]) all_data.rename(columns={"days":'day'},inplace=True) ## Putting all time into minutes instead of milliseconds sleep_cols=['qualityDuration','needBreakdown.baseline','needBreakdown.debt','needBreakdown.naps', 'needBreakdown.strain','needBreakdown.total'] for sleep_col in sleep_cols: all_data['sleep.' + sleep_col]=all_data['sleep.' + sleep_col].astype(float).apply(lambda x: np.nan if np.isnan(x) else x/60000) ## Making nap variable all_data['nap_duration']=all_data['sleep.naps'].apply(lambda x: x[0]['qualityDuration']/60000 if len(x)==1 else( sum([y['qualityDuration'] for y in x if y['qualityDuration'] is not None])/60000 if len(x)>1 else 0)) all_data.drop(['sleep.naps'],axis=1,inplace=True) ## dropping duplicates subsetting because of list columns all_data.drop_duplicates(subset=['day','sleep.id'],inplace=True) self.all_data=all_data return all_data else: print("Please run the authorization function first") def get_activities_all(self): ''' Activity data is pulled through the get_keydata functions so if the data pull is present, this function just transforms the activity column into a dataframe of activities, where each activity is a row. If it has not been pulled, this function runs the key data function then returns the activity dataframe''' if self.sport_dict: sport_dict=self.sport_dict else: sports=self.pull_api('https://api-7.whoop.com/sports') sport_dict={sport['id']:sport['name'] for sport in sports} self.sport_dict=self.sport_dict if self.start_datetime: ## process activity data if self.all_data is not None: ## use existing data=self.all_data else: ## pull all data to process activities data=self.get_keydata_all() ## now process activities data act_data=pd.json_normalize(data[data['strain.workouts'].apply(len)>0]['strain.workouts'].apply(lambda x: x[0])) act_data[['during.upper','during.lower']]=act_data[['during.upper','during.lower']].apply(pd.to_datetime) act_data['total_minutes']=act_data.apply(lambda x: (x['during.upper']-x['during.lower']).total_seconds()/60.0,axis=1) for z in range(0,6): act_data['zone{}_minutes'.format(z+1)]=act_data['zones'].apply(lambda x: x[z]/60000.) act_data['sport_name']=act_data.sportId.apply(lambda x: sport_dict[x]) act_data['day']=act_data['during.lower'].dt.strftime('%Y-%m-%d') act_data.drop(['zones','during.bounds'],axis=1,inplace=True) act_data.drop_duplicates(inplace=True) self.all_activities=act_data return act_data else: print("Please run the authorization function first") def get_sleep_all(self): ''' This function returns all sleep metrics in a data frame, for the duration of user's WHOOP membership. Each row in the data frame represents one night of sleep ''' if self.auth_code: if self.all_data is not None: ## use existing data=self.all_data else: ## pull timeframe data data=self.get_keydata_all() ## getting all the sleep ids if self.all_sleep is not None: ## All sleep data already pulled return self.all_sleep else: sleep_ids=data['sleep.id'].values.tolist() sleep_list=[int(x) for x in sleep_ids if
pd.isna(x)
pandas.isna
from __future__ import print_function # from __future__ import absolute_import from keras.optimizers import SGD from keras.regularizers import l2 from keras.models import Sequential, Model, model_from_yaml from keras.utils import plot_model from keras.layers import merge, Dense, Dropout, Flatten, concatenate, add, Concatenate, subtract, average, dot import numpy as np import scipy import sys import os import argparse from random import randint, uniform import time import matplotlib.pyplot as plt from keras.losses import sparse_categorical_crossentropy from keras.preprocessing.image import ImageDataGenerator import tensorflow as t import random import cv2 import keras.backend as K import tensorflow as tf import pandas as pd from keras_preprocessing import image import random as rn np.random.seed(42) rn.seed(12345) tf.set_random_seed(1234) # ----------------------------------------------------------------------------------------------- # import the essential functions required for computation # sys.path.insert(0, os.path.expanduser('~//CNN_networks')) # sys.export PYTHONPATH=/home/yaurehman2/PycharmProjects/face_anti_sp_newidea print(sys.path) from cnn_networks.VGG16_A_GAP_dual_inp import cnn_hybrid_color_single from ess_func import read_pairs, sample_people, prewhiten, store_loss, hog_to_tensor, custom_loss # ----------------------------------------------------------------------------------------------- def main(args): # set the image parameters img_rows = args.img_rows img_cols = args.img_cols img_dim_color = args.img_channels # mix_prop = 1.0 # set the value of the mixing proportion ############################################################################################################# ################################## DEFINING MODEL ########################################################## ############################################################################################################## model_alex = cnn_hybrid_color_single(img_rows, img_cols, img_dim_color) # load the model # model_final = Model(model_alex.input, model_alex.output) # specify the input and output of the model model_final = model_alex print(model_final.summary()) # print the model summary plot_model(model_final, to_file='./NIN_hybrid_bin_resnet_1x1-class', show_shapes=True) # save the model summary as a png file lr = args.learning_rate # set the learning rate # set the optimizer optimizer = SGD(lr=lr, decay=1e-6, momentum=0.9) # model compilation model_final.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy']) # print the value of the learning rate print(K.get_value(optimizer.lr)) # -------------------------------------------------- ############################################################################################################# ########################## GETTING TRAINING DATA AND TESTING DATA ########################################## ############################################################################################################## # get the training data by calling the pairs function # read the training data train_pairs_r, training_data_r, training_label_r = read_pairs(args.tr_img_lab_r) train_pairs_l, training_data_l, training_label_l = read_pairs(args.tr_img_lab_l) assert len(training_data_r) == len(training_data_l) # combine the left and right image in the training data to make a X x Y x 6 tensor training_data = [] for i in range(len(training_data_r)): # define the stereo pair stereo_pair = [training_data_r[i], training_data_l[i]] training_data.append(stereo_pair) batch_num = 0 # initialize the live samples and fake samples live_samples_ub = 0 attack_samples_ub = 0 live_samples = [] live_labels = [] attack_samples = [] attack_labels = [] # separate the live samples and fake samples to balance the both classes, i.e. live class and fake class assert len(training_label_r) == len(training_label_l) for i in range(len(training_data)): if training_label_r[i] == 0: live_samples.append(training_data[i]) live_labels.append(training_label_r[i]) live_samples_ub += 1 elif (training_label_r[i] == 1) | (training_label_r[i] == 2) | (training_label_r[i] == 3): # protocol_1 attack_samples.append(training_data[i]) attack_labels.append(training_label_r[i]) attack_samples_ub += 1 print("Live samples are %g ,\t attack samples are %g" % (live_samples_ub, attack_samples_ub)) # compute the difference; the live samples are always less than the fake samples in our case diff = 0 if live_samples_ub < attack_samples_ub: # compute the ratio diff = np.int(attack_samples_ub / live_samples_ub) print("The difference is :%g " % (diff)) else: ValueError("The fake samples are less than then live samples") # number of times the dataset has to be copied: live_samples_b = live_samples live_labels_b = live_labels for i in range(diff - 1): # print("length before balancing: %g" %len(live_samples_b)) sl_copy = live_samples.copy() ll_copy = live_labels.copy() live_samples_b = live_samples_b + sl_copy live_labels_b = live_labels_b + ll_copy # print("length after balancing: %g" % len(live_samples_b)) # balanced data training_data_balanced = live_samples_b + attack_samples training_label_balanced = live_labels_b + attack_labels print("Balanced data samples: %g" % len(training_data_balanced)) # get the length of the training data len_tr = len(training_data_balanced) # get the number equal to the length of the training data indices_tr = np.arange(len_tr) np.random.shuffle(indices_tr) # initialize the image counter images_read = 0 train_img_data_r = [] train_img_data_l = [] for i in indices_tr: if training_label_balanced[i] > 0: training_label_balanced[i] = 1 train_img_data_r.append([training_data_balanced[i][0], training_label_balanced[i]]) # read the right image train_img_data_l.append([training_data_balanced[i][1], training_label_balanced[i]]) # read the left image # print(training_data_balanced[i][1]) # cv2.imshow('img1', cv2.imread(training_data_balanced[i][0])) # cv2.waitKey() # cv2.imshow('img2', cv2.imread(training_data_balanced[i][1])) # cv2.waitKey() images_read += 1 sys.stdout.write('train images read = {0}\r'.format(images_read)) sys.stdout.flush() ############################################################################################################ # read the test data test_pairs, test_data_r, test_labels_r = read_pairs(args.tst_img_lab_r) test_pairs, test_data_l, test_labels_l = read_pairs(args.tst_img_lab_l) assert len(test_data_r) == len(test_data_l) # combine the left and right image in the training data to make a X x Y x 6 tensor test_data = [] for i in range(len(test_data_r)): # define the stereo pair stereo_pair_t = [test_data_r[i], test_data_l[i]] test_data.append(stereo_pair_t) test_labels = test_labels_r images_read = 0 # get the length of the training data len_test = len(test_data) # get the number equal to the length of the training data indices_test = np.arange(len_test) test_img_data_r = [] test_img_data_l = [] for i in indices_test: if test_labels[i] > 0: test_labels[i] = 1 test_img_data_r.append([test_data[i][0], test_labels[i]]) # read the right test image test_img_data_l.append([test_data[i][1], test_labels[i]]) # red the left test image images_read += 1 sys.stdout.write('test images read = {0}\r'.format(images_read)) sys.stdout.flush() ##################################################################################################### # make all the data in panda data frame format train_df_r =
pd.DataFrame(train_img_data_r)
pandas.DataFrame
# coding: utf-8 # ## Preparation, Imports and Function Declarations # In[ ]: get_ipython().run_line_magic('config', 'IPCompleter.greedy = True') # In[ ]: # Install GGPLOT get_ipython().system('python -m pip install ggplot') # In[ ]: from pprint import pprint import geopy.distance import datetime import pandas as pd from ggplot import * from sklearn.feature_extraction import DictVectorizer def get_distance_km(lat1, lon1, lat2, lon2): return geopy.distance.distance((lat1, lon1), (lat2, lon2)).km import datetime def transform_date(date): dates = date.split('-') datef = datetime.datetime(int(dates[0]),int(dates[1]),int(dates[2])) return datef.year, datef.month, datef.day, datef.weekday() def Holiday(month, day): if month == 7 and day <= 10: return 'IDD' if month == 12: return 'CRI' if month in [3,4]: return 'SRB' if month == 11 and day >=22 and day<=28: return 'THG' if month == 1: return 'NYR' return 'NOT' def Season(month,day): if(month in [9,10,11]) : return 'AUT' if(month in [12,1,2]) : return 'WIN' if(month in [3,4,5]) : return 'SPR' if(month in [6,7,8]) : return 'SUM' return 'NOT' def train(development): df_train = pd.read_csv('dataset/train.csv') y_train = df_train[['PAX']] y_test = None if(development==False): df_test = pd.read_csv('dataset/test.csv') else: from sklearn.model_selection import train_test_split df_train, df_test, y_train, y_test = train_test_split(df_train, y_train, test_size=0.2, random_state=42) ### Extract the date and add new features from date # TRAIN SET tfdates = df_train.apply(lambda row: transform_date(row['DateOfDeparture']), axis=1) years = [t[0] for t in tfdates] months = [t[1] for t in tfdates] days = [t[2] for t in tfdates] weekdays = [t[3] for t in tfdates] df_train['Year'], df_train['Month'],df_train['Day'], df_train['WeekDay'] = years, months, days, weekdays # TEST SET tfdates = df_test.apply(lambda row: transform_date(row['DateOfDeparture']), axis=1) years = [t[0] for t in tfdates] months = [t[1] for t in tfdates] days = [t[2] for t in tfdates] weekdays = [t[3] for t in tfdates] df_test['Year'], df_test['Month'],df_test['Day'], df_test['WeekDay'] = years, months, days, weekdays ### Extract the distance from coordinates, longtitude and latitude are inversed -- !!!Dataset's error!!! # TRAIN SET distances = df_train.apply(lambda row: round(get_distance_km(row['LongitudeDeparture'],row['LatitudeDeparture'],row['LongitudeArrival'],row['LatitudeArrival']),3), axis=1) df_train['Distance'] = distances # TEST SET distances = df_test.apply(lambda row: round(get_distance_km(row['LongitudeDeparture'],row['LatitudeDeparture'],row['LongitudeArrival'],row['LatitudeArrival']),3), axis=1) df_test['Distance'] = distances ### Set min and max weeks to departure # TRAIN SET mins = df_train.apply(lambda row: round(row['WeeksToDeparture']-row['std_wtd'],3), axis=1) maxs = df_train.apply(lambda row: round(row['WeeksToDeparture']+row['std_wtd'],3), axis=1) df_train['MinWTD'] = mins df_train['MaxWTD'] = maxs # TEST SET mins = df_test.apply(lambda row: round(row['WeeksToDeparture']-row['std_wtd'],3), axis=1) maxs = df_test.apply(lambda row: round(row['WeeksToDeparture']+row['std_wtd'],3), axis=1) df_test['MinWTD'] = mins df_test['MaxWTD'] = maxs ### Find holidays, seasons # TRAIN SET holis = df_train.apply(lambda row: Holiday(row['Month'],row['Day']), axis=1) seas = df_train.apply(lambda row: Season(row['Month'],row['Day']), axis=1) df_train['Holiday'] = holis df_train['Season'] = seas # TEST SET holis = df_test.apply(lambda row: Holiday(row['Month'],row['Day']), axis=1) seas = df_test.apply(lambda row: Season(row['Month'],row['Day']), axis=1) df_test['Holiday'] = holis df_test['Season'] = seas torem = ['DateOfDeparture','CityDeparture','LongitudeDeparture','LatitudeDeparture','CityArrival','LongitudeArrival','LatitudeArrival','WeeksToDeparture','std_wtd','PAX','MinWTD','MaxWTD'] if(development==False): df_train.drop(torem, axis=1, inplace=True) torem.remove('PAX') df_test.drop(torem, axis=1, inplace=True) else: df_train.drop(torem, axis=1, inplace=True) df_test.drop(torem, axis=1, inplace=True) df_train.reset_index(drop=True,inplace=True) df_test.reset_index(drop=True,inplace=True) print(df_train.head(),'\n'*5) print(df_test.head()) return df_train, df_test, y_train, y_test def runModel(df_train, df_test, y_train, showTsne): from sklearn.preprocessing import LabelEncoder le = LabelEncoder() # Departure and Arrival have the same values so we train only on Departure le.fit(df_train['Departure']) df_train['Departure'] = le.transform(df_train['Departure']) df_train['Arrival'] = le.transform(df_train['Arrival']) df_test['Departure'] = le.transform(df_test['Departure']) df_test['Arrival'] = le.transform(df_test['Arrival']) le.fit(df_train['Holiday']) df_train['Holiday'] = le.transform(df_train['Holiday']) le.fit(df_test['Holiday']) df_test['Holiday'] = le.transform(df_test['Holiday']) le.fit(df_train['Season']) df_train['Season'] = le.transform(df_train['Season']) le.fit(df_test['Season']) df_test['Season'] = le.transform(df_test['Season']) from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier from sklearn.ensemble import RandomForestClassifier, VotingClassifier import numpy as np import codecs X_train = df_train X_test = df_test y_train = np.ravel(y_train) ### Scale the data from sklearn.preprocessing import minmax_scale X_train['Distance'] = minmax_scale(X_train['Distance']) X_test['Distance'] = minmax_scale(X_test['Distance']) # # One-Hot encoding X_train_dep = pd.get_dummies(X_train['Departure'],prefix='dep') X_train_arr = pd.get_dummies(X_train['Arrival'],prefix='arr') cols = X_train.columns[[0,1,2,3,4,5,7,8]] X_train[cols] = minmax_scale(X_train[cols]) X_train_extra = pd.concat([X_train['Departure'], X_train['Arrival'], X_train['Year'], X_train['Month'], X_train['Day'], X_train['WeekDay'], X_train['Holiday'], X_train['Season'], X_train['Distance']],axis=1) from sklearn.decomposition import PCA pca = PCA(n_components=1) pca.fit(X_train_extra) X_train_extra = pca.transform(X_train_extra) X_train_extra = pd.DataFrame(X_train_extra) X_train_extra.reset_index(drop=True,inplace=True) X_train = pd.concat([X_train,X_train_extra,X_train_dep,X_train_arr],axis=1,ignore_index=True) X_train.drop([0,1],axis=1, inplace=True) idx_scale = [9] for i in idx_scale: X_train[i] = minmax_scale(X_train[i]) X_test_dep = pd.get_dummies(X_test['Departure'],prefix='dep') X_test_arr = pd.get_dummies(X_test['Arrival'],prefix='arr') cols = X_test.columns[[0,1,2,3,4,5,7,8]] X_test[cols] = minmax_scale(X_test[cols]) X_test_extra = pd.concat([X_test['Departure'], X_test['Arrival'], X_test['Year'], X_test['Month'], X_test['Day'], X_test['WeekDay'], X_test['Holiday'], X_test['Season'], X_test['Distance']],axis=1) X_test_extra = pca.transform(X_test_extra) X_test_extra = pd.DataFrame(X_test_extra) X_test_extra.reset_index(drop=True,inplace=True) X_test = pd.concat([X_test,X_test_extra,X_test_dep,X_test_arr],axis=1, ignore_index=True) X_test.drop([0,1],axis=1, inplace=True) idx_scale = [9] for i in idx_scale: X_test[i] = minmax_scale(X_test[i]) ## Print the data print(X_train.head()) ## TSNE if(showTsne): from sklearn.manifold import TSNE tsne = TSNE(n_components=2,n_iter=250) tsne_res = tsne.fit_transform(X_train) df_tnse = pd.DataFrame(tsne_res) df_pax =
pd.DataFrame(y_train)
pandas.DataFrame
""" Scrape Los Angeles Metro ridership data """ import datetime import os from urllib.parse import quote_plus import bs4 import pandas as pd import requests import sqlalchemy # The URL for the ridership form RIDERSHIP_URL = "http://isotp.metro.net/MetroRidership/IndexSys.aspx" # Parameters needed to validate the request ASPX_PARAMETERS = ["__VIEWSTATE", "__EVENTVALIDATION"] # The S3 bucket into which to load data. S3_BUCKET = "s3://tmf-ita-data" def get_form_data(): """ Make an inital fetch of the form so we can scrape the options as well as the parameters needed to validate our requests. """ # Fetch the page and parse it r = requests.get(RIDERSHIP_URL) r.raise_for_status() soup = bs4.BeautifulSoup(r.text, features="html.parser") # Get validation info aspx_data = { param: soup.find(attrs={"id": param}).attrs.get("value", "") for param in ASPX_PARAMETERS } # Get all of the metro lines line_options = soup.find(attrs={"id": "ContentPlaceHolder1_lbLines"}).select( "option" ) lines = [ option.attrs["value"] for option in line_options if option.attrs["value"] != "All" ] # Get the available years year_options = soup.find(attrs={"id": "ContentPlaceHolder1_ddlYear"}).select( "option" ) years = [option.attrs["value"] for option in year_options] return lines, years, aspx_data def submit_form(year, period, line, aspx_data): """ Submit a form to the Metro ridership site requesting data for a line. Parameters ---------- year: int The year for which to fetch the data. period: str or int The time period in which to fetch the data. Typically you will want an integer month, though other values like quarters ("Q1") may work. line: str or int The Metro line number aspx_data: dict The metadata needed for forming a correct form submission. Returns ------- An HTML string of the resposnse. """ form_data = { "ctl00$ContentPlaceHolder1$rbFYCY": "CY", "ctl00$ContentPlaceHolder1$ddlYear": str(year), "ctl00$ContentPlaceHolder1$ddlPeriod": str(period), "ctl00$ContentPlaceHolder1$btnSubmit": "Submit", "ctl00$ContentPlaceHolder1$lbLines": str(line), **aspx_data, } r = requests.post(RIDERSHIP_URL, data=form_data) r.raise_for_status() if r.text.find("Data not available yet") != -1: raise ValueError(f"Data not available for {year}, {period}, {line}") return r.text def parse_response(html): """ Parse an HTML response from the ridership form into a dataframe. Parameters ---------- html: str The HTML webpage from the ridership site. Returns ------- A dataframe from the parsed HTML table. """ tables = pd.read_html( html, flavor="bs4", attrs={"id": "ContentPlaceHolder1_ASPxRoundPanel2_gvRidership"}, ) if len(tables) == 0: raise ValueError("No table found") df = tables[0] # Filter out the "Total" row df = df[df["Day Type"] != "Total"] return df def get_ridership_data(year, period, line, aspx_data): """ Get ridership for a given year, time period, and line. Parameters ---------- year: int The year for which to fetch the data. period: str or int The time period in which to fetch the data. Typically you will want an integer month, though other values like quarters ("Q1") may work. line: str or int The Metro line number aspx_data: dict The metadata needed for forming a correct form submission. Returns ------- A dataframe with ridership data for the line/period/year. """ html = submit_form(year, period, line, aspx_data) df = parse_response(html) df = df.assign(year=year, month=period, line=line) return df def get_all_ridership_data(verbosity=0): """ Fetch all ridership data from the web form. """ lines, years, aspx_data = get_form_data() months = [str(i) for i in range(1, 13)] ridership = pd.DataFrame() # Get the current timestamp so we don't try to fetch from the future. now =
pd.Timestamp.now()
pandas.Timestamp.now
# -*- coding: utf-8 -*- import nose import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.compat as compat ############################################################### # Index / Series common tests which may trigger dtype coercions ############################################################### class TestIndexCoercion(tm.TestCase): _multiprocess_can_split_ = True def test_setitem_index_numeric_coercion_int(self): # tests setitem with non-existing numeric key s = pd.Series([1, 2, 3, 4]) self.assertEqual(s.index.dtype, np.int64) # int + int -> int temp = s.copy() temp[5] = 5 tm.assert_series_equal(temp, pd.Series([1, 2, 3, 4, 5], index=[0, 1, 2, 3, 5])) self.assertEqual(temp.index.dtype, np.int64) # int + float -> float temp = s.copy() temp[1.1] = 5 tm.assert_series_equal(temp, pd.Series([1, 2, 3, 4, 5], index=[0, 1, 2, 3, 1.1])) self.assertEqual(temp.index.dtype, np.float64) def test_setitem_index_numeric_coercion_float(self): # tests setitem with non-existing numeric key s = pd.Series([1, 2, 3, 4], index=[1.1, 2.1, 3.1, 4.1]) self.assertEqual(s.index.dtype, np.float64) # float + int -> int temp = s.copy() # TODO_GH12747 The result must be float with tm.assertRaises(IndexError): temp[5] = 5 # float + float -> float temp = s.copy() temp[5.1] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=[1.1, 2.1, 3.1, 4.1, 5.1]) tm.assert_series_equal(temp, exp) self.assertEqual(temp.index.dtype, np.float64) def test_insert_numeric_coercion_int(self): idx = pd.Int64Index([1, 2, 3, 4]) self.assertEqual(idx.dtype, np.int64) # int + int -> int res = idx.insert(1, 1) tm.assert_index_equal(res, pd.Index([1, 1, 2, 3, 4])) self.assertEqual(res.dtype, np.int64) # int + float -> float res = idx.insert(1, 1.1) tm.assert_index_equal(res, pd.Index([1, 1.1, 2, 3, 4])) self.assertEqual(res.dtype, np.float64) # int + bool -> int res = idx.insert(1, False) tm.assert_index_equal(res, pd.Index([1, 0, 2, 3, 4])) self.assertEqual(res.dtype, np.int64) def test_insert_numeric_coercion_float(self): idx = pd.Float64Index([1, 2, 3, 4]) self.assertEqual(idx.dtype, np.float64) # float + int -> int res = idx.insert(1, 1) tm.assert_index_equal(res, pd.Index([1., 1., 2., 3., 4.])) self.assertEqual(res.dtype, np.float64) # float + float -> float res = idx.insert(1, 1.1) tm.assert_index_equal(res, pd.Index([1., 1.1, 2., 3., 4.])) self.assertEqual(res.dtype, np.float64) # float + bool -> float res = idx.insert(1, False) tm.assert_index_equal(res, pd.Index([1., 0., 2., 3., 4.])) self.assertEqual(res.dtype, np.float64) class TestSeriesCoercion(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.rep = {} self.rep['object'] = ['a', 'b'] self.rep['int64'] = [4, 5] self.rep['float64'] = [1.1, 2.2] self.rep['complex128'] = [1 + 1j, 2 + 2j] self.rep['bool'] = [True, False] def test_setitem_numeric_coercion_int(self): s = pd.Series([1, 2, 3, 4]) self.assertEqual(s.dtype, np.int64) # int + int -> int temp = s.copy() temp[1] = 1 tm.assert_series_equal(temp, pd.Series([1, 1, 3, 4])) self.assertEqual(temp.dtype, np.int64) # int + float -> float # TODO_GH12747 The result must be float temp = s.copy() temp[1] = 1.1 # tm.assert_series_equal(temp, pd.Series([1, 1.1, 3, 4])) # self.assertEqual(temp.dtype, np.float64) tm.assert_series_equal(temp, pd.Series([1, 1, 3, 4])) self.assertEqual(temp.dtype, np.int64) # int + complex -> complex temp = s.copy() temp[1] = 1 + 1j tm.assert_series_equal(temp, pd.Series([1, 1 + 1j, 3, 4])) self.assertEqual(temp.dtype, np.complex128) # int + bool -> int temp = s.copy() temp[1] = True tm.assert_series_equal(temp, pd.Series([1, 1, 3, 4])) self.assertEqual(temp.dtype, np.int64) def test_setitem_numeric_coercion_float(self): s = pd.Series([1.1, 2.2, 3.3, 4.4]) self.assertEqual(s.dtype, np.float64) # float + int -> float temp = s.copy() temp[1] = 1 tm.assert_series_equal(temp, pd.Series([1.1, 1.0, 3.3, 4.4])) self.assertEqual(temp.dtype, np.float64) # float + float -> float temp = s.copy() temp[1] = 1.1 tm.assert_series_equal(temp, pd.Series([1.1, 1.1, 3.3, 4.4])) self.assertEqual(temp.dtype, np.float64) # float + complex -> complex temp = s.copy() temp[1] = 1 + 1j tm.assert_series_equal(temp, pd.Series([1.1, 1 + 1j, 3.3, 4.4])) self.assertEqual(temp.dtype, np.complex128) # float + bool -> float temp = s.copy() temp[1] = True tm.assert_series_equal(temp, pd.Series([1.1, 1.0, 3.3, 4.4])) self.assertEqual(temp.dtype, np.float64) def test_setitem_numeric_coercion_complex(self): s = pd.Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) self.assertEqual(s.dtype, np.complex128) # complex + int -> complex temp = s.copy() temp[1] = 1 tm.assert_series_equal(temp, pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j])) self.assertEqual(temp.dtype, np.complex128) # complex + float -> complex temp = s.copy() temp[1] = 1.1 tm.assert_series_equal(temp, pd.Series([1 + 1j, 1.1, 3 + 3j, 4 + 4j])) self.assertEqual(temp.dtype, np.complex128) # complex + complex -> complex temp = s.copy() temp[1] = 1 + 1j tm.assert_series_equal(temp, pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 4 + 4j])) self.assertEqual(temp.dtype, np.complex128) # complex + bool -> complex temp = s.copy() temp[1] = True tm.assert_series_equal(temp, pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j])) self.assertEqual(temp.dtype, np.complex128) def test_setitem_numeric_coercion_bool(self): s = pd.Series([True, False, True, False]) self.assertEqual(s.dtype, np.bool) # bool + int -> int # TODO_GH12747 The result must be int temp = s.copy() temp[1] = 1 # tm.assert_series_equal(temp, pd.Series([1, 1, 1, 0])) # self.assertEqual(temp.dtype, np.int64) tm.assert_series_equal(temp, pd.Series([True, True, True, False])) self.assertEqual(temp.dtype, np.bool) # TODO_GH12747 The result must be int temp = s.copy() temp[1] = 3 # greater than bool # tm.assert_series_equal(temp, pd.Series([1, 3, 1, 0])) # self.assertEqual(temp.dtype, np.int64) tm.assert_series_equal(temp, pd.Series([True, True, True, False])) self.assertEqual(temp.dtype, np.bool) # bool + float -> float # TODO_GH12747 The result must be float temp = s.copy() temp[1] = 1.1 # tm.assert_series_equal(temp, pd.Series([1., 1.1, 1., 0.])) # self.assertEqual(temp.dtype, np.float64) tm.assert_series_equal(temp, pd.Series([True, True, True, False])) self.assertEqual(temp.dtype, np.bool) # bool + complex -> complex (buggy, results in bool) # TODO_GH12747 The result must be complex temp = s.copy() temp[1] = 1 + 1j # tm.assert_series_equal(temp, pd.Series([1, 1 + 1j, 1, 0])) # self.assertEqual(temp.dtype, np.complex128) tm.assert_series_equal(temp, pd.Series([True, True, True, False])) self.assertEqual(temp.dtype, np.bool) # bool + bool -> int temp = s.copy() temp[1] = True tm.assert_series_equal(temp, pd.Series([True, True, True, False])) self.assertEqual(temp.dtype, np.bool) def test_where_numeric_coercion_int(self): s = pd.Series([1, 2, 3, 4]) self.assertEqual(s.dtype, np.int64) cond = pd.Series([True, False, True, False]) # int + int -> int res = s.where(cond, 1) tm.assert_series_equal(res, pd.Series([1, 1, 3, 1])) self.assertEqual(res.dtype, np.int64) res = s.where(cond, pd.Series([5, 6, 7, 8])) tm.assert_series_equal(res, pd.Series([1, 6, 3, 8])) self.assertEqual(res.dtype, np.int64) # int + float -> float res = s.where(cond, 1.1) tm.assert_series_equal(res, pd.Series([1, 1.1, 3, 1.1])) self.assertEqual(res.dtype, np.float64) res = s.where(cond, pd.Series([5.5, 6.6, 7.7, 8.8])) tm.assert_series_equal(res, pd.Series([1, 6.6, 3, 8.8])) self.assertEqual(res.dtype, np.float64) # int + complex -> complex res = s.where(cond, 1 + 1j) tm.assert_series_equal(res, pd.Series([1, 1 + 1j, 3, 1 + 1j])) self.assertEqual(res.dtype, np.complex128) res = s.where(cond, pd.Series([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j])) tm.assert_series_equal(res, pd.Series([1, 6 + 6j, 3, 8 + 8j])) self.assertEqual(res.dtype, np.complex128) # int + bool -> int res = s.where(cond, True) tm.assert_series_equal(res, pd.Series([1, 1, 3, 1])) self.assertEqual(res.dtype, np.int64) res = s.where(cond, pd.Series([True, False, True, True])) tm.assert_series_equal(res, pd.Series([1, 0, 3, 1])) self.assertEqual(res.dtype, np.int64) def test_where_numeric_coercion_float(self): s = pd.Series([1.1, 2.2, 3.3, 4.4]) self.assertEqual(s.dtype, np.float64) cond =
pd.Series([True, False, True, False])
pandas.Series
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime import collections import pytest import numpy as np import pandas as pd from pandas import Series, DataFrame from pandas.compat import StringIO, u from pandas.util.testing import (assert_series_equal, assert_almost_equal, assert_frame_equal, ensure_clean) import pandas.util.testing as tm from .common import TestData class TestSeriesToCSV(TestData): def read_csv(self, path, **kwargs): params = dict(squeeze=True, index_col=0, header=None, parse_dates=True) params.update(**kwargs) header = params.get("header") out = pd.read_csv(path, **params) if header is None: out.name = out.index.name = None return out def test_from_csv_deprecation(self): # see gh-17812 with ensure_clean() as path: self.ts.to_csv(path) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): ts = self.read_csv(path) depr_ts = Series.from_csv(path) assert_series_equal(depr_ts, ts) def test_from_csv(self): with ensure_clean() as path: self.ts.to_csv(path) ts = self.read_csv(path) assert_series_equal(self.ts, ts, check_names=False) assert ts.name is None assert ts.index.name is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): depr_ts = Series.from_csv(path) assert_series_equal(depr_ts, ts) # see gh-10483 self.ts.to_csv(path, header=True) ts_h = self.read_csv(path, header=0) assert ts_h.name == "ts" self.series.to_csv(path) series = self.read_csv(path) assert_series_equal(self.series, series, check_names=False) assert series.name is None assert series.index.name is None self.series.to_csv(path, header=True) series_h = self.read_csv(path, header=0) assert series_h.name == "series" outfile = open(path, "w") outfile.write("1998-01-01|1.0\n1999-01-01|2.0") outfile.close() series = self.read_csv(path, sep="|") check_series = Series({datetime(1998, 1, 1): 1.0, datetime(1999, 1, 1): 2.0})
assert_series_equal(check_series, series)
pandas.util.testing.assert_series_equal
""" handle preprocessing and loading of data. """ import html import os.path import pandas as pd import re from nltk import word_tokenize, pos_tag from nltk.corpus import stopwords, wordnet from nltk.stem.wordnet import WordNetLemmatizer class LoadData: @classmethod def preprocess_stocktwits_data(cls, file_location, columns=['datetime', 'message']): """ preprocess the data in file location and saves it as a csv file (appending '_preprocessed' before '.csv). The preprocessing us in following ways: 1) extract message and datetime columns. 2) sort according to datetime in descending order (newest first) 3) remove links, @ and $ references, extra whitespaces, extra '.', digits, slashes, hyphons 4) decode html entities 5) convert everything to lower case """ if 'datetime' in columns: dataFrame = pd.read_csv(file_location, usecols=columns, parse_dates=['datetime'], infer_datetime_format=True) dataFrame.sort_values(by='datetime', ascending=False) else: dataFrame = pd.read_csv(file_location, usecols=columns) dataFrame['message'] = dataFrame['message'].apply(lambda x: html.unescape(x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: re.sub(r'(www\.|https?://).*?(\s|$)|@.*?(\s|$)|\$.*?(\s|$)|\d|\%|\\|/|-|_', ' ', x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: re.sub(r'\.+', '. ', x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: re.sub(r'\,+', ', ', x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: re.sub(r'\?+', '? ', x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: re.sub(r'\s+', ' ', x)) dataFrame['message'] = dataFrame['message'].apply(lambda x: x.lower()) dataFrame.to_csv(file_location[:-4]+'_preprocessed.csv', index=False) @classmethod def labelled_data_lexicon_analysis(cls): """ extract keywords from labelled stocktwits data for improved accuracy in scoring for each labelled message do 1) tokenize the message 2) perform POS tagging 3) if a sense is present in wordnet then, lemmatize the word and remove stop words else ignore the word remove intersections from the two lists before saving """ dataFrame = LoadData.get_labelled_data() bullish_keywords = set() bearish_keywords = set() lemmatizer = WordNetLemmatizer() stop_words = set(stopwords.words('english')) for index, row in dataFrame.iterrows(): tokens = word_tokenize(row['message']) pos = pos_tag(tokens) selected_tags = set() for i in range(len(pos)): if len(wordnet.synsets(pos[i][0])): if pos[i][1].startswith('J'): selected_tags.add(lemmatizer.lemmatize(pos[i][0], 'a')) elif pos[i][1].startswith('V'): selected_tags.add(lemmatizer.lemmatize(pos[i][0], 'v')) elif pos[i][1].startswith('N'): selected_tags.add(lemmatizer.lemmatize(pos[i][0], 'n')) elif pos[i][1].startswith('R'): selected_tags.add(lemmatizer.lemmatize(pos[i][0], 'r')) selected_tags -= stop_words if row['sentiment'] == 'Bullish': bullish_keywords = bullish_keywords.union(selected_tags) elif row['sentiment'] == 'Bearish': bearish_keywords = bearish_keywords.union(selected_tags) updated_bullish_keywords = bullish_keywords - bearish_keywords updated_bearish_keywords = bearish_keywords - bullish_keywords with open('data-extractor/lexicon_bullish_words.txt', 'a') as file: for word in updated_bullish_keywords: file.write(word+"\n") with open('data-extractor/lexicon_bearish_words.txt', 'a') as file: for word in updated_bearish_keywords: file.write(word+"\n") @classmethod def get_stocktwits_data(cls, symbol): """ get_data loads the preprocessed data of 'symbol' from data-extractor and returns a pandas dataframe with columns [message(object), datetime(datetime64[ns])]. """ file_location = 'data-extractor/stocktwits_'+symbol+'_preprocessed.csv' if os.path.isfile(file_location) is False: LoadData.preprocess_stocktwits_data('data-extractor/stocktwits_'+symbol+'.csv') dataFrame = pd.read_csv(file_location) return dataFrame @classmethod def get_price_data(cls, symbol): """ loads the price data of 'symbol' from data-extractor and returns a pandas dataframe with columns [Date(datetime64[ns]), Opening Price(float64), Closing Price(float64), Volume(float64)]. """ file_location = 'data-extractor/stock_prices_'+symbol+'.csv' dataFrame = pd.read_csv(file_location, usecols=['Date', 'Opening Price', 'Closing Price', 'Volume'], parse_dates=['Date'], infer_datetime_format=True) return dataFrame @classmethod def get_labelled_data(cls, type='complete'): """ get_labelled_data loads the preprocessed labelled data of stocktwits from data-extractor and returns a pandas dataframe with columns [sentiment(object), message(object)]. """ if type == 'complete': file_location = 'data-extractor/labelled_data_complete_preprocessed.csv' if os.path.isfile(file_location) is False: LoadData.preprocess_stocktwits_data('data-extractor/labelled_data_complete.csv', columns=['sentiment', 'message']) elif type == 'training': file_location = 'data-extractor/labelled_data_training_preprocessed.csv' if os.path.isfile(file_location) is False: LoadData.get_training_data() elif type == 'test': file_location = 'data-extractor/labelled_data_test_preprocessed.csv' if os.path.isfile(file_location) is False: LoadData.preprocess_stocktwits_data('data-extractor/labelled_data_test.csv', columns=['sentiment', 'message']) dataFrame = pd.read_csv(file_location) return dataFrame @classmethod def get_custom_lexicon(cls): """ get custom lexicon of bearish and bullish words respectively """ file_location1 = 'data-extractor/lexicon_bearish_words.txt' file_location2 = 'data-extractor/lexicon_bullish_words.txt' if os.path.isfile(file_location1) is False or os.path.isfile(file_location2) is False: LoadData.labelled_data_lexicon_analysis() dataFrameBearish = pd.read_csv(file_location1, header=None, names=['word']) dataFrameBullish =
pd.read_csv(file_location2, header=None, names=['word'])
pandas.read_csv
# -*- coding: utf-8 -*- """Main formatting source code to format modelling results for plotting. This code was written to process PLEXOS HDF5 outputs to get them ready for plotting. Once the data is processed it is outputted as an intermediary HDF5 file format so that it can be read into the marmot_plot_main.py file @author: <NAME> """ # =============================================================================== # Import Python Libraries # =============================================================================== import os import sys import pathlib FILE_DIR = pathlib.Path(__file__).parent.absolute() # Location of this module if __name__ == '__main__': # Add Marmot directory to sys path if running from __main__ if os.path.dirname(os.path.dirname(__file__)) not in sys.path: sys.path.append(os.path.dirname(os.path.dirname(__file__))) os.chdir(pathlib.Path(__file__).parent.absolute().parent.absolute()) import time import re import logging import logging.config import pandas as pd import h5py import yaml from typing import Union try: from marmot.meta_data import MetaData except ModuleNotFoundError: print("Attempted import of Marmot as a module from a Git directory. ", end='') print("Import of Marmot will not function in this way. ", end='') print("To import Marmot as a module use the preferred method of pip installing Marmot, ", end='') print("or add the Marmot directory to the system path, see ReadME for details.\n") print("System will now exit") sys.exit() import marmot.config.mconfig as mconfig # Import as Submodule try: from h5plexos.query import PLEXOSSolution except ModuleNotFoundError: from marmot.h5plexos.h5plexos.query import PLEXOSSolution # A bug in pandas requires this to be included, # otherwise df.to_string truncates long strings. Fix available in Pandas 1.0 # but leaving here in case user version not up to date pd.set_option("display.max_colwidth", 1000) # Conversion units dict, key values is a tuple of new unit name and conversion multiplier UNITS_CONVERSION = { 'kW': ('MW', 1e-3), 'MW': ('MW', 1), 'GW': ('MW', 1e3), 'TW': ('MW', 1e6), 'kWh': ('MWh', 1e-3), 'MWh': ('MWh', 1), 'GWh': ('MWh', 1e3), 'TWh': ('MWh', 1e6), 'lb': ('kg', 0.453592), 'ton': ('kg', 907.18474), 'kg': ('kg', 1), 'tonne': ('kg', 1000), '$': ('$', 1), '$000': ('$', 1000), 'h': ('h', 1), 'MMBTU': ('MMBTU', 1), 'GBTU': ('MMBTU', 1000), 'GJ"': ('MMBTU', 0.947817), 'TJ': ('MMBTU', 947.817120), '$/MW': ('$/MW', 1), 'lb/MWh' : ('kg/MWh', 0.453592), 'Kg/MWh': ('Kg/MWh', 1) } class SetupLogger(): """Sets up the python logger. This class handles the following. 1. Configures logger from marmot_logging_config.yml file. 2. Handles rollover of log file on each instantiation. 3. Sets log_directory. 4. Append optional suffix to the end of the log file name Optional suffix is useful when running multiple processes in parallel to allow logging to separate files. """ def __init__(self, log_directory: str = 'logs', log_suffix: str = None): """ Args: log_directory (str, optional): log directory to save logs. Defaults to 'logs'. log_suffix (str, optional): Optional suffix to add to end of log file. Defaults to None. """ if log_suffix is None: self.log_suffix = '' else: self.log_suffix = f'_{log_suffix}' current_dir = os.getcwd() os.chdir(FILE_DIR) try: os.makedirs(log_directory) except FileExistsError: # log directory already exists pass with open('config/marmot_logging_config.yml', 'rt') as f: conf = yaml.safe_load(f.read()) conf['handlers']['warning_handler']['filename'] = \ (conf['handlers']['warning_handler']['filename'] .format(log_directory, 'formatter', self.log_suffix)) conf['handlers']['info_handler']['filename'] = \ (conf['handlers']['info_handler']['filename'] .format(log_directory, 'formatter', self.log_suffix)) logging.config.dictConfig(conf) self.logger = logging.getLogger('marmot_format') # Creates a new log file for next run self.logger.handlers[1].doRollover() self.logger.handlers[2].doRollover() os.chdir(current_dir) class Process(SetupLogger): """Process PLEXOS class specific data from h5plexos database. All methods are PLEXOS Class specific e.g generator, region, zone, line etc. """ def __init__(self, df: pd.DataFrame, metadata: MetaData, model: str, Region_Mapping: pd.DataFrame, emit_names: pd.DataFrame, logger: logging.Logger): """ Args: df (pd.DataFrame): Unprocessed h5plexos dataframe containing class and property specifc data. metadata (MetaData): Instantiation of MetaData for specific h5plexos file. model (str): Name of specific PLEXOS model partition Region_Mapping (pd.DataFrame): DataFrame to map custom regions/zones to create custom aggregations. emit_names (pd.DataFrame): DataFrame with 2 columns to rename emission names. logger (logging.Logger): logger object from SetupLogger. """ # certain methods require information from metadata. metadata is now # passed in as an instance of MetaData class for the appropriate model self.df = df self.metadata = metadata self.model = model self.Region_Mapping = Region_Mapping self.emit_names = emit_names self.logger = logger if not self.emit_names.empty: self.emit_names_dict = (self.emit_names[['Original', 'New']] .set_index("Original").to_dict()["New"]) def df_process_generator(self) -> pd.DataFrame: """Format PLEXOS Generator Class data. Returns: pd.DataFrame: Processed output, single value column with multiindex. """ df = self.df.droplevel(level=["band", "property"]) df.index.rename(['tech', 'gen_name'], level=['category', 'name'], inplace=True) if self.metadata.region_generator_category(self.model).empty is False: region_gen_idx = pd.CategoricalIndex(self.metadata.region_generator_category(self.model) .index.get_level_values(0)) region_gen_idx = region_gen_idx.repeat(len(df.index.get_level_values('timestamp').unique())) idx_region = pd.MultiIndex(levels=df.index.levels + [region_gen_idx.categories], codes=df.index.codes + [region_gen_idx.codes], names=df.index.names + region_gen_idx.names) else: idx_region = df.index if self.metadata.zone_generator_category(self.model).empty is False: zone_gen_idx = pd.CategoricalIndex(self.metadata.zone_generator_category(self.model) .index.get_level_values(0)) zone_gen_idx = zone_gen_idx.repeat(len(df.index.get_level_values('timestamp').unique())) idx_zone = pd.MultiIndex(levels=idx_region.levels + [zone_gen_idx.categories], codes=idx_region.codes + [zone_gen_idx.codes], names=idx_region.names + zone_gen_idx.names) else: idx_zone = idx_region if not self.Region_Mapping.empty: region_gen_mapping_idx = pd.MultiIndex.from_frame(self.metadata.region_generator_category(self.model) .merge(self.Region_Mapping, how="left", on='region') .sort_values(by=['tech', 'gen_name']) .drop(['region', 'tech', 'gen_name'], axis=1) ) region_gen_mapping_idx = region_gen_mapping_idx.repeat(len(df.index.get_level_values('timestamp').unique())) idx_map = pd.MultiIndex(levels=idx_zone.levels + region_gen_mapping_idx.levels, codes=idx_zone.codes + region_gen_mapping_idx.codes, names=idx_zone.names + region_gen_mapping_idx.names) else: idx_map = idx_zone df = pd.DataFrame(data=df.values.reshape(-1), index=idx_map) df_col = list(df.index.names) # Gets names of all columns in df and places in list df_col.insert(0, df_col.pop(df_col.index("timestamp"))) # move timestamp to start of df df = df.reorder_levels(df_col, axis=0) df[0] = pd.to_numeric(df[0], downcast='float') return df def df_process_region(self) -> pd.DataFrame: """Format PLEXOS Region Class data. Returns: pd.DataFrame: Processed output, single value column with multiindex. """ df = self.df.droplevel(level=["band", "property", "category"]) df.index.rename('region', level='name', inplace=True) # checks if Region_Mapping contains data to merge, skips if empty if not self.Region_Mapping.empty: mapping_idx = pd.MultiIndex.from_frame(self.metadata.regions(self.model) .merge(self.Region_Mapping, how="left", on='region') .drop(['region', 'category'], axis=1) ) mapping_idx = mapping_idx.repeat(len(df.index.get_level_values('timestamp').unique())) idx = pd.MultiIndex(levels=df.index.levels + mapping_idx.levels, codes=df.index.codes + mapping_idx.codes, names=df.index.names + mapping_idx.names) else: idx = df.index df = pd.DataFrame(data=df.values.reshape(-1), index=idx) df_col = list(df.index.names) # Gets names of all columns in df and places in list df_col.insert(0, df_col.pop(df_col.index("timestamp"))) # Move timestamp to start of df df = df.reorder_levels(df_col, axis=0) df[0] = pd.to_numeric(df[0], downcast='float') return df def df_process_zone(self) -> pd.DataFrame: """Format PLEXOS Zone Class data. Returns: pd.DataFrame: Processed output, single value column with multiindex. """ df = self.df.droplevel(level=["band", "property", "category"]) df.index.rename('zone', level='name', inplace=True) df = pd.DataFrame(data=df.values.reshape(-1), index=df.index) df_col = list(df.index.names) # Gets names of all columns in df and places in list df_col.insert(0, df_col.pop(df_col.index("timestamp"))) # move timestamp to start of df df = df.reorder_levels(df_col, axis=0) df[0] = pd.to_numeric(df[0], downcast='float') return df def df_process_line(self) -> pd.DataFrame: """Format PLEXOS Line Class data. Returns: pd.DataFrame: Processed output, single value column with multiindex. """ df = self.df.droplevel(level=["band", "property", "category"]) df.index.rename('line_name', level='name', inplace=True) df = pd.DataFrame(data=df.values.reshape(-1), index=df.index) df_col = list(df.index.names) # Gets names of all columns in df and places in list df_col.insert(0, df_col.pop(df_col.index("timestamp"))) # move timestamp to start of df df = df.reorder_levels(df_col, axis=0) df[0] = pd.to_numeric(df[0], downcast='float') return df def df_process_interface(self) -> pd.DataFrame: """Format PLEXOS PLEXOS Interface Class data. Returns: pd.DataFrame: Processed output, single value column with multiindex. """ df = self.df.droplevel(level=["band", "property"]) df.index.rename(['interface_name', 'interface_category'], level=['name', 'category'], inplace=True) df = pd.DataFrame(data=df.values.reshape(-1), index=df.index) df_col = list(df.index.names) # Gets names of all columns in df and places in list df_col.insert(0, df_col.pop(df_col.index("timestamp"))) # move timestamp to start of df df = df.reorder_levels(df_col, axis=0) df[0] = pd.to_numeric(df[0], downcast='float') return df def df_process_reserve(self) -> pd.DataFrame: """Format PLEXOS Reserve Class data. Returns: pd.DataFrame: Processed output, single value column with multiindex. """ df = self.df.droplevel(level=["band", "property"]) df.index.rename(['parent', 'Type'], level=['name', 'category'], inplace=True) df = df.reset_index() # unzip the levels in index if self.metadata.reserves_regions(self.model).empty is False: # Merges in regions where reserves are located df = df.merge(self.metadata.reserves_regions(self.model), how='left', on='parent') if self.metadata.reserves_zones(self.model).empty is False: # Merges in zones where reserves are located df = df.merge(self.metadata.reserves_zones(self.model), how='left', on='parent') df_col = list(df.columns) # Gets names of all columns in df and places in list df_col.remove(0) # move timestamp to start of df df_col.insert(0, df_col.pop(df_col.index("timestamp"))) df.set_index(df_col, inplace=True) df[0] = pd.to_numeric(df[0], downcast='float') return df def df_process_reserves_generators(self) -> pd.DataFrame: """Format PLEXOS Reserve_Generators Relational Class data. Returns: pd.DataFrame: Processed output, single value column with multiindex. """ df = self.df.droplevel(level=["band", "property"]) df.index.rename(['gen_name'], level=['child'], inplace=True) df = df.reset_index() # unzip the levels in index df = df.merge(self.metadata.generator_category(self.model), how='left', on='gen_name') # merging in generator region/zones first prevents double # counting in cases where multiple model regions are within a reserve region if self.metadata.region_generators(self.model).empty is False: df = df.merge(self.metadata.region_generators(self.model), how='left', on='gen_name') if self.metadata.zone_generators(self.model).empty is False: df = df.merge(self.metadata.zone_generators(self.model), how='left', on='gen_name') # now merge in reserve regions/zones if self.metadata.reserves_regions(self.model).empty is False: # Merges in regions where reserves are located df = df.merge(self.metadata.reserves_regions(self.model), how='left', on=['parent', 'region']) if self.metadata.reserves_zones(self.model).empty is False: # Merges in zones where reserves are located df = df.merge(self.metadata.reserves_zones(self.model), how='left', on=['parent', 'zone']) df_col = list(df.columns) # Gets names of all columns in df and places in list df_col.remove(0) df_col.insert(0, df_col.pop(df_col.index("timestamp"))) # move timestamp to start of df df.set_index(df_col, inplace=True) df[0] = pd.to_numeric(df[0], downcast='float') return df def df_process_fuel(self) -> pd.DataFrame: """Format PLEXOS Fuel Class data. Returns: pd.DataFrame: Processed output, single value column with multiindex. """ df = self.df.droplevel(level=["band", "property", "category"]) df.index.rename('fuel_type', level='name', inplace=True) df = pd.DataFrame(data=df.values.reshape(-1), index=df.index) df_col = list(df.index.names) # Gets names of all columns in df and places in list df_col.insert(0, df_col.pop(df_col.index("timestamp"))) # move timestamp to start of df df = df.reorder_levels(df_col, axis=0) df[0] = pd.to_numeric(df[0], downcast='float') return df def df_process_constraint(self) -> pd.DataFrame: """Format PLEXOS Constraint Class data. Returns: pd.DataFrame: Processed output, single value column with multiindex. """ df = self.df.droplevel(level=["band", "property"]) df.index.rename(['constraint_category', 'constraint'], level=['category', 'name'], inplace=True) df = pd.DataFrame(data=df.values.reshape(-1), index=df.index) df_col = list(df.index.names) # Gets names of all columns in df and places in list df_col.insert(0, df_col.pop(df_col.index("timestamp"))) # move timestamp to start of df df = df.reorder_levels(df_col, axis=0) df[0] = pd.to_numeric(df[0], downcast='float') return df def df_process_emission(self) -> pd.DataFrame: """Format PLEXOS Emission Class data. Returns: pd.DataFrame: Processed output, single value column with multiindex. """ df = self.df.droplevel(level=["band", "property"]) df.index.rename('emission_type', level='name', inplace=True) df = pd.DataFrame(data=df.values.reshape(-1), index=df.index) df_col = list(df.index.names) # Gets names of all columns in df and places in list df_col.insert(0, df_col.pop(df_col.index("timestamp"))) # move timestamp to start of df df = df.reorder_levels(df_col, axis=0) df[0] = pd.to_numeric(df[0], downcast='float') return df def df_process_emissions_generators(self) -> pd.DataFrame: """Format PLEXOS Emissions_Generators Relational Class data. Returns: pd.DataFrame: Processed output, single value column with multiindex. """ df = self.df.droplevel(level=["band", "property"]) df.index.rename(['gen_name'], level=['child'], inplace=True) df.index.rename(['pollutant'], level=['parent'], inplace=True) df = df.reset_index() # unzip the levels in index # merge in tech information df = df.merge(self.metadata.generator_category(self.model), how='left', on='gen_name') # merge in region and zone information if self.metadata.region_generator_category(self.model).empty is False: # merge in region information df = df.merge(self.metadata.region_generator_category(self.model).reset_index(), how='left', on=['gen_name', 'tech']) if self.metadata.zone_generator_category(self.model).empty is False: # Merges in zones where reserves are located df = df.merge(self.metadata.zone_generator_category(self.model).reset_index(), how='left', on=['gen_name', 'tech']) if not self.Region_Mapping.empty: df = df.merge(self.Region_Mapping, how="left", on="region") if not self.emit_names.empty: # reclassify emissions as specified by user in mapping df['pollutant'] = pd.Categorical(df['pollutant'].map(lambda x: self.emit_names_dict.get(x, x))) # remove categoricals (otherwise h5 save will fail) df = df.astype({'tech': 'object', 'pollutant': 'object'}) # Checks if all emissions categories have been identified and matched. # If not, lists categories that need a match if not self.emit_names.empty: if self.emit_names_dict != {} and (set(df['pollutant'].unique()).issubset(self.emit_names["New"].unique())) is False: missing_emit_cat = list((set(df['pollutant'].unique())) - (set(self.emit_names["New"].unique()))) self.logger.warning(f"The following emission objects do not have a correct category mapping: {missing_emit_cat}\n") df_col = list(df.columns) # Gets names of all columns in df and places in list df_col.remove(0) df_col.insert(0, df_col.pop(df_col.index("timestamp"))) # move timestamp to start of df df.set_index(df_col, inplace=True) # downcast values to save on memory df[0] =
pd.to_numeric(df[0].values, downcast='float')
pandas.to_numeric
# %% #imports import pandas as pd import numpy as np # Multiple types of models from sklearn from sklearn import svm from sklearn.ensemble import GradientBoostingClassifier from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.metrics import classification_report from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import NuSVC import hvplot.pandas from finta import TA from pathlib import Path import datetime as dt # %% # import functions from utils.AlpacaFunctions import get_historical_dataframe, get_crypto_bars, get_news from utils.data_process import return_rolling_averages from utils.data_process import return_crossovers from utils.data_process import return_weighted_crossovers #from sentiment_functions import get_sentiments def getStockModel(ticker, numDays, initial_capital): numDays = numDays today = dt.date.today() two_years_ago = (today - dt.timedelta(days=numDays)) yesterday = (today - dt.timedelta(days=1)).isoformat() start = two_years_ago end= yesterday symbol = ticker timeframe='1Day' limit = 5000 stock_df = pd.DataFrame() stock_df = get_historical_dataframe(symbol=symbol, start=start, end=end, timeframe=timeframe) # Iterating through tickers to isolate and concat close data # Normalizing stock dataframe and isolating the close values close_df = pd.DataFrame(stock_df["close"]) # %% # Beginning our data processing for the stock close data with rolling averages, crossovers, etc. return_rolling_averages(close_df) # %% cross_df = return_crossovers(close_df) # %% cross_signals = cross_df.sum(axis=1) # %% pct_change_df = close_df.pct_change() # %% cross_weighted_df = return_weighted_crossovers(close_df, pct_change_df) # %% cross_signals_weighted = pd.DataFrame(cross_weighted_df.sum(axis=1)) # %% # Using the finta library, we will implement more metrics for evaluation to be added to our signals dataframe from finta import TA finta_df = pd.DataFrame() finta_df['vama'] = TA.VAMA(stock_df) finta_df['rsi'] = TA.RSI(stock_df) finta_df['ao'] = TA.AO(stock_df) finta_df['ema'] = TA.EMA(stock_df) finta_df['evwma'] = TA.EVWMA(stock_df) finta_df['msd'] = TA.MSD(stock_df) finta_df['efi'] = TA.EFI(stock_df) finta_df['stochrsi'] = TA.STOCHRSI(stock_df) finta_df['tp'] = TA.TP(stock_df) finta_df['frama'] = TA.FRAMA(stock_df) finta_df['kama'] = TA.KAMA(stock_df) finta_df['hma'] = TA.HMA(stock_df) finta_df['obv'] = TA.OBV(stock_df) finta_df['cfi'] = TA.CFI(stock_df) finta_df['sma'] = TA.SMA(stock_df) finta_df['ssma'] = TA.SSMA(stock_df) finta_df['dema'] = TA.DEMA(stock_df) finta_df['tema'] = TA.TEMA(stock_df) finta_df['trima'] = TA.TRIMA(stock_df) finta_df['trix'] = TA.TRIX(stock_df) finta_df['smm'] = TA.SMM(stock_df) finta_df['zlema'] = TA.ZLEMA(stock_df) finta_df['smma'] = TA.SMMA(stock_df) finta_df['frama'] = TA.FRAMA(stock_df) finta_df['mom'] = TA.MOM(stock_df) finta_df['uo'] = TA.UO(stock_df) finta_df['vzo'] = TA.VZO(stock_df) finta_df['pzo'] = TA.PZO(stock_df) finta_df.fillna(0, inplace=True) # %% pct_change_df.rename(columns={'close': 'pct'}, inplace=True) #stock_df.drop(columns='symbol', inplace=True) # %% # Concatenating dataframe with our cumulative signals signals_input_df = pd.DataFrame() signals_input_df = pd.concat([stock_df, pct_change_df, cross_df, pct_change_df, cross_signals, cross_signals_weighted, cross_weighted_df, finta_df], axis=1).dropna() # %% #Assigning our signals dataframe to X for train/test split X = signals_input_df.dropna() # %% # Shifting our close df and comparing to original close df, we generate signals for whether or not the stock # will go up for the following day. We then convert the returned 0s to -1s for more robust predictions. y_signal = pd.DataFrame( ((close_df["close"] > close_df["close"].shift()).shift(-1))*1, index=close_df.index) y_signal['close'] = np.where(y_signal['close'] == 0, -1, 1) # %% # Assigning the y_signals to our X index values y_signal = y_signal.loc[X.index] # %% # Displaying our y_signal data and stock close values to ensure the signals are correct. #display(y_signal, close_df['close']) # %% # Assigning the y_signal['close'] data to y to create an array for train/test split y = np.array(y_signal['close']) # %% # Establishing train/test split train_num = int(X.shape[0] * 0.9) test_num = int(X.shape[0]-train_num) X_train = X[:train_num] X_test = X[-test_num:] y_train = y[:train_num] y_test = y[-test_num:] # %% # Scaling data for model processing scaler = StandardScaler() # %% scaler.fit(X_train) # %% X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) # %% # Our first model is the 'svm' model from sklearn svm_model = svm.SVC() svm_model = svm_model.fit(X_train_scaled, y_train) svm_predictions = svm_model.predict(X_test_scaled) # %% # Checking the accuracy of the 'svm' model svm_training_report = classification_report(y_test, svm_predictions, output_dict=True) svm_training_report = pd.DataFrame(svm_training_report) svm_training_report = pd.DataFrame(svm_training_report.iloc[2][0:2]) svm_minus = svm_training_report.iloc[0, 0] svm_plus = svm_training_report.iloc[1, 0] svm_training_report.columns = ['svm'] # %% knc = KNeighborsClassifier() knc_model = knc.fit(X_train_scaled, y_train) knc_predictions = knc_model.predict(X_test_scaled) knc_training_report = classification_report(y_test, knc_predictions, output_dict=True) knc_training_report = pd.DataFrame(knc_training_report) knc_training_report = pd.DataFrame(knc_training_report.iloc[2][0:2]) knc_minus = knc_training_report.iloc[0, 0] knc_plus = knc_training_report.iloc[1, 0] knc_training_report.columns = ['knc'] # %% nvc = NuSVC() nvc_model = nvc.fit(X_train_scaled, y_train) nvc_predictions = nvc_model.predict(X_test_scaled) nvc_training_report = classification_report(y_test, nvc_predictions, output_dict=True) nvc_training_report = pd.DataFrame(nvc_training_report) nvc_training_report = pd.DataFrame(nvc_training_report.iloc[2][0:2]) nvc_minus = nvc_training_report.iloc[0, 0] nvc_plus = nvc_training_report.iloc[1, 0] nvc_training_report.columns = ['nvc'] # %% # Implementing logistical regression model from sklearn lr_model = LogisticRegression(max_iter=300, verbose=True) lr_model.fit(X_train_scaled, y_train) lr_predictions = lr_model.predict(X_test_scaled) lr_training_report = classification_report(y_test, lr_predictions, output_dict=True) lr_training_report = pd.DataFrame(lr_training_report) lr_training_report = pd.DataFrame(lr_training_report.iloc[2][0:2]) lr_minus = lr_training_report.iloc[0, 0] lr_plus = lr_training_report.iloc[1, 0] lr_training_report.columns = ['lr'] # %% rfc = RandomForestClassifier() rfc.fit(X_train_scaled, y_train) rfc_predictions = rfc.predict(X_test_scaled) rfc_training_report = classification_report(y_test, rfc_predictions, output_dict=True) rfc_training_report = pd.DataFrame(rfc_training_report) rfc_training_report = pd.DataFrame(rfc_training_report.iloc[2][0:2]) rfc_minus = rfc_training_report.iloc[0, 0] rfc_plus = rfc_training_report.iloc[1, 0] rfc_training_report.columns = ['rfc'] # %% # Gradient boosting classifier from sklearn model = GradientBoostingClassifier(random_state=0) model.fit(X_train_scaled, y_train) gbc_predictions = model.predict(X_test_scaled) gbc_training_report = classification_report(y_test, gbc_predictions, output_dict=True) gbc_training_report = pd.DataFrame(gbc_training_report) gbc_training_report = pd.DataFrame(gbc_training_report.iloc[2][0:2]) gbc_minus = gbc_training_report.iloc[0, 0] gbc_plus = gbc_training_report.iloc[1, 0] gbc_training_report.columns = ['gbc'] # %% # Implementing SCDClassifier, using 'log' loss metric for probabilistic prediction values sgdc = SGDClassifier(max_iter=1000) sgdc.fit(X_train_scaled, y_train) sgdc_preds = sgdc.predict(X_test_scaled) sgdc_training_report = classification_report(y_test, sgdc_preds, output_dict=True) sgdc_training_report =
pd.DataFrame(sgdc_training_report)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sun May 29 20:24:06 2016 @author: Matt """ from Reg_Model import Reg_Model import pandas as pd import matplotlib.pyplot as plt class Game_Scores(object): """ Takes a set of games for training and makes model from them """ def __init__(self, schedule, x, target_name): self.x = x self.target = schedule[target_name] self.answers = [1 if x>0 else 0 for x in schedule[target_name]] self.pred = None self.win_scores = None self.rank_order = None self.model = Reg_Model() self.model.set_training(self.x, self.target) self.model.calc_model() #Returns df of features def get_x_vars(self): return self.x #Returns model def get_model(self): return self.model #For some test accounts, returns the predictions def get_pred(self, test_x): self.pred = self.model.get_pred(test_x) return self.pred #Looks at training data and returns overall accuracy def get_accuracy(self): pred = self.model.get_pred(self.x) win_pred = [1 if x > 0 else 0 for x in pred] accuracy = sum([1 if x == y else 0 for x, y in zip(win_pred, self.answers)]) * 1.0 / len(self.answers) return accuracy #Returns score linked to probability of winning def get_win_scores(self, test_x): if self.pred == None: self.get_pred(test_x) self.win_scores = [round((50 + x) / 100, 2) for x in (self.pred)] return self.win_scores #Returns cumulative accuracy by win_score def get_rank_order_acc(self): if self.win_scores == None: self.get_win_scores(self.x) set_ws = sorted(list(set(self.win_scores))) self.rank_order =
pd.DataFrame(index=set_ws)
pandas.DataFrame
from SPARQLWrapper import SPARQLWrapper, CSV, JSON, XML, POSTDIRECTLY, POST, __agent__ import warnings import pandas as pd import io import time import json import re import urllib.request from rdflib import Graph, util from ratelimit import limits, sleep_and_retry from functools import lru_cache from kgextension.sparql_helper_helper import get_initial_query_offset, get_initial_query_limit def regex_string_generator(attribute, filters, logical_connective = "OR"): """#TODO Args: attribute ([type]): [description] filters ([type]): [description] logical_connective (str, optional): [description]. Defaults to "OR". Raises: ValueError: [description] Returns: [type]: [description] """ rules = [] for rule in filters: rules.append("regex("+attribute+", \""+rule+"\")") if logical_connective == "OR": regex_string = " || ".join(rules) elif logical_connective == "AND": regex_string = " && ".join(rules) else: raise ValueError("Allowed inputs for logical_connective: \"OR\"; \"AND\"") return regex_string class Endpoint(): """Base Endpoint class. """ pass class RemoteEndpoint(Endpoint): """RemoteEndpoint class, that handles remote SPARQL endpoints. """ def __init__(self, url, timeout=60, requests_per_min = 100000, retries=10, page_size=0, supports_bundled_mode=True, persistence_file_path="rate_limits.db", agent=__agent__): """Configuration of a SPARQL Endpoint. Args: url (str): URL of the endpoint. timeout (int, optional): Defines the time which the endpoint is given to respond (in seconds). Defaults to 60. requests_per_min (int, optional): Defines the maximal number of requests per minute. Defaults to 100000. retries (int, optional): Defines the number of times a query is retried. Defaults to 10. page_size (int, optional): Limits the page size of the results, since many endpoints have limitations. Defaults to 0. supports_bundled_mode (boolean, optional): If true, bundled mode will be used to query the endpoint. Defaults to True. persistence_file_path (str, optional): Sets the file path for the database that keeps track of past query activities (to comply with usage policies). Defaults to "rate_limits.db". agent (str, optional): The User-Agent for the HTTP request header. Defaults to SPARQLWrapper.__agent__. """ self.url = url self.timeout = timeout self.requests_per_min = requests_per_min self.retries = retries self.page_size = page_size self.supports_bundled_mode = supports_bundled_mode self.persistence_file_path = persistence_file_path self.query = sleep_and_retry(limits(calls=requests_per_min, period=60, storage=self.persistence_file_path, name='"'+url+'"')(self._query)) self.agent = agent def _query(self, query, request_return_format = "XML", verbose = False, return_XML=False): """Function that queries a user-specified remote SPARQL endpoint with a user-specified query and returnes the results as a pandas DataFrame. Args: query (str): Query that should be sent to the SPARQL endpoint. request_return_format (str, optional): Requesting a specific return format from the SPARQL endpont (str) - mainly for debugging and testing. Defaults to "XML". verbose (bool, optional): Set to True to let the function print additional information about the returned data - for debugging and testing. Defaults to False. return_XML (bool, optional): If True it returns the XML results instead of a dataframe. Defaults to False. Raises: RuntimeError: Is returned when the returned data is neither a XML, CSV or JSON, for whatever reason. Returns: pd.DataFrame: The query results in form of a DataFrame. """ retries_count = 0 while True: try: sparql = SPARQLWrapper(self.url, agent=self.agent) sparql.setRequestMethod(POSTDIRECTLY) sparql.setMethod(POST) sparql.setTimeout(self.timeout) sparql.setQuery(query) return_formats = {"XML": XML, "CSV": CSV, "JSON": JSON} requested_format = return_formats[request_return_format] # Catch RuntimeWarning that is raised by SPARQLWrapper when retunred and requested format do not match. with warnings.catch_warnings(): warnings.filterwarnings("ignore",category=RuntimeWarning) # Try to query with ReturnFormat that is requested through requested_format and check which format is returned sparql.setReturnFormat(requested_format) results_raw = sparql.query() returned_content_type = results_raw.info()["content-type"] if verbose: print(returned_content_type) # If the returned format is XML, query with requested ReturnFormat = XML and process accordingly if "application/sparql-results+xml" in returned_content_type: results = results_raw.convert() if return_XML: return results result_dict = {} result_index = 0 for result_node in results.getElementsByTagName("result"): temp_result_dict = {} for binding in result_node.getElementsByTagName("binding"): attr_name = binding.getAttribute("name") for childnode in binding.childNodes: if childnode.firstChild is not None: value = childnode.firstChild.nodeValue temp_result_dict.update({attr_name: value}) result_dict[result_index] = temp_result_dict result_index += 1 return pd.DataFrame.from_dict(result_dict, orient="index") # If the returned format is JSON, query with requested ReturnFormat = JSON and process accordingly elif "application/sparql-results+json" in returned_content_type: results = sparql.query().convert() results_df = pd.DataFrame(results["results"]["bindings"]) results_df = results_df.applymap(lambda x: x["value"]) return results_df # If the returned format is CSV, query with requested ReturnFormat = CSV and process accordingly elif "text/csv" in returned_content_type: results = results_raw.convert() results = io.BytesIO(results) return
pd.read_csv(results, delimiter=",", dtype=str)
pandas.read_csv
import os from run_checks import run_checks import atmodat_checklib.utils.output_directory_util as output_directory from atmodat_checklib.utils.summary_creation_util import extract_overview_output_json, \ extracts_error_summary_cf_check import pandas as pd from atmodat_checklib.utils.env_util import set_env_variables from git import Repo from pathlib import Path import json prio_dict = {'high_priorities': 'Mandatory', 'medium_priorities': 'Recommended', 'low_priorities': 'Optional'} udunits2_xml_path, atmodat_cvs = set_env_variables() os.environ['PYESSV_ARCHIVE_HOME'] = os.path.join(atmodat_cvs, 'pyessv-archive') os.environ['UDUNITS2_XML_PATH'] = udunits2_xml_path def run_checks_on_files(tmpdir, ifiles): atmodat_base_path = os.path.join(str(Path(__file__).resolve().parents[2]), '') run_checks(ifiles, False, ['atmodat', 'CF'], 'auto', tmpdir, atmodat_base_path) json_summary, cf_errors = create_output_summary(tmpdir) passed_checks = {} for file_json in json_summary.keys(): passed_checks[file_json] = {} if isinstance(json_summary[file_json], pd.DataFrame): for prio in prio_dict.keys(): passed_checks[file_json][prio] = [0, 0] checks_prio = json_summary[file_json][prio] for checks in checks_prio: for check in checks: passed_checks[file_json][prio][0] += 1 if check['value'][0] == check['value'][1]: passed_checks[file_json][prio][1] += 1 return passed_checks def create_output_summary(opath): """main function to create summary output""" json_summary_out, cf_version, cf_errors_out, cf_warns_out, incorrect_formula_term_error = {}, {}, {}, {}, None files = output_directory.return_files_in_directory_tree(opath) for file in files: if file.endswith("_result.json"): json_summary_out[file] =
pd.DataFrame()
pandas.DataFrame
import os import sys import numpy as np import pytest import pandas as pd from pandas import DataFrame, compat from pandas.util import testing as tm class TestToCSV: @pytest.mark.xfail((3, 6, 5) > sys.version_info >= (3, 5), reason=("Python csv library bug " "(see https://bugs.python.org/issue32255)")) def test_to_csv_with_single_column(self): # see gh-18676, https://bugs.python.org/issue32255 # # Python's CSV library adds an extraneous '""' # before the newline when the NaN-value is in # the first row. Otherwise, only the newline # character is added. This behavior is inconsistent # and was patched in https://bugs.python.org/pull_request4672. df1 = DataFrame([None, 1]) expected1 = """\ "" 1.0 """ with tm.ensure_clean('test.csv') as path: df1.to_csv(path, header=None, index=None) with open(path, 'r') as f: assert f.read() == expected1 df2 = DataFrame([1, None]) expected2 = """\ 1.0 "" """ with tm.ensure_clean('test.csv') as path: df2.to_csv(path, header=None, index=None) with open(path, 'r') as f: assert f.read() == expected2 def test_to_csv_defualt_encoding(self): # GH17097 df = DataFrame({'col': ["AAAAA", "ร„ร„ร„ร„ร„", "รŸรŸรŸรŸรŸ", "่ž่ž่ž่ž่ž"]}) with tm.ensure_clean('test.csv') as path: # the default to_csv encoding is uft-8. df.to_csv(path) tm.assert_frame_equal(pd.read_csv(path, index_col=0), df) def test_to_csv_quotechar(self): df = DataFrame({'col': [1, 2]}) expected = """\ "","col" "0","1" "1","2" """ with tm.ensure_clean('test.csv') as path: df.to_csv(path, quoting=1) # 1=QUOTE_ALL with open(path, 'r') as f: assert f.read() == expected expected = """\ $$,$col$ $0$,$1$ $1$,$2$ """ with
tm.ensure_clean('test.csv')
pandas.util.testing.ensure_clean
import os import matplotlib.pyplot as plt import pandas as pd from src.cellData import cellData from src.cellExtractOCV import cellExtractOCV from src.cellSim import cellSim from src.cellSimHyst import cellSimHyst from src.plotData import plotData def main(): """create list of tests available from dataset""" pathname = ( "datasets/lg-18650hg2/LG_HG2_Original_Dataset_McMasterUniversity_Jan_2020/" ) temp = "25degC/" filenames = [ filename for filename in os.listdir(pathname + temp) if filename.endswith(".csv") ] d =
pd.DataFrame(filenames)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import math from matplotlib import cm import seaborn as sns from dataframe_tools import merge_two_dataframes_as_of def relative_sma(price_df: pd.DataFrame, sma_lag: int, max_number_of_na: int = 5) -> pd.DataFrame: """Assumes price_df is a DataFrame filled with daily prices as values, tickers as column names and observation dates as index. Assumes that sma_lag and allowed_number_na are int. Returns a DataFrame with the simple moving average (SMA) divided by the spot.""" sma_df = rolling_average(price_df, sma_lag, max_number_of_na) relative_sma_df = sma_df / price_df.fillna(method='ffill') return relative_sma_df def realized_volatility(multivariate_price_df: pd.DataFrame = None, multivariate_return_df: pd.DataFrame = None, vol_lag: {int, list, tuple}=60, return_lag: int = 1, annualized_factor: float = 252, allowed_number_na: int = 5, aggregate_func_when_multiple_lags: str = 'max') -> pd.DataFrame: """ Calculates the realized volatility of each column. :param multivariate_price_df: :param multivariate_return_df: :param vol_lag: :param return_lag: int :param annualized_factor: :param allowed_number_na: :param aggregate_func_when_multiple_lags: :return: """ if multivariate_price_df is None and multivariate_return_df is None: raise ValueError('Need to specify multivariate_return_df or multivariate_price_df.') elif multivariate_return_df is not None and multivariate_price_df is not None: raise ValueError('Can only specify one of multivariate_return_df and multivariate_price_df.') return _rolling_calc(multivariate_df=multivariate_price_df if multivariate_return_df is None else multivariate_return_df, lag_parameter=vol_lag, return_lag=return_lag, convert_to_returns=multivariate_return_df is None, function='realized_volatility', aggregate_method=aggregate_func_when_multiple_lags, max_number_of_na=allowed_number_na, annualized_factor=annualized_factor, minimum_allowed_lag=2) def beta(multivariate_price_df: pd.DataFrame = None, multivariate_return_df: pd.DataFrame = None, beta_price_df: pd.DataFrame = None, beta_lag: {int, list, tuple}=252, return_lag: int = 1, allowed_number_na: int = 5, aggregate_func_when_multiple_lags: str = 'avg') -> pd.DataFrame: """ Calculates the beta of each column with respect to a given price DataFrame. :param multivariate_price_df: :param multivariate_return_df: :param beta_price_df: :param beta_lag: :param return_lag: :param allowed_number_na: :param aggregate_func_when_multiple_lags: :return: """ if multivariate_price_df is None and multivariate_return_df is None: raise ValueError('Need to specify multivariate_return_df or multivariate_price_df.') elif multivariate_return_df is not None and multivariate_price_df is not None: raise ValueError('Can only specify one of multivariate_return_df and multivariate_price_df.') return _rolling_calc( multivariate_df=multivariate_price_df if multivariate_return_df is None else multivariate_return_df, price_data_for_beta_calc_df=beta_price_df, lag_parameter=beta_lag, return_lag=return_lag, convert_to_returns=multivariate_return_df is None, function='beta', aggregate_method=aggregate_func_when_multiple_lags, max_number_of_na=allowed_number_na, minimum_allowed_lag=2) def rolling_average(data_df: pd.DataFrame, avg_lag: int, max_number_of_na: {int, None}=5) -> pd.DataFrame: """ Calculates a rolling average. If nan, value is rolled forward except when number of consecutive nan exceeds max_number_of_na. :param data_df: pandas.DataFrame :param avg_lag: int :param max_number_of_na: int (default None i.e. all nan are rolled forward) :return: pandas.DataFrame """ return _rolling_calc(data_df, avg_lag, False, 'average', max_number_of_na=max_number_of_na, minimum_allowed_lag=1) def _rolling_calc(multivariate_df: pd.DataFrame, lag_parameter: {int, tuple, list}, convert_to_returns: bool, function: str, aggregate_method: str = None, max_number_of_na: int = 5, return_lag: int = 1, annualized_factor: float = 252, price_data_for_beta_calc_df: pd.DataFrame = None, minimum_allowed_lag: int = 2): """ Loops through each lag parameter and calculates a function over the DataFrame :param multivariate_df: pd.DataFrame :param lag_parameter: int, tuple or list :param convert_to_returns: bool :param function: str :param aggregate_method: str :param max_number_of_na: int :param return_lag: int :param annualized_factor: float :param price_data_for_beta_calc_df: pd.DataFrame :param minimum_allowed_lag: int :return: pd.DataFrame """ # check parameters lag_parameter = _parameter_input_check(lag_parameter, minimum_allowed_lag) if multivariate_df.shape[0] < max(lag_parameter) + convert_to_returns + return_lag - 1: raise ValueError('multivariate_df needs to have at least {} rows.'.format(max(lag_parameter) + convert_to_returns + return_lag - 1)) col_list = multivariate_df.columns[multivariate_df.iloc[return_lag:, :].isna().any()].tolist() col_with_only_values = multivariate_df.columns[~multivariate_df.iloc[return_lag:, :].isna().any()].tolist() if len(col_with_only_values): col_list.append(col_with_only_values) result_df = None for lag in lag_parameter: result_sub_df = pd.DataFrame(index=multivariate_df.index) for col_name in col_list: if not isinstance(col_name, list): # if col_name is not a list then that means that there are nan in the column col_name = [col_name] df_clean = multivariate_df.loc[:, col_name] df_clean.dropna(inplace=True) else: # list of columns that does not have any nan df_clean = multivariate_df.loc[:, col_name] if convert_to_returns: df_clean = df_clean.pct_change(return_lag) # here is where the main calculation is done df_clean = _function_calc(df=df_clean, func_name=function, lag=lag, return_lag=return_lag, price_data_for_beta_calc_df=price_data_for_beta_calc_df, annualized_factor=annualized_factor) result_sub_df = result_sub_df.join(df_clean) result_sub_df = result_sub_df[list(multivariate_df)] if result_df is None: result_df = result_sub_df elif aggregate_method.lower() in ['max', 'maximum']: result_df = pd.concat([result_df, result_sub_df]).max(level=0, skipna=False) elif aggregate_method.lower() in ['mean', 'average', 'avg']: result_df = pd.concat([result_df, result_sub_df]).mean(level=0, skipna=False) else: if aggregate_method is None: raise ValueError("Need to specify aggregate_method when specifying a list of lag parameters.") else: raise ValueError("'{}' is not a recognized aggregation function.".format(aggregate_method.lower())) result_df.fillna(method='ffill', inplace=True) result_df = _set_nan_for_missing_data(multivariate_df, result_df, max_number_of_na=max_number_of_na) return result_df def _function_calc(df: pd.DataFrame, func_name: str, **kwargs): if func_name == 'realized_volatility': df_clean = df.rolling(window=kwargs['lag']).std() * (kwargs['annualized_factor'] ** 0.5) elif func_name == 'average': df_clean = df.rolling(window=kwargs['lag']).mean() elif func_name == 'beta': if kwargs['price_data_for_beta_calc_df'] is None: raise ValueError('Need to specify data_for_beta_calc_df when calculating betas.') else: df_clean = merge_two_dataframes_as_of(df, kwargs['price_data_for_beta_calc_df'], 'used_for_beta_calc') df_clean.iloc[:, -1] = df_clean.iloc[:, -1].pct_change(kwargs['return_lag']) covariance_df = df_clean.rolling(window=kwargs['lag']).cov(df_clean.iloc[:, -1]) variance_df = df_clean.iloc[:, -1].rolling(window=kwargs['lag']).var() df_clean = covariance_df.divide(variance_df, axis='index') df_clean = df_clean.iloc[:, :-1] # ignore the column furthest to the right else: raise ValueError("'{}' is not a recognized function.".format(func_name.lower())) return df_clean def _parameter_input_check(param: {int, tuple, list}, minimum_value: int): """ Checks and converts the parameter to a list if necessary. :param param: int, list :param minimum_value: int :return: None """ # convert to list if applicable try: param[0] except TypeError: param = [param] # check value if min(param) < minimum_value: raise ValueError('Parameter value needs to be greater or equal to {}.'.format(minimum_value)) return param def convert_daily_return_to_daily_price_df(multivariate_daily_return_df: pd.DataFrame, initial_value: float = 1.0): """ Takes a multivariate DataFrame assumed to contain daily returns and recomputes a normalized performance DataFrame :param multivariate_daily_return_df: pd.DataFrame :param initial_value: float :return: pd.DataFrame """ multivariate_price_df = multivariate_daily_return_df.shift(-1) # shift the daily returns backwards multivariate_price_df[~multivariate_price_df.isnull()] = 1 # where there is a shifted return set value to 1 multivariate_price_df.iloc[-1, :] = 1 # last rows should be 1 since the shifted value is always nan multivariate_price_df += multivariate_daily_return_df.fillna(0) # 1 + daily return multivariate_price_df = multivariate_price_df.cumprod() # (1 + R1) * (1 + R2) * ... multivariate_price_df *= initial_value return multivariate_price_df def _set_nan_for_missing_data(original_multivariate_df: pd.DataFrame, calculated_value_df: pd.DataFrame, max_number_of_na: int)->pd.DataFrame: """ After calculating e.g. Volatility, this script sets the values to NaN if the original DataFrame had a number of consecutive rows of NaN above a threshold. :param original_multivariate_df: DataFrame :param calculated_value_df: DataFrame :param max_number_of_na: int :return: DataFrame """ # set value to nan if the number of consecutive nan exceeds max_number_of_na adjustment_df = original_multivariate_df.rolling(window=max_number_of_na + 1, min_periods=1).mean() eligibility_df = np.where(adjustment_df.isna(), np.nan, 1) return calculated_value_df * eligibility_df def rolling_drawdown(price_df: pd.DataFrame, look_back_period: int = None) -> pd.DataFrame: """Assumes that price_df is a DataFrame and look_back_period is an int. If look_back_period is not assigned, the 'peak/maximum' will be observed continuously. Returns a DataFrame containing the drawdown for each underlying i.e. 'price' / 'maximum priced over look back period' - 1.""" if look_back_period is None: look_back_period = len(price_df.index) if look_back_period < 1: raise ValueError("look_back_lag' needs to be larger or equal to 1.") price_df = price_df.fillna(method='ffill').copy() rolling_max_df = price_df.rolling(window=look_back_period, min_periods=1).max() drawdown_df = price_df / rolling_max_df - 1.0 return drawdown_df def exponentially_weighted_return(price_df: pd.DataFrame, lambda_: float) -> pd.DataFrame: """ Calculates the exponentially weighted returns :param price_df: pd.DataFrame containing the closing levels :param lambda_: the weight :return: pd.DataFrame """ price_return_df = price_df.pct_change() price_return_df = price_return_df.iloc[1:, :] number_days = price_return_df.shape[0] exp_weighting_var = [np.exp(-lambda_ / number_days * (1 + t_day)) for t_day in range(number_days - 1, -1, -1)] exp_weighting_s = pd.Series(index=price_return_df.index, data=exp_weighting_var) return price_return_df.mul(exp_weighting_s, axis=0) def maximum_drawdown(price_df: pd.DataFrame, look_back_period: int = None) -> pd.Series: """Assumes that price_df is a DataFrame and look_back_period is an int. If look_back_period is not assigned, the 'peak/maximum' will be observed continuously. Returns a Series containing the maximum drawdown for each underlying i.e. the lowest 'price' / 'maximum priced over look back period' - 1 observed.""" drawdown_df = rolling_drawdown(price_df, look_back_period) return drawdown_df.min() def plot_pairwise_correlation(df: pd.DataFrame): """ Source: https://seaborn.pydata.org/examples/many_pairwise_correlations.html""" sns.set(style="white") corr = df.corr() # Compute the correlation matrix mask = np.triu(np.ones_like(corr, dtype=np.bool)) # Generate a mask for the upper triangle cmap = sns.diverging_palette(220, 10, as_cmap=True) # Generate a custom diverging colormap # Draw the heatmap with the mask and correct aspect ratio sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}) plt.show() def _check_and_merge_price_weight_df(price_df: pd.DataFrame, weight_df: pd.DataFrame) -> pd.DataFrame: """(Used by 'index_calculation') Assumes price_df and weight_df are both DataFrames. Checks if the two DataFrames have the same column headers and returns adjusted price and weight DataFrame to have a valid start date.""" price_df = price_df.reindex(sorted(price_df.columns), axis=1) # sort column headers weight_df = weight_df.reindex(sorted(weight_df.columns), axis=1) # sort column headers price_df.fillna(method='ffill', inplace=True) # forward fill using previous price if price is NaN if list(price_df) != list(weight_df): raise ValueError('The tickers (column headers) of price_df and weight_df are not the same.') weight_df['rebalance'] = range(len(weight_df.index)) # counter (indicator) for rebalance date price_index_reset_df = price_df.reset_index() weight_index_reset_df = weight_df.reset_index() left_on_col_name = list(price_index_reset_df)[0] right_on_col_name = list(weight_index_reset_df)[0] price_weight_df = pd.merge_asof(price_index_reset_df, weight_index_reset_df, left_on=left_on_col_name, right_on=right_on_col_name, suffixes=['_price', '_weight']) # merge the price and weight DataFrames price_weight_df.set_index(price_weight_df[left_on_col_name], inplace=True) # set dates as index price_weight_df.drop([left_on_col_name, right_on_col_name], inplace=True, axis=1) # remove old 'index' column weight_column_names = [col_name for col_name in list(price_weight_df) if '_weight' in col_name] price_weight_df = price_weight_df.dropna(subset=weight_column_names) # remove rows where weights are NaN price_weight_df['rebalance'] = price_weight_df['rebalance'].diff() # 1: new weight, else 0 price_weight_df.iloc[0, -1] = 1 return price_weight_df def _calculate_performance(weight_price_df: pd.DataFrame) -> pd.DataFrame: """(Used by 'index_calculation') Assumes weight_price_df is a DataFrame. Returns a new DataFrame with columns containing the performance.""" tickers = [col_name.replace('_price', '') for col_name in list(weight_price_df) if '_price' in col_name] # Get the price at each rebalance date and then roll the value for ticker in tickers: weight_price_df[ticker + '_price_last_rbd'] = weight_price_df[ticker + '_price'] * \ (weight_price_df['rebalance'] == 1) weight_price_df[ticker + '_price_last_rbd'].replace(0, np.nan, inplace=True) weight_price_df.fillna(method='ffill', inplace=True) # forward fill # Calculate the performance performance_col_name = [ticker + '_performance' for ticker in tickers] weight_price_df[performance_col_name] = pd.DataFrame(data=weight_price_df.filter(regex='_price$').values / weight_price_df.filter(regex='_price_last_rbd$').shift(1).values, index=weight_price_df.index) # Calculate the weighted performance weighted_performance_col_names = [ticker + '_weighted_return' for ticker in tickers] weight_price_df[weighted_performance_col_names] = pd.DataFrame(data=weight_price_df.filter(regex='_weight$').shift(1).values * \ (weight_price_df.filter(regex='_performance$').values - 1.0), index=weight_price_df.index) return weight_price_df def index_calculation(price_df: pd.DataFrame, weight_df: pd.DataFrame, transaction_cost: float = 0, fee: float = 0, initial_amount: float = 100.0) -> pd.DataFrame: """Assumes price_df and weight_df are both DataFrames that have the same column headers, transaction_cost and fee are floats. Returns an index as a DataFrame.""" if transaction_cost < 0: raise ValueError('transaction_cost needs to be equal or greater to 0.') weight_price_df = _check_and_merge_price_weight_df(price_df, weight_df) index_calculation_df = _calculate_performance(weight_price_df) index_calculation_df['transaction_cost'] = index_calculation_df.filter(regex='_weight$').diff().abs().sum(axis=1) \ * transaction_cost index_calculation_df['gross_return'] = index_calculation_df.filter(regex='_weighted_return$').sum(axis=1) # Calculate the index index_calculation_df['index'] = np.nan # Initialize the column index_calendar = index_calculation_df.index index_last_rbd = initial_amount last_rbd = index_calculation_df.index[0] index_calculation_df.loc[last_rbd, 'index'] = index_last_rbd for date in index_calendar[1:]: accumulated_fee = (date - last_rbd).days / 360.0 * fee index_calculation_df.loc[date, 'index'] = index_last_rbd * (1.0 + index_calculation_df.loc[date, 'gross_return'] - accumulated_fee - index_calculation_df.loc[date, 'transaction_cost']) if index_calculation_df.loc[date, 'rebalance']: # if it is a rebalance date index_last_rbd = index_calculation_df.loc[date, 'index'] # new index since last rebalance date last_rbd = date # new rebalance date return index_calculation_df def index_daily_rebalanced(multivariate_daily_returns: pd.DataFrame, weights: pd.DataFrame, transaction_costs: float = 0, rolling_fee_pa: float = 0, weight_smoothing_lag: int = 1, weight_observation_lag: int = 1, initial_value: float = 100, volatility_target: float = None, volatility_lag: {int, list, tuple}=60, risky_weight_cap: float = 1, market_price_df: pd.DataFrame = None, beta_lag: {int, list, tuple}=252, beta_hedge_carry_cost_pa: float = 0.0, beta_return_lag: int = 1): # calculate the gross return of the index multivariate_daily_returns.iloc[1:, :].fillna(0, inplace=True) num_instruments = multivariate_daily_returns.shape[1] index_result = merge_two_dataframes_as_of(multivariate_daily_returns, weights, '_WEIGHT') index_result.iloc[:, num_instruments:] = index_result.iloc[:, num_instruments:].rolling(window=weight_smoothing_lag, min_periods=1).mean() # smooth the weights to reduce turnover index_result[[col_name + '_WEIGHTED_RETURN' for col_name in list(multivariate_daily_returns)]] = index_result.iloc[:, :num_instruments] * index_result.iloc[:, num_instruments:].shift(weight_observation_lag).values # make the index 'market-neutral' by adding a short position where the allocation depends on the realized beta if market_price_df is not None: index_result = _add_beta_hedge(index_result=index_result, multivariate_daily_returns=multivariate_daily_returns, market_price_df=market_price_df, beta_lag=beta_lag, beta_return_lag=beta_return_lag, num_instruments=num_instruments, weight_observation_lag=weight_observation_lag) market_neutral = True num_instruments += 1 else: market_neutral = False # index_result = _add_beta_hedge(index_result) index_result['GROSS_INDEX_RETURN'] = index_result.iloc[:, 2 * num_instruments:].sum(axis=1, skipna=False) # add volatility target mechanism if applicable if volatility_target: index_result = _add_volatility_target(index_result, volatility_target, volatility_lag, risky_weight_cap, num_instruments, weight_observation_lag) # calculate the gross index index_result['GROSS_INDEX'] = initial_value * (1 + index_result['GROSS_INDEX_RETURN']).cumprod() start_of_index_i = index_result['GROSS_INDEX_RETURN'].index.get_loc(index_result['GROSS_INDEX_RETURN'].first_valid_index()) - 1 index_result.iloc[start_of_index_i, -1] = initial_value # adjust index for transaction costs and index fees if any if transaction_costs != 0 or rolling_fee_pa != 0 or market_neutral * beta_hedge_carry_cost_pa != 0: # add a column with the net index return index_result = _add_net_index_return(index_result=index_result, transaction_costs=transaction_costs, rolling_fee_pa=rolling_fee_pa, number_of_instruments=num_instruments, beta_carry_cost=market_neutral * beta_hedge_carry_cost_pa, weight_observation_lag=weight_observation_lag) # calculate the net index index_result['NET_INDEX'] = initial_value * (1 + index_result['NET_INDEX_RETURN']).cumprod() index_result.iloc[start_of_index_i, -1] = initial_value return index_result def _add_beta_hedge(index_result: pd.DataFrame, multivariate_daily_returns: pd.DataFrame, market_price_df: pd.DataFrame, beta_lag: {int, list}, beta_return_lag: int, num_instruments: int, weight_observation_lag: int): # add the daily returns of the market instrument index_result = merge_two_dataframes_as_of(index_result, market_price_df.pct_change(), left_suffix='BETA_INSTRUMENT') # calculate the weight of the short position if beta_return_lag > 1: # convert the daily returns back to performance data multivariate_price_df = multivariate_daily_returns.shift(-1) # shift the daily returns backwards multivariate_price_df[~multivariate_price_df.isnull()] = 1 # where there is a shifted return set value to 1 multivariate_price_df.iloc[-1, :] = 1 # last rows should be 1 since the shifted value is always nan multivariate_price_df += multivariate_daily_returns.fillna(0) # 1 + daily return multivariate_price_df = multivariate_price_df.cumprod() # (1 + R1) * (1 + R2) * ... beta_per_stock_df = beta(multivariate_price_df=multivariate_price_df, beta_price_df=market_price_df, beta_lag=beta_lag, return_lag=beta_return_lag) else: beta_per_stock_df = beta(multivariate_return_df=multivariate_daily_returns, beta_price_df=market_price_df, beta_lag=beta_lag) # calculate the weighted average across all stock betas weighted_beta_df = pd.DataFrame( data=(beta_per_stock_df * index_result.iloc[:, num_instruments: 2 * num_instruments].values).sum(axis=1, skipna=False), columns=['BETA_WEIGHT']) weighted_beta_df *= -1 # since you are shorting the market index_result = index_result.join(weighted_beta_df) # calculate the short beta position index_result[list(index_result)[-2] + '_WEIGHTED_RETURN'] = index_result.iloc[:, -2] * \ index_result.iloc[:,-1]\ .shift(weight_observation_lag).values # rearrange the columns instrument_columns = list(index_result)[:num_instruments] instrument_columns.append(list(index_result)[-3]) # add the beta instrument weight_columns = list(index_result)[num_instruments: 2 * num_instruments] weight_columns.append(list(index_result)[-2]) # add the beta weight weighted_return_columns = [col_name for col_name in list(index_result) if col_name.endswith('_WEIGHTED_RETURN')] all_col_names = instrument_columns + weight_columns + weighted_return_columns index_result = index_result[all_col_names] return index_result def _add_volatility_target(index_result: pd.DataFrame, volatility_target: float, volatility_lag: {int, list}, risky_weight_cap: float, number_of_instruments: int, weight_observation_lag: int): # calculate the risky weight realized_volatility_gross_index = realized_volatility(multivariate_return_df=index_result[['GROSS_INDEX_RETURN']], vol_lag=volatility_lag) risky_weight = volatility_target / realized_volatility_gross_index risky_weight[risky_weight >= risky_weight_cap] = risky_weight_cap index_result = index_result.join(pd.DataFrame(data=risky_weight.values, index=risky_weight.index, columns=['RISKY_WEIGHT'])) # add new weights columns with weights adjusted based on the risky weight weight_post_vt_col_names = [col_name + '_WEIGHT_POST_VT' for col_name in list(index_result)[:number_of_instruments]] index_result[weight_post_vt_col_names] = index_result.iloc[:, number_of_instruments: 2 * number_of_instruments].multiply(index_result['RISKY_WEIGHT'], axis=0) # adjust the weighted returns and gross index returns weighted_return_col_names = [col_name + '_WEIGHTED_RETURN' for col_name in list(index_result)[:number_of_instruments]] index_result[weighted_return_col_names] = index_result.iloc[:, :number_of_instruments] * index_result.loc[:, weight_post_vt_col_names].shift(weight_observation_lag).values index_result['GROSS_INDEX_RETURN'] = index_result.loc[:, weighted_return_col_names].sum(axis=1, skipna=False) return index_result def _add_net_index_return(index_result: pd.DataFrame, transaction_costs: float, rolling_fee_pa: float, number_of_instruments: int, beta_carry_cost: float, weight_observation_lag: int): # calculate the index net of transaction costs weight_col_names = [col_name for col_name in list(index_result) if col_name.endswith('_WEIGHT_POST_VT')] if not len(weight_col_names): weight_col_names = list(index_result)[number_of_instruments: 2 * number_of_instruments] abs_weight_delta = index_result[weight_col_names].diff().abs().sum(axis=1) index_result['NET_INDEX_RETURN'] = index_result['GROSS_INDEX_RETURN'] - transaction_costs * abs_weight_delta.values # calculate the index net of index fees dt = [None] + [(index_result.index[n] - index_result.index[n - 1]).days / 365 for n in range(1, len(index_result.index))] dt_s = pd.Series(data=dt, index=index_result.index) index_result['NET_INDEX_RETURN'] -= rolling_fee_pa * dt_s # calculate the index net of the rolling cost of carrying the short beta position index_result['NET_INDEX_RETURN'] += index_result['BETA_WEIGHT'].shift(weight_observation_lag) * dt_s.values * beta_carry_cost return index_result def monthly_return_table(price_df: pd.DataFrame, include_first_monthly_return: bool = True) -> {list, pd.DataFrame}: """Assumes price_df is a DataFrame. Returns a DataFrame with monthly returns and yearly returns. If price_df has more than one column, script returns a list filled with DataFrames.""" month_name_dict = {'Jan': 0, 'Feb': 1, 'Mar': 2, 'Apr': 3, 'May': 4, 'Jun': 5, 'Jul': 6, 'Aug': 7, 'Sep': 8, 'Oct': 9, 'Nov': 10, 'Dec': 11} # dictionary used to name the columns in the table price_df = price_df.copy() tickers = list(price_df) price_df['Month'] = price_df.index.strftime('%b') price_df['Year'] = price_df.index.strftime('%Y') # within each month, roll forward if there is nan clean_price_df = price_df.groupby(['Month', 'Year'], as_index=False).apply(lambda group: group.ffill()) monthly_price_df = clean_price_df.resample('BM').apply(lambda x: x[-1]) # look at last day of each month # calculate the returns only for the price columns and not month and year columns monthly_return_df = monthly_price_df.apply(lambda x: x.pct_change() if x.name in tickers else x) if include_first_monthly_return: # calculate the return of the first 'broken' month first_available_price_df = clean_price_df.groupby(['Month', 'Year'], as_index=False).apply(lambda group: group.bfill()).resample('BM').apply(lambda x: x[0]) for ticker in tickers: # this looks messy but it works :) first_available_value = first_available_price_df.loc[first_available_price_df[ticker].notna().idxmax(), ticker] first_end_of_month_index_pos = monthly_return_df.index.get_loc(monthly_return_df[ticker].notna().idxmax()) first_available_end_of_month_value = monthly_price_df.iloc[first_end_of_month_index_pos - 1, tickers.index(ticker)] first_month_return = first_available_end_of_month_value / first_available_value - 1.0 monthly_return_df.iloc[first_end_of_month_index_pos - 1, tickers.index(ticker)] = first_month_return column_names = list(set(month_name_dict.keys()) & set(monthly_return_df['Month'].values)) # intersection column_names.sort(key=lambda name: month_name_dict[name]) # sort the columns in monthly order if len(tickers) == 1: # only one underlying monthly_return_table_df = monthly_return_df.pivot(index='Year', columns='Month', values=tickers[0]) monthly_return_table_df = monthly_return_table_df[column_names] # correct the column order monthly_return_table_df['Yearly return'] = monthly_return_table_df.add(1.0).fillna(1.0).cumprod(axis=1).iloc[:, -1] - 1.0 return monthly_return_table_df else: monthly_return_table_df_list = [] for ticker in tickers: monthly_return_table_df = monthly_return_df.pivot(index='Year', columns='Month', values=ticker) monthly_return_table_df = monthly_return_table_df[column_names] # correct the column order monthly_return_table_df['Yearly return'] = monthly_return_table_df.add(1.0).fillna(1.0).cumprod(axis=1).iloc[:, -1] - 1.0 monthly_return_table_df_list.append(monthly_return_table_df) return monthly_return_table_df_list def return_and_risk_analysis(underlying_price_df: pd.DataFrame, has_benchmark=False, print_results=True, start_date=None, end_date=None, normalize: bool = True) -> dict: """Assumes that underlying_price_df is a DataFrame with prices in each column and dates as index, has_benchmark is boolean. Calculates annual returns, annual volatility drawdown and return distributions. If has_benchmark is True (only works if there are two columns) function will return active return and information ratio. Returns a dictionary with names (string) as keys and DataFrames as values. This can later easely be saved in an Excel workbook.""" if has_benchmark and len(underlying_price_df.columns) != 2: raise ValueError("Price DataFrame needs to have only two columns: 1st is your strategy and the 2nd is your " "benchmark. Currently the DataFrame has {} column(s).".format(len(underlying_price_df.columns))) underlying_price_df = underlying_price_df.copy() underlying_price_df.dropna(inplace=True) # drops each row if there exists a NaN in either column if start_date: underlying_price_df = underlying_price_df[start_date:] if end_date: underlying_price_df = underlying_price_df[:end_date] if normalize: performance_df = underlying_price_df / underlying_price_df.iloc[0, :] * 100.0 else: performance_df = underlying_price_df # annual return rolling_1y_return_df = underlying_price_df.pct_change(252).dropna() avg_1y_return_s = rolling_1y_return_df.mean() # annual volatility rolling_1y_volatility_df = underlying_price_df.pct_change().rolling(window=252).std().dropna() * math.sqrt(252) avg_1y_volatility_s = rolling_1y_volatility_df.mean() # sharpe ratio sharpe_ratio_s = avg_1y_return_s / avg_1y_volatility_s # maximum drawdown rolling_1y_drawdown_df = rolling_drawdown(underlying_price_df, 252) max_drawdown_s = maximum_drawdown(underlying_price_df) # combine the Series into a DataFrame risk_return_table_df = pd.concat([avg_1y_return_s, avg_1y_volatility_s, sharpe_ratio_s, max_drawdown_s], axis=1).transpose() # setup a dictionary with sheet names as keys and DataFrames as values sheet_name_df_dict = {'Performance': performance_df, 'Risk and return': risk_return_table_df, 'Rolling 1Y return': rolling_1y_return_df, 'Rolling 1Y volatility': rolling_1y_volatility_df, 'Rolling 1Y drawdown': rolling_1y_drawdown_df} if has_benchmark: # calculate the rolling active return and information ratio rolling_1y_active_return_s = rolling_1y_return_df.iloc[:, 0] - rolling_1y_return_df.iloc[:, 1] rolling_standard_error_s = rolling_1y_active_return_s.rolling(window=252).std() rolling_1y_information_ratio_s = (rolling_1y_active_return_s / rolling_standard_error_s).dropna() avg_1y_active_return_df = pd.DataFrame(data=[[rolling_1y_active_return_s.mean(), '--']], columns=list(underlying_price_df)) avg_1y_information_ratio_df = pd.DataFrame(data=[[rolling_1y_information_ratio_s.mean(), '--']], columns=list(underlying_price_df)) # add active returns and information ratio to the table DataFrame risk_return_table_df =
pd.concat([risk_return_table_df, avg_1y_active_return_df, avg_1y_information_ratio_df])
pandas.concat
from unittest import TestCase from os import path as os_path import shutil from pandas import DatetimeIndex, DataFrame, Series, Timedelta, infer_freq, \ Timestamp import numpy as np from plotly.graph_objects import Figure from matplotlib.axes import Axes from timeatlas import TimeSeries, Metadata from timeatlas.config.constants import * class TestTimeSeries(TestCase): def setUp(self) -> None: # Create a time indexed series index = DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04']) self.my_data = Series([0.4, 1.0, 0.7, 0.6], index=index).to_frame() # Create metadata my_unit = { "name": "power", "symbol": "W", "data_type": "float" } my_coordinates = { "lat": 46.796611, "lon": 7.147563 } my_dict = { "unit": my_unit, "coordinates": my_coordinates } self.my_metadata = Metadata(my_dict) # self.my_time_series = TimeSeries(self.my_series, self.my_metadata) self.my_time_series = TimeSeries(self.my_data) # Define a target directory self.target_dir = "data/test-export" def test__init__is_instance(self): my_time_series = TimeSeries() self.assertIsInstance(my_time_series, TimeSeries, "The TimeSeries hasn't the right type") def test__init__has_right_types(self): # Add some data index = DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04']) my_series = DataFrame([0.4, 1.0, 0.7, 0.6], index=index) my_metadata = Metadata() my_ts = TimeSeries(my_series, my_metadata) # Check types self.assertIsInstance(my_ts._data, DataFrame, "The TimeSeries series is not a Pandas DataFrame") self.assertIsInstance(my_ts.metadata, Metadata, "The TimeSeries Metadata hasn't got the right type") def test__init__contains_metadata(self): # Add some data index = DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04']) my_series = DataFrame([0.4, 1.0, 0.7, 0.6], index=index) my_metadata = Metadata() my_ts = TimeSeries(my_series, my_metadata) # Check types self.assertNotEqual(my_ts.metadata, None, "The TimeSeries Metadata is probably None") def test__init__has_values_as_column_name(self): index =
DatetimeIndex(['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04'])
pandas.DatetimeIndex
#!/usr/bin/env python3 """Exploratory Data Analysis Module for Alzheimer's Capstone 1. This module contains functions used for Data Storytelling. The functions within wrangle and format data for visualizations. Inputs for these functions can be obtained using adnidatawrangling module. Required modules for all functions to run: pandas, numpy, matplotlib.pyplot, seaborn all using standard namespaces. """ if 'pd' not in globals(): import pandas as pd if 'np' not in globals(): import numpy as np if 'plt' not in globals(): import matplotlib.pyplot as plt if 'sns' not in globals(): import seaborn as sns sns.set() def get_bl_data(adni_comp, clin_data, scan_data): """This function extracts the data from the baseline visit only for each patient. Supply the three dataframes adni_comp, clin_data, and scan_data as input. """ # extract the baseline data only adni_bl = adni_comp[adni_comp.EXAMDATE == adni_comp.EXAMDATE_bl] clin_bl = clin_data[clin_data.EXAMDATE == clin_data.EXAMDATE_bl] scan_bl = scan_data[scan_data.EXAMDATE == scan_data.EXAMDATE_bl] # return the three dataframes return adni_bl, clin_bl, scan_bl def plot_gender_counts(adni_bl): """This function plots gender counts from the complete data. Supply adni_bl as input to ensure only 1 row per patient. """ # construct and show the plot adni_bl['PTGENDER'].value_counts().plot(kind='bar', rot=0) plt.xlabel('Gender') plt.ylabel('Number of Patients') plt.title('Number of Patients of Each Gender') plt.show() def plot_bl_diag(adni_bl): """This function plots baseline data. Supply adni_bl as the argument and unpack the x, y variables for plotting. """ x = ['CN', 'SMC', 'EMCI', 'LMCI', 'AD'] y = [adni_bl.DX_bl.value_counts()['CN'], adni_bl.DX_bl.value_counts()['SMC'], adni_bl.DX_bl.value_counts()['EMCI'], adni_bl.DX_bl.value_counts()['LMCI'], adni_bl.DX_bl.value_counts()['AD']] # construct and show the plot sns.barplot(x=x, y=y) plt.xlabel('Diagnosis') plt.ylabel('Number of Patients') plt.title('Baseline Diagnosis') plt.show() def plot_final_diag(adni_comp): """This function extracts the final diagnosis counts for plotting. Supply adni_comp as input and extract the x, y data for plotting. """ # filter the most advanced diagnosis for each patient dx_final = adni_comp.groupby('RID')['DX'].max() # get the frequency of occurrence dx_counts = dx_final.value_counts() # extract the data and assign to x, y x = ['CN', 'MCI', 'AD'] y = [dx_counts['CN'], dx_counts['MCI'], dx_counts['AD']] # construct and show the plot sns.barplot(x=x, y=y) plt.xlabel('Diagnosis') plt.ylabel('Number of Patients') plt.title('Final Diagnosis') plt.show() def plot_bl_final_diag(adni_comp): """This function extracts baseline and final diagnosis data and plots it. Provide the adni_comp df as input and extract 'diag' df for plotting. Use the following call to plot: sns.barplot(x='diagnosis', y='counts', hue='visit', data=diag) Add appropriate titles, labels as needed. """ # filter the most advanced diagnosis for each patient dx_final = adni_comp.groupby('RID')['DX'].max() # get the frequency of occurrence dx_counts = dx_final.value_counts() # extract the basline diagnosis counts, using bl2 DX_bl2 = adni_comp.groupby('RID')['DX_bl2'].min() DX_bl2_counts = DX_bl2.value_counts() # join baseline and final diagnosis data for comparison counts = [DX_bl2_counts[1], DX_bl2_counts[0], DX_bl2_counts[2], dx_counts[2], dx_counts[1], dx_counts[0]] dx_comp = {'visit': ['Baseline', 'Baseline', 'Baseline', 'Final', 'Final', 'Final'], 'diagnosis': ['CN', 'MCI', 'AD', 'CN', 'MCI', 'AD'], 'counts': counts} # create dataframe using dx_comp diag =
pd.DataFrame(dx_comp)
pandas.DataFrame
#%% [markdown] ## Project Name: covid_misinformation ### Program Name: CoronaV_Trends.py ### Purpose: To download google trends data related to coronavirus. ##### Date Created: Apr 8th 2020 #### # Pytrends Documentation:https://github.com/GeneralMills/pytrends #%% [markdown] from IPython import get_ipython get_ipython().magic('reset -sf') import datetime from datetime import datetime as dt from datetime import date import os import pathlib import colorlover as cl import plotly.graph_objs as go import chart_studio.plotly as py import plotly.express as px import pandas as pd from pytrends.request import TrendReq APP_PATH = str(pathlib.Path(__file__).parent.resolve()) pytrends = TrendReq(hl='en-US', tz=360, retries=2, backoff_factor=0.1) #%% [markdown] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Bat soup theory~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# today=datetime.date(2020,4,26) search_time='2020-01-01 '+str(today) searches_bat=[ 'bat soup', 'coronavirus bat soup', 'china bat soup', 'chinese bat soup', 'wuhan bat soup', 'bat soup virus', ] groupkeywords = list(zip(*[iter(searches_bat)]*1)) groupkeywords = [list(x) for x in groupkeywords] # Download search interest of bat key words dicti = {} i = 1 for trending in groupkeywords: pytrends.build_payload( trending, timeframe = search_time, ) dicti[i] = pytrends.interest_over_time() i+=1 result = pd.concat(dicti, axis=1) result.columns = result.columns.droplevel(0) result = result.drop('isPartial', axis = 1) #result['date']=result.index.date result.to_csv(os.path.join(APP_PATH, 'data', 'GoogleTrends','GT_bat_global_'+str(today)+'.csv'), header=True) #%% [markdown] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Wuhan Lab theory~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~# today=datetime.date(2020,5,4) search_time='2020-01-01 '+str(today) searches_wuhanlab=[ 'wuhan virus lab', 'wuhan lab corona virus', 'virus lab in wuhan', 'wuhan bio lab', 'wuhan virology lab', 'wuhan p4 lab', 'wuhan level 4 lab', 'wuhan bsl-4 lab', ] groupkeywords = list(zip(*[iter(searches_wuhanlab)]*1)) groupkeywords = [list(x) for x in groupkeywords] #%% [markdown] # Download search interest of wuhanlab key words dicti = {} i = 1 for trending in groupkeywords: pytrends.build_payload( trending, timeframe = search_time, ) dicti[i] = pytrends.interest_over_time() i+=1 result = pd.concat(dicti, axis=1) result.columns = result.columns.droplevel(0) result = result.drop('isPartial', axis = 1) result.to_csv(os.path.join(APP_PATH, 'data', 'GoogleTrends','GT_wuhanlab_global_'+str(today)+'.csv'), header=True) #%% [markdown] # Select one week Jan 24th - Jan 30th to downolad google trend by state search_times=[ '2020-01-24 2020-01-24', '2020-01-25 2020-01-25', '2020-01-26 2020-01-26', '2020-01-27 2020-01-27', '2020-01-28 2020-01-28', '2020-01-29 2020-01-29' ] #search_times=[ # '2020-04-14 2020-4-14', # '2020-04-15 2020-4-15', # '2020-04-16 2020-4-16', # '2020-04-17 2020-4-17', # '2020-04-18 2020-4-18', # '2020-04-19 2020-4-19', #] #%% [markdown] j=1 for trending in groupkeywords: dicti = {} i = 1 for d in search_times: pytrends.build_payload(trending, geo='US', timeframe=d) dicti[i]=pytrends.interest_by_region( inc_low_vol=True, inc_geo_code=False) dicti[i]['date']=search_times[i-1][:10] i+=1 if j==1: result = pd.concat(dicti, axis=0) result = result.reset_index() result = result.drop(['level_0'], axis=1) else: x=pd.concat(dicti, axis=0) x=x.reset_index().drop(['level_0', 'geoName','date'], axis=1) result=
pd.concat([result,x], axis=1)
pandas.concat
import pytest import pandas as pd from collections import ChainMap import datetime import pyarrow as pa from arize.pandas.logger import Schema from arize.utils.types import Environments, ModelTypes from arize.pandas.validation.validator import Validator import arize.pandas.validation.errors as err def test_zero_errors(): errors = Validator.validate_types(**kwargs) assert len(errors) == 0 # may need to revisit this case def test_reject_all_nones(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame({"A": pd.Series([None])}) ), }, kwargs, ) ) assert len(errors) == 1 assert type(errors[0]) is err.InvalidTypeFeatures def test_invalid_type_prediction_id(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame( {"prediction_id": pd.Series([datetime.datetime.now()])} ) ) }, kwargs, ) ) assert len(errors) == 1 assert type(errors[0]) is err.InvalidType def test_invalid_type_prediction_id_float(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame({"prediction_id": pd.Series([3.14])}) ) }, kwargs, ) ) assert len(errors) == 1 assert type(errors[0]) is err.InvalidType def test_invalid_type_timestamp(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame({"prediction_timestamp": pd.Series(["now"])}) ) }, kwargs, ) ) assert len(errors) == 1 assert type(errors[0]) is err.InvalidType def test_valid_timestamp_datetime(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame( {"prediction_timestamp": pd.Series([datetime.datetime.now()])} ) ) }, kwargs, ) ) assert len(errors) == 0 def test_valid_timestamp_date(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame( { "prediction_timestamp": pd.Series( [datetime.datetime.now().date()] ) } ) ) }, kwargs, ) ) assert len(errors) == 0 def test_valid_timestamp_float(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame( { "prediction_timestamp": pd.Series( [datetime.datetime.now().timestamp()] ) } ) ) }, kwargs, ) ) assert len(errors) == 0 def test_valid_timestamp_int(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame( { "prediction_timestamp": pd.Series( [int(datetime.datetime.now().timestamp())] ) } ) ) }, kwargs, ) ) assert len(errors) == 0 def test_invalid_type_features(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame({"A": pd.Series([list()])}) ) }, kwargs, ) ) assert len(errors) == 1 assert type(errors[0]) is err.InvalidTypeFeatures def test_invalid_type_shap_values(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame({"a": pd.Series([list()])}) ) }, kwargs, ) ) assert len(errors) == 1 assert type(errors[0]) is err.InvalidTypeShapValues def test_invalid_label(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame({"prediction_label": pd.Categorical([None])}) ), }, kwargs, ) ) assert len(errors) == 1 assert type(errors[0]) is err.InvalidType def test_valid_label_int(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame({"prediction_label": pd.Series([int(1)])}) ), }, kwargs, ) ) assert len(errors) == 0 def test_valid_label_str(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame({"prediction_label": pd.Series(["0"])}) ), }, kwargs, ) ) assert len(errors) == 0 def test_valid_label_float(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame({"prediction_label": pd.Series([3.14])}) ), }, kwargs, ) ) assert len(errors) == 0 def test_valid_label_bool(): errors = Validator.validate_types( **ChainMap( { "pyarrow_schema": pa.Schema.from_pandas( pd.DataFrame({"prediction_label":
pd.Series([True])
pandas.Series
import enspp.bma as bma import enspp.vis as vis import matplotlib.pyplot as plt import numpy as np import pandas as pd from wrfpywind import data_preprocess as pp import xarray as xr # Read in the observational data obs = pp.fmt_buoy_wspd( data_path='/share/mzhang/jas983/wrf_data/oshwind/wrfpywind/wrfpywind/data/nyserda_buoy/', south_dates_str='20190904_20210207', north_dates_str='20190812_20210207', heights=[20, 40, 60, 80, 100, 120, 140, 160, 180, 200], start_date='12-01-2019', end_date='12-31-2019') # Specify the forecast initialization time t_init = '2019-12-08' # Fit the BMA model using two historical simulations fit = bma.read_fmt_fit_bma(t_init, obs, n_days=2, datadir='../data/') # Read in the ensemble data that you want to correct using BMA t_init = pd.to_datetime(t_init) t_end = t_init +
pd.DateOffset(days=4)
pandas.DateOffset
from collections import Counter import sys from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, HashingVectorizer from sklearn.feature_extraction import DictVectorizer import sklearn.cluster.k_means_ from sklearn.cluster.k_means_ import KMeans, MiniBatchKMeans from sklearn.cluster import SpectralClustering, DBSCAN from sklearn. decomposition import PCA, KernelPCA, SparsePCA, TruncatedSVD, IncrementalPCA from sklearn.preprocessing import StandardScaler from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA import numpy as np from nltk.corpus import stopwords import xml.etree.ElementTree as ET import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import csv import pandas as pd from pandas.plotting import scatter_matrix def readAligedCorpus(words, path): rval = [Counter() for i in range(len(words))] stop_words = set(stopwords.words('german')) tree = ET.parse(path) root = tree.getroot() body = root.find('body') for tu in body.findall('tu'): de = '' en = '' for tuv in tu.findall('tuv'): atr = tuv.attrib lang = atr.get('{http://www.w3.org/XML/1998/namespace}lang') if lang == 'de': for seg in tuv.findall('seg'): de = seg.text.split() if lang == 'en': for seg in tuv.findall('seg'): en = seg.text.lower() en_words = en.split() for i, word in enumerate(words): if word in en_words: counter = rval[i] de = [token.lower() for token in de if token.isalpha() and not token in stop_words] #whole aligned sentence as BOW for de_w in de: counter[de_w] += 1 return rval def readFile(words, path): with open(path, 'r', encoding='utf8') as f: rval = [] stop_words = set(stopwords.words('english')) rval = [Counter() for i in range(len(words))] lines = f.readlines() for line in lines: tokens = line.split() for i, word in enumerate(words): if(word in tokens): tokens = [token.lower() for token in tokens if token.isalpha() and not token in stop_words] counter = rval[i] idx = tokens.index(word) #bow of 5 (2 on the left | 2 on the right) bow = tokens[idx-2:idx+3] #print(bow) for w in bow: counter[w] += 1 return rval corpus = readFile(['apple', 'banana', 'oranges', 'watermelons', 'strawberries', 'grape', 'peach', 'cherry', 'pear', 'plum', 'melon', 'lemon', 'coconut', 'lime', 'office', 'home', 'building', 'house', 'apartment', 'city', 'town', 'village'], 'resources/corpora/OpenSubtitles/small/combined2') corpus_biling = readAligedCorpus(['apple', 'banana', 'oranges', 'watermelons', 'strawberries', 'grape', 'peach', 'cherry', 'pear', 'plum', 'melon', 'lemon', 'coconut', 'lime', 'office', 'home', 'building', 'house', 'apartment', 'city', 'town', 'village'], 'resources/corpora/OpenSubtitles/very_small_parallel/vsmallaa') #'apple', 'banana', 'oranges', 'watermelons', 'strawberries', 'grape', 'peach', 'cherry', 'pear', 'plum', 'melon', 'lemon', 'coconut', 'lime', #'office', 'home', 'building', 'house', 'apartment', 'city', 'town', 'village' #'shoes', 'shirt', 'pants', 'jacket', 'sweatshirt', 'socks' #'car', 'plane', 'bicycle', 'motorcycle', 'scooter', 'bus', 'train' #'new york', 'los angeles', 'chicago', 'houston', 'philadelphia', 'san antonio', 'san diego', 'dallas', 'san jose', 'austin', 'seattle' #'wind', 'sun', 'water', 'fire' #'chair', 'table', 'bed', 'closet', 'commode' #'sister', 'brother', 'father', 'mother' #'nose', 'eyes', 'mouth', 'face', 'hair' vectorizer = DictVectorizer() X = vectorizer.fit_transform(corpus).toarray() vectorizer_biling = DictVectorizer() X_biling = vectorizer_biling.fit_transform(corpus_biling).toarray() X_combined = np.hstack((X, X_biling)) #sc = StandardScaler() #X_std = sc.fit_transform(X) #sc_biling = StandardScaler() #X_biling_std = sc_biling = sc_biling.fit_transform(X_biling) sc_combined = StandardScaler() X_combined_std = sc_combined.fit_transform(X_combined) #pca = PCA(n_components=2) pca = KernelPCA(kernel='rbf') #pca = SparsePCA() #pca = TruncatedSVD() #pca = IncrementalPCA() #X_pca = pca.fit_transform(X_std) #X_biling_pca = pca.fit_transform(X_biling_std) X_combined_pca = pca.fit_transform(X_combined_std) #kmeans = KMeans(n_clusters=2, init='random').fit(X_pca) #f = kmeans.predict(X_pca) #kmeans = KMeans(n_clusters=2, init='random').fit(X_biling_pca) #f = kmeans.predict(X_biling_pca) kmeans = KMeans(n_clusters=2, init='random').fit(X_combined_pca) f = kmeans.predict(X_combined_pca) print(f) print('contains number one x times: ', list(f).count(1)) print('contains number zero x times: ', list(f).count(0)) #plot function from my warmup assignment def plot(f): arr = np.array(f) if arr.shape[1] == 2: x1 = arr[:, 0] x2 = arr[:, 1] plt.scatter(x1, x2) plt.show() elif arr.shape[1] == 3: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x = [] y = [] z = [] for line in f: x.append(float(line[0])) y.append(float(line[1])) z.append(float(line[2])) ax.scatter(x, y, z, c='r', marker='o') ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show() else: m = np.array(f, dtype=float) # first make some fake data with same layout as yours data = pd.DataFrame(m) # now plot using pandas
scatter_matrix(data, alpha=0.2, figsize=(6, 6), diagonal='kde')
pandas.plotting.scatter_matrix
""" Static Analyzer qualification infrastructure. This source file contains all the functionality related to benchmarking the analyzer on a set projects. Right now, this includes measuring execution time and peak memory usage. Benchmark runs analysis on every project multiple times to get a better picture about the distribution of measured values. Additionally, this file includes a comparison routine for two benchmarking results that plots the result together on one chart. """ import SATestUtils as utils from SATestBuild import ProjectTester, stdout, TestInfo from ProjectMap import ProjectInfo import pandas as pd from typing import List, Tuple INDEX_COLUMN = "index" def _save(data: pd.DataFrame, file_path: str): data.to_csv(file_path, index_label=INDEX_COLUMN) def _load(file_path: str) -> pd.DataFrame: return
pd.read_csv(file_path, index_col=INDEX_COLUMN)
pandas.read_csv
""" This script simulates the input for the example section in the handout. This files creates the following files that are then used to create the proper plots for the handout. """ from itertools import product import pandas as pd import numpy as np import respy as rp NUM_POINTS = 10 IS_DEBUG = True def mechanism_wrapper(simulate, params, label, change): policy_params = params.copy() if label == "delta": policy_params.loc[("delta", "delta"), "value"] = change elif label == "subsidy": policy_params.loc[("nonpec_school", "hs_graduate"), "value"] += change else: raise NotImplementedError policy_df = simulate(policy_params) return policy_df.groupby("Identifier")["Experience_School"].max().mean() def calc_choice_frequencies(df): """Compute choice frequencies.""" df_choice = df.groupby("Period").Choice.value_counts(normalize=True).unstack() index = list(product(["probs"], df_choice.columns)) df_choice.columns = pd.MultiIndex.from_tuples(index) return df_choice def calc_wage_distribution_occupation(df): """Compute choice frequencies.""" df_occ = df.groupby(["Period", "Choice"])["Wage"].describe()[["mean", "std"]] cond = df_occ.index.get_level_values("Choice").isin(["school", "home"]) df_occ = df_occ[~cond] df_occ = df_occ.unstack() return df_occ def calc_wage_distribution_overall(df): """Compute choice frequencies.""" df_ove = df.groupby(["Period"])["Wage"].describe()[["mean", "std"]] df_ove["Choice"] = "all" df_ove.set_index(["Choice"], append=True, inplace=True) df_ove = df_ove.reorder_levels(["Period", "Choice"]) df_ove = df_ove.unstack() return df_ove params, options, df_emp = rp.get_example_model("kw_97_extended_respy") # We want to reduce the computational burden for debugging purposes and our continuous # integration pipeline. if IS_DEBUG: options["n_periods"] = 12 simulate_func = rp.get_simulate_func(params, options) df_sim = simulate_func(params) df_descriptives = None for label, df in [("empirical", df_emp), ("simulated", df_sim)]: df_occ = calc_wage_distribution_occupation(df) df_ove = calc_wage_distribution_overall(df) df_choice = calc_choice_frequencies(df) df_all = pd.concat([df_choice, df_occ, df_ove], axis=1) df_all["Data"] = label df_all.set_index(["Data"], append=True, inplace=True) df_all = df_all.reorder_levels(["Data", "Period"]) df_descriptives = pd.concat([df_descriptives, df_all]) df_descriptives.index = df_descriptives.index.sort_values() df_descriptives.to_pickle("data-descriptives.pkl") # We evaluate the effect of a change in time preferences and a tuition subsidy. subsidies = np.linspace(0, 4000, num=NUM_POINTS, dtype=int, endpoint=True) deltas = np.linspace(0.910, 0.960, NUM_POINTS) columns = ["level"] index = list(product(["delta"], deltas)) + list(product(["subsidy"], subsidies)) index = pd.MultiIndex.from_tuples(index, names=["Experiment", "Change"]) df_mechanisms =
pd.DataFrame(columns=columns, index=index)
pandas.DataFrame
import numpy as np import pandas as pd import pytest import woodwork as ww from pandas.testing import assert_frame_equal, assert_series_equal from woodwork.logical_types import ( Boolean, Categorical, Double, Integer, NaturalLanguage, ) from evalml.pipelines.components import TargetImputer def test_target_imputer_no_y(X_y_binary): X, y = X_y_binary imputer = TargetImputer() assert imputer.fit_transform(None, None) == (None, None) imputer = TargetImputer() imputer.fit(None, None) assert imputer.transform(None, None) == (None, None) def test_target_imputer_with_X(): X = pd.DataFrame({"some col": [1, 3, np.nan]}) y = pd.Series([np.nan, 1, 3]) imputer = TargetImputer(impute_strategy="median") y_expected = pd.Series([2, 1, 3]) X_expected = pd.DataFrame({"some col": [1, 3, np.nan]}) X_t, y_t = imputer.fit_transform(X, y) assert_series_equal(y_expected, y_t, check_dtype=False) assert_frame_equal(X_expected, X_t, check_dtype=False) def test_target_imputer_median(): y = pd.Series([np.nan, 1, 10, 10, 6]) imputer = TargetImputer(impute_strategy="median") y_expected = pd.Series([8, 1, 10, 10, 6]) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) def test_target_imputer_mean(): y = pd.Series([np.nan, 2, 0]) imputer = TargetImputer(impute_strategy="mean") y_expected = pd.Series([1, 2, 0]) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) @pytest.mark.parametrize( "fill_value, y, y_expected", [ (None, pd.Series([np.nan, 0, 5]), pd.Series([0, 0, 5])), ( None, pd.Series([np.nan, "a", "b"]), pd.Series(["missing_value", "a", "b"]).astype("category"), ), (3, pd.Series([np.nan, 0, 5]), pd.Series([3, 0, 5])), (3, pd.Series([np.nan, "a", "b"]), pd.Series([3, "a", "b"]).astype("category")), ], ) def test_target_imputer_constant(fill_value, y, y_expected): imputer = TargetImputer(impute_strategy="constant", fill_value=fill_value) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) def test_target_imputer_most_frequent(): y = pd.Series([np.nan, "a", "b"]) imputer = TargetImputer(impute_strategy="most_frequent") y_expected = pd.Series(["a", "a", "b"]).astype("category") _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) y = pd.Series([np.nan, 1, 1, 2]) imputer = TargetImputer(impute_strategy="most_frequent") y_expected = pd.Series([1, 1, 1, 2]) _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) def test_target_imputer_col_with_non_numeric_with_numeric_strategy(): y = pd.Series([np.nan, "a", "b"]) imputer = TargetImputer(impute_strategy="mean") with pytest.raises( ValueError, match="Cannot use mean strategy with non-numeric data" ): imputer.fit_transform(None, y) with pytest.raises( ValueError, match="Cannot use mean strategy with non-numeric data" ): imputer.fit(None, y) imputer = TargetImputer(impute_strategy="median") with pytest.raises( ValueError, match="Cannot use median strategy with non-numeric data" ): imputer.fit_transform(None, y) with pytest.raises( ValueError, match="Cannot use median strategy with non-numeric data" ): imputer.fit(None, y) @pytest.mark.parametrize("data_type", ["pd", "ww"]) def test_target_imputer_all_bool_return_original(data_type, make_data_type): y = pd.Series([True, True, False, True, True], dtype=bool) y = make_data_type(data_type, y) y_expected = pd.Series([True, True, False, True, True], dtype=bool) imputer = TargetImputer() imputer.fit(None, y) _, y_t = imputer.transform(None, y) assert_series_equal(y_expected, y_t) @pytest.mark.parametrize("data_type", ["pd", "ww"]) def test_target_imputer_boolean_dtype(data_type, make_data_type): y = pd.Series([True, np.nan, False, np.nan, True], dtype="category") y_expected = pd.Series([True, True, False, True, True], dtype="category") y = make_data_type(data_type, y) imputer = TargetImputer() imputer.fit(None, y) _, y_t = imputer.transform(None, y) assert_series_equal(y_expected, y_t) def test_target_imputer_fit_transform_all_nan_empty(): y = pd.Series([np.nan, np.nan]) imputer = TargetImputer() imputer.fit(None, y) with pytest.raises(RuntimeError, match="Transformed data is empty"): imputer.transform(None, y) imputer = TargetImputer() with pytest.raises(RuntimeError, match="Transformed data is empty"): imputer.fit_transform(None, y) def test_target_imputer_numpy_input(): y = np.array([np.nan, 0, 2]) imputer = TargetImputer(impute_strategy="mean") y_expected = np.array([1, 0, 2]) _, y_t = imputer.fit_transform(None, y) assert np.allclose(y_expected, y_t) np.testing.assert_almost_equal(y, np.array([np.nan, 0, 2])) def test_target_imputer_does_not_reset_index(): y = pd.Series(np.arange(10)) y[5] = np.nan assert y.index.tolist() == list(range(10)) y.drop(0, inplace=True) pd.testing.assert_series_equal( pd.Series( [1, 2, 3, 4, np.nan, 6, 7, 8, 9], dtype=float, index=list(range(1, 10)) ), y, ) imputer = TargetImputer(impute_strategy="mean") imputer.fit(None, y=y) _, y_t = imputer.transform(None, y) pd.testing.assert_series_equal( pd.Series([1.0, 2, 3, 4, 5, 6, 7, 8, 9], dtype=float, index=list(range(1, 10))), y_t, ) @pytest.mark.parametrize( "y, y_expected", [ (pd.Series([1, 0, 5, None]), pd.Series([1, 0, 5, 2])), (pd.Series([0.1, 0.0, 0.5, None]), pd.Series([0.1, 0.0, 0.5, 0.2])), ], ) def test_target_imputer_with_none(y, y_expected): imputer = TargetImputer(impute_strategy="mean") _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) @pytest.mark.parametrize( "y, y_expected", [ ( pd.Series(["b", "a", "a", None], dtype="category"), pd.Series(["b", "a", "a", "a"], dtype="category"), ), ( pd.Series([True, None, False, True], dtype="category"), pd.Series([True, True, False, True], dtype="category"), ), ( pd.Series(["b", "a", "a", None]), pd.Series(["b", "a", "a", "a"], dtype="category"), ), ], ) def test_target_imputer_with_none_non_numeric(y, y_expected): imputer = TargetImputer() _, y_t = imputer.fit_transform(None, y) assert_series_equal(y_expected, y_t, check_dtype=False) @pytest.mark.parametrize( "y_pd", [ pd.Series([1, 2, 3], dtype="int64"), pd.Series([1.0, 2.0, 3.0], dtype="float"), pd.Series(["a", "b", "a"], dtype="category"),
pd.Series([True, False, True], dtype=bool)
pandas.Series
import csv import os import pandas import sys from pandas import DataFrame, Series from datetime import datetime, timedelta, date players_csv = '../../report/dataset/player_overviews_unindexed_csv.csv' matches_csv = ['../../report/dataset/match_scores_1968-1990_unindexed_csv.csv', '../../report/dataset/match_scores_1991-2016_unindexed_csv.csv', '../../report/dataset/match_scores_2017_unindexed_csv.csv'] tourneys_csv = '../../report/dataset/tournaments_1877-2017_unindexed_csv.csv' def k_factor(matches_played): # This function returns the calculated k factor based on the matches played and the selected values # for the constants k, offset and shape. The parameters values are set based on FiveThirtyEight suggestion: # https://fivethirtyeight.com/features/serena-williams-and-the-difference-between-all-time-great-and-greatest-of-all-time k = 250 offset = 5 shape = 0.4 return k/(matches_played + offset)**shape def calc_expected_score(playerA_rating, playerB_rating): # This function calculates the probabilties for playerA to win the match against playerB # based on the elo modelling from this sample: https://www.betfair.com.au/hub/tennis-elo-modelling exp_score = 1/(1+(10**((playerB_rating - playerA_rating)/400))) return exp_score def update_elo(old_elo, k, is_winner, expected_score): # This function updates the elo rating based on the previous value and the calculated # k factor and expected score. new_elo = old_elo + k * ((1 if is_winner else 0) - expected_score) return new_elo def read_players(csv_file): with open(csv_file) as csvfile: read_csv = csv.reader(csvfile, delimiter=',') # player_id, last_name, first_name, flag_code, turned_pro cols_index = [0, 2, 3, 5] all_players = [] for row in read_csv: player_info = [""] for col_index in cols_index: player_info.append(row[col_index]) all_players.append(player_info) headers = ['week_title', 'player_id', 'last_name', 'first_name', 'flag_code'] players = DataFrame(all_players, columns=headers) players['current_elo'] = Series(1500, index=players.index) players['last_tourney_date'] = Series('N/A', index=players.index) players['matches_played'] = Series(0, index=players.index) players['peak_elo'] = Series(1500, index=players.index) players['peak_elo_date'] = Series('N/A', index=players.index) players['retirement_year'] = Series('N/A', index=players.index) players['turned_pro'] =
Series('N/A', index=players.index)
pandas.Series
# Build default model and do permutation feature importance (PFI) import warnings import pandas as pd import numpy as np from sklearn import ensemble, model_selection, metrics, inspection from skopt import BayesSearchCV, space import shap import load_data import misc_util RANDOM_SEED = 11798 # A very repetitive BayesSearchCV warning I'd like to ignore warnings.filterwarnings('ignore', message='The objective has been evaluated at this point before.') print('Loading labels from original data') label_map = {p: pdf.label.iloc[0] for p, pdf in load_data.train_full().groupby('STUDENTID')} # Set up model training parameters m = ensemble.ExtraTreesClassifier(500, bootstrap=True, random_state=RANDOM_SEED) bayes_grid = { 'max_features': space.Real(.001, 1), 'max_samples': space.Real(.001, .999), # For bootstrapping 'ccp_alpha': space.Real(0, .004), # Range determined via ccp_alpha_explore.py } xval = model_selection.StratifiedKFold(4, shuffle=True, random_state=RANDOM_SEED) scoring = metrics.make_scorer(misc_util.adjusted_thresh_kappa, needs_proba=True) # Getting BayesSearchCV to work requires modifying site-packages/skopt/searchcv.py per: # https://github.com/scikit-optimize/scikit-optimize/issues/762 gs = BayesSearchCV(m, bayes_grid, n_iter=100, n_jobs=3, cv=xval, verbose=0, scoring=scoring, random_state=RANDOM_SEED, optimizer_kwargs={'n_initial_points': 20}) # Build model for 30m data as an example train_result = [] print('Loading data') feat_names = list(pd.read_csv('features_fe/filtered_features_30m.csv').feature) train_df = pd.read_csv('features_fe/train_30m.csv')[['STUDENTID'] + feat_names] holdout_df = pd.read_csv('features_fe/holdout_30m.csv')[['STUDENTID'] + feat_names] for fset in ['features_tsfresh', 'features_featuretools']: feat_names = list(
pd.read_csv(fset + '/filtered_features_30m.csv')
pandas.read_csv
import numpy as np import glob import logging import os from time import time import SimpleITK as sitk import numpy as np import pandas as pd import yaml from sklearn.model_selection import KFold from src.utils.Utils_io import ensure_dir from src.visualization.Visualize import plot_value_histogram def copy_meta_and_save(new_image, reference_sitk_img, full_filename=None, override_spacing=None, copy_direction=True): """ Copy metadata, UID and structural information from one image to another Works also for different dimensions, returns new_image with copied structural info :param new_image: sitk.Image :param reference_sitk_img: sitk.Image :param path: full file path as str :return: """ t1 = time() try: # make sure this method works with nda and sitk images if isinstance(new_image, np.ndarray): if len(new_image.shape) == 4: # 4D needs to be built from a series new_image = [sitk.GetImageFromArray(img) for img in new_image] new_image = sitk.JoinSeries(new_image) else: new_image = sitk.GetImageFromArray(new_image) ensure_dir(os.path.dirname(os.path.abspath(full_filename))) if reference_sitk_img is not None: assert (isinstance(reference_sitk_img, sitk.Image)), 'no reference image given' assert (isinstance(new_image, sitk.Image)), 'only np.ndarrays and sitk images could be stored' # copy metadata for key in reference_sitk_img.GetMetaDataKeys(): new_image.SetMetaData(key, get_metadata_maybe(reference_sitk_img, key)) logging.debug('Metadata_copied: {:0.3f}s'.format(time() - t1)) # copy structural informations to image with same dimension and size if (reference_sitk_img.GetDimension() == new_image.GetDimension()) and ( reference_sitk_img.GetSize() == new_image.GetSize()): new_image.CopyInformation(reference_sitk_img) # same dimension (e.g. 4) but different size per dimension elif (reference_sitk_img.GetDimension() == new_image.GetDimension()): # copy spacing, origin and rotation but keep size as it is if copy_direction: new_image.SetDirection(reference_sitk_img.GetDirection()) new_image.SetOrigin(reference_sitk_img.GetOrigin()) new_image.SetSpacing(reference_sitk_img.GetSpacing()) # copy structural information to smaller images e.g. 4D to 3D elif reference_sitk_img.GetDimension() > new_image.GetDimension(): shape_ = len(new_image.GetSize()) reference_shape = len(reference_sitk_img.GetSize()) # copy direction to smaller images # 1. extract the direction, 2. create a matrix, 3. slice by the new shape, 4. flatten if copy_direction: direction = np.array(reference_sitk_img.GetDirection()) dir_ = direction.reshape(reference_shape, reference_shape) direction = dir_[:shape_, :shape_].flatten() new_image.SetDirection(direction) new_image.SetOrigin(reference_sitk_img.GetOrigin()[:shape_]) new_image.SetSpacing(reference_sitk_img.GetSpacing()[:shape_]) # copy structural information to bigger images e.g. 3D to 4D, fill with 1.0 spacing else: ones = [1.0] * (new_image.GetDimension() - reference_sitk_img.GetDimension()) new_image.SetOrigin((*reference_sitk_img.GetOrigin(), *ones)) new_image.SetSpacing((*reference_sitk_img.GetSpacing(), *ones)) # we cant copy the direction from smaller images to bigger ones logging.debug('spatial data_copied: {:0.3f}s'.format(time() - t1)) if override_spacing: new_image.SetSpacing(override_spacing) if full_filename != None: # copy uid writer = sitk.ImageFileWriter() # writer.KeepOriginalImageUIDOn() writer.SetFileName(full_filename) writer.Execute(new_image) logging.debug('image saved: {:0.3f}s'.format(time() - t1)) return True except Exception as e: logging.error('Error with saving file: {} - {}'.format(full_filename, str(e))) return False else: return new_image def create_4d_volumes_from_4d_files(img_f, mask_f, full_path='data/raw/GCN/3D/', slice_threshold=2): """ Expects an 4d-image and -mask file name and a target path filter mask and image volumes by contoured time-steps copy all metadata save them to the destination path :param img_f: 4D image filepath as str :param mask_f: 4D mask filepath as str :param full_path: export path as str :param slice_threshold: minimal masks per timestep as int :return: """ logging.info('process file: {}'.format(img_f)) # get sitk images mask_4d_sitk = sitk.ReadImage(mask_f) img_4d_sitk = sitk.ReadImage(img_f) # filter 4d image nda according to given mask nda mask_4d_nda, masked_t = filter_4d_vol(mask_4d_sitk, slice_threshold=slice_threshold) img_4d_nda = sitk.GetArrayFromImage(img_4d_sitk)[masked_t] # write filtered 4d image to disk patient_name = os.path.basename(img_f).split('.')[0].replace('volume_clean', '') img_file = '{}_{}{}'.format(patient_name, 'img', '.nrrd') mask_file = '{}_{}{}'.format(patient_name, 'msk', '.nrrd') copy_meta_and_save(img_4d_nda, img_4d_sitk, os.path.join(full_path, img_file)) copy_meta_and_save(mask_4d_nda, img_4d_sitk, os.path.join(full_path, mask_file)) return [masked_t, list(img_4d_nda.shape)] def extract_spacing(matlabfile=None, is_sax=True): """ extract the spacing from a medvisio export matlabfile of a CMR image, either SAX or 4CH returns (1,1,1,6) for (z,t,x,y) if none spacing could be found :param matlabfile (np.ndarray) matlabfile opened via scipy.io.loadmat(example.mat) :param is_sax (bool) toggle between sax or 4ch spacing :return: (tuple) spacing in the following order (z,t,x,y) """ assert (matlabfile is not None), 'no matlab file given, please provide *.mat file as np.ndarray' try: values = dict([(keys.lower(), value) for keys, value in zip(matlabfile['setstruct'][0].dtype.names, matlabfile['setstruct'][0][int(is_sax)])]) except Exception as e: print(str(e)) values = dict() spacing_x = float(values.get('resolutionx', 1)) spacing_y = float(values.get('resolutiony', 1)) spacing_t = float(1) spacing_z = float(values.get('slicethickness', 6)) return (spacing_z, spacing_t, spacing_x, spacing_y) def create_3d_volumes_from_4d_files(img_f, mask_f, full_path='data/raw/tetra/3D/', slice_treshhold=2): """ Expects an 4d-image and -mask file name and a target path filter mask and image volumes with segmentation copy all metadata save them to the destination path :param img_f: :param mask_f: :param full_path: :return: """ logging.info('process file: {}'.format(img_f)) # get sitk images mask_4d_sitk = sitk.ReadImage(mask_f) img_4d_sitk = sitk.ReadImage(img_f) # filter 4d image nda according to given mask nda mask_4d_nda, masked_t = filter_4d_vol(mask_4d_sitk, slice_threshold=slice_treshhold) img_4d_nda = sitk.GetArrayFromImage(img_4d_sitk)[masked_t] # create t 3d volumes for img_3d, mask_3d, t in zip(img_4d_nda, mask_4d_nda, masked_t): # write 3d image patient_name = os.path.basename(img_f).split('.')[0].replace('volume_clean', '') img_file = '{}_t{}_{}{}'.format(patient_name, str(t), 'img', '.nrrd') mask_file = '{}_t{}_{}{}'.format(patient_name, str(t), 'msk', '.nrrd') copy_meta_and_save(img_3d, img_4d_sitk, os.path.join(full_path, img_file)) copy_meta_and_save(mask_3d, img_4d_sitk, os.path.join(full_path, mask_file)) return [masked_t, list(img_4d_nda.shape)] def create_2d_slices_from_4d_volume_files(img_f, mask_f, export_path, filter_by_mask=True, slice_threshold=2): """ Expects an 4d-image and -mask file name and a target path filter mask and image volumes with segmentation copy all metadata save them to the destination path :param img_f: :param mask_f: :param export_path: str :param filter_by_mask: bool :param slice_threshold: int :return: """ logging.info('process file: {}'.format(img_f)) # get sitk images mask_4d_sitk = sitk.ReadImage(mask_f) img_4d_sitk = sitk.ReadImage(img_f) # filter 4d image nda according to given mask nda if filter_by_mask: mask_4d_nda, masked_t = filter_4d_vol(mask_4d_sitk, slice_threshold=slice_threshold) img_4d_nda = sitk.GetArrayFromImage(img_4d_sitk)[masked_t] else: img_4d_nda = sitk.GetArrayFromImage(img_4d_sitk) masked_t = list(range(img_4d_nda.shape[0])) mask_4d_nda = sitk.GetArrayFromImage(mask_4d_sitk) # create t x 3d volumes for img_3d, mask_3d, t in zip(img_4d_nda, mask_4d_nda, masked_t): # get patient_name patient_name = os.path.basename(img_f).split('.')[0].replace('volume_clean', '') # create z x 2d slices for z, slice_2d in enumerate(zip(img_3d, mask_3d)): # create filenames with reference to t and z position img_file = '{}_t{}_z{}_{}{}'.format(patient_name, str(t), str(z), 'img', '.nrrd') mask_file = '{}_t{}_z{}_{}{}'.format(patient_name, str(t), str(z), 'msk', '.nrrd') # save nrrd file with metadata copy_meta_and_save(slice_2d[0], img_4d_sitk, os.path.join(export_path, img_file), copy_direction=False) copy_meta_and_save(slice_2d[1], img_4d_sitk, os.path.join(export_path, mask_file), copy_direction=False) return [masked_t, list(img_4d_nda.shape)] def create_2d_slices_from_3d_volume_files_any_filename(img_f, mask_f, export_path): """ Helper to split a GCN 3D dicom file into z x 2D slices Expects an 3d-image and -mask file name and a target path filter mask and image volumes with segmentation copy all metadata save them to the destination path :param img_f: :param mask_f: :param full_path: :return: """ import re logging.info('process file: {}'.format(img_f)) # get sitk images mask_3d_sitk = sitk.ReadImage(mask_f) img_3d_sitk = sitk.ReadImage(img_f) # filter 4d image nda according to given mask nda mask_3d = sitk.GetArrayFromImage(mask_3d_sitk) img_3d = sitk.GetArrayFromImage(img_3d_sitk) # get file names _, img_f = os.path.split(img_f) _, mask_f = os.path.split(mask_f) def get_new_name(f_name, z): match = '' # check if image or mask m = re.search('_img|_msk', f_name) if m: match = m.group(0) # extend filename at the very last position before 'img' or 'msk' return re.sub('{}.nrrd'.format(match), '_{}{}.nrrd'.format(z, match), f_name) # create z x 2d slices for z, slice_2d in enumerate(zip(img_3d, mask_3d)): # create filenames with reference to t and z position # extend the filename img_file = get_new_name(img_f, z) mask_file = get_new_name(mask_f, z) # save nrrd file with metadata copy_meta_and_save(slice_2d[0], img_3d_sitk, os.path.join(export_path, img_file)) copy_meta_and_save(slice_2d[1], img_3d_sitk, os.path.join(export_path, mask_file)) return list(img_3d.shape) def create_2d_slices_from_3d_volume_files(img_f, mask_f, export_path): """ Helper for ACDC data Expects an 3d-image and -mask file name and a target path filter mask and image volumes with segmentation copy all metadata save them to the destination path :param img_f: :param mask_f: :param full_path: :return: """ logging.info('process file: {}'.format(img_f)) # get sitk images mask_3d_sitk = sitk.ReadImage(mask_f) img_3d_sitk = sitk.ReadImage(img_f) # filter 4d image nda according to given mask nda mask_3d = sitk.GetArrayFromImage(mask_3d_sitk) img_3d = sitk.GetArrayFromImage(img_3d_sitk) # get patient_name patient_name = os.path.basename(img_f).split('_')[0] frame = os.path.basename(img_f).split('frame')[1][:2] # create z x 2d slices for z, slice_2d in enumerate(zip(img_3d, mask_3d)): # create filenames with reference to t and z position img_file = '{}__t{}_z{}_{}{}'.format(patient_name, str(frame), str(z), 'img', '.nrrd') mask_file = '{}__t{}_z{}_{}{}'.format(patient_name, str(frame), str(z), 'msk', '.nrrd') # save nrrd file with metadata copy_meta_and_save(slice_2d[0], img_3d_sitk, os.path.join(export_path, img_file)) copy_meta_and_save(slice_2d[1], img_3d_sitk, os.path.join(export_path, mask_file)) return [frame, list(img_3d.shape)] def get_patient(filename_to_2d_nrrd_file): """ Split the nrrd filename and returns the patient id split the filename by '_' returns the first two elements of that list If the filename contains '__' it returns the part before """ import re m = re.search('__', filename_to_2d_nrrd_file) if m: # nrrd filename with '__' return os.path.basename(filename_to_2d_nrrd_file).split('__')[0] if os.path.basename(filename_to_2d_nrrd_file).startswith('patient'): # acdc file return os.path.basename(filename_to_2d_nrrd_file).split('_')[0] else: # gcn filename return '_'.join(os.path.basename(filename_to_2d_nrrd_file).split('_')[:2]) def get_trainings_files(data_path, fold=0, path_to_folds_df='data/raw/gcn_05_2020_ax_sax_86/folds.csv'): """ Load trainings and test files of a directory by a given folds-dataframe :param data_path: :param fold: :param path_to_folds_df: :return: x_train, y_train, x_val, y_val """ img_suffix = '*img.nrrd' mask_suffix = '*msk.nrrd' # load the nrrd files with given pattern from the data path x = sorted(glob.glob(os.path.join(data_path, img_suffix))) y = sorted(glob.glob(os.path.join(data_path, mask_suffix))) if len(x) == 0: logging.info('no files found, try to load with acdc file pattern') x, y = load_acdc_files(data_path) df = pd.read_csv(path_to_folds_df) patients = df[df.fold.isin([fold])] # make sure we count each patient only once patients_train = patients[patients['modality'] == 'train']['patient'].unique() patients_test = patients[patients['modality'] == 'test']['patient'].unique() logging.info('Found {} images/masks in {}'.format(len(x), data_path)) logging.info('Patients train: {}'.format(len(patients_train))) def filter_files_for_fold(list_of_filenames, list_of_patients): """Helper to filter one list by a list of substrings""" from src.data.Dataset import get_patient return [str for str in list_of_filenames if get_patient(str) in list_of_patients] x_train = sorted(filter_files_for_fold(x, patients_train)) y_train = sorted(filter_files_for_fold(y, patients_train)) x_test = sorted(filter_files_for_fold(x, patients_test)) y_test = sorted(filter_files_for_fold(y, patients_test)) assert (len(x_train) == len(y_train)), 'len(x_train != len(y_train))' logging.info('Selected {} of {} files with {} of {} patients for training fold {}'.format(len(x_train), len(x), len(patients_train), len(df.patient.unique()), fold)) return x_train, y_train, x_test, y_test def get_kfolded_data(kfolds=4, path_to_data='data/raw/tetra/2D/', extract_patient_id=get_patient): """ filter all image files by patient names defined in fold n functions expects subfolders, collects all image, mask files and creates a list of unique patient ids create k folds of this patient ids filter the filenames containing the patient ids from each kfold split returns :param kfolds: number of splits :param path_to_data: path to root of split data e.g. 'data/raw/tetra/2D/' :param extract_patient_id: function which returns the patient id for each filename in path_to_data :return: a dataframe with the following columns: fold (kfolds-1), x_path (full filename to image as nrrd), y_path (full filename to mask as nrrd), modality(train or test) patient (patient id) """ img_pattern = '*img.nrrd' columns = ['fold', 'x_path', 'y_path', 'modality', 'patient'] modality_train = 'train' modality_test = 'test' seed = 42 # get all images, masks from given directory # get all img files in all subdirs x = sorted(glob.glob(os.path.join(path_to_data, '**/*{}'.format(img_pattern)))) # if no subdirs given, search in root if len(x) == 0: x = sorted(glob.glob(os.path.join(path_to_data, '*{}'.format(img_pattern)))) logging.info('found: {} files'.format(len(x))) # create a unique list of patient ids patients = sorted(list(set([extract_patient_id(f) for f in x]))) logging.info('found: {} patients'.format(len(patients))) # create a k-fold instance with k = kfolds kfold = KFold(n_splits=kfolds, shuffle=True, random_state=seed) def filter_x_by_patient_ids_(x, patient_ids, modality, columns, f): # create a dataframe from x (list of filenames) filter by patient ids # returns a dataframe df = pd.DataFrame(columns=columns) df['x_path'] = [elem for elem in x if extract_patient_id(elem) in patient_ids] df['y_path'] = [elem.replace('img', 'msk') for elem in df['x_path']] df['fold'] = [f] * len(df['x_path']) df['modality'] = [modality] * len(df['x_path']) df['patient'] = [extract_patient_id(elem) for elem in df['x_path']] logging.debug(len(df['x_path'])) logging.debug(patient_ids) logging.debug(len(x)) logging.debug(extract_patient_id(x[0])) return df # split patients k times # use the indexes to get the patient ids from x # use the patient ids to filter train/test from the complete list of files df_folds = pd.DataFrame(columns=columns) for f, idx in enumerate( kfold.split(patients)): # f = fold, idx = tuple with all indexes to split the patients in this fold train_idx, test_idx = idx # create a list of train and test indexes logging.debug("TRAIN: {}, TEST: {}".format(train_idx, test_idx)) # slice the filenames by the given indexes patients_train, patients_test = [patients[i] for i in train_idx], [patients[i] for i in test_idx] df_train = filter_x_by_patient_ids_(x, patients_train, modality_train, columns, f) df_test = filter_x_by_patient_ids_(x, patients_test, modality_test, columns, f) # merge train and test df_fold = pd.concat([df_train, df_test]) # merge fold into folds dataset df_folds = pd.concat([df_fold, df_folds]) return df_folds def filter_x_by_patient_ids(x, patient_ids, modality='test', columns=['x_path', 'y_path', 'fold', 'modality', 'patient', 'pathology'], fold=0, pathology=None, filter=True): """ Create a df from a given list of files and a list of patient which are used to filter the file names :param x: :param patient_ids: :param modality: :param columns: :param f: :param pathology: :return: """ # create a dataframe from x (list of filenames) filter by patient ids # returns a dataframe df = pd.DataFrame(columns=columns) if filter: df['x_path'] = [elem for elem in x if get_patient(elem) in patient_ids] else: df['x_path'] = [elem for elem in x] df['y_path'] = [elem.replace('img', 'msk') for elem in df['x_path']] df['fold'] = [fold] * len(df['x_path']) df['modality'] = [modality] * len(df['x_path']) df['patient'] = [get_patient(elem) for elem in df['x_path']] df['pathology'] = [pathology] * len(df['x_path']) return df def get_n_patients(df, n=1): """ Select n random patients Filter the data frame by this patients Use the Fold 0 split as default Override the modality for all random selected patients to "train" return filtered df :param df: :param n: :param fold: :return: """ # fold is not important, # because we return patients from train and test modality fold = 0 # make random.choice idempotent np.random.seed(42) # select random patients patients = np.random.choice(sorted(df['patient'].unique()), size=n) logging.info('Added patients: {} from the GCN dataset'.format(patients)) # filter data frame by fold and by random selected patients ids, make sure to make a copy to avoid side effects df_temp = df[(df['fold'] == fold) & (df['patient'].isin(patients))].copy() # make sure all selected images will be used during training, change modality to train for this images # train_kfolded will only use images with modality == train, override the modality for all selected patients/rows df_temp.loc[:, 'modality'] = 'train' df_temp.reset_index(inplace=True) return df_temp def get_train_data_from_df(first_df='reports/kfolds_data/2D/acdc/df_kfold.csv', second_df=None, n_second_df=0, n_first_df=None, fold=0, ): """ load one df and select n patients, default: use all load a second df, if given select n patients from second df, merge first df into second df return x_train, y_train, x_val, y_val as list of files :param df_fname: full file/pathname to first df (str) :param second_df_fname: full file/pathname to second df (str) :param n_second_df: number of patients from second df, that should be merged :param n_patients_first_df: int - number of patients to load from the first dataframe :param fold: select a fold from df :return: """ extend = dict() extend['GCN_PATIENTS'] = list() extend['GCN_IMAGES'] = 0 df = pd.read_csv(first_df) # take only n patients from the first dataframe if n_first_df: df = get_n_patients(df, n_first_df) # if second dataframe given, load df, select m patients, and concat this dataframe with the first one if second_df: # extend dataframe with n patients from second dataframe df_second = pd.read_csv(second_df) df_second = get_n_patients(df_second, n_second_df) df = pd.concat([df, df_second], sort=False) extend['GCN_PATIENTS'] = sorted(df_second['patient'].unique()) extend['GCN_IMAGES'] = len(df_second) logging.info('loaded df from {} with shape: {}'.format(first_df, df.shape)) logging.info('available folds: {}, selected fold: {}'.format(df.fold.unique(), fold)) if 'fold' in df: df = df[df['fold'] == fold] if 'pathology' in df: logging.info( 'available modalities: {}\n available pathologies: {}'.format(df.modality.unique(), df.pathology.unique())) # get a trainings and a test dataframe df_train = df[df['modality'] == 'train'] df_test = df[df['modality'] == 'test'] return sorted(df_train['x_path'].values), sorted(df_train['y_path'].values), sorted( df_test['x_path'].values), sorted(df_test[ 'y_path'].values), extend def create_acdc_dataframe_for_cv(path_to_data='data/raw/ACDC/2D/', kfolds=4, original_acdc_dir='data/raw/ACDC/original/all/', img_pattern='*img.nrrd'): """ Creates a dataframe of all 2D ACDC cmr filenames, splits the data in n folds with respect to the pathologies 0. Load all 2D nrrd files in the given directory 1. Create a dataframe with all original ACDC files, patient ids, pathology 2. Create a list of all pathologies 3. Create n (# of pathologies) subgroups of patients, filtered by pathology 4. Create k splits (# of splits) of each patient subgroup 5. For each pathology split: collect all 2D files 6. Merge 2D files according to their split number and modality (train/val) return a df with all files for each split f_name, patient, split, train_modality, pathology :param img_pattern: :param path_to_data: path to 2D ACDC files :param kfolds: :return: dataframe with all splits """ from sklearn.model_selection import KFold seed = 42 # img_pattern = '*img.nrrd' columns = ['fold', 'x_path', 'y_path', 'modality', 'patient', 'pathology'] modality_train = 'train' modality_test = 'test' # list all nrrd image files within the subdirs of path_to_data acdc_x_files = sorted(glob.glob(os.path.join(path_to_data, '**/{}'.format(img_pattern)))) logging.info('Found: {} files in {}'.format(len(acdc_x_files), path_to_data)) # get all ACDC files + pathology as df # provide a seed to make shuffle idempotent df = get_acdc_dataset_as_df(original_acdc_dir) logging.info('Created a dataframe with shape: {}'.format(df.shape)) pathologies = df['pathology'].unique() kfold = KFold(kfolds, shuffle=True, random_state=seed) # create a df to merge all splits into df_folds = pd.DataFrame(columns=columns) # for each pathology, create k folds of train/test splits for pathology in pathologies: # collect all patients with this pathology patients = df[df['pathology'] == pathology]['patient'].unique() logging.debug('{} Patients found for pathology: {}'.format(len(patients), pathology)) # create k fold of train/test splits # split with the patient ids # to make sure that one patient occurs either as train or validation data # f = fold, idx = tuple with all indexes to split the patients in this fold # kfold.split returns the patient indexes for each fold for fold, idx in enumerate(kfold.split(patients)): train_idx, test_idx = idx # logging.debug("TRAIN:", train_idx, "TEST:", test_idx) # create one list for the train and test patient ids from the kfold split indexes patients_train, patients_test = [patients[i] for i in train_idx], [patients[i] for i in test_idx] logging.debug('Fold: {}, Pathology: {} train: {}'.format(fold, pathology, patients_train)) logging.debug('Fold: {}, Pathology: {}, test: {}'.format(fold, pathology, patients_test)) # filter the 2D filenames by the two patient id lists (train/test) for this fold # create one df for each split (train/test) with the corresponding 2D nrrd files df_train = filter_x_by_patient_ids(acdc_x_files, patients_train, modality_train, columns, fold, pathology) df_test = filter_x_by_patient_ids(acdc_x_files, patients_test, modality_test, columns, fold, pathology) logging.debug('Files x_train: {}'.format(len(df_train))) logging.debug('Files x_test: {}'.format(len(df_test))) # merge train and test files of this split df_fold = pd.concat([df_train, df_test]) # merge this fold into folds dataset df_folds =
pd.concat([df_fold, df_folds], sort=True)
pandas.concat
import pandas as pd dataset = pd.read_excel("C:\MY PROGRAM FILES\TT_DataMining_Youssou.xlsx", sheet_name= "EDU") dataset.head() dataset.columns columns_to_drop = ['Dupli\nName', 'Full Address', 'State US/Can', 'GMaps', 'Company Type', 'Checked Fields', 'Website', 'Notes', 'Duplicate Domain', 'Checked Contacts', 'Parent company', 'Score', 'GMaps link', 'Country', 'State', 'Phone', 'Short Address', 'City', 'County', 'Owner', 'Zip', 'Latitude', 'Longitude','Charter School', 'Nces Id', 'School Level', 'Unnamed: 36'] dataset = dataset.drop(columns = columns_to_drop) dataset #Unpivoting data --> transposing columns into rows #id_vars = list(dataset.columns)[0] #dataset.melt(id_vars=id_vars) contacts = pd.read_excel("C:\MY PROGRAM FILES\TT_DataMining_Youssou2.xlsx", sheet_name= "EDU_C") #pd.merge(left= ,right= ,how= ,left_on= ,right_on=) dataset_joint =
pd.merge(left=dataset, right=contacts, how="left", left_on="Domain", right_on="Domain")
pandas.merge
import sys #sys.path.append("..") import numpy as np import theano import theano.tensor as T import theano.tensor.signal.conv as C from epimodel import EpidemiologicalParameters, preprocess_data np.random.seed(123456) import argparse import copy import datetime import itertools import pickle import re from datetime import timedelta import matplotlib.dates as mdates import pandas as pd import pymc3 as pm from sklearn import preprocessing US = True MOBI = "include" # "exclude" RADER_JOINT = False GATHERINGS = 3 # MASKING = True # Now always true # smoothing happens at data init time if at all assert MOBI in ["exclude", "only", "include"] mob_cols = [ "avg_mobility_no_parks_no_residential", "residential_percent_change_from_baseline", ] # Ds = pd.date_range('2020-05-01', '2020-09-01', freq='D') # Adding 20 days to account for death delay Ds = pd.date_range("2020-05-01", "2020-09-21", freq="D") def fill_missing_days(df): df = df.set_index(["date", "country"]) df = df.unstack(fill_value=-1).asfreq("D", fill_value=-1).stack().reset_index() df = df.replace(-1, np.nan) return interpolate_wearing_fwd_bwd(df) def interpolate_wearing_fwd_bwd(df): regions = df.country.unique() cs = [] for r in regions: c = df[df.country == r] c = c.set_index("date") c = c.interpolate(method="time", limit_direction="both").reset_index() cs.append(c) return pd.concat(cs) # moving average def smooth(x, window_len=7): l = window_len s = np.r_[x[l - 1 : 0 : -1], x, x[-2 : -l - 1 : -1]] w = np.ones(window_len, "d") return np.convolve(w / w.sum(), s, mode="valid") def smooth_rader(df, win=7): for r in df.label.unique(): s = df[df.label == r] s["percent_mc"] = smooth(s["percent_mc"], window_len=win)[: -win + 1] df[df.label == r] = s return df def joint_shop_work(df, THRESHOLD=2): return (df.likely_wear_mask_grocery_shopping <= THRESHOLD) & ( df.likely_wear_mask_workplace <= THRESHOLD ) def mean_shop_work(df, THRESHOLD=2): venues = ["likely_wear_mask_grocery_shopping", "likely_wear_mask_workplace"] df["percent_mc"] = df[venues].mean(axis=1) return df["percent_mc"] <= THRESHOLD def load_and_clean_rader_raw(THRESHOLD=2, SMOOTH_RADER=True): # or less DATA_IN = "data/raw/" directory = DATA_IN + "rader/sm_cny_data_1_21_21.csv" us = pd.read_csv(directory) masks = [ "likely_wear_mask_exercising_outside", "likely_wear_mask_grocery_shopping", "likely_wear_mask_visit_family_friends", "likely_wear_mask_workplace", ] # weights = ["weight_daily_national_13plus", "weight_state_weekly"] us = us[["response_date", "state"] + masks] # + weights codes = pd.read_excel(DATA_IN + "rader/cny_sm_codebook_2_5_21.xls") num2name = codes[codes["column"] == "state"][["value", "label"]] us = pd.merge(us, num2name, left_on="state", right_on="value").drop( ["value", "state"], axis=1 ) us["response_date"] = pd.to_datetime(us["response_date"]) if RADER_JOINT: us["percent_mc"] = joint_shop_work(us, THRESHOLD) else: us["percent_mc"] = mean_shop_work(us, THRESHOLD) us = ( us[["response_date", "label", "percent_mc"]] .groupby(["response_date", "label"]) .mean() .reset_index() ) if SMOOTH_RADER: us = smooth_rader(us) return us def load_and_clean_rader(THRESHOLD=2, SMOOTH_RADER=True): # or less DATA_IN = "data/raw/" directory = DATA_IN + "rader/rader_us_wearing_aggregated_mean_shop_and_work.csv" us = pd.read_csv(directory) us["response_date"] = pd.to_datetime(us["response_date"]) return us def add_dummy_wearing_us(us, backfill=True): rader_start = us.date.iloc[0] - timedelta(days=1) fill_days = pd.date_range(Ds[0], rader_start, freq="D") Rs = us.country.unique() if backfill: for s in Rs: df = pd.DataFrame(columns=["date", "country", "percent_mc"]) df.date = fill_days df.country = s fill = us.set_index(["country", "date"]).loc[s].percent_mc.iloc[0] df.percent_mc = fill us = pd.concat([df, us]) # totally random dummy else: for s in us.country.unique(): df = pd.DataFrame(columns=["date", "country", "percent_mc"]) df.date = fill_days df.country = s df.percent_mc = np.random.random(len(df)) us = pd.concat([df, us]) us = us.sort_values(["date", "country"]) return us def load_and_clean_wearing(): wearing = pd.read_csv( "data/raw/umd/umd_national_wearing.csv", parse_dates=["survey_date"], infer_datetime_format=True, ).drop_duplicates() wearing = wearing[(wearing.survey_date >= Ds[0]) & (wearing.survey_date <= Ds[-1])] cols = ["country", "survey_date", "percent_mc"] wearing = wearing[cols] cols = ["country", "date", "percent_mc"] wearing.columns = cols # Append US us_wearing = load_and_clean_rader() us_wearing.columns = ["date", "country", "percent_mc"] us_wearing = us_wearing[cols] us_wearing = us_wearing.replace("Georgia", "Georgia-US") us_wearing = us_wearing.replace("District of Columbia (DC)", "District of Columbia") # Add dummy wearing back to 1st May us_wearing = add_dummy_wearing_us(us_wearing, backfill=True) wearing = pd.concat([wearing, us_wearing]) return fill_missing_days(wearing) def get_npi_names(df): cs = [1, 2, 4, 6, 7] npis = [] for i in cs: npi = [c for c in df.columns if f"C{i}" in c] npi = [c for c in npi if f"Flag" not in c][0] npis += [npi] npis += ["H6_Facial Coverings"] return npis def add_diffs(df, npis): Rs = df.CountryName.unique() df = df.set_index("CountryName") for c in Rs: df.loc[c, "H6_diff"] = df.loc[c]["H6_Facial Coverings"].diff() for npi in npis: i = npi[:2] df.loc[c, f"{i}_diff"] = df.loc[c][npi].diff() df.loc[c, f"{i}_flag_diff"] = df.loc[c][f"{i}_Flag"].diff() return df.reset_index() # Measure increases and flag 1 -> 0 def detect_regional_increase_national_off(df, npi): return df[(df[f"{npi}_diff"] > 0) & (df[f"{npi}_flag_diff"] < 0)] # Measure flag 0 -> 1 def detect_national_back_on(df, npi): return df[df[f"{npi}_flag_diff"] > 0] # & (df[f"{npi}_diff"] < 0) # Decrease only def get_previous_national_value(start, df, country, npi): previousValDate = start - timedelta(days=1) c = df[df.CountryName == country] previousValDf = c[c.date == previousValDate][npi] l = list(previousValDf) val = l[0] return val def impute_country_switch(row, df, npi, country_ends): country = row["CountryName"] start = row["date"] code = npi[:2] # Want the val of the day before the regional change if start == Ds[0]: return previousVal = get_previous_national_value(start, df, country, npi) isChangeImputed = False # Only impute once per regional change: while not isChangeImputed: for _, end in country_ends.iterrows(): if end["date"] <= start: continue # `between` is inclusive so trim last day: end = end["date"] - timedelta(days=1) df.loc[ (df.CountryName == country) & (df.date.between(start, end)), npi ] = previousVal df.loc[ (df.CountryName == country) & (df.date.between(start, end)), code + "_Flag", ] = 1 isChangeImputed = True break # if OXCGRT never returns to national flag, # impute to end of our window if isChangeImputed == False: end = Ds[-1] df.loc[ (df.CountryName == country) & (df.date.between(start, end)), npi ] = previousVal df.loc[ (df.CountryName == country) & (df.date.between(start, end)), code + "_Flag" ] = 1 return df # Find regional NPI increases which obscure national NPIs # Find dates of dataset returning to national policy # Fill regional increases with previous level and the flag=1 # Up to next national measurement date def find_and_impute_npi(df, npi, diffed): code = npi[:2] diff_col = code + "_diff" flag_diff = code + "_flag_diff" imputation_starts = detect_regional_increase_national_off(diffed, code) imputation_ends = detect_national_back_on(diffed, code) for i, row in imputation_starts.iterrows(): country = row["CountryName"] country_ends = imputation_ends[imputation_ends.CountryName == country] df = impute_country_switch(row, df, npi, country_ends) return df def fix_regional_overwrite(oxcgrt, npis): npis = get_npi_names(oxcgrt) diffed = add_diffs(oxcgrt, npis) for npi in npis: oxcgrt = find_and_impute_npi(oxcgrt, npi, diffed) check_imputation(oxcgrt) return oxcgrt def load_oxcgrt(use_us=True): OXCGRT_PATH = "data/raw/OxCGRT_latest.csv" oxcgrt = pd.read_csv(OXCGRT_PATH, parse_dates=["Date"], low_memory=False) # Drop regional data nat = oxcgrt[oxcgrt.Jurisdiction == "NAT_TOTAL"] # Add US states if use_us: states = oxcgrt[ (oxcgrt.CountryName == "United States") & (oxcgrt.Jurisdiction == "STATE_TOTAL") ] # Drop GEO to prevent name collision nat = nat[nat.CountryName != "Georgia"] states.CountryName = states.RegionName states = states.replace("Georgia", "Georgia-US") nat =
pd.concat([nat, states])
pandas.concat
import glob import json import logging import matplotlib.patheffects as path_effects import numpy as np import os import pandas as pd import re import matplotlib as mpl # TODO: Reset this # mpl.use('Agg') import shutil from os.path import basename from matplotlib import pyplot as plt from shutil import copyfile # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # DPI default used on plotting DPI = 150 MAX_PATHS_ON_EPISODE_PLOT = 100 INPUT_PATH = 'output' OUTPUT_PATH = os.path.join('output', 'images') REPORT_PATH = os.path.join('output', 'report') # This should be moved somewhere central. Shouldn't this be in run_experiment, or shared with run_experiment? TO_PROCESS = { 'PI': { 'path': 'PI', 'file_regex': re.compile('(.*)_grid\.csv') }, 'VI': { 'path': 'VI', 'file_regex': re.compile('(.*)_grid\.csv') }, 'QL': { 'path': 'QL', 'file_regex': re.compile('(.*)_grid\.csv') } } the_best = {} WATERMARK = False GATECH_USERNAME = 'DO NOT STEAL' TERM = 'Spring 2019' def watermark(p): if not WATERMARK: return p ax = plt.gca() for i in range(1, 11): p.text(0.95, 0.95 - (i * (1.0/10)), '{} {}'.format(GATECH_USERNAME, TERM), transform=ax.transAxes, fontsize=32, color='gray', ha='right', va='bottom', alpha=0.2) return p def plot_episode_stats(title_base, stats, smoothing_window=50): # Trim the DF down based on the episode lengths stats = stats[stats['length'] > 0] # Plot the episode length over time, both as a line and histogram fig1 = plt.figure(figsize=(10, 5)) plt.subplot(121) plt.grid() plt.tight_layout() plt.plot(stats['length']) plt.xlabel("Episode") plt.ylabel("Episode Length") plt.title("Episode Length over Time") plt.subplot(122) plt.hist(stats['length'], zorder=3) plt.grid(zorder=0) plt.xlabel("Episode Length") plt.ylabel("Count") plt.title(title_base.format("Episode Length (Histogram)")) fig1 = watermark(fig1) plt.tight_layout() # Plot the episode reward over time fig2 = plt.figure(figsize=(10, 5)) rewards_smoothed = pd.Series(stats['reward']).rolling( smoothing_window, min_periods=smoothing_window ).mean() plt.subplot(121) plt.grid() plt.tight_layout() plt.plot(rewards_smoothed) plt.xlabel("Episode") plt.ylabel("Episode Reward (Smoothed)") plt.title("Episode Reward over Time ({})".format(smoothing_window)) plt.subplot(122) plt.hist(stats['reward'], zorder=3) plt.grid(zorder=0) plt.xlabel("Episode Reward") plt.ylabel("Count") plt.title(title_base.format("Episode Reward (Histogram)")) fig2 = watermark(fig2) plt.tight_layout() # Plot time steps and episode number fig3 = plt.figure(figsize=(10, 5)) plt.subplot(121) plt.grid() plt.tight_layout() time_steps = np.cumsum(stats['time']) plt.plot(time_steps, np.arange(len(stats['time']))) plt.xlabel("Time Steps") plt.ylabel("Episode") plt.title("Episode per time step") plt.subplot(122) plt.hist(time_steps, zorder=3) plt.grid(zorder=0) plt.xlabel("Time Step") plt.ylabel("Count") plt.title(title_base.format("Episode Time (Histogram)")) fig3 = watermark(fig3) plt.tight_layout() return fig1, fig2, fig3 def plot_policy_map(title, policy, map_desc, color_map, direction_map, map_mask=None): """ :param title: :param policy: :param map_desc: :param color_map: :param direction_map: :param map_mask: (OPTIONAL) Defines a mask in the same shape of policy that indicates which tiles should be printed. Only elements that are True will have policy printed on the tile :return: """ if map_mask is None: map_mask = np.ones(policy.shape, dtype=bool) fig = plt.figure() # TODO: Does this xlim/ylim even do anything? ax = fig.add_subplot(111) # FEATURE: Handle this better font_size = 'xx-small' # font_size = 'x-large' # if policy.shape[1] > 16 or len(direction_map[0]) > 2: # font_size = 'small' plt.title(title) for i in range(policy.shape[0]): for j in range(policy.shape[1]): y = policy.shape[0] - i - 1 x = j p = plt.Rectangle((x, y), 1, 1, edgecolor='k', linewidth=0.1) p.set_facecolor(color_map[map_desc[i, j]]) ax.add_patch(p) if map_mask[i, j]: text = ax.text(x+0.5, y+0.5, str(direction_map[policy[i, j]]), weight='bold', size=font_size, horizontalalignment='center', verticalalignment='center', color='k') # TODO: Remove this? # text.set_path_effects([path_effects.Stroke(linewidth=1, foreground='black'), # path_effects.Normal()]) plt.axis('off') plt.xlim((0, policy.shape[1])) plt.ylim((0, policy.shape[0])) plt.tight_layout() return watermark(plt) def plot_value_map(title, v, map_desc, color_map, map_mask=None): """ :param title: :param v: :param map_desc: :param color_map: :param map_mask: (OPTIONAL) Defines a mask in the same shape of policy that indicates which tiles should be printed. Only elements that are True will have policy printed on the tile :return: """ if map_mask is None: map_mask = np.ones(v.shape, dtype=bool) fig = plt.figure() ax = fig.add_subplot(111) # FEATURE: Fix this better font_size = 'xx-small' # font_size = 'x-large' # if v.shape[1] > 16: # font_size = 'small' v_min = np.min(v) v_max = np.max(v) # TODO: Disable this in more reasonble way. Use input arg? # bins = np.linspace(v_min, v_max, 100) # v_red = np.digitize(v, bins)/100.0 # # Flip so that numbers are red when low, not high # v_red = np.abs(v_red - 1) for i in range(v.shape[0]): for j in range(v.shape[1]): value = np.round(v[i, j], 1) if len(str(value)) > 3: font_size = 'xx-small' plt.title(title) for i in range(v.shape[0]): for j in range(v.shape[1]): y = v.shape[0] - i - 1 x = j p = plt.Rectangle([x, y], 1, 1, edgecolor='k', linewidth=0.1) p.set_facecolor(color_map[map_desc[i, j]]) ax.add_patch(p) value = np.round(v[i, j], 1) # red = v_red[i, j] # if map_desc[i, j] in b'HG': # continue if map_mask[i, j]: text2 = ax.text(x+0.5, y+0.5, value, size=font_size, weight='bold', horizontalalignment='center', verticalalignment='center', color='k') # text2 = ax.text(x+0.5, y+0.5, value, size=font_size, # horizontalalignment='center', verticalalignment='center', color=(1.0, 1.0-red, 1.0-red)) # text2.set_path_effects([path_effects.Stroke(linewidth=1, foreground='black'), # path_effects.Normal()]) plt.axis('off') plt.xlim((0, v.shape[1])) plt.ylim((0, v.shape[0])) plt.tight_layout() return watermark(plt) def plot_episodes(title, episodes, map_desc, color_map, direction_map, max_episodes=MAX_PATHS_ON_EPISODE_PLOT, path_alpha=None, fig=None): """ Draw the paths of multiple episodes on a map. :param title: :param episodes: :param map_desc: :param color_map: :param direction_map: :param max_episodes: Maximum number of epsides plotted. If len(episodes)>max_episodes, max_episodes randomly chosen episodes will be plotted :param path_alpha: :param fig: :return: """ i_episodes = np.arange(len(episodes)) if len(episodes) > max_episodes: i_episodes = np.random.choice(i_episodes, size=max_episodes, replace=False) if path_alpha is None: path_alpha = max(1.0 / len(i_episodes), 0.02) if fig is None: fig, ax = plt.subplots() else: ax = fig.get_axes()[-1] # Plot the background map first plot_map(map_desc, color_map, fig=fig) for i_episode in i_episodes: episode = episodes[i_episode] fig = plot_episode(title=title, episode=episode, map_desc=map_desc, color_map=color_map, direction_map=direction_map, annotate_actions=False, annotate_velocity=False, path_alpha=path_alpha, fig=fig, plot_the_map=False) # TODO: WATERMARK return fig def plot_map(map_desc, color_map, fig=None): if fig is None: fig, ax = plt.subplots() else: ax = fig.get_axes()[0] for i in range(map_desc.shape[0]): for j in range(map_desc.shape[1]): y = map_desc.shape[0] - i - 1 x = j p = plt.Rectangle((x, y), 1, 1, edgecolor='k', linewidth=0.1) p.set_facecolor(color_map[map_desc[i, j]]) ax.add_patch(p) ax.axis('off') ax.set_xlim(0, map_desc.shape[1]) ax.set_ylim(0, map_desc.shape[0]) fig.tight_layout() return fig def plot_episode(title, episode, map_desc, color_map, direction_map, annotate_actions=True, annotate_velocity=True, path_alpha=1.0, path_color='r', plot_the_map=True, fig=None, annotation_fontsize=6, annotation_color='r', annotation_offset=-0.5): """ Plot an episode on the map, showing the path the agent has travelled during this episode. :param title: :param episode: List of (s,a,r,s') tuples describing an episode :param map_desc: :param color_map: :param direction_map: :param annotate_actions: If True, annotate all states with the action taken from them :param annotate_velocity: If True, plot will be annotated with velocities for each transition (note this only works for an environment that has state of (x, y, vx, vy)) :param path_color: Color used for the trace of agent's path :param path_alpha: Float alpha parameter passed to matplotlib when plotting the route. If plotting multiple routes to same figure, use alpha<1.0 to improve clarity (more frequently travelled routes will be darker). :param plot_the_map: If True, plot the background map as matplotlib rectangles (if calling this function to plot episodes, set this to False in all but one call to reduce plotting time :param fig: Optional matplotlib figure object for plotting on an existing figure (will be created if omitted) :param annotation_fontsize: Fontsize for all annotations :param annotation_color: Color for all annotations :param annotation_offset: Offset in x and y for all annotations (note this generally only works well as a negative) :return: Matplotlib figure object used """ if fig is None: fig, ax = plt.subplots() else: ax = fig.get_axes()[0] fig.suptitle(title) if plot_the_map: plot_map(map_desc, color_map, fig=fig) # print(f'map_desc.shape = {map_desc.shape}') for transition in episode: if isinstance(transition[0], int): # Integer states. Need to infer location by wrapping into a grid of same shape as the map i, j = np.unravel_index(transition[0], map_desc.shape) x = j + 0.5 y = map_desc.shape[0] - i - 1 + 0.5 i_end, j_end = np.unravel_index(transition[3], map_desc.shape) x_end = j_end + 0.5 y_end = map_desc.shape[0] - i_end - 1 + 0.5 else: # Transition traces go from s to s', but shift by +0.5, +0.5 because the map is plotted by the bottom left # corner coordinate x = transition[0][0] + 0.5 y = transition[0][1] + 0.5 x_end = transition[3][0] + 0.5 y_end = transition[3][1] + 0.5 # print(f'x,y = {x,y}') # Plot the path ax.plot((x, x_end), (y, y_end), '-o', color=path_color, alpha=path_alpha) if annotate_velocity: # Velocity is next velocity, so pull from the s-prime v_xy = transition[3][2:] # Annotate with the velocity of a move arrow_xy = ((x + x_end) / 2, (y + y_end) / 2) annotation_xy = (arrow_xy[0] + annotation_offset, arrow_xy[1] + annotation_offset) ax.annotate(f'v={str(v_xy)}', xy=arrow_xy, xytext=annotation_xy, color=annotation_color, arrowprops={'arrowstyle': '->', 'color': annotation_color}, horizontalalignment='right', verticalalignment='bottom', ) if annotate_actions: action = transition[1] arrow_xy = (x, y) annotation_xy = (arrow_xy[0] + annotation_offset, arrow_xy[1] + annotation_offset) ax.annotate(f'a={str(action)}', xy=arrow_xy, xytext=annotation_xy, color=annotation_color, arrowprops={'arrowstyle': '->', 'color': annotation_color}, horizontalalignment='right', verticalalignment='bottom', ) ax.axis('off') ax.set_xlim(0, map_desc.shape[1]) ax.set_ylim(0, map_desc.shape[0]) fig.tight_layout() # TODO: WATERMARK return fig def plot_time_vs_steps(title, df, xlabel="Steps", ylabel="Time (s)"): plt.close() plt.figure() plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.grid() plt.plot(df.index.values, df['time'], '-', linewidth=1) plt.legend(loc="best") plt.tight_layout() return watermark(plt) def plot_reward_and_delta_vs_steps(title, df, xlabel="Steps", ylabel="Reward"): plt.close() plt.figure() f, (ax) = plt.subplots(1, 1) ax.set_title(title) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) lns1 = ax.plot(df.index.values, df['reward'], color='green', linewidth=1, label=ylabel) ex_ax = ax.twinx() lns2 = ex_ax.plot(df.index.values, df['delta'], color='blue', linewidth=1, label='Delta') ex_ax.set_ylabel('Delta') ex_ax.tick_params('y') ax.grid() ax.axis('tight') lns = lns1 + lns2 labs = [l.get_label() for l in lns] ax.legend(lns, labs, loc=0) f.tight_layout() return watermark(plt) # Adapted from http://code.activestate.com/recipes/578293-unicode-command-line-histograms/ def cli_hist(data, bins=10): bars = u' โ–โ–‚โ–ƒโ–„โ–…โ–†โ–‡โ–ˆ' n, bin_edges = np.histogram(data, bins=bins) n2 = map(int, np.floor(n*(len(bars)-1)/(max(n)))) res = u' '.join(bars[i] for i in n2) return res # Adapted from https://gist.github.com/joezuntz/2f3bdc2ab0ea59229907 def ascii_hist(data, bins=10): N, X = np.histogram(data, bins=bins) total = 1.0 * len(data) width = 50 nmax = N.max() lines = [] for (xi, n) in zip(X, N): bar = '#' * int(n * 1.0 * width / nmax) xi = '{0: <8.4g}'.format(xi).ljust(10) lines.append('{0}| {1}'.format(xi, bar)) return lines def fetch_mdp_name(file, regexp): search_result = regexp.search(basename(file)) if search_result is None: return False, False mdp_name = search_result.groups()[0] return mdp_name, ' '.join(map(lambda x: x.capitalize(), mdp_name.split('_'))) # def process_params(problem_name, params): # param_str = '{}'.format(params['discount_factor']) # if problem_name == 'QL': # param_str = '{}_{}_{}_{}_{}'.format(params['alpha'], params['q_init'], params['epsilon'], # params['epsilon_decay'], params['discount_factor']) # # return param_str def find_optimal_params(problem_name, base_dir, file_regex): # FEATURE: Add something to catch failures here when leftover files from other runs are present. grid_files = glob.glob(os.path.join(base_dir, '*_grid*.csv')) logger.info("Grid files {}".format(grid_files)) best_params = {} for f in grid_files: mdp, readable_mdp = fetch_mdp_name(f, file_regex) logger.info("MDP: {}, Readable MDP: {}".format(mdp, readable_mdp)) df = pd.read_csv(f) # Why copy this? best = df.copy() # Attempt to find the best params. First look at the reward mean, then median, then max. If at any point we # have more than one result as "best", try the next criterion for criterion in ['reward_mean', 'reward_median', 'reward_max']: best_value = np.max(best[criterion]) best = best[best[criterion] == best_value] if best.shape[0] == 1: break # If we have more than one best, take the highest index. if best.shape[0] > 1: best = best.iloc[-1:] params = best.iloc[-1]['params'] params = json.loads(params) best_index = best.iloc[-1].name best_params[mdp] = { 'name': mdp, 'readable_name': readable_mdp, 'index': best_index, 'params': params, 'param_str': params_to_filename_base(**params) } return best_params def find_policy_images(base_dir, params): # FEATURE: This image grabber does not handle cases when velocity or other extra state variables are present. Fix policy_images = {} for mdp in params: mdp_params = params[mdp] fileStart = os.path.join(base_dir, '{}{}'.format(mdp_params['name'], mdp_params['param_str'])) image_files = glob.glob(fileStart + '*.png') if len(image_files) == 2: policy_file = None value_file = None for image_file in image_files: if 'Value' in image_file: value_file = image_file else: policy_file = image_file logger.info("Value file {}, Policy File: {}".format(value_file, policy_file)) policy_images[mdp] = { 'value': value_file, 'policy': policy_file } elif len(image_files) < 2: logger.error("Unable to find image file for {} with params {}".format(mdp, mdp_params)) else: logger.warning("Found {} image files for {} with params {} ".format(len(image_files), mdp, mdp_params) + \ "- too many files, nothing copied") return policy_images def find_data_files(base_dir, params): data_files = {} for mdp in params: mdp_params = params[mdp] print('find data files: ' + '{}{}.csv'.format(mdp_params['name'], mdp_params['param_str'])) files = glob.glob(os.path.join(base_dir, '{}{}.csv'.format(mdp_params['name'], mdp_params['param_str']))) optimal_files = glob.glob(os.path.join(base_dir, '{}{}_optimal.csv'.format(mdp_params['name'], mdp_params['param_str']))) episode_files = glob.glob(os.path.join(base_dir, '{}{}_episode.csv'.format(mdp_params['name'], mdp_params['param_str']))) logger.info("files {}".format(files)) logger.info("optimal_files {}".format(optimal_files)) logger.info("episode_files {}".format(episode_files)) data_files[mdp] = { 'file': files[0], 'optimal_file': optimal_files[0] } if len(episode_files) > 0: data_files[mdp]['episode_file'] = episode_files[0] return data_files def copy_best_images(best_images, base_dir): for problem_name in best_images: for mdp in best_images[problem_name]: mdp_files = best_images[problem_name][mdp] dest_dir = os.path.join(base_dir, problem_name) policy_image = mdp_files['policy'] value_image = mdp_files['value'] if not os.path.exists(dest_dir): os.makedirs(dest_dir) policy_dest = os.path.join(dest_dir, basename(policy_image)) value_dest = os.path.join(dest_dir, basename(value_image)) logger.info("Copying {} to {}".format(policy_image, policy_dest)) logger.info("Copying {} to {}".format(value_image, value_dest)) copyfile(policy_image, policy_dest) copyfile(value_image, value_dest) def copy_data_files(data_files, base_dir): for problem_name in data_files: for mdp in data_files[problem_name]: mdp_files = data_files[problem_name][mdp] dest_dir = os.path.join(base_dir, problem_name) if not os.path.exists(dest_dir): os.makedirs(dest_dir) for file_type in mdp_files: file_name = mdp_files[file_type] file_dest = os.path.join(dest_dir, basename(file_name)) logger.info("Copying {} file from {} to {}".format(file_type, file_name, file_dest)) copyfile(file_name, file_dest) def plot_data(data_files, envs, base_dir): for problem_name in data_files: for mdp in data_files[problem_name]: env = lookup_env_from_mdp(envs, mdp) if env is None: logger.error("Unable to find env for MDP {}".format(mdp)) return mdp_files = data_files[problem_name][mdp] step_term = 'Steps' if problem_name == 'QL': step_term = 'Episodes' df =
pd.read_csv(mdp_files['file'])
pandas.read_csv
import nose import os import numpy as np import pandas as pd from pandas import (merge_asof, read_csv, to_datetime, Timedelta) from pandas.tools.merge import MergeError from pandas.util import testing as tm from pandas.util.testing import assert_frame_equal class TestAsOfMerge(tm.TestCase): _multiprocess_can_split_ = True def read_data(self, name, dedupe=False): path = os.path.join(tm.get_data_path(), name) x = read_csv(path) if dedupe: x = (x.drop_duplicates(['time', 'ticker'], keep='last') .reset_index(drop=True) ) x.time = to_datetime(x.time) return x def setUp(self): self.trades = self.read_data('trades.csv') self.quotes = self.read_data('quotes.csv', dedupe=True) self.asof = self.read_data('asof.csv') self.tolerance = self.read_data('tolerance.csv') self.allow_exact_matches = self.read_data('allow_exact_matches.csv') self.allow_exact_matches_and_tolerance = self.read_data( 'allow_exact_matches_and_tolerance.csv') def test_examples1(self): """ doc-string examples """ left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) right = pd.DataFrame({'a': [1, 2, 3, 6, 7], 'right_val': [1, 2, 3, 6, 7]}) pd.merge_asof(left, right, on='a') def test_examples2(self): """ doc-string examples """ trades = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.038', '20160525 13:30:00.048', '20160525 13:30:00.048', '20160525 13:30:00.048']), 'ticker': ['MSFT', 'MSFT', 'GOOG', 'GOOG', 'AAPL'], 'price': [51.95, 51.95, 720.77, 720.92, 98.00], 'quantity': [75, 155, 100, 100, 100]}, columns=['time', 'ticker', 'price', 'quantity']) quotes = pd.DataFrame({ 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.023', '20160525 13:30:00.030', '20160525 13:30:00.041', '20160525 13:30:00.048', '20160525 13:30:00.049', '20160525 13:30:00.072', '20160525 13:30:00.075']), 'ticker': ['GOOG', 'MSFT', 'MSFT', 'MSFT', 'GOOG', 'AAPL', 'GOOG', 'MSFT'], 'bid': [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01], 'ask': [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03]}, columns=['time', 'ticker', 'bid', 'ask']) pd.merge_asof(trades, quotes, on='time', by='ticker') pd.merge_asof(trades, quotes, on='time', by='ticker', tolerance=pd.Timedelta('2ms')) pd.merge_asof(trades, quotes, on='time', by='ticker', tolerance=pd.Timedelta('10ms'), allow_exact_matches=False) def test_basic(self): expected = self.asof trades = self.trades quotes = self.quotes result = merge_asof(trades, quotes, on='time', by='ticker') assert_frame_equal(result, expected) def test_basic_categorical(self): expected = self.asof trades = self.trades.copy() trades.ticker = trades.ticker.astype('category') quotes = self.quotes.copy() quotes.ticker = quotes.ticker.astype('category') result = merge_asof(trades, quotes, on='time', by='ticker') assert_frame_equal(result, expected) def test_missing_right_by(self): expected = self.asof trades = self.trades quotes = self.quotes q = quotes[quotes.ticker != 'MSFT'] result = merge_asof(trades, q, on='time', by='ticker') expected.loc[expected.ticker == 'MSFT', ['bid', 'ask']] = np.nan assert_frame_equal(result, expected) def test_basic2(self): expected = self.read_data('asof2.csv') trades = self.read_data('trades2.csv') quotes = self.read_data('quotes2.csv', dedupe=True) result = merge_asof(trades, quotes, on='time', by='ticker') assert_frame_equal(result, expected) def test_basic_no_by(self): f = lambda x: x[x.ticker == 'MSFT'].drop('ticker', axis=1) \ .reset_index(drop=True) # just use a single ticker expected = f(self.asof) trades = f(self.trades) quotes = f(self.quotes) result = merge_asof(trades, quotes, on='time') assert_frame_equal(result, expected) def test_valid_join_keys(self): trades = self.trades quotes = self.quotes with self.assertRaises(MergeError): merge_asof(trades, quotes, left_on='time', right_on='bid', by='ticker') with self.assertRaises(MergeError): merge_asof(trades, quotes, on=['time', 'ticker'], by='ticker') with self.assertRaises(MergeError): merge_asof(trades, quotes, by='ticker') def test_with_duplicates(self): q = pd.concat([self.quotes, self.quotes]).sort_values( ['time', 'ticker']).reset_index(drop=True) result = merge_asof(self.trades, q, on='time', by='ticker') expected = self.read_data('asof.csv')
assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
#imports import numpy import pandas from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, StandardScaler from sklearn.tree import DecisionTreeClassifier from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.feature_selection import f_classif from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.ensemble import BaggingClassifier from sklearn.neural_network import MLPClassifier from sklearn.metrics import confusion_matrix, cohen_kappa_score, classification_report from sklearn.model_selection import cross_val_score from sklearn.cluster import KMeans import plotly import plotly.plotly as py import plotly.graph_objs as go import matplotlib.pyplot as plt #reading the csv rental_df = pandas.read_json('train.json') #analisis print(rental_df.head(10)) print(rental_df.dtypes) print(rental_df.apply(lambda x: x.isnull().any())) print(rental_df.describe()) #boxplot usage bathroom_data = rental_df['bathrooms'] bedroom_data = rental_df['bedrooms'] price_data = rental_df['price'] # plt.boxplot(price_data) # plt.show() #data preparation # outliers bathroom_upper_limit = 8 bathroom_lower_limit = 1 bedroom_upper_limit = 5.5 price_upper_limit = 50000 bathroom_data.loc[rental_df['bathrooms']>bathroom_upper_limit] = bathroom_upper_limit bedroom_data.loc[rental_df['bedrooms']>bedroom_upper_limit] = bedroom_upper_limit price_data.loc[rental_df['price']>price_upper_limit] = price_upper_limit bathroom_data.loc[rental_df['bathrooms']<bathroom_lower_limit] = bathroom_lower_limit # plt.boxplot(price_data) # plt.show() # # processing the data processed_df = rental_df.drop(['features','photos','description','display_address','street_address'],axis=1) processed_df['building_id'] = rental_df.building_id.astype('category') processed_df['created'] = rental_df.created.astype('category') processed_df['listing_id'] = rental_df.listing_id.astype('category') processed_df['manager_id'] = rental_df.manager_id.astype('category') processed_df['building_id'] = pandas.get_dummies(processed_df['building_id']) processed_df['created'] =
pandas.get_dummies(processed_df['created'])
pandas.get_dummies
""" Plot the evaluation results. """ import json import numpy as np import pandas as pd import matplotlib.pyplot as plt datasets = ['MLB', 'SportSett', 'SumTime', 'Obituary'] def save_df_dist_plot(df): """ """ plt.rcParams.update({'font.size': 12}) ax = df.transpose().plot.bar(figsize=(9, 5), rot=0)#, marker='*', markersize=10, linewidth=3) for p in ax.patches: ax.annotate(f'{str(int(p.get_height()))}', (p.get_x() * 1.005, (p.get_height() * 1.005) + 2)) ax.set_title(f'Evaluation Results') ax.set_ylim(0, 110) # ax.set_ylabel('Percentage') # ax.set_xticklabels(datasets) plt.rcParams.update({'font.size': 12}) ax.figure.tight_layout() for dataset in datasets: ax.figure.savefig(f'./{dataset.lower()}/output/plots/ct_dist/eval.png', dpi=300) df.to_csv(f'./{dataset.lower()}/output/csvs/ct_dist/eval.csv') def main(): d = { 'Accuracy': [], 'BLEU': [], 'METEOR': [], 'chrF++': [], 'BERT-SCORE F1': [], 'ROUGE-L F1': [], } decimal_keys = ['METEOR', 'chrF++', 'ROUGE-L F1'] real_keys = ['BLEU', 'BERT-SCORE F1'] datasets = ['MLB', 'SportSett', 'SumTime', 'Obituary'] for dataset in datasets: # auto_file_name = "neural_t5" if dataset == "MLB" or dataset == 'SportSett' else "neural" auto_file_name = "neural" auto = json.load(open(f"{dataset.lower()}/eval/jsons/{auto_file_name}.json")) for k, v in auto.items(): if k in real_keys: # print(k, d) d[k].append(v) elif k in decimal_keys: d[k].append(v * 100) # acc_file_name = "neural_t5" if dataset == 'SportSett' else "neural" #dataset == "MLB" or acc_file_name = "neural" accs = json.load(open(f"./{dataset.lower()}/eval/jsons/{acc_file_name}_acc_err.json")) total_acc = 0 for k, v in accs.items(): total_acc += v d['Accuracy'].append(total_acc) df =
pd.DataFrame(d, index=datasets)
pandas.DataFrame
import numpy as np import pandas as pd import pytest from dku_timeseries import IntervalRestrictor from recipe_config_loading import get_interval_restriction_params @pytest.fixture def datetime_column(): return "Date" @pytest.fixture def df(datetime_column): co2 = [315.58, 316.39, 316.79, 316.2] country = ["first", "first", "second", "second"] time_index = pd.date_range("1-1-1959", periods=4, freq="M") df = pd.DataFrame.from_dict( {"value1": co2, "value2": co2, "country": country, datetime_column: time_index}) return df @pytest.fixture def long_df(datetime_column): co2 = [315.58, 316.39, 100, 116.2, 345, 234, 201, 100] country = ["first", "first", "first", "first", "second", "second", "second", "second"] time_index = pd.date_range("1-1-1959", periods=4, freq="D").append(pd.date_range("1-1-1959", periods=4, freq="D")) df = pd.DataFrame.from_dict( {"value1": co2, "value2": co2, "country": country, datetime_column: time_index}) return df @pytest.fixture def long_df_2(datetime_column): co2 = [315.58, 316.39, 316.79, 316.2, 9, 10] country = ["first", "first", "second", "second", "third", "third"] country_2 = ["first", "first", "second", "second", "third", "third"] time_index = pd.date_range("1-1-1959", periods=2, freq="M").append(pd.date_range("1-1-1959", periods=2, freq="M")).append( pd.date_range("1-1-1959", periods=2, freq="M")) df = pd.DataFrame.from_dict( {"value1": co2, "value2": co2, "country": country, "item": country_2, datetime_column: time_index}) return df @pytest.fixture def long_df_3(datetime_column): co2 = [315.58, 316.39, 316.79, 316.2, 9, 319, 250, 300] country = ["first", "first", "second", "second", "third", "third", "fourth", "fourth"] country_2 = ["first", "first", "second", "second", "third", "third", "fourth", "fourth"] country_3 = ["first", "first", "second", "second", "third", "third", "fourth", "fourth"] time_index = pd.date_range("1-1-1959", periods=2, freq="M").append(pd.date_range("1-1-1959", periods=2, freq="M")).append( pd.date_range("1-1-1959", periods=2, freq="M")).append(pd.date_range("1-1-1959", periods=2, freq="M")) df = pd.DataFrame.from_dict( {"value1": co2, "value2": co2, "country": country, "item": country_2, "store": country_3, datetime_column: time_index}) return df @pytest.fixture def long_df_4(datetime_column): co2 = [315.58, 316.39, 316.79, 316.2, 9, 319, 250, 300] country = ["first", "first", "second", "second", "third", "third", "first", "first"] country_2 = ["first", "first", "second", "second", "third", "third", "second", "first"] country_3 = ["first", "first", "second", "second", "third", "third", "third", "fourth"] time_index = pd.date_range("1-1-2020", periods=2, freq="M").append(pd.date_range("1-1-2020", periods=2, freq="M")).append( pd.date_range("1-1-2020", periods=2, freq="M")).append(
pd.date_range("1-1-2020", periods=2, freq="M")
pandas.date_range
import pandas as pd import matplotlib.pyplot as plt import requests import numpy as np from math import floor from termcolor import colored as cl plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (20, 10) # EXTRACTING STOCK DATA def get_historical_data(symbol, start_date): api_key = 'YOUR API KEY' api_url = f'https://api.twelvedata.com/time_series?symbol={symbol}&interval=1day&outputsize=5000&apikey={api_key}' raw_df = requests.get(api_url).json() df = pd.DataFrame(raw_df['values']).iloc[::-1].set_index('datetime').astype(float) df = df[df.index >= start_date] df.index = pd.to_datetime(df.index) return df aapl = get_historical_data('AAPL', '2020-01-01') aapl def get_rsi(close, lookback): ret = close.diff() up = [] down = [] for i in range(len(ret)): if ret[i] < 0: up.append(0) down.append(ret[i]) else: up.append(ret[i]) down.append(0) up_series = pd.Series(up) down_series = pd.Series(down).abs() up_ewm = up_series.ewm(com = lookback - 1, adjust = False).mean() down_ewm = down_series.ewm(com = lookback - 1, adjust = False).mean() rs = up_ewm/down_ewm rsi = 100 - (100 / (1 + rs)) rsi_df =
pd.DataFrame(rsi)
pandas.DataFrame
from textwrap import dedent import numpy as np import pandas as pd import pandas.util.testing as pdt import pytest from .. import params @pytest.fixture def initial_params_dict(): return dict(alpha=1.0, beta=2.0) @pytest.fixture def initial_params_series(): return pd.Series([1.0, 2.0], ["alpha", "beta"]) @pytest.fixture def basic_paramset(): p = pd.Series([1.0, 2.0], ["alpha", "beta"]) return params.ParamSet(p) @pytest.fixture def fixed_paramset(): p = pd.Series([1.0, 2.0], ["alpha", "beta"]) return params.ParamSet(p, ["beta"]) def test_paramset_series_initialization(initial_params_series): p = params.ParamSet(initial_params_series) pdt.assert_series_equal(p.params, initial_params_series) pdt.assert_series_equal(p.free, initial_params_series) pdt.assert_series_equal(p.fixed, pd.Series([])) def test_paramset_dict_initialization(initial_params_dict): p = params.ParamSet(initial_params_dict) params_series = pd.Series(initial_params_dict) pdt.assert_series_equal(p.params, params_series) pdt.assert_series_equal(p.free, params_series) pdt.assert_series_equal(p.fixed, pd.Series([])) def test_paramset_fixed_initialization(initial_params_series): free_names = ["alpha"] fixed_names = ["beta"] p = params.ParamSet(initial_params_series, fixed_names) pdt.assert_series_equal(p.params, initial_params_series) pdt.assert_series_equal(p.free, initial_params_series[free_names]) pdt.assert_series_equal(p.fixed, initial_params_series[fixed_names]) assert p.free_names == free_names assert p.fixed_names == fixed_names with pytest.raises(ValueError): p = params.ParamSet(initial_params_series, ["gamma"]) def test_paramset_repr(basic_paramset, fixed_paramset): expected_repr_without_fixed = dedent("""\ Free Parameters: alpha: 1 beta: 2 """) assert basic_paramset.__repr__() == expected_repr_without_fixed expected_repr_with_fixed = dedent("""\ Free Parameters: alpha: 1 Fixed Parameters: beta: 2 """) assert fixed_paramset.__repr__() == expected_repr_with_fixed def test_paramset_paramset_update(basic_paramset): update_series = pd.Series([3.0, 4.0], ["alpha", "beta"]) update_paramset = params.ParamSet(update_series) new_paramset = basic_paramset.update(update_paramset) pdt.assert_series_equal(basic_paramset.params, new_paramset.params) pdt.assert_series_equal(basic_paramset.params, update_series) def test_paramset_series_update(basic_paramset): update = pd.Series([3.0, 4.0], ["alpha", "beta"]) new_paramset = basic_paramset.update(update)
pdt.assert_series_equal(basic_paramset.params, new_paramset.params)
pandas.util.testing.assert_series_equal
import functools import warnings warnings.filterwarnings('ignore') import pickle import numpy as np import pandas as pd import json from textblob import TextBlob import ast import nltk nltk.download('punkt') from scipy import spatial import torch import spacy import PyPDF2 as PyPDF2 import tabula as tabula import tika tika.initVM() from tika import parser from models import InferSent from flask import ( Blueprint, flash, g, redirect, render_template, request, session, url_for ) from flaskr.db import get_db bp = Blueprint('book', __name__, url_prefix='/book') @bp.route('/initialpage', methods=('GET', 'POST')) def initialpage(): if request.method == 'POST': book_file = request.form['book'] parsed = parser.from_file(book_file) book = parsed["content"] question = request.form['question'] db = get_db() error = None if not book: error = 'Book is required.' elif not question: error = 'Question is required.' if error is None: if db.execute('SELECT book, question FROM bq').fetchone() is None: db.execute('INSERT INTO bq (book, question) VALUES (?, ?)',(book, question)) db.commit() bq = db.execute('SELECT * FROM bq WHERE (book, question) = (?, ?)',(book, question)).fetchone() session.clear() session['bq_id'] = bq['id'] return redirect(url_for('book.finalpage')) flash(error) return render_template('book/initialpage.html') @bp.route('/finalpage') def finalpage(): bq_id = session.get('bq_id') if bq_id is None: g.bq = None else: g.bq = get_db().execute('SELECT * FROM bq WHERE id = ?', (bq_id,)).fetchone() context = g.bq['book'] questions = [] contexts = [] questions.append(g.bq['question']) contexts.append(g.bq['book']) df = pd.DataFrame({"context":contexts, "question": questions}) df.to_csv("flaskr/data/train.csv", index = None) blob = TextBlob(context) sentences = [item.raw for item in blob.sentences] from models import InferSent V = 1 MODEL_PATH = 'flaskr/encoder/infersent%s.pkl' % V params_model = {'bsize': 64, 'word_emb_dim': 300, 'enc_lstm_dim': 2048,'pool_type': 'max', 'dpout_model': 0.0, 'version': V} infersent = InferSent(params_model) infersent.load_state_dict(torch.load(MODEL_PATH)) W2V_PATH = 'flaskr/GloVe/glove.840B.300d.txt' infersent.set_w2v_path(W2V_PATH) infersent.build_vocab(sentences, tokenize=True) dict_embeddings = {} for i in range(len(sentences)): dict_embeddings[sentences[i]] = infersent.encode([sentences[i]], tokenize=True) for i in range(len(questions)): dict_embeddings[questions[i]] = infersent.encode([questions[i]], tokenize=True) d1 = {key:dict_embeddings[key] for i, key in enumerate(dict_embeddings) if i % 2 == 0} d2 = {key:dict_embeddings[key] for i, key in enumerate(dict_embeddings) if i % 2 == 1} with open('flaskr/data/dict_embeddings1.pickle', 'wb') as handle: pickle.dump(d1, handle) with open('flaskr/data/dict_embeddings2.pickle', 'wb') as handle: pickle.dump(d2, handle) del dict_embeddings train =
pd.read_csv("flaskr/data/train.csv")
pandas.read_csv
import os import pandas as pd from groups import groups def compute_uptake(cohort, event_col, stratification_col): stratification_series = cohort[stratification_col] stratification_vals = sorted(stratification_series.value_counts().index) event_dates = cohort[cohort[event_col].notnull()][event_col] if event_dates.empty: return earliest, latest = min(event_dates), max(event_dates) index = [str(date.date()) for date in pd.date_range(earliest, latest)] uptake = pd.DataFrame(index=index) for stratification_val in stratification_vals: filtered = cohort[stratification_series == stratification_val] series =
pd.Series(0, index=index)
pandas.Series
import pandas as pd import numpy as np import csv import os import ODIR_evaluation CSVFILE = "/work/ocular-dataset/full_df.csv" FEATHERFILE = "/work/ocular-dataset/features/vgg16-imagenet.ft" XLSXFILE = "/work/ocular-dataset/ODIR-5K/data.xlsx" TRAIN_GT = "/work/exps/train_gt.csv" VAL_GT = "/work/exps/val_gt.csv" EYE_TRAIN_GT = "/work/exps/eye_labels_train.csv" EYE_VAL_GT = "/work/exps/eye_labels_val.csv" VAL_GT_XLSX = "/work/exps/val_gt.xlsx" GT_HEADER = ['ID', 'N', 'D', 'G', 'C', 'A', 'H', 'M', 'O'] SEED = 13 class ODIR_Dataset: def __init__(self): # read file with feature vectors df = pd.read_feather(FEATHERFILE) feature_dict = pd.Series(df.feature_vector.values, index=df.path).to_dict() # read file with labels from each eye csvfile = pd.read_csv(CSVFILE) labels_dict =
pd.Series(csvfile.target.values, index=csvfile.filename)
pandas.Series
import numpy as np import pandas as pd import time from joblib import Parallel, delayed import multiprocessing data = pd.read_csv("./Data/train_c300_d100.csv", header=None) data1 = pd.DataFrame({"toothed":["True","True","True","False","True","True","True","True","True","False"], "hair":["True","True","False","True","True","True","False","False","True","False"], "breathes":["True","True","True","True","True","True","False","True","True","True"], "legs":["True","True","False","True","True","True","False","False","True","True"], "species":["Mammal","Mammal","Reptile","Mammal","Mammal","Mammal","Reptile","Reptile","Mammal","Reptile"]}, columns=["toothed","hair","breathes","legs","species"]) data2 =
pd.DataFrame({"Outlook":["Sunny","Sunny","Overcast","Rain","Rain","Rain","Overcast","Sunny","Sunny","Rain","Sunny","Overcast","Overcast","Rain"], "Temp":["Hot","Hot","Hot","Mild","Cool","Cool","Cool","Mild","Cool","Mild","Mild","Mild","Hot","Mild"], "Humidity":["High","High","High","High","Normal","Normal","Normal","High","Normal","Normal","Normal","High","Normal","High"], "Wind":["Weak","Strong","Weak","Weak","Weak","Strong","Strong","Weak","Weak","Weak","Strong","Strong","Weak","Strong"], "Play":["No","No","Yes","Yes","Yes","No","Yes","No","Yes","Yes","Yes","Yes","Yes","No"]}, columns=["Outlook","Temp","Humidity","Wind","Play"])
pandas.DataFrame
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import re def limpa_casos_h(dados:pd.DataFrame, hep:str): ''' Funรงรฃo que recebe um dataset com dados sobre casos relacionado ร  um tipo de hepatite e realiza algumas transformaรงรตes: Retira as colunas que agrupam diversos anos, coluna 'Total' e coluna '1999-2006' Retira a segunda linha do dataframe que se refere ร  taxa de incidรชncia e, primeiramente serรฃo usados apenas os dados de casos totais para juntar os dados recentes e mais antigos Transforma a disposiรงรฃo da tabela, transformando as colunas em apenas uma coluna('Ano') atribuindo o vรญrus da hepatite(A,B,C) como nome da coluna de valores numรฉricos Retira a primeira linha que antes se referia ao nome da variรกvel numรฉrica('Casos') Transforma o tipo de dados da coluna 'Ano' em inteiro e a coluna com os dados numรฉricos para float(podem haver valores nulos) para depois facilitar a manipulaรงรฃo e evitar problemas Parรขmetros: dados : DataFrame onde estรฃo os dados mais recentes dos casos de hepatite, tipo : pd.DataFrame hep : o vรญrus da hepatite que o DataFrame se refere, tipo : str Retorno: dados : DataFrame com todas as limpezas realizadas, tipo : pd.DataFrame ''' dados = dados.drop(columns=['Total', '1999-2006']) dados = dados.drop(index=1) dados = pd.melt(dados, var_name='Ano', value_name=hep) dados = dados.drop(0) dados[hep] = dados[hep].astype('float64') dados['Ano'] = dados['Ano'].astype('int64') return dados def limpa_casos_regiao(dados_hep_A:pd.DataFrame, dados_hep_B:pd.DataFrame, dados_hep_C:pd.DataFrame, regiao:str): ''' Funรงรฃo que recebe os DataFrames relacionados ร  cada virus de uma regiรฃo especifรญca e realiza algumas transformaรงรตes: Chama a funรงรฃo 'limpa_casos_h' para cada tipo de vรญrus para realizar uma limpeza em cada DataFrame Junta os dados de todas os vรญrus(A, B, C) Transforma as colunas relacionadas ao vรญrus em apenas uma coluna('virus') e atribui a 'regiao' como nome da coluna com os valore numรฉricos Parรขmetros: dados_hep_A : DataFrame onde estรฃo os dados mais recentes dos casos de hepatite A, tipo : pd.DataFrame dados_hep_B : DataFrame onde estรฃo os dados mais recentes dos casos de hepatite B, tipo : pd.DataFrame dados_hep_C : DataFrame onde estรฃo os dados mais recentes dos casos de hepatite C, tipo : pd.DataFrame regiao : Nome da regiรฃo que o DataFrame se refere, tipo : pd.DataFrame Retorno : dados : retorna um Dataframe com os dados sobre casos de hepatite A, B e C de uma regiรฃo especรญfica, tipo : pd.DataFrame ''' hep_A = limpa_casos_h(dados_hep_A, 'A') hep_B = limpa_casos_h(dados_hep_B, 'B') hep_C = limpa_casos_h(dados_hep_C, 'C') dados = pd.merge(hep_A,
pd.merge(hep_B, hep_C)
pandas.merge
# pylint: disable=E1101 from datetime import time, datetime from datetime import timedelta import numpy as np from pandas.core.index import Index, Int64Index from pandas.tseries.frequencies import infer_freq, to_offset from pandas.tseries.offsets import DateOffset, generate_range, Tick from pandas.tseries.tools import parse_time_string, normalize_date from pandas.util.decorators import cache_readonly import pandas.core.common as com import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools from pandas.lib import Timestamp import pandas.lib as lib import pandas._algos as _algos def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _as_i8(arg): if isinstance(arg, np.ndarray) and arg.dtype == np.datetime64: return arg.view('i8', type=np.ndarray) else: return arg def _field_accessor(name, field): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = lib.tz_convert(values, utc, self.tz) return lib.fast_field_accessor(values, field) f.__name__ = name return property(f) def _wrap_i8_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_as_i8(arg) for arg in args] return f(*view_args, **kwargs) return wrapper def _wrap_dt_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_dt_box_array(_as_i8(arg)) for arg in args] return f(*view_args, **kwargs) return wrapper def _join_i8_wrapper(joinf, with_indexers=True): @staticmethod def wrapper(left, right): if isinstance(left, np.ndarray): left = left.view('i8', type=np.ndarray) if isinstance(right, np.ndarray): right = right.view('i8', type=np.ndarray) results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view('M8[ns]') return join_index, left_indexer, right_indexer return results return wrapper def _dt_index_cmp(opname): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if isinstance(other, datetime): func = getattr(self, opname) result = func(_to_m8(other)) elif isinstance(other, np.ndarray): func = getattr(super(DatetimeIndex, self), opname) result = func(other) else: other = _ensure_datetime64(other) func = getattr(super(DatetimeIndex, self), opname) result = func(other) try: return result.view(np.ndarray) except: return result return wrapper def _ensure_datetime64(other): if isinstance(other, np.datetime64): return other elif com.is_integer(other): return np.int64(other).view('M8[us]') else: raise TypeError(other) def _dt_index_op(opname): """ Wrap arithmetic operations to convert timedelta to a timedelta64. """ def wrapper(self, other): if isinstance(other, timedelta): func = getattr(self, opname) return func(np.timedelta64(other)) else: func = getattr(super(DatetimeIndex, self), opname) return func(other) return wrapper class TimeSeriesError(Exception): pass _midnight = time(0, 0) class DatetimeIndex(Int64Index): """ Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency information. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with copy : bool Make a copy of input ndarray freq : string or pandas offset object, optional One of pandas date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforming time on or just past end argument """ _join_precedence = 10 _inner_indexer = _join_i8_wrapper(_algos.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_algos.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_algos.left_join_indexer_int64) _left_indexer_unique = _join_i8_wrapper( _algos.left_join_indexer_unique_int64, with_indexers=False) _groupby = lib.groupby_arrays # _wrap_i8_function(lib.groupby_int64) _arrmap = _wrap_dt_function(_algos.arrmap_object) __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__') __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') # structured array cache for datetime fields _sarr_cache = None _engine_type = lib.DatetimeEngine offset = None def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, copy=False, name=None, tz=None, verify_integrity=True, normalize=False, **kwds): warn = False if 'offset' in kwds and kwds['offset']: freq = kwds['offset'] warn = True infer_freq = False if not isinstance(freq, DateOffset): if freq != 'infer': freq = to_offset(freq) else: infer_freq = True freq = None if warn: import warnings warnings.warn("parameter 'offset' is deprecated, " "please use 'freq' instead", FutureWarning) if isinstance(freq, basestring): freq = to_offset(freq) else: if isinstance(freq, basestring): freq = to_offset(freq) offset = freq if data is None and offset is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, offset, tz=tz, normalize=normalize) if not isinstance(data, np.ndarray): if np.isscalar(data): raise ValueError('DatetimeIndex() must be called with a ' 'collection of some kind, %s was passed' % repr(data)) if isinstance(data, datetime): data = [data] # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') # try a few ways to make it datetime64 if lib.is_string_array(data): data = _str_to_dt_array(data, offset) else: data = tools.to_datetime(data) data.offset = offset if issubclass(data.dtype.type, basestring): subarr = _str_to_dt_array(data, offset) elif issubclass(data.dtype.type, np.datetime64): if isinstance(data, DatetimeIndex): subarr = data.values offset = data.offset verify_integrity = False else: subarr = np.array(data, dtype='M8[ns]', copy=copy) elif issubclass(data.dtype.type, np.integer): subarr = np.array(data, dtype='M8[ns]', copy=copy) else: subarr = tools.to_datetime(data) if not np.issubdtype(subarr.dtype, np.datetime64): raise TypeError('Unable to convert %s to datetime dtype' % str(data)) if tz is not None: tz = tools._maybe_get_tz(tz) # Convert local to UTC ints = subarr.view('i8') lib.tz_localize_check(ints, tz) subarr = lib.tz_convert(ints, tz, _utc()) subarr = subarr.view('M8[ns]') subarr = subarr.view(cls) subarr.name = name subarr.offset = offset subarr.tz = tz if verify_integrity and len(subarr) > 0: if offset is not None and not infer_freq: inferred = subarr.inferred_freq if inferred != offset.freqstr: raise ValueError('Dates do not conform to passed ' 'frequency') if infer_freq: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False): _normalized = True if start is not None: start = Timestamp(start) if not isinstance(start, Timestamp): raise ValueError('Failed to convert %s to timestamp' % start) if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: end = Timestamp(end) if not isinstance(end, Timestamp): raise ValueError('Failed to convert %s to timestamp' % end) if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight start, end, tz = tools._figure_out_timezone(start, end, tz) if (offset._should_cache() and not (offset._normalize_cache and not _normalized) and _naive_in_cache_range(start, end)): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) if tz is not None: # Convert local to UTC ints = index.view('i8') lib.tz_localize_check(ints, tz) index = lib.tz_convert(ints, tz, _utc()) index = index.view('M8[ns]') index = index.view(cls) index.name = name index.offset = offset index.tz = tz return index @classmethod def _simple_new(cls, values, name, freq=None, tz=None): result = values.view(cls) result.name = name result.offset = freq result.tz = tools._maybe_get_tz(tz) return result @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @classmethod def _cached_range(cls, start=None, end=None, periods=None, offset=None, name=None): if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if offset is None: raise Exception('Must provide a DateOffset!') drc = _daterange_cache if offset not in _daterange_cache: xdr = generate_range(offset=offset, start=_CACHE_START, end=_CACHE_END) arr = np.array(_to_m8_array(list(xdr)), dtype='M8[ns]', copy=False) cachedRange = arr.view(DatetimeIndex) cachedRange.offset = offset cachedRange.tz = None cachedRange.name = None drc[offset] = cachedRange else: cachedRange = drc[offset] if start is None: if end is None: raise Exception('Must provide start or end date!') if periods is None: raise Exception('Must provide number of periods!') assert(isinstance(end, Timestamp)) end = offset.rollback(end) endLoc = cachedRange.get_loc(end) + 1 startLoc = endLoc - periods elif end is None: assert(isinstance(start, Timestamp)) start = offset.rollforward(start) startLoc = cachedRange.get_loc(start) if periods is None: raise Exception('Must provide number of periods!') endLoc = startLoc + periods else: if not offset.onOffset(start): start = offset.rollforward(start) if not offset.onOffset(end): end = offset.rollback(end) startLoc = cachedRange.get_loc(start) endLoc = cachedRange.get_loc(end) + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice.name = name indexSlice.offset = offset return indexSlice def _mpl_repr(self): # how to represent ourselves to matplotlib return lib.ints_to_pydatetime(self.asi8) def __repr__(self): from pandas.core.format import _format_datetime64 values = self.values freq = None if self.offset is not None: freq = self.offset.freqstr summary = str(self.__class__) if len(self) > 0: first = _format_datetime64(values[0], tz=self.tz) last = _format_datetime64(values[-1], tz=self.tz) summary += '\n[%s, ..., %s]' % (first, last) tagline = '\nLength: %d, Freq: %s, Timezone: %s' summary += tagline % (len(self), freq, self.tz) return summary __str__ = __repr__ def __reduce__(self): """Necessary for making this object picklable""" object_state = list(np.ndarray.__reduce__(self)) subclass_state = self.name, self.offset, self.tz object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" if len(state) == 2: nd_state, own_state = state self.name = own_state[0] self.offset = own_state[1] self.tz = own_state[2] np.ndarray.__setstate__(self, nd_state) elif len(state) == 3: # legacy format: daterange offset = state[1] if len(state) > 2: tzinfo = state[2] else: # pragma: no cover tzinfo = None self.offset = offset self.tzinfo = tzinfo # extract the raw datetime data, turn into datetime64 index_state = state[0] raw_data = index_state[0][4] raw_data = np.array(raw_data, dtype='M8[ns]') new_state = raw_data.__reduce__() np.ndarray.__setstate__(self, new_state[2]) else: # pragma: no cover np.ndarray.__setstate__(self, state) def __add__(self, other): if isinstance(other, Index): return self.union(other) elif isinstance(other, (DateOffset, timedelta)): return self._add_delta(other) elif com.is_integer(other): return self.shift(other) else: return Index(self.view(np.ndarray) + other) def __sub__(self, other): if isinstance(other, Index): return self.diff(other) elif isinstance(other, (DateOffset, timedelta)): return self._add_delta(-other) elif com.is_integer(other): return self.shift(-other) else: return Index(self.view(np.ndarray) - other) def _add_delta(self, delta): if isinstance(delta, (Tick, timedelta)): inc = offsets._delta_to_nanoseconds(delta) new_values = (self.asi8 + inc).view('M8[ns]') else: new_values = self.astype('O') + delta return DatetimeIndex(new_values, tz=self.tz, freq='infer') def summary(self, name=None): if len(self) > 0: index_summary = ', %s to %s' % (str(self[0]), str(self[-1])) else: index_summary = '' if name is None: name = type(self).__name__ result = '%s: %s entries%s' % (name, len(self), index_summary) if self.freq: result += '\nFreq: %s' % self.freqstr return result def astype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return self.asobject return Index.astype(self, dtype) @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('i8') @property def asstruct(self): if self._sarr_cache is None: self._sarr_cache = lib.build_field_sarray(self.asi8) return self._sarr_cache @property def asobject(self): """ Convert to Index of datetime objects """ boxed_values = _dt_box_array(self.asi8, self.offset, self.tz) return Index(boxed_values, dtype=object) def to_period(self, freq=None): """ Cast to PeriodIndex at a particular frequency """ from pandas.tseries.period import PeriodIndex if self.freq is None and freq is None: msg = "You must pass a freq argument as current index has none." raise ValueError(msg) if freq is None: freq = self.freqstr return PeriodIndex(self.values, freq=freq) def order(self, return_indexer=False, ascending=True): """ Return sorted copy of Index """ if return_indexer: _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) return sorted_index, _as else: sorted_values = np.sort(self.values) return self._simple_new(sorted_values, self.name, None, self.tz) def snap(self, freq='S'): """ Snap time stamps to nearest occuring frequency """ # Superdumb, punting on any optimizing freq = to_offset(freq) snapped = np.empty(len(self), dtype='M8[ns]') for i, v in enumerate(self): s = v if not freq.onOffset(s): t0 = freq.rollback(s) t1 = freq.rollforward(s) if abs(s - t0) < abs(t1 - s): s = t0 else: s = t1 snapped[i] = s # we know it conforms; skip check return DatetimeIndex(snapped, freq=freq, verify_integrity=False) def shift(self, n, freq=None): """ Specialized shift which produces a DatetimeIndex Parameters ---------- n : int Periods to shift by freq : DateOffset or timedelta-like, optional Returns ------- shifted : DatetimeIndex """ if freq is not None and freq != self.offset: if isinstance(freq, basestring): freq = to_offset(freq) return
Index.shift(self, n, freq)
pandas.core.index.Index.shift
"""PyLabel currently supports exporting annotations in COCO, YOLO, and VOC PASCAL formats.""" import json from typing import List import pandas as pd import numpy as np import xml.etree.ElementTree as ET import xml.dom.minidom import os import yaml import shutil from pylabel.shared import _ReindexCatIds from pathlib import PurePath, Path class Export: def __init__(self, dataset=None): self.dataset = dataset def ExportToVoc( self, output_path=None, segmented_=False, path_=False, database_=False, folder_=False, occluded_=False, ): """Writes annotation files to disk in VOC XML format and returns path to files. By default, tags with empty values will not be included in the XML output. You can optionally choose to include them if they are required for your solution. Args: output_path (str): This is where the annotation files will be written. If not-specified then the path will be derived from the .path_to_annotations and .name properties of the dataset object. segmented_ (bool) : Defaults to False. Set to true to include this field in the XML schema of the output files. path_ (bool) : Defaults to False. Set to true to include this field in the XML schema of the output files. database_ (bool) : Defaults to False. Set to true to include this field in the XML schema of the output files. folder_ (bool) : Defaults to False. Set to true to include this field in the XML schema of the output files. occluded_ (bool) : Defaults to False. Set to true to include this field in the XML schema of the output files. Returns: A list with 1 or more paths (strings) to annotations files. Example: >>> dataset.export.ExportToVoc() ['data/voc_annotations/000000000322.xml', ...] """ ds = self.dataset if output_path == None: output_path = ds.path_to_annotations else: output_path = output_path os.makedirs(output_path, exist_ok=True) output_file_paths = [] def voc_xml_file_creation( data, file_name, output_file_path, segmented=True, path=True, database=True, folder=True, occluded=True, ): index = 0 df_smaller = data[data["img_filename"] == file_name].reset_index() if len(df_smaller) == 1: # print('test') annotation_text_start = "<annotation>" flder_lkp = str(df_smaller.loc[index]["img_folder"]) if folder == True and flder_lkp != "": folder_text = "<folder>" + flder_lkp + "</folder>" else: folder_text = "" filename_text = ( "<filename>" + str(df_smaller.loc[index]["img_filename"]) + "</filename>" ) pth_lkp = str(df_smaller.loc[index]["img_path"]) if path == True and pth_lkp != "": path_text = "<path>" + pth_lkp + "</path>" else: path_text = "" sources_text = "" size_text_start = "<size>" width_text = ( "<width>" + str(df_smaller.loc[index]["img_width"]) + "</width>" ) height_text = ( "<height>" + str(df_smaller.loc[index]["img_height"]) + "</height>" ) depth_text = ( "<depth>" + str(df_smaller.loc[index]["img_depth"]) + "</depth>" ) size_text_end = "</size>" seg_lkp = str(df_smaller.loc[index]["ann_segmented"]) if segmented == True and seg_lkp != "": segmented_text = ( "<segmented>" + str(df_smaller.loc[index]["ann_segmented"]) + "</segmented>" ) else: segmented_text = "" object_text_start = "<object>" name_text = ( "<name>" + str(df_smaller.loc[index]["cat_name"]) + "</name>" ) pose_text = ( "<pose>" + str(df_smaller.loc[index]["ann_pose"]) + "</pose>" ) truncated_text = ( "<truncated>" + str(df_smaller.loc[index]["ann_truncated"]) + "</truncated>" ) difficult_text = ( "<difficult>" + str(df_smaller.loc[index]["ann_difficult"]) + "</difficult>" ) occluded_text = "" bound_box_text_start = "<bndbox>" xmin_text = ( "<xmin>" + str(df_smaller.loc[index]["ann_bbox_xmin"].astype("int")) + "</xmin>" ) xmax_text = ( "<xmax>" + str(df_smaller.loc[index]["ann_bbox_xmax"].astype("int")) + "</xmax>" ) ymin_text = ( "<ymin>" + str(df_smaller.loc[index]["ann_bbox_ymin"].astype("int")) + "</ymin>" ) ymax_text = ( "<ymax>" + str(df_smaller.loc[index]["ann_bbox_ymax"].astype("int")) + "</ymax>" ) bound_box_text_end = "</bndbox>" object_text_end = "</object>" annotation_text_end = "</annotation>" xmlstring = ( annotation_text_start + folder_text + filename_text + path_text + sources_text + size_text_start + width_text + height_text + depth_text + size_text_end + segmented_text + object_text_start + name_text + pose_text + truncated_text + difficult_text + occluded_text + bound_box_text_start + xmin_text + xmax_text + ymin_text + ymax_text + bound_box_text_end + object_text_end + annotation_text_end ) dom = xml.dom.minidom.parseString(xmlstring) pretty_xml_as_string = dom.toprettyxml() with open(output_file_path, "w") as f: f.write(pretty_xml_as_string) return output_file_path else: # print('test') annotation_text_start = "<annotation>" flder_lkp = str(df_smaller.loc[index]["img_folder"]) if folder == True and flder_lkp != "": folder_text = "<folder>" + flder_lkp + "</folder>" else: folder_text = "" filename_text = ( "<filename>" + str(df_smaller.loc[index]["img_filename"]) + "</filename>" ) pth_lkp = str(df_smaller.loc[index]["img_path"]) if path == True and pth_lkp != "": path_text = "<path>" + pth_lkp + "</path>" else: path_text = "" # db_lkp = str(df_smaller.loc[index]['Databases']) # if database == True and db_lkp != '': # sources_text = '<source>'+'<database>'+ db_lkp +'</database>'+'</source>' # else: sources_text = "" size_text_start = "<size>" width_text = ( "<width>" + str(df_smaller.loc[index]["img_width"]) + "</width>" ) height_text = ( "<height>" + str(df_smaller.loc[index]["img_height"]) + "</height>" ) depth_text = ( "<depth>" + str(df_smaller.loc[index]["img_depth"]) + "</depth>" ) size_text_end = "</size>" seg_lkp = str(df_smaller.loc[index]["ann_segmented"]) if segmented == True and seg_lkp != "": segmented_text = ( "<segmented>" + str(df_smaller.loc[index]["ann_segmented"]) + "</segmented>" ) else: segmented_text = "" xmlstring = ( annotation_text_start + folder_text + filename_text + path_text + sources_text + size_text_start + width_text + height_text + depth_text + size_text_end + segmented_text ) for obj in range(len(df_smaller)): object_text_start = "<object>" name_text = ( "<name>" + str(df_smaller.loc[index]["cat_name"]) + "</name>" ) pose_text = ( "<pose>" + str(df_smaller.loc[index]["ann_pose"]) + "</pose>" ) truncated_text = ( "<truncated>" + str(df_smaller.loc[index]["ann_truncated"]) + "</truncated>" ) difficult_text = ( "<difficult>" + str(df_smaller.loc[index]["ann_difficult"]) + "</difficult>" ) # occ_lkp = str(df_smaller.loc[index]['Object Occluded']) # if occluded==True and occ_lkp != '': # occluded_text = '<occluded>'+occ_lkp+'</occluded>' # else: occluded_text = "" bound_box_text_start = "<bndbox>" xmin_text = ( "<xmin>" + str(df_smaller.loc[index]["ann_bbox_xmin"].astype("int")) + "</xmin>" ) xmax_text = ( "<xmax>" + str(df_smaller.loc[index]["ann_bbox_xmax"].astype("int")) + "</xmax>" ) ymin_text = ( "<ymin>" + str(df_smaller.loc[index]["ann_bbox_ymin"].astype("int")) + "</ymin>" ) ymax_text = ( "<ymax>" + str(df_smaller.loc[index]["ann_bbox_ymax"].astype("int")) + "</ymax>" ) bound_box_text_end = "</bndbox>" object_text_end = "</object>" annotation_text_end = "</annotation>" index = index + 1 xmlstring = ( xmlstring + object_text_start + name_text + pose_text + truncated_text + difficult_text + occluded_text + bound_box_text_start + xmin_text + xmax_text + ymin_text + ymax_text + bound_box_text_end + object_text_end ) xmlstring = xmlstring + annotation_text_end dom = xml.dom.minidom.parseString(xmlstring) pretty_xml_as_string = dom.toprettyxml() with open(output_file_path, "w") as f: f.write(pretty_xml_as_string) return output_file_path # Loop through all images in the dataframe and call voc_xml_file_creation for each one for file_title in list(set(self.dataset.df.img_filename)): file_name = Path(file_title) file_name = str(file_name.with_suffix(".xml")) file_path = str(Path(output_path, file_name)) voc_file_path = voc_xml_file_creation( ds.df, file_title, segmented=segmented_, path=path_, database=database_, folder=folder_, occluded=occluded_, output_file_path=file_path, ) output_file_paths.append(voc_file_path) return output_file_paths def ExportToYoloV5( self, output_path="training/labels", yaml_file="dataset.yaml", copy_images=False, use_splits=False, cat_id_index=None, ): """Writes annotation files to disk in YOLOv5 format and returns the paths to files. Args: output_path (str): This is where the annotation files will be written. If not-specified then the path will be derived from the .path_to_annotations and .name properties of the dataset object. If you are exporting images to train a model, the recommended path to use is 'training/labels'. yaml_file (str): If a file name (string) is provided, a YOLOv5 YAML file will be created with entries for the files and classes in this dataset. It will be created in the parent of the output_path directory. The recommended name for the YAML file is 'dataset.yaml'. copy_images (boolean): If True, then the annotated images will be copied to a directory next to the labels directory into a directory named 'images'. This will prepare your labels and images to be used as inputs to train a YOLOv5 model. use_splits (boolean): If True, then the images and annotations will be moved into directories based on the values in the split column. For example, if a row has the value split = "train" then the annotations for that row will be moved to directory /train. If a YAML file is specificied then the YAML file will use the splits to specify the folders user for the train, val, and test datasets. cat_id_index (int): Reindex the cat_id values so that that they start from an int (usually 0 or 1) and then increment the cat_ids to index + number of categories continuously. It's useful if the cat_ids are not continuous in the original dataset. Yolo requires the set of annotations to start at 0 when training a model. Returns: A list with 1 or more paths (strings) to annotations files. If a YAML file is created then the first item in the list will be the path to the YAML file. Examples: >>> dataset.export.ExportToYoloV5(output_path='training/labels', >>> yaml_file='dataset.yaml', cat_id_index=0) ['training/dataset.yaml', 'training/labels/frame_0002.txt', ...] """ ds = self.dataset # Inspired by https://github.com/aws-samples/groundtruth-object-detection/blob/master/create_annot.py yolo_dataset = ds.df.copy(deep=True) # Convert nan values in the split column from nan to '' because those are easier to with with when building paths yolo_dataset.split = yolo_dataset.split.fillna("") # Create all of the paths that will be used to manage the files in this dataset path_dict = {} # The output path is the main path that will be used to create the other relative paths path = PurePath(output_path) path_dict["label_path"] = output_path # The /images directory should be next to the /labels directory path_dict["image_path"] = str(PurePath(path.parent, "images")) # The root directory is in parent of the /labels and /images directories path_dict["root_path"] = str(PurePath(path.parent)) # The YAML file should be in root directory path_dict["yaml_path"] = str(PurePath(path_dict["root_path"], yaml_file)) # The root directory will usually be next to the yolov5 directory. # Specify the relative path path_dict["root_path_from_yolo_dir"] = str(PurePath("../")) # If these default values to not match the users environment then they can manually edit the YAML file if copy_images: # Create the folder that the images will be copied to Path(path_dict["image_path"]).mkdir(parents=True, exist_ok=True) # Drop rows that are not annotated # Note, having zero annotates can still be considered annotated # in cases when are no objects in the image thats should be indentified yolo_dataset = yolo_dataset.loc[yolo_dataset["annotated"] == 1] yolo_dataset["cat_id"] = ( yolo_dataset["cat_id"].astype("float").astype(
pd.Int32Dtype()
pandas.Int32Dtype
import pandas as pd import json import csv # p_ath = '/Users/amandeep/Github/maa-analysis/MAA_Datasets/v3.2.0' # edge_file_labels_descriptions = 'wikidata-20200803-all-edges-for-V3.2.0_KB-nodes-property-counts-with-labels-and-descriptions.tsv.gz' # subgraph_sorted = 'wikidata_maa_subgraph_sorted_2.tsv' # property_labels_id_file = 'property-labels-for-V3.2.0_KB_edge_id.tsv' # qnodes_maa_labels_id_file = 'wikidata_maa_labels_edges_with_id.tsv' class KGTKAnalysis(object): def __init__(self, p_ath): self.p_ath = p_ath def convert_node_labels_to_edge(self, edge_file_labels_descriptions): df = pd.read_csv(f'{self.p_ath}/{edge_file_labels_descriptions}', sep='\t') df = df.drop(columns=['label', 'node2']).fillna('') r = [] for i, row in df.iterrows(): r.append({ 'node1': row['node1'], 'label': 'label', 'node2': json.dumps(self.clean_string(row['node1;label'])), 'id': f'{row["node1"]}-label-1' }) r.append({ 'node1': row['node1'], 'label': 'description', 'node2': json.dumps(self.clean_string(row['node1;description'])), 'id': f'{row["node1"]}-description-1' }) df_r = pd.DataFrame(r) df_r.to_csv(f'{self.p_ath}/label-descriptions-for-V3.2.0_KB-nodes.tsv', sep='\t', index=False, quoting=csv.QUOTE_NONE) @staticmethod def clean_string(i_str): if '@' in i_str: i = i_str.index('@') return i_str[1:i - 1] return i_str @staticmethod def clean_string_en(i_str): if '@' in i_str: vals = i_str.split('@') if vals[1] == 'en': return json.dumps(vals[0].replace("'", "")) return None def find_all_properties(self, subgraph_sorted): df = pd.read_csv(f'{self.p_ath}/{subgraph_sorted}', sep='\t').fillna('') properties = [x for x in list(df['label'].unique()) if x.startswith('P')] r = [{'node1': p} for p in properties] df_r = pd.DataFrame(r) df_r.to_csv(f'{self.p_ath}/properties-for-V3.2.0_KB-nodes.tsv', sep='\t', index=False) def find_all_properties_for_values(self): df =
pd.read_csv(f'{self.p_ath}/property-labels-for-V3.2.0_KB_edge.tsv', sep='\t')
pandas.read_csv
import numpy as np, pandas as pd, time, os, subprocess, scipy as sp, diffmap as dm import importlib, matplotlib.pyplot as plt, sklearn.covariance as skcov import scipy.io, sklearn.metrics from scipy.sparse import csr_matrix # Use two single-cell libraries to call approx nearest neighbors and UMAP. import scanpy as sc, anndata as adata itime = time.time() # Read in GLS p-values. pairwise_distances = np.load('GLS_p.npy') gene_names = np.ravel(pd.read_csv('genes.txt', header=None)) # Read in clusterONE analysis results. cone_clusts = pd.read_csv('clusterOne_clusters.tsv', sep="\t", index_col=0, header=0) clustdata = cone_clusts.iloc[:,10:].fillna(value='') nclusts = clustdata.shape[0] cluster_ndces = {} for gname in gene_names: cluster_ndces[gname] = np.where(clustdata == gname)[0] if len(cluster_ndces)%500 == 0: print("{} genes finished. \tTime: {}".format(len(cluster_ndces), time.time() - itime)) clust_mmships = np.zeros((len(gene_names), nclusts)) for i in range(len(gene_names)): clust_mmships[i, cluster_ndces[gene_names[i]]] = 1 clust_mmships = sp.sparse.csr_matrix(clust_mmships) sp.sparse.save_npz('clusterone_memberships.npz', clust_mmships) # Build and save pairwise Jaccard similarities between genes, according to the clusterings given. gg_jaccsims = dm.pairwise_jaccard_graph(clust_mmships) gm_inc = dm.build_knn(gg_jaccsims, k=10, symmetrize_type='inclusive') # Use GLS -log(p) values between each pair of genes (the (genes x genes) matrix GLS_p) as the adjacency matrix of the GLS graph. a = -np.log(pairwise_distances) a[np.isinf(a)] = 0 GLS_pvals_100 = dm.build_knn(a, k=100, symmetrize_type='inclusive') GLS_pvals_10 = dm.build_knn(GLS_pvals_100, k=10, symmetrize_type='inclusive') sp.sparse.save_npz('GLS_pvals_10NN.npz', GLS_pvals_10) # Construct the combined graph frac_CO_graph = 0.99 frac_GLS_graph = 1-frac_CO_graph CO_graph = gm_inc GLS_graph = GLS_pvals_10 adj_mat = sp.sparse.csr_matrix( (frac_CO_graph * CO_graph) + (frac_GLS_graph * GLS_graph) ) n_cmps = 100 reduced_dim = 50 sffix = "_GLS01_CO99" vizdf_filename = "vizdf{}.csv".format(sffix) # emap_naive, eigvals = dm.diffmap_proj(adj_mat, t=0, n_comps=reduced_dim, embed_type='naive', return_eigvals=True) # print("Laplacian eigenmap computed. Time: {}".format(time.time() - itime)) emap_heat = dm.diffmap_proj(adj_mat, n_comps=n_cmps, n_dims=40, min_energy_frac=0.9, embed_type='diffmap', return_eigvals=False) print("Diffusion components computed. Time: {}".format(time.time() - itime)) ann_heat = adata.AnnData(X=emap_heat[:, :40]) sc.pp.neighbors(ann_heat) print(time.time() - itime) sc.tl.umap(ann_heat) print(time.time() - itime) heat_umap = np.array(ann_heat.obsm['X_umap']) vizdf =
pd.DataFrame(data=heat_umap, columns=['hUMAP_x', 'hUMAP_y'])
pandas.DataFrame
import re import os import string import ipdb import pickle import matplotlib matplotlib.use('Agg') from matplotlib import rcParams import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.model_selection import TimeSeriesSplit from sklearn.metrics import mean_squared_error from sklearn.metrics import accuracy_score from sklearn.preprocessing import normalize from sklearn.preprocessing import RobustScaler from sklearn import linear_model from wordcloud import WordCloud from nltk import pos_tag, word_tokenize import gensim.downloader as api MIN_DF = 10 MAX_DF = 100 WORD_CLOUD_NUMBER = 50 BOW = "bow" TFIDF = "tfidf" WORD2VEC = "word2vec" SKIPTHOUGHT = "skipThought" def select_by_pos_tag(sentence, tags): word_tokens = word_tokenize(sentence) tagged_word_token = pos_tag(word_tokens) selected_words = [word for word, tag in tagged_word_token if tag in tags] return ' '.join(selected_words) def clean_sentence(s): s = re.sub("\n", " ", s) s = re.sub("[" + string.punctuation + "]", " ", s) s = re.sub("\?", " ", s) s = re.sub("[0-9]+", " ", s) s = re.sub(" +", " ", s) return s.strip() def generate_bag_of_words(train, test, feature_args): vectorizer = CountVectorizer(min_df=MIN_DF, max_df=MAX_DF, **feature_args) train_bag_of_words = vectorizer.fit_transform(train['text'].apply(clean_sentence)).toarray() test_bag_of_words = vectorizer.transform(test['text'].apply(clean_sentence)).toarray() train_bag_of_words = normalize(train_bag_of_words) test_bag_of_words = normalize(test_bag_of_words) word_list = vectorizer.get_feature_names() train_text_df = pd.DataFrame(train_bag_of_words, index=train.index, columns=word_list) test_text_df = pd.DataFrame(test_bag_of_words, index=test.index, columns=word_list) bag_of_words_df = pd.concat([train_text_df, test_text_df], axis=0) return bag_of_words_df, vectorizer def generate_tfidf(train, test, feature_args): vectorizer = TfidfVectorizer(min_df=MIN_DF, max_df=MAX_DF, **feature_args) train_bag_of_words = vectorizer.fit_transform(train['text'].apply(clean_sentence)).toarray() test_bag_of_words = vectorizer.transform(test['text'].apply(clean_sentence)).toarray() word_list = vectorizer.get_feature_names() train_text_df = pd.DataFrame(train_bag_of_words, index=train.index, columns=word_list) test_text_df = pd.DataFrame(test_bag_of_words, index=test.index, columns=word_list) bag_of_words_df = pd.concat([train_text_df, test_text_df], axis=0) return bag_of_words_df, vectorizer def average_word2vec(sentence, model): sentence = clean_sentence(sentence) word2vecs = [] for word in sentence.split(" "): word = word.lower() if word in model: word2vecs.append(model[word]) return pd.Series(np.average(word2vecs, axis=0)) def generate_word2vec(train, test, feature_args): path = 'word2vec/' + feature_args['model'] word2vec = pd.read_csv(path) return word2vec[train.index[0]:test.index[-1] + 1], None def generate_skip_thoughts(train, test, feature_args): skip_thoughts = pd.read_csv(feature_args['path']) return skip_thoughts[train.index[0]:test.index[-1] + 1], None def generate_price_features(data): price_feature_name = ['previous_price_{0:d}'.format(d) for d in range(1, 6)] price_features = data[price_feature_name].values return price_features def generate_classification_label(data): y = np.zeros(data.shape[0], np.float) y[data['predicted_price'] > data['price']] = 1.0 return y def generate_regression_label(data): return (data['predicted_price'] - data['price']).values def evaluate_return(open_price, y_hat, y): revenue = 0 index = 0 buy_action = [] for price, predict, actual in zip(open_price, y_hat, y): if predict >= 0.0 * price: revenue += actual buy_action.append(index) index += 1 return revenue, buy_action def run(data, split, feature_args, exp_label): published_time = pd.to_datetime(data['published_time']) y = generate_regression_label(data) y_class = generate_classification_label(data) X_price = data['price'].values record = { 'classification':{ 'train':pd.DataFrame(), 'test':pd.DataFrame() }, 'regression':{ 'train':pd.DataFrame(), 'test':pd.DataFrame() }, 'pnl':{ 'train':pd.DataFrame(), 'test':pd.DataFrame() }, 'buy_actions':{ }, 'feature_size':{ } } feature_list = [BOW, TFIDF, WORD2VEC, SKIPTHOUGHT] feature_functions = { BOW:generate_bag_of_words, TFIDF:generate_tfidf, WORD2VEC:generate_word2vec, SKIPTHOUGHT:generate_skip_thoughts } fold_index = 0 tscv = TimeSeriesSplit(n_splits=split) for train_index, test_index in tscv.split(data.values): fold_index += 1 start_index = data.index[train_index[0]] split_index = data.index[test_index[0]] end_index = data.index[test_index[-1]] + 1 train = data[start_index:split_index] test = data[split_index:end_index] X_list = [] for feature_name in feature_list: if feature_name in feature_args: features, vectorizer = feature_functions[feature_name](train, test, feature_args[feature_name]) X_list.append(features) if len(X_list) > 1: array_list = [features.values for features in X_list] X = np.concatenate(array_list, axis=1) else: X = X_list[0].values feature_size = X.shape[1] print("feature size:", feature_size) X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] y_class_train, y_class_test = y_class[train_index], y_class[test_index] X_train_price = X_price[train_index] X_test_price = X_price[test_index] # Normalization and Scaling scaler = RobustScaler() scaler.fit(y_train.reshape(-1, 1)) y_train_t = scaler.transform(y_train.reshape(-1, 1)).reshape(-1, ) x_train_t = X_train x_test_t = X_test # Modeling classifiers_dict = { 'Logistic Regression':LogisticRegression(penalty='l2', C=0.05, verbose=0, max_iter=10000) } regressors_dict = { 'SVR':SVR(kernel='linear', C=1.0, verbose=0), 'Ridge Regression':linear_model.Ridge(alpha=5.0) } train_class_err = {} test_class_err = {} train_regre_err = {} test_regre_err = {} train_pnl_err = {} test_pnl_err = {} test_buy_times = [] for label, clf in classifiers_dict.items(): clf.fit(x_train_t, y_class_train) y_class_train_pred = clf.predict(x_train_t) y_class_test_pred = clf.predict(x_test_t) # classification error train_acc = accuracy_score(y_class_train, y_class_train_pred) test_acc = accuracy_score(y_class_test, y_class_test_pred) train_class_err[label] = train_acc test_class_err[label] = test_acc # PNL error train_return, train_buy_action = evaluate_return(X_train_price, y_class_train_pred, y_train) test_return, test_buy_action = evaluate_return(X_test_price, y_class_test_pred, y_test) train_pnl_err[label] = train_return test_pnl_err[label] = test_return if label not in record['buy_actions']: record['buy_actions'][label] = [] for action_time in test_buy_action: record['buy_actions'][label].append(action_time + len(X_train)) for label, clf in regressors_dict.items(): clf.fit(x_train_t, y_train_t) y_train_pred = clf.predict(x_train_t) y_test_pred = clf.predict(x_test_t) # classification error y_class_train_pred = np.zeros(y_train_pred.shape[0], np.float) y_class_train_pred[y_train_pred >= 0.0] = 1.0 y_class_test_pred = np.zeros(y_test_pred.shape[0], np.float) y_class_test_pred[y_test_pred >= 0.0] = 1.0 train_acc = accuracy_score(y_class_train, y_class_train_pred) test_acc = accuracy_score(y_class_test, y_class_test_pred) train_class_err[label] = train_acc test_class_err[label] = test_acc # regression error y_train_pred = scaler.inverse_transform(y_train_pred.reshape(-1, 1)).reshape(-1, ) y_test_pred = scaler.inverse_transform(y_test_pred.reshape(-1, 1)).reshape(-1, ) train_mse = mean_squared_error(y_train, y_train_pred) test_mse = mean_squared_error(y_test, y_test_pred) train_regre_err[label] = train_mse test_regre_err[label] = test_mse # PNL error train_return, train_buy_action = evaluate_return(X_train_price, y_train_pred, y_train) test_return, test_buy_action = evaluate_return(X_test_price, y_test_pred, y_test) train_pnl_err[label] = train_return test_pnl_err[label] = test_return if label not in record['buy_actions']: record['buy_actions'][label] = [] for action_time in test_buy_action: record['buy_actions'][label].append(action_time + len(X_train)) record['classification']['train'] = record['classification']['train'].append(pd.Series(data=train_class_err), ignore_index=True) record['classification']['test'] = record['classification']['test'].append(pd.Series(data=test_class_err), ignore_index=True) record['regression']['train'] = record['regression']['train'].append(pd.Series(data=train_regre_err), ignore_index=True) record['regression']['test'] = record['regression']['test'].append(pd.Series(data=test_regre_err), ignore_index=True) record['pnl']['train'] = record['pnl']['train'].append(pd.Series(data=train_pnl_err), ignore_index=True) record['pnl']['test'] = record['pnl']['test'].append(pd.Series(data=test_pnl_err), ignore_index=True) record['feature_size'][str(fold_index)] = feature_size # Words analysis if vectorizer is not None and fold_index == split: plot_word_coef_in_model_dict(classifiers_dict, vectorizer, exp_label) plot_word_coef_in_model_dict(regressors_dict, vectorizer, exp_label) bayes_result = analysis_bay(X_train, y_class_train, ['negative', 'positive'], vectorizer) plot_word_analysis_result(bayes_result, 'bayes', exp_label) return record def plot_word_coef_in_model_dict(model_dict, vectorizer, exp_label): for clf_name, clf in model_dict.items(): coef = clf.coef_ if len(coef) == 1: coef = coef[0] result = analysis(coef, vectorizer) plot_word_analysis_result(result, clf_name, exp_label) def plot_word_analysis_result(result, model, exp_label): model_name = re.sub(' +', '_', model.lower()) exp_label = re.sub(' +', '_', exp_label.lower()) for class_name, freq in result.items(): label = '{0:s}_{1:s}_{2:s}'.format(model_name, class_name, exp_label) plot_word_cloud(label, freq) def plot_word_cloud(label, freq): wordcloud = WordCloud() wordcloud.generate_from_frequencies(frequencies=freq) plt.clf() plt.imshow(wordcloud, interpolation="bilinear") plt.axis("off") path = "picture/wordCloud/{0:s}.png".format(label) plt.savefig(path) def analysis_bay(X, y, class_labels, vectorizer): clf = MultinomialNB() clf.fit(X, y) word_list = vectorizer.get_feature_names() result = {} for class_index, class_prob_array in enumerate(clf.feature_log_prob_): result[class_labels[class_index]] = {} maximum_prob_index = class_prob_array.argsort()[-WORD_CLOUD_NUMBER:][::-1] for index in maximum_prob_index: if index < len(word_list): word = word_list[index] result[class_labels[class_index]][word] = class_prob_array[index] return result def analysis(clf_coef, vectorizer): result = { 'positive':{}, 'negative':{} } maximum_weight_index = clf_coef.argsort()[-WORD_CLOUD_NUMBER:][::-1] minimum_weight_index = clf_coef.argsort()[:WORD_CLOUD_NUMBER] word_list = vectorizer.get_feature_names() for positive_index, negative_index in zip(maximum_weight_index, minimum_weight_index): positive_weight = clf_coef[positive_index] negative_weight = clf_coef[negative_index] if positive_weight > 0 and positive_index < len(word_list): positive_term = word_list[positive_index] result['positive'][positive_term] = positive_weight if negative_weight < 0 and negative_index < len(word_list): negative_term = word_list[negative_index] result['negative'][negative_term] = -negative_weight return result def plot_record(record, label, selected_tasks): measure_map = { 'classification':'Accuracy', 'regression':'MSE', 'pnl':'Dollar' } rcParams.update({'figure.autolayout': True}) for task, item in record.items(): if task in selected_tasks: for sample, dataframe in item.items(): label_filename = re.sub(' +', '_', label) title = '{0:s} task on {1:s} dataset {2:s}'.format(task, sample, label) path = 'picture/experiment/{0:s}_{1:s}_{2:s}.png'.format(task, sample, label_filename) plt.cla() ax = dataframe.plot(kind='line', style='.-', xticks=range(len(dataframe)), title=title, legend=True) ax.set(xlabel='Fold number', ylabel=measure_map[task]) plt.savefig(path) def do_exp(data, num_split, feature_args, data_label, feature_label, redo=False): exp_label = "({0:s}, {1:s})".format(data_label, feature_label) print(exp_label) print(feature_args) file_name_label = re.sub(' +', '_', exp_label) record_file_path = 'result/record_{0:s}.p'.format(file_name_label) if not redo and os.path.isfile(record_file_path): record = pickle.load(open(record_file_path, 'rb')) return record selected_tasks = ['classification', 'regression', 'pnl'] record = run(data, num_split, feature_args, exp_label) plot_record(record, exp_label, selected_tasks) pickle.dump(record, open(record_file_path, 'wb')) return record def plot_records(records, model, exp_label): task_list = ['classification', 'regression', 'pnl'] merged_record = {} for task in task_list: train_record_list = [] test_record_list = [] for feature_label, record in records.items(): if model in record[task]['train']: train_record_list.append(record[task]['train'][model].rename(feature_label)) test_record_list.append(record[task]['test'][model].rename(feature_label)) if len(train_record_list) > 0: merged_record[task] = {} merged_record[task]['train'] = pd.concat(train_record_list, axis=1) merged_record[task]['test'] = pd.concat(test_record_list, axis=1) model_file_name = re.sub(' +', '_', model.lower()) plot_record(merged_record, 'comparison_{0:s}_{1:s}'.format(model_file_name, exp_label), task_list) def preprocess_news_df(news_df): null_text_index = news_df[news_df['text'].isnull()].index news_df.drop(null_text_index, inplace=True) news_df['published_time'] =
pd.to_datetime(news_df['published_time'])
pandas.to_datetime
# -*- coding: utf-8 -*- """ @author: HYPJUDY 2019/4/15 https://github.com/HYPJUDY Decoupling Localization and Classification in Single Shot Temporal Action Detection ----------------------------------------------------------------------------------- Operations used by Decouple-SSAD """ import pandas as pd import pandas import numpy as np import numpy import os import tensorflow as tf from os.path import join #################################### TRAIN & TEST ##################################### def abs_smooth(x): """Smoothed absolute function. Useful to compute an L1 smooth error. Define as: x^2 / 2 if abs(x) < 1 abs(x) - 0.5 if abs(x) > 1 We use here a differentiable definition using min(x) and abs(x). Clearly not optimal, but good enough for our purpose! """ absx = tf.abs(x) minx = tf.minimum(absx, 1) r = 0.5 * ((absx - 1) * minx + absx) return r def jaccard_with_anchors(anchors_min, anchors_max, len_anchors, box_min, box_max): """Compute jaccard score between a box and the anchors. """ int_xmin = tf.maximum(anchors_min, box_min) int_xmax = tf.minimum(anchors_max, box_max) inter_len = tf.maximum(int_xmax - int_xmin, 0.) union_len = len_anchors - inter_len + box_max - box_min jaccard = tf.div(inter_len, union_len) return jaccard def loop_condition(idx, b_anchors_rx, b_anchors_rw, b_glabels, b_gbboxes, b_match_x, b_match_w, b_match_labels, b_match_scores): r = tf.less(idx, tf.shape(b_glabels)) return r[0] def loop_body(idx, b_anchors_rx, b_anchors_rw, b_glabels, b_gbboxes, b_match_x, b_match_w, b_match_labels, b_match_scores): num_class = b_match_labels.get_shape().as_list()[-1] label = b_glabels[idx][0:num_class] box_min = b_gbboxes[idx, 0] box_max = b_gbboxes[idx, 1] # ground truth box_x = (box_max + box_min) / 2 box_w = (box_max - box_min) # predict anchors_min = b_anchors_rx - b_anchors_rw / 2 anchors_max = b_anchors_rx + b_anchors_rw / 2 len_anchors = anchors_max - anchors_min jaccards = jaccard_with_anchors(anchors_min, anchors_max, len_anchors, box_min, box_max) # jaccards > b_match_scores > -0.5 & jaccards > matching_threshold mask = tf.greater(jaccards, b_match_scores) matching_threshold = 0.5 mask = tf.logical_and(mask, tf.greater(jaccards, matching_threshold)) mask = tf.logical_and(mask, b_match_scores > -0.5) imask = tf.cast(mask, tf.int32) fmask = tf.cast(mask, tf.float32) # Update values using mask. # if overlap enough, update b_match_* with gt, otherwise not update b_match_x = fmask * box_x + (1 - fmask) * b_match_x b_match_w = fmask * box_w + (1 - fmask) * b_match_w ref_label = tf.zeros(tf.shape(b_match_labels), dtype=tf.int32) ref_label = ref_label + label b_match_labels = tf.matmul(tf.diag(imask), ref_label) + tf.matmul(tf.diag(1 - imask), b_match_labels) b_match_scores = tf.maximum(jaccards, b_match_scores) return [idx + 1, b_anchors_rx, b_anchors_rw, b_glabels, b_gbboxes, b_match_x, b_match_w, b_match_labels, b_match_scores] def default_box(layer_steps, scale, a_ratios): width_set = [scale * ratio for ratio in a_ratios] center_set = [1. / layer_steps * i + 0.5 / layer_steps for i in range(layer_steps)] width_default = [] center_default = [] for i in range(layer_steps): for j in range(len(a_ratios)): width_default.append(width_set[j]) center_default.append(center_set[i]) width_default = np.array(width_default) center_default = np.array(center_default) return width_default, center_default def anchor_box_adjust(anchors, config, layer_name, pre_rx=None, pre_rw=None): if pre_rx == None: dboxes_w, dboxes_x = default_box(config.num_anchors[layer_name], config.scale[layer_name], config.aspect_ratios[layer_name]) else: dboxes_x = pre_rx dboxes_w = pre_rw anchors_conf = anchors[:, :, -3] # anchors_conf=tf.nn.sigmoid(anchors_conf) anchors_rx = anchors[:, :, -2] anchors_rw = anchors[:, :, -1] anchors_rx = anchors_rx * dboxes_w * 0.1 + dboxes_x anchors_rw = tf.exp(0.1 * anchors_rw) * dboxes_w # anchors_class=anchors[:,:,:config.num_classes] num_class = anchors.get_shape().as_list()[-1] - 3 anchors_class = anchors[:, :, :num_class] return anchors_class, anchors_conf, anchors_rx, anchors_rw # This function is mainly used for producing matched ground truth with # each adjusted anchors after predicting one by one # the matched ground truth may be positive/negative, # the matched x,w,labels,scores all corresponding to this anchor def anchor_bboxes_encode(anchors, glabels, gbboxes, Index, config, layer_name, pre_rx=None, pre_rw=None): num_anchors = config.num_anchors[layer_name] num_dbox = config.num_dbox[layer_name] # num_classes = config.num_classes num_classes = anchors.get_shape().as_list()[-1] - 3 dtype = tf.float32 anchors_class, anchors_conf, anchors_rx, anchors_rw = \ anchor_box_adjust(anchors, config, layer_name, pre_rx, pre_rw) batch_match_x = tf.reshape(tf.constant([]), [-1, num_anchors * num_dbox]) batch_match_w = tf.reshape(tf.constant([]), [-1, num_anchors * num_dbox]) batch_match_scores = tf.reshape(tf.constant([]), [-1, num_anchors * num_dbox]) batch_match_labels = tf.reshape(tf.constant([], dtype=tf.int32), [-1, num_anchors * num_dbox, num_classes]) for i in range(config.batch_size): shape = (num_anchors * num_dbox) match_x = tf.zeros(shape, dtype) match_w = tf.zeros(shape, dtype) match_scores = tf.zeros(shape, dtype) match_labels_other = tf.ones((num_anchors * num_dbox, 1), dtype=tf.int32) match_labels_class = tf.zeros((num_anchors * num_dbox, num_classes - 1), dtype=tf.int32) match_labels = tf.concat([match_labels_other, match_labels_class], axis=-1) b_anchors_rx = anchors_rx[i] b_anchors_rw = anchors_rw[i] b_glabels = glabels[Index[i]:Index[i + 1]] b_gbboxes = gbboxes[Index[i]:Index[i + 1]] idx = 0 [idx, b_anchors_rx, b_anchors_rw, b_glabels, b_gbboxes, match_x, match_w, match_labels, match_scores] = \ tf.while_loop(loop_condition, loop_body, [idx, b_anchors_rx, b_anchors_rw, b_glabels, b_gbboxes, match_x, match_w, match_labels, match_scores]) match_x = tf.reshape(match_x, [-1, num_anchors * num_dbox]) batch_match_x = tf.concat([batch_match_x, match_x], axis=0) match_w = tf.reshape(match_w, [-1, num_anchors * num_dbox]) batch_match_w = tf.concat([batch_match_w, match_w], axis=0) match_scores = tf.reshape(match_scores, [-1, num_anchors * num_dbox]) batch_match_scores = tf.concat([batch_match_scores, match_scores], axis=0) match_labels = tf.reshape(match_labels, [-1, num_anchors * num_dbox, num_classes]) batch_match_labels = tf.concat([batch_match_labels, match_labels], axis=0) return [batch_match_x, batch_match_w, batch_match_labels, batch_match_scores, anchors_class, anchors_conf, anchors_rx, anchors_rw] def in_conv(layer, initer=tf.contrib.layers.xavier_initializer(seed=5)): net = tf.layers.conv1d(inputs=layer, filters=1024, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu, kernel_initializer=initer) out = tf.layers.conv1d(inputs=net, filters=1024, kernel_size=3, strides=1, padding='same', activation=None, kernel_initializer=initer) return out def out_conv(layer, initer=tf.contrib.layers.xavier_initializer(seed=5)): net = tf.nn.relu(layer) out = tf.layers.conv1d(inputs=net, filters=1024, kernel_size=3, strides=1, padding='same', activation=tf.nn.relu, kernel_initializer=initer) return out ############################ TRAIN and TEST NETWORK LAYER ############################### def get_trainable_variables(): trainable_variables_scope = [a.name for a in tf.trainable_variables()] trainable_variables_list = tf.trainable_variables() trainable_variables = [] for i in range(len(trainable_variables_scope)): if ("base_feature_network" in trainable_variables_scope[i]) or \ ("anchor_layer" in trainable_variables_scope[i]) or \ ("predict_layer" in trainable_variables_scope[i]): trainable_variables.append(trainable_variables_list[i]) return trainable_variables def base_feature_network(X, mode=''): # main network initer = tf.contrib.layers.xavier_initializer(seed=5) with tf.variable_scope("base_feature_network" + mode): # ----------------------- Base layers ---------------------- # [batch_size, 128, 1024] net = tf.layers.conv1d(inputs=X, filters=512, kernel_size=9, strides=1, padding='same', activation=tf.nn.relu, kernel_initializer=initer) # [batch_size, 128, 512] net = tf.layers.max_pooling1d(inputs=net, pool_size=4, strides=2, padding='same') # [batch_size, 64, 512] net = tf.layers.conv1d(inputs=net, filters=512, kernel_size=9, strides=1, padding='same', activation=tf.nn.relu, kernel_initializer=initer) # [batch_size, 64, 512] net = tf.layers.max_pooling1d(inputs=net, pool_size=4, strides=2, padding='same') # [batch_size, 32, 512] return net def main_anchor_layer(net, mode=''): # main network initer = tf.contrib.layers.xavier_initializer(seed=5) with tf.variable_scope("main_anchor_layer" + mode): # ----------------------- Anchor layers ---------------------- MAL1 = tf.layers.conv1d(inputs=net, filters=1024, kernel_size=3, strides=2, padding='same', activation=tf.nn.relu, kernel_initializer=initer) # [batch_size, 16, 1024] MAL2 = tf.layers.conv1d(inputs=MAL1, filters=1024, kernel_size=3, strides=2, padding='same', activation=tf.nn.relu, kernel_initializer=initer) # [batch_size, 8, 1024] MAL3 = tf.layers.conv1d(inputs=MAL2, filters=1024, kernel_size=3, strides=2, padding='same', activation=tf.nn.relu, kernel_initializer=initer) # [batch_size, 4, 1024] return MAL1, MAL2, MAL3 def branch_anchor_layer(MALs, name=''): MAL1, MAL2, MAL3 = MALs with tf.variable_scope("branch_anchor_layer" + name): BAL3 = out_conv(in_conv(MAL3)) # [batch_size, 4, 1024] BAL3_expd = tf.expand_dims(BAL3, 1) # [batch_size, 1, 4, 1024] BAL3_de = tf.layers.conv2d_transpose(BAL3_expd, 1024, kernel_size=(1, 4), strides=(1, 2), padding='same') # [batch_size, 1, 8, 1024] BAL3_up = tf.reduce_sum(BAL3_de, [1]) # [batch_size, 8, 1024] MAL2_in_conv = in_conv(MAL2) BAL2 = out_conv((MAL2_in_conv * 2 + BAL3_up) / 3) # [batch_size, 8, 1024] MAL2_expd = tf.expand_dims(BAL2, 1) # [batch_size, 1, 8, 1024] MAL2_de = tf.layers.conv2d_transpose(MAL2_expd, 1024, kernel_size=(1, 4), strides=(1, 2), padding='same') # [batch_size, 1, 16, 1024] MAL2_up = tf.reduce_sum(MAL2_de, [1]) # [batch_size, 16, 1024] MAL1_in_conv = in_conv(MAL1) BAL1 = out_conv((MAL1_in_conv * 2 + MAL2_up) / 3) # [batch_size, 16, 1024] return BAL1, BAL2, BAL3 # action or not + conf + location (center&width) # Anchor Binary Classification and Regression def biClsReg_predict_layer(config, layer, layer_name, specific_layer): num_dbox = config.num_dbox[layer_name] with tf.variable_scope("biClsReg_predict_layer" + layer_name + specific_layer): anchor = tf.layers.conv1d(inputs=layer, filters=num_dbox * (1 + 3), kernel_size=3, padding='same', kernel_initializer= tf.contrib.layers.xavier_initializer(seed=5)) anchor = tf.reshape(anchor, [config.batch_size, -1, (1 + 3)]) return anchor # action or not + class score + conf + location (center&width) # Action Multi-Class Classification and Regression def mulClsReg_predict_layer(config, layer, layer_name, specific_layer): num_dbox = config.num_dbox[layer_name] ncls = config.num_classes with tf.variable_scope("mulClsReg_predict_layer" + layer_name + specific_layer): anchor = tf.layers.conv1d(inputs=layer, filters=num_dbox * (ncls + 3), kernel_size=3, padding='same', kernel_initializer= tf.contrib.layers.xavier_initializer(seed=5)) anchor = tf.reshape(anchor, [config.batch_size, -1, (ncls + 3)]) return anchor #################################### TRAIN LOSS ##################################### def loss_function(anchors_class, anchors_conf, anchors_xmin, anchors_xmax, match_x, match_w, match_labels, match_scores, config): match_xmin = match_x - match_w / 2 match_xmax = match_x + match_w / 2 pmask = tf.cast(match_scores > 0.5, dtype=tf.float32) num_positive = tf.reduce_sum(pmask) num_entries = tf.cast(tf.size(match_scores), dtype=tf.float32) hmask = match_scores < 0.5 hmask = tf.logical_and(hmask, anchors_conf > 0.5) hmask = tf.cast(hmask, dtype=tf.float32) num_hard = tf.reduce_sum(hmask) # the meaning of r_negative: the ratio of anchors need to choose from easy negative anchors # If we have `num_positive` positive anchors in training data, # then we only need `config.negative_ratio*num_positive` negative anchors # r_negative=(number of easy negative anchors need to choose from all easy negative) / (number of easy negative) # the meaning of easy negative: all-pos-hard_neg r_negative = (config.negative_ratio - num_hard / num_positive) * num_positive / ( num_entries - num_positive - num_hard) r_negative = tf.minimum(r_negative, 1) nmask = tf.random_uniform(tf.shape(pmask), dtype=tf.float32) nmask = nmask * (1. - pmask) nmask = nmask * (1. - hmask) nmask = tf.cast(nmask > (1. - r_negative), dtype=tf.float32) # class_loss weights = pmask + nmask + hmask class_loss = tf.nn.softmax_cross_entropy_with_logits(logits=anchors_class, labels=match_labels) class_loss = tf.losses.compute_weighted_loss(class_loss, weights) # correct_pred = tf.equal(tf.argmax(anchors_class, 2), tf.argmax(match_labels, 2)) # accuracy = tf.reduce_mean(tf.cast(correct_pred, dtype=tf.float32)) # loc_loss weights = pmask loc_loss = abs_smooth(anchors_xmin - match_xmin) + abs_smooth(anchors_xmax - match_xmax) loc_loss = tf.losses.compute_weighted_loss(loc_loss, weights) # conf loss weights = pmask + nmask + hmask # match_scores is from jaccard_with_anchors conf_loss = abs_smooth(match_scores - anchors_conf) conf_loss = tf.losses.compute_weighted_loss(conf_loss, weights) return class_loss, loc_loss, conf_loss #################################### POST PROCESS ##################################### def min_max_norm(X): # map [0,1] -> [0.5,0.73] (almost linearly) ([-1, 0] -> [0.26, 0.5]) return 1.0 / (1.0 + np.exp(-1.0 * X)) def post_process(df, config): class_scores_class = [(df['score_' + str(i)]).values[:].tolist() for i in range(21)] class_scores_seg = [[class_scores_class[j][i] for j in range(21)] for i in range(len(df))] class_real = [0] + config.class_real # num_classes + 1 # save the top 2 or 3 score element # append the largest score element class_type_list = [] class_score_list = [] for i in range(len(df)): class_score = np.array(class_scores_seg[i][1:]) * min_max_norm(df.conf.values[i]) class_score = class_score.tolist() class_type = class_real[class_score.index(max(class_score)) + 1] class_type_list.append(class_type) class_score_list.append(max(class_score)) resultDf1 = pd.DataFrame() resultDf1['out_type'] = class_type_list resultDf1['out_score'] = class_score_list resultDf1['start'] = df.xmin.values[:] resultDf1['end'] = df.xmax.values[:] # append the second largest score element class_type_list = [] class_score_list = [] for i in range(len(df)): class_score = np.array(class_scores_seg[i][1:]) * min_max_norm(df.conf.values[i]) class_score = class_score.tolist() class_score[class_score.index(max(class_score))] = 0 class_type = class_real[class_score.index(max(class_score)) + 1] class_type_list.append(class_type) class_score_list.append(max(class_score)) resultDf2 = pd.DataFrame() resultDf2['out_type'] = class_type_list resultDf2['out_score'] = class_score_list resultDf2['start'] = df.xmin.values[:] resultDf2['end'] = df.xmax.values[:] resultDf1 = pd.concat([resultDf1, resultDf2]) # # append the third largest score element (improve little and slow) class_type_list = [] class_score_list = [] for i in range(len(df)): class_score = np.array(class_scores_seg[i][1:]) * min_max_norm(df.conf.values[i]) class_score = class_score.tolist() class_score[class_score.index(max(class_score))] = 0 class_score[class_score.index(max(class_score))] = 0 class_type = class_real[class_score.index(max(class_score)) + 1] class_type_list.append(class_type) class_score_list.append(max(class_score)) resultDf2 = pd.DataFrame() resultDf2['out_type'] = class_type_list resultDf2['out_score'] = class_score_list resultDf2['start'] = df.xmin.values[:] resultDf2['end'] = df.xmax.values[:] resultDf1 = pd.concat([resultDf1, resultDf2]) # resultDf1=resultDf1[resultDf1.out_score>0.05] resultDf1['video_name'] = [df['video_name'].values[0] for _ in range(len(resultDf1))] return resultDf1 def temporal_nms(config, dfNMS, filename, videoname): nms_threshold = config.nms_threshold fo = open(filename, 'a') typeSet = list(set(dfNMS.out_type.values[:])) for t in typeSet: tdf = dfNMS[dfNMS.out_type == t] t1 = np.array(tdf.start.values[:]) t2 = np.array(tdf.end.values[:]) scores = np.array(tdf.out_score.values[:]) ttype = list(tdf.out_type.values[:]) durations = t2 - t1 order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) tt1 = np.maximum(t1[i], t1[order[1:]]) tt2 = np.minimum(t2[i], t2[order[1:]]) intersection = tt2 - tt1 IoU = intersection / (durations[i] + durations[order[1:]] - intersection).astype(float) inds = np.where(IoU <= nms_threshold)[0] order = order[inds + 1] for idx in keep: # class_real: do not have class 0 (ambiguous) -> remove all ambiguous class if ttype[idx] in config.class_real: if videoname in ["video_test_0001255", "video_test_0001058", "video_test_0001459", "video_test_0001195", "video_test_0000950"]: # 25fps strout = "%s\t%.3f\t%.3f\t%d\t%.4f\n" % (videoname, float(t1[idx]) / 25, float(t2[idx]) / 25, ttype[idx], scores[idx]) elif videoname == "video_test_0001207": # 24fps strout = "%s\t%.3f\t%.3f\t%d\t%.4f\n" % (videoname, float(t1[idx]) / 24, float(t2[idx]) / 24, ttype[idx], scores[idx]) else: # most videos are 30fps strout = "%s\t%.3f\t%.3f\t%d\t%.4f\n" % (videoname, float(t1[idx]) / 30, float(t2[idx]) / 30, ttype[idx], scores[idx]) fo.write(strout) def fuse_two_stream(spatial_path, temporal_path): temporal_df = pd.read_csv(temporal_path) spatial_df = pd.read_csv(spatial_path) out_df = temporal_df out_df['conf'] = temporal_df.conf.values[:] * 2 / 3 + spatial_df.conf.values * 1 / 3 out_df['xmin'] = temporal_df.xmin.values[:] * 2 / 3 + spatial_df.xmin.values * 1 / 3 out_df['xmax'] = temporal_df.xmax.values[:] * 2 / 3 + spatial_df.xmax.values * 1 / 3 out_df['score_0'] = temporal_df.score_0.values[:] * 2 / 3 + spatial_df.score_0.values * 1 / 3 out_df['score_1'] = temporal_df.score_1.values[:] * 2 / 3 + spatial_df.score_1.values * 1 / 3 out_df['score_2'] = temporal_df.score_2.values[:] * 2 / 3 + spatial_df.score_2.values * 1 / 3 out_df['score_3'] = temporal_df.score_3.values[:] * 2 / 3 + spatial_df.score_3.values * 1 / 3 out_df['score_4'] = temporal_df.score_4.values[:] * 2 / 3 + spatial_df.score_4.values * 1 / 3 out_df['score_5'] = temporal_df.score_5.values[:] * 2 / 3 + spatial_df.score_5.values * 1 / 3 out_df['score_6'] = temporal_df.score_6.values[:] * 2 / 3 + spatial_df.score_6.values * 1 / 3 out_df['score_7'] = temporal_df.score_7.values[:] * 2 / 3 + spatial_df.score_7.values * 1 / 3 out_df['score_8'] = temporal_df.score_8.values[:] * 2 / 3 + spatial_df.score_8.values * 1 / 3 out_df['score_9'] = temporal_df.score_9.values[:] * 2 / 3 + spatial_df.score_9.values * 1 / 3 out_df['score_10'] = temporal_df.score_10.values[:] * 2 / 3 + spatial_df.score_10.values * 1 / 3 out_df['score_11'] = temporal_df.score_11.values[:] * 2 / 3 + spatial_df.score_11.values * 1 / 3 out_df['score_12'] = temporal_df.score_12.values[:] * 2 / 3 + spatial_df.score_12.values * 1 / 3 out_df['score_13'] = temporal_df.score_13.values[:] * 2 / 3 + spatial_df.score_13.values * 1 / 3 out_df['score_14'] = temporal_df.score_14.values[:] * 2 / 3 + spatial_df.score_14.values * 1 / 3 out_df['score_15'] = temporal_df.score_15.values[:] * 2 / 3 + spatial_df.score_15.values * 1 / 3 out_df['score_16'] = temporal_df.score_16.values[:] * 2 / 3 + spatial_df.score_16.values * 1 / 3 out_df['score_17'] = temporal_df.score_17.values[:] * 2 / 3 + spatial_df.score_17.values * 1 / 3 out_df['score_18'] = temporal_df.score_18.values[:] * 2 / 3 + spatial_df.score_18.values * 1 / 3 out_df['score_19'] = temporal_df.score_19.values[:] * 2 / 3 + spatial_df.score_19.values * 1 / 3 out_df['score_20'] = temporal_df.score_20.values[:] * 2 / 3 + spatial_df.score_20.values * 1 / 3 out_df = out_df[out_df.score_0 < 0.99] # outDf.to_csv(fusePath, index=False) return out_df def result_process(batch_win_info, batch_result_class, batch_result_conf, batch_result_xmin, batch_result_xmax, config, batch_idx): out_df = pandas.DataFrame(columns=config.outdf_columns) for j in range(config.batch_size): tmp_df = pandas.DataFrame() win_info = batch_win_info[batch_idx][j] # one sample in window_info.log # the following four attributes are produced by the above one # winInfo sample, 108 kinds of anchors are the # combination of different layer types and scale ratios result_class = batch_result_class[batch_idx][j] result_xmin = batch_result_xmin[batch_idx][j] result_xmax = batch_result_xmax[batch_idx][j] result_conf = batch_result_conf[batch_idx][j] num_box = len(result_class) # (16*5+8*5+4*5) = sum of num_anchors*num_dbox video_name = win_info[1] tmp_df['video_name'] = [video_name] * num_box tmp_df['start'] = [int(win_info[0])] * num_box tmp_df['conf'] = result_conf tmp_df['xmin'] = result_xmin tmp_df['xmax'] = result_xmax tmp_df.xmin = numpy.maximum(tmp_df.xmin, 0) tmp_df.xmax = numpy.minimum(tmp_df.xmax, config.window_size) tmp_df.xmin = tmp_df.xmin + tmp_df.start tmp_df.xmax = tmp_df.xmax + tmp_df.start for cidx in range(config.num_classes): tmp_df['score_' + str(cidx)] = result_class[:, cidx] if not config.save_predict_result: # filter len(tmpDf) from 108 to ~20~40~ tmp_df = tmp_df[tmp_df.score_0 < config.filter_neg_threshold] out_df =
pandas.concat([out_df, tmp_df])
pandas.concat
import logging import pandas import os import numpy from scipy import stats from .. import Constants from .. import Utilities from .. import MatrixManager from ..PredictionModel import WDBQF, WDBEQF, load_model, dataframe_from_weight_data from ..misc import DataFrameStreamer from . import AssociationCalculation class SimpleContext(AssociationCalculation.Context): def __init__(self, gwas, model, covariance): self.gwas = gwas self.model = model self.covariance = covariance def get_weights(self, gene): w = self.model.weights w = w[w.gene == gene] return w def get_covariance(self, gene, snps): return self.covariance.get(gene, snps, strict_whitelist=False) def get_n_in_covariance(self, gene): return self.covariance.n_ids(gene) def get_gwas(self, snps): g = self.gwas g = g[g[Constants.SNP].isin(snps)] return g def get_model_snps(self): return set(self.model.weights.rsid) def get_data_intersection(self): return _data_intersection(self.model, self.gwas) def provide_calculation(self, gene): w = self.get_weights(gene) gwas = self.get_gwas(w[WDBQF.K_RSID].values) i = pandas.merge(w, gwas, left_on="rsid", right_on="snp") if not Constants.BETA in i: i[Constants.BETA] = None i = i[[Constants.SNP, WDBQF.K_WEIGHT, Constants.ZSCORE, Constants.BETA]] snps, cov = self.get_covariance(gene, i[Constants.SNP].values) # fast subsetting and aligning d_columns = i.columns.values if snps is not None and len(snps): d = {x[0]: x for x in i.values} d = [d[snp] for snp in snps] d = list(zip(*d)) d = {d_columns[i]:d[i] for i in range(0, len(d_columns))} i = pandas.DataFrame(d) else: i = pandas.DataFrame(columns=d_columns) return len(w.weight), i, cov, snps def get_model_info(self): return self.model.extra class OptimizedContext(SimpleContext): def __init__(self, gwas, model, covariance, MAX_R): self.covariance = covariance self.genes, self.weight_data, self.snps_in_model = _prepare_weight_data(model, MAX_R) self.gwas_data = _prepare_gwas_data(gwas) self.extra = model.extra self.last_gene = None self.data_cache = None self.pedantic = MAX_R is None def _get_weights(self, gene): w = self.weight_data[gene] w = {x[WDBQF.RSID]:x[WDBQF.WEIGHT] for x in w} return w def get_weights(self, gene): w = self.weight_data[gene] w = dataframe_from_weight_data(list(zip(*w))) return w def get_model_snps(self): return set(self.snps_in_model) def _get_gwas(self, snps): snps = set(snps) g = self.gwas_data g = [g[x] for x in snps if x in g] g = {x[0]:(x[1], x[2]) for x in g} return g def get_gwas(self, snps): snps = set(snps) g = self.gwas_data g = [g[x] for x in snps if x in g] if len(g): g = list(zip(*g)) g = pandas.DataFrame({Constants.SNP:g[0], Constants.ZSCORE:g[1], Constants.BETA:g[2]}) else: g = pandas.DataFrame(columns=[Constants.SNP, Constants.ZSCORE, Constants.BETA]) return g def get_data_intersection(self): return _data_intersection_3(self.weight_data, self.gwas_data, self.extra.gene.values, self.pedantic) def provide_calculation(self, gene): if gene != self.last_gene: #dummy while(True) to emulate go/to while True: w = self._get_weights(gene) gwas = self._get_gwas(list(w.keys())) type = [numpy.str, numpy.float64, numpy.float64, numpy.float64] columns = [Constants.SNP, WDBQF.K_WEIGHT, Constants.ZSCORE, Constants.BETA] d = {x: v for x, v in w.items() if x in gwas} snps, cov = self.get_covariance(gene, list(d.keys())) if snps is None: d = pandas.DataFrame(columns=columns) self.data_cache = len(w), d, cov, snps self.last_gene = gene break d = [(x, w[x], gwas[x][0], gwas[x][1]) for x in snps] d = list(zip(*d)) if len(d): d = {columns[i]:numpy.array(d[i], dtype=type[i]) for i in range(0,len(columns))} else: d = {columns[i]:numpy.array([]) for i in range(0,len(columns))} self.data_cache = len(w), d, cov, snps self.last_gene = gene break return self.data_cache def get_model_info(self): return self.extra def _data_intersection(model, gwas): weights = model.weights k = pandas.merge(weights, gwas, how='inner', left_on="rsid", right_on="snp") genes = k.gene.drop_duplicates().values snps = k.rsid.drop_duplicates().values return genes, snps def _data_intersection_2(weight_data, gwas_data): genes = set() snps = set() for gene, entries in weight_data.items(): gs = list(zip(*entries))[WDBQF.RSID] for s in gs: if s in gwas_data: genes.add(gene) snps.add(s) return genes, snps def _data_intersection_3(weight_data, gwas_data, gene_list, pedantic): genes = list() _genes = set() snps =set() for gene in gene_list: if not gene in weight_data: if pedantic: logging.warning("Issues processing gene %s, skipped", gene) continue gs = list(zip(*weight_data[gene]))[WDBQF.RSID] for s in gs: if s in gwas_data: if not gene in _genes: _genes.add(gene) genes.append(gene) snps.add(s) return genes, snps def _sanitized_gwas(gwas): gwas = gwas[[Constants.SNP, Constants.ZSCORE, Constants.BETA]] if numpy.any(~ numpy.isfinite(gwas[Constants.ZSCORE])): logging.warning("Discarding non finite GWAS zscores") gwas = gwas.loc[numpy.isfinite(gwas[Constants.ZSCORE])] return gwas def _prepare_gwas(gwas): #If zscore is numeric, then everything is fine with us. # if not, try to remove "NA" strings. try: i = gwas.zscore.apply(lambda x: x != "NA") gwas = gwas.loc[i] gwas = pandas.DataFrame(gwas) gwas = gwas.assign(**{Constants.ZSCORE:gwas.zscore.astype(numpy.float64)}) except Exception as e: logging.info("Unexpected issue preparing gwas... %s", str(e)) pass if not Constants.BETA in gwas: gwas = gwas.assign(**{Constants.BETA: numpy.nan}) return gwas def _prepare_gwas_data(gwas): data = {} for x in gwas.values: data[x[0]] = x return data def _prepare_model(model): K = WDBQF.K_GENE g = model.weights[K] model.weights[K] = pandas.Categorical(g, g.drop_duplicates()) return model def _prepare_weight_data(model, MAX_R=None): d,_d = [],{} snps = set() for x in model.weights.values: if MAX_R and len(d) + 1 > MAX_R: logging.info("Restricting data load to first %d", MAX_R) break gene = x[WDBQF.GENE] if not gene in d: _d[gene] = [] d.append(gene) entries = _d[gene] entries.append(x) snps.add(x[WDBQF.RSID]) return d, _d, snps def _beta_loader(args): beta_contents = Utilities.contentsWithPatternsFromFolder(args.beta_folder, []) r = pandas.DataFrame() for beta_name in beta_contents: logging.info("Processing %s", beta_name) beta_path = os.path.join(args.beta_folder, beta_name) b = pandas.read_table(beta_path) r = pandas.concat([r, b]) return r def _gwas_wrapper(gwas): logging.info("Processing loaded gwas") return gwas def build_context(args, gwas): logging.info("Loading model from: %s", args.model_db_path) model = load_model(args.model_db_path, args.model_db_snp_key) if not args.single_snp_model: if not args.stream_covariance: logging.info("Loading covariance data from: %s", args.covariance) covariance_manager = MatrixManager.load_matrix_manager(args.covariance) else: logging.info("Using streamed covariance from: %s", args.covariance) logging.warning("This version is more lenient with input covariances, as many potential errors can't be checked for the whole input covariance in advance. Pay extra care to your covariances!") streamer = DataFrameStreamer.data_frame_streamer(args.covariance, "GENE") covariance_manager = MatrixManager.StreamedMatrixManager(streamer, MatrixManager.GENE_SNP_COVARIANCE_DEFINITION) else: logging.info("Bypassing covariance for single-snp-models") d = model.weights[[WDBQF.K_GENE, WDBQF.K_RSID]].rename(columns={WDBQF.K_RSID:"id1"}) d = d.assign(id2=d.id1, value=1) covariance_manager = MatrixManager.MatrixManager(d, {MatrixManager.K_MODEL:WDBQF.K_GENE, MatrixManager.K_ID1:"id1", MatrixManager.K_ID2:"id2", MatrixManager.K_VALUE:"value"}) gwas = _gwas_wrapper(gwas) if gwas is not None else _beta_loader(args) context = _build_context(model, covariance_manager, gwas, args.MAX_R) return context def _build_context(model, covariance_manager, gwas, MAX_R=None): gwas = _prepare_gwas(gwas) gwas = _sanitized_gwas(gwas) context = OptimizedContext(gwas, model, covariance_manager, MAX_R) return context def _build_simple_context(model, covariance_manager, gwas): model = _prepare_model(model) gwas = _prepare_gwas(gwas) gwas = _sanitized_gwas(gwas) context = SimpleContext(gwas, model, covariance_manager) return context def _to_int(d): r = d try: r = int(d) except: pass return r def _results_column_order(with_additional=False): K = Constants AK = AssociationCalculation.ARF column_order = [WDBQF.K_GENE, WDBEQF.K_GENE_NAME, K.ZSCORE, AK.K_EFFECT_SIZE, Constants.PVALUE, AK.K_VAR_G, WDBEQF.K_PRED_PERF_R2, WDBEQF.K_PRED_PERF_PVAL, WDBEQF.K_PRED_PERF_QVAL, AK.K_N_SNPS_USED, AK.K_N_SNPS_IN_COV, WDBEQF.K_N_SNP_IN_MODEL] if with_additional: ADD = AssociationCalculation.ASF column_order.extend([ADD.K_BEST_GWAS_P, ADD.K_LARGEST_WEIGHT]) return column_order def format_output(results, context, remove_ens_version): results = results.drop("n_snps_in_model",1) # Dodge the use of cdf on non finite values i = numpy.isfinite(results.zscore) results[Constants.PVALUE] = numpy.nan results.loc[i, Constants.PVALUE] = 2 * stats.norm.sf(numpy.abs(results.loc[i, Constants.ZSCORE].values)) model_info = pandas.DataFrame(context.get_model_info()) merged =
pandas.merge(results, model_info, how="inner", on="gene")
pandas.merge
import logging import traceback import pandas as pd from os import sys, path root_path = path.dirname(path.dirname(path.abspath(__file__))) try: import Database.NoSqlRw as NoSqlRw import Database.AliasTable as AliasTable import DataHub.DataUtility as DataUtility from Utiltity.common import * from Utiltity.df_utility import * from Utiltity.time_utility import * from Database.DatabaseEntry import DatabaseEntry from Database.UpdateTableEx import UpdateTableEx from Utiltity.plugin_manager import PluginManager except Exception as e: sys.path.append(root_path) import Database.NoSqlRw as NoSqlRw import Database.AliasTable as AliasTable import DataHub.DataUtility as DataUtility from Utiltity.common import * from Utiltity.df_utility import * from Utiltity.time_utility import * from Database.DatabaseEntry import DatabaseEntry from Database.UpdateTableEx import UpdateTableEx from Utiltity.plugin_manager import PluginManager finally: logger = logging.getLogger('') """ We don't need to specify the filed currently. Just using the alias table. If we want to standardize the field. Just rename all the fields. """ NEED_COLLECTOR_CAPACITY = ['BalanceSheet', 'CashFlowStatement', 'IncomeStatement'] ROOT_TAGS = ['BalanceSheet', 'CashFlowStatement', 'IncomeStatement'] TABLE_BALANCE_SHEET = 'BalanceSheet' TABLE_CASH_FLOW_STATEMENT = 'CashFlowStatement' TABLE_INCOME_STATEMENT = 'IncomeStatement' TABLE_LIST = [TABLE_BALANCE_SHEET, TABLE_CASH_FLOW_STATEMENT, TABLE_INCOME_STATEMENT] IDENTITY_FINANCE_DATA = '<stock_code>.<exchange>' QUERY_FIELD = { 'content': ([str], ROOT_TAGS), 'stock_identity': ([str], []), # 'report_type': ([str], ['ANNUAL', 'SEMIANNUAL', 'QUARTERLY', 'MONTHLY', 'WEEKLY']), 'since': ([datetime.datetime, None], []), 'until': ([datetime.datetime, None], [])} RESULT_FIELD = { 'identity': (['str'], []), 'period': (['datetime'], [])} # The last day of report period class FinanceData(DataUtility.DataUtility): def __init__(self, plugin: PluginManager, update: UpdateTableEx): super().__init__(plugin, update) self.__cached_data = { 'BalanceSheet': {}, 'IncomeStatement': {}, 'CashFlowStatement': {}, } # key: report_type; value: stock_identity self.__save_table = { 'BalanceSheet': [], 'IncomeStatement': [], 'CashFlowStatement': [], } # ------------------------------------------------------------------------------------------------------------------ def execute_update_patch(self, patch: DataUtility.Patch) -> DataUtility.RESULT_CODE: logger.info('FinanceData.execute_update_patch(' + str(patch) + ')') if not self.is_data_support(patch.tags): logger.info('FinanceData.execute_update_patch() - Data is not support.') return DataUtility.RESULT_NOT_SUPPORTED report_type = patch.tags[0] save_list = self.__save_table.get(report_type) report_dict = self.__cached_data.get(report_type) if report_dict is None or save_list is None: # Should not reach here logger.error('Cannot not get report dict for ' + report_type) return DataUtility.RESULT_FAILED stock_identity = normalize_stock_identity(patch.tags[1]) df = self.__do_fetch_finance_data(report_type, stock_identity, patch.since, patch.until) if df is None or len(df) == 0: return DataUtility.RESULT_FAILED # self.__alias_table.tell_names(list(df.columns)) # self.__alias_table.check_save() # df.set_index('period') codes = df['identity'].unique() for code in codes: new_df = df[df['identity'] == code] if new_df is None or len(new_df) == 0: continue if code in report_dict.keys() and report_dict[code] is not None: old_df = report_dict[code] concated_df = concat_dataframe_row_by_index([old_df, new_df]) report_dict[code] = concated_df else: report_dict[code] = new_df if code not in save_list: save_list.append(code) return DataUtility.RESULT_SUCCESSFUL def trigger_save_data(self, patches: [DataUtility.Patch]) -> DataUtility.RESULT_CODE: result = self.__save_cached_data() if result: if self.get_update_table().update_latest_update_time('SecuritiesInfo', '', ''): return DataUtility.RESULT_SUCCESSFUL else: return DataUtility.RESULT_FAILED return DataUtility.RESULT_FAILED # -------------------------------------------------- probability -------------------------------------------------- def get_root_tags(self) -> [str]: nop(self) return NEED_COLLECTOR_CAPACITY def is_data_support(self, tags: [str]) -> bool: nop(self) return (tags is not None) and (isinstance(tags, list)) and (len(tags) > 2) and (tags[0] in ROOT_TAGS) def get_cached_data_range(self, tags: [str]) -> (datetime.datetime, datetime.datetime): if not self.is_data_support(tags): return None, None df = self.__cached_data.get(tags[0]) if df is None or len(df) == 0: return None, None min_date = min(df['trade_date']) max_date = max(df['trade_date']) return text_auto_time(min_date), text_auto_time(max_date) # --------------------------------------------------- private if --------------------------------------------------- def data_from_cache(self, selector: DataUtility.Selector) -> pd.DataFrame or None: result = None if not self.is_data_support(selector.tags): logger.error('FinanceData.data_from_cache() - Error selector tags : ' + str(selector.tags)) return None report_type = selector.tags[0] report_dict = self.__cached_data.get(report_type) if report_dict is None: logger.error('FinanceData.data_from_cache() - Do not support this kind of data : ' + report_type) return None stock_identity = selector.tags[1] stock_identity = normalize_stock_identity(stock_identity) stock_data = report_dict.get(stock_identity) if stock_data is None: self.__load_cached_data(selector.tags) stock_data = report_dict.get(stock_identity) if stock_data is None: return None df = slice_dataframe_by_datetime(stock_data, selector.since, selector.until) return df # -------------------------------------------------- probability -------------------------------------------------- def get_reference_data_range(self, tags: [str]) -> (datetime.datetime, datetime.datetime): nop(self, tags) return [None, None] # ----------------------------------------------------------------------------------------------------------------- def __do_fetch_finance_data(self, report_type: str, stock_identity: str, report_since: datetime.datetime, report_until: datetime.datetime) -> pd.DataFrame: if report_type not in ROOT_TAGS: return None argv = { 'content': report_type, 'stock_identity': stock_identity, 'since': report_since, 'until': report_until, } if not self._check_dict_param(argv, QUERY_FIELD): return None plugins = self.get_plugin_manager().find_module_has_capacity(report_type) for plugin in plugins: df = self.get_plugin_manager().execute_module_function(plugin, 'fetch_data', argv) if df is None or not isinstance(df, pd.DataFrame) or len(df) == 0 or \ not self._check_dataframe_field(df, RESULT_FIELD, list(RESULT_FIELD.keys())): logger.info('Finance data - Fetch data format Error.') continue return df return None def __load_cached_data(self, tags: [str]) -> bool: report_type = tags[0] stock_identity = tags[1] data_table = DatabaseEntry().get_finance_table(report_type) record = data_table.query(stock_identity) if record is not None and len(record) > 0: df =
pd.DataFrame(record)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(pd.DataFrame(data['diff']),3)) r3 = Rank(volume_delta) rank = pd.concat([r1,r2,r3],axis = 1,join = 'inner') rank.columns = ['r1','r2','r3'] alpha = (rank['r1'] + rank['r2'])* rank['r3'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha7'] return alpha @timer def alpha8(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') data_price = (data['High'] + data['Low'])/2 * 0.2 + data['Vwap'] * 0.2 data_price_delta = Delta(pd.DataFrame(data_price),4) * -1 alpha = Rank(data_price_delta) alpha.columns = ['alpha8'] return alpha @timer def alpha9(self): high = self.high low = self.low volume = self.volume data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['price']= (data['High'] + data['Low'])/2 data['price_delay'] = Delay(pd.DataFrame(data['price']),1) alpha_temp = (data['price'] - data['price_delay']) * (data['High'] - data['Low'])/data['Vol'] alpha_temp_unstack = alpha_temp.unstack(level = 'ID') alpha = alpha_temp_unstack.ewm(span = 7, ignore_na = True, min_periods = 7).mean() alpha_final = alpha.stack() alpha = pd.DataFrame(alpha_final) alpha.columns = ['alpha9'] return alpha @timer def alpha10(self): ret = self.ret close = self.close ret_std = STD(pd.DataFrame(ret),20) ret_std.columns = ['ret_std'] data = pd.concat([ret,close,ret_std],axis = 1, join = 'inner') temp1 = pd.DataFrame(data['ret_std'][data['Pctchg'] < 0]) temp2 = pd.DataFrame(data['Close'][data['Pctchg'] >= 0]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0,join = 'outer') temp_order = pd.concat([data,temp],axis = 1) temp_square = pd.DataFrame(np.power(temp_order['temp'],2)) alpha_temp = TsMax(temp_square,5) alpha = Rank(alpha_temp) alpha.columns = ['alpha10'] return alpha @timer def alpha11(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume],axis = 1,join = 'inner') data_temp = (data['Close'] - data['Low']) -(data['High'] - data['Close'])\ /(data['High'] - data['Low']) * data['Vol'] alpha = Sum(pd.DataFrame(data_temp),6) alpha.columns = ['alpha11'] return alpha @timer def alpha12(self): Open = self.open vwap = self.vwap close = self.close data = pd.concat([Open,vwap,close],axis = 1, join = 'inner') data['p1'] = data['Open'] - Mean(data['Open'],10) data['p2'] = data['Close'] - data['Vwap'] r1 = Rank(pd.DataFrame(data['p1'])) r2 = Rank(pd.DataFrame(np.abs(data['p2']))) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] alpha = rank['r1'] - rank['r2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha12'] return alpha @timer def alpha13(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') alpha = (data['High'] + data['Low'])/2 - data['Vwap'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha13'] return alpha @timer def alpha14(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close'] - data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha14'] return alpha @timer def alpha15(self): Open = self.open close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([Open,close_delay],axis = 1,join = 'inner') alpha = data['Open']/data['close_delay'] - 1 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha15'] return alpha @timer def alpha16(self): vwap = self.vwap volume = self.volume data = pd.concat([vwap,volume],axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vol'])) r2 = Rank(pd.DataFrame(data['Vwap'])) rank = pd.concat([r1,r2],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(Rank(corr),5) alpha.columns = ['alpha16'] return alpha @timer def alpha17(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close],axis = 1, join = 'inner') data['vwap_max15'] = TsMax(data['Vwap'],15) data['close_delta5'] = Delta(data['Close'],5) temp = np.power(data['vwap_max15'],data['close_delta5']) alpha = Rank(pd.DataFrame(temp)) alpha.columns = ['alpha17'] return alpha @timer def alpha18(self): """ this one is similar with alpha14 """ close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close']/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha18'] return alpha @timer def alpha19(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') data['temp1'] = (data['Close'] - data['close_delay'])/data['close_delay'] data['temp2'] = (data['Close'] - data['close_delay'])/data['Close'] temp1 = pd.DataFrame(data['temp1'][data['Close'] < data['close_delay']]) temp2 = pd.DataFrame(data['temp2'][data['Close'] >= data['close_delay']]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0) data = pd.concat([data,temp],axis = 1,join = 'outer') alpha = pd.DataFrame(data['temp']) alpha.columns = ['alpha19'] return alpha @timer def alpha20(self): close = self.close close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha20'] return alpha @timer def alpha21(self): close = self.close close_mean = Mean(close,6) alpha = RegBeta(0,close_mean,None,6) alpha.columns = ['alpha21'] return alpha @timer def alpha22(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1,join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame((data['close'] - data['close_mean'])/data['close_mean']) temp_delay = Delay(temp,3) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] temp2 = pd.DataFrame(data_temp['temp'] - data_temp['temp_delay']) alpha = SMA(temp2,12,1) alpha.columns = ['alpha22'] return alpha @timer def alpha23(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['Close','close_std','close_delay'] data['temp'] = data['close_std'] data['temp'][data['Close'] <= data['close_delay']] = 0 temp = pd.DataFrame(data['temp']) sma1 = SMA(temp,20,1) sma2 = SMA(pd.DataFrame(data['close_std']),20,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2']) alpha.columns = ['alpha23'] return alpha @timer def alpha24(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis=1 ,join = 'inner' ) temp = data['Close'] - data['close_delay'] temp = pd.DataFrame(temp) alpha = SMA(temp,5,1) alpha.columns = ['alpha24'] return alpha @timer def alpha25(self): close = self.close close_delta = Delta(close,7) ret = self.ret r1 = Rank(close_delta) r3 = Rank(Sum(ret,250)) volume = self.volume volume_mean = Mean(pd.DataFrame(volume['Vol']),20) volume_mean.columns = ['volume_mean'] data = pd.concat([volume,volume_mean],axis = 1,join = 'inner') temp0 = pd.DataFrame(data['Vol']/data['volume_mean']) temp = DecayLinear(temp0,9) r2 = Rank(temp) rank = pd.concat([r1,r2,r3],axis = 1, join = 'inner') rank.columns = ['r1','r2','r3'] alpha = pd.DataFrame(-1 * rank['r1'] * (1 - rank['r2']) * rank['r3']) alpha.columns = ['alpha25'] return alpha @timer def alpha26(self): close = self.close vwap = self.vwap close_mean7 = Mean(close,7) close_mean7.columns = ['close_mean7'] close_delay5 = Delay(close,5) close_delay5.columns = ['close_delay5'] data = pd.concat([vwap,close_delay5],axis = 1,join = 'inner') corr = Corr(data,230) corr.columns = ['corr'] data_temp = pd.concat([corr,close_mean7,close],axis = 1,join = 'inner') alpha = data_temp['close_mean7'] - data_temp['Close'] + data_temp['corr'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha26'] return alpha @timer def alpha27(self): """ uncompleted """ close = self.close close_delay3 = Delay(close,3) close_delay6 = Delay(close,6) data = pd.concat([close,close_delay3,close_delay6],axis = 1,join = 'inner') data.columns = ['close','close_delay3','close_delay6'] temp1 = pd.DataFrame((data['close'] - data['close_delay3'])/data['close_delay3'] * 100) temp2 = pd.DataFrame((data['close'] - data['close_delay6'])/data['close_delay6'] * 100) data_temp = pd.concat([temp1,temp2],axis = 1,join = 'inner') data_temp.columns = ['temp1','temp2'] temp = pd.DataFrame(data_temp['temp1'] + data_temp['temp2']) alpha = DecayLinear(temp,12) alpha.columns = ['alpha27'] return alpha @timer def alpha28(self): close = self.close low = self.low high = self.high low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['Close','low_min','high_max'] temp1 = pd.DataFrame((data['Close'] - data['low_min']) /(data['high_max'] - data['low_min'])) sma1 = SMA(temp1,3,1) sma2 = SMA(sma1,3,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] * 2 - sma['sma2'] * 3) alpha.columns = ['alpha28'] return alpha @timer def alpha29(self): close = self.close volume = self.volume close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha29'] return alpha @timer def alpha30(self): close = self.close close_delay = Delay(close,1) @timer def alpha31(self): close = self.close close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha31'] return alpha @timer def alpha32(self): volume = self.volume high = self.high r1 = Rank(volume) r2 = Rank(high) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,3) r = Rank(corr) alpha = -1 * Sum(r,3) alpha.columns = ['alpha32'] return alpha @timer def alpha33(self): low = self.low volume = self.volume ret = self.ret low_min = TsMin(low,5) low_min_delay = Delay(low_min,5) data1 = pd.concat([low_min,low_min_delay],axis = 1,join = 'inner') data1.columns = ['low_min','low_min_delay'] ret_sum240 = Sum(ret,240) ret_sum20 = Sum(ret,20) ret_temp = pd.concat([ret_sum240,ret_sum20],axis = 1, join = 'inner') ret_temp.columns = ['ret240','ret20'] temp1 = pd.DataFrame(data1['low_min_delay'] - data1['low_min']) temp2 = pd.DataFrame((ret_temp['ret240'] - ret_temp['ret20'])/220) r_temp2 = Rank(temp2) r_volume = TsRank(volume,5) temp = pd.concat([temp1,r_temp2,r_volume],axis = 1,join = 'inner') temp.columns = ['temp1','r_temp2','r_volume'] alpha = temp['temp1'] * temp['r_temp2'] * temp['r_volume'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha33'] return alpha @timer def alpha34(self): close = self.close close_mean = Mean(close,12) close_mean.columns = ['close_mean'] data = pd.concat([close,close_mean],axis = 1, join = 'inner') alpha = pd.DataFrame(data['close_mean']/data['Close']) alpha.columns = ['alpha34'] return alpha @timer def alpha35(self): volume = self.volume Open = self.open open_delay = Delay(Open,1) open_delay.columns = ['open_delay'] open_linear = DecayLinear(Open,17) open_linear.columns = ['open_linear'] open_delay_temp = DecayLinear(open_delay,15) r1 = Rank(open_delay_temp) data = pd.concat([Open,open_linear],axis = 1,join = 'inner') Open_temp = data['Open'] * 0.65 + 0.35 * data['open_linear'] rank = pd.concat([volume,Open_temp],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,7) r2 = Rank(-1 * corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = Cross_min(pd.DataFrame(r['r1']),pd.DataFrame(r['r2'])) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha35'] return alpha @timer def alpha36(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,6) temp = Sum(corr,2) alpha = Rank(temp) alpha.columns = ['alpha36'] return alpha @timer def alpha37(self): Open = self.open ret = self.ret open_sum = Sum(Open,5) ret_sum = Sum(ret,5) data = pd.concat([open_sum,ret_sum],axis = 1,join = 'inner') data.columns = ['open_sum','ret_sum'] temp = data['open_sum'] * data['ret_sum'] temp_delay = Delay(temp,10) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] alpha = -1 * Rank(pd.DataFrame(data_temp['temp'] - data_temp['temp_delay'])) alpha.columns = ['alpha37'] return alpha @timer def alpha38(self): high = self.high high_mean = Mean(high,20) high_delta = Delta(high,2) data = pd.concat([high,high_mean,high_delta],axis = 1,join = 'inner') data.columns = ['high','high_mean','high_delta'] data['alpha'] = -1 * data['high_delta'] data['alpha'][data['high_mean'] >= data['high']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha38'] return alpha @timer def alpha39(self): close = self.close Open = self.open vwap = self.vwap volume = self.volume close_delta2 = Delta(close,2) close_delta2_decay = DecayLinear(close_delta2,8) r1 = Rank(close_delta2_decay) price_temp = pd.concat([vwap,Open],axis = 1,join = 'inner') price = pd.DataFrame(price_temp['Vwap'] * 0.3 + price_temp['Open'] * 0.7) volume_mean = Mean(volume,180) volume_mean_sum = Sum(volume_mean,37) rank = pd.concat([price,volume_mean_sum],axis = 1,join = 'inner') corr = Corr(rank,14) corr_decay = DecayLinear(corr,12) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns = ['alpha39'] return alpha @timer def alpha40(self): close = self.close volume = self.volume close_delay = Delay(close,1) data = pd.concat([close,volume,close_delay],axis = 1, join = 'inner') data.columns = ['close','volume','close_delay'] data['temp1'] = data['volume'] data['temp2'] = data['volume'] data['temp1'][data['close'] <= data['close_delay']] = 0 data['temp2'][data['close'] > data['close_delay']] = 0 s1 = Sum(pd.DataFrame(data['temp1']),26) s2 = Sum(pd.DataFrame(data['temp2']),26) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha40'] return alpha @timer def alpha41(self): vwap = self.vwap vwap_delta = Delta(vwap,3) vwap_delta_max = TsMax(vwap_delta,5) alpha = -1 * Rank(vwap_delta_max) alpha.columns = ['alpha41'] return alpha @timer def alpha42(self): high = self.high volume = self.volume high_std = STD(high,10) r1 = Rank(high_std) data = pd.concat([high,volume],axis = 1,join = 'inner') corr = Corr(data,10) r = pd.concat([r1,corr],axis = 1,join = 'inner') r.columns = ['r1','corr'] alpha = pd.DataFrame(-1 * r['r1'] * r['corr']) alpha.columns = ['alpha42'] return alpha @timer def alpha43(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,6) alpha.columns = ['alpha43'] return alpha @timer def alpha44(self): volume = self.volume vwap = self.vwap low = self.low volume_mean = Mean(volume,10) rank = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(rank,7) corr_decay = DecayLinear(corr,6) r1 = TsRank(corr_decay,4) vwap_delta = Delta(vwap,3) vwap_delta_decay = DecayLinear(vwap_delta,10) r2 = TsRank(vwap_delta_decay,15) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha44'] return alpha @timer def alpha45(self): volume = self.volume vwap = self.vwap close = self.close Open = self.open price = pd.concat([close,Open],axis = 1,join = 'inner') price['price'] = price['Close'] * 0.6 + price['Open'] * 0.4 price_delta = Delta(pd.DataFrame(price['price']),1) r1 = Rank(price_delta) volume_mean = Mean(volume,150) data = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr = Corr(data,15) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha45'] return alpha @timer def alpha46(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close,close_mean3,close_mean6,close_mean12,close_mean24],axis = 1,join = 'inner') data.columns = ['c','c3','c6','c12','c24'] alpha = (data['c3'] + data['c6'] + data['c12'] + data['c24'])/(4 * data['c']) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha46'] return alpha @timer def alpha47(self): close = self.close low = self.low high = self.high high_max = TsMax(high,6) low_min = TsMin(low,6) data = pd.concat([high_max,low_min,close],axis = 1,join = 'inner') data.columns = ['high_max','low_min','close'] temp = pd.DataFrame((data['high_max'] - data['close'])/(data['high_max'] - \ data['low_min']) * 100) alpha = SMA(temp,9,1) alpha.columns = ['alpha47'] return alpha @timer def alpha48(self): close = self.close volume = self.volume temp1 = Delta(close,1) temp1_delay1 = Delay(temp1,1) temp1_delay2 = Delay(temp1,2) data = pd.concat([temp1,temp1_delay1,temp1_delay2],axis = 1,join = 'inner') data.columns = ['temp1','temp1_delay1','temp1_delay2'] temp2 = pd.DataFrame(np.sign(data['temp1']) + np.sign(data['temp1_delay1']) \ + np.sign(data['temp1_delay2'])) volume_sum5 = Sum(volume,5) volume_sum20 = Sum(volume,20) data_temp = pd.concat([temp2,volume_sum5,volume_sum20],axis = 1,join = 'inner') data_temp.columns = ['temp2','volume_sum5','volume_sum20'] temp3 = pd.DataFrame(data_temp['temp2'] * data_temp['volume_sum5']/\ data_temp['volume_sum20']) alpha = -1 * Rank(temp3) alpha.columns = ['alpha48'] return alpha @timer def alpha49(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 0 price['temp'][price['sum'] < price['sum_delay']] = 1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha49'] return alpha @timer def alpha50(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = -1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha50'] return alpha @timer def alpha51(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = 0 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha51'] return alpha @timer def alpha52(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') data['sum_delay'] = Delay(pd.DataFrame((data['High'] + data['Low'] + data['Close'])/3),1) temp1 = pd.DataFrame(data['High'] - data['sum_delay']) temp1.columns = ['high_diff'] temp2 = pd.DataFrame(data['sum_delay'] - data['Low']) temp2.columns = ['low_diff'] temp1['max'] = temp1['high_diff'] temp1['max'][temp1['high_diff'] < 0 ] = 0 temp2['max'] = temp2['low_diff'] temp2['max'][temp2['low_diff'] < 0 ] = 0 temp1_sum = Sum(pd.DataFrame(temp1['max']),26) temp2_sum = Sum(pd.DataFrame(temp2['max']),26) alpha_temp = pd.concat([temp1_sum,temp2_sum],axis = 1,join = 'inner') alpha_temp.columns = ['s1','s2'] alpha = pd.DataFrame(alpha_temp['s1']/alpha_temp['s2'] * 100) alpha.columns = ['alpha52'] return alpha @timer def alpha53(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,12) alpha = count/12.0 * 100 alpha.columns = ['alpha53'] return alpha @timer def alpha54(self): Open = self.open close = self.close data = pd.concat([Open,close], axis = 1, join = 'inner') data.columns = ['close','open'] temp = pd.DataFrame(data['close'] - data['open']) temp_abs = pd.DataFrame(np.abs(temp)) df = pd.concat([temp,temp_abs], axis = 1, join= 'inner') df.columns = ['temp','abs'] std = STD(pd.DataFrame(df['temp'] + df['abs']),10) corr = Corr(data,10) data1 = pd.concat([corr,std],axis = 1, join = 'inner') data1.columns = ['corr','std'] alpha = Rank(pd.DataFrame(data1['corr'] + data1['std'])) * -1 alpha.columns = ['alpha54'] return alpha @timer def alpha55(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] tep = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha = Sum(tep,20) alpha.columns = ['alpha55'] return alpha @timer def alpha56(self): low = self.low high = self.high volume = self.volume Open = self.open open_min = TsMin(Open,12) data1 = pd.concat([Open,open_min], axis = 1, join = 'inner') data1.columns = ['open','open_min'] r1 = Rank(pd.DataFrame(data1['open'] - data1['open_min'])) volume_mean = Mean(volume,40) volume_mean_sum= Sum(volume_mean,19) data2 = pd.concat([high,low],axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) rank = pd.concat([temp,volume_mean_sum],axis = 1 , join = 'inner') rank.columns = ['temp','volume_mean_sum'] corr = Corr(rank,13) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] >= r['r2']] = 1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha56'] return alpha @timer def alpha57(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = pd.DataFrame((data['close'] - data['low_min'])/(data['high_max'] \ - data['low_min']) * 100) alpha = SMA(temp,3,1) alpha.columns = ['alpha57'] return alpha @timer def alpha58(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,20) alpha = count/20.0 * 100 alpha.columns = ['alpha58'] return alpha @timer def alpha59(self): low = self.low high = self.high close = self.close close_delay = Delay(close,1) max_temp = pd.concat([high,close_delay],axis = 1,join = 'inner') min_temp = pd.concat([low,close_delay],axis = 1,join = 'inner') max_temp1 = pd.DataFrame(np.max(max_temp,axis = 1)) min_temp1 = pd.DataFrame(np.min(min_temp,axis = 1)) data = pd.concat([close,close_delay,max_temp1,min_temp1],axis = 1,join = 'inner') data.columns = ['close','close_delay','max','min'] data['max'][data['close'] > data['close_delay']] = 0 data['min'][data['close'] <= data['close_delay']] = 0 alpha = pd.DataFrame(data['max'] + data['min']) alpha.columns = ['alpha59'] return alpha @timer def alpha60(self): low = self.low high = self.high close = self.close volume = self.volume data = pd.concat([low,high,close,volume],axis = 1,join = 'inner') temp = pd.DataFrame((2 * data['Close'] - data['Low'] - data['High'])/(data['Low'] + \ data['High']) * data['Vol']) alpha = Sum(temp,20) alpha.columns = ['alpha60'] return alpha @timer def alpha61(self): low = self.low volume = self.volume vwap = self.vwap vwap_delta = Delta(vwap,1) vwap_delta_decay = DecayLinear(vwap_delta,12) r1 = Rank(vwap_delta_decay) volume_mean = Mean(volume,80) data = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(data,8) corr_decay = DecayLinear(corr,17) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) * -1) alpha.columns = ['alpha61'] return alpha @timer def alpha62(self): high = self.high volume = self.volume volume_r = Rank(volume) data = pd.concat([high,volume_r],axis = 1,join = 'inner') alpha = -1 * Corr(data,5) alpha.columns = ['alpha62'] return alpha @timer def alpha63(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),6,1) sma2 = SMA(pd.DataFrame(data['abs']),6,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha63'] return alpha @timer def alpha64(self): vwap = self.vwap volume = self.volume close = self.close vwap_r = Rank(vwap) volume_r = Rank(volume) data1 = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr1 = Corr(data1,4) corr1_decay = DecayLinear(corr1,4) r1 = Rank(corr1_decay) close_mean = Mean(close,60) close_r = Rank(close) close_mean_r = Rank(close_mean) data2 = pd.concat([close_r,close_mean_r],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_max = TsMax(corr2,13) corr2_max_decay = DecayLinear(corr2_max,14) r2 = Rank(corr2_max_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) *-1) alpha.columns = ['alpha64'] return alpha @timer def alpha65(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = pd.DataFrame(data['close_mean']/data['close']) alpha.columns = ['alpha65'] return alpha @timer def alpha66(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha66'] return alpha @timer def alpha67(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),24,1) sma2 = SMA(pd.DataFrame(data['abs']),24,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha67'] return alpha @timer def alpha68(self): high = self.high volume = self.volume low = self.low data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['sum']= (data['High'] + data['Low'])/2 data['sum_delta'] = Delta(pd.DataFrame(data['sum']),1) temp = data['sum_delta'] * (data['High'] - data['Low'])/data['Vol'] alpha = SMA(pd.DataFrame(temp),15,2) alpha.columns = ['alpha68'] return alpha @timer def alpha69(self): high = self.high low = self.low Open = self.open dtm = DTM(Open,high) dbm = DBM(Open,low) dtm_sum = Sum(dtm,20) dbm_sum = Sum(dbm,20) data = pd.concat([dtm_sum,dbm_sum],axis = 1, join = 'inner') data.columns = ['dtm','dbm'] data['temp1'] = (data['dtm'] - data['dbm'])/data['dtm'] data['temp2'] = (data['dtm'] - data['dbm'])/data['dbm'] data['temp1'][data['dtm'] <= data['dbm']] = 0 data['temp2'][data['dtm'] >= data['dbm']] = 0 alpha = pd.DataFrame(data['temp1'] + data['temp2']) alpha.columns = ['alpha69'] return alpha @timer def alpha70(self): amount = self.amt alpha= STD(amount,6) alpha.columns = ['alpha70'] return alpha @timer def alpha71(self): close = self.close close_mean = Mean(close,24) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha71'] return alpha @timer def alpha72(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),15,1) alpha.columns = ['alpha72'] return alpha @timer def alpha73(self): vwap = self.vwap volume = self.volume close = self.close data1 = pd.concat([close,volume],axis = 1,join = 'inner') corr1 = Corr(data1,10) corr1_decay = DecayLinear(DecayLinear(corr1,16),4) r1 = TsRank(corr1_decay,5) volume_mean = Mean(volume,30) data2 = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1,join ='inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns= ['alpha73'] return alpha @timer def alpha74(self): vwap = self.vwap volume = self.volume low = self.low volume_mean = Mean(volume,40) volume_mean_sum = Sum(volume_mean,20) data1 = pd.concat([low,vwap],axis = 1,join = 'inner') data_sum = Sum(pd.DataFrame(data1['Low'] * 0.35 + data1['Vwap'] * 0.65),20) data = pd.concat([volume_mean_sum,data_sum],axis = 1,join = 'inner') corr = Corr(data,7) r1 = Rank(corr) vwap_r = Rank(vwap) volume_r = Rank(volume) data_temp = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr2 = Corr(data_temp,6) r2 = Rank(corr2) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha74'] return alpha @timer def alpha75(self): close = self.close Open = self.open close_index = self.close_index open_index = self.open_index data1 = pd.concat([close,Open], axis = 1, join = 'inner') data1.columns = ['close','open'] data1['temp'] = 1 data1['temp'][data1['close'] <= data1['open']] = 0 data2 = pd.concat([close_index,open_index], axis = 1, join = 'inner') data2.columns = ['close','open'] data2['tep'] = 1 data2['tep'][data2['close'] > data2['open']] = 0 temp = data1['temp'].unstack() tep = data2['tep'].unstack() tep1 = repmat(tep,1,np.size(temp,1)) data3 = temp * tep1 temp_result = data3.rolling(50,min_periods = 50).sum() tep_result = tep.rolling(50,min_periods = 50).sum() tep2_result = np.matlib.repmat(tep_result,1,np.size(temp,1)) result = temp_result/tep2_result alpha = pd.DataFrame(result.stack()) alpha.columns = ['alpha75'] return alpha @timer def alpha76(self): volume = self.volume close = self.close close_delay = Delay(close,1) data = pd.concat([volume,close,close_delay],axis = 1,join = 'inner') data.columns = ['volume','close','close_delay'] temp = pd.DataFrame(np.abs((data['close']/data['close_delay'] -1 )/data['volume'])) temp_std = STD(temp,20) temp_mean = Mean(temp,20) data_temp = pd.concat([temp_std,temp_mean],axis = 1,join = 'inner') data_temp.columns = ['std','mean'] alpha = pd.DataFrame(data_temp['std']/data_temp['mean']) alpha.columns = ['alpha76'] return alpha @timer def alpha77(self): vwap = self.vwap volume = self.volume low = self.low high = self.high data = pd.concat([high,low,vwap],axis = 1,join = 'inner') temp = pd.DataFrame((data['High'] + data['Low'])/2 - data['Vwap']) temp_decay = DecayLinear(temp,20) r1 = Rank(temp_decay) temp1 = pd.DataFrame((data['High'] + data['Low'])/2) volume_mean = Mean(volume,40) data2 = pd.concat([temp1,volume_mean],axis = 1,join = 'inner') corr = Corr(data2,3) corr_decay = DecayLinear(corr,6) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.min(r,axis = 1)) alpha.columns = ['alpha77'] return alpha @timer def alpha78(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') temp = pd.DataFrame((data['Low'] + data['High'] + data['Close'])/3) temp.columns = ['temp'] temp_mean = Mean(temp,12) temp_mean.columns = ['temp_mean'] temp2 = pd.concat([temp,temp_mean],axis = 1,join = 'inner') tmp = pd.DataFrame(temp2['temp'] - temp2['temp_mean']) data1 = pd.concat([close,temp_mean],axis = 1,join = 'inner') temp_abs = pd.DataFrame(np.abs(data1['Close'] - data1['temp_mean'])) temp_abs_mean = Mean(temp_abs,12) df = pd.concat([tmp,temp_abs_mean],axis = 1,join = 'inner') df.columns = ['df1','df2'] alpha = pd.DataFrame(df['df1']/(df['df2'] * 0.015)) alpha.columns = ['alpha78'] return alpha @timer def alpha79(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),12,1) sma2 = SMA(pd.DataFrame(data['abs']),12,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha79'] return alpha @timer def alpha80(self): volume = self.volume volume_delay = Delay(volume,5) volume_delay.columns = ['volume_delay'] data = pd.concat([volume,volume_delay],axis = 1,join = 'inner') alpha = (data['Vol'] - data['volume_delay'])/data['volume_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha80'] return alpha @timer def alpha81(self): volume = self.volume alpha = SMA(volume,21,2) alpha.columns = ['alpha81'] return alpha @timer def alpha82(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),20,1) alpha.columns = ['alpha82'] return alpha @timer def alpha83(self): high = self.high volume = self.volume high_r = Rank(high) volume_r = Rank(volume) data = pd.concat([high_r,volume_r],axis = 1,join = 'inner') corr = Corr(data,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha83'] return alpha @timer def alpha84(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,20) alpha.columns = ['alpha84'] return alpha @timer def alpha85(self): close = self.close volume = self.volume volume_mean = Mean(volume,20) close_delta = Delta(close,7) data1 = pd.concat([volume,volume_mean],axis = 1,join = 'inner') data1.columns = ['volume','volume_mean'] temp1 = pd.DataFrame(data1['volume']/data1['volume_mean']) r1 = TsRank(temp1,20) r2 = TsRank(-1 * close_delta,8) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha85'] return alpha @timer def alpha86(self): close = self.close close_delay20 = Delay(close,20) close_delay10 = Delay(close,20) data = pd.concat([close,close_delay20,close_delay10],axis = 1,join = 'inner') data.columns = ['close','close_delay20','close_delay10'] temp = pd.DataFrame((data['close_delay20'] - data['close_delay10'])/10 - \ (data['close_delay10'] - data['close'])/10) close_delta = Delta(close,1) * -1 data_temp = pd.concat([close_delta,temp],axis = 1,join = 'inner') data_temp.columns = ['close_delta','temp'] data_temp['close_delta'][data_temp['temp'] > 0.25]= -1 data_temp['close_delta'][data_temp['temp'] < 0]= 1 alpha = pd.DataFrame(data_temp['close_delta']) alpha.columns = ['alpha86'] return alpha @timer def alpha87(self): vwap = self.vwap high = self.high low = self.low Open = self.open vwap_delta = Delta(vwap,4) vwap_delta_decay = DecayLinear(vwap_delta,7) r1 = Rank(vwap_delta_decay) data = pd.concat([low,high,vwap,Open], axis = 1, join = 'inner') temp = pd.DataFrame((data['Low'] * 0.1 + data['High'] * 0.9 - data['Vwap'])/\ (data['Open'] - 0.5 * (data['Low'] + data['High']))) temp_decay = DecayLinear(temp,11) r2 = TsRank(temp_decay,7) r = pd.concat([r1,r2], axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(-1 * (r['r1'] + r['r2'])) alpha.columns = ['alpha87'] return alpha @timer def alpha88(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delta'] alpha = (data['close'] - data['close_delta'])/data['close_delta'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha88'] return alpha @timer def alpha89(self): close = self.close sma1 = SMA(close,13,2) sma2 = SMA(close,27,2) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3],axis = 1, join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(2 *(data['temp'] - data['sma'])) alpha.columns = ['alpha89'] return alpha @timer def alpha90(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2], axis = 1, join = 'inner') corr = Corr(rank,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha90'] return alpha @timer def alpha91(self): close = self.close volume = self.volume low = self.low close_max = TsMax(close,5) data1 = pd.concat([close,close_max], axis = 1,join = 'inner') data1.columns = ['close','close_max'] r1 = Rank(pd.DataFrame(data1['close'] - data1['close_max'])) volume_mean = Mean(volume,40) data2 = pd.concat([volume_mean,low], axis = 1, join = 'inner') corr = Corr(data2,5) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha91'] return alpha @timer def alpha92(self): volume = self.volume vwap = self.vwap close = self.close data = pd.concat([close,vwap],axis = 1, join = 'inner') data['price'] = data['Close'] * 0.35 + data['Vwap'] * 0.65 price_delta = Delta(pd.DataFrame(data['price']),2) price_delta_decay = DecayLinear(price_delta,3) r1 = Rank(price_delta_decay) volume_mean = Mean(volume,180) rank = pd.concat([volume_mean,close],axis = 1,join = 'inner') corr = Corr(rank,13) temp = pd.DataFrame(np.abs(corr)) temp_decay = DecayLinear(temp,5) r2 = TsRank(temp_decay,15) r = pd.concat([r1,r2],axis = 1, join = 'inner') alpha = pd.DataFrame(-1 * np.max(r, axis = 1)) alpha.columns = ['alpha92'] return alpha @timer def alpha93(self): low = self.low Open = self.open open_delay = Delay(Open,1) data = pd.concat([low,Open,open_delay],axis = 1,join = 'inner') data.columns = ['low','open','open_delay'] temp1 = pd.DataFrame(data['open'] - data['low']) temp2 = pd.DataFrame(data['open'] - data['open_delay']) data_temp = pd.concat([temp1,temp2],axis = 1 ,join = 'inner') temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) temp_max.columns = ['max'] data2 = pd.concat([data,temp_max],axis = 1,join = 'inner') data2['temp'] = data2['max'] data2['temp'][data2['open'] >= data2['open_delay']] = 0 alpha = Sum(pd.DataFrame(data2['temp']),20) alpha.columns = ['alpha93'] return alpha @timer def alpha94(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,30) alpha.columns = ['alpha94'] return alpha @timer def alpha95(self): amt = self.amt alpha = STD(amt,20) alpha.columns = ['alpha95'] return alpha @timer def alpha96(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = ( data['close'] - data['low_min'])/(data['high_max'] - data['low_min']) * 100 alpha_temp = SMA(pd.DataFrame(temp),3,1) alpha = SMA(alpha_temp,3,1) alpha.columns = ['alpha96'] return alpha @timer def alpha97(self): volume = self.volume alpha = STD(volume,10) alpha.columns = ['alpha97'] return alpha @timer def alpha98(self): close = self.close close_mean = Mean(close,100) close_mean_delta = Delta(close_mean,100) close_delay = Delay(close,100) data = pd.concat([close_mean_delta,close_delay],axis = 1,join = 'inner') data.columns = ['delta','delay'] temp = pd.DataFrame(data['delta']/ data['delay']) close_delta = Delta(close,3) close_min = TsMin(close,100) data_temp = pd.concat([close,close_delta,close_min,temp],axis = 1,join = 'inner') data_temp.columns = ['close','close_delta','close_min','temp'] data_temp['diff'] = (data_temp['close'] - data_temp['close_min']) * -1 data_temp['diff'][data_temp['temp'] < 0.05] = 0 data_temp['close_delta'] = data_temp['close_delta'] * -1 data_temp['close_delta'][data_temp['temp'] >= 0.05]= 0 alpha = pd.DataFrame(data_temp['close_delta'] + data_temp['diff']) alpha.columns = ['alpha98'] return alpha @timer def alpha99(self): close = self.close volume = self.volume r1 = Rank(close) r2 = Rank(volume) r = pd.concat([r1,r2],axis = 1,join = 'inner') cov = Cov(r,5) alpha = -1 * Rank(cov) alpha.columns = ['alpha99'] return alpha @timer def alpha100(self): volume = self.volume alpha = STD(volume,20) alpha.columns = ['alpha100'] return alpha @timer def alpha101(self): close = self.close volume = self.volume high = self.high vwap = self.vwap volume_mean = Mean(volume,30) volume_mean_sum = Sum(volume_mean,37) data1 = pd.concat([close,volume_mean_sum], axis = 1, join = 'inner') corr1 = Corr(data1,15) r1 = Rank(corr1) data2 = pd.concat([high,vwap],axis = 1, join = 'inner') temp = pd.DataFrame(data2['High'] * 0.1 + data2['Vwap'] * 0.9) temp_r = Rank(temp) volume_r = Rank(volume) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,11) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] < r['r2']] = -1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha101'] return alpha @timer def alpha102(self): volume = self.volume temp = Delta(volume,1) temp.columns = ['temp'] temp['max'] = temp['temp'] temp['max'][temp['temp'] < 0 ] = 0 temp['abs'] = np.abs(temp['temp']) sma1 = SMA(pd.DataFrame(temp['max']),6,1) sma2 = SMA(pd.DataFrame(temp['abs']),6,1) sma = pd.concat([sma1,sma2], axis = 1 ,join ='inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/ sma['sma2'] * 100) alpha.columns = ['alpha102'] return alpha @timer def alpha103(self): low = self.low lowday = Lowday(low,20) alpha = (20 - lowday)/20.0 * 100 alpha.columns = ['alpha103'] return alpha @timer def alpha104(self): close = self.close volume = self.volume high = self.high data = pd.concat([high,volume], axis = 1, join = 'inner') corr = Corr(data,5) corr_delta = Delta(corr,5) close_std = STD(close,20) r1 = Rank(close_std) temp = pd.concat([corr_delta,r1], axis = 1, join = 'inner') temp.columns = ['delta','r'] alpha = pd.DataFrame(-1 * temp['delta'] * temp['r']) alpha.columns = ['alpha104'] return alpha @timer def alpha105(self): volume = self.volume Open = self.open volume_r = Rank(volume) open_r = Rank(Open) rank = pd.concat([volume_r,open_r],axis = 1, join = 'inner') alpha = -1 * Corr(rank,10) alpha.columns = ['alpha105'] return alpha @timer def alpha106(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] alpha = pd.DataFrame(data['close'] - data['close_delay']) alpha.columns = ['alpha106'] return alpha @timer def alpha107(self): Open = self.open high = self.high close = self.close low = self.low high_delay = Delay(high,1) close_delay = Delay(close,1) low_delay = Delay(low,1) data = pd.concat([high_delay,close_delay,low_delay,Open], axis = 1, join = 'inner') data.columns = ['high_delay','close_delay','low_delay','open'] r1 = Rank(pd.DataFrame(data['open'] - data['high_delay'])) r2 = Rank(pd.DataFrame(data['open'] - data['close_delay'])) r3 = Rank(pd.DataFrame(data['open'] - data['low_delay'])) alpha = -1 * r1 * r2 * r3 alpha.columns = ['alpha107'] return alpha @timer def alpha108(self): high = self.high volume = self.volume vwap = self.vwap high_min = TsMin(high,2) data1 = pd.concat([high,high_min], axis = 1, join = 'inner') data1.columns = ['high','high_min'] r1 = Rank(pd.DataFrame(data1['high'] - data1['high_min'])) volume_mean = Mean(volume,120) rank = pd.concat([vwap,volume_mean],axis = 1, join = 'inner') corr = Corr(rank,6) r2 = Rank(corr) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = r['r1'] * r['r2'] * -1 alpha.columns = ['alpha108'] return alpha @timer def alpha109(self): high = self.high low = self.low data = pd.concat([high,low],axis = 1, join = 'inner') temp = SMA(pd.DataFrame(data['High'] - data['Low']),10,2) sma = SMA(temp,10,2) sma_temp = pd.concat([temp,sma],axis = 1, join = 'inner') sma_temp.columns = ['temp','sma'] alpha = pd.DataFrame(sma_temp['temp']/sma_temp['sma']) alpha.columns = ['alpha109'] return alpha @timer def alpha110(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([high,low,close_delay], axis = 1, join = 'inner') data['max1'] = data['High'] - data['close_delay'] data['max2'] = data['close_delay'] - data['Low'] data['max1'][data['max1'] < 0] = 0 data['max2'][data['max2'] < 0] = 0 s1 = Sum(pd.DataFrame(data['max1']),20) s2 = Sum(pd.DataFrame(data['max2']),20) s = pd.concat([s1,s2], axis = 1 , join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2']) alpha.columns = ['alpha110'] return alpha @timer def alpha111(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') temp = pd.DataFrame(data['Vol'] * (2 * data['Close'] - data['Low'] - data['High'])\ /(data['High'] - data['Low'])) sma1 = SMA(temp,11,2) sma2 = SMA(temp,4,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] - sma['sma2']) alpha.columns = ['alpha111'] return alpha @timer def alpha112(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close, close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = 1 data['temp'][data['close'] > data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha112'] return alpha @timer def alpha113(self): close = self.close volume = self.volume close_delay = Delay(close,5) close_delay_mean = Mean(close_delay,20) data1 = pd.concat([close,volume],axis = 1, join = 'inner') corr = Corr(data1,2) r1 = Rank(close_delay_mean) data2 = pd.concat([r1,corr], axis = 1, join = 'inner') data2.columns = ['r1','corr'] r1 = pd.DataFrame(data2['r1'] * data2['corr']) close_sum5 = Sum(close,5) close_sum20 = Sum(close,20) data3 = pd.concat([close_sum5,close_sum20],axis = 1, join = 'inner') corr2 = Corr(data3,2) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha113'] return alpha @timer def alpha114(self): close = self.close high = self.high low = self.low volume = self.volume vwap = self.vwap close_mean = Mean(close,5) data = pd.concat([high,low,close_mean], axis = 1, join = 'inner') data.columns = ['high','low','close_mean'] temp = pd.DataFrame(data['high'] - data['low'] / data['close_mean']) temp_delay = Delay(temp,2) r1 = TsRank(temp_delay,5) temp1 = pd.concat([temp,vwap,close], axis = 1, join = 'inner') temp1.columns = ['temp','vwap','close'] tep = pd.DataFrame(temp1['temp']/(temp1['vwap'] - temp1['close'])) r2 = TsRank(volume,5) data2 = pd.concat([r2,tep], axis = 1, join = 'inner') data2.columns = ['r2','tep'] tep1 = pd.DataFrame(data2['r2']/data2['tep']) r3 = TsRank(tep1,5) r = pd.concat([r1,r3],axis = 1, join = 'inner') r.columns = ['r1','r3'] alpha = pd.DataFrame(r['r1'] + r['r3']) alpha.columns = ['alpha114'] return alpha @timer def alpha115(self): high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,30) price = pd.concat([high,low], axis = 1, join = 'inner') price.columns = ['high','low'] price_temp = price['high'] * 0.9 + price['low'] * 0.1 data = pd.concat([price_temp,volume_mean],axis = 1, join = 'inner') corr = Corr(data,10) r1 = Rank(corr) data2 = pd.concat([high,low], axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) temp_r = TsRank(temp,4) volume_r = TsRank(volume,10) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,7) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha115'] return alpha @timer def alpha116(self): close = self.close alpha = RegResi(0,close,None,20) alpha.columns = ['alpha116'] return alpha @timer def alpha117(self): high = self.high low = self.low close = self.close volume = self.volume ret = self.ret r1 = TsRank(volume,32) data1 = pd.concat([close,high,low],axis = 1, join = 'inner') r2 = TsRank(pd.DataFrame(data1['Close'] + data1['High'] - data1['Low']),16) r3 = TsRank(ret,32) r = pd.concat([r1,r2,r3], axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(r['r1'] * (1 - r['r2']) * (1 - r['r3'])) alpha.columns = ['alpha117'] return alpha @timer def alpha118(self): high = self.high low = self.low Open = self.open data = pd.concat([high,low,Open], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame(data['High'] - data['Open']),20) s2 = Sum(pd.DataFrame(data['Open'] - data['Low']),20) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha118'] return alpha @timer def alpha119(self): Open = self.open volume = self.volume vwap = self.vwap volume_mean = Mean(volume,5) volume_mean_sum = Sum(volume_mean,26) data1 = pd.concat([vwap,volume_mean_sum],axis = 1, join = 'inner') corr1 = Corr(data1,5) corr1_decay = DecayLinear(corr1,7) r1 = Rank(corr1_decay) open_r = Rank(Open) volume_mean2 = Mean(volume,15) volume_mean2_r = Rank(volume_mean2) data2 = pd.concat([open_r, volume_mean2_r], axis = 1, join = 'inner') corr2 = Corr(data2,21) corr2_min = TsMin(corr2,9) corr2_min_r = TsRank(corr2_min,7) corr_min_r_decay = DecayLinear(corr2_min_r,8) r2 = Rank(corr_min_r_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha119'] return alpha @timer def alpha120(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close], axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vwap'] - data['Close'])) r2 = Rank(pd.DataFrame(data['Vwap'] + data['Close'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha120'] return alpha @timer def alpha121(self): vwap = self.vwap volume = self.volume vwap_r = TsRank(vwap,20) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,2) data = pd.concat([vwap_r,volume_mean_r], axis = 1, join = 'inner') corr= Corr(data,18) temp = TsRank(corr,3) vwap_min = TsMin(vwap,12) data2 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data2.columns = ['vwap','vwap_min'] rank = Rank(pd.DataFrame(data2['vwap'] - data2['vwap_min'])) data3 = pd.concat([rank,temp],axis = 1, join = 'inner') data3.columns = ['rank','temp'] alpha = pd.DataFrame(np.power(data3['rank'],data3['temp']) * -1) alpha.columns = ['alpha121'] return alpha @timer def alpha122(self): close = self.close close_ln = pd.DataFrame(np.log(close)) temp1 = SMA(close_ln,13,2) sma1 = SMA(temp1,13,2) sma2 = SMA(sma1,13,2) sma3 = SMA(sma2,13,2) sma3_delay = Delay(sma3,1) data = pd.concat([sma3,sma3_delay],axis = 1, join = 'inner') data.columns = ['sma','sma_delay'] alpha = pd.DataFrame(data['sma']/data['sma_delay']) alpha.columns = ['alpha122'] return alpha @timer def alpha123(self): volume = self.volume high = self.high low = self.low data1 = pd.concat([high,low], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame((data1['High'] + data1['Low'])/2),20) volume_mean = Mean(volume,60) s2 = Sum(volume_mean,20) data2 = pd.concat([s1,s2], axis = 1, join = 'inner') corr1 = Corr(data2,9) data3 = pd.concat([low,volume], axis = 1, join = 'inner') corr2 = Corr(data3,6) corr1_r = Rank(corr1) corr2_r = Rank(corr2) data = pd.concat([corr1_r,corr2_r], axis = 1, join = 'inner') data.columns = ['r1','r2'] data['alpha'] = -1 data['alpha'][data['r1'] >= data['r2']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha123'] return alpha @timer def alpha124(self): close = self.close vwap = self.vwap close_max = TsMax(close,30) close_max_r = Rank(close_max) close_max_r_decay = DecayLinear(close_max_r,2) close_max_r_decay.columns = ['decay'] data = pd.concat([close,vwap,close_max_r_decay], axis = 1, join ='inner') alpha = pd.DataFrame((data['Close'] - data['Vwap'])/data['decay']) alpha.columns = ['alpha124'] return alpha @timer def alpha125(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,80) data1 = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr1 = Corr(data1,17) data2 = pd.concat([close,vwap], axis = 1, join = 'inner') temp2 = pd.DataFrame(0.5*(data2['Close'] + data2['Vwap'])) temp2_delta = Delta(temp2,3) corr1_decay = DecayLinear(corr1,20) r1 = Rank(corr1_decay) temp2_delta_decay = DecayLinear(temp2_delta,16) r2 = Rank(temp2_delta_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha125'] return alpha @timer def alpha126(self): close = self.close high = self.high low = self.low data = pd.concat([close,high,low], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] + data['High'] + data['Low'])/3) alpha.columns = ['alpha126'] return alpha @timer def alpha127(self): close = self.close close_max = TsMax(close,12) data = pd.concat([close,close_max], axis = 1, join = 'inner') data.columns = ['close','close_max'] alpha = pd.DataFrame((data['close'] - data['close_max'])/data['close_max']) alpha.columns = ['alpha127'] return alpha @timer def alpha128(self): close = self.close high = self.high low = self.low volume = self.volume data = pd.concat([close,high,low,volume], axis = 1, join = 'inner') data['temp1'] = (data['Close'] + data['Low'] + data['High'])/3 data['temp2'] = data['temp1'] * data['Vol'] data['temp3'] = data['temp1'] * data['Vol'] temp_delay = Delay(pd.DataFrame(data['temp1']),1) temp_delay.columns = ['temp_decay'] data = pd.concat([data,temp_delay], axis = 1, join = 'inner') data['temp2'][data['temp1'] < data['temp_decay']] = 0 data['temp3'][data['temp1'] > data['temp_decay']] = 0 s1 = Sum(pd.DataFrame(data['temp2']),14) s2 = Sum(pd.DataFrame(data['temp3']),14) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(100 - 100/(1+ s['s1']/s['s2'])) alpha.columns = ['alpha128'] return alpha @timer def alpha129(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['abs'] = np.abs(data['close'] - data['close_delay']) data['temp'] = data['abs'] data['temp'][data['close'] < data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha129'] return alpha @timer def alpha130(self): close = self.close high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,40) data1 = pd.concat([high,low],axis = 1, join = 'inner') temp1 = pd.DataFrame((data1['High'] + data1['Low'])/2) rank1 = pd.concat([temp1,volume_mean], axis = 1, join = 'inner') corr = Corr(rank1,9) close_r = Rank(close) volume_r = Rank(volume) data2 = pd.concat([close_r,volume_r],axis = 1, join = 'inner') corr2 = Corr(data2,7) corr_decay = DecayLinear(corr,10) r1 = Rank(corr_decay) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha130'] return alpha @timer def alpha131(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,50) data1 = pd.concat([close,volume_mean], axis = 1, join = 'inner') corr = Corr(data1,18) vwap_delta = Delta(vwap,1) temp2 = TsRank(corr,18) data2 = pd.concat([vwap_delta,temp2],axis = 1, join = 'inner') data2.columns = ['vwap_delta','temp2'] temp3 = np.power(data2['vwap_delta'],data2['temp2']) alpha = Rank(pd.DataFrame(temp3)) alpha.columns = ['alpha131'] return alpha @timer def alpha132(self): amt = self.amt alpha = Mean(amt,20) alpha.columns = ['alpha132'] return alpha @timer def alpha133(self): low = self.low high = self.high highday = Highday(high,20) lowday = Lowday(low,20) data = pd.concat([highday,lowday],axis = 1, join = 'inner') data.columns = ['highday','lowday'] alpha = (20 - data['highday']/20.0) * 100 - (20 - data['lowday']/20.0) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha133'] return alpha @timer def alpha134(self): close = self.close volume = self.volume close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,volume,close_delay], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] - data['close_delay'])/data['close_delay']) alpha.columns = ['alpha134'] return alpha @timer def alpha135(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1 , join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) alpha = SMA(temp_delay,20,1) alpha.columns = ['alpha135'] return alpha @timer def alpha136(self): volume = self.volume Open = self.open ret = self.ret ret_delta = Delta(ret,3) ret_delta_r = Rank(ret_delta) data = pd.concat([Open,volume],axis = 1, join = 'inner') corr = Corr(data,10) data_temp = pd.concat([ret_delta_r,corr],axis = 1, join = 'inner') data_temp.columns = ['ret_delta','corr'] alpha = pd.DataFrame(-1 * data_temp['ret_delta'] * data_temp['corr']) alpha.columns = ['alpha136'] return alpha @timer def alpha137(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] alpha = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha.columns = ['alpha137'] return alpha @timer def alpha138(self): vwap = self.vwap volume = self.volume low = self.low data1 = pd.concat([low,vwap], axis = 1, join = 'inner') temp1 = pd.DataFrame(data1['Low'] * 0.7 + data1['Vwap'] * 0.3) temp1_delta = Delta(temp1,3) temp1_delta_decay = DecayLinear(temp1_delta,20) r1 = Rank(temp1_delta_decay) low_r = TsRank(low,8) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,17) data2 = pd.concat([low_r,volume_mean_r],axis = 1, join = 'inner') corr = Corr(data2,5) corr_r = TsRank(corr,19) corr_r_decay = DecayLinear(corr_r,16) r2 = TsRank(corr_r_decay,7) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha138'] return alpha @timer def alpha139(self): Open = self.open volume = self.volume data = pd.concat([Open,volume], axis = 1, join = 'inner') alpha = -1 * Corr(data,10) alpha.columns = ['alpha139'] return alpha @timer def alpha140(self): Open = self.open volume = self.volume high = self.high low = self.low close = self.close open_r = Rank(Open) low_r = Rank(low) high_r = Rank(high) close_r = Rank(close) data1 = pd.concat([open_r,low_r,high_r,close_r],axis = 1, join = 'inner') data1.columns = ['open_r','low_r','high_r','close_r'] temp = pd.DataFrame(data1['open_r'] + data1['low_r'] - \ (data1['high_r'] + data1['close_r'])) close_r_temp = TsRank(close,8) volume_mean = Mean(volume,70) volume_mean_r = TsRank(volume_mean,20) data2 = pd.concat([close_r_temp,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data2,8) temp_decay = DecayLinear(temp,8) r1 = Rank(temp_decay) corr_decay = DecayLinear(corr,7) r2 = TsRank(corr_decay,3) r = pd.concat([r1,r2], axis = 1, join = 'inner') alpha = pd.DataFrame(np.min(r)) alpha.columns = ['alpha140'] return alpha @timer def alpha141(self): volume = self.volume high = self.high volume_mean = Mean(volume,15) high_r = Rank(high) volume_mean_r = Rank(volume_mean) data = pd.concat([high_r,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data,9) alpha = -1 * Rank(corr) alpha.columns = ['alpha141'] return alpha @timer def alpha142(self): close = self.close volume = self.volume close_r = TsRank(close,10) r1 = Rank(close_r) close_delta = Delta(close,1) close_delta_delta = Delta(close_delta,1) r2 = Rank(close_delta_delta) volume_mean = Mean(volume,20) data = pd.concat([volume,volume_mean], axis = 1, join = 'inner') data.columns = ['v','v_m'] temp = pd.DataFrame(data['v']/data['v_m']) temp_r = TsRank(temp,5) r3 = Rank(temp_r) r = pd.concat([r1,r2,r3],axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(- 1* r['r1'] * r['r2'] * r['r3']) alpha.columns= ['alpha142'] return alpha @timer def alpha143(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] - data['close_delay'])/data['close_delay']) temp.columns= ['temp'] data_temp = pd.concat([data,temp],axis = 1, join = 'inner') data_temp['temp'][data_temp['close'] <= data_temp['close_delay']] = 1 temp_unstack = data_temp['temp'].unstack() temp_unstack.iloc[0,:] = 1 df = np.cumprod(temp_unstack,axis = 0) alpha = df.stack() alpha.columns = ['alpha143'] return alpha @timer def alpha144(self): close = self.close amt = self.amt close_delay = Delay(close,1) data = pd.concat([close,close_delay,amt], axis = 1, join = 'inner') data.columns = ['close','close_delay','amt'] data['temp'] = np.abs(data['close']/data['close_delay'] - 1)/data['amt'] data['sign'] = 1 data['sign'][data['close'] >= data['close_delay']] = 0 tep1 = Sum(pd.DataFrame(data['sign'] * data['temp']),20) tep2 = Count(0,pd.DataFrame(data['close_delay']),pd.DataFrame(data['close']),20) data2 = pd.concat([tep1,tep2], axis = 1, join = 'inner') data2.columns = ['tep1','tep2'] alpha = pd.DataFrame(data2['tep1']/data2['tep2']) alpha.columns = ['alpha144'] return alpha @timer def alpha145(self): volume = self.volume volume_mean9 = Mean(volume,9) volume_mean26 = Mean(volume,26) volume_mean12 = Mean(volume,12) data = pd.concat([volume_mean9,volume_mean26,volume_mean12], axis = 1, join = 'inner') data.columns = ['m9','m26','m12'] alpha = pd.DataFrame((data['m9'] - data['m26'])/data['m12'] * 100) alpha.columns = ['alpha145'] return alpha @timer def alpha146(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] -data['close_delay'])/data['close_delay']) sma1 = SMA(temp,61,2) data2 = pd.concat([temp,sma1], axis = 1, join = 'inner') data2.columns = ['temp1','sma1'] data2['temp2'] = data2['temp1'] - data2['sma1'] temp2_mean = Mean(pd.DataFrame(data2['temp2']),20) sma2 = SMA(pd.DataFrame(data2['temp1'] - data2['temp2']),61,2) data_temp = pd.concat([temp2_mean,pd.DataFrame(data2['temp2']),sma2], axis = 1 , join = 'inner') data_temp.columns = ['temp2_mean','temp2','sma2'] alpha = data_temp['temp2_mean'] * data_temp['temp2'] / data_temp['sma2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha146'] return alpha @timer def alpha147(self): close = self.close close_mean = Mean(close,12) alpha = RegBeta(0,close_mean,None,12) alpha.columns = ['alpha147'] return alpha @timer def alpha148(self): Open = self.open volume = self.volume volume_mean = Mean(volume,60) volume_mean_s = Sum(volume_mean,9) data = pd.concat([Open,volume_mean_s],axis = 1, join = 'inner') corr = Corr(data,6) r1 = Rank(corr) open_min = TsMin(Open,14) data2 = pd.concat([Open,open_min], axis = 1, join = 'inner') data2.columns = ['open','open_min'] r2 = Rank(pd.DataFrame(data2['open'] - data2['open_min'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = -1 r['alpha'][r['r1'] > r['r2']] = 0 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha148'] return alpha @timer def alpha149(self): close = self.close close_index = self.close_index close_delay = Delay(close,1) close_index_delay = Delay(close_index,1) data_index = pd.concat([close_index,close_index_delay], axis = 1, join = 'inner') data_index.columns = ['close','close_delay'] data_index['delta'] = data_index['close']/data_index['close_delay'] - 1 data_index['judge'] = 1 data_index['judge'][data_index['close'] >= data_index['close_delay']] = 0 data_index['delta'][data_index['judge'] == 0] = np.nan # index_delta_unstack = index_delta_unstack.dropna() data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['delta'] = data['close'] / data['close_delay'] - 1 df1 = pd.DataFrame(data['delta']) df2 = pd.DataFrame(data_index['delta']) alpha = RegBeta(1,df1,df2,252) alpha.columns = ['alpha149'] return alpha @timer def alpha150(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') alpha = (data['Close'] + data['High'] + data['Low'])/3 * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha150'] return alpha @timer def alpha151(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close'] - data['close_delay']) alpha = SMA(temp,20,1) alpha.columns = ['alpha151'] return alpha @timer def alpha152(self): close = self.close close_delay = Delay(close,9) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) sma1 = SMA(temp_delay,9,1) sma1_delay = Delay(sma1,1) sma1_delay_mean1 = Mean(sma1_delay,12) sma1_delay_mean2 = Mean(sma1_delay,26) data_temp = pd.concat([sma1_delay_mean1,sma1_delay_mean2],axis = 1, join = 'inner') data_temp.columns = ['m1','m2'] alpha = SMA(pd.DataFrame(data_temp['m1'] - data_temp['m2']),9,1) alpha.columns = ['alpha152'] return alpha @timer def alpha153(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close_mean3, close_mean6, close_mean12, close_mean24], axis = 1 ,join ='inner') alpha = pd.DataFrame(np.mean(data, axis = 1)) alpha.columns = ['alpha153'] return alpha @timer def alpha154(self): volume = self.volume vwap = self.vwap volume_mean = Mean(volume,180) data = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr = Corr(data,18) vwap_min = TsMin(vwap,16) data1 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data1.columns = ['vwap','vwap_min'] temp = pd.DataFrame(data1['vwap'] - data1['vwap_min']) data_temp = pd.concat([corr,temp], axis = 1, join = 'inner') data_temp.columns = ['corr','temp'] data_temp['alpha'] = 1 data_temp['alpha'][data_temp['corr'] >= data_temp['temp']] = 0 alpha = pd.DataFrame(data_temp['alpha']) alpha.columns = ['alpha154'] return alpha @timer def alpha155(self): volume = self.volume sma1 = SMA(volume,13,2) sma2 = SMA(volume,26,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3], axis = 1 ,join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(data['temp'] - data['sma']) alpha.columns = ['alpha155'] return alpha @timer def alpha156(self): vwap = self.vwap Open = self.open low = self.low vwap_delta = Delta(vwap,5) vwap_delta_decay = DecayLinear(vwap_delta,3) r1 = Rank(vwap_delta_decay) data1 = pd.concat([Open,low],axis = 1, join = 'inner') temp = -1 * Delta(pd.DataFrame(data1['Open'] * 0.15 + data1['Low'] * 0.85),2) temp_decay = DecayLinear(temp,3) r2 = Rank(temp_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(- 1 *np.max(r, axis = 1)) alpha.columns = ['alpha156'] return alpha @timer def alpha157(self): close = self.close ret = self.ret close_delta = Delta(close,5) close_delta_r = Rank(Rank(close_delta) * -1) r1 = TsMin(close_delta_r,2) ret_delay = Delay(-1 * ret,6) r2 = TsRank(ret_delay,5) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] temp = pd.DataFrame(r['r1'] + r['r2']) alpha = TsMin(temp,5) alpha.columns = ['alpha157'] return alpha @timer def alpha158(self): high = self.high low = self.low close = self.close temp = SMA(close,15,2) temp.columns = ['temp'] data = pd.concat([high,low,close,temp],axis = 1 , join = 'inner') alpha =(data['High'] + data['Low'] - 2 * data['temp'] )/data['Close'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha158'] return alpha @timer def alpha159(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) data1 = pd.concat([low,close_delay],axis = 1, join = 'inner') data2 = pd.concat([high, close_delay], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.min(data1,axis = 1)) temp2= pd.DataFrame(np.max(data2,axis = 1)) temp = pd.concat([temp1,temp2], axis = 1 ,join = 'inner') temp.columns = ['temp1','temp2'] temp1_sum6 = Sum(temp1,6) temp1_sum12 = Sum(temp1,12) temp1_sum24 = Sum(temp1,24) tep = pd.DataFrame(temp['temp2'] - temp['temp1']) s6 = Sum(tep,6) s12 = Sum(tep,12) s24 = Sum(tep,24) data3 = pd.concat([temp1_sum6,temp1_sum12,temp1_sum24,s6,s12,s24], axis = 1 ,join = 'inner') data3.columns = ['ts6','ts12','ts24','s6','s12','s24'] temp3 = pd.DataFrame(data3['ts6']/data3['s6'] * 12 * 24 + data3['ts12']/data3['s12'] * 6 * 24 \ + data3['ts24']/data3['s24'] * 6 * 24) alpha = temp3 / (6*12 + 6*24 + 12*24) * 100 alpha.columns = ['alpha159'] return alpha @timer def alpha160(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_std','close_delay'] data['close_std'][data['close'] >= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data['close_std']),20,1) alpha.columns = ['alpha160'] return alpha @timer def alpha161(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data1 = pd.concat([high,low],axis = 1 , join = 'inner') diff = pd.DataFrame(data1['High'] - data1['Low']) data2 = pd.concat([close_delay,high], axis = 1, join ='inner') abs1 = pd.DataFrame(np.abs(data2['close_delay'] - data2['High'])) data3 = pd.concat([diff,abs1], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.max(data3,axis = 1)) data4 = pd.concat([close_delay,low],axis = 1, join = 'inner') temp2 = pd.DataFrame(np.abs(data4['close_delay'] -data4['Low'])) data = pd.concat([temp1,temp2],axis =1 , join = 'inner') data.columns = ['temp1','temp2'] temp = pd.DataFrame(np.max(data, axis = 1)) alpha = Mean(temp,12) alpha.columns = ['alpha161'] return alpha @timer def alpha162(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['max']= data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) temp1 = SMA(pd.DataFrame(data['max']),12,1) temp2 = SMA(pd.DataFrame(data['abs']),12,1) data1 = pd.concat([temp1,temp2], axis = 1, join = 'inner') data1.columns = ['temp1','temp2'] tep = pd.DataFrame(data1['temp1']/data1['temp2']) temp3 = TsMin(tep,12) temp4 = TsMax(tep,12) data_temp = pd.concat([tep,temp3,temp4], axis = 1, join = 'inner') data_temp.columns = ['tep','temp3','temp4'] alpha = (data_temp['tep'] - data_temp['temp3']/data_temp['temp4']) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha162'] return alpha @timer def alpha163(self): low = self.low high = self.high volume = self.volume ret = self.ret vwap = self.vwap volume_mean = Mean(volume,20) data = pd.concat([high,low,vwap,ret,volume_mean],axis = 1, join = 'inner') data.columns = ['high','low','vwap','ret','volume_mean'] temp = pd.DataFrame(-1 *data['ret'] * data['volume_mean'] *data['vwap'] * \ (data['high'] - data['low'])) alpha = Rank(temp) alpha.columns = ['alpha163'] return alpha @timer def alpha164(self): close = self.close high = self.high low = self.low close_delay = Delay(close,1) data = pd.concat([close,high,low,close_delay],axis = 1, join = 'inner') data.columns = ['close','high','low','close_delay'] data['temp'] = 1/(data['close'] - data['close_delay']) data_min = TsMin(pd.DataFrame(data['temp']),12) data_min.columns = ['min'] data2 = pd.concat([data,data_min],axis = 1, join = 'inner') data2['tep'] = data2['temp'] - data2['min']/(data2['high'] - data2['low']) data2['tep'][data['close'] <= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data2['tep']) * 100,13,2) alpha.columns = ['alpha164'] return alpha @timer def alpha165(self): close = self.close close_mean = Mean(close,48) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame(data['close'] - data['close_mean']) temp_sum = Sum(temp,48) temp_sum_min = TsMin(temp_sum,48) temp_sum_max = TsMax(temp_sum,48) close_std = STD(close,48) data_temp = pd.concat([temp_sum_min,temp_sum_max,close_std], axis = 1, join = 'inner') data_temp.columns = ['min','max','std'] alpha = (data_temp['max'] - data_temp['min'])/data_temp['std'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha165'] return alpha @timer def alpha166(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_mean = Mean(temp,20) data1 = pd.concat([temp,temp_mean], axis = 1, join = 'inner') data1.columns = ['temp','temp_mean'] temp2 = Sum(pd.DataFrame(data1['temp'] - data1['temp_mean']),20) * 20 * 19 temp3 = Sum(temp,20) * 19 * 18 data2 = pd.concat([temp2,temp3], axis = 1, join = 'inner') data2.columns = ['temp2','temp3'] alpha = np.power(data2['temp2'],1.5)/np.power(data2['temp3'],1.5) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha166'] return alpha @timer def alpha167(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = data['close'] - data['close_delay'] data['temp'][data['close'] <= data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha167'] return alpha @timer def alpha168(self): volume = self.volume volume_mean = Mean(volume,20) data = pd.concat([volume,volume_mean], axis = 1, join = 'inner') data.columns = ['volume','volume_mean'] alpha = data['volume']/data['volume_mean'] * -1 alpha.columns = ['alpha168'] return alpha @timer def alpha169(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp1 = pd.DataFrame(data['close'] - data['close_delay']) sma = SMA(temp1,9,1) temp2 = Delay(sma,1) temp2_mean12 = Mean(temp2,12) temp2_mean26 = Mean(temp2,26) data2 = pd.concat([temp2_mean12,temp2_mean26], axis = 1, join ='inner') data2.columns = ['mean1','mean2'] alpha = SMA(
pd.DataFrame(data2['mean1'] - data2['mean2'])
pandas.DataFrame
# %% import os import matplotlib.pyplot as plt from wordcloud import WordCloud import pandas as pd import seaborn as sns from IPython.core.interactiveshell import InteractiveShell # Setting styles InteractiveShell.ast_node_interactivity = "all" sns.set(style="whitegrid", color_codes=True, rc={"figure.figsize": (12.7, 9.27)}) # %% df = pd.read_csv( os.path.join("data", "processed", "data_sentiment.csv"), low_memory=False ) # %% df.sentiment.describe() sns.distplot(df.sentiment) plt.title("Afinn sentiment distribution") plt.show() # %% df.sentiment_norm.describe() sns.distplot(df.sentiment_norm) plt.title("Afinn normalized sentiment distribution") plt.show() # %% df.sentiment_abs.describe() sns.distplot(df.sentiment_abs) plt.title("Afinn absolute values sentiment distribution") plt.show() # %% df.sentiment_abs_norm.describe() sns.distplot(df.sentiment_abs_norm) plt.title("Afinn absolute values normalized sentiment distribution") plt.show() # %% ax = sns.scatterplot(df.sentiment, df.sentiment_norm, alpha=0.005) plt.title("Relationship between Afinn and Afinn normalized") plt.show() # %% [markdown] # # What do the most positive and negative messages look like # # * For pure afinn sentiment values it is clear that really long and messages get the # top spots # * With normalized (divided by the number of words) sentiment values short and clear # messages get the top spots. This seems much better # * The normalized sentiment values have no outliers and the values seems more # realistic and intuitive. We only used normalized values for the rest of the # analysis # %% print("AFINN") print("") print("POSITIVE:") for i, text in enumerate( df.sort_values(by="sentiment", ascending=False)["message"][:5] ): print(i + 1, "most positive") print(text[:200]) print("") print("") print("NEGATIVE:") for i, text in enumerate(df.sort_values(by="sentiment", ascending=True)["message"][:5]): print(i + 1, "most negative") print(text[:200]) print("") print("AFINN normalized") print("") print("POSITIVE:") for i, text in enumerate( df.sort_values(by="sentiment_norm", ascending=False)["message"][:5] ): print(i + 1, "most positive") print(text[:200]) print("") print("") print("NEGATIVE:") for i, text in enumerate( df.sort_values(by="sentiment_norm", ascending=True)["message"][:5] ): print(i + 1, "most negative") print(text[:200]) print("") # %% print("Most emotional:") for i, text in enumerate( df.sort_values(by="sentiment_abs_norm", ascending=False)["message"][:5] ): print(i + 1, "most emotional") print(text[:200]) print("") print("") print("Least emotional:") for i, text in enumerate( df.sort_values(by="sentiment_abs_norm", ascending=True)["message"][:5] ): print(i + 1, "least emotional") print(text[:200]) print("") # %% afinn_positive_wc = WordCloud(background_color="white").generate( " ".join(df.sort_values(by="sentiment_norm", ascending=False)["message"][:500]) ) plt.imshow(afinn_positive_wc) plt.title("Wordcloud of 500 most positive messages") plt.show() afinn_negative_wc = WordCloud(background_color="white").generate( " ".join(df.sort_values(by="sentiment_norm", ascending=True)["message"][:500]) ) plt.imshow(afinn_negative_wc) plt.title("Wordcloud of 500 most negative messages") plt.show() afinn_emotional_wc = WordCloud(background_color="white").generate( " ".join(df.sort_values(by="sentiment_abs_norm", ascending=True)["message"][:500]) ) plt.imshow(afinn_emotional_wc) plt.title("Wordcloud of 500 most emotional messages") plt.show() # %% df["created_at"] = pd.to_datetime(df.created_at) df["updated_at"] = pd.to_datetime(df.updated_at) df["created_at_date"] = df.created_at.dt.date df["updated_at_date"] = df.updated_at.dt.date df["created_at_month"] = df["created_at"] -
pd.offsets.MonthBegin(1, normalize=True)
pandas.offsets.MonthBegin
import numpy as np import openpyxl import pandas as pd from ortoolpy import addbinvars, addvars from pulp import LpProblem, lpSum, value, lpDot from make_data import FILE_NAME, GROUP_COUNT, USER_COUNT RESULT_FILE = 'result_optimization.xlsx' def divide_users(): # ใƒ‡ใƒ•ใ‚ฉใƒซใƒˆใ ใจ 54 x 54 ใง่ชญใพใ‚Œใ‚‹ใฎใงใ€ไธ่ฆ่กŒใฏ่ชญใฟ่พผใพใชใ„ใ‚ˆใ†ใซใ™ใ‚‹ skip_rows = [i + GROUP_COUNT for i in range(1, USER_COUNT - GROUP_COUNT + 1)] df = pd.read_excel(FILE_NAME, header=0, index_col=0, skiprows=skip_rows) # ๅฝ“็•ชๅ›žๆ•ฐ event_count = df.shape[0] # print(f'{type(box_size)}: {box_size}') # => <class 'int'>: 18 # ใƒฆใƒผใ‚ถๆ•ฐ user_count = df.shape[1] # print(f'{type(user_size)}: {user_size}') # => <class 'int'>: 54 # ๆ•ฐ็†ใƒขใƒ‡ใƒซ model = LpProblem() # ๅค‰ๆ•ฐใ‚’ๆบ–ๅ‚™(ๅฝ“็•ช/้žๅฝ“็•ชใฎ2ๅ€คใชใฎใงใ€0-1ๅค‰ๆ•ฐใƒชใ‚นใƒˆ) # https://docs.pyq.jp/python/math_opt/pdopt.html var_schedule = np.array(addbinvars(event_count, user_count)) df['ๅฟ…่ฆไบบๆ•ฐๅทฎ'] = addvars(event_count) # ้‡ใฟ weight = 1 # ็›ฎ็š„้–ขๆ•ฐใฎๅ‰ฒใ‚Šๅฝ“ใฆ model += lpSum(df.ๅฟ…่ฆไบบๆ•ฐๅทฎ) * weight # ๅˆถ็ด„ # 1ๅฝ“็•ชใ‚ใŸใ‚Š3ไบบ for idx, row in df.iterrows(): model += row.ๅฟ…่ฆไบบๆ•ฐๅทฎ >= (lpSum(var_schedule[row.name]) - 3) model += row.ๅฟ…่ฆไบบๆ•ฐๅทฎ >= -(lpSum(var_schedule[row.name]) - 3) # ไธ€ไบบใ‚ใŸใ‚Š1ๅ›žๅฝ“็•ชใ™ใ‚Œใฐใ‚ˆใ„ for user in range(user_count): scheduled = [var_schedule[event, user] for event in range(event_count)] model += lpSum(pd.Series(scheduled)) <= 1 # ๅฝ“็•ชๅฏ่ƒฝใชๆ™‚ใ ใ‘ๅ‰ฒใ‚Šๅฝ“ใฆใ‚‹ df_rev = df[df.columns].apply(lambda r: 1 - r[df.columns], 1) for (_, d), (_, s) in zip(df_rev.iterrows(),
pd.DataFrame(var_schedule)
pandas.DataFrame
import pandas as pd from matplotlib import pyplot as plt import numpy as np import matplotlib as mpl #define function to fit to data from scipy.optimize import curve_fit from scipy.stats import t # Read the file xls = pd.ExcelFile('Calibration_data_all.xlsx') sn = xls.sheet_names names = ['SU1', 'SU2', 'SU3', 'SU5'] d = {} for name in sn: d[name] = pd.read_excel(xls, sheet_name = name, header = 3, #use the first row (index 1) as column headings #parse_dates={'Datetime'}, #convert text to dates/times where possible #index_col = 9 #read dates from column 9 into the index ) #set up the figures and subfigures (aka axes) fig, axs = plt.subplots(2,2, sharex = False) plt.rc('xtick',labelsize=8) plt.rc('ytick',labelsize=8) location = ([0,0], [0,1], [1,0], [1,1]) #l = {} #for i in range(4): # x = d[sn[i]]['1/R (uS)'] # y = d[sn[i]]['Kt'] # l[sn[i]] = axs[location[i]].plot(x,y, # color = 'b', # marker = 'o', # linestyle = 'none', # label = sn[i], # ) def zero_int(x, m): return m*x def linear(x,m,b): return m*x+b def power(x,a,b): return a*x**b def power_with_offset(x,a,b,c): return a*(x+c)**b raw_data_2021 = {'SU1':d['SU1 3-17-21'], 'SU2':d['SU2 3-17-21'], 'SU3':d['SU3 3-17-21'], 'SU5':d['SU5 3-17-21']} raw_data_2020 = {'SU1':d['SU1'], 'SU2':d['SU2'], 'SU3':d['SU3'], 'SU4':d['SU4']} for i,ax in enumerate(fig.axes): if names[i] in raw_data_2020: y_2020 = raw_data_2020[names[i]]['1/R (uS)']/1000 x_2020 = raw_data_2020[names[i]]['Kt']/1000 y_2021 = raw_data_2021[names[i]]['1/R (uS)']/1000 x_2021 = raw_data_2021[names[i]]['Kt']/1000 log_x = np.log(x_2021) log_y = np.log(y_2021) ax.tick_params(axis='both', which = 'major', labelsize =8) ax.yaxis.set_major_formatter(mpl.ticker.StrMethodFormatter('{x:,.0f}')) ax.xaxis.set_major_formatter(mpl.ticker.StrMethodFormatter('{x:,.0f}')) #m,b = np.polyfit(x,y,1) print(names[i]) popt0, pcov0 = curve_fit(zero_int, x_2021, y_2021) popt1, pcov1 = curve_fit(linear, x_2021, y_2021) popt2, pcov2 = curve_fit(linear, log_x, log_y) if i == 0: popt3, pcov3 = curve_fit(power_with_offset, x_2021, y_2021) m0 = popt0 (m1,b1) = popt1 (m_log,b_log) = popt2 a = np.exp(b_log) b = m_log (a2,b2,c2)=popt3 if i < 3: x = np.linspace(20/1000,50000/1000,1000) else: x = np.linspace(100/1000,50000/1000,1000) linear_y = m1*x+b1 power_y = a*x**b zero_y = m0*x offset_y = a2*(x+c2)**b2 #linear_y = [b1,m1*1.1*max(x_2021)+b1] #linear_x = [0,1.1*max(x_2021)] residuals = y_2021- linear(x_2021, *popt1) ss_res = np.sum(residuals**2) ss_tot = np.sum((y_2021-np.mean(y_2021))**2) r_squared = 1 - (ss_res / ss_tot) r_squared_l = r_squared residuals = log_y- (m_log*log_x+b_log) ss_res = np.sum(residuals**2) ss_tot = np.sum((np.log(y_2021)-np.mean(np.log(y_2021)))**2) r_squared = 1 - (ss_res / ss_tot) r_squared_p = r_squared residuals = y_2021- zero_int(x_2021, *popt0) ss_res = np.sum(residuals**2) ss_tot = np.sum((y_2021-np.mean(y_2021))**2) r_squared = 1 - (ss_res / ss_tot) r_squared_z = r_squared if i == 0: residuals = y_2021- power_with_offset(x_2021, *popt3) ss_res = np.sum(residuals**2) ss_tot = np.sum((y_2021-np.mean(y_2021))**2) r_squared = 1 - (ss_res / ss_tot) r_squared_po = r_squared if i == 0: if b1<0: sign = "-" else: sign = "+" fit2 = ax.plot(x, offset_y, color = 'r', linestyle = '-.', label = ('y=%4.2f(x+%4.1f)$^{%4.2f}$, r$^2_{loglog}$=%4.3f' %(a2,c2,b2,r_squared_po)), linewidth = 0.5, ) fit1 = ax.plot(x, linear_y, color = 'b', linestyle = '--', label = ('y=%4.2fx%s%5.1f, r$^2$=%4.3f' % (m1,sign,abs(b1),r_squared_l)), linewidth = 0.5, ) #ax.set_ylim(9,250) #ax.set_xlim(16/1000,110) if i != 0: fit3 = ax.plot(x, power_y, color = 'r', linestyle = '-.', label = ('y=%4.2fx$^{%4.2f}$, r$^2_{loglog}$=%4.3f' % (a,b,r_squared_p)), linewidth = 0.5, ) ax.set_xlim(16/1000,110) fit2 = ax.plot(x, zero_y, color = 'b', linestyle = '--', label = ('y=%4.2fx, r$^2$=%4.3f' %(m0,r_squared_z)), linewidth = 0.5, ) ax.set_yscale('log') ax.set_xscale('log') if names[i] in raw_data_2020: l_2020= ax.plot(x_2020,y_2020, color = 'black', markeredgewidth=0.5, marker = 'x', linestyle = 'none', markersize = '3', label = '2020 data', ) l_2021= ax.plot(x_2021,y_2021, color = 'black', markeredgewidth=0.5, marker = 'o', linestyle = 'none', markersize = '3', fillstyle='none', label = '2021 data', ) #show the legend ax.legend(frameon=False, loc='upper left', prop={'size':7})#, ncol=3) ax.set_title(names[i], fontsize=9) #handles, labels = ax[0].get_legend_handles_labels() #order = [3,2,0,1] #ax[0].legend([handles[idx] for idx in order], [labels[idx]for idx in order], frameon=False, loc='upper left', prop={'size':7})#, ncol=3) print('got here') #Set up the y axis labels axs[0,0].set_ylabel('Sensor 1/R (mS)', fontsize = 9) axs[1,0].set_ylabel('Sensor 1/R (mS)', fontsize = 9) axs[1,0].set_xlabel('EXO EC (mS/cm)', fontsize = 9) axs[1,1].set_xlabel('EXO EC (mS/cm)',fontsize = 9) print('got here') fig.tight_layout() print('got here') #FIGURE 2 #compute confidence limits of inverse of regression def confidence_limits(x,y,b0,b1,m,xhat0,alpha): n = x.size yhat = b0 + b1*x xbar = x.mean() s2yx = ((y-yhat)**2).sum()/(n-2) #syx = s2yx**0.5 s2xhat0 = (s2yx/b1**2)*(1/m+1/n+((xhat0-xbar)**2)/((x-xbar)**2).sum()) sxhat0 = s2xhat0**0.5 t_stat = t.ppf(1-alpha/2,df=n-2) yplus = b0 + b1*xhat0 + t_stat*sxhat0 yminus = b0 + b1*xhat0 - t_stat*sxhat0 xplus = (yplus - b0)/b1 xminus = (yminus - b0)/b1 return(xminus,xhat0,xplus) def error_analysis(x_obs,y_obs,m,b): n = x_obs.size y_est = m * x_obs + b residuals = y_obs - y_est ss_res = np.sum(residuals**2) ss_tot = np.sum((y_obs-np.mean(y_obs))**2) r_squared = 1 - (ss_res / ss_tot) ser = np.sqrt((1/(n-2))*(np.sum(residuals**2))) relative_error = residuals/y_obs rmse = np.sqrt(np.sum(residuals**2)/n) rmsre = np.sqrt(np.sum(relative_error**2)/n) return(r_squared,ser,rmse,rmsre) def find_and_plot_error_bands(x_obs, y_obs, use_offset, ax): #Fit power function and adjust input by subracting constant and taking logs if use_offset == True: popt_test,pcov_test = curve_fit(power_with_offset,x_obs,y_obs) (a,b,c)=popt_test x_adjusted = np.log(x_obs+c) y_adjusted = np.log(y_obs) else: c = 0 x_adjusted = np.log(x_obs) y_adjusted = np.log(y_obs) #Fit linear function to adjusted input popt1,pcov1 = curve_fit(linear,x_adjusted,y_adjusted) (b1,b0) = popt1 (r2_log,ser_log,rmse_log,rmsre_log)=error_analysis(x_adjusted,y_adjusted,b1,b0) if use_offset == False: a = np.exp(b0) b = b1 #Set up arrays to plot x_to_plot = np.linspace(0.95*min(x_obs),1.05*max(x_obs),1000) log_x_adj_to_plot = np.log(x_to_plot+c) log_y_to_plot = b0+b1*log_x_adj_to_plot y_to_plot = np.exp(log_y_to_plot) limits = [] for i in range(len(log_x_adj_to_plot)): limits.append(confidence_limits(x_adjusted,y_adjusted,b0,b1,1,log_x_adj_to_plot[i],.05)) df_limits =
pd.DataFrame(limits)
pandas.DataFrame
import os import pickle from glob import glob import numpy as np import pandas as pd from keras.applications import VGG16 from keras.applications.vgg16 import preprocess_input from keras.preprocessing import image as kimage np.set_printoptions(threshold=np.nan) pd.set_option('display.height', 1000) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
pandas.set_option
import concurrent.futures import datetime as dt import sys from pathlib import Path import pandas as pd import yfinance as yf class FinanceAnalysis: def analyze(self): # Load data from file, generate data by running the `ticker_counts.py` script data_directory = Path('./data') input_path = data_directory / f'{dt.date.today()}_tick_df.csv' df_tick = pd.read_csv(input_path).sort_values(by=['Mentions', 'Ticker'], ascending=False) columns = ['Ticker', 'Name', 'Industry', 'PreviousClose', 'Low5d', 'High5d', 'ChangePercent1d', 'ChangePercent5d', 'ChangePercent1mo'] # Activate all tickers' info in parallel self.tickers = yf.Tickers(df_tick['Ticker'].tolist()) with concurrent.futures.ThreadPoolExecutor() as executor: executor.map(lambda t: t.info, self.tickers.tickers) self.data = self.tickers.download(period='1mo', group_by='ticker', progress=True) fin_data = [self.get_ticker_info(tick) for tick in df_tick['Ticker']] df_best =
pd.DataFrame(fin_data, columns=columns)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """This is to find out why my R peaks at a value around 2021-07-01, that is much higher than RIVM's. Created on Fri Jul 23 12:52:53 2021 @author: hk_nien """ import matplotlib.pyplot as plt import pandas as pd import numpy as np import tools import nlcovidstats as nlcs def get_Rt_rivm(mindate, maxdate): """Return Series with R(rivm). Note timestamps are always at time 12:00:00.""" df_rivm = nlcs.DFS['Rt_rivm'].copy() # get 4 days extra from 'prognosis' prog = df_rivm.loc[df_rivm['R'].isna()].iloc[:4] prog_R = np.around(np.sqrt(prog['Rmin']*prog['Rmax']), 2) df_rivm.loc[prog_R.index, 'R'] = prog_R R_rivm = df_rivm.loc[~df_rivm['R'].isna(), 'R'] return R_rivm.loc[(R_rivm.index >= mindate) & (R_rivm.index <= maxdate)] def get_Rt_mine(mindate, maxdate, slide_delay=True, cdf=None): """Return my Rt estimate, sampled at 12:00 daily. Optionally provide cdf as test case; DataFrame with time index and 'Delta7r' column (7-day rolling average daily positive cases). """ from scipy.interpolate import interp1d delay = nlcs.DELAY_INF2REP if slide_delay else 4.0 if cdf is None: cdf, _npop = nlcs.get_region_data('Nederland', lastday=-1, correct_anomalies=True) Rdf = nlcs.estimate_Rt_df(cdf['Delta7r'].iloc[10:], delay=delay, Tc=4.0) r_interp = interp1d( Rdf.index.astype(np.int64), Rdf['Rt'], bounds_error=False, fill_value=(Rdf['Rt'].iloc[0], Rdf['Rt'].iloc[-1]) ) tlims = [pd.to_datetime(t).strftime('%Y-%m-%dT12:00') for t in [mindate, maxdate] ] index = pd.date_range(*tlims, freq='1d') R_mine = pd.Series(r_interp(index.astype(int)), index=index) return R_mine def get_Rt_test_case(mindate, maxdate, case='step', slide_delay=True): index = pd.date_range('2021-01-01', 'now', freq='1d') cdf = pd.DataFrame(index=index + pd.Timedelta(4, 'd')) cdf['Delta7r'] = 1000 if case == 'step': cdf.loc[index >= '2021-07-01', 'Delta7r'] = 10000 # sudden factor 10 increase should result in # 1 day R=1e+4 or 2 days R=1e+2, which is the case. else: raise ValueError(f'case={case!r}') return get_Rt_mine(mindate, maxdate, slide_delay=slide_delay, cdf=cdf) #%% if __name__ == '__main__': nlcs.reset_plots() nlcs.init_data(autoupdate=True) #%% Rt_mine_fixD = get_Rt_mine('2021-06-22', '2021-07-20', slide_delay=False) Rt_mine_varD = get_Rt_mine('2021-06-22', '2021-07-20', slide_delay=True) Rt_rivm = get_Rt_rivm('2021-06-22', '2021-07-13') # Rt_mine = get_Rt_test_case('2021-06-22', '2021-07-09', 'step', slide_delay=False) cases_df, n_pop = nlcs.get_region_data('Nederland') cases = cases_df['Delta'] * n_pop cases7 = cases_df['Delta7r'] * n_pop cases_mask = (cases.index >= '2021-06-22') & (cases.index <= '2021-07-23') day =
pd.Timedelta(1, 'd')
pandas.Timedelta
# Author: <NAME> # Github: Data-is-Life # Date: 10/01/2018 import re import pandas as pd def rename_columns(strs_to_replace): '''Keeping Dataframe heading formating consistant by converting all values to standardized format that is easy to trace back. If left unformatted, there could be duplicate columns with the same values and it would make it far more challenging to search for homes.''' modified_list = [] for num in strs_to_replace: modified_list.append(num.replace('Redfin Estimate', 'redfin_est' ).replace( 'Beds', 'num_bdrs').replace('beds', 'num_bts').replace( 'Baths', 'num_bts').replace('$', 'price').replace( 'Built: ', 'yr_blt').lower().replace('__', '_').replace( ' ', '_').replace(':_', '').replace(':', '').replace( '.', '').replace('sqft', 'sq_ft').replace('_(', '_').replace( '(', '_').replace(')', '').replace(',', '').replace( 'minimum', 'min').replace('maximum', 'max').replace( 'bedrooms', 'beds').replace('bathrooms', 'baths').replace( '#_of_', 'num_').replace('sq. ft.', 'sqft')) return modified_list def top_info_parser(soup): '''Starting with getting the information at the very top of the page. This takes information from the top of the page that highlights the main attributes of the home, including latitude and longitude.''' all_top = soup.findAll('div', {'class': 'HomeInfo inline-block'}) top_info_dict = {} values_ = [] cats_ = [] sqft = [] lat_lon = [] for num in all_top: # Getting the address address_ = num.findAll('span', {'class': 'street-address'}) top_info_dict['address'] = [num.text for num in address_][0] # Getting the city city_ = num.findAll('span', {'class': 'locality'}) top_info_dict['city'] = [num.text for num in city_][0] # Getting the state (maybe not needed?) state_ = num.findAll('span', {'class': 'region'}) top_info_dict['state'] = [num.text for num in state_][0] # Getting the zip-code zip_code_ = num.findAll('span', {'class': 'postal-code'}) top_info_dict['zip_code'] = [num.text for num in zip_code_][0] '''Getting the Redfin Estimate. This is important, since if the home was sold a few months ago, the search should focus on the homes current value and not for what it sold for. This make the results far more efficiant.''' red_est = num.findAll('div', {'class': 'info-block avm'}) for i in red_est: values_.append(i.div.text) cats_.append(i.span.text) # If the Redfin estimate is not available, this is the fall back option. price_ = num.findAll('div', {'class': 'info-block price'}) for i in price_: values_.append(i.div.text) cats_.append(i.span.text) # Getting number of bedrooms bdrs_ = num.findAll('div', {'data-rf-test-id': 'abp-beds'}) for i in bdrs_: values_.append(i.div.text) cats_.append(i.span.text) # Getting number of bathrooms bths_ = num.findAll('div', {'data-rf-test-id': 'abp-baths'}) for i in bths_: values_.append(i.div.text) cats_.append(i.span.text) # Getting size of the home sqft_ = num.findAll('div', {'data-rf-test-id': 'abp-sqFt'}) for i in sqft_: top_info_dict['sqft'] = i.span.text[:6] # Getting the year the home was built in yrblt_ = num.findAll('div', {'class': 'HomeBottomStats'}) for i in yrblt_: lbls_ = i.findAll('span', {'class': 'label'}) vals_ = i.findAll('span', {'class': 'value'}) for j in lbls_: cats_.append(j.text) for k in vals_: values_.append(k.text) # Getting latitude and longitude of the home lat_lon_ = num.findAll('span', {'itemprop': 'geo'}) for i in lat_lon_: ll_ = i.findAll('meta') for num in ll_: lat_lon.append(num['content']) if len(lat_lon) >= 2: top_info_dict['latitude'] = lat_lon[0] top_info_dict['longitude'] = lat_lon[1] # Checking to make sure the values are present for the fields # If they are not avaialble, get rid of them. values_ = [num for num in values_ if num != 'โ€”'] cats_ = [num for num in cats_ if num != 'โ€”'] # Putting everything in a dictionary, since it removes redundant columns info_dict = dict(zip(cats_, values_)) # Merging the two dictionaries all_info_dict = {**top_info_dict, **info_dict} # Getting the home description home_description = soup.find('p', {'class': 'font-b1'}) if home_description is not None: all_info_dict['description'] = home_description.span.text else: all_info_dict['description'] = 'N/A' return all_info_dict def public_info_parser(soup): '''Getting information from tax sources to ensure all the home information matches from Zillow, Agent, and Tax records.''' all_info = soup.findAll('div', {'data-rf-test-id': 'publicRecords'}) label_list = [] values_list = [] for num in all_info: cats = num.findAll('span', {'class': 'table-label'}) for i in cats: label_list.append(i.text) for num in all_info: vals = num.findAll('div', {'class': 'table-value'}) for i in vals: values_list.append(i.text) public_info_dict = dict(zip(label_list, values_list)) return public_info_dict def school_parser(soup): ''' Getting schools and the grades they attend with their score from GreatSchools this will be added as a feature for homes bigger than three bedrooms and all single family homes.''' school_dict = {} school_info = soup.findAll('div', {'class': "name-and-info"}) school_names = [] school_grades = [] school_ratings = [] for num in school_info: s_name = num.findAll('div', {'data-rf-test-name': 'school-name'}) s_grade = num.findAll('div', {'class': re.compile('^sub-info')}) s_rating = num.findAll('div', {'class': 'gs-rating-row'}) for i in s_name: school_names.append(i.text) for j in s_grade: school_grades.append(j.text.replace( ' โ€ข Serves this home', '').replace(' โ€ข ', ' - ')) for k in s_rating: school_ratings.append( k.text[-5:].replace(' ', '').replace('/10', '')) w = 0 while w < len(school_names): if ('Public' in school_grades[w] and (( ('k' in school_grades[w] or 'Pre' in school_grades) or '5' in school_grades[w]) or 'Elementary' in school_names[w])): school_dict['elem_school_name'] = school_names[w] school_dict['elem_school_grades'] = school_grades[ w].split(' - ', 1)[1] school_dict['elem_school_rating'] = school_ratings[w] w += 1 else: w += 1 w = 0 while w < len(school_names): if ('Public' in school_grades[w] and (( ('7' in school_grades[w] or '8' in school_grades) or 'Middle' in school_names[w]) or 'Junior' in school_names[w])): school_dict['middle_school_name'] = school_names[w].title() school_dict['middle_school_grades'] = school_grades[ w].split(' - ', 1)[1].title() school_dict['middle_school_rating'] = school_ratings[w].title() w += 1 else: w += 1 w = 0 while w < len(school_names): if ('Public' in school_grades[w] and ( ('12' in school_grades or 'High' in school_names[w]))): school_dict['high_school_name'] = school_names[w].title() school_dict['high_school_grades'] = school_grades[ w].split(' - ', 1)[1].title() school_dict['high_school_rating'] = school_ratings[w].title() w += 1 else: w += 1 if 'elem_school_name' not in school_dict.keys(): school_dict['elem_school_name'] = 'N/A' school_dict['elem_school_grades'] = 'N/A' school_dict['elem_school_rating'] = 'N/A' if 'middle_school_name' not in school_dict.keys(): school_dict['middle_school_name'] = 'N/A' school_dict['middle_school_grades'] = 'N/A' school_dict['middle_school_rating'] = 'N/A' if 'high_school_name' not in school_dict.keys(): school_dict['high_school_name'] = 'N/A' school_dict['high_school_grades'] = 'N/A' school_dict['high_school_rating'] = 'N/A' return school_dict def feats_parser(soup): '''All the listed features by the agent/broker inputting the listing on the MLS.''' all_home_feats = soup.findAll('span', {'class': "entryItemContent"}) feat_cats = [] feat_vals = [] for num in all_home_feats: feat_cats.append(num.contents[0]) for num in all_home_feats: feat_vals.append(num.span.text) cats_set = set(feat_cats) vals_set = set(feat_vals) redundant = cats_set & vals_set for num in redundant: feat_cats.remove(num) feat_vals.remove(num) feat_cats = [str(num) for num in feat_cats] feat_vals = [str(num) for num in feat_vals] feats_dict = dict(zip(feat_cats, feat_vals)) extra_feats = [] for k, v in feats_dict.items(): if 'span>' in k: extra_feats.append(k) for num in extra_feats: if num in feats_dict.keys(): feats_dict.pop(num) # This is to replace all the HTML tags extra_feats = [num.replace('<span>', '').replace('</span>', '').replace( '<a href=', '').replace('"', '').replace(' rel=nofollow', '').replace( ' target=_blank>', '').replace('Virtual Tour (External Link)', '').replace( '</a', '').replace('>', '').replace('&amp;', '&').replace('(s)', '') for num in extra_feats] x_feat_string = ', '.join([num for num in extra_feats]) x_feat_string = x_feat_string.split(sep=', ') x_feat_list = list(set(x_feat_string)) feats_dict['extra_feats'] = ', '.join([num for num in x_feat_list]) return feats_dict def additional_info(soup): '''Need to get additional information, so we don't miss anything that could prove to be critical later.''' cats_ = soup.findAll('span', {'class': re.compile('^header ')}) cats_ = [num.text for num in cats_] vals_ = soup.findAll('span', {'class': re.compile('^content ')}) vals_ = [num.text for num in vals_] cats_ = [str(num).replace('Property Type', 'prop_type').replace( 'HOA Dues', 'hoa_fees').replace('Type', 'prop_type') for num in cats_] vals_ = [str(num).replace('$', '').replace('/month', '').replace( 'Hi-Rise', 'Condo').replace('Residential', 'Single Family Residence') for num in vals_] return dict(zip(cats_, vals_)) def info_from_property(soup): ''' Putting all the information together in a Dataframe and removing any duplicate columns.''' top_info_dict = top_info_parser(soup) public_info_dict = public_info_parser(soup) school_dict = school_parser(soup) all_home_feats = feats_parser(soup) mid_info_feats = additional_info(soup) df1 = pd.DataFrame(top_info_dict, index=[1]) df2 = pd.DataFrame(public_info_dict, index=[1]) df3 = pd.DataFrame(school_dict, index=[1]) df4 = pd.DataFrame(all_home_feats, index=[1]) df5 = pd.DataFrame(mid_info_feats, index=[1]) df = pd.DataFrame() df = pd.concat([df1, df2, df3, df4, df5], axis=1) df.columns = rename_columns(df.columns) all_dict = df.to_dict() new_df =
pd.DataFrame(all_dict)
pandas.DataFrame
import pandas as pd from patternsum.data import DataManager from patternsum.pattern import Pattern from patternsum.optimizer import Optimizer from .hook import NoNewSpeciesHook class PatternSummarization: def __init__(self, data, population_size, n_survivors, prob_mutate=0.9, prob_mutate_add=0.20, prob_mutate_merge=0.30, prob_mutate_split=0.30, prob_mutate_drop=0.20, join_thresh=0.6, alpha=2, beta=1, n_best=None, min_acc=0.25, conv_thresh=1, min_conv_size=2, n_pools=None, random_seed=None): self.data_manager = DataManager(data=pd.Series(data).reset_index(drop=True)) self.n_best = n_best self.min_acc = min_acc self.conv_thresh = conv_thresh self.min_conv_size = min_conv_size self.n_pools = n_pools self.random_seed = random_seed self.optimizer = Optimizer(data_manager=self.data_manager, population_size=population_size, n_survivors=n_survivors, tightness_alpha=alpha, tightness_beta=beta, join_thresh=join_thresh, prob_mutate=prob_mutate, prob_mutate_add=prob_mutate_add, prob_mutate_merge=prob_mutate_merge, prob_mutate_split=prob_mutate_split, prob_mutate_drop=prob_mutate_drop, n_pools=self.n_pools, random_seed=self.random_seed) @property def n_survivors(self): return self.optimizer.n_survivors @property def population_size(self): return self.optimizer.population_size def _initialize(self): self.optimizer.set_random_seed(self.random_seed) self.optimizer.initialize() def evolve(self, generations=1, reset=False, n_no_new_species=None): if reset or self.optimizer.generation == 0: self._initialize() hooks = [] if n_no_new_species is not None: hooks.append(NoNewSpeciesHook(n_no_new_species)) for _ in range(generations): self.optimizer.step() for hook in hooks: codes = hook.callback(self.optimizer) for code in codes: if code == 'end': return def get_patterns(self): species = filter(lambda s: s.convergence >= self.conv_thresh, self.optimizer.species[:self.n_best]) species = filter(lambda s: s.convergence_size >= self.min_conv_size, species) patterns = map(lambda s: s.ancestor.copy(), species) patterns = filter(lambda p: p.accuracy >= self.min_acc, patterns) patterns = tuple(patterns) return patterns def get_species_report(self): result = [] for species in self.optimizer.species: ancestor = species.ancestor # type: Pattern report = { 'species': species, 'ancestor': ancestor, 'species_fitness': species.fitness, 'species_size': len(species), 'convergence': species.convergence, 'convergence_size': species.convergence_size, 'fitness': ancestor.fitness, 'accuracy': ancestor.accuracy, 'tightness': ancestor.tightness, } result.append(report) return
pd.DataFrame(result)
pandas.DataFrame
import numpy as np import pandas as pd #import seaborn as sns import matplotlib import matplotlib.pyplot as plt from matplotlib.dates import DateFormatter from matplotlib.ticker import PercentFormatter import logging from datetime import datetime from antalla.db import session from antalla import models def get_exchange_trades(buy_sym_id, sell_sym_id, exchange): query = ("select exchange_trade_id, name, timestamp, trade_type, buy_sym_id, sell_sym_id, price,"+ " size from trades inner join exchanges on exchanges.id = trades.exchange_id" + " where name = '" + exchange.lower() +"' and buy_sym_id = '" + buy_sym_id.upper() + "' and sell_sym_id = '" + sell_sym_id.upper() + "' order by timestamp asc") print(query) return session.execute(query) def parse_raw_trades(raw_trades): trades = [] for trade in list(raw_trades): trades.append(dict( exchange=trade[1], timestamp=trade[2], type=trade[3], buy_sym_id=trade[4], sell_sym_id=trade[5], price=trade[6], size=trade[7], volume=float(trade[6]*trade[7]) )) return trades def plot_hourly_trade_vol(buy_sym_id, sell_sym_id, exchanges): t = [] formatter = DateFormatter('%Y-%m-%d %H:%M') fig, ax = plt.subplots() for exchange in exchanges: raw_trades = get_exchange_trades(buy_sym_id, sell_sym_id, exchange) parsed_trades = parse_raw_trades(raw_trades) plot_individual_trades(parsed_trades, ax, exchange) ax.set(xlabel="Timestamp", ylabel="Trade volume ("+buy_sym_id+")", title="Sum of Trade Volume Per Hour: "+buy_sym_id+"-"+sell_sym_id) ax.xaxis.set_major_formatter(formatter) ax.grid() ax.legend() plt.xticks(rotation="vertical") plt.show() def plot_individual_trades(all_trades, ax, exchange): trades = list(filter(lambda x: x["exchange"] == exchange, all_trades)) times = list(map(lambda x: x["timestamp"], trades)) volumes = list(map(lambda x: x["volume"], trades)) df = pd.DataFrame() df["timestamp"] = pd.to_datetime(times) df["volumes"] = volumes df.index = df["timestamp"] df_bins = df.resample('H').sum() ax.plot(df_bins.index, df_bins["volumes"], label=exchange, linewidth=2) def parse_market(raw_market, sym_1, sym_2): """ >>> raw_market = 'BTCETH' >>> parse_market(raw_market, 'ETH', 'BTC') ('BTC', 'ETH') >>> parse_market("QTMBTC", 'QTM', 'BTC') ('QTM', 'BTC') """ if sym_1 not in raw_market or sym_2 not in raw_market: return None elif raw_market[0:len(sym_1)] == sym_1: return (sym_1, sym_2) else: return (sym_2, sym_1) def is_original_market(buy_sym_id, sell_sym_id, exchange): query = ( "select name, first_coin_id, second_coin_id, original_name from exchange_markets inner join exchanges on exchanges.id" + " = exchange_markets.exchange_id where name = '" + exchange.lower() + "'" ) all_markets = session.execute(query) for row in list(all_markets): if row[1] == buy_sym_id and row[2] == sell_sym_id: market = parse_market(row[3], buy_sym_id, sell_sym_id) return market elif row[1] == sell_sym_id and row[2] == buy_sym_id: market = parse_market(row[3], sell_sym_id, buy_sym_id) return market return None def invert_trades(raw_trades): trades = [] for trade in list(raw_trades): modified_trade = dict( exchange=trade[1], timestamp=trade[2], ) if trade[3] == "sell": modified_trade["type"]="sell" else: modified_trade["type"]="buy" modified_trade["buy_sym_id"]=trade[5] modified_trade["sell_sym_id"]=trade[4] price = float(1.0/trade[6]) modified_trade["price"]=price modified_trade["size"]=float((trade[6]*trade[7])*(float(1.0/trade[6])))*trade[6] modified_trade["volume"]=float((trade[6]*trade[7])*(float(1.0/trade[6]))) trades.append(modified_trade) return trades def plot_volume_bar_chart(buy_sym_id, sell_sym_id, exchange, plot_id): # check if market is original market original_market = is_original_market(buy_sym_id, sell_sym_id, exchange) trades = [] if original_market is None: return elif original_market[0] == sell_sym_id and original_market[1] == buy_sym_id: raw_trades = get_exchange_trades(sell_sym_id, buy_sym_id, exchange) trades = invert_trades(raw_trades) else: raw_trades = get_exchange_trades(buy_sym_id, sell_sym_id, exchange) trades = parse_raw_trades(raw_trades) times = list(map(lambda x: x["timestamp"], trades)) volumes = list(map(lambda x: x["volume"], trades)) prices = list(map(lambda x: x["price"], trades)) sell_volume = list(map(lambda x: x["volume"] if x["type"] == "sell" else 0, trades)) buy_volume = list(map(lambda x: x["volume"] if x["type"] == "buy" else 0, trades)) sells = list(filter(lambda x: x["type"] == "sell", trades)) sell_times = list(map(lambda x: x["timestamp"], sells)) sell_prices = list(map(lambda x: x["price"], sells)) buys = list(filter(lambda x: x["type"] == "buy", trades)) buy_times = list(map(lambda x: x["timestamp"], buys)) buy_prices = list(map(lambda x: x["price"], buys)) fig, axs = plt.subplots(2, sharex=True) df = pd.DataFrame() df["timestamp"] = pd.to_datetime(times) df["volumes"] = volumes df["prices"] = prices df["sell_volume"] = sell_volume df["buy_volume"] = buy_volume df.index = df["timestamp"] # bin trades in 1 hour bins df_bins = df.resample('30T').sum() p1 = axs[0].bar(df_bins.index, df_bins["sell_volume"], width=0.01, color="steelblue") p2 = axs[0].bar(df_bins.index, df_bins["buy_volume"], width=0.01, color="tomato") formatter = DateFormatter('%Y-%m-%d %H:%M') axs[0].set(title=exchange+": Traded Volume and Price per Hour: " + buy_sym_id + "-" + sell_sym_id) axs[0].xaxis.set_major_formatter(formatter) axs[0].set_ylabel("Total trade volume ("+buy_sym_id.upper()+")") axs[0].grid() axs[0].legend((p1[0], p2[0]), ("Sell volume", "Buy volume")) plt.xticks(rotation="vertical") plt.figure(plot_id) if len(sells) == 0 or len(buys) == 0: plt.xticks(rotation="vertical") plt.figure(plot_id) return df_sells = pd.DataFrame() df_sells["timestamp"] = sell_times df_sells["prices"] = sell_prices df_sells.index = df_sells["timestamp"] sell_bins = df_sells.resample('30T').mean().fillna(0) # avg sell price ps = axs[1].plot(sell_bins.index, sell_bins["prices"]) df_buys =
pd.DataFrame()
pandas.DataFrame
""" Tests for the construct_estimator.py file. """ import unittest from collections import OrderedDict from copy import deepcopy import numpy as np import numpy.testing as npt import pandas as pd from scipy.sparse import csr_matrix, eye import pylogit.asym_logit as asym import pylogit.conditional_logit as mnl import pylogit.clog_log as clog import pylogit.scobit as scobit import pylogit.uneven_logit as uneven import pylogit.mixed_logit_calcs as mlc import pylogit.mixed_logit as mixed_logit import pylogit.nested_logit as nested_logit import pylogit.construct_estimator as constructor class ConstructorTests(unittest.TestCase): def make_asym_model(self): # The set up being used is one where there are two choice situations, # The first having three alternatives, and the second having only two # alternatives. There is one generic variable. Two alternative # specific constants and all three shape parameters are used. # Create the betas to be used during the tests fake_betas = np.array([-0.6]) # Create the fake outside intercepts to be used during the tests fake_intercepts = np.array([1, 0.5]) # Create names for the intercept parameters fake_intercept_names = ["ASC 1", "ASC 2"] # Record the position of the intercept that is not being estimated fake_intercept_ref_pos = 2 # Create the shape parameters to be used during the tests. Note that # these are the reparameterized shape parameters, thus they will be # exponentiated in the fit_mle process and various calculations. fake_shapes = np.array([-1, 1]) # Create names for the intercept parameters fake_shape_names = ["Shape 1", "Shape 2"] # Record the position of the shape parameter that is being constrained fake_shape_ref_pos = 2 # Calculate the 'natural' shape parameters natural_shapes = asym._convert_eta_to_c(fake_shapes, fake_shape_ref_pos) # Create an array of all model parameters fake_all_params = np.concatenate((fake_shapes, fake_intercepts, fake_betas)) # Get the mappping between rows and observations fake_rows_to_obs = csr_matrix(np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1]])) # Create the fake design matrix with columns denoting X # The intercepts are not included because they are kept outside the # index in the scobit model. fake_design = np.array([[1], [2], [3], [1.5], [3.5]]) # Create the index array for this set of choice situations fake_index = fake_design.dot(fake_betas) # Create the needed dataframe for the Asymmetric Logit constructor fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2], "alt_id": [1, 2, 3, 1, 3], "choice": [0, 1, 0, 0, 1], "x": fake_design[:, 0], "intercept": [1 for i in range(5)]}) # Record the various column names alt_id_col = "alt_id" obs_id_col = "obs_id" choice_col = "choice" # Create the index specification and name dictionaryfor the model fake_specification = OrderedDict() fake_names = OrderedDict() fake_specification["x"] = [[1, 2, 3]] fake_names["x"] = ["x (generic coefficient)"] # Bundle args and kwargs used to construct the Asymmetric Logit model. constructor_args = [fake_df, alt_id_col, obs_id_col, choice_col, fake_specification] # Create a variable for the kwargs being passed to the constructor constructor_kwargs = {"intercept_ref_pos": fake_intercept_ref_pos, "shape_ref_pos": fake_shape_ref_pos, "names": fake_names, "intercept_names": fake_intercept_names, "shape_names": fake_shape_names} # Initialize a basic Asymmetric Logit model whose coefficients will be # estimated. model_obj = asym.MNAL(*constructor_args, **constructor_kwargs) model_obj.coefs = pd.Series(fake_betas, index=fake_names["x"]) model_obj.intercepts =\
pd.Series(fake_intercepts, index=fake_intercept_names)
pandas.Series
# -*- coding: utf-8 -*- """Converter for CGNC.""" import logging from typing import Iterable import pandas as pd from pyobo.struct import Obo, Reference, Term, from_species from pyobo.utils.path import ensure_df PREFIX = "cgnc" URL = "http://birdgenenames.org/cgnc/downloads.jsp?file=standard" logger = logging.getLogger(__name__) def get_obo(force: bool = False) -> Obo: """Get CGNC as OBO.""" return Obo( iter_terms=get_terms, iter_terms_kwargs=dict(force=force), name="CGNC", ontology=PREFIX, typedefs=[from_species], auto_generated_by=f"bio2obo:{PREFIX}", ) HEADER = [ "cgnc_id", "ncbigene_id", "ensembl_id", "name", "synonym_1", "synonym_2", "curation status", "last edit date", ] def get_terms(force: bool = False) -> Iterable[Term]: """Get CGNC terms.""" df = ensure_df(PREFIX, url=URL, name=f"{PREFIX}.tsv", force=force, header=0, names=HEADER) for i, (cgnc_id, entrez_id, ensembl_id, name, synonym_1, synoynm_2, _, _) in enumerate( df.values ): if pd.isna(cgnc_id): logger.warning(f"row {i} CGNC ID is none") continue try: int(cgnc_id) except ValueError: logger.warning(f"row {i} CGNC ID is not int-like: {cgnc_id}") continue term = Term.from_triple( prefix=PREFIX, identifier=cgnc_id, name=name, ) term.set_species(identifier="9031", name="Gallus gallus") if entrez_id and pd.notna(entrez_id): term.append_xref(Reference(prefix="ncbigene", identifier=entrez_id)) if pd.notna(ensembl_id): term.append_xref(Reference(prefix="ensembl", identifier=ensembl_id)) if synonym_1 and pd.notna(synonym_1): term.append_synonym(synonym_1) if synoynm_2 and
pd.notna(synoynm_2)
pandas.notna
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Helper module for performing MTSL GWAS inside of MTMLSEM model. Note that this has little to do with MTMLSEM, it merely fits the classical LMM model of the kind: Y = X B + E + U, where Y and X are deterministic data matrices, B is a matrix of regression coefficients, E and U are matrices random matrices with U being the random effect matrix, that takes genetic kinship between individuals into an account. """ from itertools import combinations, product from tqdm import tqdm import pandas as pd import numpy as np from utils import translate_names, unique_mapping def gwas_lmm(Model, y: list[str], phenos, genes, desc='', init_args=None, fit_args=None, dropna=True, verbose=True): """ Multi-trait single-locus GWAS via linear (possibly mixed) model. Parameters ---------- Model : class semopy class. y : list[str] List of phenotype names. phenos : pd.DataFrame Phenotypes + possibly other variables. genes : pd.DataFrame Genotypes/SNPs. desc : str, optional Extra model description. The default is ''. init_args : dict, optional Extra arguments for Model constructor. The default is None. fit_args : dict, optional Extra arguments for Model fit method (e.g., k). The default is None. dropna : bool, optional If True, then NaN rows are dropped for each gene test. The default is True. Returns ------- pd.DataFrame GWAS results. """ if init_args is None: init_args = dict() if fit_args is None: fit_args = dict() res = list() desc= desc + '\n{} ~ snp'.format(', '.join(y)) for a, b in combinations(y, 2): desc += f'\n{a} ~~ {b}' m = Model(desc, **init_args) phenos = phenos.copy() it = genes.iteritems() if verbose: it = tqdm(list(it)) for name, gene in it: chr, pos = translate_names(name) phenos['snp'] = gene.values if dropna: data = phenos.dropna() try: r = m.fit(data, clean_slate=True, **fit_args) if type(r) is not tuple: succ = r.success fun = r.fun else: succ = r[0].success & r[1].success fun = r[1].fun except np.linalg.LinAlgError: succ = False if not succ: t = [name, chr, pos, float('nan')] + [1.0] * len(y) t += [float('nan')] * len(y) res.append(t) else: ins = m.inspect() ins = ins[(ins['rval'] == 'snp') & (ins['op'] == '~')] pvals = list() ests = list() for _, row in ins.iterrows(): pvals.append(row['p-value']) ests.append(row['Estimate']) res.append([name, chr, pos, fun] + pvals + ests) cols = ['SNP', 'chr', 'pos'] + [f'{p}_p-value' for p in y] + [f'{p}_b' for p in y] return pd.DataFrame(res, columns=cols) def gwas_w(lt): gs, lt = lt mod, y, phenos, genes, desc, init_args, fit_args = lt return gwas(mod, y, phenos, genes[gs], desc, init_args, fit_args, verbose=False) def gwas(Model, y: list[str], phenos, genes, desc='', init_args=None, fit_args=None, num_processes=-1, chunk_size=1000, verbose=True): """ Multi-trait single-locus GWAS with multiprocessing support. Parameters ---------- Model : class semopy class. y : list[str] List of phenotype names. phenos : pd.DataFrame Phenotypes + possibly other variables. genes : pd.DataFrame Genotypes/SNPs. desc : str, optional Extra model description. The default is ''. init_args : dict, optional Extra arguments for Model constructor. The default is None. fit_args : dict, optional Extra arguments for Model fit method (e.g., k). The default is None. num_processes : int, optional Number of processes to run. If -1, then it is selected to number of avaialable CPU cores minus 1. "None" is the same as 1. The default is -1. chunk_size : int, optional Number of SNPs to be sent onto a single process. The default is 1000. verbose : bool, optional If False, then no progress bar will be printed. The default is True. Returns ------- pd.DataFrame GWAS results. """ from multiprocessing import Pool, cpu_count from tqdm.contrib.concurrent import process_map if num_processes == -1: num_processes = cpu_count() - 1 if num_processes in (None, 0, 1): return gwas_lmm(Model, y, phenos, genes, desc, init_args, fit_args, verbose=verbose) # We rule out duplicate SNPs to ease the computational burden: unique = unique_mapping(genes) genes = genes[list(unique.keys())] result = None lt = list(genes.columns) lt2 = [lt[i:i+chunk_size] for i in range(0, len(lt), chunk_size)] lt = (Model, y, phenos, genes, desc, init_args, fit_args) prod = product(lt2, lt) if not verbose: with Pool(num_processes) as p: for t in p.map(gwas_w, prod): if result is None: result = t else: result =
pd.concat([result, t])
pandas.concat
# Copyright 2021 <NAME>, <NAME>, <NAME>. # Licensed under the BSD 2-Clause License (https://opensource.org/licenses/BSD-2-Clause) # This file may not be copied, modified, or distributed # except according to those terms. import sys sys.stderr = open(snakemake.log[0], "w") import altair as alt import pandas as pd import pysam from intervaltree import IntervalTree # read primer bedpe to df PRIMER = pd.read_csv(snakemake.params.get("bed", ""), delimiter="\t", header=None) PRIMER.drop(PRIMER.columns[[0, 3]], axis=1, inplace=True) PRIMER.columns = ["p1_start", "p1_end", "p2_start", "p2_end"] # convert df to interval trees primer_intervals = IntervalTree() no_primer_intervals = IntervalTree() for index, row in PRIMER.iterrows(): primer_intervals[row["p1_start"] : row["p2_end"] + 1] = ( row["p1_start"], row["p2_end"] + 1, ) no_primer_intervals[row["p1_end"] + 1 : row["p2_start"]] = ( row["p1_end"] + 1, row["p2_start"], ) def iter_with_samples(inputfiles): return zip(snakemake.params.samples, inputfiles) def count_intervals(file): with pysam.AlignmentFile(file, "rb") as bam: counter_primer = 0 counter_no_primer = 0 counter_primer_within = 0 counter_no_primer_within = 0 counter_nothing = 0 mate_pair_intervals = {} for read in bam.fetch(): if not mate_pair_intervals.get(read.query_name): mate_pair_intervals[read.query_name] = [read.reference_start] else: mate_pair_intervals[read.query_name].append(read.reference_end) for pair in mate_pair_intervals: if ( len(mate_pair_intervals[pair]) > 1 and mate_pair_intervals[pair][0] != None and mate_pair_intervals[pair][1] != None ): if primer_intervals.envelop( mate_pair_intervals[pair][0], mate_pair_intervals[pair][1] + 1 ): if ( sorted( primer_intervals.envelop( mate_pair_intervals[pair][0], mate_pair_intervals[pair][1] + 1, ) )[0].begin == mate_pair_intervals[pair][0] and sorted( primer_intervals.envelop( mate_pair_intervals[pair][0], mate_pair_intervals[pair][1] + 1, ) )[0].end == mate_pair_intervals[pair][1] + 1 ): counter_primer += 1 else: counter_primer_within += 1 elif no_primer_intervals.envelop( mate_pair_intervals[pair][0] + 1, mate_pair_intervals[pair][1] ): if ( sorted( no_primer_intervals.envelop( mate_pair_intervals[pair][0] + 1, mate_pair_intervals[pair][1], ) )[0].begin == mate_pair_intervals[pair][0] + 1 and sorted( no_primer_intervals.envelop( mate_pair_intervals[pair][0] + 1, mate_pair_intervals[pair][1], ) )[0].end == mate_pair_intervals[pair][1] ): counter_no_primer += 1 else: counter_no_primer_within += 1 else: counter_nothing += 1 else: counter_nothing += 1 counters = pd.DataFrame( { "n_count": [ counter_primer, counter_primer_within, counter_no_primer, counter_no_primer_within, counter_nothing, ], "class": [ "uncut primer exact", "uncut primer within", "cut primer exact", "cut primer within", "no mathing win", ], } ) return counters def plot_classes(counters): bars = ( alt.Chart(counters) .mark_bar() .encode( y="class", x="n_count", row=alt.Row("sample:N"), column=alt.Column("state:N", sort="descending"), ) ) text = bars.mark_text( align="left", baseline="middle", dx=3, # Nudges text to right so it doesn't appear on top of the bar ).encode(text="n_count", row=alt.Row("sample:N"), column=alt.Column("state:N")) return bars, text all_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import pandas as pd try: import pyarrow as pa except ImportError: # pragma: no cover pa = None import mars.tensor as mt import mars.dataframe as md from mars.executor import register, Executor from mars.tensor.core import TensorOrder from mars.tensor.datasource import ArrayDataSource from mars.tiles import get_tiled from mars.session import new_session, Session class Test(unittest.TestCase): def setUp(self): new_session().as_default() def testSessionExecute(self): a = mt.random.rand(10, 20) res = a.sum().to_numpy() self.assertTrue(np.isscalar(res)) self.assertLess(res, 200) def testSessionAsyncExecute(self): raw_a = np.random.RandomState(0).rand(10, 20) a = mt.tensor(raw_a) expected = raw_a.sum() res = a.sum().to_numpy(wait=False).result() self.assertEqual(expected, res) res = a.sum().execute(wait=False) res = res.result().fetch() self.assertEqual(expected, res) raw_df = pd.DataFrame(raw_a) expected = raw_df.sum() df = md.DataFrame(a) res = df.sum().to_pandas(wait=False).result() pd.testing.assert_series_equal(expected, res) res = df.sum().execute(wait=False) res = res.result().fetch() pd.testing.assert_series_equal(expected, res) t = [df.sum(), a.sum()] res = mt.ExecutableTuple(t).to_object(wait=False).result() pd.testing.assert_series_equal(raw_df.sum(), res[0]) self.assertEqual(raw_a.sum(), res[1]) res = mt.ExecutableTuple(t).execute(wait=False) res = res.result().fetch() pd.testing.assert_series_equal(raw_df.sum(), res[0]) self.assertEqual(raw_a.sum(), res[1]) def testMultipleOutputExecute(self): data = np.random.random((5, 9)) # test multiple outputs arr1 = mt.tensor(data.copy(), chunk_size=3) result = mt.modf(arr1).execute().fetch() expected = np.modf(data) np.testing.assert_array_equal(result[0], expected[0]) np.testing.assert_array_equal(result[1], expected[1]) # test 1 output arr2 = mt.tensor(data.copy(), chunk_size=3) result = ((arr2 + 1) * 2).to_numpy() expected = (data + 1) * 2 np.testing.assert_array_equal(result, expected) # test multiple outputs, but only execute 1 arr3 = mt.tensor(data.copy(), chunk_size=3) arrs = mt.split(arr3, 3, axis=1) result = arrs[0].to_numpy() expected = np.split(data, 3, axis=1)[0] np.testing.assert_array_equal(result, expected) # test multiple outputs, but only execute 1 data = np.random.randint(0, 10, (5, 5)) arr3 = (mt.tensor(data) + 1) * 2 arrs = mt.linalg.qr(arr3) result = (arrs[0] + 1).to_numpy() expected = np.linalg.qr((data + 1) * 2)[0] + 1 np.testing.assert_array_almost_equal(result, expected) result = (arrs[0] + 2).to_numpy() expected = np.linalg.qr((data + 1) * 2)[0] + 2 np.testing.assert_array_almost_equal(result, expected) s = mt.shape(0) result = s.execute().fetch() expected = np.shape(0) self.assertEqual(result, expected) def testReExecuteSame(self): data = np.random.random((5, 9)) # test run the same tensor arr4 = mt.tensor(data.copy(), chunk_size=3) + 1 result1 = arr4.to_numpy() expected = data + 1 np.testing.assert_array_equal(result1, expected) result2 = arr4.to_numpy() np.testing.assert_array_equal(result1, result2) # test run the same tensor with single chunk arr4 = mt.tensor(data.copy()) result1 = arr4.to_numpy() expected = data np.testing.assert_array_equal(result1, expected) result2 = arr4.to_numpy() np.testing.assert_array_equal(result1, result2) # modify result sess = Session.default_or_local() executor = sess._sess._executor executor.chunk_result[get_tiled(arr4).chunks[0].key] = data + 2 result3 = arr4.to_numpy() np.testing.assert_array_equal(result3, data + 2) # test run same key tensor arr5 = mt.ones((10, 10), chunk_size=3) result1 = arr5.to_numpy() del arr5 arr6 = mt.ones((10, 10), chunk_size=3) result2 = arr6.to_numpy() np.testing.assert_array_equal(result1, result2) # test copy, make sure it will not let the execution cache missed df = md.DataFrame(mt.ones((10, 3), chunk_size=5)) executed = [False] def add_one(x): if executed[0]: # pragma: no cover raise ValueError('executed before') return x + 1 df2 = df.apply(add_one) pd.testing.assert_frame_equal(df2.to_pandas(), pd.DataFrame(np.ones((10, 3)) + 1)) executed[0] = True df3 = df2.copy() df4 = df3 * 2 pd.testing.assert_frame_equal(df4.to_pandas(), pd.DataFrame(np.ones((10, 3)) * 4)) def testExecuteBothExecutedAndNot(self): data = np.random.random((5, 9)) arr1 = mt.tensor(data, chunk_size=4) * 2 arr2 = mt.tensor(data) + 1 np.testing.assert_array_equal(arr2.to_numpy(), data + 1) # modify result sess = Session.default_or_local() executor = sess._sess._executor executor.chunk_result[get_tiled(arr2).chunks[0].key] = data + 2 results = sess.run(arr1, arr2) np.testing.assert_array_equal(results[0], data * 2) np.testing.assert_array_equal(results[1], data + 2) def testTensorExecuteNotFetch(self): data = np.random.random((5, 9)) sess = Session.default_or_local() arr1 = mt.tensor(data, chunk_size=2) * 2 with self.assertRaises(ValueError): sess.fetch(arr1) self.assertIs(arr1.execute(), arr1) # modify result executor = sess._sess._executor executor.chunk_result[get_tiled(arr1).chunks[0].key] = data[:2, :2] * 3 expected = data * 2 expected[:2, :2] = data[:2, :2] * 3 np.testing.assert_array_equal(arr1.to_numpy(), expected) def testDataFrameExecuteNotFetch(self): data1 = pd.DataFrame(np.random.random((5, 4)), columns=list('abcd')) sess = Session.default_or_local() df1 = md.DataFrame(data1, chunk_size=2) with self.assertRaises(ValueError): sess.fetch(df1) self.assertIs(df1.execute(), df1) self.assertEqual(len(df1[df1['a'] > 1].to_pandas(fetch_kwargs={'batch_size': 2})), 0) self.assertEqual(len(df1[df1['a'] > 1]['a'].to_pandas(fetch_kwargs={'batch_size': 2})), 0) # modify result executor = sess._sess._executor executor.chunk_result[get_tiled(df1).chunks[0].key] = data1.iloc[:2, :2] * 3 expected = data1 expected.iloc[:2, :2] = data1.iloc[:2, :2] * 3 pd.testing.assert_frame_equal(df1.to_pandas(), expected) pd.testing.assert_frame_equal(df1.to_pandas(fetch_kwargs={'batch_size': 2}), expected) def testClosedSession(self): session = new_session() arr = mt.ones((10, 10)) result = session.run(arr) np.testing.assert_array_equal(result, np.ones((10, 10))) session.close() with self.assertRaises(RuntimeError): session.run(arr) with self.assertRaises(RuntimeError): session.run(arr + 1) def testBoolIndexing(self): arr = mt.random.rand(10, 10, chunk_size=5) arr[3:8, 3:8] = mt.ones((5, 5)) arr2 = arr[arr == 1] self.assertEqual(arr2.shape, (np.nan,)) arr2.execute() self.assertEqual(arr2.shape, (25,)) arr3 = arr2.reshape((5, 5)) expected = np.ones((5, 5)) np.testing.assert_array_equal(arr3.to_numpy(), expected) def testArrayProtocol(self): arr = mt.ones((10, 20)) result = np.asarray(arr) np.testing.assert_array_equal(result, np.ones((10, 20))) arr2 = mt.ones((10, 20)) result = np.asarray(arr2, mt.bool_) np.testing.assert_array_equal(result, np.ones((10, 20), dtype=np.bool_)) arr3 = mt.ones((10, 20)).sum() result = np.asarray(arr3) np.testing.assert_array_equal(result, np.asarray(200)) arr4 = mt.ones((10, 20)).sum() result = np.asarray(arr4, dtype=np.float_) np.testing.assert_array_equal(result, np.asarray(200, dtype=np.float_)) def testRandomExecuteInSessions(self): arr = mt.random.rand(20, 20) sess1 = new_session() res1 = sess1.run(arr) sess2 = new_session() res2 = sess2.run(arr) np.testing.assert_array_equal(res1, res2) def testFetch(self): sess = new_session() arr1 = mt.ones((10, 5), chunk_size=3) r1 = sess.run(arr1) r2 = sess.run(arr1) np.testing.assert_array_equal(r1, r2) executor = sess._sess._executor executor.chunk_result[get_tiled(arr1).chunks[0].key] = np.ones((3, 3)) * 2 r3 = sess.run(arr1 + 1) np.testing.assert_array_equal(r3[:3, :3], np.ones((3, 3)) * 3) # rerun to ensure arr1's chunk results still exist r4 = sess.run(arr1 + 1) np.testing.assert_array_equal(r4[:3, :3], np.ones((3, 3)) * 3) arr2 = mt.ones((10, 5), chunk_size=3) r5 = sess.run(arr2) np.testing.assert_array_equal(r5[:3, :3], np.ones((3, 3)) * 2) r6 = sess.run(arr2 + 1) np.testing.assert_array_equal(r6[:3, :3], np.ones((3, 3)) * 3) df = md.DataFrame(np.random.rand(10, 2), columns=list('ab')) s = df['a'].map(lambda x: np.ones((3, 3)), dtype='object').sum() np.testing.assert_array_equal(s.execute().fetch(), np.ones((3, 3)) * 10) # test fetch multiple tensors raw = np.random.rand(5, 10) arr1 = mt.ones((5, 10), chunk_size=5) arr2 = mt.tensor(raw, chunk_size=3) arr3 = mt.sum(arr2) sess.run(arr1, arr2, arr3) fetch1, fetch2, fetch3 = sess.fetch(arr1, arr2, arr3) np.testing.assert_array_equal(fetch1, np.ones((5, 10))) np.testing.assert_array_equal(fetch2, raw) np.testing.assert_almost_equal(fetch3, raw.sum()) fetch1, fetch2, fetch3 = sess.fetch([arr1, arr2, arr3]) np.testing.assert_array_equal(fetch1, np.ones((5, 10))) np.testing.assert_array_equal(fetch2, raw) np.testing.assert_almost_equal(fetch3, raw.sum()) raw = np.random.rand(5, 10) arr = mt.tensor(raw, chunk_size=5) s = arr.sum() self.assertAlmostEqual(s.execute().fetch(), raw.sum()) def _execute_ds(*_): # pragma: no cover raise ValueError('cannot run random again') try: register(ArrayDataSource, _execute_ds) self.assertAlmostEqual(s.fetch(), raw.sum()) finally: del Executor._op_runners[ArrayDataSource] def testDecref(self): sess = new_session() arr1 = mt.ones((10, 5), chunk_size=3) arr2 = mt.ones((10, 5), chunk_size=3) sess.run(arr1) sess.run(arr2) sess.fetch(arr1) executor = sess._sess._executor self.assertEqual(len(executor.chunk_result), 4) # 4 kinds of shapes del arr1 self.assertEqual(len(executor.chunk_result), 4) del arr2 self.assertEqual(len(executor.chunk_result), 0) def testWithoutCompose(self): sess = new_session() arr1 = (mt.ones((10, 10), chunk_size=3) + 1) * 2 r1 = sess.run(arr1) arr2 = (mt.ones((10, 10), chunk_size=4) + 1) * 2 r2 = sess.run(arr2, compose=False) np.testing.assert_array_equal(r1, r2) def testDataFrameCreate(self): sess = new_session() tensor = mt.ones((2, 2)) df = md.DataFrame(tensor) df_result = sess.run(df) df2 = md.DataFrame(df) df2 = sess.run(df2) np.testing.assert_equal(df_result.values, np.ones((2, 2))) pd.testing.assert_frame_equal(df_result, df2) raw_a = np.random.rand(10) raw_b = np.random.randint(1000, size=10) df = md.DataFrame({'a': mt.tensor(raw_a), 'b': mt.tensor(raw_b)}, columns=['b', 'a']) df_result = sess.run(df) pd.testing.assert_frame_equal( df_result, pd.DataFrame({'a': raw_a, 'b': raw_b}, columns=['b', 'a'])) def testDataFrameTensorConvert(self): # test from_tensor(), from_dataframe(), to_tensor(), to_dataframe() sess = new_session() tensor = mt.ones((2, 2)) df = tensor.to_dataframe() np.testing.assert_equal(sess.run(df), np.ones((2, 2))) tensor2 = mt.from_dataframe(df) np.testing.assert_equal(sess.run(tensor2), np.ones((2, 2))) tensor3 = tensor2.from_dataframe(df) np.testing.assert_equal(sess.run(tensor3), np.ones((2, 2))) tensor4 = df.to_tensor() np.testing.assert_equal(sess.run(tensor4), np.ones((2, 2))) df = md.dataframe_from_tensor(tensor3) np.testing.assert_equal(sess.run(df).values, np.ones((2, 2))) df = df.from_tensor(tensor3) np.testing.assert_equal(sess.run(df).values, np.ones((2, 2))) # test raise error exception with self.assertRaises(TypeError): md.dataframe_from_tensor(mt.ones((1, 2, 3))) # test exception tensor = md.dataframe_from_tensor(mt.array([1, 2, 3])) np.testing.assert_equal(sess.run(tensor), np.array([1, 2, 3]).reshape(3, 1)) def testDataFrameExecution(self): sess = new_session() raw = pd.DataFrame(np.random.rand(5, 3), index=pd.date_range('2020-1-1', periods=5)) for chunk_size in (3, 5): df = md.DataFrame(raw, chunk_size=chunk_size) r = df.loc['2020-1-2'] result = sess.run(r) pd.testing.assert_series_equal(result, raw.loc['2020-1-2']) df = md.DataFrame(raw, chunk_size=chunk_size) df2 = df[[0, 2]].dropna().head(4).copy() df3 = df2[df2[0] > 0.5] result = sess.run(df3) expected = raw[[0, 2]].dropna().head(4).copy() expected = expected[expected[0] > 0.5] pd.testing.assert_frame_equal(result, expected) @unittest.skipIf(pa is not None, 'this test aims to test usage of ArrowDtype ' 'when pyarrow not installed') def testDataFrameWithArrowDtypeExecution(self): sess = new_session() # test ArrowDtype when pyarrow not installed raw = pd.DataFrame({'a': [f's{i}' for i in range(10)], 'b': np.random.rand(10)}) df = md.DataFrame(raw, chunk_size=5) df['a'] = df['a'].astype('Arrow[string]') r = df.groupby('a').sum() # can work for expression with self.assertRaises(ImportError): # cannot perform execution # due to the reason that pyarrow not installed _ = sess.run(r) def testFetchSlices(self): sess = new_session() arr1 = mt.random.rand(10, 8, chunk_size=3) r1 = sess.run(arr1) r2 = sess.fetch(arr1[:2, 3:9]) np.testing.assert_array_equal(r2, r1[:2, 3:9]) r3 = sess.fetch(arr1[0]) np.testing.assert_array_equal(r3, r1[0]) def testFetchDataFrameSlices(self): sess = new_session() arr1 = mt.random.rand(10, 8, chunk_size=3) df1 = md.DataFrame(arr1) r1 = sess.run(df1) r2 = sess.fetch(df1.iloc[:, :]) pd.testing.assert_frame_equal(r2, r1.iloc[:, :]) r3 = sess.fetch(df1.iloc[1])
pd.testing.assert_series_equal(r3, r1.iloc[1])
pandas.testing.assert_series_equal
# File: build_game_tables.py # Date Created: 2018-11-10 # Author(s): <NAME> # Purpose: Validates retrosheet and 538 wrangling against each other and builds db tables import pandas as pd import numpy as np import datetime import psycopg2 from ignore import db_cred df_retro =
pd.read_csv('ignore\\large_data\\game_data_retrosheet2\\combined_retrosheet.csv')
pandas.read_csv
import pandas as pd #importing all the data from CSV files master_df = pd.read_csv('People.csv', usecols=['playerID', 'nameFirst', 'nameLast', 'bats', 'throws', 'debut', 'finalGame']) fielding_df = pd.read_csv('Fielding.csv',usecols=['playerID','yearID','stint','teamID','lgID','POS','G','GS','InnOuts','PO','A','E','DP']) batting_df = pd.read_csv('Batting.csv') awards_df = pd.read_csv('AwardsPlayers.csv', usecols=['playerID','awardID','yearID']) allstar_df = pd.read_csv('AllstarFull.csv', usecols=['playerID','yearID']) hof_df =
pd.read_csv('HallOfFame.csv',usecols=['playerID','yearid','votedBy','needed_note','inducted','category'])
pandas.read_csv
# Copyright (C) 2019-2020 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas import arctern def test_suite(): from multiprocessing import Process import time p1 = Process(target=ST_Intersection) p2 = Process(target=ST_Equals) p3 = Process(target=ST_Touches) p4 = Process(target=ST_Overlaps) p5 = Process(target=ST_Crosses) p6 = Process(target=ST_Point) p7 = Process(target=ST_Contains) p8 = Process(target=ST_Intersects) p9 = Process(target=ST_Distance) p10 = Process(target=ST_DistanceSphere) p11 = Process(target=ST_HausdorffDistance) p12 = Process(target=ST_PolygonFromEnvelope) start = time.time() p1.start() p2.start() p3.start() p4.start() p5.start() p6.start() p7.start() p8.start() p9.start() p10.start() p11.start() p12.start() p1.join() p2.join() p3.join() p4.join() p5.join() p6.join() p7.join() p8.join() p9.join() p10.join() p11.join() p12.join() end = time.time() print('Task runs %0.2f seconds.' % ((end - start))) def ST_Intersection(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Intersection(data1, data2) assert len(rst) == 40000000 def ST_Equals(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Equals(data1, data2) assert len(rst) == 40000000 def ST_Touches(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Touches(data1, data2) assert len(rst) == 40000000 def ST_Overlaps(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Overlaps(data1, data2) assert len(rst) == 40000000 def ST_Crosses(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Crosses(data1, data2) assert len(rst) == 40000000 def ST_Point(): geo1 = 1.1 geo2 = 2.1 arr1 = [geo1 for x in range(1, 40000001)] arr2 = [geo2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Point(data1, data2) assert len(rst) == 40000000 def ST_Contains(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Contains(data1, data2) assert len(rst) == 40000000 def ST_Intersects(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Intersects(data1, data2) assert len(rst) == 40000000 def ST_Within(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 =
pandas.Series(arr1)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 5 11:52:00 2020 @author: <NAME> Ewp Takes a little while to run. This code is a pretty average (poorly named variables and reuse of dat, and different names for the moorings). All of the values are calculated on the fly and printed. Not saved anywhere. Quite inefficient, but provided as is. Recommended to turn warnings off to save the data and put in text. Could have turned this into a function. Have refractored where possible but this script is provided as is. Requirements: processed/combined_dataset/month_data_exports.nc processed/flux/pco2grams.nc Produces: figs/Figure5a_ENSO_seasonality.png """ import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt from carbon_math import * from matplotlib.dates import MonthLocator, DateFormatter from matplotlib.ticker import FuncFormatter xl0=0.0 yl0=0.18 xl1=0.0 yl1=0.18 xl2=-0.09 yl2=0 lanina=pd.read_csv('processed/indexes/la_nina_events.csv') cp_nino=pd.read_csv('processed/indexes/cp_events.csv') ep_nino=pd.read_csv('processed/indexes/ep_events.csv') fp='processed/combined_dataset/month_data_exports.nc' info=xr.open_mfdataset(fp).sel(Mooring=195).to_dataframe() #Process EP, CP and Nino events. nina=pd.DataFrame() ep=pd.DataFrame() cp=pd.DataFrame() for i in lanina.iterrows(): nina=nina.append(info[slice(i[1].start,i[1].end)]) for i in ep_nino.iterrows(): ep=ep.append(info[slice(i[1].start,i[1].end)]) for i in cp_nino.iterrows(): cp=cp.append(info[slice(i[1].start,i[1].end)]) nina_dates=nina.index ep_dates=ep.index[4:] cp_dates=cp.index # %% Load Useful files seamask=xr.open_dataset('processed/seamask.nc') #Because 2020 version doesn't have it. seamask= seamask.assign_coords(lon=(seamask.lon % 360)).roll(lon=(seamask.dims['lon']),roll_coords=False).sortby('lon') #landsch_fp='datasets/co2/landschutzer_co2/spco2_MPI_SOM-FFN_v2018.nc' landsch_fp='datasets/co2/landschutzer_co2/spco2_MPI-SOM_FFN_v2020.nc' landschutzer=xr.open_dataset(landsch_fp) landschutzer= landschutzer.assign_coords(lon=(landschutzer.lon % 360)).roll(lon=(landschutzer.dims['lon']),roll_coords=False).sortby('lon') #EPIC 1 line fix for the dateline problem. land_pac=landschutzer.sel(lon=slice(120,290),lat=slice(-20,20)) land_pac_all=landschutzer.sel(lon=slice(120,290),lat=slice(-20,20)) land_pac=land_pac.fgco2_smoothed atmco2=land_pac_all.atm_co2 dco2=land_pac_all.dco2 pco2=land_pac_all.spco2_smoothed kw=land_pac_all.kw f_ratios=xr.open_mfdataset('processed/flux/fratios.nc') ratio=f_ratios.laws2011a#laws2000#laws2000,laws2011a,laws2011b,henson2011 npp1=xr.open_dataset('processed/flux/avg_npp_rg_cafe.nc') avg_npp=(npp1.avg_npp/1000)*ratio land=moles_to_carbon(land_pac)/365 #LANDSCHUTZ land['time']=land.time.astype('datetime64[M]') diff=land-avg_npp diff1=diff.where((diff<0.1)|(diff<-0.1),np.nan) sst = xr.open_dataset('datasets/sst/sst.mnmean.nc') sst= sst.assign_coords(lon=(sst.lon % 360)).roll(lon=(sst.dims['lon']),roll_coords=False).sortby('lon') #EPIC 1 line fix for the dateline problem. sst=sst.sel(lon=slice(120,290),lat=slice(20,-20)).sst sst=sst.where(seamask.seamask==1) #startday=np.datetime64('2000-01-01') #endday=np.datetime64('2019-12-01') #wu=xr.open_dataset('datasets/uwnd.mon.mean.nc').sel(level=1000,lat=0,lon=slice(120,290),time=slice('1997-07-01','2020-01-01')).uwnd #wv=xr.open_dataset('datasets/vwnd.mon.mean.nc').sel(level=1000,lat=0,lon=slice(120,290),time=slice('1997-07-01','2020-01-01')).vwnd wu=xr.open_dataset('datasets/uwnd.10m.mon.mean.nc').sel(level=10,lat=slice(20,-20),lon=slice(120,290),time=slice('1997-07-01','2020-01-01')).uwnd wv=xr.open_dataset('datasets/vwnd.10m.mon.mean.nc').sel(level=10,lat=slice(20,-20),lon=slice(120,290),time=slice('1997-07-01','2020-01-01')).vwnd ws_ncep2=np.sqrt((wu**2)+(wv**2)) #CHeck line 164 depending if using NCEP2 or windspeed ws=xr.open_dataarray('datasets/CCMP_windspeed.nc') #wind=uw.sel(lat=) precip= xr.open_dataset('datasets/precip.mon.mean.enhanced.nc').sel(lat=slice(20,-20),lon=slice(120,290),time=slice('1997-07-01','2020-01-01')).precip newprod=avg_npp.sel(lat=slice(-15,15))#.interpolate_na(dim='time').sel(time=slice(startday,endday)) co2=land.sel(lat=slice(-15,15))#.interpolate_na(dim='time').sel(time=slice(startday,endday)) pco2=pco2.sel(lat=slice(-15,15))#.interpolate_na(dim='time').sel(time=slice(startday,endday)) pco2['time']=pco2.time.astype('datetime64[M]') kw['time']=kw.time.astype('datetime64[M]') dco2['time']=dco2.time.astype('datetime64[M]') #pco2=pco2_intrp kw1=kw.sel(lat=slice(-15,15))#.interpolate_na(dim='time').sel(time=slice(startday,endday)) sst=sst.sel(lat=slice(15,-15))#.interpolate_na(dim='time').sel(time=slice(startday,endday)) chl=xr.open_dataset('processed/flux/tpca.nc').tpca#'sw_month.nc') chl['time']=chl.time.astype('datetime64[M]') # %% #Test windspeed minlat=-2 maxlat=2 #enso=pd.read_csv('datasets/indexes/meiv2.csv',index_col='Year') enso=pd.read_csv('datasets/indexes/meiv2.csv',index_col=0,header=None) enso=enso.iloc[3:] #Just so Both EMI and MEI start in 1981-01-01 enso_flat=enso.stack() enso_dates=pd.date_range('1982','2020-07-01',freq='M')- pd.offsets.MonthBegin(1) #Probably want to check this is correct if updating. enso_timeseries=pd.DataFrame({'Date':enso_dates,'mei':enso_flat}) enso_timeseries=enso_timeseries.where((enso_timeseries.Date>np.datetime64('1997-01-01'))&(enso_timeseries.Date<np.datetime64('2000-01-01'))).dropna() plt.figure(figsize=(30,10)) plt.subplot(151) wu1=xr.open_dataset('datasets/uwnd.10m.mon.mean.nc').sel(level=10,lat=slice(20,-20),lon=slice(120,290)).uwnd d=wu1.sel(lat=slice(maxlat,minlat),time=slice(np.datetime64('1997-01-01'),np.datetime64('2000-01-01'))).mean(dim='lat') d.plot.contourf(vmin=-6,vmax=6) gc=plt.gca() gc.invert_yaxis() positions = (140, 160, 180,200,220,240,260) labels = ("140$^\circ$E", "160$^\circ$E", "180$^\circ$",'160$^\circ$W','140$^\circ$W','120$^\circ$W','100$^\circ$W') plt.xticks(positions, labels) plt.title('zonal (uwnd) speed') plt.xlim(150,265) plt.subplot(152) wv1=xr.open_dataset('datasets/vwnd.10m.mon.mean.nc').sel(level=10,lat=slice(20,-20),lon=slice(120,290)).vwnd d=wv1.sel(lat=slice(maxlat,minlat),time=slice(np.datetime64('1997-01-01'),np.datetime64('2000-01-01'))).mean(dim='lat') d.plot.contourf(vmin=-6,vmax=6) gc=plt.gca() gc.invert_yaxis() positions = (140, 160, 180,200,220,240,260) labels = ("140$^\circ$E", "160$^\circ$E", "180$^\circ$",'160$^\circ$W','140$^\circ$W','120$^\circ$W','100$^\circ$W') plt.xticks(positions, labels) plt.xlim(150,265) plt.title('meridional (vwnd) speed') plt.subplot(153) nws=ws.sel(time=slice(np.datetime64('1997-01-01'),np.datetime64('2000-01-01')),lat=slice(minlat,maxlat)).mean(dim='lat') nws.plot.contourf() gc=plt.gca() gc.invert_yaxis() positions = (140, 160, 180,200,220,240,260) labels = ("140$^\circ$E", "160$^\circ$E", "180$^\circ$",'160$^\circ$W','140$^\circ$W','120$^\circ$W','100$^\circ$W') plt.xticks(positions, labels) plt.xlim(150,265) plt.title('Wind Speed (m/s)') plt.subplot(154) nws=ws.sel(time=slice(np.datetime64('1997-01-01'),np.datetime64('2000-01-01')),lat=slice(minlat,maxlat)).mean(dim='lat') (nws-nws.mean(dim='time')).plot.contourf(cmap='bwr') gc=plt.gca() gc.invert_yaxis() positions = (140, 160, 180,200,220,240,260) labels = ("140$^\circ$E", "160$^\circ$E", "180$^\circ$",'160$^\circ$W','140$^\circ$W','120$^\circ$W','100$^\circ$W') plt.xticks(positions, labels) plt.title('Wind Speed Anomaly (m/s, wind-wind mean)') plt.xlim(150,265) plt.subplot(155) plt.title('MEI') plt.plot(enso_timeseries.mei,enso_timeseries.Date,linewidth=5,c='k') gc=plt.gca() gc.invert_yaxis() plt.tight_layout() # %% Plot them latbnd=1 co2_eq=co2.sel(lat=slice(-latbnd,latbnd)).mean(dim='lat') co2_ep=co2_eq.sel(time=ep_dates).mean(dim='time') co2_cp=co2_eq.sel(time=cp_dates).mean(dim='time') co2_nina=co2_eq.sel(time=nina_dates).mean(dim='time') co2_neutral=co2_eq.drop_sel(time=ep_dates.append(cp_dates).append(nina_dates)).mean(dim='time') dco2_eq=dco2.sel(lat=slice(-latbnd,latbnd)).mean(dim='lat') dco2_ep=dco2_eq.sel(time=ep_dates).mean(dim='time') dco2_cp=dco2_eq.sel(time=cp_dates).mean(dim='time') dco2_nina=dco2_eq.sel(time=nina_dates).mean(dim='time') dco2_neutral=dco2_eq.drop_sel(time=ep_dates.append(cp_dates).append(nina_dates)).mean(dim='time') np_eq=newprod.sel(lat=slice(-latbnd,latbnd)).mean(dim='lat') np_ep=np_eq.sel(time=ep_dates).mean(dim='time') np_cp=np_eq.sel(time=cp_dates).mean(dim='time') np_nina=np_eq.sel(time=nina_dates).mean(dim='time') np_neutral=np_eq.drop_sel(time=ep_dates.append(cp_dates).append(nina_dates)).mean(dim='time') sst_eq=sst.sel(lat=slice(latbnd,-latbnd)).mean(dim='lat') sst_ep=sst_eq.sel(time=ep_dates).mean(dim='time') sst_cp=sst_eq.sel(time=cp_dates).mean(dim='time') sst_nina=sst_eq.sel(time=nina_dates).mean(dim='time') sst_neutral=sst_eq.drop_sel(time=ep_dates.append(cp_dates).append(nina_dates)).mean(dim='time') #Remove the cp[:-7] and change -latbnd,latbnd to latbnd,-latbnd for NCEP2 rather than CCMP ws_eq=ws.sel(lat=slice(-latbnd,latbnd)).mean(dim='lat') ws_eq_NCEP2=ws_ncep2.sel(lat=slice(latbnd,-latbnd)).mean(dim='lat') ws_ep=ws_eq.sel(time=ep_dates).mean(dim='time') ws_cp=ws_eq.sel(time=cp_dates[:-7]).mean(dim='time') ws_nina=ws_eq.sel(time=nina_dates).mean(dim='time') ws_neutral=ws_eq.drop_sel(time=ep_dates.append(cp_dates[:-7]).append(nina_dates)).mean(dim='time') chl_eq=chl.sel(lat=slice(-latbnd,latbnd)).mean(dim='lat') chl_ep=chl_eq.sel(time=ep_dates).mean(dim='time') chl_cp=chl_eq.sel(time=cp_dates[:-5]).mean(dim='time') chl_nina=chl_eq.sel(time=nina_dates).mean(dim='time') chl_neutral=chl_eq.drop_sel(time=ep_dates.append(cp_dates[:-5]).append(nina_dates)).mean(dim='time') prec_eq=precip.sel(lat=slice(latbnd+0.5,-latbnd-0.5)).mean(dim='lat') prec_ep=prec_eq.sel(time=ep_dates).mean(dim='time') prec_cp=prec_eq.sel(time=cp_dates).mean(dim='time') prec_nina=prec_eq.sel(time=nina_dates).mean(dim='time') prec_neutral=prec_eq.drop_sel(time=ep_dates.append(cp_dates).append(nina_dates)).mean(dim='time') # %% ENSO FIGURE #ENSO BREAKDOWN positions = (140, 160, 180,200,220,240,260) labels = ("140$^\circ$E", "160$^\circ$E", "180$^\circ$",'160$^\circ$W','140$^\circ$W','120$^\circ$W','100$^\circ$W') plt.figure(figsize=(10,8)) plt.subplot(4,2,1) plt.plot(sst_ep.lon,sst_ep,label='East Pacific',c='darkred') plt.plot(sst_cp.lon,sst_cp,label='Central Pacific',c='darkred',linestyle='--') plt.plot(sst_nina.lon,sst_nina, label='La Nina',c='blue') plt.plot(sst_ep.lon,sst_neutral,label='Neutral',c='k') #plt.title('SST') plt.xlim([140,265]) plt.grid() #plt.xlabel('Mooring') plt.ylabel('Degree C') plt.ylim([23,31]) plt.title('a) SST',loc='left') #print('SST') plt.xticks(positions, labels) ax = plt.subplot(4,2,3) plt.plot(chl_ep.lon,chl_ep,label='East Pacific',c='darkred') plt.plot(chl_cp.lon,chl_cp,label='Central Pacific',c='darkred',linestyle='--') plt.plot(chl_nina.lon,chl_nina, label='La Nina',c='blue') plt.plot(chl_ep.lon,chl_neutral,label='Neutral',c='k') #plt.title('TPCA Chlorophyll') plt.xlim([140,265]) plt.ylim([0.05,0.35]) plt.ylabel('mg Chl m$^{-3}$ day$^{-1}$') plt.title('c) TPCA Chlorophyll',loc='left') plt.grid() plt.xticks(positions, labels) ax = plt.subplot(4,2,4) plt.plot(np_ep.lon,np_ep,label='New Production East Pacific',c='darkred') plt.plot(np_cp.lon,np_cp,label='New Production Central Pacific',c='darkred',linestyle='--') plt.plot(np_nina.lon,np_nina, label='New Producion Nina',c='blue') plt.plot(np_ep.lon,np_neutral,label='New Production Neutral',c='k') plt.xlim([140,265]) plt.xticks(positions, labels) plt.grid() plt.ylim([xl0,yl0]) print('NEW PRODUCTION') plt.ylabel('gC m$^{-2}$ day$^{-1}$') plt.title('d) New production',loc='left') #ENSO BREAKDOWN plt.subplot(426) plt.plot(dco2_ep.lon,dco2_ep,label='East Pacific',c='darkred') plt.plot(dco2_cp.lon,dco2_cp,label='Central Pacific',c='darkred',linestyle='--') plt.plot(dco2_nina.lon,dco2_nina, label='La Nina',c='blue') plt.plot(dco2_ep.lon,dco2_neutral,label='Neutral',c='k') plt.xlim([140,265]) plt.xticks(positions, labels) plt.grid() plt.ylabel('ฮผatm') plt.ylim([0,110]) plt.title('f) \u0394pCO$_{2}$',loc='left') print('pCO2') #ENSO BREAKDOWN plt.subplot(4,2,2) plt.plot(ws_ep.lon,ws_ep,label='East Pacific',c='darkred') plt.plot(ws_cp.lon,ws_cp,label='Central Pacific',c='darkred',linestyle='--') plt.plot(ws_nina.lon,ws_nina, label='La Nina',c='blue') plt.plot(ws_ep.lon,ws_neutral,label='Neutral',c='k') plt.xticks(positions, labels) plt.grid() plt.ylim([2,7]) plt.xlim([140,265]) plt.ylabel('m s$^{-1}$') plt.title('b) Wind speed',loc='left') print('WINDSPEED') # Calculate and Put mooring data on just for reference means=pd.DataFrame() final_mooring_enso=pd.DataFrame() final_mooring_enso_avgs=pd.DataFrame() ty='month' #Actually month though need to fix this. fp='processed/combined_dataset/month_data_exports.nc' moorings=['110W','125W','140W','155W','170W','165E']#[::-1] lns=[165,190,205,220,235,250][::-1] moors=[110, 125, 140, 155, 170, 195] for i, mooring_name in enumerate(lns): fp='processed/combined_dataset/month_data_exports.nc' try: dat=xr.open_mfdataset(fp).sel(Mooring=int(moors[i])) except: dat=xr.open_mfdataset(fp).sel(Mooring=195) #plt.subplot(6,1,i+1) #pco2_m=pco2_month.sel(lat=0,lon=mooring_name,method='nearest') d=dat#.sel(Date=slice(pco2_month.time.min().values,pco2_month.time.max().values)) #pco2_m=d.windspeed#seasonaltrend_sstobs[i] #mei=d.mei #We want to create a table of NINO, NINA, neutral and all CO2 and NP averages for each mooring info=dat.to_dataframe() info['select_model']=info.laws2011a*info.cafe/1000 #Was cbpmmean info['co2']=info.co2flux4_land_gmyr/365 info=info[~np.isnan(info.co2)] nino1=info[info.index.isin(ep_dates)]#info[info.mei>0.5]#.mean() modoki=info[info.index.isin(cp_dates)]#info[info.emi>0.5]#.mean() #nmodoki=info[info.emi<-0.5] nina1=info[info.index.isin(nina_dates)]#info[info.mei<-0.5]#.mean() neutral1=info[~info.index.isin(cp_dates)]#info[(info.mei<0.5)&(info.mei>-0.5)]#.mean() neutral1=neutral1[~neutral1.index.isin(ep_dates)] neutral1=neutral1[~neutral1.index.isin(nina_dates)] EP=nino1.mean() #Remove if it is in MODOKI modoki=modoki.mean() #nmodoki=nmodoki.mean() nina1=nina1.mean() neutral1=neutral1.mean() nino1=nino1.mean() #Calculate Windspeed biases vs insitu? # # plt.show() # # plt.plot(info.windspeed.index,info.windspeed) # # ws_eq.sel(lon=mooring_name,method='nearest').plot() # # ws_eq_NCEP2.sel(lon=mooring_name,method='nearest').plot() # wws_ccmp=ws_eq.sel(lon=mooring_name,method='nearest')-info.windspeed[:-8] # wws_ncep2=ws_eq_NCEP2.sel(lon=mooring_name,method='nearest').sel(time=slice('1997-01-01','2019-12-01'))-info.windspeed[6:] # wws_ccmp.plot(),wws_ncep2.plot() # plt.show() #pd.Serie wsdf ={#'El Nino':nino1.windspeed, 'La Nina':nina1.windspeed, # 'Cold Modoki':nmodoki.windspeed, 'Neutral':neutral1.windspeed, 'CP El Nino':modoki.windspeed, 'EP El Nino':EP.windspeed # 'All time':info.co2.mean()-info.select_model.mean() } ensoavgs=pd.Series(wsdf,name=moorings[i][0:3]+'\xb0'+moorings[i][3:4]) final_mooring_enso=final_mooring_enso.append(ensoavgs) for x in final_mooring_enso.T.iterrows(): # if 'All time' in x[0]: # c='k' print(x[0]) print(x[0]=='CP El Nino') ls='-' markr='o' markers=5 if 'Neutral' in x[0]: c='black' #elif 'Nino' in x[0]: # c='darkred' elif 'Nina' in x[0]: c='blue' markers=7 elif 'Cold Modoki' in x[0]: c='royalblue' ls='--' elif 'EP' in x[0]: c='darkred' elif 'CP' in x[0]: c='red' ls='--' markers=8 markr='x' plt.plot(lns,x[1],c=c,marker=markr,label=x[0],linewidth=0,alpha=0.9,markersize=markers) ax = plt.subplot(4,2,5) plt.plot(prec_ep.lon,prec_ep,label='East Pacific',c='darkred') plt.plot(prec_cp.lon,prec_cp,label='Central Pacific',c='darkred',linestyle='--') plt.plot(prec_nina.lon,prec_nina, label='La Nina',c='blue') plt.plot(prec_neutral.lon,prec_neutral,label='Neutral',c='k') plt.xlim([140,265]) plt.grid() plt.ylabel('mm day$^{-1}$') plt.title('e) Precipitation',loc='left') plt.xticks(positions, labels) #plt.ylim([xl0,yl0]) means=
pd.DataFrame()
pandas.DataFrame
import datetime import logging import os import pandas as pd import statsmodels.api as stats from pandas.tseries.offsets import BDay from data_fetcher import get_bitcoin_prices, get_altcoin_prices_from_poloniex logging.basicConfig(format='%(level_name)s: %(message)s', level=logging.DEBUG) class CryptoAnalyzerBase(object): DATA_FOLDER = 'crypto_data' BTCUSD = 'btcusd' def __init__(self, ticker, hist_start_date=None, refresh=False): self.ticker = ticker self.refresh = refresh self.altcoin_data =
pd.DataFrame()
pandas.DataFrame
import pyrtlsdr.pyrtlsdr_wrapper as sdr_wrapper import numpy as np import pandas as pd import plotly.graph_objects as go import matplotlib.mlab c_sample_rate = 2e6 c_gain = 100 c_number_of_samples = 128*1024 # TODO: Check - decrease input samples for quicker scan c_start_freq = 91.0e6 c_scanner_delta = int(c_sample_rate / 2) c_scanner_steps = 9 c_normalize_scan = True c_time_steps = 100 c_warmup_steps = 3 sdr_client = sdr_wrapper.PyRtlSdrWrapper( sample_rate=c_sample_rate, gain=c_gain ) df_ret = pd.DataFrame() for _ in range(c_warmup_steps): print("(Warmup Scan)") _ = sdr_client.scan_freq( center_freq=c_start_freq, number_of_samples=c_number_of_samples ) for i_time_step in range(c_time_steps): print() print("Scanning...", i_time_step+1, "from", c_time_steps) for i_scan_step in range(c_scanner_steps): target_freq = c_start_freq + i_scan_step * c_scanner_delta samples = sdr_client.scan_freq( center_freq=target_freq, number_of_samples=c_number_of_samples ) pxx, frequencies = matplotlib.mlab.psd(samples, NFFT=64, Fs=c_sample_rate/1e6) pxx = 10.0*np.log10(pxx) frequencies += target_freq/1e6 if c_normalize_scan: # pxx/=np.std(pxx) pxx -= np.mean(pxx) # Modify for plot pxx = (pxx/10)-100 t = float(i_time_step + (i_scan_step / c_scanner_steps)) df_t =
pd.DataFrame({"freq": frequencies, "pxx": pxx, "t": t})
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_series_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) self.assertEqual(rng.freq, rng2.freq) def test_normalize(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D') self.assertTrue(result.equals(expected)) rng_ns = pd.DatetimeIndex(np.array([1380585623454345752, 1380585612343234312]).astype("datetime64[ns]")) rng_ns_normalized = rng_ns.normalize() expected = pd.DatetimeIndex(np.array([1380585600000000000, 1380585600000000000]).astype("datetime64[ns]")) self.assertTrue(rng_ns_normalized.equals(expected)) self.assertTrue(result.is_normalized) self.assertFalse(rng.is_normalized) def test_to_period(self): from pandas.tseries.period import period_range ts = _simple_ts('1/1/2000', '1/1/2001') pts = ts.to_period() exp = ts.copy() exp.index = period_range('1/1/2000', '1/1/2001') assert_series_equal(pts, exp) pts = ts.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) def create_dt64_based_index(self): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] index = DatetimeIndex(data) return index def test_to_period_millisecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='L') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123Z', 'L')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789Z', 'L')) def test_to_period_microsecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='U') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123456Z', 'U')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789123Z', 'U')) def test_to_period_tz(self): _skip_if_no_pytz() from dateutil.tz import tzlocal from pytz import utc as UTC xp = date_range('1/1/2000', '4/1/2000').to_period() ts = date_range('1/1/2000', '4/1/2000', tz='US/Eastern') result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=UTC) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=tzlocal()) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) def test_frame_to_period(self): K = 5 from pandas.tseries.period import period_range dr = date_range('1/1/2000', '1/1/2001') pr = period_range('1/1/2000', '1/1/2001') df = DataFrame(randn(len(dr), K), index=dr) df['mix'] = 'a' pts = df.to_period() exp = df.copy() exp.index = pr assert_frame_equal(pts, exp) pts = df.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr assert_frame_equal(pts, exp) pts = df.to_period('M', axis=1) self.assertTrue(pts.columns.equals(exp.columns.asfreq('M'))) self.assertRaises(ValueError, df.to_period, axis=2) def test_timestamp_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) fields = ['dayofweek', 'dayofyear', 'week', 'weekofyear', 'quarter', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end'] for f in fields: expected = getattr(idx, f)[-1] result = getattr(Timestamp(idx[-1]), f) self.assertEqual(result, expected) self.assertEqual(idx.freq, Timestamp(idx[-1], idx.freq).freq) self.assertEqual(idx.freqstr, Timestamp(idx[-1], idx.freq).freqstr) def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013,12,31) result = Timestamp(d).week expected = 1 # ISO standard self.assertEqual(result, expected) d = datetime(2008,12,28) result = Timestamp(d).week expected = 52 # ISO standard self.assertEqual(result, expected) d = datetime(2009,12,31) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,1) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,3) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) result = np.array([Timestamp(datetime(*args)).week for args in [(2000,1,1),(2000,1,2),(2005,1,1),(2005,1,2)]]) self.assertTrue((result == [52, 52, 53, 53]).all()) def test_timestamp_date_out_of_range(self): self.assertRaises(ValueError, Timestamp, '1676-01-01') self.assertRaises(ValueError, Timestamp, '2263-01-01') # 1475 self.assertRaises(ValueError, DatetimeIndex, ['1400-01-01']) self.assertRaises(ValueError, DatetimeIndex, [datetime(1400, 1, 1)]) def test_timestamp_repr(self): # pre-1900 stamp = Timestamp('1850-01-01', tz='US/Eastern') repr(stamp) iso8601 = '1850-01-01 01:23:45.012345' stamp = Timestamp(iso8601, tz='US/Eastern') result = repr(stamp) self.assertIn(iso8601, result) def test_timestamp_from_ordinal(self): # GH 3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) self.assertEqual(ts.to_pydatetime(), dt) # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(),tz='US/Eastern') self.assertEqual(ts.to_pydatetime(), dt_tz) def test_datetimeindex_integers_shift(self): rng = date_range('1/1/2000', periods=20) result = rng + 5 expected = rng.shift(5) self.assertTrue(result.equals(expected)) result = rng - 5 expected = rng.shift(-5) self.assertTrue(result.equals(expected)) def test_astype_object(self): # NumPy 1.6.1 weak ns support rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) self.assert_numpy_array_equal(casted, exp_values) def test_catch_infinite_loop(self): offset = datetools.DateOffset(minute=5) # blow up, don't loop forever self.assertRaises(Exception, date_range, datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) def test_append_concat(self): rng = date_range('5/8/2012 1:45', periods=10, freq='5T') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) result = ts.append(ts) result_df = df.append(df) ex_index = DatetimeIndex(np.tile(rng.values, 2)) self.assertTrue(result.index.equals(ex_index)) self.assertTrue(result_df.index.equals(ex_index)) appended = rng.append(rng) self.assertTrue(appended.equals(ex_index)) appended = rng.append([rng, rng]) ex_index = DatetimeIndex(np.tile(rng.values, 3)) self.assertTrue(appended.equals(ex_index)) # different index names rng1 = rng.copy() rng2 = rng.copy() rng1.name = 'foo' rng2.name = 'bar' self.assertEqual(rng1.append(rng1).name, 'foo') self.assertIsNone(rng1.append(rng2).name) def test_append_concat_tz(self): #GH 2938 _skip_if_no_pytz() rng = date_range('5/8/2012 1:45', periods=10, freq='5T', tz='US/Eastern') rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T', tz='US/Eastern') rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) ts2 = Series(np.random.randn(len(rng2)), rng2) df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2) result = ts.append(ts2) result_df = df.append(df2) self.assertTrue(result.index.equals(rng3)) self.assertTrue(result_df.index.equals(rng3)) appended = rng.append(rng2) self.assertTrue(appended.equals(rng3)) def test_set_dataframe_column_ns_dtype(self): x = DataFrame([datetime.now(), datetime.now()]) self.assertEqual(x[0].dtype, np.dtype('M8[ns]')) def test_groupby_count_dateparseerror(self): dr = date_range(start='1/1/2012', freq='5min', periods=10) # BAD Example, datetimes first s = Series(np.arange(10), index=[dr, lrange(10)]) grouped = s.groupby(lambda x: x[1] % 2 == 0) result = grouped.count() s = Series(np.arange(10), index=[lrange(10), dr]) grouped = s.groupby(lambda x: x[0] % 2 == 0) expected = grouped.count() assert_series_equal(result, expected) def test_datetimeindex_repr_short(self): dr = date_range(start='1/1/2012', periods=1) repr(dr) dr = date_range(start='1/1/2012', periods=2) repr(dr) dr = date_range(start='1/1/2012', periods=3) repr(dr) def test_constructor_int64_nocopy(self): # #1624 arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] == -1).all()) arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr, copy=True) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] != -1).all()) def test_series_interpolate_method_values(self): # #1646 ts = _simple_ts('1/1/2000', '1/20/2000') ts[::2] = np.nan result = ts.interpolate(method='values') exp = ts.interpolate() assert_series_equal(result, exp) def test_frame_datetime64_handling_groupby(self): # it works! df = DataFrame([(3, np.datetime64('2012-07-03')), (3, np.datetime64('2012-07-04'))], columns=['a', 'date']) result = df.groupby('a').first() self.assertEqual(result['date'][3], Timestamp('2012-07-03')) def test_series_interpolate_intraday(self): # #1698 index = pd.date_range('1/1/2012', periods=4, freq='12D') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(days=1)).order() exp = ts.reindex(new_index).interpolate(method='time') index = pd.date_range('1/1/2012', periods=4, freq='12H') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(hours=1)).order() result = ts.reindex(new_index).interpolate(method='time') self.assert_numpy_array_equal(result.values, exp.values) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range('1/1/2012', periods=10) s = Series(dr, index=dr) # it works! DataFrame({'a': 'foo', 'b': s}, index=dr) DataFrame({'a': 'foo', 'b': s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') ts = Series(dr) # it works! d = DataFrame({'A': 'foo', 'B': ts}, index=dr) self.assertTrue(d['B'].isnull().all()) def test_frame_timeseries_to_records(self): index = date_range('1/1/2000', periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=['a', 'b', 'c']) result = df.to_records() result['index'].dtype == 'M8[ns]' result = df.to_records(index=False) def test_frame_datetime64_duplicated(self): dates = date_range('2010-07-01', end='2010-08-05') tst = DataFrame({'symbol': 'AAA', 'date': dates}) result = tst.duplicated(['date', 'symbol']) self.assertTrue((-result).all()) tst = DataFrame({'date': dates}) result = tst.duplicated() self.assertTrue((-result).all()) def test_timestamp_compare_with_early_datetime(self): # e.g. datetime.min stamp = Timestamp('2012-01-01') self.assertFalse(stamp == datetime.min) self.assertFalse(stamp == datetime(1600, 1, 1)) self.assertFalse(stamp == datetime(2700, 1, 1)) self.assertNotEqual(stamp, datetime.min) self.assertNotEqual(stamp, datetime(1600, 1, 1)) self.assertNotEqual(stamp, datetime(2700, 1, 1)) self.assertTrue(stamp > datetime(1600, 1, 1)) self.assertTrue(stamp >= datetime(1600, 1, 1)) self.assertTrue(stamp < datetime(2700, 1, 1)) self.assertTrue(stamp <= datetime(2700, 1, 1)) def test_to_html_timestamp(self): rng = date_range('2000-01-01', periods=10) df = DataFrame(np.random.randn(10, 4), index=rng) result = df.to_html() self.assertIn('2000-01-01', result) def test_to_csv_numpy_16_bug(self): frame = DataFrame({'a': date_range('1/1/2000', periods=10)}) buf = StringIO() frame.to_csv(buf) result = buf.getvalue() self.assertIn('2000-01-01', result) def test_series_map_box_timestamps(self): # #2689, #2627 s = Series(date_range('1/1/2000', periods=10)) def f(x): return (x.hour, x.day, x.month) # it works! s.map(f) s.apply(f) DataFrame(s).applymap(f) def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test':lrange(10)}) # it works! pd.concat([df1, df2_obj]) def test_period_resample(self): # GH3609 s = Series(range(100),index=date_range('20130101', freq='s', periods=100), dtype='float') s[10:30] = np.nan expected = Series([34.5, 79.5], index=[Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')]) result = s.to_period().resample('T', kind='period') assert_series_equal(result, expected) result2 = s.resample('T', kind='period') assert_series_equal(result2, expected) def test_period_resample_with_local_timezone(self): # GH5430 _skip_if_no_pytz() import pytz local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = pd.Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period') # Create the expected series expected_index = (pd.period_range(start=start, end=end, freq='D') - 1) # Index is moved back a day with the timezone conversion from UTC to Pacific expected = pd.Series(1, index=expected_index) assert_series_equal(result, expected) def test_pickle(self): #GH4606 from pandas.compat import cPickle import pickle for pick in [pickle, cPickle]: p = pick.loads(pick.dumps(NaT)) self.assertTrue(p is NaT) idx = pd.to_datetime(['2013-01-01', NaT, '2014-01-06']) idx_p = pick.loads(pick.dumps(idx)) self.assertTrue(idx_p[0] == idx[0]) self.assertTrue(idx_p[1] is NaT) self.assertTrue(idx_p[2] == idx[2]) def _simple_ts(start, end, freq='D'): rng = date_range(start, end, freq=freq) return Series(np.random.randn(len(rng)), index=rng) class TestDatetimeIndex(tm.TestCase): _multiprocess_can_split_ = True def test_hash_error(self): index = date_range('20010101', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_stringified_slice_with_tz(self): #GH2658 import datetime start=datetime.datetime.now() idx=DatetimeIndex(start=start,freq="1d",periods=10) df=DataFrame(lrange(10),index=idx) df["2013-01-14 23:44:34.437768-05:00":] # no exception here def test_append_join_nondatetimeindex(self): rng = date_range('1/1/2000', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) tm.assert_isinstance(result[0], Timestamp) # it works rng.join(idx, how='outer') def test_astype(self): rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') self.assert_numpy_array_equal(result, rng.asi8) def test_to_period_nofreq(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-04']) self.assertRaises(ValueError, idx.to_period) idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03'], freq='infer') idx.to_period() def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) self.assertEqual(idx.nanosecond[0], t1.nanosecond) def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) self.assertTrue(rng.equals(exp)) self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', periods='foo', freq='D') self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', end='1/10/2000') self.assertRaises(ValueError, DatetimeIndex, '1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) self.assertTrue(result.equals(expected)) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) self.assertTrue(result.equals(expected)) from_ints = DatetimeIndex(expected.asi8) self.assertTrue(from_ints.equals(expected)) # non-conforming self.assertRaises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') self.assertRaises(ValueError, DatetimeIndex, start='2011-01-01', freq='b') self.assertRaises(ValueError, DatetimeIndex, end='2011-01-01', freq='B') self.assertRaises(ValueError, DatetimeIndex, periods=10, freq='D') def test_constructor_name(self): idx = DatetimeIndex(start='2000-01-01', periods=1, freq='A', name='TEST') self.assertEqual(idx.name, 'TEST') def test_comparisons_coverage(self): rng = date_range('1/1/2000', periods=10) # raise TypeError for now self.assertRaises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng self.assert_numpy_array_equal(result, exp) def test_map(self): rng = date_range('1/1/2000', periods=10) f = lambda x: x.strftime('%Y%m%d') result = rng.map(f) exp = [f(x) for x in rng] self.assert_numpy_array_equal(result, exp) def test_add_union(self): rng = date_range('1/1/2000', periods=5) rng2 = date_range('1/6/2000', periods=5) result = rng + rng2 expected = rng.union(rng2) self.assertTrue(result.equals(expected)) def test_misc_coverage(self): rng = date_range('1/1/2000', periods=5) result = rng.groupby(rng.day) tm.assert_isinstance(list(result.values())[0][0], Timestamp) idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) self.assertTrue(idx.equals(list(idx))) non_datetime = Index(list('abc')) self.assertFalse(idx.equals(list(non_datetime))) def test_union_coverage(self): idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) ordered = DatetimeIndex(idx.order(), freq='infer') result = ordered.union(idx) self.assertTrue(result.equals(ordered)) result = ordered[:0].union(ordered) self.assertTrue(result.equals(ordered)) self.assertEqual(result.freq, ordered.freq) def test_union_bug_1730(self): rng_a = date_range('1/1/2012', periods=4, freq='3H') rng_b = date_range('1/1/2012', periods=4, freq='4H') result = rng_a.union(rng_b) exp = DatetimeIndex(sorted(set(list(rng_a)) | set(list(rng_b)))) self.assertTrue(result.equals(exp)) def test_union_bug_1745(self): left = DatetimeIndex(['2012-05-11 15:19:49.695000']) right = DatetimeIndex(['2012-05-29 13:04:21.322000', '2012-05-11 15:27:24.873000', '2012-05-11 15:31:05.350000']) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_union_bug_4564(self): from pandas import DateOffset left = date_range("2013-01-01", "2013-02-01") right = left + DateOffset(minutes=15) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_intersection_bug_1708(self): from pandas import DateOffset index_1 = date_range('1/1/2012', periods=4, freq='12H') index_2 = index_1 +
DateOffset(hours=1)
pandas.DateOffset
from __future__ import division from functools import wraps import pandas as pd import numpy as np import time import csv, sys import os.path import logging from .ted_functions import TedFunctions from .ted_aggregate_methods import TedAggregateMethods from base.uber_model import UberModel, ModelSharedInputs class TedSpeciesProperties(object): """ Listing of species properties that will eventually be read in from a SQL db """ def __init__(self): """Class representing Species properties""" super(TedSpeciesProperties, self).__init__() self.sci_name = pd.Series([], dtype='object') self.com_name = pd.Series([], dtype='object') self.taxa = pd.Series([], dtype='object') self.order = pd.Series([], dtype='object') self.usfws_id = pd.Series([], dtype='object') self.body_wgt = pd.Series([], dtype='object') self.diet_item = pd.Series([], dtype='object') self.h2o_cont = pd.Series([], dtype='float') def read_species_properties(self): # this is a temporary method to initiate the species/diet food items lists (this will be replaced with # a method to access a SQL database containing the properties #filename = './ted/tests/TEDSpeciesProperties.csv' filename = os.path.join(os.path.dirname(__file__),'tests/TEDSpeciesProperties.csv') try: with open(filename,'rt') as csvfile: # csv.DictReader uses first line in file for column headings by default dr = pd.read_csv(csvfile) # comma is default delimiter except csv.Error as e: sys.exit('file: %s, %s' (filename, e)) print(dr) self.sci_name = dr.ix[:,'Scientific Name'] self.com_name = dr.ix[:,'Common Name'] self.taxa = dr.ix[:,'Taxa'] self.order = dr.ix[:,'Order'] self.usfws_id = dr.ix[:,'USFWS Species ID (ENTITY_ID)'] self.body_wgt= dr.ix[:,'BW (g)'] self.diet_item = dr.ix[:,'Food item'] self.h2o_cont = dr.ix[:,'Water content of diet'] class TedInputs(ModelSharedInputs): """ Required inputs class for Ted. """ def __init__(self): """Class representing the inputs for Ted""" super(TedInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame self.chemical_name = pd.Series([], dtype="object", name="chemical_name") # application parameters for min/max application scenarios self.crop_min = pd.Series([], dtype="object", name="crop") self.app_method_min = pd.Series([], dtype="object", name="app_method_min") self.app_rate_min = pd.Series([], dtype="float", name="app_rate_min") self.num_apps_min = pd.Series([], dtype="int", name="num_apps_min") self.app_interval_min = pd.Series([], dtype="int", name="app_interval_min") self.droplet_spec_min = pd.Series([], dtype="object", name="droplet_spec_min") self.boom_hgt_min = pd.Series([], dtype="object", name="droplet_spec_min") self.pest_incorp_depth_min = pd.Series([], dtype="object", name="pest_incorp_depth") self.crop_max = pd.Series([], dtype="object", name="crop") self.app_method_max = pd.Series([], dtype="object", name="app_method_max") self.app_rate_max = pd.Series([], dtype="float", name="app_rate_max") self.num_apps_max = pd.Series([], dtype="int", name="num_app_maxs") self.app_interval_max = pd.Series([], dtype="int", name="app_interval_max") self.droplet_spec_max = pd.Series([], dtype="object", name="droplet_spec_max") self.boom_hgt_max = pd.Series([], dtype="object", name="droplet_spec_max") self.pest_incorp_depth_max = pd.Series([], dtype="object", name="pest_incorp_depth") # physical, chemical, and fate properties of pesticide self.foliar_diss_hlife = pd.Series([], dtype="float", name="foliar_diss_hlife") self.aerobic_soil_meta_hlife = pd.Series([], dtype="float", name="aerobic_soil_meta_hlife") self.frac_retained_mamm = pd.Series([], dtype="float", name="frac_retained_mamm") self.frac_retained_birds = pd.Series([], dtype="float", name="frac_retained_birds") self.log_kow = pd.Series([], dtype="float", name="log_kow") self.koc = pd.Series([], dtype="float", name="koc") self.solubility = pd.Series([], dtype="float", name="solubility") self.henry_law_const = pd.Series([], dtype="float", name="henry_law_const") # bio concentration factors (ug active ing/kg-ww) / (ug active ing/liter) self.aq_plant_algae_bcf_mean = pd.Series([], dtype="float", name="aq_plant_algae_bcf_mean") self.aq_plant_algae_bcf_upper = pd.Series([], dtype="float", name="aq_plant_algae_bcf_upper") self.inv_bcf_mean = pd.Series([], dtype="float", name="inv_bcf_mean") self.inv_bcf_upper = pd.Series([], dtype="float", name="inv_bcf_upper") self.fish_bcf_mean = pd.Series([], dtype="float", name="fish_bcf_mean") self.fish_bcf_upper = pd.Series([], dtype="float", name="fish_bcf_upper") # bounding water concentrations (ug active ing/liter) self.water_conc_1 = pd.Series([], dtype="float", name="water_conc_1") # lower bound self.water_conc_2 = pd.Series([], dtype="float", name="water_conc_2") # upper bound # health value inputs # naming convention (based on listing from OPP TED Excel spreadsheet 'inputs' worksheet): # dbt: dose based toxicity # cbt: concentration-based toxicity # arbt: application rate-based toxicity # 1inmill_mort: 1/million mortality (note initial character is numeral 1, not letter l) # 1inten_mort: 10% mortality (note initial character is numeral 1, not letter l) # others are self explanatory # dose based toxicity(dbt): mammals (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort") self.dbt_mamm_1inten_mort = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_low_ld50 = pd.Series([], dtype="float", name="dbt_mamm_low_ld50") self.dbt_mamm_rat_oral_ld50 = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_rat_derm_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50") self.dbt_mamm_rat_inhal_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50") self.dbt_mamm_sub_direct = pd.Series([], dtype="float", name="dbt_mamm_sub_direct") self.dbt_mamm_sub_indirect = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect") self.dbt_mamm_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort_wgt") self.dbt_mamm_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_low_ld50_wgt") self.dbt_mamm_rat_oral_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_rat_derm_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50_wgt") self.dbt_mamm_rat_inhal_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50_wgt") self.dbt_mamm_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_direct_wgt") self.dbt_mamm_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect_wgt") # dose based toxicity(dbt): birds (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_bird_1inmill_mort = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort") self.dbt_bird_1inten_mort = pd.Series([], dtype="float", name="dbt_bird_1inten_mort") self.dbt_bird_low_ld50 = pd.Series([], dtype="float", name="dbt_bird_low_ld50") self.dbt_bird_hc05 = pd.Series([], dtype="float", name="dbt_bird_hc05") self.dbt_bird_hc50 = pd.Series([], dtype="float", name="dbt_bird_hc50") self.dbt_bird_hc95 = pd.Series([], dtype="float", name="dbt_bird_hc95") self.dbt_bird_sub_direct = pd.Series([], dtype="float", name="dbt_bird_sub_direct") self.dbt_bird_sub_indirect = pd.Series([], dtype="float", name="dbt_bird_sub_indirect") self.mineau_sca_fact = pd.Series([], dtype="float", name="mineau_sca_fact") self.dbt_bird_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort_wgt") self.dbt_bird_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inten_mort_wgt") self.dbt_bird_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_bird_low_ld50_wgt") self.dbt_bird_hc05_wgt = pd.Series([], dtype="float", name="dbt_bird_hc05_wgt") self.dbt_bird_hc50_wgt = pd.Series([], dtype="float", name="dbt_bird_hc50_wgt") self.dbt_bird_hc95_wgt = pd.Series([], dtype="float", name="dbt_bird_hc95_wgt") self.dbt_bird_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_direct_wgt") self.dbt_bird_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_indirect_wgt") self.mineau_sca_fact_wgt = pd.Series([], dtype="float", name="mineau_sca_fact_wgt") # dose based toxicity(dbt): reptiles, terrestrial-phase amphibians (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort") self.dbt_reptile_1inten_mort = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort") self.dbt_reptile_low_ld50 = pd.Series([], dtype="float", name="dbt_reptile_low_ld50") self.dbt_reptile_sub_direct = pd.Series([], dtype="float", name="dbt_reptile_sub_direct") self.dbt_reptile_sub_indirect = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect") self.dbt_reptile_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort_wgt") self.dbt_reptile_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort_wgt") self.dbt_reptile_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_reptile_low_ld50_wgt") self.dbt_reptile_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_direct_wgt") self.dbt_reptile_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect_wgt") # concentration-based toxicity (cbt) : mammals (mg-pest/kg-diet food) self.cbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="cbt_mamm_1inmill_mort") self.cbt_mamm_1inten_mort = pd.Series([], dtype="float", name="cbt_mamm_1inten_mort") self.cbt_mamm_low_lc50 = pd.Series([], dtype="float", name="cbt_mamm_low_lc50") self.cbt_mamm_sub_direct = pd.Series([], dtype="float", name="cbt_mamm_sub_direct") self.cbt_mamm_grow_noec = pd.Series([], dtype="float", name="cbt_mamm_grow_noec") self.cbt_mamm_grow_loec = pd.Series([], dtype="float", name="cbt_mamm_grow_loec") self.cbt_mamm_repro_noec = pd.Series([], dtype="float", name="cbt_mamm_repro_noec") self.cbt_mamm_repro_loec = pd.Series([], dtype="float", name="cbt_mamm_repro_loec") self.cbt_mamm_behav_noec = pd.Series([], dtype="float", name="cbt_mamm_behav_noec") self.cbt_mamm_behav_loec = pd.Series([], dtype="float", name="cbt_mamm_behav_loec") self.cbt_mamm_sensory_noec = pd.Series([], dtype="float", name="cbt_mamm_sensory_noec") self.cbt_mamm_sensory_loec = pd.Series([], dtype="float", name="cbt_mamm_sensory_loec") self.cbt_mamm_sub_indirect = pd.Series([], dtype="float", name="cbt_mamm_sub_indirect") # concentration-based toxicity (cbt) : birds (mg-pest/kg-diet food) self.cbt_bird_1inmill_mort = pd.Series([], dtype="float", name="cbt_bird_1inmill_mort") self.cbt_bird_1inten_mort = pd.Series([], dtype="float", name="cbt_bird_1inten_mort") self.cbt_bird_low_lc50 = pd.Series([], dtype="float", name="cbt_bird_low_lc50") self.cbt_bird_sub_direct = pd.Series([], dtype="float", name="cbt_bird_sub_direct") self.cbt_bird_grow_noec = pd.Series([], dtype="float", name="cbt_bird_grow_noec") self.cbt_bird_grow_loec = pd.Series([], dtype="float", name="cbt_bird_grow_loec") self.cbt_bird_repro_noec = pd.Series([], dtype="float", name="cbt_bird_repro_noec") self.cbt_bird_repro_loec = pd.Series([], dtype="float", name="cbt_bird_repro_loec") self.cbt_bird_behav_noec = pd.Series([], dtype="float", name="cbt_bird_behav_noec") self.cbt_bird_behav_loec = pd.Series([], dtype="float", name="cbt_bird_behav_loec") self.cbt_bird_sensory_noec = pd.Series([], dtype="float", name="cbt_bird_sensory_noec") self.cbt_bird_sensory_loec = pd.Series([], dtype="float", name="cbt_bird_sensory_loec") self.cbt_bird_sub_indirect = pd.Series([], dtype="float", name="cbt_bird_sub_indirect") # concentration-based toxicity (cbt) : reptiles, terrestrial-phase amphibians (mg-pest/kg-diet food) self.cbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="cbt_reptile_1inmill_mort") self.cbt_reptile_1inten_mort = pd.Series([], dtype="float", name="cbt_reptile_1inten_mort") self.cbt_reptile_low_lc50 = pd.Series([], dtype="float", name="cbt_reptile_low_lc50") self.cbt_reptile_sub_direct = pd.Series([], dtype="float", name="cbt_reptile_sub_direct") self.cbt_reptile_grow_noec = pd.Series([], dtype="float", name="cbt_reptile_grow_noec") self.cbt_reptile_grow_loec = pd.Series([], dtype="float", name="cbt_reptile_grow_loec") self.cbt_reptile_repro_noec = pd.Series([], dtype="float", name="cbt_reptile_repro_noec") self.cbt_reptile_repro_loec = pd.Series([], dtype="float", name="cbt_reptile_repro_loec") self.cbt_reptile_behav_noec = pd.Series([], dtype="float", name="cbt_reptile_behav_noec") self.cbt_reptile_behav_loec = pd.Series([], dtype="float", name="cbt_reptile_behav_loec") self.cbt_reptile_sensory_noec = pd.Series([], dtype="float", name="cbt_reptile_sensory_noec") self.cbt_reptile_sensory_loec = pd.Series([], dtype="float", name="cbt_reptile_sensory_loec") self.cbt_reptile_sub_indirect = pd.Series([], dtype="float", name="cbt_reptile_sub_indirect") # concentration-based toxicity (cbt) : invertebrates body weight (mg-pest/kg-bw(ww)) self.cbt_inv_bw_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_bw_1inmill_mort") self.cbt_inv_bw_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_bw_1inten_mort") self.cbt_inv_bw_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_bw_low_lc50") self.cbt_inv_bw_sub_direct = pd.Series([], dtype="float", name="cbt_inv_bw_sub_direct") self.cbt_inv_bw_grow_noec = pd.Series([], dtype="float", name="cbt_inv_bw_grow_noec") self.cbt_inv_bw_grow_loec = pd.Series([], dtype="float", name="cbt_inv_bw_grow_loec") self.cbt_inv_bw_repro_noec = pd.Series([], dtype="float", name="cbt_inv_bw_repro_noec") self.cbt_inv_bw_repro_loec = pd.Series([], dtype="float", name="cbt_inv_bw_repro_loec") self.cbt_inv_bw_behav_noec = pd.Series([], dtype="float", name="cbt_inv_bw_behav_noec") self.cbt_inv_bw_behav_loec = pd.Series([], dtype="float", name="cbt_inv_bw_behav_loec") self.cbt_inv_bw_sensory_noec = pd.Series([], dtype="float", name="cbt_inv_bw_sensory_noec") self.cbt_inv_bw_sensory_loec = pd.Series([], dtype="float", name="cbt_inv_bw_sensory_loec") self.cbt_inv_bw_sub_indirect = pd.Series([], dtype="float", name="cbt_inv_bw_sub_indirect") # concentration-based toxicity (cbt) : invertebrates body diet (mg-pest/kg-food(ww)) self.cbt_inv_food_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_food_1inmill_mort") self.cbt_inv_food_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_food_1inten_mort") self.cbt_inv_food_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_food_low_lc50") self.cbt_inv_food_sub_direct = pd.Series([], dtype="float", name="cbt_inv_food_sub_direct") self.cbt_inv_food_grow_noec = pd.Series([], dtype="float", name="cbt_inv_food_grow_noec") self.cbt_inv_food_grow_loec = pd.Series([], dtype="float", name="cbt_inv_food_grow_loec") self.cbt_inv_food_repro_noec = pd.Series([], dtype="float", name="cbt_inv_food_repro_noec") self.cbt_inv_food_repro_loec = pd.Series([], dtype="float", name="cbt_inv_food_repro_loec") self.cbt_inv_food_behav_noec = pd.Series([], dtype="float", name="cbt_inv_food_behav_noec") self.cbt_inv_food_behav_loec = pd.Series([], dtype="float", name="cbt_inv_food_behav_loec") self.cbt_inv_food_sensory_noec = pd.Series([], dtype="float", name="cbt_inv_food_sensory_noec") self.cbt_inv_food_sensory_loec = pd.Series([], dtype="float", name="cbt_inv_food_sensory_loec") self.cbt_inv_food_sub_indirect = pd.Series([], dtype="float", name="cbt_inv_food_sub_indirect") # concentration-based toxicity (cbt) : invertebrates soil (mg-pest/kg-soil(dw)) self.cbt_inv_soil_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_soil_1inmill_mort") self.cbt_inv_soil_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_soil_1inten_mort") self.cbt_inv_soil_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_soil_low_lc50") self.cbt_inv_soil_sub_direct = pd.Series([], dtype="float", name="cbt_inv_soil_sub_direct") self.cbt_inv_soil_grow_noec = pd.Series([], dtype="float", name="cbt_inv_soil_grow_noec") self.cbt_inv_soil_grow_loec = pd.Series([], dtype="float", name="cbt_inv_soil_grow_loec") self.cbt_inv_soil_repro_noec = pd.Series([], dtype="float", name="cbt_inv_soil_repro_noec") self.cbt_inv_soil_repro_loec = pd.Series([], dtype="float", name="cbt_inv_soil_repro_loec") self.cbt_inv_soil_behav_noec = pd.Series([], dtype="float", name="cbt_inv_soil_behav_noec") self.cbt_inv_soil_behav_loec = pd.Series([], dtype="float", name="cbt_inv_soil_behav_loec") self.cbt_inv_soil_sensory_noec = pd.Series([], dtype="float", name="cbt_inv_soil_sensory_noec") self.cbt_inv_soil_sensory_loec = pd.Series([], dtype="float", name="cbt_inv_soil_sensory_loec") self.cbt_inv_soil_sub_indirect = pd.Series([], dtype="float", name="cbt_inv_soil_sub_indirect") # application rate-based toxicity (arbt) : mammals (lbs active ingredient/Acre) self.arbt_mamm_mort =
pd.Series([], dtype="float", name="arbt_mamm_mort")
pandas.Series
""" Access to IFCB raw data files, including directory operations. """ import os from functools import lru_cache import pandas as pd from .identifiers import Pid from .adc import AdcFile, AdcFragment from .hdr import parse_hdr_file from .roi import RoiFile from .utils import BaseDictlike, CaseInsensitiveDict from .bins import BaseBin DEFAULT_BLACKLIST = ['skip','beads'] DEFAULT_WHITELIST = ['data'] class Fileset(object): """ Represents a set of three raw data files """ def __init__(self, basepath): """ :param basepath: the base path of the files (no extension) """ self.basepath = basepath @property def adc_path(self): """ The path of the ``.adc`` file. """ return self.basepath + '.adc' @property def hdr_path(self): """ The path of the ``.hdr`` file. """ return self.basepath + '.hdr' @property def roi_path(self): """ The path of the ``.roi`` file. """ return self.basepath + '.roi' @property @lru_cache() def pid(self): """ A ``Pid`` representing the bin PID """ return Pid(os.path.basename(self.basepath)) @property def lid(self): """ The bin's LID """ return self.pid.bin_lid def exists(self): """ Checks for existence of all three raw data files. :returns bool: whether or not all files exist """ if not os.path.exists(self.adc_path): return False if not os.path.exists(self.hdr_path): return False if not os.path.exists(self.roi_path): return False return True # metrics def getsizes(self): """ Get the sizes of the files. :returns dict: sizes of files with keys 'hdr', 'adc', and 'roi' """ hdr_size = os.path.getsize(self.hdr_path) adc_size = os.path.getsize(self.adc_path) roi_size = os.path.getsize(self.roi_path) return { 'hdr': hdr_size, 'adc': adc_size, 'roi': roi_size } def getsize(self): """ Get the total size of all three files. :returns int: the total size of all three files """ return sum(self.getsizes().values()) def as_bin(self): """ :returns: a Bin view of this fileset. """ return FilesetBin(self) def __repr__(self): return '<IFCB Fileset %s>' % self.basepath def __str__(self): return self.basepath # bin interface to Fileset class FilesetBin(BaseBin): """ Bin interface to Fileset. Context manager support opens and closes the ``.roi`` file for image access. """ def __init__(self, fileset): """ :param fileset: the ``Fileset`` to represent """ self.fileset = fileset self.adc_file = AdcFile(fileset.adc_path) self.roi_file = RoiFile(self.adc_file, fileset.roi_path) # oo interface to fileset @property @lru_cache() def hdr_attributes(self): """ A ``dict`` representing the headers """ return parse_hdr_file(self.fileset.hdr_path) @property def timestamp(self): """ The bin's timestamp (as a ``datetime``) """ return self.pid.timestamp def to_hdf(self, hdf_file, group=None, replace=True, archive=False): """ Convert the fileset to HDF. :param hdf_file: the root HDF file pathname or object (``h5py.File`` or ``h5py.Group``) in which to write all raw data :param group: a path below the sub-group to use :param replace: whether to replace any existing data at that location in the HDF file :param archive: whether to include the full text of the .hdr and .roi files """ from .hdf import filesetbin2hdf filesetbin2hdf(self, hdf_file, group=group, replace=replace, archive=archive) # bin interface @property def pid(self): """ The bin's PID """ return self.fileset.pid @property def schema(self): """ The bin's schema """ return self.adc_file.schema @property def images(self): """ The images """ return self.roi_file @property def headers(self): """ The header dict """ return self.hdr_attributes def header(self, key): ci_dict = CaseInsensitiveDict(self.hdr_attributes) return ci_dict[key] @property def adc(self): """ The bin's ADC data as a ``pandas.DataFrame`` """ return self.adc_file.csv # context manager implementation def isopen(self): """ Is the ``.roi`` file open? """ return self.roi_file.isopen() def close(self): """ Close the ``.roi`` file, if it is open. """ if self.isopen(): self.roi_file.close() def __enter__(self): if not self.isopen(): self.roi_file._open() return self def __exit__(self, *args): self.close() # support for single image reading def as_single(self, target): """Return a new FilesetBin that only provides access to a single target. If called immediately upon construction (before accessing any data) this will avoid parsing the entire ADC file. Otherwise it will raise ValueError.""" if self.isopen(): raise ValueError('as_single must be called before opening FilesetBin') return FilesetFragmentBin(self.fileset, target) def __repr__(self): return '<FilesetBin %s>' % self def __str__(self): return self.fileset.__str__() # special fileset bin subclass for reading one image fast class FilesetFragmentBin(FilesetBin): def __init__(self, fileset, target): self.fileset = fileset self.adc_file = AdcFragment(fileset.adc_path, target, target+2) self.roi_file = RoiFile(self.adc_file, fileset.roi_path) # listing and finding raw filesets and associated bin objects def validate_path(filepath, blacklist=DEFAULT_BLACKLIST, whitelist=DEFAULT_WHITELIST): """ Validate an IFCB raw data file path. A well-formed raw data file path relative to some root only contains path components that are not blacklisted and either either whitelisted or part of the file's basename (without extension). :param filepath: the pathname of the file :param blacklist: directory names to ignore :param whitelist: directory names to include, even if they do not match the path's basename :returns bool: if the pathname is valid """ if not set(blacklist).isdisjoint(set(whitelist)): raise ValueError('whitelist and blacklist must be disjoint') dirname, basename = os.path.split(filepath) lid, ext = os.path.splitext(basename) components = dirname.split(os.sep) for c in components: if c in blacklist: return False if c not in whitelist and c not in lid: return False return True def list_filesets(dirpath, blacklist=DEFAULT_BLACKLIST, whitelist=DEFAULT_WHITELIST, sort=True, validate=True): """ Iterate over entire directory tree and yield a Fileset object for each .adc/.hdr/.roi fileset found. Warning: for large directories, this is slow. :param blacklist: list of directory names to ignore :param whitelist: list of directory names to include, even if they do not match a file's basename :param sort: whether to sort output (sorts by alpha) :param validate: whether to validate each path """ if not set(blacklist).isdisjoint(set(whitelist)): raise ValueError('whitelist and blacklist must be disjoint') for dp, dirnames, filenames in os.walk(dirpath): for d in dirnames: if d in blacklist: dirnames.remove(d) if sort: dirnames.sort(reverse=True) filenames.sort(reverse=True) for f in filenames: basename, extension = f[:-4], f[-3:] if extension == 'adc' and basename+'.hdr' in filenames and basename+'.roi' in filenames: if validate: reldir = dp[len(dirpath)+1:] if not validate_path(os.path.join(reldir,basename), whitelist=whitelist, blacklist=blacklist): continue yield dp, basename def list_data_dirs(dirpath, blacklist=DEFAULT_BLACKLIST, sort=True, prune=True): """ Yield the paths of any descendant directories that contain at least one ``.adc`` file. :param blacklist: list of directory names to ignore :param sort: whether to sort output (sorts by alpha) :param prune: whether, given a dir with an ``.adc`` file in it, to skip subdirectories """ dirlist = os.listdir(dirpath) if sort: dirlist.sort() for name in dirlist: if name[-3:] == 'adc': yield dirpath if prune: return for name in dirlist: if name not in blacklist: child = os.path.join(dirpath,name) if os.path.isdir(child): yield from list_data_dirs(child, sort=sort, prune=prune) def find_fileset(dirpath, lid, whitelist=['data'], blacklist=['skip','beads']): """ Find a fileset anywhere below the given directory path given the bin's lid. This assumes that the file's path is valid. :returns Fileset: the ``Fileset``, or ``None`` if it is not found. """ dirlist = os.listdir(dirpath) for name in dirlist: if name == lid + '.adc': basepath = os.path.join(dirpath,lid) return Fileset(basepath) elif name in whitelist or name in lid: # is the name whitelisted or contains part of the lid? fs = find_fileset(os.path.join(dirpath,name), lid, whitelist=whitelist, blacklist=blacklist) if fs is not None: return fs # not found return None class DataDirectory(object): """ Represents a directory containing IFCB raw data. Provides a dict-like interface allowing access to FilesetBins by LID. """ def __init__(self, path='.', whitelist=DEFAULT_WHITELIST, blacklist=DEFAULT_BLACKLIST, filter=lambda x: True): """ :param path: the path of the data directory :param whitelist: a list of directory names to allow :param blacklist: a list of directory names to disallow """ self.path = path self.whitelist = whitelist self.blacklist = blacklist self.filter = filter def list_filesets(self): """ Yield all filesets. """ for dirpath, basename in list_filesets(self.path, whitelist=self.whitelist, blacklist=self.blacklist): basepath = os.path.join(dirpath, basename) fs = Fileset(basepath) if self.filter(fs): yield fs def find_fileset(self, lid): """ Locate a fileset by LID. Returns None if it is not found. :param lid: the LID to search for :type lid: str :returns Fileset: the fileset, or None if not found """ fs = find_fileset(self.path, lid, whitelist=self.whitelist, blacklist=self.blacklist) if fs is None: return None elif self.filter(fs): return fs def __iter__(self): # yield from list_filesets called with no keyword args for fs in self.list_filesets(): yield FilesetBin(fs) def has_key(self, lid): # fast contains method that avoids iteration return self.find_fileset(lid) is not None def __getitem__(self, lid): fs = self.find_fileset(lid) if fs is None: raise KeyError('No fileset for %s found at or under %s' % (lid, self.path)) return FilesetBin(fs) def __len__(self): """warning: for large datasets, this is very slow""" return sum(1 for _ in self) # subdirectories def list_descendants(self, **kw): """ Find all 'leaf' data directories and yield ``DataDirectory`` objects for each one. Note that this enforces blacklisting but not whitelisting (no fileset path validation is done). Accepts ``list_data_dirs`` keywords, except ``blacklist`` which takes on the value given in the constructor. """ for dd in list_data_dirs(self.path, blacklist=self.blacklist, **kw): yield DataDirectory(dd) def __repr__(self): return '<DataDirectory %s>' % self.path def __str__(self): return self.path # filters for DataDirectory def time_filter(start='1970-01-01', end='3000-01-01'): start = pd.to_datetime(start, utc=True) end =
pd.to_datetime(end, utc=True)
pandas.to_datetime
import io import itertools import pytest from pandas.util.testing import ( assert_series_equal, assert_frame_equal, assert_index_equal) from numpy.testing import assert_array_equal import pandas as pd import numpy as np import matplotlib.figure import matplotlib.pyplot as plt from upsetplot import plot from upsetplot import UpSet from upsetplot import generate_counts, generate_samples from upsetplot.plotting import _process_data # TODO: warnings should raise errors def is_ascending(seq): # return np.all(np.diff(seq) >= 0) return sorted(seq) == list(seq) @pytest.mark.parametrize('x', [ generate_counts(), generate_counts().iloc[1:-2], ]) @pytest.mark.parametrize('sort_by', ['cardinality', 'degree']) @pytest.mark.parametrize('sort_categories_by', [None, 'cardinality']) def test_process_data_series(x, sort_by, sort_categories_by): assert x.name == 'value' for subset_size in ['auto', 'legacy', 'sum', 'count']: for sum_over in ['abc', False]: with pytest.raises(ValueError, match='sum_over is not applicable'): _process_data(x, sort_by=sort_by, sort_categories_by=sort_categories_by, subset_size=subset_size, sum_over=sum_over) df, intersections, totals = _process_data( x, subset_size='auto', sort_by=sort_by, sort_categories_by=sort_categories_by, sum_over=None) assert intersections.name == 'value' x_reordered = (x .reorder_levels(intersections.index.names) .reindex(index=intersections.index)) assert len(x) == len(x_reordered) assert x_reordered.index.is_unique assert_series_equal(x_reordered, intersections, check_dtype=False) if sort_by == 'cardinality': assert is_ascending(intersections.values[::-1]) else: # check degree order assert is_ascending(intersections.index.to_frame().sum(axis=1)) # TODO: within a same-degree group, the tuple of active names should # be in sort-order if sort_categories_by: assert is_ascending(totals.values[::-1]) assert np.all(totals.index.values == intersections.index.names) assert np.all(df.index.names == intersections.index.names) assert set(df.columns) == {'_value', '_bin'} assert_index_equal(df['_value'].reorder_levels(x.index.names).index, x.index) assert_array_equal(df['_value'], x) assert_index_equal(intersections.iloc[df['_bin']].index, df.index) assert len(df) == len(x) @pytest.mark.parametrize('x', [ generate_samples()['value'], generate_counts(), ]) def test_subset_size_series(x): kw = {'sort_by': 'cardinality', 'sort_categories_by': 'cardinality', 'sum_over': None} df_sum, intersections_sum, totals_sum = _process_data( x, subset_size='sum', **kw) if x.index.is_unique: expected_warning = None else: expected_warning = FutureWarning with pytest.warns(expected_warning): df, intersections, totals = _process_data( x, subset_size='legacy', **kw) assert_frame_equal(df, df_sum) assert_series_equal(intersections, intersections_sum) assert_series_equal(totals, totals_sum) if x.index.is_unique: df, intersections, totals = _process_data( x, subset_size='auto', **kw) assert_frame_equal(df, df_sum) assert_series_equal(intersections, intersections_sum) assert_series_equal(totals, totals_sum) else: with pytest.raises(ValueError): _process_data( x, subset_size='auto', **kw) df_count, intersections_count, totals_count = _process_data( x, subset_size='count', **kw) df, intersections, totals = _process_data( x.groupby(level=list(range(len(x.index.levels)))).count(), subset_size='sum', **kw) assert_series_equal(intersections, intersections_count, check_names=False) assert_series_equal(totals, totals_count) @pytest.mark.parametrize('sort_sets_by', [None, 'cardinality']) @pytest.mark.parametrize('x', [ generate_counts(), ]) def test_sort_sets_by_deprecation(x, sort_sets_by): with pytest.warns(DeprecationWarning, match='sort_sets_by'): upset1 = UpSet(x, sort_sets_by=sort_sets_by) with pytest.warns(None): upset2 = UpSet(x, sort_categories_by=sort_sets_by) fig = matplotlib.figure.Figure() upset1.plot(fig) png1 = io.BytesIO() fig.savefig(png1, format='raw') fig = matplotlib.figure.Figure() upset2.plot(fig) png2 = io.BytesIO() fig.savefig(png2, format='raw') assert png1.getvalue() == png2.getvalue() @pytest.mark.parametrize('x', [ generate_samples()['value'], ]) @pytest.mark.parametrize('sort_by', ['cardinality', 'degree']) @pytest.mark.parametrize('sort_categories_by', [None, 'cardinality']) def test_process_data_frame(x, sort_by, sort_categories_by): X = pd.DataFrame({'a': x}) with pytest.raises(ValueError, match='Please specify subset_size'): _process_data(X, sort_by=sort_by, sort_categories_by=sort_categories_by, subset_size='legacy', sum_over=None) with pytest.warns(None): df, intersections, totals = _process_data( X, sort_by=sort_by, sort_categories_by=sort_categories_by, sum_over='a', subset_size='auto') assert df is not X # check equivalence to Series df1, intersections1, totals1 = _process_data( x, sort_by=sort_by, sort_categories_by=sort_categories_by, subset_size='sum', sum_over=None) assert intersections.name == 'a' assert_frame_equal(df, df1.rename(columns={'_value': 'a'})) assert_series_equal(intersections, intersections1, check_names=False) assert_series_equal(totals, totals1) # check effect of extra column X = pd.DataFrame({'a': x, 'b': np.arange(len(x))}) df2, intersections2, totals2 = _process_data( X, sort_by=sort_by, sort_categories_by=sort_categories_by, sum_over='a', subset_size='auto') assert_series_equal(intersections, intersections2) assert_series_equal(totals, totals2) assert_frame_equal(df, df2.drop('b', axis=1)) assert_array_equal(df2['b'], X['b']) # disregard levels, tested above # check effect not dependent on order/name X = pd.DataFrame({'b': np.arange(len(x)), 'c': x}) df3, intersections3, totals3 = _process_data( X, sort_by=sort_by, sort_categories_by=sort_categories_by, sum_over='c', subset_size='auto') assert_series_equal(intersections, intersections3, check_names=False) assert intersections.name == 'a' assert intersections3.name == 'c' assert_series_equal(totals, totals3) assert_frame_equal(df.rename(columns={'a': 'c'}), df3.drop('b', axis=1)) assert_array_equal(df3['b'], X['b']) # check subset_size='count' X = pd.DataFrame({'b': np.ones(len(x), dtype=int), 'c': x}) df4, intersections4, totals4 = _process_data( X, sort_by=sort_by, sort_categories_by=sort_categories_by, sum_over='b', subset_size='auto') df5, intersections5, totals5 = _process_data( X, sort_by=sort_by, sort_categories_by=sort_categories_by, subset_size='count', sum_over=None) assert_series_equal(intersections4, intersections5, check_names=False) assert intersections4.name == 'b' assert intersections5.name == 'size' assert_series_equal(totals4, totals5) assert_frame_equal(df4, df5) @pytest.mark.parametrize('x', [ generate_samples()['value'], generate_counts(), ]) def test_subset_size_frame(x): kw = {'sort_by': 'cardinality', 'sort_categories_by': 'cardinality'} X = pd.DataFrame({'x': x}) df_sum, intersections_sum, totals_sum = _process_data( X, subset_size='sum', sum_over='x', **kw) df_count, intersections_count, totals_count = _process_data( X, subset_size='count', sum_over=None, **kw) # error cases: sum_over=False for subset_size in ['auto', 'sum', 'count']: with pytest.raises(ValueError, match='sum_over'): _process_data( X, subset_size=subset_size, sum_over=False, **kw) with pytest.raises(ValueError, match='sum_over'): _process_data( X, subset_size=subset_size, sum_over=False, **kw) # error cases: sum_over incompatible with subset_size with pytest.raises(ValueError, match='sum_over should be a field'): _process_data( X, subset_size='sum', sum_over=None, **kw) with pytest.raises(ValueError, match='sum_over cannot be set'): _process_data( X, subset_size='count', sum_over='x', **kw) # check subset_size='auto' or 'legacy' with sum_over=str => sum for subset_size in ['auto', 'legacy']: df, intersections, totals = _process_data( X, subset_size=subset_size, sum_over='x', **kw) assert_frame_equal(df, df_sum) assert_series_equal(intersections, intersections_sum) assert_series_equal(totals, totals_sum) # check subset_size='auto' with sum_over=None => count df, intersections, totals = _process_data( X, subset_size='auto', sum_over=None, **kw) assert_frame_equal(df, df_count) assert_series_equal(intersections, intersections_count) assert_series_equal(totals, totals_count) # check legacy use of sum_over=False with pytest.warns(DeprecationWarning, match='sum_over=False'): df, intersections, totals = _process_data( X, subset_size='legacy', sum_over=False, **kw) assert_frame_equal(df, df_count)
assert_series_equal(intersections, intersections_count)
pandas.util.testing.assert_series_equal
""" Script to get the distribution of defined percentage of most important ingredients according to their categories. Needs a working MongoDB server containing the Open Food Facts database. """ import pandas as pd import pymongo import tqdm from data import INGREDIENTS_DISTRIBUTION_FILEPATH # Minimum number of defined percentage per ingredient MIN_VALUE_NB = 30 df = pd.DataFrame(columns=['id', 'percent', 'categories_tags']) client = pymongo.MongoClient() db = client['off'] products = db['products'] query = {"ingredients": {"$elemMatch": {"percent": {"$exists": True}}}} cursor = products.find(query, {'ingredients.percent': 1, 'ingredients.id': 1, 'categories_tags': 1}, no_cursor_timeout=True).batch_size(1000) # Looping on all products and all ingredients, adding the ingredient and its percentage to the dataframe if it is # defined for product in tqdm.tqdm(cursor): for ingredient in product['ingredients']: if 'percent' not in ingredient: continue # Removing erroneous data if not (0 < float(ingredient["percent"]) <= 100): continue df = df.append({"id": ingredient['id'], "percent": float(ingredient["percent"]), "categories_tags": product.get('categories_tags')}, ignore_index=True) # Removing elements with less than the minimum number of values counts = df.id.value_counts() df = df[df.id.isin(counts[counts >= MIN_VALUE_NB].index)] # Sorting the dataframe by id df.id =
pd.Categorical(df.id, counts.index)
pandas.Categorical
import pandas as pd from IPython.display import clear_output from datetime import timedelta from .conflict import ConflictManager class TokensManager: """ """ def __init__(self, all_actions, maxwords): self.maxwords = maxwords self.all_actions = all_actions def get_states(self): sample = self.all_actions.copy().reset_index(drop=True) # Get differences of columns 'token_id' and 'rev_time' diff_actions = sample[['token_id', 'rev_time']] - sample.shift(1)[['token_id', 'rev_time']] diff_actions = diff_actions.rename({'token_id': 'tokenid_diff', 'rev_time': 'time_diff'}, axis=1) sample[['tokenid_diff', 'time_diff']] = diff_actions sample.fillna(1.0, inplace=True) # Boolean for adds action bool_adds = sample['tokenid_diff'] != 0 sample['bool_adds'] = bool_adds # Boolean for dels action bool_dels = sample['action'] == 'out' sample['bool_dels'] = bool_dels # Boolean for reins action sample['bool_reins'] = ~bool_adds sample[['bool_adds', 'bool_dels', 'bool_reins']] = sample[['bool_adds', 'bool_dels', 'bool_reins']].astype(int) sample['reins-dels'] = sample['bool_reins'] - sample['bool_dels'] sample = sample.drop('bool_reins', axis=1).rename({'reins-dels':'bool_reins'}, axis=1) # Boolean for time. sample['time_diff'] = sample['time_diff'].shift(-1) adds_index = sample[sample['bool_adds'] == 1].index last_index = pd.Index(list(adds_index[1:] - 1) + [adds_index[-1]]) sample['bool_last'] = 0 sample.loc[last_index, 'bool_last']=1 sample['bool_survival'] = 0 survival_df = pd.DataFrame( ~(sample[sample['bool_last'] == 0]['time_diff'] < timedelta(2,0,0))).rename({'time_diff':'survival'},axis=1).astype(int) survival_idx = survival_df[survival_df['survival'] == 1].index sample.loc[survival_idx, 'bool_survival'] = 1 sample['bool_survive'] = sample['bool_survival'] + sample['bool_last'] sample = sample.drop(['bool_last', 'bool_survival'], axis=1) return sample def _action_survival(self, df_with_bools, bool_col): action = df_with_bools.copy() action['survive'] = action[bool_col] & action['bool_survive'] action = action[action[bool_col] == True].reset_index(drop=True) action = action.drop(['tokenid_diff', 'time_diff','bool_adds', 'bool_dels', 'bool_reins', 'bool_survive'], axis=1) action['survive'] = action['survive'].astype(int) action.set_index('rev_id', inplace=True) return action def token_survive(self): sample = self.get_states() # Convert all 0-1 to boolean. sample[['bool_adds', 'bool_dels', 'bool_reins', 'bool_survive']] = sample[ ['bool_adds', 'bool_dels', 'bool_reins', 'bool_survive']].astype(bool) # Survival states for all actions. adds_actions = self._action_survival(sample, 'bool_adds') dels_actions = self._action_survival(sample, 'bool_dels') reins_actions = self._action_survival(sample, 'bool_reins') return adds_actions, dels_actions, reins_actions def _odd_true(self, number): """ """ if type(number) == int: if number % 2 == 0: return False else: return True elif len(number) == 1: if number[0] % 2 == 0: return False else: return True else: results = [] for i in number: if i % 2 == 0: results.append(False) else: results.append(True) return
pd.Series(results)
pandas.Series
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize('freq', ['D', 'B']) def test_timedelta(self, freq): index = pd.date_range('1/1/2000', periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == 'D': expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range('2013', '2014') s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT']) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, 'D') + Timestamp('2000') with pytest.raises(OutOfBoundsDatetime): Timestamp('2000') + pd.to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], 'D') + Timestamp('2000') with pytest.raises(OverflowError, match=msg): Timestamp('2000') + pd.to_timedelta([106580], 'D') with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): pd.to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): (pd.to_timedelta([_NaT, '5 days', '1 hours']) - pd.to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex(['4 days', pd.NaT]) result = pd.to_timedelta(['5 days', pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, '5 hours']) result = (pd.to_timedelta([pd.NaT, '5 days', '1 hours']) + pd.to_timedelta(['7 seconds', pd.NaT, '4 hours'])) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs # parametrization+de-duplication def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = pd.DataFrame(['00:00:02']).apply(pd.to_timedelta) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1
tm.assert_series_equal(actual, s2)
pandas.util.testing.assert_series_equal
# coding: utf-8 ''' EC2 ํ™˜๊ฒฝ์—์„œ ์‹คํ–‰ํ•˜๋Š” main ''' import random import pymysql import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import csv import xgboost as xgb from numpy import loadtxt from xgboost import XGBClassifier from xgboost import plot_importance from xgboost import plot_tree # ํ•„์š”ํ•œ ํŒŒ์ผ import import feature import dataset import model ###################### DB connect db = pymysql.connect(host="", port=3306, user="", passwd="",db="") print("start") train_x = dataset.train_result() # train๊ณผ test ํ™•์ธ์„ ์œ„ํ•ด print(train_x.columns) ## ์—ฌ๊ธฐ make_answer์— ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ train_x ๋ณด๋‚ด๋Š” ๊ฒƒ์„ ๋ฐ”๋€œ train_y = dataset.make_answer(train_x) print("train_y ํ™•์ธ \n") print(train_y) ## test set test = dataset.test_result() # train๊ณผ test ํ™•์ธ์„ ์œ„ํ•ด print(test.columns) ### submission form out_df=test[["order_id", "product_id","user_id"]] ### ์ตœ์ข… data set --> array๋กœ ๋ฐ”๊พธ๊ธฐ train_x = np.array(train_x.drop(["order_id", "user_id", "product_id","aisle_id","department_id"], axis=1)) test = test.drop(["order_id", "user_id", "product_id","aisle_id","department_id"], axis=1) #test.to_csv("test.csv", index=False) test = np.array(test) # xgboost : ๋ชจ๋ธ์„ ์ƒ์„ฑํ•˜๊ธฐ์œ„ํ•œ ๋ฐ์ดํ„ฐ, ๋‹ต, ๋ชจ๋ธ ์ƒ์„ฑํ›„ ์˜ˆ์ธกํ•  ๋ฐ์ดํ„ฐ -> 20๋ถ„ ์ •๋„ ๊ฑธ๋ฆผ pred = model.runXGB(train_x, train_y, test) print("Prediction fin.") #### ๋ชจ๋ธ ์˜ˆ์ธก๊ฐ’ ๋”ฐ๋กœ ์ €์žฅ temp = pred ## ๋ชจ๋ธ ๋ށ์Šค๊ฐ€ ๊ฐ™๋”๋ผ๋„ cutoff์— ๋”ฐ๋ผ ๊ฐ’์ด ๋ฐ”๋€œ cutoff = temp.mean() - 0.02 temp[temp>=cutoff] = 1 temp[temp<cutoff] = 0 # ์ฃผ๋ฌธ ๋ฒˆํ˜ธ๋ž‘ ์ƒํ’ˆ ๋ฒˆํ˜ธ์— ๋งž์ถฐ์„œ ์นผ๋Ÿผ ์ถ”๊ฐ€ out_df["Pred"] = temp out_df.head() # ์žฌ๊ตฌ๋งคํ•œ๋‹ค๊ณ  ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์˜จ ๊ฒƒ๋งŒ ๋ฝ‘์•„๋‚ด๊ธฐ! out_df = out_df.ix[out_df["Pred"].astype('int')==1] # ์ค‘๋ณต ์ œ๊ฑฐ out_df = out_df.drop_duplicates() ### ์‚ด ํ™•๋ฅ ์ด ๋†’์€ ์ƒํ’ˆ๋งŒ ์„ ํƒ def merge_products(x): return " ".join(list(x.astype('str'))) ############### ์บ๊ธ€ ์ œ์ถœ์šฉ kaggle = out_df.groupby("order_id")["product_id"].aggregate(merge_products).reset_index() kaggle.columns = ["order_id", "products"] SQL = "SELECT order_id FROM submission" sub_df = pd.read_sql(SQL, db) sub_df =
pd.merge(sub_df, kaggle, how="left", on="order_id")
pandas.merge
#!/usr/bin/env python3 from pathlib import Path import pandas as pd def main(): current_dir = Path.cwd() all_final_iters = current_dir.rglob('final_iter.csv') dfs = [] for csv in all_final_iters: df =
pd.read_csv(csv)
pandas.read_csv