prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" Written by <NAME>, 22-10-2018 This script contains functions for data formatting and accuracy assessment of keras models """ import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler import keras.backend as K from math import sqrt import numpy as np # convert time series into supervised learning problem def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = pd.DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg = pd.concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg # model cost function def rmse(y_true, y_pred): return K.sqrt(K.mean(K.square(y_pred - y_true), axis=-1)) # scale and format observed data as train/test inputs/labels def format_obs_data(full_data, n_lags, n_ahead, n_train): # split datetime column into train and test for plots train_dates = full_data[['Datetime', 'GWL', 'Tide', 'Precip.']].iloc[:n_train] test_dates = full_data[['Datetime', 'GWL', 'Tide', 'Precip.']].iloc[n_train:] test_dates = test_dates.reset_index(drop=True) test_dates['Datetime'] = pd.to_datetime(test_dates['Datetime']) values = full_data[['GWL', 'Tide', 'Precip.']].values values = values.astype('float32') gwl = values[:, 0] gwl = gwl.reshape(gwl.shape[0], 1) tide = values[:, 1] tide = tide.reshape(tide.shape[0], 1) rain = values[:, 2] rain = rain.reshape(rain.shape[0], 1) # normalize features with individual scalers gwl_scaler, tide_scaler, rain_scaler = MinMaxScaler(), MinMaxScaler(), MinMaxScaler() gwl_fit = gwl_scaler.fit(gwl) gwl_scaled = gwl_fit.transform(gwl) tide_fit = tide_scaler.fit(tide) tide_scaled = tide_fit.transform(tide) rain_fit = rain_scaler.fit(rain) rain_scaled = rain_fit.transform(rain) # frame as supervised learning gwl_super = series_to_supervised(gwl_scaled, n_lags, n_ahead) gwl_super_values = gwl_super.values tide_super = series_to_supervised(tide_scaled, n_lags, n_ahead) tide_super_values = tide_super.values rain_super = series_to_supervised(rain_scaled, n_lags, n_ahead) rain_super_values = rain_super.values # split groundwater into inputs and labels gwl_input, gwl_labels = gwl_super_values[:, 0:n_lags+1], gwl_super_values[:, n_lags+1:] # split into train and test sets train_X = np.concatenate((gwl_input[:n_train, :], tide_super_values[:n_train, :], rain_super_values[:n_train, :]), axis=1) test_X = np.concatenate((gwl_input[n_train:, :], tide_super_values[n_train:, :], rain_super_values[n_train:, :]), axis=1) train_y, test_y = gwl_labels[:n_train, :], gwl_labels[n_train:, :] # reshape input to be 3D [samples, timesteps, features] train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) print("observed training input data shape:", train_X.shape, "observed training label data shape:", train_y.shape) print("observed testing input data shape:", test_X.shape, "observed testing label data shape:", test_y.shape) return train_dates, test_dates, tide_fit, rain_fit, gwl_fit, train_X, test_X, train_y, test_y # scale and format storm data as train/test inputs/labels def format_storm_data(storm_data, n_train, tide_fit, rain_fit, gwl_fit): # separate storm data into gwl, tide, and rain storm_scaled = pd.DataFrame(storm_data["Datetime"]) for col in storm_data.columns: if col.split("(")[0] == "tide": col_data = np.asarray(storm_data[col]) col_data = col_data.reshape(col_data.shape[0], 1) col_scaled = tide_fit.transform(col_data) storm_scaled[col] = col_scaled if col.split("(")[0] == "rain": col_data = np.asarray(storm_data[col]) col_data = col_data.reshape(col_data.shape[0], 1) col_scaled = rain_fit.transform(col_data) storm_scaled[col] = col_scaled if col.split("(")[0] == "gwl": col_data = np.asarray(storm_data[col]) col_data = col_data.reshape(col_data.shape[0], 1) col_scaled = gwl_fit.transform(col_data) storm_scaled[col] = col_scaled # split storm data into inputs and labels storm_values = storm_scaled[storm_scaled.columns[1:]].values storm_input, storm_labels = storm_values[:, :-18], storm_values[:, -18:] # split into train and test sets train_X, test_X = storm_input[:n_train, :], storm_input[n_train:, :] train_y, test_y = storm_labels[:n_train, :], storm_labels[n_train:, :] # reshape input to be 3D [samples, timesteps, features] train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1])) test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1])) print("observed training input data shape:", train_X.shape, "observed training label data shape:", train_y.shape) print("observed testing input data shape:", test_X.shape, "observed testing label data shape:", test_y.shape) return train_X, test_X, train_y, test_y # scale and format forecast data as train/test inputs/labels def format_fcst_data(fcst_data, tide_fit, rain_fit, gwl_fit): # separate forecast data into gwl, tide, and rain fcst_scaled = pd.DataFrame(fcst_data["Datetime"]) for col in fcst_data.columns: if col.split("(")[0] == "tide": col_data = np.asarray(fcst_data[col]) col_data = col_data.reshape(col_data.shape[0], 1) col_scaled = tide_fit.transform(col_data) fcst_scaled[col] = col_scaled if col.split("(")[0] == "rain": col_data = np.asarray(fcst_data[col]) col_data = col_data.reshape(col_data.shape[0], 1) col_scaled = rain_fit.transform(col_data) fcst_scaled[col] = col_scaled if col.split("(")[0] == "gwl": col_data = np.asarray(fcst_data[col]) col_data = col_data.reshape(col_data.shape[0], 1) col_scaled = gwl_fit.transform(col_data) fcst_scaled[col] = col_scaled # split fcst data into inputs and labels fcst_values = fcst_scaled[fcst_scaled.columns[1:]].values fcst_input, fcst_labels = fcst_values[:, :-18], fcst_values[:, -18:] # reshape fcst input to be 3D [samples, timesteps, features] fcst_test_X = fcst_input.reshape((fcst_input.shape[0], 1, fcst_input.shape[1])) print("forecast input data shape:", fcst_test_X.shape, "forecast label data shape:", fcst_labels.shape) return fcst_test_X, fcst_labels # create df of full observed data and predictions and extract storm data def full_pred_df(test_dates, storm_data, n_lags, n_ahead, inv_y, inv_yhat): dates_t1 = pd.DataFrame(test_dates[["Datetime"]][n_lags + 1:-n_ahead + 2]) dates_t1 = dates_t1.reset_index(inplace=False, drop=True) dates_9 = pd.DataFrame(test_dates[["Datetime"]][n_lags + 9:-n_ahead + 10]) dates_9 = dates_9.reset_index(inplace=False, drop=True) dates_18 = pd.DataFrame(test_dates[["Datetime"]][n_lags + 18:]) dates_18 = dates_18.reset_index(inplace=False, drop=True) obs_t1 = np.reshape(inv_y[:, 0], (inv_y.shape[0], 1)) pred_t1 = np.reshape(inv_yhat[:, 0], (inv_y.shape[0], 1)) df_t1 = np.concatenate([obs_t1, pred_t1], axis=1) df_t1 = pd.DataFrame(df_t1, index=None, columns=["Obs. GWL t+1", "Pred. GWL t+1"]) df_t1 = pd.concat([df_t1, dates_t1], axis=1) df_t1 = df_t1.set_index("Datetime") obs_t9 = np.reshape(inv_y[:, 8], (inv_y.shape[0], 1)) pred_t9 = np.reshape(inv_yhat[:, 8], (inv_y.shape[0], 1)) df_t9 = np.concatenate([obs_t9, pred_t9], axis=1) df_t9 = pd.DataFrame(df_t9, index=None, columns=["Obs. GWL t+9", "Pred. GWL t+9"]) df_t9 = pd.concat([df_t9, dates_9], axis=1) df_t9 = df_t9.set_index("Datetime") obs_t18 = np.reshape(inv_y[:, 17], (inv_y.shape[0], 1)) pred_t18 = np.reshape(inv_yhat[:, 17], (inv_y.shape[0], 1)) df_t18 = np.concatenate([obs_t18, pred_t18], axis=1) df_t18 = pd.DataFrame(df_t18, index=None, columns=["Obs. GWL t+18", "Pred. GWL t+18"]) df_t18 = pd.concat([df_t18, dates_18], axis=1) df_t18 = df_t18.set_index("Datetime") storm_dates_t1 = storm_data[['gwl(t+1)']] storm_dates_t1.index = storm_dates_t1.index + pd.DateOffset(hours=1) storm_dates_t9 = storm_data[['gwl(t+9)']] storm_dates_t9.index = storm_dates_t9.index + pd.DateOffset(hours=9) storm_dates_t18 = storm_data[['gwl(t+18)']] storm_dates_t18.index = storm_dates_t18.index + pd.DateOffset(hours=18) df_t1_storms = np.asarray(df_t1[df_t1.index.isin(storm_dates_t1.index)]) df_t9_storms = np.asarray(df_t9[df_t9.index.isin(storm_dates_t9.index)]) df_t18_storms = np.asarray(df_t18[df_t18.index.isin(storm_dates_t18.index)]) storms_list = [df_t1_storms, df_t9_storms, df_t18_storms] return df_t1, df_t9, df_t18, storms_list # create df of storm observed data and predictions def storm_pred_df(storm_data, n_train, inv_y, inv_yhat): test_dates_t1 = storm_data[['Datetime', 'tide(t+1)', 'rain(t+1)']].iloc[n_train:] test_dates_t1 = test_dates_t1.reset_index(drop=True) test_dates_t1['Datetime'] = pd.to_datetime(test_dates_t1['Datetime']) test_dates_t1['Datetime'] = test_dates_t1['Datetime'] + pd.DateOffset(hours=1) test_dates_t9 = storm_data[['Datetime', 'tide(t+9)', 'rain(t+9)']].iloc[n_train:] test_dates_t9 = test_dates_t9.reset_index(drop=True) test_dates_t9['Datetime'] = pd.to_datetime(test_dates_t9['Datetime']) test_dates_t9['Datetime'] = test_dates_t9['Datetime'] + pd.DateOffset(hours=9) test_dates_t18 = storm_data[['Datetime', 'tide(t+18)', 'rain(t+18)']].iloc[n_train:] test_dates_t18 = test_dates_t18.reset_index(drop=True) test_dates_t18['Datetime'] = pd.to_datetime(test_dates_t18['Datetime']) test_dates_t18['Datetime'] = test_dates_t18['Datetime'] + pd.DateOffset(hours=18) obs_t1 = np.reshape(inv_y[:, 0], (inv_y.shape[0], 1)) pred_t1 = np.reshape(inv_yhat[:, 0], (inv_y.shape[0], 1)) df_t1 = np.concatenate([obs_t1, pred_t1], axis=1) df_t1 = pd.DataFrame(df_t1, index=None, columns=["obs", "pred"]) df_t1 = pd.concat([df_t1, test_dates_t1], axis=1) df_t1 = df_t1.set_index("Datetime") df_t1 = df_t1.rename(columns={'obs': 'Obs. GWL t+1', 'pred': 'Pred. GWL t+1'}) obs_t9 = np.reshape(inv_y[:, 8], (inv_y.shape[0], 1)) pred_t9 = np.reshape(inv_yhat[:, 8], (inv_y.shape[0], 1)) df_t9 = np.concatenate([obs_t9, pred_t9], axis=1) df_t9 = pd.DataFrame(df_t9, index=None, columns=["obs", "pred"]) df_t9 = pd.concat([df_t9, test_dates_t9], axis=1) df_t9 = df_t9.set_index("Datetime") df_t9 = df_t9.rename(columns={'obs': 'Obs. GWL t+9', 'pred': 'Pred. GWL t+9'}) obs_t18 = np.reshape(inv_y[:, 17], (inv_y.shape[0], 1)) pred_t18 = np.reshape(inv_yhat[:, 17], (inv_y.shape[0], 1)) df_t18 = np.concatenate([obs_t18, pred_t18], axis=1) df_t18 = pd.DataFrame(df_t18, index=None, columns=["obs", "pred"]) df_t18 = pd.concat([df_t18, test_dates_t18], axis=1) df_t18 = df_t18.set_index("Datetime") df_t18 = df_t18.rename(columns={'obs': 'Obs. GWL t+18', 'pred': 'Pred. GWL t+18'}) all_data_df = pd.concat([df_t1, df_t9, df_t18], axis=1) return all_data_df # create df of forecast data and predictions def fcst_pred_df(fcst_data, inv_fcst_y, inv_fcst_yhat): # combine forecast prediction data with observations test_dates_t1 = fcst_data[['Datetime', 'tide(t+1)', 'rain(t+1)']] test_dates_t1 = test_dates_t1.reset_index(drop=True) test_dates_t1['Datetime'] = pd.to_datetime(test_dates_t1['Datetime']) test_dates_t1['Datetime'] = test_dates_t1['Datetime'] + pd.DateOffset(hours=1) test_dates_t9 = fcst_data[['Datetime', 'tide(t+9)', 'rain(t+9)']] test_dates_t9 = test_dates_t9.reset_index(drop=True) test_dates_t9['Datetime'] = pd.to_datetime(test_dates_t9['Datetime']) test_dates_t9['Datetime'] = test_dates_t9['Datetime'] + pd.DateOffset(hours=9) test_dates_t18 = fcst_data[['Datetime', 'tide(t+18)', 'rain(t+18)']] test_dates_t18 = test_dates_t18.reset_index(drop=True) test_dates_t18['Datetime'] = pd.to_datetime(test_dates_t18['Datetime']) test_dates_t18['Datetime'] = test_dates_t18['Datetime'] + pd.DateOffset(hours=18) obs_t1 = np.reshape(inv_fcst_y[:, 0], (inv_fcst_y.shape[0], 1)) pred_t1 = np.reshape(inv_fcst_yhat[:, 0], (inv_fcst_y.shape[0], 1)) df_t1 = np.concatenate([obs_t1, pred_t1], axis=1) df_t1 = pd.DataFrame(df_t1, index=None, columns=["Obs. GWL t+1", "Fcst. GWL t+1"]) df_t1 = pd.concat([df_t1, test_dates_t1], axis=1) df_t1 = df_t1.set_index("Datetime") obs_t9 = np.reshape(inv_fcst_y[:, 8], (inv_fcst_y.shape[0], 1)) pred_t9 = np.reshape(inv_fcst_yhat[:, 8], (inv_fcst_y.shape[0], 1)) df_t9 = np.concatenate([obs_t9, pred_t9], axis=1) df_t9 =
pd.DataFrame(df_t9, index=None, columns=["Obs. GWL t+9", "Fcst. GWL t+9"])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from datetime import datetime, timedelta import numpy as np from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as tck import matplotlib.font_manager as fm import math as m import itertools from matplotlib import dates import itertools import datetime #----------------------------------------------------------------------------- # Rutas para guardar --------------------------------------------------------- prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ##----------------------------------------Método 1 radiación al tope de la atmosfera-----------------------------------------## ##---CALCULO DE LA DECLINACION SOLAR---## J = np.arange(1, 366, 1) g = 2*m.pi*(J-1)/365 d = (0.006918 - 0.399912*np.cos(g) + 0.070257*np.sin(g) - 0.006758*np.cos(2*g) + 0.000907*np.sin(2*g) - 0.002697*np.cos(3*g) + 0.00148*np.sin(3*g)+ 0.000907*np.sin(2*g) - 0.002697*np.cos(3*g) + 0.00148*np.sin(3*g)) dd = list(itertools.chain.from_iterable(itertools.repeat(x, 24) for x in d)) ##---CALCULO DEL ANGULO HORARIO---## def daterange(start_date, end_date): delta = timedelta(hours=1) while start_date < end_date: yield start_date start_date += delta ##---Ecuación del tiempo---## B = 2*m.pi*(J-81)/365 ET = 9.87*np.sin(2*B)-7.53*np.cos(B)-1.5*np.cos(B) ##---Tiempo solar---## Ls = -75. #Meridiano estándar en grados decimales # Ls = -75*m.pi/180. #Meridiano estándar en radianes Ll = -75.56359 #Meridiano local en grados decimales # Ll = -75.56359 *m.pi/180. #Meridiano local en radianes L = (Ls-Ll)/15 LT = [] #Local standar time como datetime start_date = datetime.datetime(2013, 1, 1, 00, 00) end_date = datetime.datetime(2013, 1, 1, 23, 00) for single_date in daterange(start_date, end_date): LT.append(single_date.time()) LT = np.arange(0, 24, 1) #Local standar time como decimal TS = [] for j in range(len(ET)): #Variar en el tiempo solar de cada dia for i in range(len(LT)): #Variar en las horas TS.append(LT[i]+(ET[j]/60)+L) ##---Angulo horario---## w = [] for i in range(len(TS)): w.append(15*(12-TS[i])) #En grados decimales w = np.array(w)*m.pi/180 #Pasar a radianes ##---CALCULO DE LA RADIACION AL TOPE DE LA ATMOSFERA---## ##---Excentricidad---## Eo = 1+(0.0033*np.cos((2*np.pi*J)/365)) d_h = list(itertools.chain.from_iterable(itertools.repeat(x, 24) for x in list(d))) # Declinacion a resolucion horaria Eo_h = list(itertools.chain.from_iterable(itertools.repeat(x, 24) for x in Eo)) # Excentricidad a resolucion horaria ##---Radiacion al tope de la atmosfera---## Cte = ((12*3.6)/m.pi)*1367 Lat = 6.217 # En grados decimales Io = [] for i in range(len(w)-1): Io.append(Cte*Eo_h[i]*(((m.sin(Lat*m.pi/180)*m.cos(d_h[i]))*(m.sin(w[i])-m.sin(w[i+1])))+(w[1]-w[2])*(m.sin(Lat*m.pi/180)*m.sin(d_h[i])))) ##OJOesta iteracion produce un desfase de una hora Io = np.array(Io) Io[Io < 0] = np.nan ##----------------------------------------Método 2 radiación al tope de la atmosfera-----------------------------------------## Lat = 6.217*m.pi/180. # Radianes ##---Distancia de la tierra al sol para cada día---## dist = 1 - 0.01672*(np.cos(0.985*(J-4))) dist = dist*10E10 distM = 1.5*10E11 # Verificar unidades So = 1367 # W/m2 # Ya la declinacion esta en radianes d = d*np.pi/180 ##---Ángulo horario por día (amanecer)---## ho = np.arccos(-1*(np.tan(Lat)*np.tan(d))) # En radianes ho = ho*180/np.pi ##---Tiempo en horas de amanecida a partir del ángulo horario---## to = 12 - ho/15 # En horas decimales to_m = np.mean(to) time_o = [] for i in range(len(to)): a = (str(datetime.timedelta(seconds = to[i]*3600))[0:7]) time_o.append(datetime.datetime.strptime(a, '%H:%M:%S').time()) ##---Ángulo horario por día (atardecer)---## hf = -1*ho # En grados ##---Tiempo en horas de atardecer a partir del ángulo horario---## tf = 12 - hf/15 # En horas decimales tf_m = np.mean(tf) time_f = [] for i in range(len(tf)): a = (str(datetime.timedelta(seconds = tf[i]*3600))[0:7]) time_f.append(datetime.datetime.strptime(a, '%H:%M:%S').time()) ##---Insolación promedio por día al tope de la atmosfera---## Qd = So/np.pi*((distM/dist)**2)*(ho*np.sin(Lat)*np.sin(d) + np.cos(Lat)*np.cos(d)*np.sin(ho)) ##---Radiación al tope de la atmósfera horario---## Io = [] #for i in range(len(d)): # for j in range(0, len(w), 24): # Io.append(So*Eo[i]*(np.sin(d[i])*np.sin(Lat) + np.cos(d[i])*np.cos(Lat)*np.cos(w[j:j+24]))) Io = [] for i in range(len(dd)): Io.append(So*Eo_h[i]*(np.sin(dd[i])*np.sin(Lat) + np.cos(dd[i])*np.cos(Lat)*np.cos(w[i]))) ##--------------------------------------------------------------------------------------------------------------------## ##---CALCULO DE LA DURACIÓN DEL DÍA---## Nd = 2./15.*ho # En horas decimales Nd_m = np.mean(Nd) time_Nd = [] for i in range(len(Nd)): a = (str(datetime.timedelta(seconds = Nd[i]*3600))[0:7]) time_Nd.append(datetime.datetime.strptime(a, '%H:%M:%S').time()) ##---CALCULO DE LA ALTURA SOLAR ALPHA---## Alpha = [] for i in range(len(d)): for j in range(0, len(w), 24): Alpha.append(np.arcsin(np.sin(Lat)*np.sin(d[i])+np.cos(Lat)*np.cos(d[i])*np.cos(w[j:j+24]))) ##---CALCULO DE LA RADIACION INCIDENTE---## df = pd.read_table('/home/nacorreasa/SIATA/Investigacion/Consultas6001.txt', parse_dates=[2]) df = df.set_index(["fecha_hora"]) df.index = df.index.tz_localize('UTC').tz_convert('America/Bogota') df.index = df.index.tz_localize(None) df_h =
pd.DataFrame()
pandas.DataFrame
"""Periodic pattern mining with a MDL criterion""" # Authors: <NAME> <<EMAIL>> # License: BSD 3 clause import warnings from itertools import groupby import numpy as np import pandas as pd from ..base import BaseMiner, DiscovererMixin, MDLOptimizer from ..bitmaps import Bitmap from ..utils import intersect2d, sliding_window_view log = np.log2 INDEX_TYPES = ( pd.DatetimeIndex, pd.RangeIndex, pd.Int64Index, ) def residual_length(S, n_event_tot, dS): """ compute L(o) = L(t) + L(a) for all (a, t) in S i.e the length from a block of residual events Parameters ---------- S: np.ndarray of shape or scalar array containing indices for events to consider n_event_tot: int number of events in the original events dS: int max - min from original events """ card = S.shape[0] if isinstance(S, np.ndarray) else 1 return log(dS + 1) - log(card / float(n_event_tot)) def cycle_length(S, inter, n_event_tot, dS): """ Parameters ---------- S : np.array of type int64 a collection of cycles, all having the same length : r The width of S is then r inter: np.array of type int64 a collection of inter occurences, all having the same length: r - 1 n_event_tot: int number of events in the original events dS: int max - min from original events Returns ------- tuple: lengths for (a, r, p, tau, E) """ r = S.shape[1] assert inter.shape[1] == r - 1 # check inter occurences compliant with events p = np.median(inter, axis=1) E = inter - p.reshape((-1, 1)) dE = E.sum(axis=1) S_size = len(S) + r - 1 L_a = -log(S_size / n_event_tot) # FIXME L_r = log(S_size) L_p = log(np.floor((dS - dE) / (r - 1))) L_tau = log(dS - dE - (r - 1) * p + 1) L_E = 2 * E.shape[1] + np.abs(E).sum(axis=1) return L_a, L_r, L_p, L_tau, L_E def compute_cycles_dyn(S, n_tot, max_length=100): """ Parameters ---------- S: pd.Index or np.array a Series of occurences n_tot: int total number of occurences in the original events """ _, cut_points = get_table_dyn(S, n_tot, max_length) splits = _recover_splits_rec(cut_points, 0, len(S) - 1) cycles = list() covered = Bitmap() for length, g in groupby(splits, key=lambda e: e[1] - e[0]): g = list(g) if length >= 2: # eq to length + 1 >= 3 curr_cycles = np.vstack([S[s : e + 1] for s, e in g]) # COPY cycles.append(curr_cycles) for s, e in g: covered.update(range(s, e + 1)) return list(reversed(cycles)), covered def get_table_dyn(S: pd.Index, n_tot: int, max_length=100): """ Parameters ---------- S: pd.Index or np.ndarray a Series of occurences n_tot: int total number of occurences in the original events max_length: int, default=None maximum number of occurences for a cycle to cover, by default it will be set to :math:`\log_{2}\left(|S|\right)` """ diffs = np.diff(S) triples = sliding_window_view(S, 3) diff_pairs = sliding_window_view(diffs, 2) dS = S.max() - S.min() score_one = residual_length(1, n_tot, dS) scores = sum(cycle_length(triples, diff_pairs, len(S), dS)) change = scores > 3 * score_one scores[change] = 3 * score_one # inplace replacement cut_points = np.array([-1] * len(scores), dtype=object) cut_points[~change] = None scores = dict(zip(((i, i + 2) for i in range(len(scores))), scores)) cut_points = dict(zip(scores.keys(), cut_points)) max_length = min([len(S), max_length]) for k in range(4, max_length + 1): w = sliding_window_view(S, k) _diffs = sliding_window_view(diffs, k - 1) _s = sum(cycle_length(w, _diffs, len(S), dS)) for ia, best_score in enumerate(_s): cut_point = None iz = ia + k - 1 for im in range(ia, iz): if im - ia + 1 < 3: score_left = score_one * (im - ia + 1) else: score_left = scores[(ia, im)] if iz - im < 3: score_right = score_one * (iz - im) else: score_right = scores[(im + 1, iz)] if score_left + score_right < best_score: best_score = score_left + score_right cut_point = im scores[(ia, iz)] = best_score cut_points[(ia, iz)] = cut_point return scores, cut_points def extract_triples(S, dS): """ Extract cycles of length 3 given a list of occurences S Parameters ---------- S: pd.Index input occurences dS difference between max event and min event, from original Series """ l_max = log(dS + 1) - 2 triples = list() for idx, occ in enumerate(S[1:-1], 1): righties = S[idx + 1 :] lefties = S[:idx] righties_diffs = righties - occ lefties_diffs = lefties - occ grid = np.array(np.meshgrid(lefties_diffs, righties_diffs)).T.reshape(-1, 2) # keep = (np.abs(grid[:, 1]) - np.abs(grid[:, 0])) <= l keep = np.abs(grid[:, 0] - grid[:, 1]) < l_max t = occ + grid[keep] if t.size != 0: e = np.array([t[:, 0], np.array([occ] * t.shape[0]), t[:, 1]]).T assert np.issubdtype(e.dtype, np.number) and e.shape[1] == 3 triples.append(e) if triples: return np.vstack(triples) return None def merge_triples(triples, n_merge=10): """ Parameters ---------- triples: ndarray cycles of size 3 (i.e triples.shape[1] == 3) n_merge: int maximum number of merge operation to perform Returns ------- list[np.ndarray] a list of cycles """ if triples is None: return list() res = [triples] for idx in range(1, n_merge + 1): prev = res[idx - 1] lefties = prev[:, :2] righties = prev[:, -2:] _, left_idx, right_idx = intersect2d(lefties, righties, return_indices=True) if left_idx.size == 0 or right_idx.size == 0: break merged = np.hstack([prev[right_idx], prev[left_idx, 2:]]) res.append(merged) to_delete = np.union1d(left_idx, right_idx) res[idx - 1] = np.delete(res[idx - 1], to_delete, axis=0) if (np.unique(merged) == np.unique(merged)).all(): res.pop(idx - 1) break return list(reversed(res)) # inverse order of length def _recover_splits_rec(cut_points, ia, iz): if (ia, iz) in cut_points: if cut_points[(ia, iz)] is None: return [(ia, iz)] im = cut_points[(ia, iz)] if im >= 0: return _recover_splits_rec(cut_points, ia, im) + _recover_splits_rec( cut_points, im + 1, iz ) return [] def _remove_zeros(numbers: pd.Series): n = 0 while (numbers % 10 == 0).all(): numbers //= 10 n += 1 return numbers, n def _reconstruct(start, period, dE): """ Reconstruct occurences, starting from `start`, and correcting `period` with a delta for all deltas in `dE`, `len(dE)` occurences are reconstructed Parameters ---------- start: int or datetime starting point for the event period: int or timedelta period between two occurences d_E: np.array of [int|timedelta] inters occurences deltas """ occurences = [start] current = start for d_e in dE: e = current + period + d_e occurences.append(e) current = e return occurences def _generate_candidates(S_a: pd.Index, n_event_tot: int, max_length: int = 100): if len(S_a) < 3: return list() S_a = S_a.sort_values() dS = S_a[-1] - S_a[0] cycles, covered = compute_cycles_dyn(S_a, n_event_tot, max_length) covered = Bitmap(covered) if len(S_a) - len(covered) > 3: # add triples if necessary _all = Bitmap(range(len(S_a))) _S_a = S_a[_all - covered] triples = extract_triples(_S_a, dS) merged = merge_triples(triples) cycles.extend(merged) return list(sorted(cycles, key=lambda _: _.shape[1], reverse=True)) def evaluate(S, cands): """ Evaluate candidates `cands`, given S Unlike the original implementation by Galbrun & Al., if an occurence is present in more than one candidate cycle, we keep the cycle with the greatest length. Parameters ---------- S: pd.Index Series of occurences for a specific event cands: list[np.ndarray] A list of candidate batches. Each batch contains candidates occurences of the same length, hence stored in a common `numpy.ndarray`. Batches are sorted by decreasing order of width, so that we consider larger candidates first. """ res = list() # list of pandas DataFrame covered = list() for cand_batch in cands: seen_occs = np.isin(cand_batch, covered).any(axis=1) cand_batch = cand_batch[~seen_occs] # larger candidates already seen length = cand_batch.shape[1] E = np.diff(cand_batch, axis=1) period = np.floor(np.median(E, axis=1)).astype("int64") dE = (E.T - period).T df = pd.DataFrame( dict(start=cand_batch[:, 0], length=length, period=period, dE=dE.tolist()) ) res.append(df) covered.extend(np.unique(cand_batch)) res = pd.concat(res, ignore_index=True) residual_pos = Bitmap(range(len(S))) - Bitmap(np.searchsorted(S, sorted(covered))) return res, S[residual_pos] class PeriodicCycleMiner(BaseMiner, MDLOptimizer, DiscovererMixin): """ Mining periodic cycles with a MDL Criterion PeriodicCycleMiner is an approach to mine periodic cycles from event logs while relying on a Minimum Description Length (MDL) criterion to evaluate candidate cycles. The goal here is to extract a set of cycles that characterizes the periodic structure present in the data A cycle is defined a 5-tuple of of the form .. math:: \\alpha, r, p, \\tau, E Where - :math:`\\alpha` is the `repeating event` - :math:`r` is the number of repetitions of the event, called the `cycle length` - :math:`p` is the inter-occurence distance, called the `cycle period` - :math:`\\tau` is the index of the first occurence, called the `cycle starting point` - :math:`E` is a list of :math:`r - 1` signed integer offsets, i.e `cycle shift corrections` Parameters ---------- max_length: int, default=100 maximum length for a candidate cycle, when running the dynamic programming heuristic n_jobs : int, default=1 The number of jobs to use for the computation. Each single event is attributed a job to discover potential cycles. Threads are preffered over processes. Examples -------- >>> from skmine.periodic import PeriodicCycleMiner >>> S = pd.Series("ring_a_bell", [10, 20, 32, 40, 60, 79, 100, 240]) >>> pcm = PeriodicCycleMiner().fit(S) >>> pcm.discover() start length period ring_a_bell 0 40 4 20 1 10 3 11 References ---------- .. [1] Galbrun, E & Cellier, P & Tatti, N & Termier, A & Crémilleux, B "Mining Periodic Pattern with a MDL Criterion" """ def __init__(self, *, max_length=100, n_jobs=1): self.cycles_ = pd.DataFrame() self.residuals_ = dict() self.is_datetime_ = None self.n_zeros_ = 0 self.is_fitted = ( lambda: self.is_datetime_ is not None ) # TODO : this make pickle broken self.n_jobs = n_jobs self.max_length = max_length def fit(self, S): """fit PeriodicCycleMiner on data logs This generate new candidate cycles and evaluate them. Residual occurences are stored as an internal attribute, for later reconstruction (MDL is lossless) Parameters ------- S: pd.Series logs, represented as a pandas Series This pandas Series must have an index of type in (pd.DatetimeIndex, pd.RangeIndex, pd.Int64Index) """ if not isinstance(S, pd.Series): raise TypeError("S must be a pandas Series") if not isinstance(S.index, INDEX_TYPES): raise TypeError(f"S must have an index with a type amongst {INDEX_TYPES}") self.is_datetime_ = isinstance(S.index, pd.DatetimeIndex) if S.index.duplicated().any(): warnings.warn("found duplicates in S, removing them") S = S.groupby(S.index).first() S = S.copy() S.index, self.n_zeros_ = _remove_zeros(S.index.astype("int64")) candidates = self.generate_candidates(S) gr = S.groupby(S.values).groups cycles, residuals = zip( *(evaluate(gr[event], cands) for event, cands in candidates.items()) ) c = dict(zip(candidates.keys(), cycles)) cycles = pd.concat(c.values(), keys=c.keys()) residuals = dict(zip(candidates.keys(), residuals)) residuals = {**gr, **residuals} # fill groups with no cands with all occurences self.cycles_, self.residuals_ = cycles, residuals return self evaluate = evaluate def generate_candidates(self, S): """ Parameters ---------- S: pd.Index or numpy.ndarray Series of occurences for a specific event Returns ------- dict[object, list[np.ndarray]] A dict, where each key is an event and each value a list of batch of candidates. Batches are sorted in inverse order of width, so that we consider larger candidate cycles first. """ n_event_tot = S.shape[0] alpha_groups = S.groupby(S.values) candidates = dict() for event, S_a in alpha_groups: cands = _generate_candidates(S_a.index, n_event_tot, self.max_length) if cands: candidates[event] = cands return candidates def discover(self): """Return cycles as a pandas DataFrame, with 3 columns, with a 2-level multi-index: the first level mapping events, and the second level being positional Returns ------- pd.DataFrame DataFrame with the following columns ========== ================================= start when the cycle starts length number of occurences in the event period inter-occurence delay ========== ================================= Example ------- >>> from skmine.periodic import PeriodicCycleMiner >>> S = pd.Series("ring", [10, 20, 32, 40, 60, 79, 100, 240]) >>> pcm = PeriodicCycleMiner().fit(S) >>> pcm.discover() start length period ring 0 40 4 20 1 10 3 11 """ if not self.is_fitted(): raise Exception(f"{type(self)} instance if not fitted") cycles = self.cycles_[["start", "length", "period"]].copy() cycles.loc[:, ["start", "period"]] = cycles[["start", "period"]] * ( 10 ** self.n_zeros_ ) if self.is_datetime_: cycles.loc[:, "start"] = cycles.start.astype("datetime64[ns]") cycles.loc[:, "period"] = cycles.period.astype("timedelta64[ns]") return cycles def reconstruct(self): """Reconstruct the original occurences from the current cycles. Residuals will also be included, as the compression scheme is lossless Denoting as :math:`\sigma(E)` the sum of the shift corrections for a cycle :math:`C`, we have .. math:: \Delta(C)=(r-1) p+\sigma(E) Returns ------- pd.Series The reconstructed dataset Notes ----- The index of the resulting pd.Series will not be sorted """ cycles = self.cycles_[["start", "period", "dE"]] result = list() cycles_groups = cycles.groupby(level=0) for alpha, df in cycles_groups: l = list() for start, period, dE in df.values: occurences = _reconstruct(start, period, dE) l.extend(occurences) residuals = pd.Series(alpha, index=self.residuals_.get(alpha, list())) S = pd.concat([residuals, pd.Series(alpha, index=l)]) # S.index = S.index.sort_values() result.append(S) for event in ( self.residuals_.keys() - cycles_groups.groups.keys() ): # add unfrequent events result.append(
pd.Series(event, index=self.residuals_[event])
pandas.Series
#!/usr/bin/env python3 # Primary Developer: <NAME> # Additional Developers: Dr. <NAME>, Dr. <NAME>, <NAME>, <NAME> import argparse import pandas as pd import os import sys import scipy from gtfparse import read_gtf from subprocess import call from scipy import stats # shell=True is so you can handle redirects call("echo 'Running'", shell=True) # Argument parser to facilitate calling from the command line parser = argparse.ArgumentParser(description='Check purity of multiple myeloma tumor samples.') # Add input argument for BAM file from patient/sample. This is required for the program. parser.add_argument('-i', '--input_bam', required=True, help='BAM file for tumor sample') # Add input argument for GTF file containing regions to isolate. parser.add_argument('-g', '--input_gtf', help='GTF to be used in processing') parser.add_argument('-t', '--threads', default=1, type=int, help='Number of threads to use. User must make threads available') # Add input argument for GTF file containing regions to isolate. parser.add_argument('-f', '--reference_fasta', default=None, help='Reference genome fasta to be used in processing') # Add input argument for output path. If no argument or only a -o is provided, program defaults # to current working directory. parser.add_argument('-o', '--output_path', nargs='?', const=str(os.getcwd()), default=str(os.getcwd()), help='Output path to write files. Defaults to current working directory') # Add input argument for option to build files. If not provided, program defaults to the user specified GTF, or # to the default GTF if no -g input is provided. Stored as true for use in decision tree later on. parser.add_argument('-b', '--build_files', action='store_true', help='Include -b if you would like to build files, otherwise typing -b is unnecessary') # Add input argument for option to keep temporary files. Stored as true for use in decision tree later on. parser.add_argument('-k', '--keep_temp', action='store_true', help='Include -k if you would like to keep the temporary files. Ignore to remove temporary files ' 'once the program is finished') # Add input argument for sample name. If none is provided, the name of the BAM file will be used. parser.add_argument('-n', '--sample_name', help='Desired name for the sample and associated files. Defaults to the same of the BAM file') # Add input argument for resource directory, the directory to pull files used to build the GTF and interpret the # featureCounts output. Also defaults to current working directory if not specified. parser.add_argument('-d', '--resource_directory', nargs='?', const=str(os.getcwd()), default=str(os.getcwd()), help='Include -d /path/to/resource/files to specify a directory to pull resource files from.' 'Defaults to current directory.') parser.add_argument('-build_only', '--build_only', action='store_true', help='Invoke -build_only to stop the program after the new GTF is built.') # Generate accessible arguments by calling parse_args args = parser.parse_args() # Rename each input to something shorter and more intuitive for later use in the code. out_path = args.output_path in_gtf = args.input_gtf input_aln = args.input_bam build = args.build_files threads = args.threads keep_temp = args.keep_temp samplename = args.sample_name resource_directory = args.resource_directory ref_fasta = args.reference_fasta build_only = args.build_only # This statement sets the sample name to the name of the BAM if no name is provided, using os.basename to extract the # file name from the input path and os.splitext to split the name into ('filename', 'extension'), # e.g. ('example', '.txt). The [0] accesses the first string in that output (the file name w/o extension). if samplename is None: samplename = os.path.splitext(os.path.basename(input_aln))[0] # ----------------------------------------- # # DEFAULTS # ----------------------------------------- # # This section reads in several user-definable defaults for the program. They are the name of the default GTF, # chromosomes to search, IG components to consider, and path to featureCounts respectively. They can be changed by # editing the USER_DEFAULTS.txt file in the resource directory. DEFAULT_FILE = open(r'%s/USER_DEFAULTS.txt' % resource_directory, 'r') default_parameters = DEFAULT_FILE.read().splitlines() default_gtf = default_parameters[2] default_chromosome_list = default_parameters[4].split() default_component_list = default_parameters[6].split() featurecounts_path = default_parameters[8] # ------------------------------------------------------------------------------------------------------------------- # # FUNCTIONS THAT SUPPORT CODE AT BOTTOM # ------------------------------------------------------------------------------------------------------------------- # def read_aln_file(filename, threads, out_path, reference_genome_fasta=None): """ read the alignment file whether it is a SAM, BAM or CRAM file and returns the bam file handle :return: aln read file handle (bamh or alnh) """ extension = os.path.splitext(filename)[1] basepath = os.path.splitext(filename)[0] basename = os.path.splitext(os.path.basename(filename))[0] try: if extension == ".cram": if reference_genome_fasta is None: raise FileNotFoundError( "ERROR: reading CRAM file requires a Reference Genome Fasta File To be Provided with its FAI index.") print('Conversion to BAM required: running samtools') call("samtools view --threads %s -bh %s -o %s/%s.bam -T %s" % (threads, filename, out_path, basename, reference_genome_fasta), shell=True) print('Indexing new BAM file') call("samtools index -@ %s -b %s/%s.bam" % (threads, out_path, basename), shell=True) print('Conversion successful') return '%s/%s.bam' % (out_path, basename) elif extension == ".bam": return filename elif extension == ".sam": return filename else: print('ERROR: HALTING PROGRAM AND RETURNING VARIABLES FOR DEBUGGING') print('FILENAME:' + filename) print('REFERENCE FASTA:' + reference_genome_fasta) print('THREADS:' + threads) print('EXTENSION:' + extension) print('BASE PATH:' + basepath) print('BASE NAME:' + basename) sys.exit("EXPECTED EXTENSION for ALIGNMENT FILE NOT FOUND; must be either .cram, .bam or .sam") except FileNotFoundError as fnf: sys.exit(fnf) except Exception as e: sys.exit(e) def isolate_ig(dataframe, contaminant_list, loci, chromosome_list=default_chromosome_list, component_list=default_component_list): """ This function takes an input dataframe (typically one generated by using the read_gtf function on a GTF of a reference organism's genome) and isolates all genes known to encode for IGs and contaminants based on the the desired immunoglobulin components and chromosomes specified by the user. It excludes pseudogenes and only includes exons. :param dataframe: An input dataframe of an organism's genome. :param chromosome_list: An input list of chromosomes on which immunoglobulin loci are expected to be found. Typically 2, 14, and 22 in humans, but may vary between organisms. List can be expanded or condensed at the discretion of the user. :param contaminant_list: An input list of known contaminant genes to be incorporated into the output dataframe. :param loci: An input dataframe of the overarching immunoglobulin loci on chromosomes 2, 14, and 22 :param component_list: An input list of immunoglobulin components to search for (e.g. variable, constant, joining). The values in the list must match at least part of the string encoded under the "gene_biotype" column in the dataframe. For example, in the UCSC human genome GTF, IG Constant regions are listed as "IG_C_gene." If the user wanted to isolate constant regions only, it would be sufficient to pass the input as follows: component_list = ['IG_C']. Usage example: Suppose we want to isolate the variable and constant and joining IG regions from chromosomes 2, 14, and 22 in the human genome. If our full genome dataframe is named "whole_genome", then we should call the function as follows: # Set up inputs desired_regions = ['IG_C', 'IG_V', 'IG_J'] chromosomes = ['2', '14', '22'] contaminant_list = ['GeneA', 'GeneB', etc] (this is provided in resource files) loci = read_gtf('IG_Loci.gtf') (this is provided in resource files) # Call function isolate_ig(whole_genome, contaminant_list, loci, chromosomes, desired_regions) Defaults: If no component list or chromosome list is provided, the function defaults to chromosomes 2, 14, and 22, and searches for IG_C and IG_V regions. Other inputs must be provided. :return: ig_dataframe: A smaller dataframe containing only desired IG regions and contaminants. """ # Convert dataframe to string format for ease of processing dataframe = dataframe.applymap(str) # Create a copy of the dataframe to search against the contaminant list. contaminant_dataframe = dataframe.applymap(str) # Isolate rows where the "gene_biotype" column starts with "IG_" and "feature" starts with "exon" dataframe = dataframe[dataframe['gene_biotype'].str.match('IG_') & dataframe['feature'].str.match('exon')] # Isolate all rows where "gene_biotype" DOES NOT contain "pseudogene" dataframe = dataframe[~dataframe.gene_biotype.str.contains("pseudogene")] # Isolate all rows where the gene biotype matches the desired regions (IG_C, IG_V, etc) dataframe = dataframe.loc[dataframe['gene_biotype'].str.contains('|'.join(component_list))] # Isolate all rows where the chromosome position is 2, 14, or 22 ig_dataframe = dataframe.loc[dataframe['seqname'].str.contains('|'.join(chromosome_list))] # Isolate all rows of the dataframe where column 'gene_name' contains an element of contaminant_list # (a list of the gene names of known contaminants) contaminant_dataframe = contaminant_dataframe[contaminant_dataframe['gene_name'].isin(contaminant_list)] # Append the contaminant and loci dataframes to the IG dataframe to create one dataframe ig_dataframe = ig_dataframe.append(contaminant_dataframe).reset_index(drop=True) ig_dataframe = ig_dataframe.append(loci).reset_index(drop=True) # Most GTFs contain paralogs of certain IGs, designated with a 'D', for example, IGK1-23 is a paralog of IGK-23D. # These genes are similar enough that for our purposes they should be considered the same gene. This code isolates # all instances of D-designated paralogs, replaces their name with the non-D equivalent, and drops duplicates. # Isolate all D-designated paralogs into ig_dataframe2 ig_dataframe2 = ig_dataframe[ ig_dataframe['gene_name'].str.match('IGK') & ig_dataframe['gene_name'].str.contains('D') | ig_dataframe[ 'gene_name'].str.match('IGHV') & ig_dataframe['gene_name'].str.contains('D')] # Remove D from the gene names of paralogs. NOTE: This does remove all instances of 'D' in the gene name, but # it was confirmed that no instances of D besides paralog designators exist in IG gene names in the human GRCh38 GTF ig_dataframe2['gene_name'] = ig_dataframe2['gene_name'].str.replace('D', '') # Drop copies from existing dataframe and append ig_dataframe2 ig_dataframe = ig_dataframe.drop( ig_dataframe[(ig_dataframe.gene_name.str.contains('D')) & (ig_dataframe.gene_name.str.match('IGK'))].index) ig_dataframe = ig_dataframe.drop( ig_dataframe[(ig_dataframe.gene_name.str.contains('D')) & (ig_dataframe.gene_name.str.match('IGHV'))].index) ig_dataframe = ig_dataframe.append(ig_dataframe2).reset_index(drop=True) return ig_dataframe def interpret_featurecounts(filepath, resource_directory, samplename): """ This function takes the output from featureCounts's operation on the input BAM and GTF files and creates several files, title.txt, Graph_IgH and Graph_IgL, which R uses to plot, as well as samplenamepurityCheckerresults.txt, a file containing the data for each sample in an easily-accessible text format. Unlike isolate_ig, this function has little utility on its own, so no usage example is provided. It is recommended that the user follow the format used later in the script, and not attempt to excise this function for separate use. It is unlikely to work independently without extensive re-writes. :param filepath: The directory in which the files built here will be deposited :param resource_directory: The directory from which the files used here will be sourced. :param samplename: The name of the sample. :return: No return, but several files will be written by the function. """ # Create dataframe called "reads" by importing the output from featurecounts. First row is skipped in the import # since it is just a header, second row is used to generate column labels. Tab-separated and new-line-terminated # are specified to ensure a proper read (the output dataframe will be one column or row if not specified) # filepath is used here instead of resource directory because featurecounts will write its output to the # directory specified by filepath reads = pd.read_csv(r'%s/%s.txt' % (filepath, samplename), sep='\t', lineterminator='\n', skiprows=(0), header=(1)) # Rename the column containing the counts to "Count". For whatever reason it comes labeled with the input file path. reads.rename(columns={reads.columns[6]: "Count"}, inplace=True) # Read in featurecounts's summary file summary = pd.read_csv(r'%s/%s.txt.summary' % (filepath, samplename), sep='\t', lineterminator='\n', skiprows=(0), header=(0)) # Rename the Count column, since it is given a long and unweildy name by default. summary.rename(columns={summary.columns[1]: "Count"}, inplace=True) # Create a new dataframe, "Condensed", containing data for Assigned reads and ignoring Unassigned reads EXCEPT # those unassigned because they did not map to anything included in the GTF. These represent Ig genes and Non-Ig # genes respectively, while the excluded data represents reads that map to more than one location, reads of too # poor quality to map, and other "noisy" data that should be excluded. condensed = summary[ summary['Status'].str.contains('Assigned') | summary['Status'].str.contains('Unassigned_NoFeatures')] # Sum the "count" column of the condensed dataframe to generate the total number of verified reads (needed # to calculate RPKM). Featurecount_Total = condensed['Count'].sum() # Read in all text files containing the names of genes in specific loci (or known to be contaminants) as lists. Contaminant_List = open(r'%s/Non_Bcell_Contamination_GeneList_e98.txt' % resource_directory, 'r').read().split('\n') IGH_Variable_List = open(r'%s/IgH_Variable_Genes.txt' % resource_directory, 'r').read().split('\n') IGH_Constant_List = open(r'%s/IgH_Constant_Genes.txt' % resource_directory, 'r').read().split('\n') IGK_Variable_List = open(r'%s/IgK_Variable_Genes.txt' % resource_directory, 'r').read().split('\n') IGK_Constant_List = open(r'%s/IgK_Constant_Genes.txt' % resource_directory, 'r').read().split('\n') IGL_Variable_List = open(r'%s/IgL_Variable_Genes.txt' % resource_directory, 'r').read().split('\n') IGL_Constant_List = open(r'%s/IgL_Constant_Genes.txt' % resource_directory, 'r').read().split('\n') # Equivalent to featurecounts_counts post-processing # Drop the chromosome, start, end, and strand columns of the "reads" dataframe. Generate two new columns, # "Reads per base pair" (gene reads divided by gene length), and "RPKM" (reads per kilobase million), a measurement # equivalent to [(1,000,000)*(Number of Reads for a Gene)]/[(Gene Length in kb)*(Total Reads for the Sample)]. # A multiplicative factor of one billion is used here instead of one million because featurecounts returns gene # length in base pairs, not kilobase pairs, and therefore the extra factor of one thousand is necessary. reads = pd.concat([reads['Geneid'], reads['Count'], reads['Length'], reads['Count'] / reads['Length'], 1000000000 * reads['Count'] / reads['Length'] / Featurecount_Total], axis=1) # Rename the new columns to "reads per bp" and "RPKM". When they are generated, # pandas labels them with numbers automatically. reads.rename(columns={reads.columns[3]: 'Reads per bp', reads.columns[4]: 'RPKM'}, inplace=True) # Calculate the geometric mean of the RPKM column for all identified genes known to be contaminants. # Geometric mean is equivalent to the **product** of n elements divided by n, as opposed to the more common # arithmetic mean, the **sum** of n elements divided by n. # Take the featurecounts output and isolate a dataframe containing only genes known to be # in the list of contaminants. geomeandf = reads[reads['Geneid'].isin(Contaminant_List)] # Add one to each element of the RPKM column. This is to avoid a multiply-by-zero situation when calculating # the geomean. At any instance of 0, the mean is instead multiplied by one, yielding the same result. # We assume adding 1 universally scales the geometric mean equivalently for all measurements. geomeandf['RPKM'] = geomeandf['RPKM'] + 1 # Call scipy's gmean function on the RPKM column of the geomean dataframe to get the geometric mean. # It is rounded to two decimal places here for readability, but the user should feel free to choose any number. geomean = scipy.stats.gmean(geomeandf.loc[:, 'RPKM'], axis=0).round(2) # Equivalent to IGH_Variable_Counts, etc. in bash script # Create dataframes of genes specific to each locus by returning the subset of the complete dataframe where the gene # name (in column Geneid) is in one of the lists imported above. # The reset_index method is used again here since a column is added later, and if the indices are not consistent # between the two, the column will not be properly appended to the dataframe. IGHVdf = reads[reads['Geneid'].isin(IGH_Variable_List)].reset_index() IGHCdf = reads[reads['Geneid'].isin(IGH_Constant_List)].reset_index() IGKVdf = reads[reads['Geneid'].isin(IGK_Variable_List)].reset_index() IGKCdf = reads[reads['Geneid'].isin(IGK_Constant_List)].reset_index() IGLVdf = reads[reads['Geneid'].isin(IGL_Variable_List)].reset_index() IGLCdf = reads[reads['Geneid'].isin(IGL_Constant_List)].reset_index() Contaminantdf = reads[reads['Geneid'].isin(Contaminant_List)].reset_index() # Calculate the number of reads for each subset of genes by summing the # "Count" column of their respective dataframes. Total_IGHC_Reads = IGHCdf['Count'].sum() Total_IGHV_Reads = IGHVdf['Count'].sum() Total_IGKC_Reads = IGKCdf['Count'].sum() Total_IGKV_Reads = IGKVdf['Count'].sum() Total_IGLC_Reads = IGLCdf['Count'].sum() Total_IGLV_Reads = IGLVdf['Count'].sum() # Calculate the number of reads for the entire Heavy, Lambda, and Kappa loci. Since this information is included in # a single cell, and need not be generated by summing the counts of a subset of the data, the .str.contains and .at # methods are used, in place of the .isin and .sum methods used above. The reset_index method is necessary because # while there is only one row of data for each of these loci, its index may be arbitrary, and will be kept by pandas # by default, confusing the .at method. Forcing the index to 0 with the reset ensures that .at[0,'Count'] will work. Total_IGH = reads[reads['Geneid'].str.contains('HEAVY_Locus')].reset_index().at[0, 'Count'] Total_IGK = reads[reads['Geneid'].str.contains('KAPPA_Locus')].reset_index().at[0, 'Count'] Total_IGL = reads[reads['Geneid'].str.contains('LAMBDA_Locus')].reset_index().at[0, 'Count'] # Generate several metrics used in later calculations using simple arithmetic on variables already produced. Total_IG = Total_IGH + Total_IGK + Total_IGL Percent_IG = Total_IG / Featurecount_Total Total_Light_Chain = Total_IGK + Total_IGL Total_Light_Variable = Total_IGKV_Reads + Total_IGLV_Reads Total_Light_Constant = Total_IGKC_Reads + Total_IGLC_Reads Percent_Kappa = Total_IGK / Total_Light_Chain Percent_Lambda = Total_IGL / Total_Light_Chain # About here, we officially transition to building the files that the R script wants # This function takes an IG subtype dataframe and returns a corresponding dataframe containing additional # information, such as frequency, which is used in R processing and retained as part of sample data def generate_calc_table(dataframe, group_total, label): labelseries = pd.Series([label] * len(dataframe.index)) dataframe_Calc = pd.concat([dataframe['Geneid'], dataframe['Count'], dataframe['Count'] / group_total, dataframe['Count'] / Featurecount_Total, labelseries, dataframe['Length']], axis=1) dataframe_Calc.columns = ['Geneid', 'Count', 'List_Percent', 'Total_Percent', 'Subtype', 'Length'] return dataframe_Calc # Call the above function on each dataframe to generate their corresponding Calc tables. IGHV_Calc = generate_calc_table(IGHVdf, Total_IGHV_Reads, 'IGHV') IGHC_Calc = generate_calc_table(IGHCdf, Total_IGHC_Reads, 'IGHC') IGKV_Calc = generate_calc_table(IGKVdf, Total_Light_Variable, 'IGKV') IGKC_Calc = generate_calc_table(IGKCdf, Total_Light_Constant, 'IGLC') IGLV_Calc = generate_calc_table(IGLVdf, Total_Light_Variable, 'IGLV') IGLC_Calc = generate_calc_table(IGLCdf, Total_Light_Constant, 'IGLC') # Concatenate above tables into two larger tables, the Heavy Chain table (IgH), and Light Chain Table (IgL) # Ignore previous index and rename columns (three are labeled 'Count' at this point due to their origin as # columns computed from the initial 'Count' column in generate_calc_table) Graph_IgL = pd.concat([IGKC_Calc, IGKV_Calc, IGLC_Calc, IGLV_Calc]).reset_index().drop(columns='index') Graph_IgL.columns = ['CommonName', 'Count', 'Percentage', 'TotalFrequency', 'Locus', 'ElementSize'] Graph_IgH = pd.concat([IGHC_Calc, IGHV_Calc]).reset_index().drop(columns='index') Graph_IgH.columns = ['CommonName', 'Count', 'Percentage', 'TotalFrequency', 'Locus', 'ElementSize'] # Write these tables to a tab-delimited text file. R will use these files to plot Graph_IgH.to_csv(r'%s/%sGraph_IgH.txt' % (filepath, samplename), sep='\t', float_format='%.12f', index=False) Graph_IgL.to_csv(r'%s/%sGraph_IgL.txt' % (filepath, samplename), sep='\t', float_format='%.12f', index=False) # This function returns a list of primary information from the input dataframe, e.g. when given IGHC_Calc, etc. # it will extract the two most-read genes, their frequencies, and the difference between their frequencies. def get_Primary(dataframe): Primary = dataframe.sort_values(by='Count', ascending=False).reset_index().at[0, 'Geneid'] PrimaryFreq = dataframe.sort_values(by='Count', ascending=False).reset_index().at[0, 'List_Percent'] Secondary = dataframe.sort_values(by='Count', ascending=False).reset_index().at[1, 'Geneid'] SecondaryFreq = dataframe.sort_values(by='Count', ascending=False).reset_index().at[1, 'List_Percent'] Delta = PrimaryFreq - SecondaryFreq return
pd.Series([Primary, PrimaryFreq, Secondary, SecondaryFreq, Delta])
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @version: 1.4.0 @file: GSP_main.py @time: 2021/1/26 10:50 @functions: graph signal processing main script @update: support Yeo-ICN definition @update: support ICN-level brain activity and connecitivty strength saving """ import numpy as np import glob import os import time import matplotlib.pyplot as plt from pygsp import graphs, filters, plotting from GSP_utilities import surrogate_BOLD_create, save_variable, load_variable import pandas as pd from dppd import dppd dp, X = dppd() # 1. path locations and parameters start = time.time() deriv_path = '/home/amax/data/cye/MScohort_BIDS_clean/derivatives' connectome_path = os.path.join(deriv_path, 'mrtrix') xcpengine_path = os.path.join(deriv_path, 'xcpengine') network_assign_path = 'CAB-NP_v1.1_Labels-ReorderedbyNetworks_Yeo.csv' num_BOLD_timepoints = 180 num_rand = 100 # number of surrogates functional_type = 'BOLD' tract_type = 'meanlength' # one of the following: invlength, invnodevol, level-participant_connectome, meanlength ICN_type = 'Yeo' # one of the following: 'Yeo', 'Cole' normalize_type = 'both' # 'W': normalize W; 'L': normalize Laplacian (Preti method); 'both': normalize both W and Laplacian # 2. read network assignment for hcpmmp network_assign_csv = pd.read_csv(network_assign_path) network_assign_csv = dp(network_assign_csv).mutate(NETWORK=X.Yeo_NETWORK).pd network_assign_csv = dp(network_assign_csv).mutate(NETWORKKEY=X.Yeo_NETWORKKEY).pd num_network_df = dp(network_assign_csv).summarise((X.NETWORKKEY, np.max, 'hp_max')).pd num_network = num_network_df.iloc[0,0] network_rowindex_ls = [] for network_i in range(1,num_network+1): df_network = dp(network_assign_csv).filter_by(X.NETWORKKEY == network_i).pd network_rowindex_ls.append(df_network.index.values) network_unique_df = dp(network_assign_csv).distinct('NETWORKKEY').pd network_unique_df = network_unique_df.sort_values(by='NETWORKKEY',ascending = True) network_unique_df = dp(network_unique_df).filter_by(-X.NETWORK.isin(['Undefine'])).pd # remove undefined ICN network_unique_df = network_unique_df.reset_index() # 3. define group of interests cohort1 = 'ms' cohort2 = 'nc' cohort3 = 'nmo' cohort4 = 'cis' cohort1_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort1 + '*')) cohort2_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort2 + '*')) cohort3_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort3 + '*')) cohort4_connectome_ls = glob.glob(os.path.join(connectome_path, 'sub-' + cohort4 + '*')) cohort_connectome_ls = cohort1_connectome_ls + cohort2_connectome_ls + cohort3_connectome_ls + cohort4_connectome_ls cohort_connectome_ls.sort() cohort1_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort1 + '*')) cohort2_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort2 + '*')) cohort3_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort3 + '*')) cohort4_fmri_ls = glob.glob(os.path.join(xcpengine_path, 'sub-' + cohort4 + '*')) cohort_fmri_ls = cohort1_fmri_ls + cohort2_fmri_ls + cohort3_fmri_ls + cohort4_fmri_ls cohort_name_ls = [os.path.basename(item) for item in cohort_connectome_ls] remove_name_ls = ['sub-nc011','sub-nc039', 'sub-nmo002', 'sub-nmo019', 'sub-cis002','sub-cis015', 'sub-ms015'] # problematic cases cohort_name_ls = list(set(cohort_name_ls) - set(remove_name_ls)) # remove problematic cases for i in remove_name_ls: # remove problematic cases cohort_connectome_ls = [x for x in cohort_connectome_ls if i not in x] cohort_fmri_ls = [x for x in cohort_fmri_ls if i not in x] cohort_name_ls.sort() cohort_connectome_ls.sort() cohort_fmri_ls.sort() if len(cohort_connectome_ls) != len(cohort_fmri_ls): print('Number of connectome and xcpengine results not matched') # 4. create a dataframe to store individual filepath path_dict = {'subname':cohort_name_ls, 'mrtrix_path': cohort_connectome_ls, 'xcp_path':cohort_fmri_ls} path_df = pd.DataFrame(path_dict, columns=['subname','mrtrix_path','xcp_path']) path_df = dp(path_df).mutate(connectome_path=X.mrtrix_path + '/connectome/' + X.subname +'_parc-hcpmmp1_' + tract_type + '.csv').pd path_df = dp(path_df).mutate(BOLD_series_path=X.xcp_path + '/fcon/hcpmmp/hcpmmp.1D').pd path_df = dp(path_df).mutate(fmri_map_path=X.xcp_path + '/roiquant/hcpmmp/' + X.subname +'_hcpmmp_mean.csv').pd print('finished step 4') # 5. load individual connectome as ndarray num_parcels = len(network_assign_csv) num_sub = len(path_df) path_df_nc = dp(path_df).filter_by(X.subname.str.contains('nc')).pd num_nc = len(path_df_nc) nc_idx = path_df_nc.index connectome_array = np.zeros(shape=(num_parcels, num_parcels, num_sub)) for sub_idx in range(len(path_df)): indiviudal_connectome = np.genfromtxt(path_df.loc[sub_idx, 'connectome_path'], delimiter=',') connectome_array[:,:,sub_idx] = indiviudal_connectome # 6. load individual BOLD series and fill missing part according to /fcon/hcpmmp/missing.txt BOLD_series_3D = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) for sub_idx in range(len(path_df)): BOLD_series = np.genfromtxt(path_df.loc[sub_idx, 'BOLD_series_path']) BOLD_series = BOLD_series.T missing_path = os.path.join(path_df.loc[sub_idx, 'xcp_path'], 'fcon', 'hcpmmp', 'hcpmmp_missing.txt') if os.path.exists(missing_path): missing_parcel_id = np.genfromtxt(missing_path, dtype=int) if missing_parcel_id.size == 1: # only one parcel missing if BOLD_series[missing_parcel_id-1,:].sum() != 0: print("missing parcel not match for subject {}".format(sub_idx)) network_key = network_assign_csv.loc[missing_parcel_id-1,'NETWORKKEY'] network_parcel_idx = network_rowindex_ls[network_key-1] BOLD_series[missing_parcel_id-1,:] = np.mean(BOLD_series[network_parcel_idx,:]) else: # multiple parcels missing for missing_idx in missing_parcel_id: network_key = network_assign_csv.loc[missing_idx-1,'NETWORKKEY'] network_parcel_idx = network_rowindex_ls[network_key-1] BOLD_series[missing_idx-1,:] = np.mean(BOLD_series[network_parcel_idx,:]) BOLD_series_3D[:,:,sub_idx] = BOLD_series print('finished loading individual BOLD series and filling missing part') # 7. load fmri parametric map and fill missing part according to /fcon/hcpmmp/missing.txt fmri_paramap = np.zeros(shape=(num_parcels, num_sub)) paramap_str = 'mean_alffZ' for sub_idx in range(len(path_df)): fmri_map = pd.read_csv(path_df.loc[sub_idx, 'fmri_map_path'],index_col=0) fmri_map = fmri_map.loc[:,paramap_str] missing_path = os.path.join(path_df.loc[sub_idx, 'xcp_path'], 'fcon', 'hcpmmp', 'hcpmmp_missing.txt') if os.path.exists(missing_path): missing_parcel_id = np.genfromtxt(missing_path, dtype=int) if missing_parcel_id.size == 1: # only one parcel missing if not np.isnan(fmri_map[missing_parcel_id]): print("missing parcel not match for subject {}".format(sub_idx)) network_key = network_assign_csv.loc[missing_parcel_id-1,'NETWORKKEY'] network_parcel_idx = network_rowindex_ls[network_key-1] fmri_map[int(missing_parcel_id)] = np.mean(fmri_map[network_parcel_idx]) fmri_map = fmri_map.to_numpy() else: # multiple parcels missing network_key = network_assign_csv.loc[missing_parcel_id-1,'NETWORKKEY'] network_rowindex_ls = np.array(network_rowindex_ls, dtype=object) network_parcel_idx = network_rowindex_ls[network_key-1] for parcel_i in range(missing_parcel_id.size): fmri_map[int(missing_parcel_id[parcel_i])] = np.mean(fmri_map[network_parcel_idx[parcel_i]]) fmri_map = fmri_map.to_numpy() fmri_paramap[:,sub_idx] = fmri_map print('finished loading fmri parametric map and fill missing part') # 8. load connectome and functional signal and do GSP if functional_type == 'BOLD': # func_sig is BOLD_series_3D func_sig = BOLD_series_3D s_head_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) s_rand_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub, num_rand)) else: raise ValueError('undefined functional signal') G_U_cohort = np.zeros(shape=(num_parcels, num_parcels, num_sub)) for sub_idx in range(len(path_df)): W = np.genfromtxt(path_df.loc[sub_idx, 'connectome_path'], delimiter=',') # Symmetric Normalization of adjacency matrix D = np.diag(np.sum(W,1)) #degree D_power = np.power(D, (-1/2)) D_power[np.isinf(D_power)] = 0 Wsymm = D_power @ W @ D_power #The eigenvector matrix G.U is used to define the Graph Fourier Transform of the graph signal S if normalize_type == 'W': G = graphs.Graph(Wsymm) G.compute_fourier_basis() G_U_cohort[:,:,sub_idx] = G.U U = G.U elif normalize_type == 'L': G = graphs.Graph(W, lap_type = 'normalized') G.compute_fourier_basis() G_U_cohort[:,:,sub_idx] = G.U U = G.U elif normalize_type == 'both': Wsymm = np.triu(Wsymm) + np.triu(Wsymm).T - np.diag(np.triu(Wsymm).diagonal()) # force symmetric G = graphs.Graph(Wsymm, lap_type = 'normalized') G.compute_fourier_basis() G_U_cohort[:,:,sub_idx] = G.U U = G.U # L = np.eye(len(Wsymm)) - Wsymm # lamda, U = np.linalg.eig(L) # U = U[:, np.argsort(lamda)] if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_head = U.T @ func_sig[:,:,sub_idx] s_head_cohort[:,:,sub_idx] = s_head # calcualte surrogate for individual s_rand_cohort[:,:,sub_idx,:] = surrogate_BOLD_create(U, func_sig[:,:,sub_idx], num_rand) print('finished Graph Fourier Transform') # save_variable(G_U_cohort, 'G_U_cohort.pkl') # save_variable(s_head_cohort, 's_head_cohort.pkl') # save_variable(s_rand_cohort, 's_rand_cohort.pkl') # G_U_cohort = load_variable('G_U_cohort.pkl') # s_head_cohort = load_variable('s_head_cohort.pkl') # s_rand_cohort = load_variable('s_rand_cohort.pkl') # 8.5(optional). plot Sihag2020 plot # take nc001 as example nc001_idx = path_df.subname[path_df.subname == 'sub-nc001'].index.tolist()[0] s_low = G_U_cohort[:,0:4, nc001_idx] @ s_head_cohort[0:4,:,nc001_idx] s_high = G_U_cohort[:,-55:-51, nc001_idx] @ s_head_cohort[-55:-51,:,nc001_idx] np.savetxt("nc001_s_low_both.csv", s_low, delimiter=",") np.savetxt("nc001_s_high_both.csv", s_high, delimiter=",") # 9. calculate the median-split threshold NC_index = [cohort_name_ls.index(x) for x in cohort_name_ls if 'nc' in x] if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_head_NC = s_head_cohort[:,:,NC_index] s_head_NC_square = np.power(s_head_NC, 2) #s_head_NC_square = np.power(s_head_NC_square, 1/2) s_head_NC_square_mean = np.mean(s_head_NC_square, (1,2)) # average for each timepoint and each subject s_head_NC_AUCTOT = np.trapz(s_head_NC_square_mean) i=0 AUC=0 while AUC < s_head_NC_AUCTOT/2: AUC = np.trapz(s_head_NC_square_mean[:i]) i = i + 1 cutoff = i-1 print('finished calculating the median-split threshold') print('cutoff = {}'.format(cutoff)) # 10. calculate decoupling index for empirical data if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_aligned_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) s_liberal_cohort = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_sub)) for sub_idx in range(len(path_df)): s_aligned_cohort[:,:,sub_idx] = G_U_cohort[:,0:cutoff, sub_idx] @ s_head_cohort[0:cutoff,:,sub_idx] s_liberal_cohort[:,:,sub_idx] = G_U_cohort[:,cutoff-1:-1, sub_idx] @ s_head_cohort[cutoff-1:-1,:,sub_idx] s_aligned_individual = np.linalg.norm(s_aligned_cohort, ord=2, axis=1) s_liberal_individual = np.linalg.norm(s_liberal_cohort, ord=2, axis=1) s_deCoupIdx_individual = s_liberal_individual / s_aligned_individual s_aligned = np.mean(s_aligned_individual[:,nc_idx], axis=1) s_liberal = np.mean(s_liberal_individual[:,nc_idx], axis=1) s_deCoupIdx_node = s_liberal/s_aligned # only for NC print('finished calculating decoupling index for empirical data') # 11. calculate decoupling index for surrogate data only for NC if functional_type == 'BOLD': # func_sig is BOLD_series_3D s_aligned_cohort_rand = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_nc, num_rand)) s_liberal_cohort_rand = np.zeros(shape=(num_parcels, num_BOLD_timepoints, num_nc, num_rand)) for i, sub_idx in enumerate(nc_idx): for rand_idx in range(num_rand): s_aligned_cohort_rand[:,:,i,rand_idx] = G_U_cohort[:,0:cutoff, sub_idx] @ s_rand_cohort[0:cutoff,:,sub_idx,rand_idx] s_liberal_cohort_rand[:,:,i,rand_idx] = G_U_cohort[:,cutoff-1:-1, sub_idx] @ s_rand_cohort[cutoff-1:-1,:,sub_idx,rand_idx] # norm for BOLD timepoints s_aligned_norm_rand = np.linalg.norm(s_aligned_cohort_rand, ord=2, axis=1) s_liberal_norm_rand = np.linalg.norm(s_liberal_cohort_rand, ord=2, axis=1) # average for cohorts s_aligned_rand = np.mean(s_aligned_norm_rand, axis=1) s_liberal_rand = np.mean(s_liberal_norm_rand, axis=1) # decoupling index s_deCoupIdx_node_rand = s_liberal_rand/s_aligned_rand print('finished calculating decoupling index for surrogate data') # 12. network-level harmonics for emperical and surrogate data s_aligned_network = np.zeros(shape=(num_network)) s_liberal_network = np.zeros(shape=(num_network)) s_aligned_network_individual = np.zeros(shape=(num_network, num_sub)) s_liberal_network_individual = np.zeros(shape=(num_network, num_sub)) s_aligned_network_rand = np.zeros(shape=(num_network, num_rand)) s_liberal_network_rand = np.zeros(shape=(num_network, num_rand)) for i in range(num_network): s_aligned_network[i] = np.mean(s_aligned[network_rowindex_ls[i]]) s_liberal_network[i] = np.mean(s_liberal[network_rowindex_ls[i]]) s_aligned_network_individual[i,:] = np.mean(s_aligned_individual[network_rowindex_ls[i],:], axis=0) s_liberal_network_individual[i,:] = np.mean(s_liberal_individual[network_rowindex_ls[i],:], axis=0) s_aligned_network_rand[i,:] = np.mean(s_aligned_rand[network_rowindex_ls[i],:], axis=0) s_liberal_network_rand[i,:] = np.mean(s_liberal_rand[network_rowindex_ls[i],:], axis=0) s_deCoupIdx_network = s_liberal_network/s_aligned_network s_deCoupIdx_network_individual = s_liberal_network_individual/s_aligned_network_individual s_deCoupIdx_network_rand = s_liberal_network_rand/s_aligned_network_rand # 13. brain-level harmonics for emperical and surrogate data s_aligned_brain = np.mean(s_aligned) s_liberal_brain = np.mean(s_liberal) s_deCoupIdx_brain = s_liberal_brain/s_aligned_brain s_aligned_brain_individual = np.mean(s_aligned_individual, axis=0) s_liberal_brain_individual = np.mean(s_liberal_individual, axis=0) s_deCoupIdx_brain_individual = s_liberal_brain_individual/s_aligned_brain_individual s_aligned_brain_rand = np.mean(s_aligned_rand, axis=0) s_liberal_brain_rand = np.mean(s_liberal_rand, axis=0) s_deCoupIdx_brain_rand = s_liberal_brain_rand/s_aligned_brain_rand print('s_deCoupIdx_brain = {}'.format(s_deCoupIdx_brain)) # 14. significance of surrogate for plot # node-level s_deCoupIdx_node_significance = np.logical_or((np.percentile(s_deCoupIdx_node_rand, 5, axis=1) >= s_deCoupIdx_node), (np.percentile(s_deCoupIdx_node_rand, 95, axis=1) <= s_deCoupIdx_node)) s_deCoupIdx_node_significance = s_deCoupIdx_node_significance.astype(np.int) # network-level s_deCoupIdx_network_significance = np.logical_or((np.percentile(s_deCoupIdx_network_rand, 5, axis=1) >= s_deCoupIdx_network), (np.percentile(s_deCoupIdx_network_rand, 95, axis=1) <= s_deCoupIdx_network)) s_deCoupIdx_network_significance = s_deCoupIdx_network_significance.astype(np.int) # brain-level s_deCoupIdx_brain_significance = np.logical_or((np.percentile(s_deCoupIdx_brain_rand, 5, axis=0) >= s_deCoupIdx_brain), (np.percentile(s_deCoupIdx_brain_rand, 95, axis=0) <= s_deCoupIdx_brain)) # 15. save results to csv if normalize_type == 'W': normalize_str = '_W' elif normalize_type == 'L': normalize_str = '_L' elif normalize_type == 'both': normalize_str = '_both' if functional_type == 'BOLD': # func_sig is BOLD_series_3D csv_folder = 'BOLD_4D_' + tract_type + '_' + normalize_str if not os.path.exists(os.path.abspath(csv_folder)): os.mkdir(os.path.abspath(csv_folder)) # save surrogate (ndarray with num_rand × num_region) s_deCoupIdx_node_rand_df = pd.DataFrame(data = s_deCoupIdx_node_rand.T, columns = network_assign_csv.loc[:,'LABEL']) s_deCoupIdx_network_rand_df = pd.DataFrame(data = s_deCoupIdx_network_rand.T, columns = network_unique_df.loc[:,'NETWORK']) s_deCoupIdx_brain_rand_df = pd.DataFrame(data = s_deCoupIdx_brain_rand) s_deCoupIdx_node_rand_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_node_rand_df.csv')) s_deCoupIdx_network_rand_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_' + '-network_rand_df.csv')) s_deCoupIdx_brain_rand_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_brain_rand_df.csv')) # save surrogate significance (ndarray with 1 × num_region) s_deCoupIdx_node_significance_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_node_significance, axis=0), columns = network_assign_csv.loc[:,'LABEL']) s_deCoupIdx_network_significance_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_network_significance, axis=0), columns = network_unique_df.loc[:,'NETWORK']) s_deCoupIdx_node_significance_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_node_significance_df.csv')) s_deCoupIdx_network_significance_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_' + '-network_significance_df.csv')) with open(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_brain_significance.txt'), 'w') as output_file: output_file.write(str(s_deCoupIdx_brain_significance)) # save empirical harmonics for NC cohort (for plot usage, ndarray with 1 × num_region) s_deCoupIdx_node_empirical_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_node, axis=0), columns = network_assign_csv.loc[:,'LABEL']) s_deCoupIdx_network_empirical_df = pd.DataFrame(data = np.expand_dims(s_deCoupIdx_network, axis=0), columns = network_unique_df.loc[:,'NETWORK']) s_deCoupIdx_node_empirical_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_node_empirical_df.csv')) s_deCoupIdx_network_empirical_df.to_csv(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_' +'-network_empirical_df.csv')) with open(os.path.join(os.path.abspath(csv_folder), 's_deCoupIdx_brain_empirical.txt'), 'w') as output_file: output_file.write(str(s_deCoupIdx_brain)) # save subject-level harmonics (ndarray with num_sub × num_region) s_deCoupIdx_node_individual_df = pd.DataFrame(data = s_deCoupIdx_individual.T, columns = network_assign_csv.loc[:,'LABEL']) s_deCoupIdx_network_individual_df = pd.DataFrame(data = s_deCoupIdx_network_individual.T, columns = network_unique_df.loc[:,'NETWORK']) s_deCoupIdx_brain_individual_df = pd.DataFrame(data = s_deCoupIdx_brain_individual) s_deCoupIdx_node_individual_df = pd.concat([path_df.loc[:,'subname'],s_deCoupIdx_node_individual_df],axis=1) s_deCoupIdx_network_individual_df =
pd.concat([path_df.loc[:,'subname'],s_deCoupIdx_network_individual_df],axis=1)
pandas.concat
import pandas as pd c1 = pd.read_csv('machine/Calling/Sensors_1.csv') c2 = pd.read_csv('machine/Calling/Sensors_2.csv') c3 = pd.read_csv('machine/Calling/Sensors_3.csv') c4 = pd.read_csv('machine/Calling/Sensors_4.csv') c5 = pd.read_csv('machine/Calling/Sensors_5.csv') c6 = pd.read_csv('machine/Calling/Sensors_6.csv') c7 = pd.read_csv('machine/Calling/Sensors_7.csv') c8 = pd.read_csv('machine/Calling/Sensors_8.csv') c9 = pd.read_csv('machine/Calling/Sensors_9.csv') c10 = pd.read_csv('machine/Calling/Sensors_10.csv') calling = pd.concat([c1,c2,c3,c4,c5,c6,c7,c8,c9,c10], axis = 0) t1 = pd.read_csv('machine/Texting/Sensors_1.csv') t2 = pd.read_csv('machine/Texting/Sensors_2.csv') t3 = pd.read_csv('machine/Texting/Sensors_3.csv') t4 = pd.read_csv('machine/Texting/Sensors_4.csv') t5 = pd.read_csv('machine/Texting/Sensors_5.csv') t6 = pd.read_csv('machine/Texting/Sensors_6.csv') t7 = pd.read_csv('machine/Texting/Sensors_7.csv') t8 = pd.read_csv('machine/Texting/Sensors_8.csv') t9 = pd.read_csv('machine/Texting/Sensors_9.csv') t10 =
pd.read_csv('machine/Texting/Sensors_10.csv')
pandas.read_csv
""" Open Power System Data Household Datapackage read.py : read time series files """ from datetime import datetime, time import logging import os from struct import unpack import pytz import pandas as pd from .tools import update_progress logger = logging.getLogger('log') logger.setLevel('INFO') def read(household_name, dir_name, household_region, household_type, feeds, headers, start_from_user=None, end_from_user=None): """ For the households specified in the households.yml file, read Parameters ---------- household_name : str Name of the Household to be placed in the column-MultiIndex dir_name : str directory path to the location of the Households MySQL data household_region : str Region of the Household to be placed in the column-MultiIndex household_type : str Type of the Household to be placed in the column-MultiIndex feeds : dict of key value pairs Indicator for subset of feed ids, available for the Household headers : list List of strings indicating the level names of the pandas.MultiIndex for the columns of the dataframe start_from_user : datetime.date, default None Start of period for which to read the data end_from_user : datetime.date, default None End of period for which to read the data Returns ---------- data_set: pandas.DataFrame A DataFrame containing the combined data for household """ data_set =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import json import csv import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm_notebook as tqdm from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.tokenize import sent_tokenize from nltk.stem import WordNetLemmatizer import nltk nltk.download('averaged_perceptron_tagger') import spacy import math import string import sys import random from collections import Counter from itertools import chain stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() ge=pd.read_csv('./testgoodwordse.csv') gn=
pd.read_csv('./testgoodwordsn.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Mar 31 20:09:16 2019 @author: hanbosun """ # %% # %% simple blender import numpy as np import pandas as pd from sklearn.decomposition import PCA import seaborn as sns sns.set() from datetime import datetime import os from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix os.chdir('/Users/hanbosun/Documents/GitHub/TrasactionPrediction/') s42=pd.read_csv('submission/lgb_submission_42.csv')['target'] s72=pd.read_csv('submission/lgb_submission_72.csv')['target'] s0=pd.read_csv('submission/lgb_submission_seed0.csv')['target'] s1=pd.read_csv('submission/lgb_submission_seed1.csv')['target'] s2=pd.read_csv('submission/lgb_submission_seed2.csv')['target'] s3=pd.read_csv('submission/lgb_submission_seed3.csv')['target'] s4=pd.read_csv('submission/lgb_submission_seed4.csv')['target'] s5=pd.read_csv('submission/lgb_submission_seed5.csv')['target'] s6=pd.read_csv('submission/lgb_submission_seed6.csv')['target'] s7=pd.read_csv('submission/lgb_submission_seed7.csv')['target'] s12=pd.read_csv('submission/lgb_submission_seed12.csv')['target'] s13=pd.read_csv('submission/lgb_submission_seed13.csv')['target'] s14=pd.read_csv('submission/lgb_submission_seed14.csv')['target'] s15=pd.read_csv('submission/lgb_submission_seed15.csv')['target'] s16=pd.read_csv('submission/lgb_submission_seed16.csv')['target'] s17=pd.read_csv('submission/lgb_submission_seed17.csv')['target'] s18=pd.read_csv('submission/lgb_submission_seed18.csv')['target'] s19=pd.read_csv('submission/lgb_submission_seed19.csv')['target'] s = pd.DataFrame({'s0': s0, 's1': s1, 's2': s2, 's3': s3, 's4': s4, 's5': s5, 's6': s6, 's7': s7, 's12': s12, 's13': s13, 's14': s14, 's15': s15, 's16': s16, 's17': s17, 's18': s18, 's19': s19}) # since we use AUC, and distribution of the probability is not Normal, Kendal correlation is more appropriate kendall = s.corr(method = 'kendall') # spearman pearson submission = pd.read_csv('input/sample_submission.csv') submission['target'] = (s0 + s1 + s2 + s3 + s4 + s5 + s6 + s7 + s12 + s13 + s14 + s15 + s16 + s17 + s18 + s19) /16 filename="submission/blended_submission_{:%Y-%m-%d_%H_%M}.csv".format(datetime.now()) submission.to_csv(filename, index=False) # %% rank blender: https://www.kaggle.com/roydatascience/blender-of-0-901-solutions import numpy as np import pandas as pd import os from scipy.stats import rankdata LABELS = ["target"] predict_list = [] predict_list.append(pd.read_csv('submission/lgb_submission_42.csv')[LABELS].values) predict_list.append(pd.read_csv('submission/lgb_submission_72.csv')[LABELS].values) predict_list.append(pd.read_csv('submission/lgb_submission_seed0.csv')[LABELS].values) predict_list.append(pd.read_csv('submission/lgb_submission_seed1.csv')[LABELS].values) predict_list.append(
pd.read_csv('submission/lgb_submission_seed2.csv')
pandas.read_csv
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import PerformanceWarning import pandas as pd from pandas import Period, PeriodIndex, Series, period_range from pandas.core import ops from pandas.core.arrays import TimedeltaArray import pandas.util.testing as tm from pandas.tseries.frequencies import to_offset # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", 2017]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != per, exp) tm.assert_equal(per != base, exp) exp = np.array([False, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > per, exp) tm.assert_equal(per < base, exp) exp = np.array([True, False, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < per, exp) tm.assert_equal(per > base, exp) exp = np.array([False, True, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= per, exp) tm.assert_equal(per <= base, exp) exp = np.array([True, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= per, exp) tm.assert_equal(per >= base, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) # TODO: could also box idx? idx = PeriodIndex(["2011-02", "2011-01", "2011-03", "2011-05"], freq=freq) exp = np.array([False, False, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == idx, exp) exp = np.array([True, True, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != idx, exp) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > idx, exp) exp = np.array([True, False, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < idx, exp) exp = np.array([False, True, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= idx, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= idx, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi_mismatched_freq_raises(self, freq, box_with_array): # GH#13200 # different base freq base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) msg = "Input has different freq=A-DEC from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="A") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="A") >= base # TODO: Could parametrize over boxes for idx? idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="A") rev_msg = ( r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=A-DEC\)" ) idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx # Different frequency msg = "Input has different freq=4M from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="4M") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="4M") >= base idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="4M") rev_msg = r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=4M\)" idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) result = idx1 > Period("2011-02", freq=freq) exp = np.array([False, False, False, True]) tm.assert_numpy_array_equal(result, exp) result = Period("2011-02", freq=freq) < idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 == Period("NaT", freq=freq) exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) == idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 != Period("NaT", freq=freq) exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) != idx1 tm.assert_numpy_array_equal(result, exp) idx2 = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq=freq) result = idx1 < idx2 exp = np.array([True, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx2 exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx2 exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx1 exp = np.array([True, True, False, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx1 exp = np.array([False, False, True, False]) tm.assert_numpy_array_equal(result, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat_mismatched_freq_raises(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) diff = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq="4M") msg = "Input has different freq=4M from Period(Array|Index)" with pytest.raises(IncompatibleFrequency, match=msg): idx1 > diff with pytest.raises(IncompatibleFrequency, match=msg): idx1 == diff # TODO: De-duplicate with test_pi_cmp_nat @pytest.mark.parametrize("dtype", [object, None]) def test_comp_nat(self, dtype): left = pd.PeriodIndex( [pd.Period("2011-01-01"), pd.NaT, pd.Period("2011-01-03")] ) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period("2011-01-03")]) if dtype is not None: left = left.astype(dtype) right = right.astype(dtype) result = left == right expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = left != right expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == right, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(left != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != left, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > left, expected) class TestPeriodSeriesComparisons: def test_cmp_series_period_series_mixed_freq(self): # GH#13200 base = Series( [ Period("2011", freq="A"), Period("2011-02", freq="M"), Period("2013", freq="A"), Period("2011-04", freq="M"), ] ) ser = Series( [ Period("2012", freq="A"), Period("2011-01", freq="M"), Period("2013", freq="A"), Period("2011-05", freq="M"), ] ) exp = Series([False, False, True, False]) tm.assert_series_equal(base == ser, exp) exp = Series([True, True, False, True]) tm.assert_series_equal(base != ser, exp) exp = Series([False, True, False, False]) tm.assert_series_equal(base > ser, exp) exp = Series([True, False, False, True]) tm.assert_series_equal(base < ser, exp) exp = Series([False, True, True, False]) tm.assert_series_equal(base >= ser, exp) exp = Series([True, False, True, True]) tm.assert_series_equal(base <= ser, exp) class TestPeriodIndexSeriesComparisonConsistency: """ Test PeriodIndex and Period Series Ops consistency """ # TODO: needs parametrization+de-duplication def _check(self, values, func, expected): # Test PeriodIndex and Period Series Ops consistency idx = pd.PeriodIndex(values) result = func(idx) # check that we don't pass an unwanted type to tm.assert_equal assert isinstance(expected, (pd.Index, np.ndarray)) tm.assert_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_comp_period(self): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.Period("2011-03", freq="M") exp = np.array([False, False, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) def test_pi_comp_period_nat(self): idx = PeriodIndex( ["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x == pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: x != pd.NaT exp = np.array([True, True, True, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x < pd.Period("2011-03", freq="M") exp = np.array([True, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT >= x exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) # ------------------------------------------------------------------ # Arithmetic class TestPeriodFrameArithmetic: def test_ops_frame_period(self): # GH#13043 df = pd.DataFrame( { "A": [pd.Period("2015-01", freq="M"), pd.Period("2015-02", freq="M")], "B": [pd.Period("2014-01", freq="M"), pd.Period("2014-02", freq="M")], } ) assert df["A"].dtype == "Period[M]" assert df["B"].dtype == "Period[M]" p = pd.Period("2015-03", freq="M") off = p.freq # dtype will be object because of original dtype exp = pd.DataFrame( { "A": np.array([2 * off, 1 * off], dtype=object), "B": np.array([14 * off, 13 * off], dtype=object), } ) tm.assert_frame_equal(p - df, exp) tm.assert_frame_equal(df - p, -1 * exp) df2 = pd.DataFrame( { "A": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], "B": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], } ) assert df2["A"].dtype == "Period[M]" assert df2["B"].dtype == "Period[M]" exp = pd.DataFrame( { "A": np.array([4 * off, 4 * off], dtype=object), "B": np.array([16 * off, 16 * off], dtype=object), } ) tm.assert_frame_equal(df2 - df, exp) tm.assert_frame_equal(df - df2, -1 * exp) class TestPeriodIndexArithmetic: # --------------------------------------------------------------- # __add__/__sub__ with PeriodIndex # PeriodIndex + other is defined for integers and timedelta-like others # PeriodIndex - other is defined for integers, timedelta-like others, # and PeriodIndex (with matching freq) def test_parr_add_iadd_parr_raises(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) # An earlier implementation of PeriodIndex addition performed # a set operation (union). This has since been changed to # raise a TypeError. See GH#14164 and GH#13077 for historical # reference. with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other def test_pi_sub_isub_pi(self): # GH#20049 # For historical reference see GH#14164, GH#13077. # PeriodIndex subtraction originally performed set difference, # then changed to raise TypeError before being implemented in GH#20049 rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) off = rng.freq expected = pd.Index([-5 * off] * 5) result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_sub_pi_with_nat(self): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = rng[1:].insert(0, pd.NaT) assert other[1:].equals(rng[1:]) result = rng - other off = rng.freq expected = pd.Index([pd.NaT, 0 * off, 0 * off, 0 * off, 0 * off]) tm.assert_index_equal(result, expected) def test_parr_sub_pi_mismatched_freq(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="H", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) with pytest.raises(IncompatibleFrequency): rng - other @pytest.mark.parametrize("n", [1, 2, 3, 4]) def test_sub_n_gt_1_ticks(self, tick_classes, n): # GH 23878 p1_d = "19910905" p2_d = "19920406" p1 = pd.PeriodIndex([p1_d], freq=tick_classes(n)) p2 = pd.PeriodIndex([p2_d], freq=tick_classes(n)) expected = pd.PeriodIndex([p2_d], freq=p2.freq.base) - pd.PeriodIndex( [p1_d], freq=p1.freq.base ) tm.assert_index_equal((p2 - p1), expected) @pytest.mark.parametrize("n", [1, 2, 3, 4]) @pytest.mark.parametrize( "offset, kwd_name", [ (pd.offsets.YearEnd, "month"), (pd.offsets.QuarterEnd, "startingMonth"), (pd.offsets.MonthEnd, None), (pd.offsets.Week, "weekday"), ], ) def test_sub_n_gt_1_offsets(self, offset, kwd_name, n): # GH 23878 kwds = {kwd_name: 3} if kwd_name is not None else {} p1_d = "19910905" p2_d = "19920406" freq = offset(n, normalize=False, **kwds) p1 = pd.PeriodIndex([p1_d], freq=freq) p2 = pd.PeriodIndex([p2_d], freq=freq) result = p2 - p1 expected = pd.PeriodIndex([p2_d], freq=freq.base) - pd.PeriodIndex( [p1_d], freq=freq.base ) tm.assert_index_equal(result, expected) # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize("other", [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub]) def test_parr_add_sub_float_raises(self, op, other, box_with_array): dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") pi = dti.to_period("D") pi = tm.box_expected(pi, box_with_array) with pytest.raises(TypeError): op(pi, other) @pytest.mark.parametrize( "other", [ # datetime scalars pd.Timestamp.now(), pd.Timestamp.now().to_pydatetime(), pd.Timestamp.now().to_datetime64(), # datetime-like arrays pd.date_range("2016-01-01", periods=3, freq="H"), pd.date_range("2016-01-01", periods=3, tz="Europe/Brussels"), pd.date_range("2016-01-01", periods=3, freq="S")._data, pd.date_range("2016-01-01", periods=3, tz="Asia/Tokyo")._data, # Miscellaneous invalid types ], ) def test_parr_add_sub_invalid(self, other, box_with_array): # GH#23215 rng = pd.period_range("1/1/2000", freq="D", periods=3) rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): other + rng with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): other - rng # ----------------------------------------------------------------- # __add__/__sub__ with ndarray[datetime64] and ndarray[timedelta64] def test_pi_add_sub_td64_array_non_tick_raises(self): rng = pd.period_range("1/1/2000", freq="Q", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values with pytest.raises(IncompatibleFrequency): rng + tdarr with pytest.raises(IncompatibleFrequency): tdarr + rng with pytest.raises(IncompatibleFrequency): rng - tdarr with pytest.raises(TypeError): tdarr - rng def test_pi_add_sub_td64_array_tick(self): # PeriodIndex + Timedelta-like is allowed only with # tick-like frequencies rng = pd.period_range("1/1/2000", freq="90D", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = pd.period_range("12/31/1999", freq="90D", periods=3) result = rng + tdi tm.assert_index_equal(result, expected) result = rng + tdarr tm.assert_index_equal(result, expected) result = tdi + rng tm.assert_index_equal(result, expected) result = tdarr + rng tm.assert_index_equal(result, expected) expected = pd.period_range("1/2/2000", freq="90D", periods=3) result = rng - tdi tm.assert_index_equal(result, expected) result = rng - tdarr tm.assert_index_equal(result, expected) with pytest.raises(TypeError): tdarr - rng with pytest.raises(TypeError): tdi - rng # ----------------------------------------------------------------- # operations with array/Index of DateOffset objects @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_add_offset_array(self, box): # GH#18849 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) offs = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = pd.PeriodIndex([pd.Period("2015Q2"), pd.Period("2015Q4")]) with tm.assert_produces_warning(PerformanceWarning): res = pi + offs tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = offs + pi tm.assert_index_equal(res2, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) # addition/subtraction ops with incompatible offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi + unanchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): unanchored + pi @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_sub_offset_array(self, box): # GH#18824 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) other = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = PeriodIndex([pi[n] - other[n] for n in range(len(pi))]) with tm.assert_produces_warning(PerformanceWarning): res = pi - other tm.assert_index_equal(res, expected) anchored = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi - anchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): anchored - pi def test_pi_add_iadd_int(self, one): # Variants of `one` for #19012 rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng + one expected = pd.period_range("2000-01-01 10:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) def test_pi_sub_isub_int(self, one): """ PeriodIndex.__sub__ and __isub__ with several representations of the integer 1, e.g. int, np.int64, np.uint8, ... """ rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng - one expected = pd.period_range("2000-01-01 08:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng -= one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize("five", [5, np.array(5, dtype=np.int64)]) def test_pi_sub_intlike(self, five): rng = period_range("2007-01", periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_pi_sub_isub_offset(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng - pd.offsets.YearEnd(5) expected = pd.period_range("2009", "2019", freq="A") tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) rng = pd.period_range("2014-01", "2016-12", freq="M") result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range("2013-08", "2016-07", freq="M") tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_offset_n_gt1(self, box_transpose_fail): # GH#23215 # add offset to PeriodIndex with freq.n > 1 box, transpose = box_transpose_fail per = pd.Period("2016-01", freq="2M") pi = pd.PeriodIndex([per]) expected = pd.PeriodIndex(["2016-03"], freq="2M") pi = tm.box_expected(pi, box, transpose=transpose) expected = tm.box_expected(expected, box, transpose=transpose) result = pi + per.freq tm.assert_equal(result, expected) result = per.freq + pi tm.assert_equal(result, expected) def test_pi_add_offset_n_gt1_not_divisible(self, box_with_array): # GH#23215 # PeriodIndex with freq.n > 1 add offset with offset.n % freq.n != 0 pi = pd.PeriodIndex(["2016-01"], freq="2M") expected = pd.PeriodIndex(["2016-04"], freq="2M") # FIXME: with transposing these tests fail pi = tm.box_expected(pi, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = pi + to_offset("3M") tm.assert_equal(result, expected) result = to_offset("3M") + pi tm.assert_equal(result, expected) # --------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_pi_add_intarray(self, int_holder, op): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = op(pi, other) expected = pd.PeriodIndex([pd.Period("2016Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_pi_sub_intarray(self, int_holder): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = pi - other expected = pd.PeriodIndex([pd.Period("2014Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - pi # --------------------------------------------------------------- # Timedelta-like (timedelta, timedelta64, Timedelta, Tick) # TODO: Some of these are misnomers because of non-Tick DateOffsets def test_pi_add_timedeltalike_minute_gt1(self, three_days): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # minute frequency with n != 1. A more general case is tested below # in test_pi_add_timedeltalike_tick_gt1, but here we write out the # expected result more explicitly. other = three_days rng = pd.period_range("2014-05-01", periods=3, freq="2D") expected = pd.PeriodIndex(["2014-05-04", "2014-05-06", "2014-05-08"], freq="2D") result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.PeriodIndex(["2014-04-28", "2014-04-30", "2014-05-02"], freq="2D") result = rng - other tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - rng @pytest.mark.parametrize("freqstr", ["5ns", "5us", "5ms", "5s", "5T", "5h", "5d"]) def test_pi_add_timedeltalike_tick_gt1(self, three_days, freqstr): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # tick-like frequency with n != 1 other = three_days rng = pd.period_range("2014-05-01", periods=6, freq=freqstr) expected = pd.period_range(rng[0] + other, periods=6, freq=freqstr) result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.period_range(rng[0] - other, periods=6, freq=freqstr) result = rng - other tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - rng def test_pi_add_iadd_timedeltalike_daily(self, three_days): # Tick other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-05-04", "2014-05-18", freq="D") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_sub_isub_timedeltalike_daily(self, three_days): # Tick-like 3 Days other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-04-28", "2014-05-12", freq="D") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_daily(self, not_daily): other = not_daily rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") msg = "Input has different freq(=.+)? from Period.*?\\(freq=D\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 12:00", "2014-01-05 12:00", freq="H") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_add_timedeltalike_mismatched_freq_hourly(self, not_hourly): other = not_hourly rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") msg = "Input has different freq(=.+)? from Period.*?\\(freq=H\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other def test_pi_sub_isub_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 08:00", "2014-01-05 08:00", freq="H") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_add_iadd_timedeltalike_annual(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng + pd.offsets.YearEnd(5) expected = pd.period_range("2019", "2029", freq="A") tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_annual(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014", "2024", freq="A") msg = "Input has different freq(=.+)? from Period.*?\\(freq=A-DEC\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_M(self): rng = pd.period_range("2014-01", "2016-12", freq="M") expected = pd.period_range("2014-06", "2017-05", freq="M") result = rng + pd.offsets.MonthEnd(5) tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_monthly(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014-01", "2016-12", freq="M") msg = "Input has different freq(=.+)? from Period.*?\\(freq=M\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_parr_add_sub_td64_nat(self, box_transpose_fail): # GH#23320 special handling for timedelta64("NaT") box, transpose = box_transpose_fail pi = pd.period_range("1994-04-01", periods=9, freq="19D") other = np.timedelta64("NaT") expected = pd.PeriodIndex(["NaT"] * 9, freq="19D") obj = tm.box_expected(pi, box, transpose=transpose) expected = tm.box_expected(expected, box, transpose=transpose) result = obj + other tm.assert_equal(result, expected) result = other + obj
tm.assert_equal(result, expected)
pandas.util.testing.assert_equal
import sys import pandas as pd import sqlite3 from sqlalchemy import create_engine import nltk from sklearn.externals import joblib nltk.download(['punkt', 'wordnet', 'averaged_perceptron_tagger']) import re import numpy as np import pandas as pd from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.metrics import classification_report from sklearn.ensemble import AdaBoostClassifier from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.multioutput import MultiOutputClassifier class MessageLengthExtractor(BaseEstimator, TransformerMixin): def message_length(self, text): ''' Returns the number of characters in text ''' return len(text) def fit(self, x, y=None): ''' Overriding function from baseclass, fits the object ''' return self def transform(self, X): ''' Overriding function from baseclass, transforms the object ''' X_msg_len = pd.Series(X).apply(self.message_length) return (pd.DataFrame(X_msg_len)) class StartingNounExtractor(BaseEstimator, TransformerMixin): def starting_noun(self, text): ''' Is there a sentence that starts with a Noun ''' sentences= nltk.sent_tokenize(text) for sentence in sentences: parts_of_speech_tags = nltk.pos_tag(tokenize(sentence)) word_1, tag_1 = parts_of_speech_tags[0] if(tag_1[:2]=='NN'): return True return False def fit(self, X, y=None): ''' Overriding function from baseclass, fits the object ''' return self def transform(self, X): ''' Overriding function from baseclass, transforms the object ''' X_tagged =
pd.Series(X)
pandas.Series
import pandas as pd import matplotlib.pyplot as plt from sklearn import tree import pydotplus from sklearn.model_selection import train_test_split # Import train_test_split function from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation import time from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC def MySupportVectorMachine(): #Creazione del classificatore classifier = SVC(C=10, break_ties=False, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=1, shrinking=True, tol=0.001, verbose=False) #Si allena il classificatore classifier.fit(X_train, y_train) # E ora si predice sul Test Set predicted = classifier.predict(X_test) #Rinomino i campi per la matrice di confusione labels = ("Female","Male") positions = (0,1) #Stampa dei risultati print("Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(y_test, predicted))) disp = metrics.plot_confusion_matrix(classifier, X_test, y_test, cmap="OrRd") disp.figure_.suptitle("Confusion Matrix") print("Confusion matrix:\n%s" % disp.confusion_matrix) #Stampa del tempo intercorso per processare il classificatore print ("\nTempo trascorso: {:.2f}m\n".format((time.time()-start_time)/60)) #Stampa a video della matrice di confusione plt.xticks(positions,labels) plt.yticks(positions,labels) plt.savefig('OutputSVM/ConfusionMatrix.png', bbox_inches='tight') plt.show() #Stampa dell'accuratezza from sklearn.metrics import accuracy_score print("Accuratezza: ") print(accuracy_score(y_test, predicted)) def MyDecisionTree(): #The decision tree classifier clf = tree.DecisionTreeClassifier(criterion = "gini", max_depth= 13) #Alleno il decision tree clf_train = clf.fit(X_train, y_train) #Predico la risposta per il dataset y_pred = clf.predict(X_test) #Model Accuracy, valuto il modello print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) #Creo un decision tree in formato DOT utilizzando GraphViz dot_data = tree.export_graphviz(clf_train, out_file=None, feature_names=X_train.columns.values, class_names=['Female', 'Male'], rounded=True, filled=True) #Gini decides which attribute/feature should be placed at the root node, which features will act as internal nodes or leaf nodes #Creo il decision tree in formato Graph partendo dal formato DOT graph = pydotplus.graph_from_dot_data(dot_data) #Salvo in png il decision tree creato test2 = graph.write_png("OutputDT/GraphDecisionTree.png") print ("\nTempo trascorso: {:.2f}m\n".format((time.time()-start_time)/60)) def MyNearestNeighbors(): #NearestNeighbors classifier classifier = KNeighborsClassifier(n_neighbors=9) #Alleno il classificatore clf_train = classifier.fit(X_train, y_train) #Predico la risposta per il dataset y_pred = classifier.predict(X_test) labels = ("Female","Male") positions = (0,1) #Stampa dei risultati print("Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(y_test, y_pred))) disp = metrics.plot_confusion_matrix(classifier, X_test, y_test, cmap=plt.cm.Blues) disp.figure_.suptitle("Confusion Matrix") print("Confusion matrix:\n%s" % disp.confusion_matrix) # Model Accuracy, valuto il modello print("Accuracy:", metrics.accuracy_score(y_test, y_pred)) print("\nTempo trascorso: {:.2f}m\n".format((time.time() - start_time) / 60)) #Stampa a video plt.xticks(positions,labels) plt.yticks(positions,labels) plt.savefig('OutputKNN/ConfusionMatrixBalancedWeb_n9.png', bbox_inches='tight') plt.show() #Funzione creazione dataset bilanciato def CreateBalanced4c4s(dfconc): #Creo un csv corrispondente al dataset4c4s ma con l'aggiunta della colonna "Gender" dfconc.to_csv("DatasetCelebA/Dataset4c4sBalanced1000.csv", header = False, index = False) #Leggo il csv appena creato per andare ad eseguire le operazioni di manipolazione DFbalanced = pd.read_csv("DatasetCelebA/Dataset4c4sBalanced1000.csv",header = None) #Salvo in un dataframe tutte le righe con gender pari a 1(uomo) dfBalanceM = DFbalanced.loc[DFbalanced[64] == 1] #Salvo in un dataframe tutte le righe con gender pari a -1(donna) dfBalanceF = DFbalanced.loc[DFbalanced[64] == -1] #Droppo le righe in eccesso del dataframe femminile (rispetto al dataframe maschile) dfBalanceF = dfBalanceF.iloc[0:432] #Unisco i due dataframe aventi lo stesso numero di elementi DFbalanced = pd.concat([dfBalanceM,dfBalanceF], axis = 0) #Creo il csv corrispondente DFbalanced.to_csv("DatasetCelebA/Dataset4c4sBalanced1000.csv", header = False, index = False) #Funzione per suddividere il dataset bilanciato in train e test set def ExecOnBalanced(): #Leggo dataset bilanciato dataframe = pd.read_csv("DatasetCelebA/Dataset4c4sBalanced1000.csv", header=None) #Rinomino la colonna 64 in Gender. dataframe = dataframe.rename(columns={dataframe.columns[64]: "Gender"}) # -1 donna e 1 maschio #Ottengo feature variables feature_cols = list(dataframe.columns.values) X = feature_cols[1:len(feature_cols) - 1] X = dataframe[X] #Ottengo target variables y = dataframe.Gender #Divido il dataframe in train e test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,random_state=1) # 70% training and 30% test return X_train,X_test,y_train,y_test #Funzione lettura CSV su cui eseguire i test def ReadCSV(): # Caricamento dei due dataset dataframe = pd.read_csv("DatasetCelebA/dataset4c4s1000.csv", header=None) feature =
pd.read_csv("DatasetCelebA/list_attr_celeba.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """rewards.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1wSaVp_tg-Thk_ih7KFoSLloaejQLe_v7 """ import pandas as pd import plotly.express as px import numpy as np data1 = np.asarray([ [-74.33685869, -72.5324857, -88.47022494, -61.16093581, -660.2188411, -34.48468219, -52.5229316, -59.32260936], [-90.88501301, -46.11791824, -83.34722873, -94.2334051, -815.6631797, -61.06891306, -57.7632315, -47.8487639], [-73.91411699, -77.59040873, -77.01557029, -92.72689018, -600.7604739, -59.89977608, -57.68274631, -64.39186185], [-192.5411993, -24.95264984, -110.5459243, -74.78287134, -241.33862, -68.36011578, -57.71062246, -70.30127793], [-70.56101865, -53.43896026, -75.05082911, -59.63233941, -417.1066496, -62.21954958, -51.147781, -77.42080861], [-5.999697612, -59.11368912, -69.38302732, -61.16266931, -223.087533, -64.95227382, -55.6735378, -76.22536499], [153.107842, -14.58965759, -39.34082378, -59.62059657, -758.0064858, -70.86303994, -53.00074024, -52.84115631], [159.2601384, -24.20373697, -24.75340317, -71.05858162, -543.6898402, -70.5126974, -44.0885844, -47.21479324], [167.520669, -51.60538555, -79.71618173, -58.89638826, -690.0980123, -54.12362492, -54.36445826, -55.11445826] ]) data2 = np.asarray([ [-213.1039408, -86.60203251, -113.0851182, -108.8752598, -1049.245347, -100.0107539, -107.0070661, -99.5741411], [-187.8262188, -116.0819553, -98.91194532, -106.2171531, -1044.407354, -134.9483129, -114.1879624, -115.5642645], [-91.612578, -130.218187, -120.0383136, -119.0852531, -1238.74529, -109.9179512, -110.5007863, -120.1931743], [-86.60450772, -116.5197368, -105.3994866, -108.8804071, -1167.584126, -125.4021974, -120.1197327, -122.5280382], [-86.16190285, -123.8487977, -87.23595413, -125.1815342, -1161.814595, -120.1925051, -99.36077911, -114.6224723], [-82.59160215,-124.054699, -88.14533935, -124.4893578, -1143.869427, -109.8486868, -124.6037669, -99.14100639], [103.4123898, -95.06164134, -110.7838212, -111.850257, -1048.138292, -122.6433241, -124.3869051, -110.4287416], [190.4916607, -112.0394803, -103.6646041, -115.3407975, -1130.158999, -98.2028528, -99.06896169, -109.5575971], [210.56, -86.60203251, -147.9139065, -147.1861822, -1252.134843, -73.82300449, -175.8197084, -125.9059582] ]) data3 = np.asarray([ [-143.7203998, -79.56725911, -100.7776716, -85.01809782, -854.732094, -67.24771804, -79.76499886, -79.44837523], [-139.3556159, -81.09993674, -91.12958703, -100.2252791, -930.0352668, -98.008613, -85.97559695, -81.7065142], [-82.76334749, -103.9042979, -98.52694197, -105.9060716, -919.752882, -84.90886363, -84.09176629, -92.2925181], [-139.5728535, -70.73619331, -107.9727054, -91.83163922, -704.4613729, -96.8811566, -88.91517758, -96.41465804], [-78.36146075, -88.64387899, -81.14339162, -92.40693682, -789.4606221, -91.20602736, -75.25428006, -96.02164045], [-44.29564988, -91.58419406, -78.76418333, -92.82601353, -683.4784799, -87.40048032, -90.13865235, -87.68318569], [128.2601159, -54.82564946, -75.06232252, -85.73542681, -903.0723888, -96.75318203, -88.69382266, -81.63494894], [174.8758995, -68.12160865, -64.20900363, -93.19968954, -836.9244197, -84.3577751, -71.57877304, -78.38619518], [189.0403345, -69.10370903, -113.8150441, -103.0412853, -971.1164276, -63.97331471, -115.0920833, -90.5102082] ]) for i in range(1, 4): path = globals()[f"data{i}"] globals()[f"df{i}"] =
pd.DataFrame(path)
pandas.DataFrame
import numpy as np import pandas as pa import seaborn as sn import matplotlib.pyplot as plt import warnings #import gensim import os from gensim import models,corpora,similarities from gensim.models import LdaModel from nltk import FreqDist from scipy.stats import entropy from nltk.tokenize import TweetTokenizer,word_tokenize warnings.filterwarnings('ignore') sn.set_style("darkgrid") ### Read all the data cleaned filedir = os.path.abspath(r"C:\Users\BABI\Dynamic Blog Recommendation\Cleaned Data") medium_filename = "cleaned_medium" ana_filename = "cleaned_analytics" toward_filename = "cleaned_towards_data_science" toward_filepath = os.path.join(filedir,toward_filename) medium_filepath = os.path.join(filedir,medium_filename) ana_filepath = os.path.join(filedir,ana_filename) data_medium = pa.read_csv(medium_filepath) data_medium['Webpage'] = 'Medium' data_toward = pa.read_csv(toward_filepath) data_toward['Webpage'] = 'Towards_Data_Science' data_toward = data_toward.rename(columns={'Link':'Links'}) data_ana = pa.read_csv(ana_filepath) data_ana = data_ana.rename(columns={'Titles':'Title'}) data_ana['Webpage'] = 'Analytics_Vidhya' data = pa.concat([data_medium,data_toward]) data =
pa.concat([data,data_ana])
pandas.concat
import numpy as np import pandas as pd import fiona import io from shapely import geometry import click from wit_tooling import query_wit_data def shape_list(key, values, shapefile): """ Get a generator of shapes from the given shapefile key: the key to match in 'properties' in the shape file values: a list of property values shapefile: the name of your shape file e.g. key='ORIGID', values=[1, 2, 3, 4, 5], shapefile='/g/data/r78/DEA_Wetlands/shapefiles/MDB_ANAE_Aug2017_modified_2019_SB_3577.shp' """ count = len(values) with fiona.open(shapefile) as allshapes: for shape in allshapes: shape_id = shape['properties'].get(key) if shape_id is None: continue if isinstance(shape_id, float): shape_id = int(shape_id) if shape_id in values: yield(shape_id, shape) count -= 1 if count <= 0: break def get_areas(features, pkey='SYSID'): """ Calculate the area of a list/generator of shapes input: features: a list of shapes indexed by the key output: a dataframe of area index by the key """ re = pd.DataFrame() for f in features: va = pd.DataFrame([[f[0], geometry.shape(f[1]['geometry']).area/1e4]], columns=[pkey, 'area']) re = re.append(va, sort=False) return re.set_index(pkey) def dump_wit_data(key, feature_list, output, batch=-1): """ dump wit data from the database into a file input: key: Name to id the polygon feature_list: a list or generator of features output: a csv file to save all the wit data """ count = 0 if batch > 0: fname = output.split('.')[0] sub_fname = fname + '_0.csv' appendix = 0 else: sub_fname = output for f_id, f in feature_list: _, wit_data = query_wit_data(f) csv_buf = io.StringIO() wit_df = pd.DataFrame(data=wit_data, columns=['TIME', 'BS', 'NPV', 'PV', 'WET', 'WATER']) wit_df.insert(0, key, f_id) wit_df.to_csv(csv_buf, index=False, header=False) csv_buf.seek(0) with open(sub_fname, 'a') as f: f.write(csv_buf.read()) if batch < 0: continue count += 1 if count >= batch: with open(sub_fname, 'a') as f: f.write(','.join(list(wit_df.columns))) count = 0 appendix += 1 sub_fname = fname + '_' + str(appendix) + '.csv' if count < batch or batch < 0: with open(sub_fname, 'a') as f: f.write(','.join(list(wit_df.columns))) def annual_metrics(wit_data, members=['PV', 'WET', 'WATER', 'BS', 'NPV', ['NPV', 'PV', 'WET'], ['PV', 'WET'], ['WATER', 'WET']], threshold=[25, 75], pkey='SYSID'): """ Compute the annual max, min, mean, count with given wit data, members and threshold input: wit_data: dataframe of WIT members: the elements which the metrics are computed against, can be a column from wit_data, e.g. 'PV' or the sum of wit columns, e.g. ['WATER', 'WET'] threshold: a list of thresholds such that (elements >= threshold[i]) is True, where i = 0, 1...len(threshold)-1 output: dataframe of metrics """ years = wit_data['TIME'] i = 0 wit_df = wit_data.copy(deep=True) for m in members: if isinstance(m, list): wit_df.insert(wit_df.columns.size+i, '+'.join(m), wit_df[m].sum(axis=1)) years = pd.DatetimeIndex(wit_df['TIME']).year.unique() shape_id_list = wit_df[pkey].unique() #shane changed 4 to 5 to accomodate median added below wit_metrics = [pd.DataFrame()] * 5 for y in years: wit_yearly = wit_df[pd.DatetimeIndex(wit_df['TIME']).year==y].drop(columns=['TIME']).groupby(pkey).max() wit_yearly.insert(0, 'YEAR', y) wit_yearly = wit_yearly.rename(columns={n: n+'_max' for n in wit_yearly.columns[1:]}) wit_metrics[0] = wit_metrics[0].append(wit_yearly, sort=False) for y in years: wit_yearly = wit_df[pd.DatetimeIndex(wit_df['TIME']).year==y].drop(columns=['TIME']).groupby(pkey).min() wit_yearly.insert(0, 'YEAR', y) wit_yearly = wit_yearly.rename(columns={n: n+'_min' for n in wit_yearly.columns[1:]}) wit_metrics[1] = wit_metrics[1].append(wit_yearly, sort=False) for y in years: wit_yearly = wit_df[pd.DatetimeIndex(wit_df['TIME']).year==y].drop(columns=['TIME']).groupby(pkey).mean() wit_yearly.insert(0, 'YEAR', y) wit_yearly = wit_yearly.rename(columns={n: n+'_mean' for n in wit_yearly.columns[1:]}) wit_metrics[2] = wit_metrics[2].append(wit_yearly, sort=False) #*********************** START ADDED BY SHANE *********************** #adding median for y in years: wit_yearly = wit_df[pd.DatetimeIndex(wit_df['TIME']).year==y].drop(columns=['TIME']).groupby(pkey).median() wit_yearly.insert(0, 'YEAR', y) wit_yearly = wit_yearly.rename(columns={n: n+'_median' for n in wit_yearly.columns[1:]}) wit_metrics[3] = wit_metrics[3].append(wit_yearly, sort=False) #*********************** END ADDED BY SHANE *********************** for y in years: wit_yearly = wit_df[
pd.DatetimeIndex(wit_df['TIME'])
pandas.DatetimeIndex
""" .. module:: run_model :synopsis: Collection of Models .. moduleauthor:: <NAME> This modules consists of collection of various machine learning models. We start with Light GBM. Depending on the time, we can add more Todo: * Add more machine learning models, such as GBM, RF and XGBoost * Spark Compatible GBM and Light GBM Models * Add Model Diagnostic plots using SHAP Library * Feature Reduction * Config file """ import sys sys.path.append('.') import os import lightgbm as lgb from sklearn.metrics import mean_squared_error from sklearn.preprocessing import LabelEncoder import pandas as pd import numpy as np from retail_sales_prediction import logger def run_model_lgbm(feature_prep, X_train, y_train, X_val, y_val, X_test, config, num_days=6): """ Training the Light GBM Model. Args: feature_prep: X_train: y_train: X_val: y_val: X_test: num_days: Returns: :param model_params: """ logger("Training and predicting models...") # params = { # 'num_leaves': 3, # 'objective': 'regression', # 'min_data_in_leaf': 200, # 'learning_rate': 0.02, # 'feature_fraction': 0.8, # 'bagging_fraction': 0.7, # 'bagging_freq': 1, # 'metric': 'l2', # 'num_threads': 20 # } params = config['model_params'] # MAX_ROUNDS = 200 MAX_ROUNDS = config['MAX_ROUNDS'] output_dir = config['output_dir'] if not os.path.exists(output_dir): os.makedirs(output_dir) logger.info('output directory : {}'.fromat(output_dir)) val_pred = [] test_pred = [] cate_vars = [] for i in range(16): logger.info("=" * 50) logger.info("Step %d" % (i+1)) logger.info("=" * 50) dtrain = lgb.Dataset( X_train, label=y_train[:, i], categorical_feature=cate_vars, weight=
pd.concat([feature_prep.items["perishable"]] * num_days)
pandas.concat
#Gillespie's Direct Stochastic Simulation Algorithm Program #Parser to convert .PSC files to arrays/matrices (speciesArray, parameterArray, and reactionMatrix) suitable for the main simulation code #Note: the example .psc file was generated from a SBML .xml file using StochPy #Final Project for BIOEN 6760, Modeling and Analysis of Biological Networks #<NAME> #Copyright 2013-2015 import re import numpy as np import itertools import pandas as pd filer = "BIOMD0000000504.xml.psc" data = open(filer) def convertReactants(reactants): newReactantList = list() for reactant in reactants: if '>' not in reactant and ('+' not in reactant and '-' not in reactant): if '{' in reactant: m=re.match("{[0-9]*.[0-9]*}",reactant) num = float(m.group()[1:-1]) reactant = reactant[m.span()[1]:] newReactantList.append((num,reactant)) else: newReactantList.append((1,reactant)) else: newReactantList.append(reactant) return newReactantList def convertMe(line, reactants): reactants = convertReactants(reactants) flatReactants = list(itertools.chain(*reactants)) line = line.strip() numMultiply = len(re.findall("\*",line)) equalsLocation = 0 multiplyIter = re.finditer("\*",line) if(numMultiply==1): for a in multiplyIter: multiplyLocation = a.start() cVal = line[equalsLocation:multiplyLocation] specieName = line[multiplyLocation+1:len(line)] if 'Sink' in flatReactants: return (1,cVal,-reactants[0][0],reactants[0][1],0,0,0,reactants[2][1],0,0) elif 'Source' in flatReactants: return (1,cVal,-0,reactants[0][1], 0,0,reactants[2][0],reactants[2][1],0,0) elif '$pool' in flatReactants: return (1,cVal,-0,reactants[0][1], 0,0,reactants[2][0],reactants[2][1],0,0) elif len(reactants)==5: return (1,cVal,-reactants[0][0],reactants[0][1],0,0, reactants[2][0],reactants[2][1],reactants[4][0],reactants[4][1]) else: return (1,cVal,-reactants[0][0],reactants[0][1],0,0, reactants[2][0],reactants[2][1],0,0) elif(numMultiply==2): for i,a in enumerate(multiplyIter): if i==0: multiplyLocation1 = a.start() cVal = line[equalsLocation:multiplyLocation1] elif i==1: multiplyLocation2 = a.start() specie1 = line[multiplyLocation1:multiplyLocation2][1:] specie2 = line[multiplyLocation2:len(line)][1:] if len(reactants)==3: if specie1 not in flatReactants: return (2,cVal,-reactants[0][0],reactants[0][1],0,specie1,reactants[2][0],reactants[2][1],0,0) elif specie2 not in flatReactants: return (2,cVal,-reactants[0][0],reactants[0][1],0,specie2,reactants[2][0],reactants[2][1],0,0) reactionArrowIndex = reactants.index('>') if reactionArrowIndex==3: return (2,cVal,-reactants[0][0],reactants[0][1],-reactants[2][0],reactants[2][1],reactants[4][0],reactants[4][1],0,0) elif reactionArrowIndex==1: if specie1 not in flatReactants: return (2,cVal,-reactants[0][0],reactants[0][1],0,specie1,reactants[2][0],reactants[2][1],reactants[4][0],reactants[4][1]) elif specie2 not in flatReactants: return (2,cVal,-reactants[0][0],reactants[0][1],0,specie2,reactants[2][0],reactants[2][1],reactants[4][0],reactants[4][1]) elif(numMultiply==3): for i,a in enumerate(multiplyIter): if i==0: multiplyLocation1 = a.start() cVal = line[equalsLocation:multiplyLocation1] elif i==1: multiplyLocation2 = a.start() minusOneLocation = line.find("-1.0") specie1 = line[multiplyLocation1:multiplyLocation2][1:] convertReactants(reactants) return (3,cVal,-reactants[0][0],reactants[0][1],0,0,reactants[2][0],reactants[2][1],0,0) reactionList = list() specieDict = dict() parameterDict = dict() reactionFlag = bool() fixedSpeciesFlag = bool() variableSpeciesFlag = bool() parameterFlag = bool() targetLine1 = int() targetLine2 = int() subLine = str() for i,line in enumerate(data): if "# Reactions" in line: reactionFlag = True if "# Fixed species" in line: fixedSpeciesFlag = True if "# Variable species" in line: variableSpeciesFlag = True if "# Parameters" in line: parameterFlag = True if reactionFlag==True and fixedSpeciesFlag==False: if ":" in line and "#" not in line: targetLine1 = i+1 targetLine2 = i+2 elif i==targetLine1: subLine = line.strip() elif i==targetLine2: reactionList.append(convertMe(line,subLine.split(' '))) elif variableSpeciesFlag==True and parameterFlag==False: if "=" in line: subLine = line.strip() equalsLocation = subLine.find("=") specie = subLine[0:equalsLocation-1].split('@')[0] specieQuantity = subLine[equalsLocation+2:len(subLine)] specieDict[specie] = float(specieQuantity) elif parameterFlag==True: if "=" in line: subLine = line.strip() equalsLocation = subLine.find("=") parameter = subLine[0:equalsLocation-1] parameterValue = subLine[equalsLocation+2:len(subLine)] parameterDict[parameter] = float(parameterValue) specieDict['Source'] = 1; specieDict['Sink'] = 1; specieDict['$pool'] = 1; def findIndex(inputReactant,inputReactantDict): if(inputReactant == 0): return 0 else: return inputReactantDict.keys().index(inputReactant) reactionMatrixList = list() for reaction in reactionList: reactionMatrixList.append((reaction[0],findIndex(reaction[1],parameterDict),reaction[2],findIndex(reaction[3],specieDict),reaction[4],findIndex(reaction[5],specieDict),reaction[6],findIndex(reaction[7],specieDict),reaction[8],findIndex(reaction[9],specieDict))) reactionMatrix = np.array(reactionMatrixList,dtype='int32') reactionMatrix = reactionMatrix[reactionMatrix[:,0].argsort()] #Sort the arrays by reaction type to minimize branch divergence / warp divergence when calculating propensities #Make Parameter Array parameterList = list() parameterIndices = reactionMatrix[:,1] for subParameterIndex in parameterIndices: parameterList.append(parameterDict.values()[int(subParameterIndex)]) parameterArray = np.array(parameterList,dtype='float32') #Make Specices Array speciesArray = np.array(specieDict.values(),dtype='int32') #Make Reaction Matrix reactionMatrix = np.delete(reactionMatrix,1,axis=1) reactionDF =
pd.DataFrame(reactionMatrix)
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array)
tm.assert_equal(expected, vec + off)
pandas._testing.assert_equal
import pandas as pd import numpy as np import mapping as mp from . import strategy def get_relative_to_expiry_instrument_weights(dates, root_generics, expiries, offsets, all_monthly=False, holidays=None): """ Generate instrument weights for each root generic where the position is rolled entirely in one day based on an offset from the earlier of the contracts First Notice Date and Last Trade Date. Parameters ---------- dates: Iterable Iterable of pandas.Timestamps, dates to generate instrument weights for. root_generics: dict Dictionary with key as root generic and value as list of future generics, e.g. {"CL": ["CL1", "CL2"]} expiries: pd.DataFrame A pd.DataFrame with columns ["contract", "first_notice", "last_trade"] where "first_notice" and "last_trade" must be parseable to datetimes with format %Y-%m-%d and "contract" must be a string in the form YYYYNNC representing the contract name, e.g. "2007ESU". offsets: int or dict Number of business days to roll relative to earlier of the instruments First Notice and Last Trade date. If int is given use the same number for all futures, if dict is given keys must cover all root generics and contain an integer for each. all_monthly: boolean Whether to roll each contract individually based on the offset from the earlier of its First Notice and Last Trade date or to roll all contracts with the same month code based on the earliest date. holidays: list list of timezone aware pd.Timestamps used for holidays when calculating relative date roll logic. Returns ------- A dictionary of DataFrames of instrument weights indexed by root generic, see mapper.mappings.roller() Examples -------- >>> import strategy.rebalance as rebal >>> import pandas as pd >>> dts = pd.date_range("2018-01-01", "2018-02-01", freq="B") >>> rg = {"CL": ["CL1"], "ES": ["ES1"]} >>> exp = pd.DataFrame( ... [["2018CLF", "2018-01-28", "2018-01-27"], ... ["2018CLG", "2018-02-28", "2018-02-27"], ... ["2018ESF", "2018-01-20", "2018-01-21"], ... ["2018ESG", "2018-02-20", "2018-02-21"]], ... columns=["contract", "first_notice", "last_trade"] ... ) >>> offsets = -5 >>> rebal.get_relative_to_expiry_instrument_weights(dts, rg, exp, offsets) """ close_by = _close_by_dates(expiries, all_monthly) cntrct_close_by_dates = {} for grp, dts in close_by.groupby("root_generic"): cntrct_close_by_dates[grp] = dts.loc[:, "close_by"] wts = {} for root in root_generics: gnrcs = root_generics[root] cols =
pd.MultiIndex.from_product([gnrcs, ['front', 'back']])
pandas.MultiIndex.from_product
import tempfile import pandas from dnm_cohorts.download_file import download_file from dnm_cohorts.person import Person from dnm_cohorts.convert_pdf_table import extract_pages, convert_page url = 'https://ars.els-cdn.com/content/image/1-s2.0-S0140673612614809-mmc1.pdf' def extract_table(handle): records = [] header = None for page in extract_pages(handle, start=12, end=16): data = convert_page(page, delta=2.7) data = sorted(data, reverse=True, key=lambda x: x.y0) data = data[1:] header, data = data[0], data[1:] for line in data: text = [ x.get_text() for x in sorted(line, key=lambda x: x.x0) ] if len(text) > 10: records.append(text) header = [ x.get_text() for x in sorted(header, key=lambda x: x.x0) ] data =
pandas.DataFrame.from_records(records, columns=header)
pandas.DataFrame.from_records
import pandas as pd from fbprophet import Prophet from fbprophet.plot import plot_plotly, plot_components_plotly from sklearn.metrics import mean_squared_error from math import sqrt #Lendo arquivos em parquet df_customer=pd.read_parquet('gs://stack-labs-list/processing/df_customer') df_geolocation=pd.read_parquet('gs://stack-labs-list/processing/df_geolocation') df_order_items=pd.read_parquet('gs://stack-labs-list/processing/df_order_items') df_order_payments=pd.read_parquet('gs://stack-labs-list/processing/df_order_payments') df_order_reviews=pd.read_parquet('gs://stack-labs-list/processing/df_order_reviews') df_orders=pd.read_parquet('gs://stack-labs-list/processing/df_orders') df_products=pd.read_parquet('gs://stack-labs-list/processing/df_products') df_sellers=pd.read_parquet('gs://stack-labs-list/processing/df_sellers') df_category_name=pd.read_parquet('gs://stack-labs-list/processing/df_category_name') #Executando merge df = df_orders.merge(df_order_items, on='order_id', how='left') df = df.merge(df_order_payments, on='order_id', how='outer', validate='m:m') df = df.merge(df_order_reviews, on='order_id', how='outer') df = df.merge(df_products, on='product_id', how='outer') df = df.merge(df_customer, on='customer_id', how='outer') df = df.merge(df_sellers, on='seller_id', how='outer') df['order_purchase_timestamp'] = pd.to_datetime(df['order_purchase_timestamp']).dt.date df1 = df.groupby('order_purchase_timestamp')['product_id'].count().reset_index() split_point = len(df1)-190 df_model = df1[0:split_point] validation = df1[split_point:] df_model = df_model[['order_purchase_timestamp', 'product_id']].rename(columns = {'order_purchase_timestamp': 'ds', 'product_id': 'y'}) validation = validation[['order_purchase_timestamp', 'product_id']].rename(columns = {'order_purchase_timestamp': 'ds', 'product_id': 'y'}) df_validation = pd.DataFrame({'ds': validation['ds']}) model = Prophet() model.fit(df_model) saida = model.predict(df_validation) rmse = sqrt(mean_squared_error(validation['y'], saida.yhat)) print('Test RMSE: %.3f' % rmse) future = model.make_future_dataframe(periods=50, freq='M') forecast = model.predict(future) def transformar_estado(valor): if valor == 'AC': return 'Norte' elif valor == 'AP': return 'Norte' elif valor == 'AM': return 'Norte' elif valor == 'PA': return 'Norte' elif valor == 'RO': return 'Norte' elif valor == 'RR': return 'Norte' elif valor == 'TO': return 'Norte' elif valor == 'AL': return 'Nordeste' elif valor == 'BA': return 'Nordeste' elif valor == 'CE': return 'Nordeste' elif valor == 'MA': return 'Nordeste' elif valor == 'PB': return 'Nordeste' elif valor == 'PE': return 'Nordeste' elif valor == 'PI': return 'Nordeste' elif valor == 'RN': return 'Nordeste' elif valor == 'SE': return 'Nordeste' elif valor == 'DF': return 'Centro-Oeste' elif valor == 'GO': return 'Centro-Oeste' elif valor == 'MT': return 'Centro-Oeste' elif valor == 'MS': return 'Centro-Oeste' elif valor == 'ES': return 'Sudeste' elif valor == 'RJ': return 'Sudeste' elif valor == 'MG': return 'Sudeste' elif valor == 'SP': return 'Sudeste' else: return 'Sul' df['customer_region'] = df['customer_state'].map(transformar_estado) df['seller_region'] = df['seller_state'].map(transformar_estado) df_region_1 = df[(df['customer_region'] == 'Nordeste') | (df['customer_region'] == 'Norte') | (df['customer_region'] == 'Centro-Oeste')] df_region_1['order_purchase_timestamp'] =
pd.to_datetime(df_region_1['order_purchase_timestamp'])
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Fri Nov 9 15:33:46 2018 @author: <NAME> """ import cantera as ct from .. import simulation as sim from ...cti_core import cti_processor as ctp import pandas as pd import numpy as np import time import copy import re import scipy.optimize class free_flame(sim.Simulation): '''child class of sim.Simulaton. Inherits all attributes and methods including __init__(). Also has internal init due to data requirements''' def __init__(self,pressure:float,temperature:float,observables:list, kineticSens:int,physicalSens:int,conditions:dict,thermalBoundary, processor:ctp.Processor=None,cti_path="", save_physSensHistories=0,moleFractionObservables:list=[], absorbanceObservables:list=[],concentrationObservables:list=[], fullParsedYamlFile:dict={},flame_width:float=1.0, save_timeHistories:int=0,T_profile=
pd.DataFrame(columns=['z','T'])
pandas.DataFrame
import os import random import sys import pandas as pd from ATM import welcome from Validate import validateDetails2, validateLogin filePath = r".\{}.csv".format("atm") if not os.path.isfile(filePath) or os.path.getsize(filePath) == 0: df = pd.DataFrame({"firstName": [], "lastName": [], "email": [], "address": [], "accountNumber": [], "password": [], "contact": []}) df.to_csv(filePath, index=False) def generateAccountNumber(): accountNumber = random.randrange(1000000000, 9999999999) boolAccount = validateDetails2(accountNumber=accountNumber) # Checks if account number has been used or not. if not boolAccount: # Recreates account number until un-used account generated generateAccountNumber() print("Account number Validated!") return accountNumber # Returns generated un-used account number. def register(): # To register, we need Name, Email, Account number, Password, Address, contact print("\n" + "-" * 15 + "REGISTRATION" + "-" * 15) welcomePrompt = "\nTake a few minutes to register an account with us.\n" \ "Please fill the following details as accurately as possible\n" print(welcomePrompt) firstName = input("Enter your First name: ") lastName = input("Enter your Last name: ") email = input("Enter your Email Address: ") address = input("Enter your Home Address: ") while True: # Get contact until up to 11 digits is entered contact = input("Enter your Phone number: ") if len(contact) == 11: break else: print("Incorrect Phone number, try again.") boolValue = validateDetails2(contact=contact, email=email) # Check if details exist if boolValue: print("\nGenerating Account Number...") accountNumber = str(generateAccountNumber()) print("Your Account Number is", accountNumber) while True: password = input("Enter password (must be 8 digits or more): ") if len(password) >= 8: break print("\nPlease take note of your account number and password.\n") registration = {"firstName": firstName, "lastName": lastName, "email": email, "address": address, "accountNumber": accountNumber, "password": password, "contact": contact, "Balance": 0} data =
pd.read_csv(filePath, dtype=str)
pandas.read_csv
import argparse from typing import List import pandas as pd from datetime import datetime, timedelta from gamestonk_terminal.government import quiverquant_model from matplotlib import pyplot as plt import matplotlib.dates as mdates from gamestonk_terminal.helper_funcs import ( parse_known_args_and_warn, check_positive, plot_autoscale, ) from gamestonk_terminal.config_plot import PLOT_DPI from gamestonk_terminal import feature_flags as gtff def last_congress(other_args: List[str]): """Last congress trading Parameters ---------- other_args : List[str] Command line arguments to be processed with argparse """ parser = argparse.ArgumentParser( add_help=False, prog="last_congress", description=""" Last congress trading. [Source: www.quiverquant.com] """, ) parser.add_argument( "-p", "--past_transactions_days", action="store", dest="past_transactions_days", type=check_positive, default=5, help="Past transaction days", ) parser.add_argument( "-r", "--representative", action="store", dest="representative", type=str, default="", help="Congress representative", ) try: if other_args: if "-" not in other_args[0]: other_args.insert(0, "-p") ns_parser = parse_known_args_and_warn(parser, other_args) if not ns_parser: return df_congress = quiverquant_model.get_congress_trading() if df_congress.empty: print("No congress trading data found\n") return df_congress = df_congress.sort_values("TransactionDate", ascending=False) df_congress = df_congress[ df_congress["TransactionDate"].isin( df_congress["TransactionDate"].unique()[ : ns_parser.past_transactions_days ] ) ] df_congress = df_congress[ [ "TransactionDate", "Ticker", "Representative", "Transaction", "House", "Range", "ReportDate", ] ].rename( columns={"TransactionDate": "Transaction Date", "ReportDate": "Report Date"} ) if ns_parser.representative: df_congress_rep = df_congress[ df_congress["Representative"].str.split().str[0] == ns_parser.representative ] if df_congress_rep.empty: print( f"No representative {ns_parser.representative} found in the past {ns_parser.past_transactions_days}" f" days. The following are available: " f"{', '.join(df_congress['Representative'].str.split().str[0].unique())}" ) else: print(df_congress_rep.to_string(index=False)) else: print(df_congress.to_string(index=False)) print("") except Exception as e: print(e, "\n") def buy_congress(other_args: List[str]): """Top buy congress trading Parameters ---------- other_args : List[str] Command line arguments to be processed with argparse """ parser = argparse.ArgumentParser( add_help=False, prog="buy_congress", description=""" Top buy congress trading. [Source: www.quiverquant.com] """, ) parser.add_argument( "-p", "--past_transactions_months", action="store", dest="past_transactions_months", type=check_positive, default=6, help="Past transaction months", ) parser.add_argument( "-t", "--top", action="store", dest="top_num", type=check_positive, default=10, help="Number of top tickers", ) try: ns_parser = parse_known_args_and_warn(parser, other_args) if not ns_parser: return df_congress = quiverquant_model.get_congress_trading() if df_congress.empty: print("No congress trading data found\n") return df_congress = df_congress.sort_values("TransactionDate", ascending=False) start_date = datetime.now() - timedelta( days=ns_parser.past_transactions_months * 30 ) df_congress["TransactionDate"] = pd.to_datetime(df_congress["TransactionDate"]) df_congress = df_congress[df_congress["TransactionDate"] > start_date].dropna() df_congress["min"] = df_congress["Range"].apply( lambda x: x.split("-")[0].strip("$").replace(",", "").strip() ) df_congress["max"] = df_congress["Range"].apply( lambda x: x.split("-")[1].replace(",", "").strip().strip("$") if "-" in x else x.strip("$").replace(",", "") ) df_congress["lower"] = df_congress[["min", "max", "Transaction"]].apply( lambda x: float(x["min"]) if x["Transaction"] == "Purchase" else -float(x["max"]), axis=1, ) df_congress["upper"] = df_congress[["min", "max", "Transaction"]].apply( lambda x: float(x["max"]) if x["Transaction"] == "Purchase" else -float(x["min"]), axis=1, ) df_congress = df_congress.sort_values("TransactionDate", ascending=True) plt.figure(figsize=plot_autoscale(), dpi=PLOT_DPI) df_congress.groupby("Ticker")["upper"].sum().sort_values(ascending=False).head( n=ns_parser.top_num ).plot(kind="bar", rot=0) plt.ylabel("Amount [$]") plt.title( f"Top {ns_parser.top_num} most bought stocks since last {ns_parser.past_transactions_months} " "months (upper bound)" ) plt.gcf().axes[0].yaxis.get_major_formatter().set_scientific(False) if gtff.USE_ION: plt.ion() plt.show() print("") except Exception as e: print(e, "\n") def sell_congress(other_args: List[str]): """Top sell congress trading Parameters ---------- other_args : List[str] Command line arguments to be processed with argparse """ parser = argparse.ArgumentParser( add_help=False, prog="sell_congress", description=""" Top sell congress trading. [Source: www.quiverquant.com] """, ) parser.add_argument( "-p", "--past_transactions_months", action="store", dest="past_transactions_months", type=check_positive, default=6, help="Past transaction months", ) parser.add_argument( "-t", "--top", action="store", dest="top_num", type=check_positive, default=10, help="Number of top tickers", ) try: ns_parser = parse_known_args_and_warn(parser, other_args) if not ns_parser: return df_congress = quiverquant_model.get_congress_trading() if df_congress.empty: print("No congress trading data found\n") return df_congress = df_congress.sort_values("TransactionDate", ascending=False) start_date = datetime.now() - timedelta( days=ns_parser.past_transactions_months * 30 ) df_congress["TransactionDate"] = pd.to_datetime(df_congress["TransactionDate"]) df_congress = df_congress[df_congress["TransactionDate"] > start_date].dropna() df_congress["min"] = df_congress["Range"].apply( lambda x: x.split("-")[0].strip("$").replace(",", "").strip() ) df_congress["max"] = df_congress["Range"].apply( lambda x: x.split("-")[1].replace(",", "").strip().strip("$") if "-" in x else x.strip("$").replace(",", "") ) df_congress["lower"] = df_congress[["min", "max", "Transaction"]].apply( lambda x: float(x["min"]) if x["Transaction"] == "Purchase" else -float(x["max"]), axis=1, ) df_congress["upper"] = df_congress[["min", "max", "Transaction"]].apply( lambda x: float(x["max"]) if x["Transaction"] == "Purchase" else -float(x["min"]), axis=1, ) df_congress = df_congress.sort_values("TransactionDate", ascending=True) plt.figure(figsize=plot_autoscale(), dpi=PLOT_DPI) df_congress.groupby("Ticker")["lower"].sum().sort_values().abs().head( n=ns_parser.top_num ).plot(kind="bar", rot=0) plt.ylabel("Amount [$]") plt.title( f"Top {ns_parser.top_num} most sold stocks since last {ns_parser.past_transactions_months} months" " (upper bound)" ) plt.gcf().axes[0].yaxis.get_major_formatter().set_scientific(False) if gtff.USE_ION: plt.ion() plt.show() print("") except Exception as e: print(e, "\n") def plot_congress(congress: pd.DataFrame, ticker: str): """Plot congress trading Parameters ---------- other_args : List[str] Command line arguments to be processed with argparse ticker: str Ticker to plot congress trading """ plt.figure(figsize=plot_autoscale(), dpi=PLOT_DPI) plt.gca().fill_between( congress["TransactionDate"].unique(), congress.groupby("TransactionDate")["lower"].sum().values / 1000, congress.groupby("TransactionDate")["upper"].sum().values / 1000, ) plt.xlim( [congress["TransactionDate"].values[0], congress["TransactionDate"].values[-1]] ) plt.grid() plt.title(f"Congress trading on {ticker}") plt.xlabel("Date") plt.ylabel("Amount [1k $]") plt.gca().xaxis.set_major_formatter(mdates.DateFormatter("%Y/%m/%d")) plt.gcf().autofmt_xdate() if gtff.USE_ION: plt.ion() plt.show() def congress(other_args: List[str], ticker: str): """Congress trading Parameters ---------- other_args : List[str] Command line arguments to be processed with argparse ticker: str Ticker to get congress trading data from """ parser = argparse.ArgumentParser( add_help=False, prog="congress", description=""" Congress trading. [Source: www.quiverquant.com] """, ) parser.add_argument( "-p", "--past_transactions_months", action="store", dest="past_transactions_months", type=check_positive, default=6, help="Past transaction months", ) try: if other_args: if "-" not in other_args[0]: other_args.insert(0, "-p") ns_parser = parse_known_args_and_warn(parser, other_args) if not ns_parser: return df_congress = quiverquant_model.get_congress_trading(ticker) if df_congress.empty: print("No congress trading data found\n") return df_congress = df_congress.sort_values("TransactionDate", ascending=False) start_date = datetime.now() - timedelta( days=ns_parser.past_transactions_months * 30 ) df_congress["TransactionDate"] =
pd.to_datetime(df_congress["TransactionDate"])
pandas.to_datetime
import pandas as pd import logging import numpy as np import collections import configparser import shutil import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.dates as mdates import requests import io from astropy.io import fits from astropy.time import Time from pathlib import Path from matplotlib.backends.backend_pdf import PdfPages import sphere import sphere.utils as utils import sphere.toolbox as toolbox _log = logging.getLogger(__name__) # WFS wavelength wave_wfs = 500e-9 class Reduction(object): ''' SPHERE/SPARTA dataset reduction class The analysis and plotting code of this class was originally developed by <NAME> (ESO/IPAG) and based on SAXO tools from Jean-<NAME> (ONERA). See: https://github.com/jmilou/sparta for the code from <NAME>. ''' ################################################## # Class variables ################################################## # specify for each recipe which other recipes need to have been executed before recipe_requirements = collections.OrderedDict([ ('sort_files', []), ('sph_sparta_dtts', ['sort_files']), ('sph_sparta_wfs_parameters', ['sort_files']), ('sph_sparta_atmospheric_parameters', ['sort_files']), ('sph_query_databases', ['sort_files']), ('sph_sparta_plot', ['sort_files', 'sph_sparta_dtts', 'sph_sparta_wfs_parameters', 'sph_sparta_atmospheric_parameters']), ('sph_sparta_clean', []) ]) ################################################## # Constructor ################################################## def __new__(cls, path, log_level='info', sphere_handler=None): ''' Custom instantiation for the class The customized instantiation enables to check that the provided path is a valid reduction path. If not, None will be returned for the reduction being created. Otherwise, an instance is created and returned at the end. Parameters ---------- path : str Path to the directory containing the dataset level : {'debug', 'info', 'warning', 'error', 'critical'} The log level of the handler sphere_handler : log handler Higher-level SPHERE.Dataset log handler ''' # # make sure we are dealing with a proper reduction directory # # init path path = Path(path).expanduser().resolve() # zeroth-order reduction validation raw = path / 'raw' if not raw.exists(): _log.error('No raw/ subdirectory. {0} is not a valid reduction path'.format(path)) return None else: reduction = super(Reduction, cls).__new__(cls) # # basic init # # init path reduction._path = utils.ReductionPath(path) # instrument and mode reduction._instrument = 'SPARTA' # # logging # logger = logging.getLogger(str(path)) logger.setLevel(log_level.upper()) if logger.hasHandlers(): for hdlr in logger.handlers: logger.removeHandler(hdlr) handler = logging.FileHandler(reduction._path.products / 'reduction.log', mode='w', encoding='utf-8') formatter = logging.Formatter('%(asctime)s\t%(levelname)8s\t%(message)s') formatter.default_msec_format = '%s.%03d' handler.setFormatter(formatter) logger.addHandler(handler) if sphere_handler: logger.addHandler(sphere_handler) reduction._logger = logger reduction._logger.info('Creating SPARTA reduction at path {}'.format(path)) # # configuration # reduction._logger.debug('> read default configuration') configfile = f'{Path(sphere.__file__).parent}/instruments/{reduction._instrument}.ini' config = configparser.ConfigParser() reduction._logger.debug('Read configuration') config.read(configfile) # reduction parameters reduction._config = dict(config.items('reduction')) for key, value in reduction._config.items(): try: val = eval(value) except NameError: val = value reduction._config[key] = val # # reduction and recipe status # reduction._status = sphere.INIT reduction._recipes_status = collections.OrderedDict() for recipe in reduction.recipe_requirements.keys(): reduction._update_recipe_status(recipe, sphere.NOTSET) # reload any existing data frames reduction._read_info() reduction._logger.warning('#########################################################') reduction._logger.warning('# WARNING! #') reduction._logger.warning('# Support for SPARTA files is preliminary. The current #') reduction._logger.warning('# format of product files may change in future versions #') reduction._logger.warning('# of the pipeline until an appropriate format is found. #') reduction._logger.warning('# Please do not blindly rely on the current format. #') reduction._logger.warning('#########################################################') # # return instance # return reduction ################################################## # Representation ################################################## def __repr__(self): return '<Reduction, instrument={}, path={}, log={}>'.format(self._instrument, self._path, self.loglevel) def __format__(self): return self.__repr__() ################################################## # Properties ################################################## @property def loglevel(self): return logging.getLevelName(self._logger.level) @loglevel.setter def loglevel(self, level): self._logger.setLevel(level.upper()) @property def instrument(self): return self._instrument @property def path(self): return self._path @property def files_info(self): return self._files_info @property def dtts_info(self): return self._dtts_info @property def visloop_info(self): return self._visloop_info @property def irloop_info(self): return self._irloop_info @property def atmospheric_info(self): return self._atmos_info @property def recipe_status(self): return self._recipes_status @property def config(self): return self._config @property def status(self): return self._status ################################################## # Private methods ################################################## def _read_info(self): ''' Read the files, calibs and frames information from disk files_info : dataframe The data frame with all the information on files This function is not supposed to be called directly by the user. ''' self._logger.info('Read existing reduction information') # path path = self.path # files info fname = path.preproc / 'files.csv' if fname.exists(): self._logger.debug('> read files.csv') files_info = pd.read_csv(fname, index_col=0) # convert times files_info['DATE-OBS'] = pd.to_datetime(files_info['DATE-OBS'], utc=False) files_info['DATE'] = pd.to_datetime(files_info['DATE'], utc=False) # update recipe execution self._update_recipe_status('sort_files', sphere.SUCCESS) else: files_info = None # DTTS info fname = path.products / 'dtts_frames.csv' if fname.exists(): self._logger.debug('> read dtts_frames.csv') dtts_info = pd.read_csv(fname, index_col=0) # convert times dtts_info['DATE-OBS'] = pd.to_datetime(dtts_info['DATE-OBS'], utc=False) dtts_info['DATE'] = pd.to_datetime(dtts_info['DATE'], utc=False) dtts_info['TIME'] =
pd.to_datetime(dtts_info['TIME'], utc=False)
pandas.to_datetime
""" Code Contributed by -- <NAME> """ import re import pandas as pd # script generates a new data file that contains all the data cleaned datas =
pd.read_csv("data.csv")
pandas.read_csv
# -*- coding: utf-8 -*- import os import pandas as pd import camelot from test_data import * testdir = os.path.dirname(os.path.abspath(__file__)) testdir = os.path.join(testdir, "files") def test_stream(): pass def test_stream_table_rotated(): df = pd.DataFrame(data_stream_table_rotated) filename = os.path.join(testdir, "clockwise_table_2.pdf") tables = camelot.read_pdf(filename, flavor="stream") assert df.equals(tables[0].df) filename = os.path.join(testdir, "anticlockwise_table_2.pdf") tables = camelot.read_pdf(filename, flavor="stream") assert df.equals(tables[0].df) def test_stream_table_area(): df = pd.DataFrame(data_stream_table_area_single) filename = os.path.join(testdir, "tabula/us-007.pdf") tables = camelot.read_pdf(filename, flavor="stream", table_area=["320,500,573,335"]) assert df.equals(tables[0].df) def test_stream_columns(): df = pd.DataFrame(data_stream_columns) filename = os.path.join(testdir, "mexican_towns.pdf") tables = camelot.read_pdf( filename, flavor="stream", columns=["67,180,230,425,475"], row_close_tol=10) assert df.equals(tables[0].df) def test_lattice(): df =
pd.DataFrame(data_lattice)
pandas.DataFrame
import dash from dash.dependencies import Input, Output, State import dash_core_components as dcc import dash_html_components as html import dash_table_experiments as dt import json import pandas as pd import numpy as np import colorlover as cl import plotly import os import pdb import itertools app = dash.Dash() app.scripts.config.serve_locally = True profile_file = os.path.expanduser("~/.snap/profile.pkl") profiles =
pd.read_pickle(profile_file)
pandas.read_pickle
# -*- coding: utf-8 -*- """ Bridge to the pandas library. :copyright: Copyright 2014-2016 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division, print_function, unicode_literals import numpy as np import pandas as pd import quantities as pq from elephant.neo_tools import (extract_neo_attrs, get_all_epochs, get_all_events, get_all_spiketrains) def _multiindex_from_dict(inds): """Given a dictionary, return a `pandas.MultiIndex`. Parameters ---------- inds : dict A dictionary where the keys are annotations or attribute names and the values are the corresponding annotation or attribute value. Returns ------- pandas MultiIndex """ names, indexes = zip(*sorted(inds.items())) return pd.MultiIndex.from_tuples([indexes], names=names) def _sort_inds(obj, axis=0): """Put the indexes and index levels of a pandas object in sorted order. Paramters --------- obj : pandas Series, DataFrame, Panel, or Panel4D The object whose indexes should be sorted. axis : int, list, optional, 'all' The axis whose indexes should be sorted. Default is 0. Can also be a list of indexes, in which case all of those axes are sorted. If 'all', sort all indexes. Returns ------- pandas Series, DataFrame, Panel, or Panel4D A copy of the object with indexes sorted. Indexes are sorted in-place. """ if axis == 'all': return _sort_inds(obj, axis=range(obj.ndim)) if hasattr(axis, '__iter__'): for iax in axis: obj = _sort_inds(obj, iax) return obj obj = obj.reorder_levels(sorted(obj.axes[axis].names), axis=axis) return obj.sortlevel(0, axis=axis, sort_remaining=True) def _extract_neo_attrs_safe(obj, parents=True, child_first=True): """Given a neo object, return a dictionary of attributes and annotations. This is done in a manner that is safe for `pandas` indexes. Parameters ---------- obj : neo object parents : bool, optional Also include attributes and annotations from parent neo objects (if any). child_first : bool, optional If True (default True), values of child attributes are used over parent attributes in the event of a name conflict. If False, parent attributes are used. This parameter does nothing if `parents` is False. Returns ------- dict A dictionary where the keys are annotations or attribute names and the values are the corresponding annotation or attribute value. """ res = extract_neo_attrs(obj, skip_array=True, skip_none=True, parents=parents, child_first=child_first) for key, value in res.items(): res[key] = _convert_value_safe(value) key2 = _convert_value_safe(key) if key2 is not key: res[key2] = res.pop(key) return res def _convert_value_safe(value): """Convert `neo` values to a value compatible with `pandas`. Some types and dtypes used with neo are not safe to use with pandas in some or all situations. `quantities.Quantity` don't follow the normal python rule that values with that are equal should have the same hash, making it fundamentally incompatible with `pandas`. On python 3, `pandas` coerces `S` dtypes to bytes, which are not always safe to use. Parameters ---------- value : any Value to convert (if it has any known issues). Returns ------- any `value` or a version of value with potential problems fixed. """ if hasattr(value, 'dimensionality'): return (value.magnitude.tolist(), str(value.dimensionality)) if hasattr(value, 'dtype') and value.dtype.kind == 'S': return value.astype('U').tolist() if hasattr(value, 'tolist'): return value.tolist() if hasattr(value, 'decode') and not hasattr(value, 'encode'): return value.decode('UTF8') return value def spiketrain_to_dataframe(spiketrain, parents=True, child_first=True): """Convert a `neo.SpikeTrain` to a `pandas.DataFrame`. The `pandas.DataFrame` object has a single column, with each element being the spike time converted to a `float` value in seconds. The column heading is a `pandas.MultiIndex` with one index for each of the scalar attributes and annotations. The `index` is the spike number. Parameters ---------- spiketrain : neo SpikeTrain The SpikeTrain to convert. parents : bool, optional Also include attributes and annotations from parent neo objects (if any). Returns ------- pandas DataFrame A DataFrame containing the spike times from `spiketrain`. Notes ----- The index name is `spike_number`. Attributes that contain non-scalar values are skipped. So are annotations or attributes containing a value of `None`. `quantity.Quantities` types are incompatible with `pandas`, so attributes and annotations of that type are converted to a tuple where the first element is the scalar value and the second is the string representation of the units. """ attrs = _extract_neo_attrs_safe(spiketrain, parents=parents, child_first=child_first) columns = _multiindex_from_dict(attrs) times = spiketrain.magnitude times = pq.Quantity(times, spiketrain.units).rescale('s').magnitude times = times[np.newaxis].T index = pd.Index(np.arange(len(spiketrain)), name='spike_number') pdobj = pd.DataFrame(times, index=index, columns=columns) return _sort_inds(pdobj, axis=1) def event_to_dataframe(event, parents=True, child_first=True): """Convert a `neo.core.Event` to a `pandas.DataFrame`. The `pandas.DataFrame` object has a single column, with each element being the event label from the `event.label` attribute. The column heading is a `pandas.MultiIndex` with one index for each of the scalar attributes and annotations. The `index` is the time stamp from the `event.times` attribute. Parameters ---------- event : neo Event The Event to convert. parents : bool, optional Also include attributes and annotations from parent neo objects (if any). child_first : bool, optional If True (default True), values of child attributes are used over parent attributes in the event of a name conflict. If False, parent attributes are used. This parameter does nothing if `parents` is False. Returns ------- pandas DataFrame A DataFrame containing the labels from `event`. Notes ----- If the length of event.times and event.labels are not the same, the longer will be truncated to the length of the shorter. The index name is `times`. Attributes that contain non-scalar values are skipped. So are annotations or attributes containing a value of `None`. `quantity.Quantities` types are incompatible with `pandas`, so attributes and annotations of that type are converted to a tuple where the first element is the scalar value and the second is the string representation of the units. """ attrs = _extract_neo_attrs_safe(event, parents=parents, child_first=child_first) columns = _multiindex_from_dict(attrs) times = event.times.rescale('s').magnitude labels = event.labels.astype('U') times = times[:len(labels)] labels = labels[:len(times)] index =
pd.Index(times, name='times')
pandas.Index
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/3/18 17:03 Desc: 英为财情-股票指数-全球股指与期货指数数据接口 https://cn.investing.com/indices/volatility-s-p-500-historical-data """ import re import pandas as pd from bs4 import BeautifulSoup from akshare.index.cons import short_headers, long_headers from akshare.utils.ak_session import session def _get_global_index_country_name_url() -> dict: """ 全球指数-各国的全球指数数据 https://cn.investing.com/indices/global-indices?majorIndices=on&primarySectors=on&bonds=on&additionalIndices=on&otherIndices=on&c_id=37 :return: 国家和代码 :rtype: dict """ url = "https://cn.investing.com/indices/global-indices" params = { "majorIndices": "on", "primarySectors": "on", "bonds": "on", "additionalIndices": "on", "otherIndices": "on", } r = session.get(url, params=params, headers=short_headers) data_text = r.text soup = BeautifulSoup(data_text, "lxml") name_url_option_list = soup.find_all("option")[1:] url_list = [ item["value"] for item in name_url_option_list if "c_id" in item["value"] ] url_list_code = [ item["value"].split("?")[1].split("=")[1] for item in name_url_option_list if "c_id" in item["value"] ] name_list = [item.get_text() for item in name_url_option_list][ : len(url_list) ] _temp_df = pd.DataFrame([name_list, url_list_code]).T name_code_list = dict(zip(_temp_df.iloc[:, 0], _temp_df.iloc[:, 1])) return name_code_list def _get_global_country_name_url() -> dict: """ 可获得指数数据国家对应的 URL :return: URL :rtype: dict """ url = "https://cn.investing.com/indices/" res = session.post(url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") name_url_option_list = soup.find( "select", attrs={"name": "country"} ).find_all("option")[ 1: ] # 去掉-所有国家及地区 url_list = [item["value"] for item in name_url_option_list] name_list = [item.get_text() for item in name_url_option_list] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, url_list)) return name_code_map_dict def index_investing_global_country_name_url(country: str = "中国") -> dict: """ 参考网页: https://cn.investing.com/indices/ 获取选择国家对应的: 主要指数, 主要行业, 附加指数, 其他指数 :param country: str 中文国家名称, 对应 get_global_country_name_url 函数返回的国家名称 :return: dict """ pd.set_option("mode.chained_assignment", None) name_url_dict = _get_global_country_name_url() name_code_dict = _get_global_index_country_name_url() url = f"https://cn.investing.com{name_url_dict[country]}?&majorIndices=on&primarySectors=on&additionalIndices=on&otherIndices=on" res = session.post(url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") url_list = [ item.find("a")["href"] for item in soup.find_all(attrs={"class": "plusIconTd"}) ] name_list = [ item.find("a").get_text() for item in soup.find_all(attrs={"class": "plusIconTd"}) ] name_code_map_dict = {} name_code_map_dict.update(zip(name_list, url_list)) url = "https://cn.investing.com/indices/global-indices" params = { "majorIndices": "on", "primarySectors": "on", "bonds": "on", "additionalIndices": "on", "otherIndices": "on", "c_id": name_code_dict[country], } r = session.get(url, params=params, headers=short_headers) data_text = r.text soup = BeautifulSoup(data_text, "lxml") soup_list = soup.find("table", attrs={"id": "cr_12"}).find_all("a") global_index_url = [item["href"] for item in soup_list] global_index_name = [item["title"] for item in soup_list] name_code_map_dict.update(zip(global_index_name, global_index_url)) return name_code_map_dict def index_investing_global( country: str = "美国", index_name: str = "纳斯达克100", period: str = "每日", start_date: str = "20100101", end_date: str = "20211031", ) -> pd.DataFrame: """ 具体国家的具体指数的从 start_date 到 end_date 期间的数据 :param country: 对应函数中的国家名称 :type country: str :param index_name: 对应函数中的指数名称 :type index_name: str :param period: choice of {"每日", "每周", "每月"} :type period: str :param start_date: '2000-01-01', 注意格式 :type start_date: str :param end_date: '2019-10-17', 注意格式 :type end_date: str :return: 指定参数的数据 :rtype: pandas.DataFrame """ start_date = "/".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "/".join([end_date[:4], end_date[4:6], end_date[6:]]) period_map = {"每日": "Daily", "每周": "Weekly", "每月": "Monthly"} name_code_dict = index_investing_global_country_name_url(country) temp_url = f"https://cn.investing.com/{name_code_dict[index_name]}-historical-data" res = session.post(temp_url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") title = soup.find("h2", attrs={"class": "float_lang_base_1"}).get_text() res = session.post(temp_url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") data = soup.find_all(text=re.compile("window.histDataExcessInfo"))[ 0 ].strip() para_data = re.findall(r"\d+", data) payload = { "curr_id": para_data[0], "smlID": para_data[1], "header": title, "st_date": start_date, "end_date": end_date, "interval_sec": period_map[period], "sort_col": "date", "sort_ord": "DESC", "action": "historical_data", } url = "https://cn.investing.com/instruments/HistoricalDataAjax" res = session.post(url, data=payload, headers=long_headers) df_data = pd.read_html(res.text)[0] if period == "每月": df_data.index = pd.to_datetime(df_data["日期"], format="%Y年%m月") else: df_data.index = pd.to_datetime(df_data["日期"], format="%Y年%m月%d日") if any(df_data["交易量"].astype(str).str.contains("-")): df_data["交易量"][df_data["交易量"].str.contains("-")] = df_data["交易量"][ df_data["交易量"].str.contains("-") ].replace("-", 0) if any(df_data["交易量"].astype(str).str.contains("B")): df_data["交易量"][df_data["交易量"].str.contains("B").fillna(False)] = ( df_data["交易量"][df_data["交易量"].str.contains("B").fillna(False)] .str.replace("B", "") .str.replace(",", "") .astype(float) * 1000000000 ) if any(df_data["交易量"].astype(str).str.contains("M")): df_data["交易量"][df_data["交易量"].str.contains("M").fillna(False)] = ( df_data["交易量"][df_data["交易量"].str.contains("M").fillna(False)] .str.replace("M", "") .str.replace(",", "") .astype(float) * 1000000 ) if any(df_data["交易量"].astype(str).str.contains("K")): df_data["交易量"][df_data["交易量"].str.contains("K").fillna(False)] = ( df_data["交易量"][df_data["交易量"].str.contains("K").fillna(False)] .str.replace("K", "") .str.replace(",", "") .astype(float) * 1000 ) df_data["交易量"] = df_data["交易量"].astype(float) df_data = df_data[["收盘", "开盘", "高", "低", "交易量"]] df_data = df_data.astype(float) df_data.sort_index(inplace=True) df_data.reset_index(inplace=True) df_data["日期"] = pd.to_datetime(df_data["日期"]).dt.date return df_data def index_investing_global_from_url( url: str = "https://www.investing.com/indices/ftse-epra-nareit-eurozone", period: str = "每日", start_date: str = "20000101", end_date: str = "20210909", ) -> pd.DataFrame: """ 获得具体指数的从 start_date 到 end_date 期间的数据 https://www.investing.com/indices/ftse-epra-nareit-eurozone :param url: 具体数据链接 :type url: str :param period: choice of {"每日", "每周", "每月"} :type period: str :param start_date: '2000-01-01', 注意格式 :type start_date: str :param end_date: '2019-10-17', 注意格式 :type end_date: str :return: 指定参数的数据 :rtype: pandas.DataFrame """ start_date = "/".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "/".join([end_date[:4], end_date[4:6], end_date[6:]]) period_map = {"每日": "Daily", "每周": "Weekly", "每月": "Monthly"} url_name = url.split("/")[-1] temp_url = f"https://cn.investing.com/indices/{url_name}-historical-data" res = session.post(temp_url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") title = soup.find("h2", attrs={"class": "float_lang_base_1"}).get_text() res = session.post(temp_url, headers=short_headers) soup = BeautifulSoup(res.text, "lxml") data = soup.find_all(text=re.compile("window.histDataExcessInfo"))[ 0 ].strip() para_data = re.findall(r"\d+", data) payload = { "curr_id": para_data[0], "smlID": para_data[1], "header": title, "st_date": start_date, "end_date": end_date, "interval_sec": period_map[period], "sort_col": "date", "sort_ord": "DESC", "action": "historical_data", } url = "https://cn.investing.com/instruments/HistoricalDataAjax" res = session.post(url, data=payload, headers=long_headers) df_data =
pd.read_html(res.text)
pandas.read_html
import base64 import io import json from collections import namedtuple from datetime import date from typing import Union import pandas as pd from django.db.models import Q from apps.ecommerce.models import Order from ..organizations.models import Organization from ..organizations.permissions import check_user_membership from .models import Category, Event, SignUp DEFAULT_REPORT_FIELDS = { "signup_timestamp", "event_title", "user_first_name", "user_last_name", "signup_user_grade_year", "signup_user_email", "signup_user_phone_number", "user_allergies", "attendance_status", "order_timestamp", "has_paid", "order_id", "order_quantity", "order_total_price", } FiletypeSpec = namedtuple("FiletypeSpec", ["content_type", "extension"]) filetype_specs = { "xlsx": FiletypeSpec( content_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", extension="xlsx", ), "csv": FiletypeSpec(content_type="text/csv", extension="csv"), "html": FiletypeSpec(content_type="text/html", extension="html"), } class EventResolvers: def resolve_all_events(self, info, category=None, organization=None, start_time=None, end_time=None): """ Get all events that fit the given filters """ if category or organization or start_time or end_time: filteredEvents = Event.objects if start_time and end_time: filteredEvents = filteredEvents.filter(start_time__range=(start_time, end_time)) elif start_time: filteredEvents = filteredEvents.filter(start_time__gte=(start_time)) elif end_time: filteredEvents = filteredEvents.filter(start_time__lte=(end_time)) queries = [] kwargs = {} if category is not None: kwargs["category__name"] = category # For generalization, if more filters are added later new_kwargs = {f"{k}__icontains": v for k, v in kwargs.items()} queries = [Q(**{k: v}) for k, v in new_kwargs.items()] if organization: # for organizations, check if the organization argument corresponds to either queries.append( # the organization of the event itself and the parent organization (if it exists) Q(organization__name__icontains=organization) | Q(organization__parent__name__icontains=organization) ) return ( filteredEvents.filter(*queries) .filter(start_time__gte=date.today()) # Only show events that have yet to pass .order_by("start_time") ) return Event.objects.filter(start_time__gte=date.today()).order_by("start_time") def resolve_default_events(self, info): """ For each organization, get the most recent (future) event """ return Event.objects.filter(start_time__gte=date.today()).distinct("organization") def resolve_event(self, info, id): try: return Event.objects.get(id=id) except Event.DoesNotExist: return None def resolve_all_categories(self, info): return Category.objects.all() def resolve_category(self, info, id): try: return Category.objects.get(id=id) except Category.DoesNotExist: return None def resolve_attendee_report(self, info, event_id, fields=None, filetype="xlsx"): try: event = Event.objects.get(id=event_id) except Event.DoesNotExist: return None check_user_membership(info.context.user, event.organization) df = create_attendee_report([event_id], fields) file_basename = f"attendee_report__eventid_{event_id}" return wrap_attendee_report_as_json(df, file_basename, filetype) def resolve_attendee_reports(self, info, event_ids, fields=None, filetype="xlsx"): for event_id in event_ids: try: event = Event.objects.get(id=event_id) except Event.DoesNotExist: return None check_user_membership(info.context.user, event.organization) df = create_attendee_report(event_ids, fields) file_basename = f"attendee_report__eventid_{'|'.join(str(id_) for id_ in event_ids)}" return wrap_attendee_report_as_json(df, file_basename, filetype) def resolve_attendee_report_org(self, info, org_id, fields=None, filetype="xlsx"): try: org = Organization.objects.get(id=org_id) except Organization.DoesNotExist: return None check_user_membership(info.context.user, org) event_ids = Organization.objects.get(id=org_id).events.values_list("id", flat=True) df = create_attendee_report(event_ids, fields) file_basename = f"attendee_report__orgid_{org_id}" return wrap_attendee_report_as_json(df, file_basename, filetype) def resolve_sign_ups(self, info, event_id): try: event = Event.objects.get(id=event_id) except Event.DoesNotExist: return None check_user_membership(info.context.user, event.organization) return SignUp.objects.filter(event=event) def export_single_event(event_id: int, fields: Union[list[str], set[str]]) -> pd.DataFrame: event: Event = Event.objects.get(pk=event_id) attending_users = event.signed_up_users[: event.available_slots] wait_list = event.signed_up_users[event.available_slots :] sign_ups = SignUp.objects.filter(event_id=event_id, is_attending=True) df_users = pd.DataFrame( columns=[ "user_first_name", "user_last_name", "user_allergies", ] ) if attending_users.exists(): df_users_attending = pd.DataFrame(attending_users.values()).set_index("id").add_prefix("user_") df_users_attending["attendance_status"] = "ATTENDING" df_users = pd.concat([df_users, df_users_attending]) if wait_list.exists(): df_users_wait_list = pd.DataFrame(wait_list.values()).set_index("id").add_prefix("user_") df_users_wait_list["attendance_status"] = "WAIT LIST" df_users = pd.concat([df_users, df_users_wait_list]) if event.products.exists(): product = event.products.first() orders = Order.objects.filter(product=product) df_orders = pd.DataFrame(orders.values()).set_index("user_id").add_prefix("order_") df_users = df_users.join(df_orders) payment_successful = df_users["order_payment_status"] == Order.PaymentStatus.CAPTURED df_users["has_paid"] = payment_successful df_sign_ups = ( pd.DataFrame(sign_ups.order_by("timestamp").values()) .add_prefix("signup_") .rename(columns={"signup_event_id": "event_id", "signup_user_id": "user_id"}) ) df_joined = df_sign_ups.join(df_users, on="user_id").sort_values(["event_id", "user_id"]) df_joined["event_title"] = event.title if df_joined.empty: return pd.DataFrame() report_fields = list(DEFAULT_REPORT_FIELDS.intersection(df_joined.columns)) fields = set(fields).intersection(report_fields) if fields is not None else report_fields return df_joined.loc[:, report_fields].drop("password", errors="ignore", axis=1).loc[:, fields] def create_attendee_report(event_ids, fields): df = pd.DataFrame() for event_id in event_ids: df = pd.concat([df, export_single_event(event_id, fields)]) return df def wrap_attendee_report_as_json(df, file_basename, filetype): # Handle different content types if filetype == "xlsx": if "signup_timestamp" in df: df["signup_timestamp"] = df["signup_timestamp"].apply(lambda a: pd.to_datetime(a).tz_localize(None)) if "order_timestamp" in df: df["order_timestamp"] = df["order_timestamp"].apply(lambda a:
pd.to_datetime(a)
pandas.to_datetime
import collections import threading import gc import traceback import pandas as pd import numpy as np from optable.dataset import feature_types from optable import _core class Table(object): """avalble for only automl data frame """ def __init__(self, df, time_col=None, label_encoders={}, min_time=None): self.__df = df self.__time_col = time_col self.__min_time = min_time self.__cache = {} self.__pseudo_target = None self.__adversarial_true_count = None self.__adversarial_total_count = None self.__new_data = {} if self.__time_col is not None: time_data = self.__df[self.__time_col] time_data.index = range(len(time_data)) if min_time is None: raise ValueError("min_time is None") time_data = time_data - min_time time_data = time_data.astype(int).values time_data = time_data / 1e9 second_time_data = time_data.astype(int) minute_time_data = second_time_data // 60 hour_time_data = minute_time_data // 60 day_time_data = hour_time_data // 24 second_time_data = second_time_data.astype(np.float32) minute_time_data = minute_time_data.astype(np.float32) hour_time_data = hour_time_data.astype(np.float32) day_time_data = day_time_data.astype(np.float32) time_data = time_data.astype(np.float32) """ time_data[time_data < 0] = np.nan second_time_data[second_time_data < 0] = np.nan minute_time_data[minute_time_data < 0] = np.nan hour_time_data[hour_time_data < 0] = np.nan day_time_data[day_time_data < 0] = np.nan """ self.__time_data = time_data self.__second_time_data = second_time_data self.__minute_time_data = minute_time_data self.__hour_time_data = hour_time_data self.__day_time_data = day_time_data self.__sorted_time_index = \ np.argsort(time_data).astype(np.int32) else: self.__sorted_time_index = None self.__hist_time_data = None self.__ftypes = pd.Series( self.__automl_df_to_ftypes(), self.__df.dtypes.index) self.__label_encoders = label_encoders self.__tfidf_vectorizers = {} self.__preprocess() self.__ftypes = pd.Series( self.__automl_df_to_ftypes(), self.__df.dtypes.index) self.__nunique = pd.Series( [self.__df[col].nunique() for col in self.__df], self.__df.dtypes.index) self.__set_new_data_lock = threading.Lock() @property def ftypes(self): return self.__ftypes @property def df(self): return self.__df @property def sorted_time_index(self): return self.__sorted_time_index @property def time_data(self): return self.__time_data @property def second_time_data(self): return self.__second_time_data @property def minute_time_data(self): return self.__minute_time_data @property def hour_time_data(self): return self.__hour_time_data @property def day_time_data(self): return self.__day_time_data @property def has_time(self): if self.__time_col is None: return False return True def get_lightgbm_df(self, max_cat_nunique=30): columns = [] col_idx = [] cat_idx = [] idx = 0 lightgbm_feature_types = [ feature_types.numerical, feature_types.categorical, feature_types.mc_processed_numerical, feature_types.c_processed_numerical, feature_types.t_processed_numerical, feature_types.n_processed_categorical, feature_types.mc_processed_categorical, feature_types.c_processed_categorical, feature_types.t_processed_categorical, feature_types.aggregate_processed_numerical, feature_types.aggregate_processed_categorical ] cat_feature_types = [ feature_types.categorical, feature_types.aggregate_processed_categorical, feature_types.n_processed_categorical, feature_types.mc_processed_categorical, feature_types.c_processed_categorical, feature_types.t_processed_categorical, ] for col_i, col in enumerate(self.__df.columns): for ftype in lightgbm_feature_types: if col.startswith(ftype.prefix): if ftype in cat_feature_types: if self.__nunique[col] <= max_cat_nunique: cat_idx.append(idx) columns.append(col) col_idx.append(col_i) idx += 1 else: columns.append(col) col_idx.append(col_i) idx += 1 break return self.__df.take(col_idx, axis=1, is_copy=False), cat_idx def set_ftypes(self, ftypes): if isinstance(ftypes, list): self.__ftypes[:] = ftypes elif isinstance(ftypes, dict): for k in ftypes: self.__ftypes[k] = ftypes[k] @property def nunique(self): return self.__nunique def set_new_data(self, data, name): self.__set_new_data_lock.acquire() if name in self.__df.columns or name in self.__new_data: print("duplicated", name) try: self.__new_data[name] = data except Exception as e: print(name) traceback.print_exc() finally: self.__set_new_data_lock.release() @property def new_data_size(self): return len(self.__new_data) def get_new_data(self): cat_feature_types = [ feature_types.categorical, feature_types.aggregate_processed_categorical, feature_types.n_processed_categorical, feature_types.mc_processed_categorical, feature_types.c_processed_categorical, feature_types.t_processed_categorical, ] is_cat = [ feature_types.column_name_to_ftype(key) in cat_feature_types for key in self.__new_data] return [self.__new_data[key] for key in self.__new_data], is_cat def clear_new_data(self): self.__new_data = {} def confirm_new_data(self): new_df = pd.DataFrame(self.__new_data) for name in self.__new_data: prefix = "{}_".format(name.split("_")[0]) self.__ftypes[name] = feature_types.prefix_to_ftype[prefix] self.__nunique[name] = new_df[name].nunique() self.__new_data = {} gc.collect() self.__df = pd.concat([self.__df, new_df], axis=1) gc.collect() def test_concat(self, test_df): pass def __preprocess(self): cols_of_each_ftype = self.cols_of_each_ftype # numericalでnuniqueが低いものはcategoricalに """ if len(self.__df) > 1000: columns = self.__df.columns for col in columns: if self.__ftypes[col] == feature_types.numerical: if self.__df[col].nunique() <= 10: self.__df["{}{}".format( feature_types.categorical.prefix, col, )] = self.__df[col].astype(str) self.__df.drop(col, axis=1, inplace=True) print("numerical {} change to categorical".format(col)) self.__ftypes = pd.Series( self.__automl_df_to_ftypes(), self.__df.dtypes.index) """ import time new_data = {} columns = self.__df.columns for col in columns: start = time.time() if self.__ftypes[col] == feature_types.time: # Time preprocess self.__df[col] = pd.to_datetime(self.__df[col]) """ # time numericalize if self.__min_time is not None: self.__df["{}numericalized_{}".format( feature_types.t_processed_numerical.prefix, col, )] = ((self.__df[col] - self.__min_time).astype(int) / 1e9).astype(np.float32) else: self.__df["{}numericalized_{}".format( feature_types.t_processed_numerical.prefix, col, )] = (self.__df[col].astype(int) / 1e9).astype(np.float32) """ max_min_time_diff = self.__df[col].max() - self.__df[col].min() # time hour if max_min_time_diff > pd.Timedelta('2 hours'): new_data["{}hour_{}".format( feature_types.t_processed_numerical.prefix, col, )] = self.__df[col].dt.hour.values.astype(np.float32) # time year if max_min_time_diff > pd.Timedelta('500 days'): new_data["{}year_{}".format( feature_types.t_processed_numerical.prefix, col, )] = self.__df[col].dt.year.values.astype(np.float32) # time doy if max_min_time_diff > pd.Timedelta('100 days'): new_data["{}doy_{}".format( feature_types.t_processed_numerical.prefix, col, )] = self.__df[col].dt.dayofyear.values.astype(np.float32) # time dow if max_min_time_diff > pd.Timedelta('2 days'): new_data["{}dow_{}".format( feature_types.t_processed_numerical.prefix, col, )] = self.__df[col].dt.dayofweek.values.astype(np.float32) # weekend if max_min_time_diff > pd.Timedelta('2 days'): new_data["{}id_weekend_{}".format( feature_types.t_processed_categorical.prefix, col, )] = (self.__df[col].dt.dayofweek >= 5).astype(np.int32) # time zone if max_min_time_diff >
pd.Timedelta('8 hours')
pandas.Timedelta
from flask import Flask from flask import render_template from flask import request #from flask_wtf import CsrfProtect #this is what the video said, but it gives a warning, the one one line below works without warnings from flask_wtf import CSRFProtect import forms from flask import make_response #for the cookie from flask import session from flask import url_for from flask import redirect from flask import flash from flask import g #to allow global variables. They will be alive until the end of after_request, i.e. return response. #It will be used in only one petition. Two clients cannot share the same global variable. from config import DevelopmentConfig from models import db from models import userstest #name of the MODEL, not table to import #from models import Comment in CF from models import comments from helper import date_format from flask_mail import Mail from flask_mail import Message import threading #to send the emails in the background so the app is faster from flask import copy_current_request_context #after CF from models import vendors, rfielements_providers, rfielements_analysts, suitemodcatelem, vendors_rfi, suitemodules, suitemodcat, category_names, element_names, elementvariants, current_quarteryear, users #####Just for creating raw MySQL queries######## from sqlalchemy import create_engine eng = create_engine(DevelopmentConfig.SQLALCHEMY_DATABASE_URI) ################################################ import sys import urllib.parse #to encode urls import pandas as pd pd.set_option('display.expand_frame_repr', False) #just to make the print of pandas wider from sqlalchemy import desc, func, and_, or_ import json from helper import previous_quarter_year, next_quarter_year, last_self_score, last_sm_score import numpy as np from flask_admin import Admin from flask_admin.contrib.sqla import ModelView from flask_admin import BaseView, expose app = Flask(__name__) app.config.from_object(DevelopmentConfig) #here is where we decide if Development or Production. #before using config: #app.secret_key = 'my_secret_key' #though it is a good practice to use os.get() to get the secret key, and not write it in the code #before using config: #csrf = CsrfProtect(app) #after config #csrf = CsrfProtect() #now we do this at the end, in if __name__... #this is what the video said, but it gives a warning, the one one line below works without warnings #csrf = CSRFProtect() THIS WASN'T WORKING csrf = CSRFProtect(app) #from https://flask-wtf.readthedocs.io/en/stable/csrf.html mail = Mail() def send_email(user_email, username): #to know where to send it and write the username in the email msg = Message('Thank you for signing up!', #title of the email. sender = app.config['MAIL_USERNAME'], recipients = [user_email]) msg.html = render_template('email.html', username = username) mail.send(msg) #here we actually send the message @app.errorhandler(404) def page_not_found(e): #anything works, not only an 'e' return render_template('404.html'), 404 #flask doesn't send the error number, we have to do it. @app.before_request #we use this to validate , like if the user has permission to access that url, or even if we need a visit counter to that url, def before_request(): if 'username' not in session: print (request.endpoint) #this gives you the last part of the url print ('User needs to log in!') #validate the url...validate if the user is authenticated, let's imagine we want to make 'comment' only accessible to authenticated users if 'username' not in session and request.endpoint in ['comment']: return redirect(url_for('login')) elif 'username' in session and request.endpoint in ['login', 'create']: #why an authenticated user would go to login or create, let's send him/her to index return redirect(url_for('index')) #the function index, not the route. g.test = 'test' #here we create the global variables. ?I guess we could pull all of one vendor's data here?? @app.route('/') def index(): ''' #we are reading cookies here #custome_cookie = request.cookies.get('custome_cookie') this would receive the custome_cookie we created and sent ('Eduardo') custome_cookie = request.cookies.get('custome_cookies', 'Undefined') #this does: if you don't find custome_cookie within custome_cookies, it returns undefined print (custome_cookie) ''' if 'username' in session: #session is our sessions dictionary username = session['username'] title = "Index" return render_template('index.html', title = title) @app.route('/logout') #here we destroy the cookies def logout(): if 'username' in session: session.pop('username') #destroy cookie return redirect(url_for('login')) # to redirect, using url_for we type the function name, not the path, so just 'login', no /asddad/adad/login @app.route('/login', methods = ['GET', 'POST']) def login(): login_form = forms.LoginForm(request.form) if request.method == 'POST' and login_form.validate(): username = login_form.username.data password = login_form.password.data user = userstest.query.filter_by(username = username).first() #select * from users where username = username limit 1. It returns an object with the information of the user. If not found, it will return a None if user is not None and user.verify_password(password): success_message = 'Welcome {}'.format(username) flash(success_message) session['username'] = username session['user_id'] = user.id return redirect( url_for('index') ) else: error_message = 'Invalid username or password' flash(error_message) #after a;dding session['username'] = username a few lines above, isn't this one left over? #session['username'] = login_form.username.data #a session variable called username will be created each time whose value is the own username return render_template('login.html', form = login_form) @app.route('/cookie') def cookie(): #we are creating cookies here response = make_response( render_template('cookie.html')) response.set_cookie('custome_cookie', 'Eduardo') return response #by default in flask, only method GET, we have to specify POST @app.route('/comment', methods = ['GET', 'POST']) def comment(): comment_form = forms.CommentForm(request.form) if request.method == 'POST' and comment_form.validate(): #to validate forms inputs. We also had to add it in _macro.html, in the list {{field.errors}} '''print(comment_form.username.data) print(comment_form.email.data) print(comment_form.comment.data) else: print ("Error in the form!!")''' user_id = session['user_id'] #since we work with cookies, this is the way to get the user_id comment = comments(user_id = user_id, text = comment_form.comment.data) print(comment) db.session.add(comment) db.session.commit() success_message = "New comment created" flash(success_message) title = "Flask Course" return render_template('comment.html', title = title, comment_form = comment_form) @app.route('/create', methods = ['GET', 'POST']) def create(): create_form = forms.CreateForm(request.form) if request.method == 'POST' and create_form.validate(): user = userstest(create_form.username.data, create_form.password.data, create_form.email.data) db.session.add(user) #this needs an objects heredated from model, like user db.session.commit() #here we insert it in the database #SQLAlchemy is clever enough to know hwo to open and close connections, so we don't have to worry about that if we wrtie those two lines. @copy_current_request_context #this is like the bridge to send the email in the background.. def send_message(email,username): send_email(email, username) sender = threading.Thread(name='mail_sender', target = send_message, args = (user.email, user.username)) #arguments of the function that sends the email. sender.start() success_message = 'User registered in the database' flash(success_message) return render_template('create.html', form = create_form) @app.route('/reviews/', methods=['GET']) @app.route('/reviews/<int:page>', methods = ['GET']) #we have to write it twice to make pages def reviews(page = 1): # =1 is only the default value, so /reviews/ and /reviews/1 is the same per_page = 1000 comment_list = comments.query.join(userstest).add_columns( userstest.username, #the model, not the table comments.text, comments.created_date).paginate(page,per_page,True) #(page, rows per page, if True=404, if False: empty) return render_template('reviews.html', comments = comment_list, date_format = date_format) #we send the function as a parameter @app.after_request def after_request(response): return response #always return response @app.route('/rfi/', methods=['GET']) @app.route('/rfi/<vendor_name>/', methods=['GET'], defaults={ 'module_name' : None}) @app.route('/rfi/<vendor_name>/<module_name>/', methods=['GET', 'POST']) def rfi(vendor_name, module_name): vendorid = vendors.query.filter_by(vendor_name = vendor_name).add_columns(vendors.vendorid).first()[1] current_quarter = current_quarteryear.query.add_columns(current_quarteryear.quarter).first()[1] current_year = current_quarteryear.query.add_columns(current_quarteryear.year).first()[1] print('current quarter:', current_quarter, current_year) if module_name is None: title = vendor_name ''' This commented block pulled every module a vendor had participated looking at rfielements, but it's better doing it through the table vendors_rfi smce_ids_list_raw = rfielements.query.filter_by(vendor_id = vendorid).add_columns(rfielements.smce_id).all() smce_ids_list = set() for item in smce_ids_list_raw: smce_ids_list.add(item[1]) module_ids_list_raw = suitemodcatelem.query.filter(suitemodcatelem.smceid.in_(smce_ids_list)).add_columns(suitemodcatelem.module_id).all() module_ids_list = set() for item in module_ids_list_raw: module_ids_list.add(item[1]) module_ids_list = sorted(module_ids_list) print(module_ids_list) module_names_raw = modules.query.filter(modules.moduleid.in_(module_ids_list)).add_columns(modules.module_name).all() module_names = [] for item in module_names_raw: module_names.append(item[1]) print(module_names) ''' suitemod_ids_raw = vendors_rfi.query.filter_by(vendor_id = vendorid).filter_by(quarter = current_quarter).filter_by(year = current_year).add_columns(vendors_rfi.suitemod_id, vendors_rfi.status, vendors_rfi.current_round).all() print('suitemod_ids_raw',suitemod_ids_raw) module_status_round = [] for item in suitemod_ids_raw: module_name = suitemodules.query.filter_by(suitemodid = item[1]).order_by(desc(suitemodules.update_date)).add_columns(suitemodules.suitemod_name).first()[1] if item[2] == 'N': status = 'New' elif item[2] == 'R': status = 'Refreshing' elif item[2] == 'E': status = 'Existing' elif item[2] == 'Z': status = 'Not participaging anymore' else: sys.exit('Status is neither N, R, E or Z') current_round = item[3] module_status_round.append([module_name, status, current_round]) print('module_status_round', module_status_round) return render_template('rfi:vendor.html', title = title, vendor_name = vendor_name, module_status_round = module_status_round, urllib_parse_quote = urllib.parse.quote) else: title = vendor_name + ' - ' + module_name suitemodid = suitemodules.query.filter_by(suitemod_name = module_name).add_columns(suitemodules.suitemodid).first()[1] status = vendors_rfi.query.filter_by(vendor_id = vendorid).filter_by(suitemod_id = suitemodid).filter_by(quarter = current_quarter).filter_by(year = current_year).add_columns(vendors_rfi.status).first()[1] current_round = vendors_rfi.query.filter_by(vendor_id = vendorid).filter_by(suitemod_id = suitemodid).filter_by(quarter = current_quarter).filter_by(year = current_year).add_columns(vendors_rfi.current_round).first()[1] form = forms.ElementForm(request.form) '''if status == 'N' or status == 'R': Not necessary anymore since now current_round is 0, 1 or 2. current_round = vendors_rfi.query.filter_by(vendor_id = vendorid).filter_by(suitemod_id = suitemodid).add_columns(vendors_rfi.current_round).first()[1]''' print('status', status, '\ncurrent_round', current_round) print('suitemodid', suitemodid) suitemodcat_list_raw = suitemodcat.query.filter_by(suitemod_id = suitemodid).add_columns(suitemodcat.suitemodcatid, suitemodcat.category_name_id).all() suitemodcat_list = [] category_name_ids_list = [] #same lenght as suitemodcat_list for item in suitemodcat_list_raw: suitemodcat_list.append(item[1]) category_name_ids_list.append(item[2]) print('suitemodcat_list', suitemodcat_list) ids_list_raw = [] for item in suitemodcat_list: ids_list_raw.append(suitemodcatelem.query.filter_by(suitemodcat_id = item).add_columns(suitemodcatelem.suitemodcat_id, suitemodcatelem.smceid, suitemodcatelem.element_name_id, suitemodcatelem.variant_id).all()) ids_list = [] #[suitemodcatid, [scmeid, elementnameid, variantid]] smce_ids_list = [] for item in suitemodcat_list: ids_list.append([item, []]) for item1 in ids_list_raw: for item2 in item1: index = suitemodcat_list.index(item2[1]) ids_list[index][1].append([item2[2],item2[3],item2[4]]) smce_ids_list.append(item2[2]) print('smce_ids_list', smce_ids_list) last_provider_submission = rfielements_providers.query.filter_by(vendor_id = vendorid).filter(rfielements_providers.smce_id.in_(smce_ids_list)).order_by(desc(rfielements_providers.update_date)).add_columns(rfielements_providers.update_date, rfielements_providers.user_id).first()[1:] #[date, user_id] print('last_provider_submission', last_provider_submission) print('ids_list[0]', ids_list[0]) #Averages table categories_names = [] for item in category_name_ids_list: categories_names.append(category_names.query.filter_by(category_nameid = item).add_columns(category_names.category_name).first()[1]) categories_names.append('Average Score') categories_ss_averages = [] total_suitemod_ss_sum = 0 total_suitemod_ss_len = 0 for item1 in ids_list: category_ss_sum = 0 category_ss_len = 0 for item2 in item1[1]: try: current_ss = last_self_score(vendorid, item2[0], current_quarter, current_year) category_ss_sum += current_ss category_ss_len += 1 total_suitemod_ss_sum += current_ss total_suitemod_ss_len += 1 except TypeError: pass try: category_ss_average = category_ss_sum/category_ss_len except ZeroDivisionError: category_ss_average = '-' categories_ss_averages.append(category_ss_average) total_suitemod_ss_average = total_suitemod_ss_sum/total_suitemod_ss_len categories_ss_averages.append(total_suitemod_ss_average) print(categories_ss_averages) categories_last_quarter_averages = [] categories_sm_averages = [] categories_benchmark_averages = [] for item in range(0,11): categories_last_quarter_averages.append('lq' + str(item)) categories_sm_averages.append('sm' + str(item)) categories_benchmark_averages.append('b' + str(item)) print(categories_last_quarter_averages, categories_sm_averages, categories_benchmark_averages) summary_table = [] for item1, item2, item3, item4, item5 in zip(categories_names, categories_ss_averages, categories_last_quarter_averages, categories_sm_averages, categories_benchmark_averages): summary_table.append([item1, item2, item3, item4, item5]) print(summary_table) '''rfielements_info: 0 vendor_id 1 smce_id 2 quarter 3 year 4 round 5 self_score 6 self_description 7 attachment_id 8 sm_score 9 analyst_notes ''' #rfielements_info_raw = rfielements.query.filter_by(vendor_id = vendorid).filter(rfielements.smce_id.in_(smce_ids_list)).add_columns(rfielements.vendor_id, rfielements.smce_id, rfielements.quarter, rfielements.year, rfielements.round, rfielements.self_score, rfielements.self_description, rfielements.attachment_id, rfielements.sm_score, rfielements.analyst_notes).all() rfielements_providers_info_raw = rfielements_providers.query.filter_by(vendor_id = vendorid).filter(rfielements_providers.smce_id.in_(smce_ids_list)).add_columns(rfielements_providers.vendor_id, rfielements_providers.smce_id, rfielements_providers.quarter, rfielements_providers.year, rfielements_providers.round, rfielements_providers.self_score, rfielements_providers.self_description, rfielements_providers.attachment_id).all() rfielements_analysts_info_raw = rfielements_analysts.query.filter_by(vendor_id = vendorid).filter(rfielements_analysts.smce_id.in_(smce_ids_list)).add_columns(rfielements_analysts.vendor_id, rfielements_analysts.smce_id, rfielements_analysts.quarter, rfielements_analysts.year, rfielements_analysts.round, rfielements_analysts.sm_score, rfielements_analysts.analyst_notes).all() #df = pd.DataFrame(rfielements_info_raw) df_providers =
pd.DataFrame(rfielements_providers_info_raw)
pandas.DataFrame
import pandas as pd import numpy as np import unittest from dstools.regressor.BestGuessRegressor import BestGuessRegressor class TestBestGuessRegressor(unittest.TestCase): def compare_DataFrame(self, df_transformed, df_transformed_correct): """ helper function to compare the values of the transformed DataFrame with the values of a correctly transformed DataFrame """ #same number of columns self.assertEqual(len(df_transformed.columns), len(df_transformed_correct.columns)) #check for every column in correct DataFrame, that all items are equal for column in df_transformed_correct.columns: #compare every element for x, y in zip(df_transformed[column], df_transformed_correct[column]): #if both values are np.NaN, the assertion fails, although they are equal if np.isnan(x)==True and np.isnan(y)==True: pass else: self.assertEqual(x, y) def test_numeric_independent_numeric_dependent_best_guess(self): """ a constant numeric class should be returned """ df=pd.DataFrame({'x':[1,2,3],'y':[1,2,3]}) y_predicted_correct=pd.DataFrame({'y_predicted':[2,2,2]}) bgc = BestGuessRegressor() bgc.fit(df['x'],df['y']) y_predicted=pd.DataFrame(data=bgc.predict(df['x']),columns=['y_predicted']) self.compare_DataFrame(y_predicted,y_predicted_correct) def test_string_independent_numeric_dependent_best_guess(self): """ a constant numeric class should be returned """ df=
pd.DataFrame({'x':['1','2','3'],'y':[1,2,3]})
pandas.DataFrame
"""Unit tests for the NullTransformer.""" from unittest.mock import patch import numpy as np import pandas as pd from rdt.transformers import NullTransformer class TestNullTransformer: def test___init__default(self): """Test the initialization without passing any default arguments. When no arguments are passed, the attributes should be populated with the right values. Input: - nothing Expected Side Effects: - The `_missing_value_replacement` attribute should be `None`. - The `_model_missing_values` attribute should be `False`. """ # Run transformer = NullTransformer() # Assert assert transformer._missing_value_replacement is None assert not transformer._model_missing_values def test___init__not_default(self): """Test the initialization passing values different than defaults. When arguments are passed, the attributes should be populated with the right values. Input: - Values different than the defaults. Expected Side Effects: - The attributes should be populated with the given values. """ # Run transformer = NullTransformer('a_missing_value_replacement', False) # Assert assert transformer._missing_value_replacement == 'a_missing_value_replacement' assert not transformer._model_missing_values def test_models_missing_values(self): """Test the models_missing_values method. If the `model_missing_values` attributes evalutes to True, the `create_model_missing_values` method should return the same value. Setup: - Create an instance and set _model_missing_values to True Expected Output: - True """ # Setup transformer = NullTransformer('something', model_missing_values=True) transformer._model_missing_values = True # Run models_missing_values = transformer.models_missing_values() # Assert assert models_missing_values def test__get_missing_value_replacement_scalar(self): """Test _get_missing_value_replacement when a scalar value is passed. If a missing_value_replacement different from None, 'mean' or 'mode' is passed to __init__, that value is returned. Setup: - NullTransformer passing a specific missing_value_replacement that is not None, mean or mode. Input: - A Series with some values. - A np.array with boolean values. Expected Output: - The value passed to __init__ """ # Setup transformer = NullTransformer('a_missing_value_replacement') # Run data = pd.Series([1, np.nan, 3], name='abc') missing_value_replacement = transformer._get_missing_value_replacement(data) # Assert assert missing_value_replacement == 'a_missing_value_replacement' def test__get_missing_value_replacement_all_nulls(self): """Test _get_missing_value_replacement when all the values are null. If the missing_value_replacement is not a scalar value and all the data values are null, the output be the mean, which is `np.nan`. Setup: - NullTransformer passing 'mean' as the missing_value_replacement. Input: - A Series filled with nan values. - A np.array of all True values. Expected Output: - 0 """ # Setup transformer = NullTransformer('mean') # Run data = pd.Series([np.nan, np.nan, np.nan], name='abc') missing_value_replacement = transformer._get_missing_value_replacement(data) # Assert assert missing_value_replacement is np.nan def test__get_missing_value_replacement_none_numerical(self): """Test _get_missing_value_replacement when missing_value_replacement is None. If the missing_value_replacement is None and the data is numerical, the output fill value should be the mean of the input data. Setup: - NullTransformer passing with default arguments. Input: - An Series filled with integer values such that the mean is not contained in the series and there is at least one null. - A np.array of booleans indicating which values are null. Expected Output: - The mean of the inputted Series. """ # Setup transformer = NullTransformer('mean') # Run data = pd.Series([1, 2, np.nan], name='abc') missing_value_replacement = transformer._get_missing_value_replacement(data) # Assert assert missing_value_replacement == 1.5 def test__get_missing_value_replacement_none_not_numerical(self): """Test _get_missing_value_replacement when missing_value_replacement is None. If the missing_value_replacement is None and the data is not numerical, the output fill value should be the mode of the input data. Setup: - NullTransformer with default arguments. Input: - An Series filled with string values with variable frequency and at least one null value. - A np.array of booleans indicating which values are null. Expected Output: - The most frequent value in the input series. """ # Setup transformer = NullTransformer('mode') # Run data = pd.Series(['a', 'b', 'b', np.nan], name='abc') missing_value_replacement = transformer._get_missing_value_replacement(data) # Assert assert missing_value_replacement == 'b' def test__get_missing_value_replacement_mean(self): """Test _get_missing_value_replacement when missing_value_replacement is mean. If the missing_value_replacement is mean the output fill value should be the mean of the input data. Setup: - NullTransformer passing 'mean' as the missing_value_replacement. Input: - A Series filled with integer values such that the mean is not contained in the series and there is at least one null. - A np.array of booleans indicating which values are null. Expected Output: - The mode of the inputted Series. """ # Setup transformer = NullTransformer('mean') # Run data = pd.Series([1, 2, np.nan], name='abc') missing_value_replacement = transformer._get_missing_value_replacement(data) # Assert assert missing_value_replacement == 1.5 def test__get_missing_value_replacement_mode(self): """Test _get_missing_value_replacement when missing_value_replacement is 'mode'. If the missing_value_replacement is 'mode' the output fill value should be the mode of the input data. Setup: - NullTransformer passing 'mode' as the missing_value_replacement. Input: - A Series filled with integer values such that the mean is not contained in the series and there is at least one null. - A np.array of booleans indicating which values are null. Expected Output: - The most frequent value in the input series. """ # Setup transformer = NullTransformer('mode') # Run data = pd.Series([1, 2, 2, np.nan], name='abc') missing_value_replacement = transformer._get_missing_value_replacement(data) # Assert assert missing_value_replacement == 2 def test_fit_model_missing_values_none_and_nulls(self): """Test fit when null column is none and there are nulls. If there are nulls in the data and model_missing_values was given as None, then the _model_missing_values attribute should be set to True. Also validate that the null attribute and the _missing_value_replacement attributes are set accordingly. Setup: - A NullTransformer with default arguments. Input: - pd.Series of integers that contains nulls. Expected Side Effects: - the model_missing_values attribute should be set to True. - the nulls attribute should be set to True. - the missing_value_replacement should be set to the mean of the given integers. """ # Setup transformer = NullTransformer(missing_value_replacement='mean', model_missing_values=True) # Run data = pd.Series([1, 2, np.nan]) transformer.fit(data) # Assert assert transformer.nulls assert transformer._model_missing_values assert transformer._missing_value_replacement == 1.5 def test_fit_model_missing_values_none_and_no_nulls(self): """Test fit when null column is none and there are NO nulls. If there are no nulls in the data and model_missing_values was given as ``False``, then the _model_missing_values attribute should be set to ``False``. Also validate that the null attribute and the ``_missing_value_replacement`` attributes are set accordingly. Setup: - A NullTransformer with default arguments. Input: - pd.Series of strings that contains no nulls. Expected Side Effects: - the model_missing_values attribute should be set to False. - the nulls attribute should be set to False. - the missing_value_replacement should be set to ``np.nan``, default. """ # Setup transformer = NullTransformer() # Run data = pd.Series(['a', 'b', 'b']) transformer.fit(data) # Assert assert not transformer.nulls assert not transformer._model_missing_values assert transformer._missing_value_replacement is None def test_fit_model_missing_values_not_none(self): """Test fit when null column is set to True/False. If model_missing_values is set to True or False, the _model_missing_values should get that value regardless of whether there are nulls or not. Notice that this test covers 4 scenarios at once. Setup: - 4 NullTransformer intances, 2 of them passing False for the model_missing_values and 2 of them passing True. Input: - 2 pd.Series, one containing nulls and the other not containing nulls. Expected Side Effects: - the _model_missing_values attribute should be set to True or False as indicated in the Transformer creation. - the nulls attribute should be True or False depending on whether the input data contains nulls or not. """ # Setup model_missing_values_false_nulls = NullTransformer( missing_value_replacement='mode', model_missing_values=False ) model_missing_values_false_no_nulls = NullTransformer( missing_value_replacement='mode', model_missing_values=False ) model_missing_values_true_nulls = NullTransformer( missing_value_replacement='mean', model_missing_values=True ) model_missing_values_true_no_nulls = NullTransformer( missing_value_replacement='mean', model_missing_values=True ) nulls_str = pd.Series(['a', 'b', 'b', np.nan]) no_nulls_str = pd.Series(['a', 'b', 'b', 'c']) nulls_int = pd.Series([1, 2, 3, np.nan]) no_nulls_int = pd.Series([1, 2, 3, 4]) # Run model_missing_values_false_nulls.fit(nulls_str) model_missing_values_false_no_nulls.fit(no_nulls_str) model_missing_values_true_nulls.fit(nulls_int) model_missing_values_true_no_nulls.fit(no_nulls_int) # Assert assert not model_missing_values_false_nulls._model_missing_values assert model_missing_values_false_nulls.nulls assert model_missing_values_false_nulls._missing_value_replacement == 'b' assert not model_missing_values_false_no_nulls._model_missing_values assert not model_missing_values_false_no_nulls.nulls assert model_missing_values_false_no_nulls._missing_value_replacement == 'b' assert model_missing_values_true_nulls._model_missing_values assert model_missing_values_true_nulls.nulls assert model_missing_values_true_nulls._missing_value_replacement == 2 assert not model_missing_values_true_no_nulls._model_missing_values assert not model_missing_values_true_no_nulls.nulls assert model_missing_values_true_no_nulls._missing_value_replacement == 2.5 def test_transform__model_missing_values_true(self): """Test transform when _model_missing_values. When _model_missing_values, the nulls should be replaced by the _missing_value_replacement and another column flagging the nulls should be created. Setup: - NullTransformer instance with _model_missing_values set to True, _missing_value_replacement set to a scalar value. Input: - A pd.Series of strings with nulls. Expected Output: - Exactly the same as the input, replacing the nulls with the scalar value. Expected Side Effects: - The input data has the null values replaced. """ # Setup transformer = NullTransformer() transformer.nulls = False transformer._model_missing_values = True transformer._missing_value_replacement = 'c' input_data = pd.Series(['a', 'b', np.nan]) # Run output = transformer.transform(input_data) # Assert expected_output = np.array([ ['a', 0.0], ['b', 0.0], ['c', 1.0], ], dtype=object) np.testing.assert_equal(expected_output, output) def test_transform__model_missing_values_false(self): """Test transform when _model_missing_values is False. When the _model_missing_values is false, the nulls should be replaced by the _missing_value_replacement. Setup: - NullTransformer instance with _model_missing_values set to False, _missing_value_replacement set to a scalar value. Input: - A pd.Series of integers with nulls. Expected Output: - Same data as the input, replacing the nulls with the scalar value. Expected Side Effects: - The input data has not been modified. """ # Setup transformer = NullTransformer() transformer._model_missing_values = False transformer._missing_value_replacement = 3 input_data = pd.Series([1, 2, np.nan]) # Run output = transformer.transform(input_data) # Assert expected_output = np.array([1, 2, 3]) np.testing.assert_equal(expected_output, output) modified_input_data = pd.Series([1, 2, np.nan]) pd.testing.assert_series_equal(modified_input_data, input_data) def test_reverse_transform__model_missing_values_true_nulls_true(self): """Test reverse_transform when _model_missing_values and nulls are True. When _model_missing_values and nulls attributes are both True, the second column in the input data should be used to decide which values to replace with nan, by selecting the rows where the null column value is > 0.5. Setup: - NullTransformer instance with _model_missing_values and nulls attributes set to True. Input: - 2d numpy array with variate float values. Expected Output: - pd.Series containing the first column from the input data with the values indicated by the first column replaced by nans. Expected Side Effects: - the input data should have been modified. """ # Setup transformer = NullTransformer() transformer._model_missing_values = True transformer.nulls = True input_data = np.array([ [0.0, 0.0], [0.2, 0.2], [0.4, 0.4], [0.6, 0.6], [0.8, 0.8], ]) # Run output = transformer.reverse_transform(input_data) # Assert expected_output = pd.Series([0.0, 0.2, 0.4, np.nan, np.nan]) pd.testing.assert_series_equal(expected_output, output) def test_reverse_transform__model_missing_values_true_nulls_false(self): """Test reverse_transform when _model_missing_values and nulls is False. When _model_missing_values but nulls are False, the second column of the input data must be dropped and the first one returned as a Series without having been modified. Setup: - NullTransformer instance with _model_missing_values set to True and nulls attribute set to False Input: - 2d numpy array with variate float values. Expected Output: - pd.Series containing the first column from the input data unmodified. """ # Setup transformer = NullTransformer() transformer._model_missing_values = True transformer.nulls = False input_data = np.array([ [0.0, 0.0], [0.2, 0.2], [0.4, 0.4], [0.6, 0.6], [0.8, 0.8], ]) # Run output = transformer.reverse_transform(input_data) # Assert expected_output = pd.Series([0.0, 0.2, 0.4, 0.6, 0.8]) pd.testing.assert_series_equal(expected_output, output) @patch('rdt.transformers.null.np.random') def test_reverse_transform__model_missing_values_false_nulls_true(self, random_mock): """Test reverse_transform when _model_missing_values is False and nulls. When _model_missing_values is False and the nulls attribute, a ``_null_percentage`` of values should randomly be replaced with ``np.nan``. Setup: - NullTransformer instance with _model_missing_values set to False and nulls attribute set to True. - A mock for ``np.random``. Input: - 1d numpy array with variate float values. Expected Output: - pd.Series containing the same data as input, with the random values replaced with ``np.nan``. """ # Setup transformer = NullTransformer() transformer._model_missing_values = False transformer.nulls = True transformer._null_percentage = 0.5 input_data = np.array([0.0, 0.2, 0.4, 0.6]) random_mock.random.return_value = np.array([1, 1, 0, 1]) # Run output = transformer.reverse_transform(input_data) # Assert expected_output = pd.Series([0.0, 0.2, np.nan, 0.6])
pd.testing.assert_series_equal(expected_output, output)
pandas.testing.assert_series_equal
# Genuary 2022, Jan 5 # Task: Destroy a Square # Idea: Draw a Square then shuffle all the xy coords # import python libraries, install with 'pip install ....' import numpy as np import pandas as pd import random as rn # create a square path using x & y coords x = list(range(0,24)) + [24]*25 + list(range(24,-1,-1)) + [0]*25 y = [0]*25 + list(range(0,24)) + [24]*25 + list(range(24,-1,-1)) path = list(range(0,len(x))) # create new positions for the xy coords new_x = [rn.uniform(0, 24) for p in range(0, len(x))] new_y = [rn.uniform(0, 24) for p in range(0, len(x))] # create data frame for square d = {'x': x, 'y': y,'path': path,'stage':1} df = pd.DataFrame(data=d) # create data frame for square after being shuffled d_new = {'x': new_x, 'y': new_y,'path': path,'stage':2} df_new =
pd.DataFrame(data=d_new)
pandas.DataFrame
import pandas as pd from pandas.api.types import is_numeric_dtype, is_categorical, infer_dtype from functools import reduce import warnings import weakref from itertools import combinations from scipy.stats import chi2_contingency import numpy as np from collections import Counter @pd.api.extensions.register_dataframe_accessor("cats") class CatsAccessor: """A class of useful categorical stuff to add to pandas """ def __init__(self, pandas_obj): self._finalizer = weakref.finalize(self, self._cleanup) self._validate(pandas_obj) self._obj = pandas_obj self._categorical_columns = None def _cleanup(self): del self._obj def remove(self): self._finalizer() @staticmethod def _validate(obj): # verify this is a DataFrame if not isinstance(obj, pd.DataFrame): raise AttributeError("Must be a pandas DataFrame") def _get_categorical_columns(self): result = [col for col in self._obj.columns if infer_dtype(self._obj[col]) in ['object', 'string', 'category', 'categorical']] self._categorical_columns = result return result def _cramers_corrected_stat(self, confusion_matrix, correction: bool) -> float: """Calculate the Cramer's V corrected stat for two variables. Function from pandas-profiling.github.io Args: confusion_matrix: Crosstab between two variables. correction: Should the correction be applied? Returns: The Cramer's V corrected stat for the two variables. """ chi2 = chi2_contingency(confusion_matrix, correction=correction)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape # Deal with NaNs later on with np.errstate(divide="ignore", invalid="ignore"): phi2corr = max(0.0, phi2 - ((k - 1.0) * (r - 1.0)) / (n - 1.0)) rcorr = r - ((r - 1.0) ** 2.0) / (n - 1.0) kcorr = k - ((k - 1.0) ** 2.0) / (n - 1.0) corr = np.sqrt(phi2corr / min((kcorr - 1.0), (rcorr - 1.0))) return corr def corr(self, correction = True): self._get_categorical_columns() results = pd.DataFrame() combos = combinations(self._categorical_columns , 2) for combo in list(combos): print(combo) cat_matrix = pd.crosstab(self._obj[combo[0]], self._obj[combo[1]]) corr_coef = self._cramers_corrected_stat(cat_matrix, correction) results_series = pd.Series([combo[0], combo[1], corr_coef]) results =
pd.concat([results, results_series], axis=1)
pandas.concat
import os import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.decomposition import pca sns.set_style("whitegrid") class Weights: def __init__(self, tumor_path: pd.DataFrame, sample_dir: str): self.tumor_path = tumor_path self.tumor = self._load_tumor() self.genes = self.tumor.columns[5:] self.sample_dir = sample_dir self.df = self._weight_df() self.perc = self._perc_df() self.num_samples = len(self.df["sample"].unique()) def _weight_df(self) -> pd.DataFrame: """ Creates DataFrame of sample weights from a directory of samples Columns: tissue, normal_tissue, weight, sample_id Returns: DataFrame of Weights """ # DataFrame: cols=tissue, normal_tissue, weight weights = [] tissues = self.tumor.tissue for sample in os.listdir(self.sample_dir): sample_tissue = tissues.loc[sample] w = pd.read_csv( os.path.join(self.sample_dir, sample, "weights.tsv"), sep="\t" ) w.columns = ["normal_tissue", "Median", "std"] w["tissue"] = sample_tissue w["sample"] = sample weights.append(w.drop("std", axis=1)) return pd.concat(weights).reset_index(drop=True) def _perc_df(self) -> pd.DataFrame: """ Converts DataFrame of weights into a DataFrame of percentages Returns: Weight percentage DataFrame """ c = self.df.groupby(["tissue", "normal_tissue"])["Median"].sum().rename("count") perc = c / c.groupby(level=0).sum() * 100 return perc.reset_index() def _load_tumor(self): print(f"Reading in {self.tumor_path}") if self.tumor_path.endswith(".csv"): df = pd.read_csv(self.tumor_path, index_col=0) elif self.tumor_path.endswith(".tsv"): df = pd.read_csv(self.tumor_path, sep="\t", index_col=0) else: try: df = pd.read_hdf(self.tumor_path) except Exception as e: print(e) raise RuntimeError(f"Failed to open DataFrame: {self.tumor_path}") return df def plot_match_scatter(self, out_dir: str = None): """ Scatterplot of samples by tissue and their matched tissue model weight Args: out_dir: Optional output directory Returns: Plot axes object """ df = self.df # Subset for matched-tissue samples df = df[df.normal_tissue == df.tissue].sort_values("tissue") f, ax = plt.subplots(figsize=(8, 4)) sns.swarmplot(data=df, x="tissue", y="Median") plt.xticks(rotation=45) plt.xlabel("Tissue") plt.ylabel("GTEx Matched Tissue Weight") plt.title("TCGA Tumor Samples and Model Weight for GTEx Matched Tissue") if out_dir: plt.savefig(os.path.join(out_dir, "matched_weight_scatter.svg")) return ax def plot_perc_heatmap(self, out_dir: str = None): """ Heatmap of weight percentages by Args: out_dir: Optional output directory Returns: Plot axes object """ f, ax = plt.subplots(figsize=(8, 7)) perc_heat = self.perc.pivot( index="normal_tissue", columns="tissue", values="count" ) sns.heatmap( perc_heat.apply(lambda x: round(x, 2)), cmap="Blues", annot=True, linewidths=0.5, ) plt.xlabel("Tumor Tissue") plt.ylabel("GTEx Tissue") plt.title(f"Average Weight (%) of Tumor to GTEx Tissue (n={self.num_samples})") if out_dir: plt.savefig(os.path.join(out_dir, "weight_perc_heatmap.svg")) return ax def plot_pca_nearby_tissues(self, background_path: str, tissues, tumor_tissue): df = pd.read_hdf(background_path) tumor = self.tumor tumor = tumor[tumor.tissue == tumor_tissue] tumor["tissue"] = f"{tumor_tissue}-Tumor" sub = df[df.tissue.isin(tissues)] pca_df =
pd.concat([tumor, sub])
pandas.concat
import numpy as np import pandas as pd from datetime import datetime import json from datetime import timedelta # R:年度无风险利率 # T:一年的周期个数,以月为周期T=12,以周为周期T=52 # 年化夏普比率(R为一年期的无风险利率;T为一年的周期个数,以月为周期T=12,以周为周期T=52) from Time.datatime import get_firstday_year def get_sharpe_ratio(yield_list, R, T): ''' :param yield_list: :param R: :param T: :return: ''' yield_list = yield_list.dropna() if len(yield_list) > 1: return ((np.average(yield_list)+1)**T-1-R)/(np.std(yield_list) * np.sqrt(T)) else: return np.nan # 标准差 def get_year_std(yield_list): yield_list = yield_list.dropna() if len(yield_list) > 1: return yield_list.std() else: return np.nan # 年化下行标准差(R_T为对应周期的无风险利率) def get_DownStd(yield_list, R, T): yield_list = yield_list.dropna() R_T = (R + 1) ** (1 / T) - 1 newlist = [] for i in yield_list: if i<R_T: newlist.append((i-R_T)**2) else: continue return np.sqrt(np.average(newlist) * T) # 最大回撤,s是以日期为索引的Series def get_max_retracement(s): s_retracement = 1 - s / s.expanding(min_periods=1).max() edate = s_retracement.idxmax() max_retracement = s_retracement[edate] bdate = s[:edate].idxmax() rdate = s[s > s[bdate]][edate:].index.min() rdays = (rdate - edate).days return [max_retracement, bdate, edate, rdate, rdays] # 最大回撤,s_source是以日期为索引的Series def get_max_retracement(s_source, current_T, section='total'): if section == 'total': s = s_source[:current_T] elif section == 'year': if get_firstday_year(current_T) < s_source.index[0]: return [np.nan, np.nan, np.nan, np.nan, np.nan] else: s = s_source[get_firstday_year(current_T):current_T] elif section == 'm3': if (current_T -
pd.DateOffset(months=3)
pandas.DateOffset
from config.data import Config import mpvr.datamodule._fig_preset as fig_preset import importlib import pandas as pd import numpy as np class Manager: def __init__(self, *args, **kwargs): self.conf = kwargs.get('conf') self._section = kwargs.get('section') self._tags = self.conf.get_tags() self._load_state = {'scenario': False, 'incidence': False, 'timestamp': False} self._preprocess = importlib.import_module( 'mpvr.datamodule.' + str.lower(self._section)) @classmethod def from_config(cls, section, conf = Config): return cls(conf=conf, section=section) @staticmethod def section_list(): return Config.section_list() def get_scenarios(self): return Config.get_section_scenarios(self._section) def set_scenario(self, scenario): self._setting = self.conf.get_config(self._section, scenario) self._scenario = scenario self._load_state_init() self._load_state['scenario'] = True def _load_state_init(self): for key in self._load_state.keys(): self._load_state[key] = False def _check_and_load(self, states): load_funcs = {'incidence': self._load_incidence_data, 'timestamp': self._load_timestamp_data} for state in states: if not self._load_state[state]: load_funcs[state]() ############################################################################################### # get functions # ############################################################################################### def get_motion_data_gen(self, path=None, timediffs=None, indices=None, axes = None, sensored_axes_tag=None, target_sampling_rate=None): if timediffs is None: self._check_and_load(['timestamp']) indices = self._indices timediffs = self._timediffs if path is None: path = self._setting.motion_data.path if axes is None: axes = self._setting.motion_data.axes if sensored_axes_tag is None: sensored_axes_tag = self._setting.motion_data.sensored_axes_tag if target_sampling_rate is None: target_sampling_rate = self._setting.target_sampling_rate return self._preprocess.load_motion_gen(path, axes, sensored_axes_tag, target_sampling_rate, indices, timediffs) def get_classified_motion_data_gen(self, gen=None, is_classified=None, seperator=None): if gen is None: gen = self.get_motion_data_gen() if is_classified is None: is_classified = self._setting.motion_data.is_classified if seperator is None: seperator = self._setting.motion_data.motion_seperator if is_classified: for motion_vector in gen: yield self._preprocess.classification_motion(motion_vector) else: motion_data = [x for x in gen] bins = self._preprocess.make_bins(motion_data, seperator) for motion_vector in motion_data: yield self._preprocess.classification_motion(motion_vector, bins) def get_visual_data_gen(self, path=None, indices=None, timediffs=None, extension=None, target_sampling_rate=None): if timediffs is None: self._check_and_load(['timestamp']) indices = self._indices timediffs = self._timediffs if path is None: path = self._setting.video_data.path if extension is None: extension = self._setting.video_data.extension if target_sampling_rate is None: target_sampling_rate = self._setting.target_sampling_rate return self._preprocess \ .load_visual_gen(path, target_sampling_rate, extension, indices, timediffs) def get_classified_visual_data_gen(self, gen=None): if gen is None: gen = self.get_visual_data_gen() for polars in gen: yield self._preprocess.classification_visual(polars) def make_tuple_gen(self, gen1, gen2): for d in zip(*(gen1, gen2)): yield d def get_incidence_data(self): self._check_and_load(['incidence']) return self._incidence def get_timestamp_data(self): self._check_and_load(['timestamp']) return self._times, self._timediffs, self._indices def get_processed_data(self, tag, path=None, remark_dir=''): tags = self._tags if path is None: path = self._setting.save_result_path + tags[tag]['dir'] + tags['tbl']['dir'] \ + remark_dir + self._scenario + tags['tbl']['ext'] df =
pd.read_csv(path, encoding="ISO-8859-1")
pandas.read_csv
import matplotlib.pyplot as plt import algorithm2_v3 import pandas as pd # n为指定点个数 def get_xy1(data_raw, n, adjustment_f, best_f, label, b): x = [] y_ours = [] y_cs = [] y_gs = [] algorithm2_v3.initial_everything1(data_raw, adjustment_f, label, b) print('--------------------------') for i in range(1,n+1): y1, y2, y3 = algorithm2_v3.mae1(data_raw, i / n, best_f) y_ours.append(y1) y_cs.append(y2) y_gs.append(y3) x.append(i / n) return x, y_ours, y_cs, y_gs # n为指定点个数 def get_xy2(data_raw, n, adjustment_f, best_f, label, b): x = [] y_ours = [] y_cs = [] y_gs = [] algorithm2_v3.initial_everything2(data_raw, adjustment_f,label, b) for i in range(1,n+1): y1, y2, y3 = algorithm2_v3.mae2(data_raw, i / n, best_f) y_ours.append(y1) y_cs.append(y2) y_gs.append(y3) x.append(i / n) return x, y_ours, y_cs, y_gs def painting(x, y_ours, y_cs, y_gs, n, func_name, data_name, b): plt.rcParams['font.sans-serif'] = 'Times New Roman' plt.title('%s-%s-b=%d' % (func_name,data_name,b)) plt.rcParams['lines.marker'] = '.' plt.grid() # 生成网格 plt.xlabel('Epslion') plt.ylabel('MAE') plt.xticks(x) plt.plot(x, y_ours) plt.plot(x, y_cs) plt.plot(x, y_gs) plt.legend(['Private CSₚ', 'Private CS', 'Private GS']) plt.savefig('%s-%s-b=%d' % (func_name,data_name,b)) plt.show() def painting_on_1picture(dicts): # 全局设置 plt.rcParams['font.sans-serif'] = 'Times New Roman' plt.rcParams['lines.marker'] = '.' plt.rcParams['axes.grid'] = True p = plt.figure(figsize=(8, 6), dpi=80) ## 确定画布大小 k=0 for i in dicts: k += 1 p.add_subplot(2, 2, k) ## 创建一个2行2列的子图,并开始绘制第k幅 plt.title('') plt.xlabel('Epslion') plt.ylabel('MAE') x = i['x'] plt.xticks(x) plt.plot(x, i['y_ours']) plt.plot(x, i['y_cs']) plt.plot(x, i['y_gs']) plt.legend(['Private CSₚ', 'Private CS', 'Private GS']) plt.savefig('----') plt.show() # 将计算出来的数据存储至本地 def save_data(x, y_ours, y_cs, y_gs, func_name, data_name, b): df = pd.DataFrame() df['y_ours'] = y_ours df['y_cs'] = y_cs df['y_gs'] = y_gs df['x'] = x df.to_excel('%s-%s-b=%d.xlsx' % (func_name,data_name,b)) # 从本地文件读取data def read_data(path): df =
pd.read_excel(path)
pandas.read_excel
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with tm.assertRaises(TypeError): dti - dti_tz with tm.assertRaises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with tm.assertRaises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): tm.assertIn(idx[0], idx) def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): self.assertIs(pd.DatetimeIndex._na_value, pd.NaT) self.assertIs(pd.DatetimeIndex([])._na_value, pd.NaT) for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp =
pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days'])
pandas.TimedeltaIndex
import os import subprocess import findspark from pyspark import SparkContext, SparkConf import numpy as np import pandas as pd from numpy import linalg as LA from statistics import mean import ipyleaflet from ipyleaflet import ( Map, Marker, TileLayer, ImageOverlay, Polyline, Polygon, Rectangle, Circle, CircleMarker, GeoJSON, DrawControl ) from matplotlib.colors import rgb2hex from matplotlib.pyplot import xticks, yticks, figure import pylab as plt from ipyleaflet import Heatmap, WidgetControl, FullScreenControl from ipywidgets import IntSlider, jslink class leaflet_old: """ Plots circles on a map (one per station) whose size is proportional to the number of feature measurements, and whose color is equal to their aggregated value (min, max, avg) :param featureStr: the feature you'd like to visualize given as a string, eg. 'SNWD' :param aggregateType: 'avg', 'min', 'max' """ def __init__(self, sqlctxt, featureStr): self.feat = featureStr self.pdfMaster = None self.sqlctxt = sqlctxt self.maxLong = None self.minLong = None self.maxLat = None self.minLat = None self.minAggVal = None self.maxAggVal = None self.cmap = plt.get_cmap('jet_r') self.m = None def add(self, dataframe): """ Adds (or concatenates) a dataframe to the instance's master dataframe. The dataframe to be added must have atleast the following columns: station, latitude, longitude, featureStr, value """ self.sqlctxt.registerDataFrameAsTable(dataframe, "temp") query = f""" SELECT Station, latitude, longitude, COUNT(Measurement), MEAN(Values) FROM temp WHERE Measurement=='SNWD' GROUP BY Station, latitude, longitude """ tempdf = self.sqlctxt.sql(query).toPandas() if (self.pdfMaster is None): # set as new pdfMaster self.pdfMaster = tempdf else: # append to existing dfMaster self.pdfMaster =
pd.concat([self.pdfMaster, tempdf])
pandas.concat
import os import pandas as pd from numpy import testing as npt import pandas.util.testing as pdt import ixmp import pytest from ixmp.default_path_constants import CONFIG_PATH from testing_utils import ( test_mp, test_mp_props, test_mp_use_default_dbprops_file, test_mp_use_db_config_path, ) test_args = ('Douglas Adams', 'Hitchhiker') can_args = ('canning problem', 'standard') # string columns for timeseries checks iamc_idx_cols = ['model', 'scenario', 'region', 'variable', 'unit'] cols_str = ['region', 'variable', 'unit', 'year'] def local_config_exists(): return os.path.exists(CONFIG_PATH) @pytest.mark.skipif(local_config_exists(), reason='will not overwrite local config files') def test_default_dbprops_file(test_mp_use_default_dbprops_file): test_mp = test_mp_use_default_dbprops_file scenario = test_mp.scenario_list(model='Douglas Adams')['scenario'] assert scenario[0] == 'Hitchhiker' @pytest.mark.skipif(local_config_exists(), reason='will not overwrite local config files') def test_db_config_path(test_mp_use_db_config_path): test_mp = test_mp_use_db_config_path scenario = test_mp.scenario_list(model='Douglas Adams')['scenario'] assert scenario[0] == 'Hitchhiker' def test_platform_init_raises(): pytest.raises(ValueError, ixmp.Platform, dbtype='foo') def test_scen_list(test_mp): scenario = test_mp.scenario_list(model='Douglas Adams')['scenario'] assert scenario[0] == 'Hitchhiker' def test_new_scen(test_mp): scen = ixmp.Scenario(test_mp, *can_args, version='new') assert scen.version == 0 def test_default_version(test_mp): scen = ixmp.Scenario(test_mp, *can_args) assert scen.version == 2 def test_init_par_35(test_mp): scen = ixmp.Scenario(test_mp, *can_args, version='new') scen.init_set('ii') scen.init_par('new_par', idx_sets='ii') def test_get_scalar(test_mp): scen = ixmp.Scenario(test_mp, *can_args) obs = scen.scalar('f') exp = {'unit': 'USD/km', 'value': 90} assert obs == exp def test_init_scalar(test_mp): scen = ixmp.Scenario(test_mp, *can_args) scen2 = scen.clone(keep_solution=False) scen2.check_out() scen2.init_scalar('g', 90.0, 'USD/km') scen2.commit("adding a scalar 'g'") # make sure that changes to a scenario are copied over during clone def test_add_clone(test_mp): scen = ixmp.Scenario(test_mp, *can_args, version=1) scen.check_out() scen.init_set('h') scen.add_set('h', 'test') scen.commit("adding an index set 'h', wiht element 'test'") scen2 = scen.clone(keep_solution=False) obs = scen2.set('h') npt.assert_array_equal(obs, ['test']) # make sure that (only) the correct scenario is touched after cloning def test_clone_edit(test_mp): scen = ixmp.Scenario(test_mp, *can_args) scen2 = scen.clone(keep_solution=False) scen2.check_out() scen2.change_scalar('f', 95.0, 'USD/km') scen2.commit('change transport cost') obs = scen.scalar('f') exp = {'unit': 'USD/km', 'value': 90} assert obs == exp obs = scen2.scalar('f') exp = {'unit': 'USD/km', 'value': 95} assert obs == exp def test_idx_name(test_mp): scen = ixmp.Scenario(test_mp, *can_args) df = scen.idx_names('d') npt.assert_array_equal(df, ['i', 'j']) def test_var_marginal(test_mp): scen = ixmp.Scenario(test_mp, *can_args) df = scen.var('x', filters={'i': ['seattle']}) npt.assert_array_almost_equal(df['mrg'], [0, 0, 0.036]) def test_var_level(test_mp): scen = ixmp.Scenario(test_mp, *can_args) df = scen.var('x', filters={'i': ['seattle']}) npt.assert_array_almost_equal(df['lvl'], [50, 300, 0]) def test_var_general_str(test_mp): scen = ixmp.Scenario(test_mp, *can_args) df = scen.var('x', filters={'i': ['seattle']}) npt.assert_array_equal( df['j'], ['new-york', 'chicago', 'topeka']) def test_unit_list(test_mp): units = test_mp.units() assert ('cases' in units) is True def test_add_unit(test_mp): test_mp.add_unit('test', 'just testing') def test_par_filters_unit(test_mp): scen = ixmp.Scenario(test_mp, *can_args) df = scen.par('d', filters={'i': ['seattle']}) obs = df.loc[0, 'unit'] exp = 'km' assert obs == exp def test_new_timeseries(test_mp): scen = ixmp.TimeSeries(test_mp, *test_args, version='new', annotation='fo') df = {'year': [2010, 2020], 'value': [23.5, 23.6]} df = pd.DataFrame.from_dict(df) df['region'] = 'World' df['variable'] = 'Testing' df['unit'] = '???' scen.add_timeseries(df) scen.commit('importing a testing timeseries') def test_new_timeseries_error(test_mp): scen = ixmp.TimeSeries(test_mp, *test_args, version='new', annotation='fo') df = {'year': [2010, 2020], 'value': [23.5, 23.6]} df =
pd.DataFrame.from_dict(df)
pandas.DataFrame.from_dict
from __future__ import print_function import pytest import sys pytestmark = pytest.mark.skipif(sys.platform == 'win32', reason='Requires Mac or Linux') boto = pytest.importorskip('boto') import os import itertools import json from contextlib import contextmanager, closing import datashape from datashape import string, float64, int64 from datashape.util.testing import assert_dshape_equal import pandas as pd import pandas.util.testing as tm from odo import into, resource, S3, discover, CSV, drop, append, odo from odo.backends.aws import get_s3_connection from odo.utils import tmpfile from odo.compatibility import urlopen from boto.exception import S3ResponseError, NoAuthHandlerFound tips_uri = 's3://nyqpug/tips.csv' df = pd.DataFrame({ 'a': list('abc'), 'b': [1, 2, 3], 'c': [1.0, 2.0, 3.0] })[['a', 'b', 'c']] js = pd.io.json.loads(pd.io.json.dumps(df, orient='records')) is_authorized = False tried = False with closing(urlopen('http://httpbin.org/ip')) as url: public_ip = json.loads(url.read().decode())['origin'] cidrip = public_ip + '/32' @pytest.yield_fixture def tmpcsv(): with tmpfile('.csv') as fn: with open(fn, mode='w') as f: df.to_csv(f, index=False) yield fn @contextmanager def s3_bucket(extension): with conn(): b = 's3://%s/%s%s' % (test_bucket_name, next(_tmps), extension) try: yield b finally: drop(resource(b)) @contextmanager def conn(): # requires that you have a config file or envars defined for credentials # this code makes me hate exceptions try: conn = get_s3_connection() except S3ResponseError: pytest.skip('unable to connect to s3') else: try: grants = conn.get_bucket(test_bucket_name).get_acl().acl.grants except S3ResponseError: pytest.skip('no permission to read on bucket %s' % test_bucket_name) else: if not any(g.permission == 'FULL_CONTROL' or g.permission == 'READ' for g in grants): pytest.skip('no permission to read on bucket %s' % test_bucket_name) else: yield conn test_bucket_name = 'into-redshift-csvs' _tmps = ('tmp%d' % i for i in itertools.count()) @pytest.fixture def s3_encryption_bucket(): test_bucket = os.getenv('ODO_S3_ENCRYPTION_BUCKET') if not test_bucket: pytest.skip('No bucket defined that requires server-side encryption') return test_bucket def test_s3_encrypted_upload(s3_encryption_bucket): s3_connection = boto.connect_s3() df = tm.makeMixedDataFrame() with tmpfile('.csv') as fn: df.to_csv(fn, index=False) s3_uri = 's3://{bucket}/{fn}'.format(bucket=s3_encryption_bucket, fn=os.path.basename(fn)) odo(fn, s3_uri, s3=s3_connection, encrypt_key=True) result = odo(s3_uri, pd.DataFrame, s3=s3_connection) tm.assert_frame_equal(df, result) def test_s3_encrypted_multipart_upload(s3_encryption_bucket): s3_connection = boto.connect_s3() df = tm.makeMixedDataFrame() with tmpfile('.csv') as fn: df.to_csv(fn, index=False) s3_uri = 's3://{bucket}/{fn}'.format(bucket=s3_encryption_bucket, fn=os.path.basename(fn)) odo(fn, s3_uri, s3=s3_connection, encrypt_key=True, multipart=True) result = odo(s3_uri, pd.DataFrame, s3=s3_connection) tm.assert_frame_equal(df, result) def test_s3_resource(): csv = resource(tips_uri) assert isinstance(csv, S3(CSV)) def test_s3_discover(): csv = resource(tips_uri) assert isinstance(discover(csv), datashape.DataShape) def test_s3_to_local_csv(): with tmpfile('.csv') as fn: csv = into(fn, tips_uri) path = os.path.abspath(csv.path) assert os.path.exists(path) def test_csv_to_s3_append(): df = tm.makeMixedDataFrame() with tmpfile('.csv') as fn: with s3_bucket('.csv') as b: s3 = resource(b) df.to_csv(fn, index=False) append(s3, CSV(fn)) result = into(pd.DataFrame, s3) tm.assert_frame_equal(df, result) def test_csv_to_s3_into(): df = tm.makeMixedDataFrame() with tmpfile('.csv') as fn: with s3_bucket('.csv') as b: df.to_csv(fn, index=False) s3 = into(b, CSV(fn)) result = into(pd.DataFrame, s3) tm.assert_frame_equal(df, result) def test_frame_to_s3_to_frame(): with s3_bucket('.csv') as b: s3_csv = into(b, df) result = into(pd.DataFrame, s3_csv) tm.assert_frame_equal(result, df) def test_textfile_to_s3(): text = 'A cow jumped over the moon' with tmpfile('.txt') as fn: with s3_bucket('.txt') as b: with open(fn, mode='w') as f: f.write(os.linesep.join(text.split())) result = into(b, resource(fn)) assert discover(result) == datashape.dshape('var * string') def test_jsonlines_to_s3(): with tmpfile('.json') as fn: with open(fn, mode='w') as f: for row in js: f.write(
pd.io.json.dumps(row)
pandas.io.json.dumps
# -*- coding: utf-8 -*- # This file as well as the whole tsfresh package are licenced under the MIT licence (see the LICENCE.txt) # <NAME> (<EMAIL>), Blue Yonder Gmbh, 2016 import warnings from unittest import TestCase import pandas as pd from tsfresh.utilities import dataframe_functions import numpy as np import six class NormalizeTestCase(TestCase): def test_with_dictionaries_one_row(self): test_df = pd.DataFrame([{"value": 1, "id": "id_1"}]) test_dict = {"a": test_df, "b": test_df} # A kind is not allowed with dicts self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_dict, "id", None, "a kind", None) # The value must be present self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_dict, "id", None, None, "something other") # Nothing should have changed compared to the input data result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", None, None, "value") self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") six.assertCountEqual(self, list(test_dict.keys()), list(result_dict.keys())) self.assertEqual(result_dict["a"].iloc[0].to_dict(), {"value": 1, "id": "id_1"}) # The algo should choose the correct value column result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", None, None, None) self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") def test_with_dictionaries_two_rows(self): test_df = pd.DataFrame([{"value": 2, "sort": 2, "id": "id_1"}, {"value": 1, "sort": 1, "id": "id_1"}]) test_dict = {"a": test_df, "b": test_df} # If there are more than one column, the algorithm can not choose the correct column self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_dict, "id", None, None, None) # Sorting should work result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", "sort", None, "value") self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") # Assert sorted and without sort column self.assertEqual(result_dict["a"].iloc[0].to_dict(), {"value": 1, "id": "id_1"}) self.assertEqual(result_dict["a"].iloc[1].to_dict(), {"value": 2, "id": "id_1"}) # Assert the algo has found the correct column result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", "sort", None, None) self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") def test_with_dictionaries_two_rows_sorted(self): test_df = pd.DataFrame([{"value": 2, "id": "id_1"}, {"value": 1, "id": "id_1"}]) test_dict = {"a": test_df, "b": test_df} # Pass the id result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", None, None, "value") self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") self.assertEqual(result_dict["a"].iloc[0].to_dict(), {"value": 2, "id": "id_1"}) # The algo should have found the correct value column result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_dict, "id", None, None, None) self.assertEqual(column_value, "value") self.assertEqual(column_id, "id") def test_with_df(self): # give everyting test_df = pd.DataFrame([{"id": 0, "kind": "a", "value": 3, "sort": 1}]) result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_df, "id", "sort", "kind", "value") self.assertEqual(column_id, "id") self.assertEqual(column_value, "value") self.assertIn("a", result_dict) six.assertCountEqual(self, list(result_dict["a"].columns), ["id", "value"]) self.assertEqual(list(result_dict["a"]["value"]), [3]) self.assertEqual(list(result_dict["a"]["id"]), [0]) # give no kind test_df = pd.DataFrame([{"id": 0, "value": 3, "sort": 1}]) result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_df, "id", "sort", None, "value") self.assertEqual(column_id, "id") self.assertEqual(column_value, "value") self.assertIn("value", result_dict) six.assertCountEqual(self, list(result_dict["value"].columns), ["id", "value"]) self.assertEqual(list(result_dict["value"]["value"]), [3]) self.assertEqual(list(result_dict["value"]["id"]), [0]) # Let the function find the values test_df = pd.DataFrame([{"id": 0, "a": 3, "b": 5, "sort": 1}]) result_dict, column_id, column_value = \ dataframe_functions.normalize_input_to_internal_representation(test_df, "id", "sort", None, None) self.assertEqual(column_id, "id") self.assertEqual(column_value, "_value") self.assertIn("a", result_dict) self.assertIn("b", result_dict) six.assertCountEqual(self, list(result_dict["a"].columns), ["_value", "id"]) self.assertEqual(list(result_dict["a"]["_value"]), [3]) self.assertEqual(list(result_dict["a"]["id"]), [0]) six.assertCountEqual(self, list(result_dict["b"].columns), ["_value", "id"]) self.assertEqual(list(result_dict["b"]["_value"]), [5]) self.assertEqual(list(result_dict["b"]["id"]), [0]) def test_with_wrong_input(self): test_df = pd.DataFrame([{"id": 0, "kind": "a", "value": 3, "sort": np.NaN}]) self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_df, "id", "sort", "kind", "value") test_df = pd.DataFrame([{"id": 0, "kind": "a", "value": 3, "sort": 1}]) self.assertRaises(AttributeError, dataframe_functions.normalize_input_to_internal_representation, test_df, "strange_id", "sort", "kind", "value") test_df = pd.DataFrame([{"id": np.NaN, "kind": "a", "value": 3, "sort": 1}]) self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_df, "id", "sort", "kind", "value") test_df = pd.DataFrame([{"id": 0}]) self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_df, "id", None, None, None) test_df = pd.DataFrame([{"id": 2}, {"id": 1}]) test_dict = {"a": test_df, "b": test_df} # If there are more than one column, the algorithm can not choose the correct column self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_dict, "id", None, None, None) test_dict = {"a": pd.DataFrame([{"id": 2, "value_a": 3}, {"id": 1, "value_a": 4}]), "b": pd.DataFrame([{"id": 2}, {"id": 1}])} # If there are more than one column, the algorithm can not choose the correct column self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_dict, "id", None, None, None) test_df = pd.DataFrame([{"id": 0, "value": np.NaN}]) self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_df, "id", None, None, "value") test_df = pd.DataFrame([{"id": 0, "value": np.NaN}]) self.assertRaises(ValueError, dataframe_functions.normalize_input_to_internal_representation, test_df, None, None, None, "value") class RollingTestCase(TestCase): def test_with_wrong_input(self): test_df = pd.DataFrame({"id": [0, 0], "kind": ["a", "b"], "value": [3, 3], "sort": [np.NaN, np.NaN]}) self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id="id", column_sort="sort", column_kind="kind", rolling_direction=1) test_df = pd.DataFrame({"id": [0, 0], "kind": ["a", "b"], "value": [3, 3], "sort": [1, 1]}) self.assertRaises(AttributeError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id="strange_id", column_sort="sort", column_kind="kind", rolling_direction=1) test_df = {"a": pd.DataFrame([{"id": 0}])} self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id="id", column_sort=None, column_kind="kind", rolling_direction=1) self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id=None, column_sort=None, column_kind="kind", rolling_direction=1) self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id="id", column_sort=None, column_kind=None, rolling_direction=0) self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id=None, column_sort=None, column_kind=None, rolling_direction=0) def test_assert_single_row(self): test_df = pd.DataFrame([{"id": np.NaN, "kind": "a", "value": 3, "sort": 1}]) self.assertRaises(ValueError, dataframe_functions.roll_time_series, df_or_dict=test_df, column_id="id", column_sort="sort", column_kind="kind", rolling_direction=1) def test_positive_rolling(self): first_class = pd.DataFrame({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8], "time": range(4)}) second_class = pd.DataFrame({"a": [10, 11], "b": [12, 13], "time": range(20, 22)}) first_class["id"] = 1 second_class["id"] = 2 df_full = pd.concat([first_class, second_class], ignore_index=True) correct_indices = (["id=1, shift=3"] * 1 + ["id=1, shift=2"] * 2 + ["id=1, shift=1"] * 3 + ["id=2, shift=1"] * 1 + ["id=1, shift=0"] * 4 + ["id=2, shift=0"] * 2) correct_values_a = [1, 1, 2, 1, 2, 3, 10, 1, 2, 3, 4, 10, 11] correct_values_b = [5, 5, 6, 5, 6, 7, 12, 5, 6, 7, 8, 12, 13] df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=1) self.assertListEqual(list(df["id"]), correct_indices) self.assertListEqual(list(df["a"].values), correct_values_a) self.assertListEqual(list(df["b"].values), correct_values_b) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=1, maximum_number_of_timeshifts=None) self.assertListEqual(list(df["id"]), correct_indices) self.assertListEqual(list(df["a"].values), correct_values_a) self.assertListEqual(list(df["b"].values), correct_values_b) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=1, maximum_number_of_timeshifts=1) self.assertListEqual(list(df["id"]), correct_indices[3:]) self.assertListEqual(list(df["a"].values), correct_values_a[3:]) self.assertListEqual(list(df["b"].values), correct_values_b[3:]) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=1, maximum_number_of_timeshifts=2) self.assertListEqual(list(df["id"]), correct_indices[1:]) self.assertListEqual(list(df["a"].values), correct_values_a[1:]) self.assertListEqual(list(df["b"].values), correct_values_b[1:]) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=1, maximum_number_of_timeshifts=4) self.assertListEqual(list(df["id"]), correct_indices[:]) self.assertListEqual(list(df["a"].values), correct_values_a[:]) self.assertListEqual(list(df["b"].values), correct_values_b[:]) def test_negative_rolling(self): first_class = pd.DataFrame({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8], "time": range(4)}) second_class = pd.DataFrame({"a": [10, 11], "b": [12, 13], "time": range(20, 22)}) first_class["id"] = 1 second_class["id"] = 2 df_full = pd.concat([first_class, second_class], ignore_index=True) correct_indices = (["id=1, shift=-3"] * 1 + ["id=1, shift=-2"] * 2 + ["id=1, shift=-1"] * 3 + ["id=2, shift=-1"] * 1 + ["id=1, shift=0"] * 4 + ["id=2, shift=0"] * 2) correct_values_a = [4, 3, 4, 2, 3, 4, 11, 1, 2, 3, 4, 10, 11] correct_values_b = [8, 7, 8, 6, 7, 8, 13, 5, 6, 7, 8, 12, 13] df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=-1) self.assertListEqual(list(df["id"].values), correct_indices) self.assertListEqual(list(df["a"].values), correct_values_a) self.assertListEqual(list(df["b"].values), correct_values_b) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=-1, maximum_number_of_timeshifts=None) self.assertListEqual(list(df["id"].values), correct_indices) self.assertListEqual(list(df["a"].values), correct_values_a) self.assertListEqual(list(df["b"].values), correct_values_b) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=-1, maximum_number_of_timeshifts=1) self.assertListEqual(list(df["id"].values), correct_indices[3:]) self.assertListEqual(list(df["a"].values), correct_values_a[3:]) self.assertListEqual(list(df["b"].values), correct_values_b[3:]) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=-1, maximum_number_of_timeshifts=2) self.assertListEqual(list(df["id"].values), correct_indices[1:]) self.assertListEqual(list(df["a"].values), correct_values_a[1:]) self.assertListEqual(list(df["b"].values), correct_values_b[1:]) df = dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=-1, maximum_number_of_timeshifts=4) self.assertListEqual(list(df["id"].values), correct_indices[:]) self.assertListEqual(list(df["a"].values), correct_values_a[:]) self.assertListEqual(list(df["b"].values), correct_values_b[:]) def test_stacked_rolling(self): first_class = pd.DataFrame({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8], "time": range(4)}) second_class = pd.DataFrame({"a": [10, 11], "b": [12, 13], "time": range(20, 22)}) first_class["id"] = 1 second_class["id"] = 2 df_full = pd.concat([first_class, second_class], ignore_index=True) df_stacked = pd.concat([df_full[["time", "id", "a"]].rename(columns={"a": "_value"}), df_full[["time", "id", "b"]].rename(columns={"b": "_value"})], ignore_index=True) df_stacked["kind"] = ["a"] * 6 + ["b"] * 6 df = dataframe_functions.roll_time_series(df_stacked, column_id="id", column_sort="time", column_kind="kind", rolling_direction=-1) correct_indices = (["id=1, shift=-3"] * 2 + ["id=1, shift=-2"] * 4 + ["id=1, shift=-1"] * 6 + ["id=2, shift=-1"] * 2 + ["id=1, shift=0"] * 8 + ["id=2, shift=0"] * 4) self.assertListEqual(list(df["id"].values), correct_indices) self.assertListEqual(list(df["kind"].values), ["a", "b"] * 13) self.assertListEqual(list(df["_value"].values), [4, 8, 3, 7, 4, 8, 2, 6, 3, 7, 4, 8, 11, 13, 1, 5, 2, 6, 3, 7, 4, 8, 10, 12, 11, 13]) def test_dict_rolling(self): df_dict = { "a": pd.DataFrame({"_value": [1, 2, 3, 4, 10, 11], "id": [1, 1, 1, 1, 2, 2]}), "b": pd.DataFrame({"_value": [5, 6, 7, 8, 12, 13], "id": [1, 1, 1, 1, 2, 2]}) } df = dataframe_functions.roll_time_series(df_dict, column_id="id", column_sort=None, column_kind=None, rolling_direction=-1) correct_indices = (["id=1, shift=-3"] * 1 + ["id=1, shift=-2"] * 2 + ["id=1, shift=-1"] * 3 + ["id=2, shift=-1"] * 1 + ["id=1, shift=0"] * 4 + ["id=2, shift=0"] * 2) self.assertListEqual(list(df["a"]["id"].values), correct_indices) self.assertListEqual(list(df["b"]["id"].values), correct_indices) self.assertListEqual(list(df["a"]["_value"].values), [4, 3, 4, 2, 3, 4, 11, 1, 2, 3, 4, 10, 11]) self.assertListEqual(list(df["b"]["_value"].values), [8, 7, 8, 6, 7, 8, 13, 5, 6, 7, 8, 12, 13]) def test_warning_on_non_uniform_time_steps(self): with warnings.catch_warnings(record=True) as w: first_class = pd.DataFrame({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8], "time": [1, 2, 4, 5]}) second_class = pd.DataFrame({"a": [10, 11], "b": [12, 13], "time": range(20, 22)}) first_class["id"] = 1 second_class["id"] = 2 df_full = pd.concat([first_class, second_class], ignore_index=True) dataframe_functions.roll_time_series(df_full, column_id="id", column_sort="time", column_kind=None, rolling_direction=1) self.assertEqual(len(w), 1) self.assertEqual(str(w[0].message), "Your time stamps are not uniformly sampled, which makes rolling " "nonsensical in some domains.") class CheckForNanTestCase(TestCase): def test_all_columns(self): test_df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], index=[0, 1]) # should not raise an exception dataframe_functions.check_for_nans_in_columns(test_df) test_df = pd.DataFrame([[1, 2, 3], [4, np.NaN, 6]], index=[0, 1]) self.assertRaises(ValueError, dataframe_functions.check_for_nans_in_columns, test_df) def test_not_all_columns(self): test_df = pd.DataFrame([[1, 2, 3], [4, np.NaN, 6]], index=[0, 1], columns=["a", "b", "c"]) self.assertRaises(ValueError, dataframe_functions.check_for_nans_in_columns, test_df) self.assertRaises(ValueError, dataframe_functions.check_for_nans_in_columns, test_df, ["a", "b"]) self.assertRaises(ValueError, dataframe_functions.check_for_nans_in_columns, test_df, ["b"]) self.assertRaises(ValueError, dataframe_functions.check_for_nans_in_columns, test_df, "b") self.assertRaises(ValueError, dataframe_functions.check_for_nans_in_columns, test_df, ["c", "b"]) dataframe_functions.check_for_nans_in_columns(test_df, columns=["a", "c"]) dataframe_functions.check_for_nans_in_columns(test_df, columns="a") class ImputeTestCase(TestCase): def test_impute_zero(self): df = pd.DataFrame([{"value": np.NaN}]) dataframe_functions.impute_dataframe_zero(df) self.assertEqual(list(df.value), [0]) df = pd.DataFrame([{"value": np.PINF}]) dataframe_functions.impute_dataframe_zero(df) self.assertEqual(list(df.value), [0]) df = pd.DataFrame([{"value": np.NINF}]) dataframe_functions.impute_dataframe_zero(df) self.assertEqual(list(df.value), [0]) df = pd.DataFrame([{"value": np.NINF}, {"value": np.NaN}, {"value": np.PINF}, {"value": 1}]) dataframe_functions.impute_dataframe_zero(df) self.assertEqual(list(df.value), [0, 0, 0, 1]) df = pd.DataFrame([{"value": np.NINF}, {"value": np.NaN}, {"value": np.PINF}, {"value": 1}]) df = df.astype(np.float64) df = dataframe_functions.impute_dataframe_zero(df) self.assertEqual(list(df.value), [0, 0, 0, 1]) df =
pd.DataFrame([{"value": np.NINF}, {"value": np.NaN}, {"value": np.PINF}, {"value": 1}])
pandas.DataFrame
import openpyxl import pandas as pd from datetime import datetime, timedelta import xlsxwriter now = datetime.now() date_time = now.strftime("%m_%d_%Y %I_%M_%p") federal_tax_rate_path = "./federaltaxrates.csv" state_tax_rate_path = "./statetaxrates.csv" city_tax_rate_path = "./NYCtaxrates.csv" # calculate social security tax class EffectiveFederalTax: def __init__(self, salary, marital_status): self.salary = salary self.marital_status = marital_status def calculateSocialSecurityTaxDue(self): if self.salary >= 147000: return 9114 else: return round(self.salary * 0.062, 2) # calculate federal income tax + remainder of fica (medicare) for single filers class EffectiveFederalTaxSingle(EffectiveFederalTax): def __init__(self, salary, deductions): super().__init__(salary, "single") self.deductions = deductions def calculateFederalIncomeTaxDue(self): federal_tax_rate_table = pd.read_csv(federal_tax_rate_path) federal_tax_bracket_tier = 0 single_income_column = federal_tax_rate_table.columns.get_loc("Single Income") single_income_percentage_tax_column = federal_tax_rate_table.columns.get_loc("Single Tax Rate") max_index = len(list(federal_tax_rate_table.index)) - 1 while federal_tax_bracket_tier <= max_index and \ int(federal_tax_rate_table.iloc[federal_tax_bracket_tier, single_income_column]) < \ (self.salary - self.deductions): federal_tax_bracket_tier += 1 federal_tax_bracket_tier -= 1 federal_tax_due = 0 counter = 0 while counter <= federal_tax_bracket_tier - 1: federal_tax_due += (federal_tax_rate_table.iloc[counter + 1, single_income_column] - federal_tax_rate_table.iloc[counter, single_income_column])\ * (float((federal_tax_rate_table.iloc[counter, single_income_percentage_tax_column]) .strip("%")) / 100) counter += 1 marginal_tax_due = (self.salary - self.deductions - federal_tax_rate_table.iloc[federal_tax_bracket_tier, single_income_column]) \ * (float((federal_tax_rate_table.iloc[federal_tax_bracket_tier, single_income_percentage_tax_column]).strip("%")) / 100) federal_tax_due += marginal_tax_due return round(federal_tax_due, 2) def calculateMedicareTaxDue(self): if self.salary <= 200000: return round(self.salary * 0.0145, 2) else: return round(self.salary * 0.0145 + (self.salary - 200000) * 0.009, 2) def calculateTotalFederalTaxesDue(self): return self.calculateSocialSecurityTaxDue() + self.calculateFederalIncomeTaxDue() \ + self.calculateMedicareTaxDue() # calculate federal income tax + remainder of fica (medicare) for married filers class EffectiveFederalTaxMarried(EffectiveFederalTax): def __init__(self, salary, deductions): super().__init__(salary, "Married") self.deductions = deductions def calculateFederalIncomeTaxDue(self): federal_tax_rate_table =
pd.read_csv(federal_tax_rate_path)
pandas.read_csv
#!/usr/bin/env python """ Determine optimal CP_GROUP value for CPMD MPI calculations. This is based on empirical investigation and is not guarented to give optimal performance at all! The attempt here is: * to have a uniform distribution of plane waves on all CP groups. * to minimize CP_GROUP with that constraint, where CP_GROUP is the number of MPI tasks per CP_GROUP, i.e. CP_GROUP size. * to make the number of MPI tasks a multiple of the number of CPUs on a node. """ __author__="<NAME>" __email__="<EMAIL>" import pandas as pd if __name__=="__main__": max_nnodes = int(input("Maximum number of nodes that can be used : ")) # if a node has 16 CPUs this should probably be 16 ntasks_per_node = int(input("Number of MPI tasks per node : ")) # This can be obtained by submitting a dummy CPMD calculation # with your system and plane wave cutoff. Look for "REAL SPACE MESH". mesh = int(input("Size of the REAL SPACE MESH in X direction : ")) foundit = False solutions = { 'Number of nodes':[], 'CP_GROUP (size of)':[], 'Number of PW per group':[], } # We just go brute force and try all possibilities for N in range(1,max_nnodes+1): # CP_GROUP has to be lower than the number of MPI tasks ntasks = N * ntasks_per_node for ntasks_per_cpgrp in range(1,ntasks): # check that ntasks_per_cpgrp is a divisor of ntasks if ntasks%ntasks_per_cpgrp == 0: n_cp_groups = ntasks//ntasks_per_cpgrp else: continue # check that the number of CP_GROUPs is a divisor of the mesh size if mesh%n_cp_groups == 0: # we have a winner foundit = True npw_per_cpgrp = mesh//n_cp_groups solutions['Number of nodes'].append( N ) solutions['CP_GROUP (size of)'].append( ntasks_per_cpgrp ) solutions['Number of PW per group'].append( npw_per_cpgrp ) # this one is the first value of CP_GROUP that works with # the current number of nodes. It is thuse the smalest value # which is what we want, so we stop here for that number of nodes break else: continue print() if foundit: # convert solutions to a pandas data frame # and sort it based on the number of plane waves df =
pd.DataFrame(data=solutions)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[ ]: #!/usr/bin/env python3 import pandas as pd import sys import numpy as np import os def print_full(x): pd.set_option('display.max_rows', len(x)) print(x) pd.reset_option('display.max_rows') sys.path.append("/Users/tkaiser2/bin") sys.path.append("/home/tkaiser2/bin") from tymer import * bins=np.zeros(10) upper=[1,2,4,8,12,18,24,30,36,5000] lower=[0,1,2,4,8,12,18,24,30,36] bins=np.zeros(len(upper)) tymer(["-i","start"]) flist=open('zips','r') people=flist.readlines() #people=['jjenkins'] #for infile in sys.stdin: tmin=10./3600 w=0.0 tj=0 infile=people[0].strip() outfile=infile+"_jobs" overs=pd.read_pickle(infile+".zip") overs['who']=infile overs=overs[0:0] print(overs) for infile in people: infile=infile.strip() outfile=infile+"_jobs" #if os.path.exists(outfile): # os.remove(outfile) try: jobs=pd.read_pickle(infile+".zip") jw=sum(jobs.wait) w=w+jw tj=tj+len(jobs) #print(jobs.wall) #jobs.to_hdf(outfile, 'jobs') #jobs.to_pickle(infile+".zip",protocol=4) tjobs=len(jobs.loc[(jobs.wall > tmin)]) #print("%15s %12d" %(infile,tjobs)) for x in range(0,len(upper)-1) : #print(x,lower[x],upper[x]) #c=len(jobs.loc[(jobs.cores >= lower[x]) & (jobs.cores < upper[x])]) c=len(jobs.loc[(jobs.cores >= lower[x]) & (jobs.cores < upper[x]) & (jobs.wall > tmin)]) bins[x]=bins[x]+c #print("%5.2f %4d %5d" %(c*100,lower[x],upper[x])) for x in range(len(upper)-1,len(upper)) : #c=len(jobs.loc[(jobs.cores >= lower[x]) & (jobs.cores < upper[x])]) c=len(jobs.loc[(jobs.cores >= lower[x]) & (jobs.cores < upper[x]) & (jobs.wall > tmin)]) #print("***",x,lower[x],upper[x],c) if (c > 0): bonk=jobs.loc[(jobs.cores >= lower[x]) & (jobs.cores < upper[x]) & (jobs.wall > tmin)].copy(deep=True) #print(bonk) bonk['who']=infile overs=overs.append(bonk,ignore_index=True) bins[x]=bins[x]+c except: print(infile+" failed") # tymer(["-i",infile]) tymer(["-i",infile]) tjobs=sum(bins) bins=bins/tjobs print("Total Jobs= "+str(tjobs)) print("%CPU usage") print(" % >cores <cores") for x in range(0,len(upper)) : #c=len(jobs.loc[(jobs.cores >= lower[x]) & (jobs.cores < upper[x])]) bins[x]=bins[x]*100.0 print("%5.2f %4d %5d" %(bins[x],lower[x],upper[x])) #print(w,tj,(w/tj)/3600.0) # In[ ]: flist=open('people','r') flist=flist.readlines() over_two=pd.DataFrame(columns=['Nodes','Count','Wait_sum','Wait_max']) #print(over_jobs) #for infile in people[0:10]: for infile in people: #for infile in people: infile=infile.strip() outfile=infile+"_jobs" asum=pd.read_hdf(outfile) nodeset=asum['NNodes'].unique() #print(asum) count=np.zeros(len(nodeset)) sumit=np.zeros(len(nodeset)) maxit=np.zeros(len(nodeset)) mynodes=np.zeros(len(nodeset)) k=0 for n in nodeset: c=asum.loc[asum.NNodes == n] count[k]=len(c) sumit[k]=sum(c.wait) maxit[k]=max(c.wait) mynodes[k]=n k=k+1 #print(infile) #print(nodeset) for nzip in zip(nodeset,count,sumit,maxit): n,c,s,m=list(nzip) #print(n,c,s,m) if (len(over_two.loc[(over_two.Nodes == n)]) > 0): myrow=over_two.loc[(over_two.Nodes == n)] ind=myrow.index[0] over_two.at[ind,'Count']=float(over_two.loc[[ind],['Count']].values[0])+c over_two.at[ind,'Wait_sum']=s+float(over_two.loc[[ind],['Wait_sum']].values[0]) pre_max=float(over_two.loc[[ind],['Wait_max']].values[0]) if m > pre_max: over_two.at[ind,'Wait_max']=m else: df=pd.DataFrame([[n,c,s,m]],columns=over_two.columns) over_two=over_two.append(df,ignore_index=True) over_two['Wait_ave']=over_two.Wait_sum/over_two.Count over_two.sort_values(by=['Nodes'],inplace=True) print_full(over_two) # In[ ]: from pylab import figure,show,save import matplotlib.pyplot as plt plt.bar(over_two.Nodes,over_two.Wait_ave) # In[ ]: upper=np.array([1,2,4,8,16,32,64,128,256,762,3000]) lower=np.array([0,1,2,4,8,16,32,64,128,256,762]) bins=np.zeros(len(upper)) upper=upper*1e9 lower=lower*1e9 tymer(["-i","start"]) flist=open('zips','r') people=flist.readlines() #people=['jjenkins'] #for infile in sys.stdin: tmin=1./3600 w=0.0 tj=0 gpus=0 for infile in people: infile=infile.strip() outfile=infile+"_jobs" #if os.path.exists(outfile): # os.remove(outfile) try: jobs=pd.read_pickle(infile+".zip") #print(jobs) #print(jobs.wall) #jobs.to_hdf(outfile, 'jobs') #jobs.to_pickle(infile+".zip",protocol=4) tjobs=len(jobs.loc[(jobs.wall > tmin)]) gjobs=len(jobs.loc[(jobs.wall > tmin) & (jobs.ReqGRES)]) gpus=gpus+gjobs #print("%15s %12d" %(infile,tjobs)) for x in range(0,len(upper)) : #print(x,lower[x],upper[x]) #c=len(jobs.loc[(jobs.cores >= lower[x]) & (jobs.cores < upper[x])]) c=len(jobs.loc[(jobs.mem >= lower[x]) & (jobs.mem < upper[x]) & (jobs.wall > tmin)]) bins[x]=bins[x]+c c=c/tjobs #print("%5.2f %4d %5d" %(c*100,lower[x],upper[x])) except: print(infile+" failed") # tymer(["-i",infile]) tymer(["-i",infile]) tjobs=sum(bins) bins=bins/tjobs print("Total Jobs= "+str(tjobs)) upper=np.array([1,2,4,8,16,32,64,128,256,762,3000]) lower=np.array([0,1,2,4,8,16,32,64,128,256,762]) print("%Jobs Using memory in range") print(" % >GB <GB") for x in range(0,len(upper)) : bins[x]=bins[x]*100.0 print("%5.2f %4d %5d" %(bins[x],lower[x],upper[x])) print("GPU USAGE: total jobs %d or %3.2f%s" % (gpus, 100*gpus/tjobs,"%")) # In[ ]: tymer(["-i","Done with memory summary"]) # In[ ]: flist=open('people','r') flist=flist.readlines() over_two=pd.DataFrame(columns=['Nodes','Count','Wall_sum']) #print(over_jobs) #for infile in people[0:10]: tmin=10.0/3600 #for infile in ['tkaiser2']: for infile in people: infile=infile.strip() outfile=infile+"_jobs" asum=pd.read_hdf(outfile) nodeset=asum['NNodes'].unique() #print(asum) count=np.zeros(len(nodeset)) sumit=np.zeros(len(nodeset)) maxit=np.zeros(len(nodeset)) mynodes=np.zeros(len(nodeset)) k=0 for n in nodeset: c=asum.loc[(asum.wall > tmin) & (asum.NNodes == n)] count[k]=len(c) sumit[k]=sum(c.wall) mynodes[k]=n k=k+1 #print(infile) #print(nodeset) for nzip in zip(nodeset,count,sumit): n,c,s=list(nzip) #print(n,c,s,m) if (len(over_two.loc[(over_two.Nodes == n)]) > 0): myrow=over_two.loc[(over_two.Nodes == n)] ind=myrow.index[0] over_two.at[ind,'Count']=float(over_two.loc[[ind],['Count']].values[0])+c over_two.at[ind,'Wall_sum']=s+float(over_two.loc[[ind],['Wall_sum']].values[0]) pre_max=float(over_two.loc[[ind],['Wall_sum']].values[0]) else: df=pd.DataFrame([[n,c,s]],columns=over_two.columns) over_two=over_two.append(df,ignore_index=True) over_two['Wall_ave']=3600.0*over_two.Wall_sum/over_two.Count over_two.sort_values(by=['Nodes'],inplace=True) over_two.drop(columns='Wall_sum',inplace=True) print_full(over_two) tymer(["-i","Done with wall time summary"]) # In[ ]: startd=['2019-11-01','2019-12-01','2020-01-01','2020-02-01','2020-03-01','2020-04-01','2020-05-01'] endd= ['2019-11-30','2019-12-31','2020-01-31','2020-02-29','2020-03-31','2020-04-30','2020-05-31'] month= ['11','12','01','02','03','04','05'] for st,en,mo in zip(startd,endd,month): print(st,en,mo) # In[ ]: overs=pd.read_pickle("tkaiser2"+".zip") overs # In[ ]: overs.ReqGRES.isnull().sum() # In[ ]: do_gpu=pd.DataFrame(columns=['who','GPU','Total']) flist=open('zips','r') people=flist.readlines() for w in people: w=w.strip() overs=pd.read_pickle(w+".zip") nope=overs.ReqGRES.isnull().sum() total=len(overs) gpu=total-nope df=
pd.DataFrame([[w,gpu,total]],columns=do_gpu.columns)
pandas.DataFrame
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (
is_platform_32bit()
pandas.compat.is_platform_32bit
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(),
Timedelta('3 days')
pandas.Timedelta
# Copyright 2019 TWO SIGMA OPEN SOURCE, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from beakerx_tabledisplay import TableDisplay, Table import numpy as np import pandas as pd class TestTableDisplay(unittest.TestCase): def test_NaT_support(self): # given df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'], columns=['one', 'two', 'three']) df['timestamp'] =
pd.Timestamp('20120101')
pandas.Timestamp
#!/usr/bin/env python3 #################################################################################### #-------------------------------CX-ASAP: cif_reading-------------------------------# #---Authors: <NAME>, <NAME>, <NAME> & <NAME>---# #----------------------------Python Implementation by AJT--------------------------# #-------------------------------Project Design by JRP------------------------------# #-----------------------Valuable Coding Support by KMS & DJE-----------------------# #################################################################################### #----------Instructions for Use----------# #This module will read and analyse all of the CIF files in the current folder and below in the directory tree #If you would like a single CIF file analysed, place it in an otherwise empty folder #If you would like multiple CIF files analysed, place all of them into a single folder or below in the directory tree #----------Required Modules----------# import os import pandas as pd import re import yaml import logbook import pathlib from CifFile import ReadCif #----------Class Definition----------# class CIF_File: def __init__(self, location = 'temp', home_path = os.getcwd()): config = Config() self.cfg = config.cfg self.conf_path = config.conf_path self.logger = config.logger #if location == 'temp': #os.chdir(self.cfg['System_Parameters']['current_results_path']) os.chdir(location) #Sets up empty lists/dictionaries to later populate with data self.cif_files = [] self.results = {} self.errors = {} self.structures_in_cif = [] self.successful_positions = [] #Sets these to 0 to reset from previous runs self.cfg['System_Parameters']['Structures_in_each_CIF'] = self.structures_in_cif self.cfg['System_Parameters']['Successful_Positions'] = self.successful_positions with open (self.conf_path, 'w') as f: yaml.dump(self.cfg, f, default_flow_style=False, Dumper=Nice_YAML_Dumper, sort_keys=False) #Pulls parameters from the configuration file as necessary, and uses it to set up an empty dataframe self.search_items = self.cfg['User_Parameters_Full_Pipeline']['Analysis_Requirements']['cell_parameters'] for item in self.search_items: self.results[item] = [] self.errors[item] = [] self.data = pd.DataFrame() self.temp_df = pd.DataFrame() self.data2 = pd.DataFrame() self.data3 = pd.DataFrame() self.data4 = pd.DataFrame() def sorted_properly(self, data): #This function sorts the files/folders properly (ie going 0, 1, 2... 10 instead of 0, 1, 10, 2... etc) convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key)] return sorted(data, key=alphanum_key) def get_data(self): #This function searches through all of the folders in the current working directory for a cif file for dirName, subdirList, fileList in os.walk(os.getcwd()): sorted_fileList = self.sorted_properly(fileList) for files in sorted_fileList: #Once a unique CIF file is identified (checks for duplicates), the name is appended to a list and the data_harvest function is run on it if files.endswith('.cif') and files.lower() not in self.cif_files: self.cif_files.append(files.lower()) self.logger.info(files) cif_file = os.path.join(os.getcwd(), files) temp_data, structures_in_cif_tmp, successful_positions_tmp, temp_bonds, temp_angles, temp_torsion = self.data_harvest(cif_file) self.data = self.data.append(temp_data) self.data2 = self.data2.append(temp_bonds) self.data3 = self.data3.append(temp_angles) self.data4 = self.data4.append(temp_torsion) self.structures_in_cif.append(structures_in_cif_tmp) for item in successful_positions_tmp: self.successful_positions.append(item) self.cfg['System_Parameters']['Structures_in_each_CIF'] = self.structures_in_cif self.cfg['System_Parameters']['Successful_Positions'] = self.successful_positions with open (self.conf_path, 'w') as f: yaml.dump(self.cfg, f, default_flow_style=False, Dumper=Nice_YAML_Dumper, sort_keys=False) return self.data, self.data2 def parameter_tidy(self, raw, item): if '(' in raw: temp = raw.split('(') temp2 = temp[1].strip(')') self.results[item].append(float(temp[0])) if '.' in raw: temp3 = temp[0].split('.') self.errors[item].append(int(temp2)*10**-(int(len(temp3[1])))) else: self.errors[item].append(int(temp2)) else: try: self.results[item].append(float(raw)) except ValueError: self.results[item].append(raw) self.errors[item].append(0) def generate_cif_list(self, df): longer_cif_list = [] longer_data_blocks = [] if len(df) != 0: for item in self.cif_list: i = 0 while i < (len(df) / len(self.cif_list)): longer_cif_list.append(item) i += 1 for item in self.data_blocks: i = 0 while i < (len(df) / len(self.data_blocks)): longer_data_blocks.append(item) i += 1 return longer_cif_list, longer_data_blocks def data_harvest(self, cif_file): #Resets the dataframes/dictionaries for item in self.search_items: self.results[item] = [] self.errors[item] = [] self.temp_df = pd.DataFrame() self.bond_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import warnings import numpy as np from matplotlib import pyplot as plt warnings.simplefilter("ignore") pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) online = False # if True: download xml files from github URL # be careful: online version will not work if requirements from requirements.txt are not satisfied! if online: url_link_302_19 = 'https://github.com/Hidancloud/risk_management_debt_forecast/' \ 'blob/main/data_folder/302-19.xlsx?raw=true' url_link_01_13_F_Debt_sme_subj = 'https://github.com/Hidancloud/risk_management_debt_forecast/' \ 'blob/main/data_folder/01_13_F_Debt_sme_subj.xlsx?raw=true' url_link_Interpolationexp2 = 'https://github.com/Hidancloud/risk_management_debt_forecast/' \ 'blob/main/data_folder/Interpolationexp2.xlsx?raw=true' def extract_data_before_2019y(): """ Extracts data from the 302-19.xlsx file :return: pandas dataframe with columns 'Дата', 'Задолженность', 'Просроченная задолженность' """ if online: return pd.read_excel(url_link_302_19, usecols=[0, 5, 11], skiprows=list(range(7)), names=['Дата', 'Задолженность', 'Просроченная задолженность']) return pd.read_excel('data_folder/302-19.xlsx', usecols=[0, 5, 11], skiprows=list(range(7)), names=['Дата', 'Задолженность', 'Просроченная задолженность']) def extract_data_after_2018(): """ Extracts data from the 01_13_F_Debt_sme_subj.xlsx file :return: pandas dataframe with columns 'Дата', 'Задолженность', 'Просроченная задолженность' """ # read Задолженность from the page МСП Итого # .T to make rows for entities and columns for properties if online: after_19y_debt = pd.read_excel(url_link_01_13_F_Debt_sme_subj, skiprows=1, nrows=1, sheet_name='МСП Итого ').T else: after_19y_debt = pd.read_excel('data_folder/01_13_F_Debt_sme_subj.xlsx', skiprows=1, nrows=1, sheet_name='МСП Итого ').T after_19y_debt.reset_index(inplace=True) # remove an odd row after transpose after_19y_debt.drop(labels=0, axis=0, inplace=True) after_19y_debt.columns = before_19y.columns[:2] # change types of the columns for convenience after_19y_debt[after_19y_debt.columns[0]] = pd.to_datetime(after_19y_debt[after_19y_debt.columns[0]]) after_19y_debt = after_19y_debt.astype({after_19y_debt.columns[1]: 'int32'}, copy=False) # read Просроченная задолженность from the page МСП в т.ч. просроч. if online: after_19y_prosro4eno = pd.read_excel(url_link_01_13_F_Debt_sme_subj, skiprows=2, nrows=0, sheet_name='МСП в т.ч. просроч.').T else: after_19y_prosro4eno = pd.read_excel('data_folder/01_13_F_Debt_sme_subj.xlsx', skiprows=2, nrows=0, sheet_name='МСП в т.ч. просроч.').T after_19y_prosro4eno.reset_index(inplace=True) # remove an odd row after the transpose after_19y_prosro4eno.drop(labels=0, axis=0, inplace=True) # name the column after_19y_prosro4eno.columns = ['Просроченная задолженность'] # concatenate Задолженность and Просроченная задолженность in one table and return it return
pd.concat([after_19y_debt, after_19y_prosro4eno], axis=1)
pandas.concat
""" """ import sys import argparse import os import time import collections import re from six.moves import StringIO import pandas import tqdm # progress bar tqdm.monitor_interval = 0 # see https://github.com/tqdm/tqdm/issues/481 import shellinford parser = argparse.ArgumentParser(usage=__doc__) parser.add_argument( "peptides", metavar="FILE.csv", help="CSV of mass spec hits") parser.add_argument( "reference_csv", metavar="FILE.csv", help="CSV of protein sequences") parser.add_argument( "reference_index", metavar="FILE.fm", help="shellinford index over protein sequences") parser.add_argument( "--out", metavar="OUT.csv", help="Out file path") parser.add_argument( "--flanking-length", metavar="N", type=int, default=15, help="Length of flanking sequence to include") parser.add_argument( "--debug-max-rows", metavar="N", type=int, default=None, help="Max rows to process. Useful for debugging. If specified an ipdb " "debugging session is also opened at the end of the script") def run(): args = parser.parse_args(sys.argv[1:]) df = pandas.read_csv(args.peptides) df["hit_id"] = "hit." + df.index.map('{0:07d}'.format) df = df.set_index("hit_id") print("Read peptides", df.shape, *df.columns.tolist()) reference_df =
pandas.read_csv(args.reference_csv, index_col=0)
pandas.read_csv
import os import sys import glob import pickle as pkl import warnings from pathlib import Path import numpy as np import pandas as pd from scipy.stats import ttest_rel def load_stratified_prediction_results(results_dir, experiment_descriptor): """Load results of stratified prediction experiments. Arguments --------- results_dir (str): directory to look in for results, subdirectories should be experiments for individual genes or cancer types experiment_descriptor (str): string describing this experiment, can be useful to segment analyses involving multiple experiments or results sets Returns ------- results_df (pd.DataFrame): results of classification experiments """ results_df = pd.DataFrame() results_dir = Path(results_dir) for identifier in results_dir.iterdir(): identifier_dir = Path(results_dir, identifier) if identifier_dir.is_file(): continue for results_file in identifier_dir.iterdir(): if not results_file.is_file(): continue results_filename = str(results_file.stem) # skip compressed files here, use load_compressed* functions # to load that data separately if check_compressed_file(results_filename): continue if ('classify' not in results_filename or 'metrics' not in results_filename): continue if results_filename[0] == '.': continue id_results_df = pd.read_csv(results_file, sep='\t') id_results_df['experiment'] = experiment_descriptor results_df = pd.concat((results_df, id_results_df)) return results_df def load_compressed_prediction_results(results_dir, experiment_descriptor, old_filenames=False): """Load results of compressed prediction experiments. Arguments --------- results_dir (str): directory to look in for results, subdirectories should be experiments for individual genes or cancer types experiment_descriptor (str): string describing this experiment, can be useful to segment analyses involving multiple experiments or results sets old_filenames (bool): use old filename format Returns ------- results_df (pd.DataFrame): results of classification experiments """ results_df = pd.DataFrame() results_dir = Path(results_dir) for identifier in results_dir.iterdir(): identifier_dir = Path(results_dir, identifier) if identifier_dir.is_file(): continue for results_file in identifier_dir.iterdir(): if not results_file.is_file(): continue results_filename = str(results_file.stem) if not check_compressed_file(results_filename): continue if ('classify' not in results_filename or 'metrics' not in results_filename): continue if results_filename[0] == '.': continue if old_filenames: try: n_dims = int(results_filename.split('_')[-3].replace('n', '')) except ValueError: n_dims = int(results_filename.split('_')[-2].replace('n', '')) else: n_dims = int(results_filename.split('_')[-2].replace('n', '')) id_results_df = pd.read_csv(results_file, sep='\t') id_results_df['n_dims'] = n_dims id_results_df['experiment'] = experiment_descriptor results_df = pd.concat((results_df, id_results_df)) return results_df def load_purity_results(results_dir, classify=True): """Load results of tumor purity experiments. Arguments --------- results_dir (str): directory containing results files Returns ------- results_df (pd.DataFrame): results of prediction experiments """ results_df = pd.DataFrame() results_dir = Path(results_dir) for results_file in results_dir.iterdir(): if not results_file.is_file(): continue results_filename = str(results_file.stem) if classify and ('classify' not in results_filename or 'metrics' not in results_filename): continue if not classify and ('regress' not in results_filename or 'metrics' not in results_filename): continue if results_filename[0] == '.': continue id_results_df = pd.read_csv(results_file, sep='\t') if check_compressed_file(results_filename): id_results_df.training_data += '_compressed' results_df = pd.concat((results_df, id_results_df)) return results_df def load_msi_results(results_dir): """Load results of microsatellite instability prediction experiments. Arguments --------- results_dir (str): directory containing results files Returns ------- results_df (pd.DataFrame): results of prediction experiments """ results_df = pd.DataFrame() results_dir = Path(results_dir) for results_file in results_dir.iterdir(): if not results_file.is_file(): continue results_filename = str(results_file.stem) if ('classify' not in results_filename or 'metrics' not in results_filename): continue if results_filename[0] == '.': continue id_results_df = pd.read_csv(results_file, sep='\t') # TODO: n_dims? results_df =
pd.concat((results_df, id_results_df))
pandas.concat
import numpy as np import pandas as pd import neurokit2 as nk signal = nk.signal_simulate(duration=10, sampling_rate=200, frequency=[5, 10], noise=0) signal = nk.standardize(signal) # nk.complexity_embedding(signal, delay=20, dimension=3, show=True) def _compute_complexity(noise=0): data = pd.DataFrame() for noise_intensity in np.linspace(0.01, 2, 30): x = nk.signal_noise(duration=10, sampling_rate=200, beta=noise) sig = signal + (nk.standardize(x) * noise_intensity) d, _ = nk.complexity(sig, which=["fast", "medium", "slow"], delay=20, dimension=3) d = d.drop("ShanEn", axis=1) d["ShanEn_2"], _ = nk.entropy_shannon(pd.cut(sig, 2, labels=False)) d["ShanEn_3"], _ = nk.entropy_shannon(pd.cut(sig, 3, labels=False)) d["ShanEn_10"], _ = nk.entropy_shannon(pd.cut(sig, 10, labels=False)) d["ShanEn_100"], _ = nk.entropy_shannon(pd.cut(sig, 100, labels=False)) d["ShanEn_1000"], _ = nk.entropy_shannon(pd.cut(sig, 1000, labels=False)) d["CREn_2"], _ = nk.entropy_cumulative_residual(pd.cut(sig, 2, labels=False)) d["CREn_3"], _ = nk.entropy_cumulative_residual(pd.cut(sig, 3, labels=False)) d["CREn_10"], _ = nk.entropy_cumulative_residual(pd.cut(sig, 10, labels=False)) d["CREn_100"], _ = nk.entropy_cumulative_residual(pd.cut(sig, 100, labels=False)) d["CREn_1000"], _ = nk.entropy_cumulative_residual(pd.cut(sig, 1000, labels=False)) d["PFD_a"], _ = nk.fractal_petrosian(sig, method="A") d["PFD_b"], _ = nk.fractal_petrosian(sig, method="B") d["PFD_c"] = d["PFD"] # already computed d["PFD_d"], _ = nk.fractal_petrosian(sig, method="D") d = d.drop(["PFD"], axis=1) d["Noise"] = noise d["Intensity"] = noise_intensity data = pd.concat([data, d], axis=0) return data args = [{"noise": noise} for noise in np.linspace(-2, 2, 10)] data = nk.parallel_run(_compute_complexity, args, verbose=10, n_jobs=-4) # -2
pd.concat(data)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Wed Oct 2 09:15:15 2019 PROGRAM PURPOSE: Creates the followng graphics for the CTM: -Table 7: Historical Households and Average Household Sizes for XXXX County, 1980-2010 -Figure 4: Trend in Average Household Size for XXXX County, 1980-2010 @author: slq584 """ import pandas as pd import matplotlib.pyplot as plt import paths as p import API_call as api import population_growth as pop """ get_excel_data() PURPOSE: Get Number of Households and Average Household Size from Excel files containing data that predates the 2000s """ def get_excel_data(data, county, decade): #Dataframe to hold data df = pd.DataFrame() df = pd.read_excel(data) #Subset the row based on county subset_row = df[df['COUNTY'] == county] if(decade == 1980): #Assign information we are looking for to variables household_number = subset_row['C75001'].values[0] household_average = subset_row['Unnamed: 10'].values[0] household_average = round(household_average, 2) elif(decade == 1990): #Assign information we are looking for to variables household_number = subset_row['EUO001'].values[0] household_average = subset_row['Unnamed: 12'].values[0] household_average = round(household_average, 2) #Package these variables in a Dataframe since we need to return #more than one value data_needed = pd.DataFrame([{'Number': household_number, 'Average': household_average}]) return data_needed """ table7_string_converter() PURPOSE: Convert string into a dictionary for later implementation. This function was made specifically for table 7. """ def table7_string_converter(string): li = list(string.split(",")) #print(li) li.pop(6) #print(li) subli1 = li[:4] subli2 = li[4:] conversion = dict(zip(subli1,subli2)) #print(conversion) return conversion """ make_table7() PURPOSE: Creates table 7 with data passed. """ def make_table7(county, county_data_2010, county_data_2000, county_data_2010_number, county_data_2000_number, county_data_1990, county_data_1980): #Assign data to variables for readability household_average_2010 = county_data_2010['H012001'] household_average_2000 = county_data_2000['H012001'] number_2010 = county_data_2010_number['P020001'] number_2000 = county_data_2000_number['P020001'] #Put all data in a list so that the DataFrame declaration is readable values = [county_data_1980['Number'].values[0], county_data_1980['Average'].values[0], county_data_1990['Number'].values[0], county_data_1990['Average'].values[0], number_2000, household_average_2000, number_2010, household_average_2010,] #Rename Columns and establish a MultiIndex columns = pd.MultiIndex.from_product([['1980', '1990', '2000', '2010'], ['Number', 'Avg. HH Size']]) #Create DataFrame table7 =
pd.DataFrame([values], columns=columns)
pandas.DataFrame
import numpy as np import pickle as pkl import scipy.sparse as sp import torch import torch.nn as nn import random from sklearn import metrics import pandas as pd def shuffle_nodes(items, masks): node_num = masks.sum(axis=1) batch_size = masks.shape[0] node_max = masks.shape[1] shuffle_item = items.copy() for i in range(batch_size): shuf_idx = np.append(np.random.permutation(node_num[i]), np.ones(node_max - node_num[i]) * (node_max - 1)) idx = shuf_idx.astype(np.int32) shuffle_item[i] = shuffle_item[i, idx] return shuffle_item ############################################### # This section of code adapted from tkipf/gcn # ############################################### def parse_index_file(filename): """Parse index file.""" index = [] for line in open(filename): index.append(int(line.strip())) return index def sample_mask(idx, l): """Create mask.""" mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool) def macro_f1(preds, labels): labels = labels.to(torch.device("cpu")).numpy() preds = preds.to(torch.device("cpu")).numpy() macro = metrics.f1_score(labels, preds, average='macro') return macro def sparse_to_tuple(sparse_mx, insert_batch=False): """Convert sparse matrix to tuple representation.""" """Set insert_batch=True if you want to insert a batch dimension.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() if insert_batch: coords = np.vstack((np.zeros(mx.row.shape[0]), mx.row, mx.col)).transpose() values = mx.data shape = (1,) + mx.shape else: coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx def standardize_data(f, train_mask): """Standardize feature matrix and convert to tuple representation""" # standardize data f = f.todense() mu = f[train_mask == True, :].mean(axis=0) sigma = f[train_mask == True, :].std(axis=0) f = f[:, np.squeeze(np.array(sigma > 0))] mu = f[train_mask == True, :].mean(axis=0) sigma = f[train_mask == True, :].std(axis=0) f = (f - mu) / sigma return f def preprocess_features(features): """Row-normalize feature matrix and convert to tuple representation""" rowsum = np.array(features.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) features = r_mat_inv.dot(features) return features.todense(), sparse_to_tuple(features) def normalize_adj(adj): """Symmetrically normalize adjacency matrix.""" adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)) d_inv_sqrt = np.power(rowsum, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() def preprocess_adj(adj): """Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.""" adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0])) return sparse_to_tuple(adj_normalized) def sparse_mx_to_torch_sparse_tensor(sparse_mx): """Convert a scipy sparse matrix to a torch sparse tensor.""" sparse_mx = sparse_mx.tocoo().astype(np.float32) indices = torch.from_numpy( np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64)) values = torch.from_numpy(sparse_mx.data) shape = torch.Size(sparse_mx.shape) return torch.sparse.FloatTensor(indices, values, shape) ############################################### # This section of code adapted from DGRec # ############################################### def load_latest_session(data_path): ret = [] for line in open(data_path + '/latest_sessions.txt'): chunks = line.strip().split(',') ret.append(chunks) return ret def load_map(data_path): id_map = {} for line in open(data_path): k, v = line.strip().split(',') id_map[k] = str(v) map_num = len(id_map) return map_num def load_adj(data_path, dataset="Yelp"): if dataset == "Yelp": adj_social = sp.load_npz(data_path + "/meta_path/adj_user.npz") mp_city = sp.load_npz(data_path + "/meta_path/mp_city.npz") mp_category = sp.load_npz(data_path + "/meta_path/mp_category.npz") # return [mp_iui, mp_social_dict, mp_category, mp_city] adj_social = adj_social.tolil() return [adj_social, mp_category.tolil(), mp_city.tolil()] elif dataset == "Tmall": mp_brand = sp.load_npz(data_path + "/meta_path/mp_brand.npz") mp_seller = sp.load_npz(data_path + "/meta_path/mp_seller.npz") mp_cate = sp.load_npz(data_path + "/meta_path/mp_category.npz") return [mp_seller.tolil(), mp_brand.tolil(), mp_cate.tolil()] elif dataset == "Nowplaying": mp_artist = sp.load_npz(data_path + "/meta_path/mp_artist.npz") mp_hashtag = sp.load_npz(data_path + "/meta_path/mp_hashtag.npz") mp_context = sp.load_npz(data_path + "/meta_path/mp_context.npz") return [mp_artist.tolil(), mp_hashtag.tolil(), mp_context.tolil()] def load_data(path="./Yelp/processed/", dataset="Yelp"): latest_sessions = load_latest_session(path) mp_adj_list = load_adj(path, dataset) mp_test_adj = load_adj(path + '/test', dataset) # mp_adj_list = mp_test_adj if dataset == "Yelp": business_file = path + '/business_id_map.csv' user_file = path + '/user_id_map.csv' city_file = path + '/city_id_map.csv' category_file = path + '/category_id_map.csv' business_num = load_map(data_path=business_file) user_num = load_map(data_path=user_file) city_num = load_map(data_path=city_file) category_num = load_map(data_path=category_file) num_list = [business_num, user_num, city_num, category_num] train = pd.read_csv(path + '/train.csv', sep=',', dtype={0: str, 1: str, 2: str, 3: str, 4: str, 5: str, 6: str, 7: str}) valid = pd.read_csv(path + '/valid.csv', sep=',', dtype={0: str, 1: str, 2: str, 3: str, 4: str, 5: str, 6: str, 7: str}) test = pd.read_csv(path + '/test.csv', sep=',', dtype={0: str, 1: str, 2: str, 3: str, 4: str, 5: str, 6: str, 7: str}) # return adjs, features, labels, idx_train, idx_val, idx_test elif dataset == "Tmall": train = pd.read_csv(path + '/train.csv', sep=',', dtype={0: str, 1: int, 2: int, 3: int}) valid = pd.read_csv(path + '/valid.csv', sep=',', dtype={0: str, 1: int, 2: int, 3: int}) test = pd.read_csv(path + '/test.csv', sep=',', dtype={0: str, 1: int, 2: int, 3: int}) df_concat = pd.concat([train, valid, test]) brand_df = pd.read_csv(path + 'item_brand.csv', sep=',', dtype={0: int, 1: int}) seller_df = pd.read_csv(path + 'item_seller.csv', sep=',', dtype={0: int, 1: int}) cate_df = pd.read_csv(path + 'item_category.csv', sep=',', dtype={0: int, 1: int}) business_num = df_concat['item_id'].nunique() seller_num = seller_df['seller_id'].nunique() brand_num = brand_df['brand_id'].nunique() category_num = cate_df['cat_id'].nunique() num_list = [business_num, seller_num, brand_num, category_num] elif dataset == 'Nowplaying': train = pd.read_csv(path + '/train.csv', sep=',', dtype={0: int, 1: int, 2: int, 3: str}) valid = pd.read_csv(path + '/valid.csv', sep=',', dtype={0: int, 1: int, 2: int, 3: str}) test = pd.read_csv(path + '/test.csv', sep=',', dtype={0: int, 1: int, 2: int, 3: str}) df_concat = pd.concat([train, valid, test]) artist_df = pd.read_csv(path + '/artist.csv', sep=',', dtype={0: int, 1: int}) hashtag_df = pd.read_csv(path + '/hashtag.csv', sep=',', dtype={0: int, 1: int}) context_df =
pd.read_csv(path + '/context.csv', sep=',', dtype={0: int, 1: int})
pandas.read_csv
""" Pull my Garmin sleep data via json requests. This script was adapted from: https://github.com/kristjanr/my-quantified-sleep The aforementioned code required the user to manually define headers and cookies. It also stored all of the data within Night objects. My modifications include using selenium to drive a Chrome browser. This avoids the hassle of getting headers and cookies manually (the cookies would have to be updated everytime the Garmin session expired). It also segments data requests because Garmin will respond with an error if more than 32 days are requested at once. Lastly, data is stored as a pandas dataframe and then written to a user-defined directory as a pickle file. Data is this processed and merged with older data from my Microsft smartwatch. The merged data is also saved as pandas dataframes in pickle files. Lastly, sunrise and sunset data is downloaded for all days in the sleep dataset. This data is also archived as a pandas dataframe and saved as a pickle file. The data update process hs been broken into steps so that progress can be passed to the Dash app. """ # import base packages import datetime, json, os, re, sys from itertools import chain from os.path import isfile # import installed packages import pytz, requests, chardet, brotli import numpy as np import pandas as pd from pandas.tseries.holiday import USFederalHolidayCalendar as calendar from seleniumwire import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as ec from selenium.webdriver.support.ui import WebDriverWait # input variables if os.name == "nt": # running on my local Windows machine ENV = "local" else: # running on heroku server ENV = "heroku" if ENV == "local": proj_path = "C:/Users/adiad/Anaconda3/envs/SleepApp/sleep_app/" # read/write data dir else: proj_path = "" GOOGLE_CHROME_PATH = '/app/.apt/usr/bin/google-chrome' CHROMEDRIVER_PATH = '/app/.chromedriver/bin/chromedriver' garmin_results_pkl_fn = "data/garmin_sleep_df.pkl" # name of pickle file to archive (combining new results with any previous Garmin) for easy updating and subsequent processing garmin_results_json_fn = "data/new_garmin_sleep.json" # name of json file with only new raw results garmin_results_csv_fn = "data/garmin_sleep_df.csv" # name of csv file to archive (combining new results with any previous) all_descr_results_fn = "data/all_sleep_descr_df.pkl" # name of pickle file combining all Garmin & Microsift sleep session description data all_event_results_fn = "data/all_sleep_event_df.pkl" # name of pickle file combining all Garmin & Microsoft event data sun_pkl_fn = "data/sun_df.pkl" # name of pickel file to archive sunrise/sunset data local_tz = "US/Eastern" # pytz local timezone for sunrise/sunset time conversion sun_lat = 39.76838 # latitude where sunrise/sunset times are derived from sun_lon = -86.15804 # longitude where sunrise/sunset times are derived from run_browser_headless = False # will hide Firefox during execution if True browser_action_timeout = 60 # max time (seconds) for browser wait operations start_date = '2017-03-01' # first date to pull sleep data end_date = str(datetime.date.today() - datetime.timedelta(days=1)) # last date to pull sleep data user_name = "email address" # Garmin username password = "password" # Garmin password signin_url = "https://connect.garmin.com/signin/" # Garmin sign-in webpage sleep_url_base = "https://connect.garmin.com/modern/sleep/" # Garmin sleep base URL (sans date) sleep_url_json_req = "https://connect.garmin.com/modern/proxy/wellness-service/wellness/dailySleepsByDate" def download(start_date, end_date, headers, session_id): params = ( ('startDate', start_date), ('endDate', end_date), ('_', session_id), ) response = requests.get(sleep_url_json_req, headers=headers, params=params) if response.status_code != 200: print("RESPONSE ERROR RECEIVED:") print('Status code: %d' % response.status_code) response_dict = json.loads(response.content.decode('UTF-8')) print('Content: %s' % response_dict["message"]) raise Exception return response def download_to_json(start_date, end_date, headers, session_id): response = download(start_date, end_date, headers, session_id) # most responses are in ascii (no encoding) # sporadically a response will have brotli encoding #print("The response is encoded with:", chardet.detect(response.content)) if chardet.detect(response.content)["encoding"] == 'ascii': return json.loads(response.content) else: return brotli.decompress(response.content) def converter(data, return_df=True): # define functions which pass through None value because # datetime functions don't accept value None def sleep_timestamp(val): if val is None: return None else: return datetime.datetime.fromtimestamp(val / 1000, pytz.utc) def sleep_timedelta(val): if val is None: return None else: return datetime.timedelta(seconds=val) # initialize variables if return_df: nights = pd.DataFrame(columns=["Prev_Day", "Bed_Time", "Wake_Time", "Awake_Dur", "Light_Dur", "Deep_Dur", "Total_Dur", "Nap_Dur", "Window_Conf"]) i = 0 else: nights = [] for d in data: bed_time = sleep_timestamp(d['sleepStartTimestampGMT']) wake_time = sleep_timestamp(d['sleepEndTimestampGMT']) previous_day = datetime.date(*[int(datepart) for datepart in d['calendarDate'].split('-')]) - datetime.timedelta(days=1) deep_duration = sleep_timedelta(d['deepSleepSeconds']) light_duration = sleep_timedelta(d['lightSleepSeconds']) total_duration = sleep_timedelta(d['sleepTimeSeconds']) awake_duration = sleep_timedelta(d['awakeSleepSeconds']) nap_duration = sleep_timedelta(d['napTimeSeconds']) window_confirmed = d['sleepWindowConfirmed'] if return_df: nights.loc[i] = [previous_day, bed_time, wake_time, awake_duration, light_duration, deep_duration, total_duration, nap_duration, window_confirmed] i += 1 else: night = Night(bed_time, wake_time, previous_day, deep_duration, light_duration, total_duration, awake_duration) nights.append(night, sort=True) return nights # this function returns a list of all dates in [date1, date2] def daterange(date1, date2): date_ls = [date1] for n in range(int((date2 - date1).days)): date_ls.append(date_ls[-1] + datetime.timedelta(days=1)) return date_ls # steps to updating sleep data: # Step 0: determine which dates are missing in the archived Garmin dataset, # given the input start & end dates # Step 1: Login to connect.garmin.com, get user setting credentials # Step 2: Using credentials, download missing data from Garmin in json # Step 3: process new Garmin data, merge it with archived data # Step 4: download sunrise/sunset data for new dates and merge with archived data def step0(): # make a list of all dates from first sleep date to last (fills any missing dates) req_dates_ls = daterange( datetime.datetime.strptime(start_date, "%Y-%m-%d").date(), datetime.datetime.strptime(end_date, "%Y-%m-%d").date() ) # Look for previous results if isfile(proj_path + garmin_results_pkl_fn): nights_df = pd.read_pickle(proj_path + garmin_results_pkl_fn) else: nights_df = pd.DataFrame() # if previous results were found, reduce requested dates to those not yet obtained if len(nights_df) > 0: # get list of requested dates not yet obtained archive_dates_ls = list(nights_df["Prev_Day"]) new_req_dates_ls = np.setdiff1d(req_dates_ls, archive_dates_ls) else: new_req_dates_ls = req_dates_ls #print("Archive max: ", max(archive_dates_ls)) #print("Request max: ", max(req_dates_ls)) if len(new_req_dates_ls) == 0: msg = "Archived data is up to date, no new data is available" else: msg = "Current data was checked and " + str(len(new_req_dates_ls)) + " night(s) are needed" return [msg, nights_df, new_req_dates_ls] def step1(): opts = webdriver.ChromeOptions() opts.add_argument('--disable-gpu') opts.add_argument('--no-sandbox') opts.add_argument('--disable-dev-shm-usage') if ENV == "local": if run_browser_headless: opts.addArgument("headless") assert opts.headless # Operating in headless mode else: opts.binary_location = GOOGLE_CHROME_PATH # open firefox and goto Garmin's sign-in page print("Opening Chrome browser") driver = webdriver.Chrome(chrome_options=opts) driver.get(signin_url) # wait until sign-in fields are visible wait = WebDriverWait(driver, browser_action_timeout) wait.until(ec.frame_to_be_available_and_switch_to_it(("id","gauth-widget-frame-gauth-widget"))) wait.until(ec.presence_of_element_located(("id","username"))) # write login info to fields, then submit print("Signing in to connect.garmin.com") element = driver.find_element_by_id("username") driver.implicitly_wait(5) element.send_keys(user_name) element = driver.find_element_by_id("password") element.send_keys(password) element.send_keys(Keys.RETURN) wait.until(ec.url_changes(signin_url)) # wait until landing page is requested driver.switch_to.default_content() # get out of iframe # get dummy webpage to obtain all request headers print("Loading dummy page to obtain headers") driver.get(sleep_url_base + start_date) request = driver.wait_for_request(sleep_url_base + start_date, timeout=browser_action_timeout) if (request.response.status_code != 200) | (~ hasattr(request, "headers")): print("RESPONSE ERROR RECEIVED:") if (request.response.status_code != 200): print("Status code: %d" % request.response.status_code) #response_dict = json.loads(request.content.decode('UTF-8')) print("Reason: ", request.response.reason) if (~ hasattr(request, "headers")): print("Request did not have 'headers' attribute") print("Request attributes: ", dir(request)) print("Request headers: ", request.headers) #raise Exception # close the Firefox browser driver.close() msg = "Logged in to connect.garmin.com" return [msg, request] def step2(request, new_req_dates_ls): # transfer request headers headers = { "cookie": request.headers["Cookie"], "referer": sleep_url_base + start_date, "accept-encoding": request.headers["Accept-Encoding"], "accept-language": "en-US", # request.headers["Accept-Language"], "user-agent": request.headers["User-Agent"], #"nk": "NT", "accept": request.headers["Accept"], "authority": request.headers["Host"], #"x-app-ver": "4.25.3.0", "upgrade-insecure-requests": request.headers["Upgrade-Insecure-Requests"] } # get the session id from the headers re_session_id = re.compile("(?<=\$ses_id:)(\d+)") session_id = re_session_id.search(str(request.headers)).group(0) # Garmin will throw error if request time span exceeds 32 days # therefore, request 32 days at a time max_period_delta = datetime.timedelta(days=31) data = [] # list of jsons, one per time period get_dates_ls = new_req_dates_ls while len(get_dates_ls) > 0: period_start = min(get_dates_ls) if (max(get_dates_ls) - period_start) > (max_period_delta - datetime.timedelta(days=1)): period_end = period_start + max_period_delta else: period_end = max(get_dates_ls) # note, this may request some dates which were already obtained # since a contiguous period is being requested rather than 32 new dates # duplicated dates will be dropped later print("Getting data for period: [%s, %s]" % (period_start, period_end)) data.append(download_to_json(period_start, period_end, headers, session_id)) # trim dates list get_dates_ls = [d for d, s in zip(get_dates_ls, np.array(get_dates_ls) > period_end) if s] # combine list of jsons into one large json data = list(chain.from_iterable(data)) # save raw Garmin json to project folder with open(proj_path + garmin_results_json_fn, 'w') as fp: json.dump(data, fp) msg = "Data has been downloaded from Garmin" return [msg, data] def step3(nights_df, data, new_req_dates_ls): # clean the new garmin data new_nights_df = converter(data) new_nights_df["Prev_Day"] = pd.to_datetime(new_nights_df["Prev_Day"]) if pd.to_datetime(new_nights_df["Bed_Time"]).dt.tz is None: new_nights_df["Bed_Time"] = pd.to_datetime(new_nights_df["Bed_Time"]). \ dt.tz_localize(local_tz) else: new_nights_df["Bed_Time"] = pd.to_datetime(new_nights_df["Bed_Time"]). \ dt.tz_convert(local_tz) if pd.to_datetime(new_nights_df["Wake_Time"]).dt.tz is None: new_nights_df["Wake_Time"] = pd.to_datetime(new_nights_df["Wake_Time"]). \ dt.tz_localize(local_tz) else: new_nights_df["Wake_Time"] = pd.to_datetime(new_nights_df["Wake_Time"]). \ dt.tz_convert(local_tz) new_nights_df["Light_Dur"] = pd.to_timedelta(new_nights_df["Light_Dur"], "days") new_nights_df["Deep_Dur"] = pd.to_timedelta(new_nights_df["Deep_Dur"], "days") new_nights_df["Total_Dur"] = pd.to_timedelta(new_nights_df["Total_Dur"], "days") new_nights_df["Nap_Dur"] = pd.to_timedelta(new_nights_df["Nap_Dur"], "days") # fill df with missing dates so that subsequent updates won't keep # requesting data which Garmin doesn't have new_missing_dates_ls = np.setdiff1d(new_req_dates_ls, new_nights_df["Prev_Day"].dt.date) new_missing_row = [pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, np.NAN] for d in new_missing_dates_ls: new_nights_df.loc[len(new_nights_df)] = [d] + new_missing_row # drop any nights which were already in the archived pickle file, # then merge it with archived data if len(nights_df) > 0: new_nights_df = new_nights_df[~new_nights_df["Prev_Day"].isin(nights_df["Prev_Day"])] nights_df = nights_df.append(new_nights_df, sort=True).sort_values("Prev_Day", axis=0) else: nights_df = new_nights_df.sort_values("Prev_Day", axis=0) # trim most recent nights which have NaT durations because they were likely caused # by the smartwatch not yet having synced with Garmin for those dates unknown_nights_ls = [] i = 1 while pd.isnull(nights_df.Total_Dur.iloc[-i]) & (len(nights_df) >= i): unknown_nights_ls.append(nights_df.Prev_Day.iloc[-i]) i += 1 nights_df = nights_df[~nights_df["Prev_Day"].isin(unknown_nights_ls)] # save merged results #nights_df.to_csv(proj_path + garmin_results_csv_fn) nights_df.to_pickle(proj_path + garmin_results_pkl_fn) # clean garmin data for dashboard garmin_df = nights_df.drop(["Nap_Dur", "Window_Conf"], axis=1) # calculate time of day in decimal hours of each event (asleep & wake) garmin_df["Bed_ToD"] = garmin_df["Bed_Time"].dt.hour + garmin_df["Bed_Time"].dt.minute/60 garmin_df["Bed_ToD"] -= 24*(garmin_df["Bed_ToD"] > 12) # make PM bed times negative garmin_df["Wake_ToD"] = garmin_df["Wake_Time"].dt.hour + garmin_df["Wake_Time"].dt.minute/60 # read & wrangle old microsoft sleep data ms2015_df = pd.read_csv(proj_path + "data/Activity_Summary_20150101_20151231.csv") ms2016_df = pd.read_csv(proj_path + "data/Activity_Summary_20160101_20161231.csv") ms2017_df = pd.read_csv(proj_path + "data/Activity_Summary_20170101_20171231.csv") ms_df = ms2015_df.append(ms2016_df).append(ms2017_df, sort=True). \ query("Event_Type == 'Sleep'") ms2_df = pd.DataFrame() # create microsoft dataframe which mimics the garmin dataframe ms2_df["Prev_Day"] = pd.to_datetime(ms_df["Date"]) ms2_df["Bed_Time"] = pd.to_datetime(ms_df["Start_Time"]). \ dt.tz_localize("US/Eastern", ambiguous="NaT") for i_row in range(len(ms2_df)-1): # fell asleep after midnght, adjust Prev_Day back 1 day if ms2_df.iloc[i_row, 1].hour < 12: ms2_df.iloc[i_row, 0] -= datetime.timedelta(days=1) ms2_df["Wake_Time"] = pd.to_datetime(ms_df["Wake_Up_Time"]). \ dt.tz_localize("US/Eastern", ambiguous="NaT") ms2_df["Light_Dur"] = pd.to_timedelta(ms_df["Seconds_Asleep_Light"], "seconds") ms2_df["Deep_Dur"] = pd.to_timedelta(ms_df["Seconds_Asleep_Restful"], "seconds") ms2_df["Total_Dur"] = pd.to_timedelta(ms_df["Seconds_Awake"], "seconds") \ + ms2_df["Light_Dur"] + ms2_df["Deep_Dur"] ms2_df["Bed_ToD"] = ms2_df["Bed_Time"].dt.hour \ + ms2_df["Bed_Time"].dt.minute/60 ms2_df["Bed_ToD"] -= 24*(ms2_df["Bed_ToD"] > 12) # make PM bed times negative ms2_df["Wake_ToD"] = ms2_df["Wake_Time"].dt.hour \ + ms2_df["Wake_Time"].dt.minute/60 brief_sleep_bool = ms2_df["Total_Dur"] < pd.Timedelta(4, unit="h") daytime_asleep_bool = (ms2_df["Bed_ToD"] > -3) | (ms2_df["Bed_ToD"] < 7) unknown_dur_bool = pd.isnull(ms2_df["Total_Dur"]) nap_bool = brief_sleep_bool & daytime_asleep_bool ms3_df = ms2_df.loc[~nap_bool & ~unknown_dur_bool, :] # combine garmin and microsoft data all_df = garmin_df.append(ms3_df, sort=True) all_df["Prev_Day"] =
pd.to_datetime(all_df["Prev_Day"])
pandas.to_datetime
# coding: utf-8 # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.graphics.api import qqplot from sklearn.metrics import mean_squared_error as mse get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: print(sm.datasets.sunspots.NOTE) dta = sm.datasets.sunspots.load_pandas().data dta.index = pd.Index(sm.tsa.datetools.dates_from_range('1700', '2008')) del dta["YEAR"] # In[11]: dta.head() # In[2]: dateparse = lambda dates: pd.datetime.strptime(dates, '%Y-%m-%d') dta2 = pd.read_csv('sampled_ts_train.csv', parse_dates=['tran_date'], index_col='tran_date',date_parser=dateparse) dta2 = dta2.drop(['store_key', 'sku_key', 'selling_price', 'avg_discount', 'store_region', 'store_grading', 'sku_department', 'sku_subdepartment', 'sku_category', 'sku_subcategory'], axis = 1) dta2.head() # In[3]: dta2.plot(figsize=(30,30)) from statsmodels.tsa.arima_model import ARIMA from sklearn.metrics import mean_squared_error # In[4]: #dta2.sales = dta2.sales.astype(int32) dta2['sales'] = pd.DataFrame(dta2['sales'], dtype='float64') # In[5]: dta2.info() # In[6]: #split into test and train percentage = 0.6 series = dta2['sales'].tolist() size = int(len(series) * 0.66) train, test = series[0:size], series[size:len(series)] model = ARIMA(train , order = (9,0,0)) model_fit = model.fit() # In[7]: from statsmodels.tsa.stattools import acf, pacf acf_1 = acf(series)[1:20] plt.plot(acf_1) test_df = pd.DataFrame([acf_1]).T test_df.columns = ["Pandas Autocorrelation"] test_df.index += 1 test_df.plot(kind='bar') pacf_1 = pacf(series)[1:20] plt.plot(pacf_1) plt.show() test_df = pd.DataFrame([pacf_1]).T test_df.columns = ['Pandas Partial Autocorrelation'] test_df.index += 1 test_df.plot(kind='bar') #from the figures we conclude that it is an AR process with a lag of 8-9 # In[12]: from keras.models import Sequential from keras.layers import Dense,Activation,Dropout from sklearn import preprocessing from keras.wrappers.scikit_learn import KerasRegressor from keras.layers.recurrent import LSTM # In[ ]: """ Arima Rolling Forecast """ predicted1, resid_test = [], [] history = train for t in range(len(test)): model = ARIMA(history, order=(9,0,0)) model_fit = model.fit(disp=0) output = model_fit.forecast() yhat = output[0] resid_test.append(test[t] - output[0]) predicted1.append(yhat) obs = test[t] history.append(obs) print('predicted=%f, expected=%f' % (yhat, obs)) test_resid = [] for i in resid_test: test_resid.append(i[0]) error = mean_squared_error(test, predicted1) print('Test MSE: %.3f' % error) plt.plot(test) plt.plot(predicted1, color='red') plt.show() # In[ ]: """ Residual Diagnostics """ train, test = series[0:size], series[size:len(series)] model = ARIMA(train, order=(9,0,0)) model_fit = model.fit(disp=0) print(model_fit.summary()) # plot residual errors residuals = pd.DataFrame(model_fit.resid) residuals.plot() plt.show() residuals.plot(kind='kde') plt.show() print(residuals.describe()) #plot the acf for the residuals acf_1 = acf(model_fit.resid)[1:20] plt.plot(acf_1) test_df = pd.DataFrame([acf_1]).T test_df.columns = ["Pandas Autocorrelation"] test_df.index += 1 test_df.plot(kind='bar') #from the acf obtained from the residuals we concule that #there is still a nonlinear relationship among the residuals # In[ ]: """ Hybrid Model """ window_size = 50 def make_model(window_size): model = Sequential() model.add(Dense(50, input_dim=window_size, init="uniform", activation="tanh")) model.add(Dense(25, init="uniform", activation="tanh")) model.add(Dense(1)) model.add(Activation("linear")) model.compile(loss='mean_squared_error', optimizer='adam') return model #def make_lstm_model(): # model = Sequential() # model.add(LSTM( # input_dim=1, # output_dim=50, # return_sequences=True)) # model.add(Dropout(0.2)) # model.add(LSTM( # 100, # return_sequences=False)) # model.add(Dropout(0.2)) # model.add(Dense( # output_dim=1)) # model.add(Activation("linear")) # model.compile(loss="mse", optimizer="rmsprop") # return model model = make_model(50) #lstm_model = make_lstm_model() min_max_scaler = preprocessing.MinMaxScaler() train = np.array(train).reshape(-1,1) train_scaled = min_max_scaler.fit_transform(test_data) train_X,train_Y = [],[] for i in range(0 , len(train_scaled) - window_size): train_X.append(train_scaled[i:i+window_size]) train_Y.append(train_scaled[i+window_size]) new_train_X,new_train_Y = [],[] for i in train_X: new_train_X.append(i.reshape(-1)) for i in train_Y: new_train_Y.append(i.reshape(-1)) new_train_X = np.array(new_train_X) new_train_Y = np.array(new_train_Y) #new_train_X = np.reshape(new_train_X, (new_train_X.shape[0], new_train_X.shape[1], 1)) model.fit(new_train_X,new_train_Y, nb_epoch=500, batch_size=512, validation_split = .05) # In[ ]: test_extended = train.tolist()[-1*window_size:] + test_resid test_data = [] for i in test_extended: try: test_data.append(i[0]) except: test_data.append(i) test_data = np.array(test_data).reshape(-1,1) min_max_scaler = preprocessing.MinMaxScaler() test_scaled = min_max_scaler.fit_transform(test_data) test_X,test_Y = [],[] for i in range(0 , len(test_scaled) - window_size): test_X.append(test_scaled[i:i+window_size]) test_Y.append(test_scaled[i+window_size]) new_test_X,new_test_Y = [],[] for i in test_X: new_test_X.append(i.reshape(-1)) for i in test_Y: new_test_Y.append(i.reshape(-1)) new_test_X = np.array(new_test_X) new_test_Y = np.array(new_test_Y) #new_test_X = np.reshape(new_test_X, (new_test_X.shape[0], new_test_X.shape[1], 1)) predictions = model.predict(new_train_X) predictions_rescaled=min_max_scaler.inverse_transform(predictions) Y = pd.DataFrame(new_train_Y) pred =
pd.DataFrame(predictions)
pandas.DataFrame
# coding: utf-8 -*- ''' GSI.py contains utility functions for GSI ''' __all__ = ['GSIstat'] import numpy as _np import pandas as _pd import re as _re class GSIstat(object): ''' Object containing the GSI statistics ''' def __init__(self,filename,adate): ''' Initialize the GSIstat object INPUT: filename = filename of the gsistat file adate = analysis date OUTPUT: GSIstat: object containing the contents of the filename ''' self.filename = filename self.analysis_date = adate fh = open(self.filename,'rb') self._lines = fh.readlines() # Keep lines private fh.close() # Initialize cache for fast parsing self._cache = {} return def extract(self,name): ''' From the gsistat file, extract information: INPUT: name = information seeked Valid options are: ps, oz, uv, t, q, gps, rad, cost OUTPUT: df = dataframe containing information ''' # If name has already been parsed, # just return it from cache if name in self._cache: df = self._cache[name] return df if name in ['ps']: df = self._get_ps() elif name in ['oz']: df = self._get_ozone() elif name in ['uv','t','q','gps']: df = self._get_conv(name) elif name in ['rad']: df = self._get_radiance() elif name in ['cost']: df = self._get_cost() else: raise IOError('option %s is not defined' % name) # Drop the o-g from the indicies list if 'o-g' in list(df.index.names): df.reset_index(level='o-g',drop=True,inplace=True) # Add datetime index df = self._add_datetime_index(df) # Cache it for faster access self._cache[name] = df return df def _add_datetime_index(self,df): ''' Add the datetime as the first index INPUT: df = dataframe without datetime index OUTPUT: df = dataframe with datetime as the 1st index ''' # If date is already present, return if 'date' in list(df.index.names): return df indices = ['date'] + list(df.index.names) df['date'] = self.analysis_date df.set_index('date', append=True, inplace=True) df = df.reorder_levels(indices) return df def extract_instrument(self,obtype,instrument): ''' From the gsistat file, extract detailed information on an instrument: INPUT: obtype = observation type to extract (rad or oz) instrument = instrument name [must be in the observation type] E.g.: amsua, mhs, iasi, hirs, etc OUTPUT: df = dataframe containing information ''' # If instrument has already been parsed, # just return it from cache if instrument in self._cache: df = self._cache[instrument] return df # Ensure obtype is already called, # if not call it and cache it if obtype in list(self._cache.keys()): otype = self._cache[obtype] else: otype = self.extract(obtype) self._cache[obtype] = otype instruments = sorted(otype.index.get_level_values('instrument').unique()) satellites = sorted(otype.index.get_level_values('satellite' ).unique()) if instrument not in instruments: print('Instrument %s not found!' % instrument) print('%s contains ...' % self.filename) print(', '.join(str(x) for x in instruments)) return None # Handle special instruments if instrument in ['iasi','iasi616']: inst = 'iasi616' elif instrument in ['airs','airs281SUBSET']: inst = 'airs281SUBSET' else: inst = instrument tmp = [] pattern = '\s+\d+\s+\d+\s+%s_\S+\s+\d+\s+\d+\s+' % (inst) for line in self._lines: if _re.match(pattern,line): tst = line.strip().split() tst = tst[:2] + tst[2].split('_') + tst[3:] tmp.append(tst) columns = ['it','channel','instrument','satellite','nassim','nrej','oberr','OmF_bc','OmF_wobc','col1','col2','col3'] df = _pd.DataFrame(data=tmp,columns=columns) df.drop(['col1','col2','col3'],inplace=True,axis=1) df[['channel','nassim','nrej']] = df[['channel','nassim','nrej']].astype(_np.int) df[['oberr','OmF_bc','OmF_wobc']] = df[['oberr','OmF_bc','OmF_wobc']].astype(_np.float) # Since iteration number is not readily available, make one lendf = len(df) nouter = lendf / len(df['it'].unique()) douter = lendf / nouter it = _np.zeros(lendf,dtype=int) for i in range(nouter): its = douter * i ite = douter * (i+1) it[its:ite] = i+1 df['it'] = it df = df[['it','instrument','satellite','channel','nassim','nrej','oberr','OmF_bc','OmF_wobc']] df.set_index(['it','instrument','satellite','channel'],inplace=True) return df # Surface pressure Fit def _get_ps(self): ''' Search for surface pressure ''' pattern = 'obs\s+type\s+stype\s+count' for line in self._lines: if _re.search(pattern,line): header = 'o-g ' + line.strip() break tmp = [] pattern = ' o-g (\d\d) %7s' % ('ps') for line in self._lines: if _re.match(pattern,line): # don't add monitored or rejected data if any(x in line for x in ['mon','rej']): continue tmp.append(line.strip().split()) columns = header.split() df =
_pd.DataFrame(data=tmp,columns=columns)
pandas.DataFrame
from datetime import datetime, timedelta from io import BytesIO, StringIO import pandas as pd from django.conf import settings from django.core.mail.message import EmailMessage from django.db.models import Q from django.template.loader import get_template from django.utils import timezone from api import email from api.models import PaymentFile from api.s3util import save_to_s3_payment, save_to_s3_daily_sales_report from api.utils import to_int, get_or_none from employee.models import TaskEmail from restapi.service.tallyintegration import bank_transfer_payments from team.models import OutWardPayment, ManualBooking def create_payment_file(new_file_name, date, content, summary=False): pf = get_or_none(PaymentFile, name=new_file_name) if pf: pf.upload.delete_from_s3() pf.upload.delete() pf.delete() s3_upload = save_to_s3_payment(new_file_name, content) pf = PaymentFile.objects.create(upload=s3_upload, date=date, name=new_file_name, summary=summary) dl_url = s3_upload.public_url() return dl_url def send_payment_file_email(filename, link, to): subject = 'Payment File %s' % filename text_body = 'Visit this link to download the file - %s' % link html_body = 'Click <a href="%s" download="%s">here</a> to download the file' % (link, filename) email.send(subject, body=text_body, html=html_body, to=to) def get_today_payments(): outward = OutWardPayment.objects.filter(payment_date__lte=datetime.now().today()).exclude( bank_account=None).exclude(status__in=['paid', 'reconciled']) if outward.exists(): bank_transfer_payments(payments=outward) payment_list = [] for payment in outward: data = [] if payment.payment_mode == 'neft': mode = 'N' elif payment.payment_mode == 'rtgs': mode = 'R' elif payment.payment_mode == 'imps': mode = 'M' elif payment.payment_mode == 'hdfc_internal_account': mode = 'I' else: mode = 'I' data.append(mode) data.append(payment.bank_account.beneficiary_code[:14] if payment.bank_account else '') data.append(payment.bank_account.account_number if payment.bank_account else '') data.append(str(to_int(payment.actual_amount))) data.append(payment.bank_account.account_holder_name if payment.bank_account else '') data.append('') data.append('') data.append('') data.append('') data.append('') data.append('') data.append('') data.append('') if payment.booking_id.exclude(lr_numbers=None).exists(): booking = payment.booking_id.first() lr_number = booking.lr_numbers.all().first().lr_number narration = '{}OW{}'.format(lr_number[:12], str(payment.id).zfill(6)) else: booking = payment.booking_id.first() narration = '{}OW{}'.format(booking.booking_id[:12], str(payment.id).zfill(6)) data.append(narration[:20]) data.append('') data.append('') data.append('') data.append('') data.append('') data.append('') data.append('') data.append('') data.append(str(payment.payment_date.strftime('%d/%m/%Y'))) data.append('') data.append(payment.bank_account.ifsc if payment.bank_account else '') data.append('') data.append('') data.append('') payment_list.append(data) payment.status = 'paid' payment.save() df = pd.DataFrame(payment_list) string_io = StringIO() df.to_csv(string_io, index=False, header=False) content = string_io.getvalue() or '\n' date = timezone.now().date() new_file_name = PaymentFile.get_next_file_name(date=date) dl_url = create_payment_file(new_file_name, date, content) task = TaskEmail.objects.get(task_id=4, office_id=1) email_id_list = list(task.employee.values_list('username__profile__email', flat=True)) send_payment_file_email(filename=new_file_name, link=dl_url, to=email_id_list) return dl_url return None def send_sales_report(): mb = ManualBooking.objects.filter( created_on__date=datetime.now().date() - timedelta(days=1) ).exclude( booking_status='cancelled' ).order_by( '-shipment_date' ) if mb: data = [] for booking in mb: try: data.append([ booking.booking_id, '\n'.join(booking.lr_numbers.values_list('lr_number', flat=True)), booking.from_city, booking.to_city, booking.party_rate, booking.charged_weight, booking.total_amount_to_company, booking.supplier_rate, booking.supplier_charged_weight, booking.total_amount_to_owner, booking.total_amount_to_company - booking.total_amount_to_owner, "{0:.2f}".format((( booking.total_amount_to_company - booking.total_amount_to_owner) / booking.total_amount_to_owner) * 100) ]) except ZeroDivisionError: data.append([ booking.booking_id, '\n'.join(booking.lr_numbers.values_list('lr_number', flat=True)), booking.from_city, booking.to_city, booking.party_rate, booking.charged_weight, booking.total_amount_to_company, booking.supplier_rate, booking.supplier_charged_weight, booking.total_amount_to_owner, booking.total_amount_to_company - booking.total_amount_to_owner, 'Amount to owner is zero' ]) df = pd.DataFrame(data=data, columns=['Booking ID', 'LR Number(s)', 'From City', 'To City', 'Party Rate', 'Party Weight', 'Party Amount', 'Supplier Rate', 'Supplier Weight', 'Supplier Amount', 'Profit', '% Profit']) string_io = StringIO() df.to_csv(string_io, index=False, header=False) content = string_io.getvalue() or '\n' filename = datetime.now().strftime('%d%b%Y%I%M') + '.csv' s3_upload = save_to_s3_daily_sales_report(filename, content) s3_url = s3_upload.public_url() subject = '[Aaho] Daily Sales Report for ' + (datetime.now().date() - timedelta(days=1)).strftime( '%d-%b-%Y') body = get_template('team/emails/last-day-bookings.html').render(context={'mb': mb, 's3_url': s3_url}) email = EmailMessage(subject, body, to=['<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL>']) email.content_subtype = 'html' if settings.ENABLE_MAIL and not settings.TESTING: email.send() return s3_url return None def send_payment_summary_email(filename, link, to): subject = 'Payment Summary File %s' % filename text_body = 'Visit this link to download the file - %s' % link html_body = 'Click <a href="%s" download="%s">here</a> to download the file' % (link, filename) email.send(subject, body=text_body, html=html_body, to=to) def payment_summary_today(): outward = OutWardPayment.objects.filter(payment_date__lte=datetime.now().today()).exclude( bank_account=None).exclude(status='unpaid') data = [] for value in outward: temp = [] booking_id = ', '.join(list(value.booking_id.values_list('booking_id', flat=True))) lr_number = '' bookings = value.booking_id.all() for lr in bookings: lr_number += ', '.join(lr.lr_numbers.values_list('lr_number', flat=True)) temp.append(booking_id) temp.append(lr_number) temp.append(value.bank_account.account_holder_name) temp.append(str(value.actual_amount)) data.append(temp) df =
pd.DataFrame(data, columns=['BOOKING ID', 'LR NUMBER', 'BENEFICIARY NAME', 'AMOUNT'])
pandas.DataFrame
import composeml as cp import numpy as np import pandas as pd import pytest from dask import dataframe as dd from woodwork.column_schema import ColumnSchema from woodwork.logical_types import NaturalLanguage from featuretools.computational_backends.calculate_feature_matrix import ( FEATURE_CALCULATION_PERCENTAGE ) from featuretools.entityset import EntitySet, Timedelta from featuretools.exceptions import UnusedPrimitiveWarning from featuretools.primitives import ( GreaterThanScalar, Max, Mean, Min, Sum, make_agg_primitive, make_trans_primitive ) from featuretools.synthesis import dfs from featuretools.tests.testing_utils import to_pandas from featuretools.utils.gen_utils import Library @pytest.fixture def datetime_es(): cards_df = pd.DataFrame({"id": [1, 2, 3, 4, 5]}) transactions_df = pd.DataFrame({"id": [1, 2, 3, 4, 5], "card_id": [1, 1, 5, 1, 5], "transaction_time": pd.to_datetime([ '2011-2-28 04:00', '2012-2-28 05:00', '2012-2-29 06:00', '2012-3-1 08:00', '2014-4-1 10:00']), "fraud": [True, False, False, False, True]}) datetime_es = EntitySet(id="fraud_data") datetime_es = datetime_es.add_dataframe( dataframe_name="transactions", dataframe=transactions_df, index="id", time_index="transaction_time") datetime_es = datetime_es.add_dataframe( dataframe_name="cards", dataframe=cards_df, index="id") datetime_es = datetime_es.add_relationship("cards", "id", "transactions", "card_id") datetime_es.add_last_time_indexes() return datetime_es def test_passing_strings_to_logical_types_dfs(): teams = pd.DataFrame({ 'id': range(3), 'name': ['Breakers', 'Spirit', 'Thorns'] }) games = pd.DataFrame({ 'id': range(5), 'home_team_id': [2, 2, 1, 0, 1], 'away_team_id': [1, 0, 2, 1, 0], 'home_team_score': [3, 0, 1, 0, 4], 'away_team_score': [2, 1, 2, 0, 0] }) dataframes = {'teams': (teams, 'id', None, {'name': 'natural_language'}), 'games': (games, 'id')} relationships = [('teams', 'id', 'games', 'home_team_id')] features = dfs(dataframes, relationships, target_dataframe_name="teams", features_only=True) name_logical_type = features[0].dataframe['name'].ww.logical_type assert isinstance(name_logical_type, NaturalLanguage) def test_accepts_cutoff_time_df(dataframes, relationships): cutoff_times_df = pd.DataFrame({"instance_id": [1, 2, 3], "time": [10, 12, 15]}) feature_matrix, features = dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="transactions", cutoff_time=cutoff_times_df) feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) assert len(feature_matrix.index) == 3 assert len(feature_matrix.columns) == len(features) def test_warns_cutoff_time_dask(dataframes, relationships): cutoff_times_df = pd.DataFrame({"instance_id": [1, 2, 3], "time": [10, 12, 15]}) cutoff_times_df = dd.from_pandas(cutoff_times_df, npartitions=2) match = "cutoff_time should be a Pandas DataFrame: " \ "computing cutoff_time, this may take a while" with pytest.warns(UserWarning, match=match): dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="transactions", cutoff_time=cutoff_times_df) def test_accepts_cutoff_time_compose(dataframes, relationships): def fraud_occured(df): return df['fraud'].any() lm = cp.LabelMaker( target_dataframe_name='card_id', time_index='transaction_time', labeling_function=fraud_occured, window_size=1 ) transactions_df = to_pandas(dataframes['transactions'][0]) labels = lm.search( transactions_df, num_examples_per_instance=-1 ) labels['time'] = pd.to_numeric(labels['time']) labels.rename({'card_id': 'id'}, axis=1, inplace=True) feature_matrix, features = dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="cards", cutoff_time=labels) feature_matrix = to_pandas(feature_matrix, index='id') assert len(feature_matrix.index) == 6 assert len(feature_matrix.columns) == len(features) + 1 def test_accepts_single_cutoff_time(dataframes, relationships): feature_matrix, features = dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="transactions", cutoff_time=20) feature_matrix = to_pandas(feature_matrix, index='id') assert len(feature_matrix.index) == 5 assert len(feature_matrix.columns) == len(features) def test_accepts_no_cutoff_time(dataframes, relationships): feature_matrix, features = dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="transactions", instance_ids=[1, 2, 3, 5, 6]) feature_matrix = to_pandas(feature_matrix, index='id') assert len(feature_matrix.index) == 5 assert len(feature_matrix.columns) == len(features) def test_ignores_instance_ids_if_cutoff_df(dataframes, relationships): cutoff_times_df = pd.DataFrame({"instance_id": [1, 2, 3], "time": [10, 12, 15]}) instance_ids = [1, 2, 3, 4, 5] feature_matrix, features = dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="transactions", cutoff_time=cutoff_times_df, instance_ids=instance_ids) feature_matrix = to_pandas(feature_matrix, index='id') assert len(feature_matrix.index) == 3 assert len(feature_matrix.columns) == len(features) def test_approximate_features(pd_dataframes, relationships): # TODO: Update to use Dask dataframes when issue #985 is closed cutoff_times_df = pd.DataFrame({"instance_id": [1, 3, 1, 5, 3, 6], "time": [11, 16, 16, 26, 17, 22]}) # force column to BooleanNullable pd_dataframes['transactions'] += ({'fraud': "BooleanNullable"},) feature_matrix, features = dfs(dataframes=pd_dataframes, relationships=relationships, target_dataframe_name="transactions", cutoff_time=cutoff_times_df, approximate=5, cutoff_time_in_index=True) direct_agg_feat_name = 'cards.PERCENT_TRUE(transactions.fraud)' assert len(feature_matrix.index) == 6 assert len(feature_matrix.columns) == len(features) truth_values = pd.Series(data=[1.0, 0.5, 0.5, 1.0, 0.5, 1.0]) assert (feature_matrix[direct_agg_feat_name] == truth_values.values).all() def test_all_columns(pd_dataframes, relationships): cutoff_times_df = pd.DataFrame({"instance_id": [1, 2, 3], "time": [10, 12, 15]}) instance_ids = [1, 2, 3, 4, 5] feature_matrix, features = dfs(dataframes=pd_dataframes, relationships=relationships, target_dataframe_name="transactions", cutoff_time=cutoff_times_df, instance_ids=instance_ids, agg_primitives=[Max, Mean, Min, Sum], trans_primitives=[], groupby_trans_primitives=["cum_sum"], max_depth=3, allowed_paths=None, ignore_dataframes=None, ignore_columns=None, seed_features=None) assert len(feature_matrix.index) == 3 assert len(feature_matrix.columns) == len(features) def test_features_only(dataframes, relationships): if len(dataframes['transactions']) > 3: dataframes['transactions'][3]['fraud'] = "BooleanNullable" else: dataframes['transactions'] += ({'fraud': "BooleanNullable"},) features = dfs(dataframes=dataframes, relationships=relationships, target_dataframe_name="transactions", features_only=True) # pandas creates 11 features # dask creates 10 features (no skew) # koalas creates 9 features (no skew, no percent_true) if isinstance(dataframes['transactions'][0], pd.DataFrame): expected_features = 11 elif isinstance(dataframes['transactions'][0], dd.DataFrame): expected_features = 10 else: expected_features = 9 assert len(features) == expected_features def test_accepts_relative_training_window(datetime_es): # TODO: Update to use Dask dataframes when issue #882 is closed feature_matrix, _ = dfs(entityset=datetime_es, target_dataframe_name="transactions") feature_matrix_2, _ = dfs(entityset=datetime_es, target_dataframe_name="transactions", cutoff_time=pd.Timestamp("2012-4-1 04:00")) feature_matrix_3, _ = dfs(entityset=datetime_es, target_dataframe_name="transactions", cutoff_time=pd.Timestamp("2012-4-1 04:00"), training_window=Timedelta("3 months")) feature_matrix_4, _ = dfs(entityset=datetime_es, target_dataframe_name="transactions", cutoff_time=pd.Timestamp("2012-4-1 04:00"), training_window="3 months") assert (feature_matrix.index == [1, 2, 3, 4, 5]).all() assert (feature_matrix_2.index == [1, 2, 3, 4]).all() assert (feature_matrix_3.index == [2, 3, 4]).all() assert (feature_matrix_4.index == [2, 3, 4]).all() # Test case for leap years feature_matrix_5, _ = dfs(entityset=datetime_es, target_dataframe_name="transactions", cutoff_time=
pd.Timestamp("2012-2-29 04:00")
pandas.Timestamp
from typing import List import pandas as pd from pyjackson.core import ArgList, Field from pyjackson.decorators import cached_property from pyjackson.errors import DeserializationError, SerializationError from ebonite.core.analyzer.base import TypeHookMixin from ebonite.core.analyzer.dataset import DatasetHook from ebonite.core.objects.dataset_type import DatasetType, LibDatasetTypeMixin class PandasHook(TypeHookMixin, DatasetHook): """ :class:`.DatasetHook` implementation for `pandas.DataFrame` which uses :class:`DataFrameType` """ valid_types = [pd.DataFrame] def process(self, obj, **kwargs) -> DatasetType: return DataFrameType(list(obj.columns)) class SeriesType(LibDatasetTypeMixin): """ :class:`.DatasetType` implementation for `pandas.Series` objects which stores them as built-in Python dicts :param columns: list of columns names in dataset """ real_type = pd.Series libraries = [pd] def __init__(self, columns: List[str]): self.columns = columns def deserialize(self, obj): return pd.Series(obj) def serialize(self, instance: pd.Series): return instance.to_dict() def get_spec(self): return [Field(c, float, False) for c in self.columns] # TODO typing class DataFrameType(LibDatasetTypeMixin): """ :class:`.DatasetType` implementation for `pandas.DataFrame` objects which stores them as built-in Python dicts with the only key `values` and value in a form of records list. :param columns: list of columns names in dataset """ real_type = pd.DataFrame libraries = [pd] def __init__(self, columns: List[str]): self.columns = columns def deserialize(self, obj): self._check_type(obj, dict, DeserializationError) try: ret =
pd.DataFrame.from_records(obj['values'])
pandas.DataFrame.from_records
import pandas as pd import os import numpy as np os.chdir("D:\Luyu\COTA") st =
pd.read_csv("stops_full.csv")
pandas.read_csv
import pandas as pd import numpy as np import os.path import datetime as dt import matplotlib.cm as cmx import matplotlib.colors as colors import matplotlib.pyplot as plt import plotly.offline as offline from matplotlib import style # Global variables outputDirPrefix = "../Plots/" outputDirExtras = outputDirPrefix + "Extras/" outputDirMonthsYearEachState = outputDirPrefix + "Months Year Each State/" outputDirMonthsEachYear = outputDirPrefix + "Months Each Years/" outputDirChoropleth = outputDirPrefix + "Plotly's HTML Choropleth/" outputDirTop3State = outputDirExtras + "Top 3 State/" datasetNameTrain = "../Dataset/clean_and_relevant_training.csv" datasetNameTest = "../Dataset/clean_and_relevant_testing.csv" pollutant_type = ["CO", "NO2", "O3", "SO2"] us_state_abbrev = { 'Alabama': 'AL', 'Alaska': 'AK', 'Arizona': 'AZ', 'Arkansas': 'AR', 'California': 'CA', 'Colorado': 'CO', 'Connecticut': 'CT', 'Delaware': 'DE', 'Florida': 'FL', 'Georgia': 'GA', 'Hawaii': 'HI', 'Idaho': 'ID', 'Illinois': 'IL', 'Indiana': 'IN', 'Iowa': 'IA', 'Kansas': 'KS', 'Kentucky': 'KY', 'Louisiana': 'LA', 'Maine': 'ME', 'Maryland': 'MD', 'Massachusetts': 'MA', 'Michigan': 'MI', 'Minnesota': 'MN', 'Mississippi': 'MS', 'Missouri': 'MO', 'Montana': 'MT', 'Nebraska': 'NE', 'Nevada': 'NV', 'New Hampshire': 'NH', 'New Jersey': 'NJ', 'New Mexico': 'NM', 'New York': 'NY', 'North Carolina': 'NC', 'North Dakota': 'ND', 'Ohio': 'OH', 'Oklahoma': 'OK', 'Oregon': 'OR', 'Pennsylvania': 'PA', 'Rhode Island': 'RI', 'South Carolina': 'SC', 'South Dakota': 'SD', 'Tennessee': 'TN', 'Texas': 'TX', 'Utah': 'UT', 'Vermont': 'VT', 'Virginia': 'VA', 'District Of Columbia': 'WA', 'West Virginia': 'WV', 'Wisconsin': 'WI', 'Wyoming': 'WY', } for path in [outputDirPrefix, outputDirExtras, outputDirMonthsYearEachState, outputDirMonthsEachYear, outputDirChoropleth, outputDirTop3State, outputDirChoropleth+"CO", outputDirChoropleth+"NO2", outputDirChoropleth+"O3", outputDirChoropleth+"SO2"]: if not os.path.exists(path): os.makedirs(path) # Date loading and pre-processing # if the pre processed file does not exist if not os.path.isfile(datasetNameTrain): # if preprocessed data does not exist pre process the raw data set complete = pd.read_csv("../Dataset/pollution_us.csv", index_col = 0) # slice dataset by half training = complete.iloc[0:int(len(complete)/2), :] testing = complete.iloc[int(len(complete)/2):, :] # Impute the NA values coAQITrain = training["CO AQI"] coAQITrain.fillna(method='bfill', inplace=True) so2AQITrain = training["SO2 AQI"] so2AQITrain.fillna(method='ffill', inplace=True) # Apply the imputed values training["CO AQI"] = coAQITrain training["SO2 AQI"] = so2AQITrain # Convert to date time object add 2 new columns called Year and Month year_months = [] years = [] dateLoc = training["Date Local"] for date in dateLoc: temp = dt.datetime.strptime(date, "%Y-%m-%d") if (temp.month < 10): month = "0" + str(temp.month) else: month = str(temp.month) year_months.append(str(temp.year) + "-" + month) years.append(str(temp.year)) training["Year Month"] = pd.Series(year_months, index = training.index) training["Year"] = pd.Series(years, index = training.index) training = training.drop_duplicates() training.to_csv(datasetNameTrain, index = True, mode = "w") # Impute the NA values coAQITrain = testing["CO AQI"] coAQITrain.fillna(method='bfill', inplace=True) so2AQITrain = testing["SO2 AQI"] so2AQITrain.fillna(method='ffill', inplace=True) testing["CO AQI"] = coAQITrain testing["SO2 AQI"] = so2AQITrain dateLoc = testing["Date Local"] # Convert to date time object add 2 new columns called Year and Month year_months = [] years = [] for date in dateLoc: temp = dt.datetime.strptime(date, "%Y-%m-%d") if (temp.month < 10): month = "0" + str(temp.month) else: month = str(temp.month) year_months.append(str(temp.year) + "-" + month) years.append(str(temp.year)) testing["Year Month"] = pd.Series(year_months, index = testing.index) testing["Year"] = pd.Series(years, index = testing.index) testing = testing.drop_duplicates() testing.to_csv(datasetNameTest, index = True, mode = "w") del testing del training #convert the date local to panda's date time object training = pd.read_csv(datasetNameTrain, index_col = 0) training["Date Local"] = pd.to_datetime(training["Date Local"], format = "%Y-%m-%d") # re defining years years = [2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009] # Exploratory analysis ''' #get a better feel of the dataset print(complete.drop_duplicates()) print(complete.shape[0] - complete.drop_duplicates().shape[0]) print(complete.isnull().sum()) print(complete.describe()) print(complete.head()) print(complete.tail()) print(complete.dtypes) print(complete.shape) #making sure that all observations are sorted by date #in case if i subset it wrongly. print((complete["Date Local"].sort - complete["Date Local"]).unique()) ''' # Exploratory plots # Sum for each pollution plot pollutant_list = [] # Get all attributes needed for pollutant in pollutant_type: # normalize data if training[pollutant+" Units"].unique()[0] == "Parts per million": temp = training[pollutant+" Mean"].sum() / 1000 else: temp = training[pollutant+" Mean"].sum() pollutant_list.extend([{"pollutant.type":pollutant, "pollutant.measurement":"billion", "pollutant.sum":temp}]) # Make it into a pandas df pollutant_sum_df = pd.DataFrame(pollutant_list) style.use('ggplot') ax = pollutant_sum_df[["pollutant.type","pollutant.sum"]].plot(kind='bar', title ="Pollution summation", figsize=(15, 10), legend = False, fontsize=12) ax.set_xlabel("Pollution Type", fontsize=12) ax.set_ylabel("Billion", fontsize=12) plt.title("Pollution summation") plt.xticks(range(len(pollutant_sum_df)), pollutant_sum_df[["pollutant.type"]].values.flatten()) plt.savefig(outputDirExtras + "summation of each pollutant") plt.show() # Average pollution over the years plot pollutant_list = [] for pollutant in pollutant_type: subset = training[["Date Local", pollutant + " Mean"]] for year in training["Year"].unique(): pollutant_list.extend([{"pollution.type":pollutant, "year":year, "pollution.mean":training[training["Date Local"].dt.year == year][pollutant+" Mean"].mean(), "pollutant.measurement":training[pollutant+" Units"].unique()[0]}]) pollutant_mean_df = pd.DataFrame(pollutant_list) fig, ax = plt.subplots(1,1) pollutant_mean_df.groupby("pollution.type").plot(x="year", y="pollution.mean", ax = ax) ax.ticklabel_format(useOffset = False) ax.legend(labels=['CO', 'NO2', 'O3', 'SO2']) ax.set_ylabel("Billion") ax.set_xlabel("Year") plt.title("Pollution mean over years") plt.savefig(outputDirExtras + "pollution mean") plt.show() # Normalized of each pollution across the years plot pollutant_list = [] pollutant_list2 = [] avg = np.zeros(len(years)) for pollutant in pollutant_type: mean = np.array([]) for year in years: mean = np.append(mean, training[training["Date Local"].dt.year == year][pollutant+" Mean"].mean()) maxVal = mean.max() minVal = mean.min() norm = np.array([]) for temp in mean: norm = np.append(norm, (temp - minVal) / (maxVal - minVal)) avg = avg + norm for idx in range(len(years)): pollutant_list.extend([{"pollution.type":pollutant, "year":years[idx], "normalized.pollution":norm[idx]}]) pollutant_norm_df = pd.DataFrame(pollutant_list) fig, ax = plt.subplots(1,1) pollutant_norm_df.groupby("pollution.type").plot(x="year", y="normalized.pollution", ax = ax) ax.ticklabel_format(useOffset = False) ax.legend(labels=['CO', 'NO2', 'O3', 'SO2'], prop = {"size":7}, loc = "upper right") ax.set_ylabel("Normalized") ax.set_xlabel("Year") plt.title("Pollution mean normalized over years") plt.savefig(outputDirExtras + "normalize pollutant over the years") plt.show() plt.clf() # Generalized pollution distribution across the years plot avg = avg / len(pollutant_type) for idx in range(len(years)): pollutant_list2.extend([{"year":years[idx], "generalized.pollution":avg[idx]}]) pollutant_gen_df =
pd.DataFrame(pollutant_list2)
pandas.DataFrame
import os assert os.environ['CONDA_DEFAULT_ENV']=='skbio_env', 'You should use the conda environment skbio_env' import numpy as np from skbio.stats.ordination import cca import pandas as pd import matplotlib.pylab as plt from copy import copy import matplotlib.colors as mcolors import seaborn as sns from matplotlib.patches import Patch redFspecies = True spl = [6,11,25,250] tits = ['(a)', '(b)', '(c)', '(d)'] Allvars = False noise = [True,False] plott=True#False# dirRead = '/Users/nooteboom/Documents/GitHub/cluster_TM/cluster_SP/density/dens/ordination/' minss = [100,200, 300, 400, 500, 600, 700, 800, 900,1000] # The s_min values xiss = np.arange(0.0001,0.01, 0.0001) # The xi values fig, ax = plt.subplots(2,3, figsize=(16,16), gridspec_kw={'width_ratios':[1,1,0.08]}) ax[0,0].get_shared_y_axes().join(ax[1,0]) ax[0,1].get_shared_y_axes().join(ax[1,1]) for axs in ax[:, 2]: axs.remove() gs = ax[1, 2].get_gridspec() axbig = fig.add_subplot(gs[:, 2]) sns.set(style='whitegrid',context='paper', font_scale=2) fs=20 vs = np.array([-1,1])*0.8 for spi, sp in enumerate(spl): print(sp) # keep track of the results # F and D stand for Foram and Dino # noise keeps track of CCA results if noisy locations are included # cluster keeps track of results if noisy locations are excluded FNoise = np.zeros((len(minss), len(xiss))) DNoise = np.zeros((len(minss), len(xiss))) FCluster = np.zeros((len(minss), len(xiss))) DCluster = np.zeros((len(minss), len(xiss))) for mini,mins in enumerate(minss): print('min: %d'%(mins)) for xii, xis in enumerate(xiss): opts = ["xi", xis] if(redFspecies): ff = np.load('loops/redF/prepredF_CCA_sp%d_smin%d%s_%.5f.npz'%(sp, mins, opts[0], opts[1])) else: ff = np.load(dirRead+'loops/prep_CCA_sp%d_smin%d%s_%.5f.npz'%(sp, mins, opts[0], opts[1])) #%% envs = ff['envnames'] if(Allvars): envsplt = ff['envnames'] else: envsplt = ff['envnames'] envsplt = ['temp','N'] Flabels = ff['Flabels'] Flabelsfull = copy(Flabels) Fenv = ff['Fenv'] for ni,n in enumerate(noise): envs = ff['envnames'] envsplt = ['temp','N'] Flabels = ff['Flabels'] Fenv = ff['Fenv'] Fenv_nn = ff['Fenv_nn'] #%% Foraminifera data = ff['data'] sites = np.array(['site %d'%(i) for i in range(data.shape[0])]) species = np.array(['species %d'%(i) for i in range(data.shape[1])]) if(not n): args = np.where(Flabels!=-1) data = data[args] Flabels = Flabels[args] sites = sites[args] Fenv = Fenv[args] Fenv_nn = Fenv_nn[args] X =
pd.DataFrame(data, sites, species)
pandas.DataFrame
from bitshares import BitShares from bitshares.instance import set_shared_bitshares_instance from bitshares.market import Market import pandas as pd import time def setup_bitshares_market(bts_symbol): bitshares_instance = BitShares( "wss://siliconvalley.us.api.bitshares.org/ws", nobroadcast=True # <<--- set this to False when you want to fire! ) set_shared_bitshares_instance(bitshares_instance) bts_market = Market( bts_symbol, bitshares_instance=bitshares_instance ) return bts_market def get_bts_orderbook_df(ob, type, vol2: bool): price_vol = list() if vol2: for i in range(len(ob[type])): price = ob[type][i]['price'] invert_price = 1/price vol = ob[type][i]['quote'] vol2 = ob[type][i]['base'] # is this the actual volume? price_vol.append([price, vol['amount'], vol2['amount'], invert_price]) df = pd.DataFrame(price_vol) df.columns = ['price', 'vol', 'vol_base', 'invert'] else: for i in range(len(ob[type])): price = ob[type][i]['price'] invert_price = 1/price vol = ob[type][i]['quote'] price_vol.append([price, vol['amount'], invert_price]) df = pd.DataFrame(price_vol) df.columns = ['price', 'vol', 'invert'] df['timestamp'] = int(time.time()) df['type'] = type return df def get_bts_ob_data(bts_market, depth: int): vol2 = False # get bitshares order book for current market bts_orderbook = bts_market.orderbook(limit=depth) ask_df = get_bts_orderbook_df(bts_orderbook, 'asks', vol2) bid_df = get_bts_orderbook_df(bts_orderbook, 'bids', vol2) bts_df =
pd.concat([ask_df, bid_df])
pandas.concat
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pdb def import_robot_data(df_path): df =
pd.read_hdf(df_path)
pandas.read_hdf
#%% from sklearn import datasets import numpy import matplotlib.pyplot as plt import pandas as pd import seaborn as sns plt.style.use('ggplot') #%% # load iris dataset iris = datasets.load_iris() print(type(iris)) # it is bunch which is just like dictionary print(iris.keys()) # print(data['feature_names']) print(type(iris['data'])) print(iris['data'].shape) print(iris['target']) #%% # sns.pairplot def species(row): if row['target'] == 0: return 'setosa' if row['target'] == 1: return iris['target_names'][1] if row['target'] == 2: return iris['target_names'][2] sns.set(style="ticks", color_codes=True) # create dataframe of sklearn datasets df_iris = pd.DataFrame(iris['data'], columns=iris['feature_names']) Y = iris['target'] df_iris['target'] = Y df_iris['flower'] = df_iris.apply(species, axis=1) sns.pairplot(df_iris, hue='flower') plt.show() # performing the countplot plt.figure() sns.countplot(x='target', hue='flower', data=df_iris) plt.show() #%% # eda analysis df_iris =
pd.DataFrame(iris['data'], columns=iris['feature_names'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Apr 12 12:29:19 2019 @author: sdenaro """ import matplotlib.pyplot as plt import pandas as pd from datetime import datetime as dt from datetime import timedelta import numpy as np import numpy.matlib as matlib import seaborn as sns from sklearn import linear_model #from sklearn.metrics import mean_squared_error, r2_score from scipy import stats def r2(x, y): return stats.pearsonr(x, y)[0] ** 2 #Set Preference Customers reduction percent (number) custom_redux=0 # Yearly firm loads (aMW) # upload BPA firm load column from file df_load=pd.read_excel('../DATA/net_rev_data.xlsx',sheet_name=0,skiprows=[0,1], usecols=[9]) #Save as Preference Firm (PF), Industrial Firm (IF) an Export (ET) PF_load_y=df_load.loc[[13]].values - custom_redux*df_load.loc[[13]].values IP_load_y=df_load.loc[[3]].values - custom_redux* df_load.loc[[3]].values ET_load_y=df_load.loc[[14]] # Hourly hydro generation from FCRPS stochastic simulation #df_hydro=pd.read_csv('../../CAPOW/CAPOW_SD/Stochastic_engine/PNW_hydro/FCRPS/BPA_owned_dams.csv', header=None) df_hydro=pd.read_csv('new_BPA_hydro_daily.csv', usecols=([1])) BPA_hydro=pd.DataFrame(data=df_hydro.loc[0:365*1200-1,:].sum(axis=1)/24, columns=['hydro']) BPA_hydro[BPA_hydro>45000]=45000 #Remove CAISO bad_years BPA_hydro=pd.DataFrame(np.reshape(BPA_hydro.values, (365,1200), order='F')) BPA_hydro.drop([82, 150, 374, 377, 540, 616, 928, 940, 974, 980, 1129, 1191],axis=1, inplace=True) #reshuffle #BPA_hydro[[1, 122, 364, 543]]=BPA_hydro[[16, 126, 368, 547]] BPA_hydro=pd.DataFrame(np.reshape(BPA_hydro.values, (365*1188), order='F')) # Yearly resources other than hydro (aMW) df_resources=pd.read_excel('../DATA/net_rev_data.xlsx',sheet_name=1,skiprows=[0,1], usecols=[9]) Nuc_y=df_resources.loc[[7]] Wind_y=df_resources.loc[[8]] Purch_y=df_resources.loc[[10]] # Yearly costs and monthly rates (Oct-Sep) costs_y=pd.read_excel('../DATA/net_rev_data.xlsx',sheet_name=3,skiprows=[0,3,4,5], usecols=[8])*pow(10,3) PF_rates=pd.read_excel('../DATA/net_rev_data.xlsx',sheet_name=4,skiprows=np.arange(13,31), usecols=[0,7]) PF_rates.columns=['month','2018'] IP_rates=pd.read_excel('../DATA/net_rev_data.xlsx',sheet_name=5,skiprows=np.arange(13,31), usecols=[0,7]) IP_rates.columns=['month','2018'] #load BPAT hourly demand and wind and convert to daily df_synth_load=
pd.read_csv('../../CAPOW/CAPOW_SD/Stochastic_engine/Synthetic_demand_pathflows/Sim_hourly_load.csv', usecols=[1])
pandas.read_csv
# coding=utf-8 # Author: <NAME> # Date: Sept 02, 2019 # # Description: Reads a MultiLayer network (HS, MM & DM) and extracts subgraphs based on parameters for the networkbrowser. # # import pandas as pd pd.set_option('display.max_rows', 100) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) import networkx as nx from matplotlib import colors from utils import get_network_layer, get_network_largest_connected_component, ensurePathExists import argparse # from data_spermatocyte_pca_modules_dm import spermatocyte_pca_modules_dm from data_spermatocyte_pca_modules_mm import spermatocyte_pca_modules_mm from data_spermatocyte_pca_modules_hs import spermatocyte_pca_modules_hs # from data_enterocyte_pca_modules_dm import enterocyte_pca_modules_dm from data_enterocyte_pca_modules_mm import enterocyte_pca_modules_mm from data_enterocyte_pca_modules_hs import enterocyte_pca_modules_hs cmap_meanfertrate = colors.LinearSegmentedColormap.from_list(name='cmap-mean-fert-rate', colors=['#d62728', '#1f77b4'], N=256) def fert_rate_color(x): if pd.isnull(x): return '#FFFFFF' # white else: return colors.to_hex(cmap_meanfertrate(x)) # color if __name__ == '__main__': # # Args # parser = argparse.ArgumentParser() parser.add_argument("--celltype", default='spermatocyte', type=str, choices=['spermatocyte', 'enterocyte'], help="Cell type. Must be either 'spermatocyte' or 'enterocyte'. Defaults to spermatocyte") parser.add_argument("--network", default='thr', type=str, help="Network to use. Defaults to 'thr'.") parser.add_argument("--threshold", default=0.5, type=float, help="Threshold value. Defaults to 0.5.") # parser.add_argument("--add_modules", default=True, type=bool, help="Add PCA module information to the network.") parser.add_argument("--add_conserved", default=True, type=bool, help="Add gene conservation information to the network.") parser.add_argument("--add_core", default=True, type=bool, help="Add core gene information to the network.") parser.add_argument("--add_backbone", default=True, type=bool, help="Add edge backbone to the network.") parser.add_argument("--add_ortho_backbone", default=True, type=bool, help="Add edge ortho-backbone to the network.") # parser.add_argument("--add_mdlc_dge_results", default=True, type=bool, help="Add gene mdlc DGE results to the DM network.") parser.add_argument("--add_splicing_defects", default=True, type=bool, help="Add gene mdlc splicing defects results to the DM network.") # parser.add_argument("--remove_isolates", default=True, type=bool, help="Remove isolate nodes from layers.") parser.add_argument("--only_largest_component", default=True, type=bool, help="Only output the largest connected component.") # parser.add_argument("--layer", default='DM', type=str, choices=['DM', 'MM', 'HS'], help="Network layer to compute SVD. Defaults to 'DM'.") args = parser.parse_args() # celltype = args.celltype # spermatocyte or enterocyte network = args.network threshold = args.threshold threshold_str = str(threshold).replace('.', 'p') # add_modules = args.add_modules add_conserved = args.add_conserved add_core = args.add_core add_backbone = args.add_backbone add_ortho_backbone = args.add_ortho_backbone # add_mdlc_dge_results = args.add_mdlc_dge_results add_splicing_defects = args.add_splicing_defects # remove_isolates = args.remove_isolates only_largest_component = args.only_largest_component # placeholder = {'HS': None, 'MM': None, 'DM': None} data = { 'spermatocyte': { 'PCA': dict(placeholder), 'distance-angle': dict(placeholder), 'entropy': dict(placeholder), 'modules': { 'HS': spermatocyte_pca_modules_hs, 'MM': spermatocyte_pca_modules_mm, 'DM': spermatocyte_pca_modules_dm, }, }, 'enterocyte': { 'PCA': dict(placeholder), 'distance-angle': dict(placeholder), 'entropy': dict(placeholder), 'modules': { 'HS': enterocyte_pca_modules_hs, 'MM': enterocyte_pca_modules_mm, 'DM': enterocyte_pca_modules_dm, } } } # print('Reading Network') path_net = '../../04-network/results/network/{celltype:}/'.format(celltype=celltype) if network == 'thr': rGfile_gpickle = path_net + 'net-{celltype:s}-{network:s}-{threshold:s}.gpickle'.format(celltype=celltype, network=network, threshold=threshold_str) G = nx.read_gpickle(rGfile_gpickle) if add_conserved: path_fpkm = '../../02-core_genes/results/FPKM/' df_HS = pd.read_csv(path_fpkm + 'HS/HS-FPKM-{celltype:s}.csv.gz'.format(celltype=celltype), index_col='id_string') df_MM = pd.read_csv(path_fpkm + 'MM/MM-FPKM-{celltype:s}.csv.gz'.format(celltype=celltype), index_col='id_string') df_DM = pd.read_csv(path_fpkm + 'DM/DM-FPKM-{celltype:s}.csv.gz'.format(celltype=celltype), index_col='id_string') dict_string_gene_HS = df_HS['id_gene'].to_dict() dict_string_gene_MM = df_MM['id_gene'].to_dict() dict_string_gene_DM = df_DM['id_gene'].to_dict() print('Loading {celltype:s} meta genes'.format(celltype=celltype)) path = '../../02-core_genes/results/' dfM = pd.read_csv(path + 'meta-genes/meta-{celltype:s}-genes.csv.gz'.format(celltype=celltype), index_col='id_eggnog', usecols=['id_eggnog', 'id_string_HS', 'id_string_MM', 'id_string_DM']) dfM['id_string_HS'] = dfM['id_string_HS'].apply(lambda x: x.split(',') if not
pd.isnull(x)
pandas.isnull
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pandas as pd from astropy.coordinates import SkyCoord from astropy.io.votable import parse from sh import bzip2 from ...lib.context_managers import cd # ============================================================================= # CONSTANTS # ============================================================================= PATH = os.path.abspath(os.path.dirname(__file__)) CATALOG_PATH = os.path.join(PATH, "carpyncho_catalog.pkl") # ============================================================================= # BUILD # ============================================================================= def get_ogle_3_resume(): with cd(PATH): bzip2("-f", "-dk", "ogleIII_all.csv.bz2") df = pd.read_csv("ogleIII_all.csv") ra = df["RA"].apply( lambda d: d.replace(":", "h", 1).replace(":", "m", 1) + "s") dec = df["Decl"].apply( lambda d: d.replace(":", "d", 1).replace(":", "m", 1) + "s") coords = SkyCoord(ra, dec, frame='icrs') df['ra'] = pd.Series(coords.ra.deg, index=df.index) df['dec'] = pd.Series(coords.dec.deg, index=df.index) df["cls"] = df["Type"] + "-" + df["Subtype"] df = df[["ID", "ra", "dec", "cls"]] df["catalog"] = pd.Series("OGLE-3", index=df.index) os.remove("ogleIII_all.csv") return df def get_ogle_4_resume(): with cd(PATH): bzip2("-f", "-dk", "ogle4.csv.bz2") df = pd.read_csv("ogle4.csv") def _ra(d): d = d.replace(":", "h", 1).replace(":", "m", 1) return d.replace(":", ".") + "s" ra = df["ra"].apply(_ra) def _dec(d): d = d.replace(":", "d", 1).replace(":", "m", 1) return d.replace(":", ".") + "s" dec = df["dec"].apply(_dec) coords = SkyCoord(ra, dec, frame='icrs') df['ra'] = pd.Series(coords.ra.deg, index=df.index) df['dec'] = pd.Series(coords.dec.deg, index=df.index) df["ID"] = df["id"] df = df[["ID", "ra", "dec", "cls"]] df["catalog"] = pd.Series("OGLE-4", index=df.index) # ~ os.remove("ogle4.csv") return df def get_vizier_resume(): with cd(PATH): bzip2("-f", "-dk", "vizier_votable.vot.bz2") votable = parse("vizier_votable.vot") table = votable.get_first_table().to_table(use_names_over_ids=True) df = table.to_pandas() del votable, table df = df[["OID", "RAJ2000", "DEJ2000", "Type"]].copy() df.columns = "ID", "ra", "dec", "cls" df["catalog"] = "vizier" # solo las RRLyrae flt = 'RRAB', 'RRC', 'RRD' df = df[df.cls.isin(flt)] def change_type(t): subpart = { 'RRAB': "RRab", 'RRC': "RRc", 'RRD': "RRd" }[t] return "RRLyr-" + subpart df["cls"] = df.cls.apply(change_type) # ~ os.remove("vizier_votable.vot") return df def build(): print("Bulding Vizier") vizier = get_vizier_resume() print("Building OGLE III") # ~ ogle3 = get_ogle_3_resume() print("Building OGLE IV") ogle4 = get_ogle_4_resume() print("Merging") # ~ catalog = pd.concat((ogle3, ogle4, vizier), ignore_index=True) print("Saving catalog") # ~ catalog.to_pickle(CATALOG_PATH) # ============================================================================= # LOAD # ============================================================================= def load(): return
pd.read_pickle(CATALOG_PATH)
pandas.read_pickle
# coding: utf-8 # In[1]: #first commit -Richie import pandas as pd import numpy as np # In[2]: data_message = pd.read_csv('../../data/raw_data/AAPL_05222012_0930_1300_message.tar.gz',compression='gzip') data_lob = pd.read_csv('../../data/raw_data/AAPL_05222012_0930_1300_LOB_2.tar.gz',compression='gzip') # In[3]: #drop redundant time col_names=data_lob.columns delete_list=[i for i in col_names if 'UPDATE_TIME' in i] for i in delete_list: data_lob=data_lob.drop(i,1) # In[4]: #functions for renaming def rename(txt): txt=txt[16:].split('..')[0] index=0 ask_bid='' p_v='' if txt[-2].isdigit(): index=txt[-2:] else: index=txt[-1] if txt[:3]=="BID": ask_bid='bid' else: ask_bid='ask' if txt[4:9]=="PRICE": p_v='P' else: p_v='V' return('_'.join([p_v,index,ask_bid])) # In[5]: #rename columns col_names=data_lob.columns new_col_names=[] new_col_names.append('index') new_col_names.append('Time') for i in col_names[2:]: new_col_names.append(rename(i)) len(new_col_names) data_lob.columns=new_col_names # In[6]: #feature: bid-ask spreads and mid price for i in list(range(1, 11)): bid_ask_col_name='_'.join(['spreads',str(i)]) p_i_ask='_'.join(['P',str(i),'ask']) p_i_bid='_'.join(['P',str(i),'bid']) data_lob[bid_ask_col_name]=data_lob[p_i_ask]-data_lob[p_i_bid] mid_price_col_name = '_'.join(['mid_price',str(i)]) data_lob[mid_price_col_name]=(data_lob[p_i_ask]+data_lob[p_i_bid])/2 # In[7]: #convert time def timetransform(r): # transform the time to millisecond, starting from 0 timestr = r return (int(timestr[11:13]) - 9) * 60**2 + (int(timestr[14:16]) - 30) * 60 + float(timestr[17:]) time = list(data_lob['Time']) time_new = [timetransform(i) for i in time] data_lob["Time"] = time_new # In[8]: time = list(data_message['Time']) time_new = [timetransform(i) for i in time] data_message["Time"] = time_new # In[9]: #price difference data_lob['P_diff_ask_10_1']=data_lob['P_10_ask']-data_lob['P_1_ask'] data_lob['P_diff_bid_1_10']=data_lob['P_1_bid']-data_lob['P_1_bid'] for i in list(range(1, 10)): P_diff_ask_i_name='_'.join(['P','diff','ask',str(i),str(i+1)]) P_diff_bid_i_name='_'.join(['P','diff','bid',str(i),str(i+1)]) P_i_ask='_'.join(['P',str(i),'ask']) P_i1_ask='_'.join(['P',str(i+1),'ask']) P_i_bid='_'.join(['P',str(i),'bid']) P_i1_bid='_'.join(['P',str(i+1),'bid']) data_lob[P_diff_ask_i_name]=abs(data_lob[P_i1_ask]-data_lob[P_i_ask]) data_lob[P_diff_bid_i_name]=abs(data_lob[P_i1_bid]-data_lob[P_i_bid]) # In[10]: #mean price and volumns p_ask_list=['_'.join(['P',str(i),'ask']) for i in list(range(1, 11))] p_bid_list=['_'.join(['P',str(i),'bid']) for i in list(range(1, 11))] v_ask_list=['_'.join(['V',str(i),'ask']) for i in list(range(1, 11))] v_bid_list=['_'.join(['V',str(i),'bid']) for i in list(range(1, 11))] data_lob['Mean_ask_price']=0.0 data_lob['Mean_bid_price']=0.0 data_lob['Mean_ask_volumn']=0.0 data_lob['Mean_bid_volumn']=0.0 for i in list(range(0, 10)): data_lob['Mean_ask_price']+=data_lob[p_ask_list[i]] data_lob['Mean_bid_price']+=data_lob[p_bid_list[i]] data_lob['Mean_ask_volumn']+=data_lob[v_ask_list[i]] data_lob['Mean_bid_volumn']+=data_lob[v_bid_list[i]] data_lob['Mean_ask_price']/=10 data_lob['Mean_bid_price']/=10 data_lob['Mean_ask_volumn']/=10 data_lob['Mean_bid_volumn']/=10 # In[11]: #accumulated difference p_ask_list=['_'.join(['P',str(i),'ask']) for i in list(range(1, 11))] p_bid_list=['_'.join(['P',str(i),'bid']) for i in list(range(1, 11))] v_ask_list=['_'.join(['V',str(i),'ask']) for i in list(range(1, 11))] v_bid_list=['_'.join(['V',str(i),'bid']) for i in list(range(1, 11))] data_lob['Accum_diff_price']=0.0 data_lob['Accum_diff_volumn']=0.0 for i in list(range(0, 10)): data_lob['Accum_diff_price']+=data_lob[p_ask_list[i]]-data_lob[p_bid_list[i]] data_lob['Accum_diff_volumn']+=data_lob[v_ask_list[i]]-data_lob[v_bid_list[i]] data_lob['Accum_diff_price']/=10 data_lob['Accum_diff_volumn']/=10 # In[12]: # #price and volumn derivatives # p_ask_list=['_'.join(['P',str(i),'ask']) for i in list(range(1, 11))] # p_bid_list=['_'.join(['P',str(i),'bid']) for i in list(range(1, 11))] # v_ask_list=['_'.join(['V',str(i),'ask']) for i in list(range(1, 11))] # v_bid_list=['_'.join(['V',str(i),'bid']) for i in list(range(1, 11))] # #data_lob['Time_diff']=list(np.zeros(30)+1)+list(np.array(data_lob['Time'][30:])-np.array(data_lob['Time'][:-30])) # for i in list(range(0, 10)): # P_ask_i_deriv='_'.join(['P','ask',str(i+1),'deriv']) # P_bid_i_deriv='_'.join(['P','bid',str(i+1),'deriv']) # V_ask_i_deriv='_'.join(['V','ask',str(i+1),'deriv']) # V_bid_i_deriv='_'.join(['V','bid',str(i+1),'deriv']) # data_lob[P_ask_i_deriv]=list(np.zeros(30))+list(np.array(data_lob[p_ask_list[i]][30:])-np.array(data_lob[p_ask_list[i]][:-30])) # data_lob[P_bid_i_deriv]=list(np.zeros(30))+list(np.array(data_lob[p_bid_list[i]][30:])-np.array(data_lob[p_bid_list[i]][:-30])) # data_lob[V_ask_i_deriv]=list(np.zeros(30))+list(np.array(data_lob[v_ask_list[i]][30:])-np.array(data_lob[v_ask_list[i]][:-30])) # data_lob[V_bid_i_deriv]=list(np.zeros(30))+list(np.array(data_lob[v_bid_list[i]][30:])-np.array(data_lob[v_bid_list[i]][:-30])) # data_lob[P_ask_i_deriv]/=30 # data_lob[P_bid_i_deriv]/=30 # data_lob[V_ask_i_deriv]/=30 # data_lob[V_bid_i_deriv]/=30 # #price and volumn derivatives p_ask_list=['_'.join(['P',str(i),'ask']) for i in list(range(1, 11))] p_bid_list=['_'.join(['P',str(i),'bid']) for i in list(range(1, 11))] v_ask_list=['_'.join(['V',str(i),'ask']) for i in list(range(1, 11))] v_bid_list=['_'.join(['V',str(i),'bid']) for i in list(range(1, 11))] #data_lob['Time_diff']=list(np.zeros(30)+1)+list(np.array(data_lob['Time'][30:])-np.array(data_lob['Time'][:-30])) for i in list(range(0, 10)): P_ask_i_deriv='_'.join(['P','ask',str(i+1),'deriv']) P_bid_i_deriv='_'.join(['P','bid',str(i+1),'deriv']) V_ask_i_deriv='_'.join(['V','ask',str(i+1),'deriv']) V_bid_i_deriv='_'.join(['V','bid',str(i+1),'deriv']) data_lob[P_ask_i_deriv]=list(np.zeros(1000))+list(np.array(data_lob[p_ask_list[i]][1000:])-np.array(data_lob[p_ask_list[i]][:-1000])) data_lob[P_bid_i_deriv]=list(np.zeros(1000))+list(np.array(data_lob[p_bid_list[i]][1000:])-np.array(data_lob[p_bid_list[i]][:-1000])) data_lob[V_ask_i_deriv]=list(np.zeros(1000))+list(np.array(data_lob[v_ask_list[i]][1000:])-np.array(data_lob[v_ask_list[i]][:-1000])) data_lob[V_bid_i_deriv]=list(np.zeros(1000))+list(np.array(data_lob[v_bid_list[i]][1000:])-np.array(data_lob[v_bid_list[i]][:-1000])) data_lob[P_ask_i_deriv]/=1000 data_lob[P_bid_i_deriv]/=1000 data_lob[V_ask_i_deriv]/=1000 data_lob[V_bid_i_deriv]/=1000 # In[ ]: #set labels diff=data_lob['mid_price_1'] diff_30=np.array(diff[30:])-np.array(diff[:-30]) label=[] for i in diff_30: if i>0.01: label.append('1') elif i<(-0.01): label.append('-1') else: label.append('0') data_lob['labels']=label+list(np.zeros(30)) # In[13]: #set spread crossing labels p_now_bid = list(data_lob['P_1_bid'][:-1000]) p_now_ask = list(data_lob['P_1_ask'][:-1000]) p_next_bid=list(data_lob['P_1_bid'][1000:]) p_next_ask=list(data_lob['P_1_ask'][1000:]) label_SC=[] for i in range(len(p_now_bid)): if p_next_bid[i]>=p_now_ask[i]: label_SC.append('+1') elif p_next_ask[i]<=p_now_bid[i]: label_SC.append('-1') else: label_SC.append('0') data_lob['labels']=label_SC+list(np.zeros(1000)) # In[14]: #drop first and last 30 rows data_out=data_lob[:-1000] data_out=data_out[1000:] # data_out=data_lob[:-30] # data_out=data_out[30:] # In[15]: # split train and test # split2=203350-30 # split1=int(split2*0.5) # split_test=split1+int(split2*0.25) # split3=279656-30 # shuttle=data_out[:split2].reindex(np.random.permutation(data_out[:split2].index)) # train=shuttle[:split1] # test=shuttle[split1:split_test] # train_test=shuttle[:split_test] # validation=shuttle[split_test:] # strategy_validation=data_out[split2:split3] # split2=203350-30 # split1=int(split2*0.5) # split_test=split1+int(split2*0.25) # split3=279656-30 # train=data_out[:split1] # test=data_out[split1:split_test] # train_test=data_out[:split_test] # validation=data_out[split_test:split2] # strategy_validation=data_out[split2:split3] #split for SC # split2=203349-1000 # split1=int(split2*0.5) # split_test=split1+int(split2*0.25) # split3=279656-1000 # train=data_out[:split1] # test=data_out[split1:split_test] # train_test=data_out[:split_test] # validation=data_out[split_test:split2] # strategy_validation=data_out[split2:split3] #split shuttle for SC split2=203349-1000 split1=int(split2*0.5) split_test=split1+int(split2*0.25) split3=279656-1000 shuttle=data_out[:split2].reindex(np.random.permutation(data_out[:split2].index)) train=shuttle[:split1] test=shuttle[split1:split_test] train_test=shuttle[:split_test] validation=shuttle[split_test:] strategy_validation=data_out[split2:split3] # In[17]: train_sample=train.sample(int(0.1*len(train))) test_sample=test.sample(int(0.1*len(test))) train_test_sample=train_test.sample(int(0.1*len(train_test))) validation_sample=validation.sample(int(0.1*len(validation))) strategy_validation_sample=strategy_validation.sample(int(0.1*len(strategy_validation))) # In[22]: label_percent(np.array(train_test_sample['labels']).astype('int')) # In[ ]: data_out[data_out['Time']>(5400+3600)] # In[ ]: diff=data_lob['mid_price_1'] diff_10=np.array(diff[10:])-np.array(diff[:-10]) diff_20=np.array(diff[20:])-np.array(diff[:-20]) diff_30=np.array(diff[30:])-np.array(diff[:-30]) diff_40=np.array(diff[40:])-np.array(diff[:-40]) print('Delta=10:') label_percent(diff_10) print('Delta=20:') label_percent(diff_20) print('Delta=30:') label_percent(diff_30) print('Delta=40:') label_percent(diff_40) # Delta=10: # Pos:0.31; Neg:0.33; Zero:0.36; # Delta=20: # Pos:0.39; Neg:0.42; Zero:0.19; # Delta=30: # Pos:0.42; Neg:0.46; Zero:0.11; # Delta=40: # Pos:0.44; Neg:0.48; Zero:0.07; # In[19]: def label_percent(v): l=len(v) pos=sum(x > 0 for x in v)/l neg=sum(x < 0 for x in v)/l zero=sum(x == 0 for x in v)/l print('Pos:'+str("{0:.2f}".format(pos))+"; Neg:"+str("{0:.2f}".format(neg))+'; Zero:'+str("{0:.2f}".format(zero))+';') # In[24]: # train.to_csv('../../data/output/model_clean_data/train.csv') # test.to_csv('../../data/output/model_clean_data/test.csv') # validation.to_csv('../../data/output/model_clean_data/validation.csv') # train_test.to_csv('../../data/output/model_clean_data/train_test.csv') # strategy_validation.to_csv('../../data/output/model_clean_data/strategy_validation.csv') train_sample.to_csv('../../data/output/model_clean_data/train.csv') test_sample.to_csv('../../data/output/model_clean_data/test.csv') validation_sample.to_csv('../../data/output/model_clean_data/validation.csv') train_test_sample.to_csv('../../data/output/model_clean_data/train_test.csv') strategy_validation_sample.to_csv('../../data/output/model_clean_data/strategy_validation.csv') # In[ ]: data_out[:1000].to_csv('/Users/Richie/Desktop/sample.csv') # In[64]: #combine train test validation data_train_test1 = pd.read_csv('../../data/output/model_clean_data/SC_shuffle/train_test.tar.gz',compression='gzip') data_validation1 =
pd.read_csv('../../data/output/model_clean_data/SC_shuffle/validation.tar.gz',compression='gzip')
pandas.read_csv
from pandas.testing import assert_frame_equal import pandas as pd from sparkmagic.utils.utils import coerce_pandas_df_to_numeric_datetime def test_no_coercing(): records = [{u'buildingID': 0, u'date': u'6/1/13', u'temp_diff': u'12'}, {u'buildingID': 1, u'date': u'random', u'temp_diff': u'0adsf'}] desired_df = pd.DataFrame(records) df = pd.DataFrame(records) coerce_pandas_df_to_numeric_datetime(df)
assert_frame_equal(desired_df, df)
pandas.testing.assert_frame_equal
from collections import ( abc, deque, ) from decimal import Decimal from warnings import catch_warnings import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal class TestConcatenate: def test_append_concat(self): # GH#1815 d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC") d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC") s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_concat_copy(self, using_array_manager): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for arr in result._mgr.arrays: assert arr.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": assert arr.base is df._mgr.arrays[0].base elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: if using_array_manager: # we get the same array object, which has no base assert arr is df3._mgr.arrays[0] else: assert arr.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": if using_array_manager: # this is a view on some array in either df or df4 assert any( np.shares_memory(arr, other) for other in df._mgr.arrays + df4._mgr.arrays ) else: # the block was consolidated, so we got a copy anyway assert arr.base is None elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: # this is a view on df3 assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays) def test_concat_with_group_keys(self): # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result =
concat([s1, df, s2, s2, s1], axis=1)
pandas.concat
import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, isna, notna, ) import pandas._testing as tm def test_expanding_corr(series): A = series.dropna() B = (A + np.random.randn(len(A)))[:-5] result = A.expanding().corr(B) rolling_result = A.rolling(window=len(A), min_periods=1).corr(B) tm.assert_almost_equal(rolling_result, result) def test_expanding_count(series): result = series.expanding(min_periods=0).count() tm.assert_almost_equal( result, series.rolling(window=len(series), min_periods=0).count() ) def test_expanding_quantile(series): result = series.expanding().quantile(0.5) rolling_result = series.rolling(window=len(series), min_periods=1).quantile(0.5) tm.assert_almost_equal(result, rolling_result) def test_expanding_cov(series): A = series B = (A + np.random.randn(len(A)))[:-5] result = A.expanding().cov(B) rolling_result = A.rolling(window=len(A), min_periods=1).cov(B) tm.assert_almost_equal(rolling_result, result) def test_expanding_cov_pairwise(frame): result = frame.expanding().cov() rolling_result = frame.rolling(window=len(frame), min_periods=1).cov() tm.assert_frame_equal(result, rolling_result) def test_expanding_corr_pairwise(frame): result = frame.expanding().corr() rolling_result = frame.rolling(window=len(frame), min_periods=1).corr() tm.assert_frame_equal(result, rolling_result) @pytest.mark.parametrize( "func,static_comp", [("sum", np.sum), ("mean", np.mean), ("max", np.max), ("min", np.min)], ids=["sum", "mean", "max", "min"], ) def test_expanding_func(func, static_comp, frame_or_series): data = frame_or_series(np.array(list(range(10)) + [np.nan] * 10)) result = getattr(data.expanding(min_periods=1, axis=0), func)() assert isinstance(result, frame_or_series) if frame_or_series is Series: tm.assert_almost_equal(result[10], static_comp(data[:11])) else: tm.assert_series_equal( result.iloc[10], static_comp(data[:11]), check_names=False ) @pytest.mark.parametrize( "func,static_comp", [("sum", np.sum), ("mean", np.mean), ("max", np.max), ("min", np.min)], ids=["sum", "mean", "max", "min"], ) def test_expanding_min_periods(func, static_comp): ser = Series(np.random.randn(50)) result = getattr(ser.expanding(min_periods=30, axis=0), func)() assert result[:29].isna().all() tm.assert_almost_equal(result.iloc[-1], static_comp(ser[:50])) # min_periods is working correctly result = getattr(ser.expanding(min_periods=15, axis=0), func)() assert isna(result.iloc[13]) assert notna(result.iloc[14]) ser2 = Series(np.random.randn(20)) result = getattr(ser2.expanding(min_periods=5, axis=0), func)() assert isna(result[3]) assert notna(result[4]) # min_periods=0 result0 = getattr(ser.expanding(min_periods=0, axis=0), func)() result1 = getattr(ser.expanding(min_periods=1, axis=0), func)() tm.assert_almost_equal(result0, result1) result = getattr(ser.expanding(min_periods=1, axis=0), func)() tm.assert_almost_equal(result.iloc[-1], static_comp(ser[:50])) def test_expanding_apply(engine_and_raw, frame_or_series): engine, raw = engine_and_raw data = frame_or_series(np.array(list(range(10)) + [np.nan] * 10)) result = data.expanding(min_periods=1).apply( lambda x: x.mean(), raw=raw, engine=engine ) assert isinstance(result, frame_or_series) if frame_or_series is Series: tm.assert_almost_equal(result[9], np.mean(data[:11])) else: tm.assert_series_equal(result.iloc[9], np.mean(data[:11]), check_names=False) def test_expanding_min_periods_apply(engine_and_raw): engine, raw = engine_and_raw ser = Series(np.random.randn(50)) result = ser.expanding(min_periods=30).apply( lambda x: x.mean(), raw=raw, engine=engine ) assert result[:29].isna().all() tm.assert_almost_equal(result.iloc[-1], np.mean(ser[:50])) # min_periods is working correctly result = ser.expanding(min_periods=15).apply( lambda x: x.mean(), raw=raw, engine=engine ) assert isna(result.iloc[13]) assert notna(result.iloc[14]) ser2 = Series(np.random.randn(20)) result = ser2.expanding(min_periods=5).apply( lambda x: x.mean(), raw=raw, engine=engine ) assert isna(result[3]) assert notna(result[4]) # min_periods=0 result0 = ser.expanding(min_periods=0).apply( lambda x: x.mean(), raw=raw, engine=engine ) result1 = ser.expanding(min_periods=1).apply( lambda x: x.mean(), raw=raw, engine=engine ) tm.assert_almost_equal(result0, result1) result = ser.expanding(min_periods=1).apply( lambda x: x.mean(), raw=raw, engine=engine ) tm.assert_almost_equal(result.iloc[-1], np.mean(ser[:50])) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum]) def test_expanding_apply_consistency_sum_nans(consistency_data, min_periods, f): x, is_constant, no_nans = consistency_data if f is np.nansum and min_periods == 0: pass else: expanding_f_result = x.expanding(min_periods=min_periods).sum() expanding_apply_f_result = x.expanding(min_periods=min_periods).apply( func=f, raw=True ) tm.assert_equal(expanding_f_result, expanding_apply_f_result) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum, np.sum]) def test_expanding_apply_consistency_sum_no_nans(consistency_data, min_periods, f): x, is_constant, no_nans = consistency_data if no_nans: if f is np.nansum and min_periods == 0: pass else: expanding_f_result = x.expanding(min_periods=min_periods).sum() expanding_apply_f_result = x.expanding(min_periods=min_periods).apply( func=f, raw=True ) tm.assert_equal(expanding_f_result, expanding_apply_f_result) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("ddof", [0, 1]) def test_moments_consistency_var(consistency_data, min_periods, ddof): x, is_constant, no_nans = consistency_data mean_x = x.expanding(min_periods=min_periods).mean() var_x = x.expanding(min_periods=min_periods).var(ddof=ddof) assert not (var_x < 0).any().any() if ddof == 0: # check that biased var(x) == mean(x^2) - mean(x)^2 mean_x2 = (x * x).expanding(min_periods=min_periods).mean() tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x)) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("ddof", [0, 1]) def test_moments_consistency_var_constant(consistency_data, min_periods, ddof): x, is_constant, no_nans = consistency_data if is_constant: count_x = x.expanding(min_periods=min_periods).count() var_x = x.expanding(min_periods=min_periods).var(ddof=ddof) # check that variance of constant series is identically 0 assert not (var_x > 0).any().any() expected = x * np.nan expected[count_x >= max(min_periods, 1)] = 0.0 if ddof == 1: expected[count_x < 2] = np.nan tm.assert_equal(var_x, expected) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("ddof", [0, 1]) def test_expanding_consistency_std(consistency_data, min_periods, ddof): x, is_constant, no_nans = consistency_data var_x = x.expanding(min_periods=min_periods).var(ddof=ddof) std_x = x.expanding(min_periods=min_periods).std(ddof=ddof) assert not (var_x < 0).any().any() assert not (std_x < 0).any().any() # check that var(x) == std(x)^2 tm.assert_equal(var_x, std_x * std_x) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("ddof", [0, 1]) def test_expanding_consistency_cov(consistency_data, min_periods, ddof): x, is_constant, no_nans = consistency_data var_x = x.expanding(min_periods=min_periods).var(ddof=ddof) assert not (var_x < 0).any().any() cov_x_x = x.expanding(min_periods=min_periods).cov(x, ddof=ddof) assert not (cov_x_x < 0).any().any() # check that var(x) == cov(x, x) tm.assert_equal(var_x, cov_x_x) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("ddof", [0, 1]) def test_expanding_consistency_series_cov_corr(consistency_data, min_periods, ddof): x, is_constant, no_nans = consistency_data if isinstance(x, Series): var_x_plus_y = (x + x).expanding(min_periods=min_periods).var(ddof=ddof) var_x = x.expanding(min_periods=min_periods).var(ddof=ddof) var_y = x.expanding(min_periods=min_periods).var(ddof=ddof) cov_x_y = x.expanding(min_periods=min_periods).cov(x, ddof=ddof) # check that cov(x, y) == (var(x+y) - var(x) - # var(y)) / 2 tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y)) # check that corr(x, y) == cov(x, y) / (std(x) * # std(y)) corr_x_y = x.expanding(min_periods=min_periods).corr(x) std_x = x.expanding(min_periods=min_periods).std(ddof=ddof) std_y = x.expanding(min_periods=min_periods).std(ddof=ddof) tm.assert_equal(corr_x_y, cov_x_y / (std_x * std_y)) if ddof == 0: # check that biased cov(x, y) == mean(x*y) - # mean(x)*mean(y) mean_x = x.expanding(min_periods=min_periods).mean() mean_y = x.expanding(min_periods=min_periods).mean() mean_x_times_y = (x * x).expanding(min_periods=min_periods).mean() tm.assert_equal(cov_x_y, mean_x_times_y - (mean_x * mean_y)) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_expanding_consistency_mean(consistency_data, min_periods): x, is_constant, no_nans = consistency_data result = x.expanding(min_periods=min_periods).mean() expected = ( x.expanding(min_periods=min_periods).sum() / x.expanding(min_periods=min_periods).count() ) tm.assert_equal(result, expected.astype("float64")) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_expanding_consistency_constant(consistency_data, min_periods): x, is_constant, no_nans = consistency_data if is_constant: count_x = x.expanding().count() mean_x = x.expanding(min_periods=min_periods).mean() # check that correlation of a series with itself is either 1 or NaN corr_x_x = x.expanding(min_periods=min_periods).corr(x) exp = x.max() if isinstance(x, Series) else x.max().max() # check mean of constant series expected = x * np.nan expected[count_x >= max(min_periods, 1)] = exp tm.assert_equal(mean_x, expected) # check correlation of constant series with itself is NaN expected[:] = np.nan tm.assert_equal(corr_x_x, expected) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_expanding_consistency_var_debiasing_factors(consistency_data, min_periods): x, is_constant, no_nans = consistency_data # check variance debiasing factors var_unbiased_x = x.expanding(min_periods=min_periods).var() var_biased_x = x.expanding(min_periods=min_periods).var(ddof=0) var_debiasing_factors_x = x.expanding().count() / ( x.expanding().count() - 1.0 ).replace(0.0, np.nan) tm.assert_equal(var_unbiased_x, var_biased_x * var_debiasing_factors_x) @pytest.mark.parametrize( "f", [ lambda x: (x.expanding(min_periods=5).cov(x, pairwise=True)), lambda x: (x.expanding(min_periods=5).corr(x, pairwise=True)), ], ) def test_moment_functions_zero_length_pairwise(f): df1 = DataFrame() df2 = DataFrame(columns=Index(["a"], name="foo"), index=Index([], name="bar")) df2["a"] = df2["a"].astype("float64") df1_expected = DataFrame( index=MultiIndex.from_product([df1.index, df1.columns]), columns=Index([]) ) df2_expected = DataFrame( index=MultiIndex.from_product([df2.index, df2.columns], names=["bar", "foo"]), columns=Index(["a"], name="foo"), dtype="float64", ) df1_result = f(df1) tm.assert_frame_equal(df1_result, df1_expected) df2_result = f(df2) tm.assert_frame_equal(df2_result, df2_expected) @pytest.mark.parametrize( "f", [ lambda x: x.expanding().count(), lambda x: x.expanding(min_periods=5).cov(x, pairwise=False), lambda x: x.expanding(min_periods=5).corr(x, pairwise=False), lambda x: x.expanding(min_periods=5).max(), lambda x: x.expanding(min_periods=5).min(), lambda x: x.expanding(min_periods=5).sum(), lambda x: x.expanding(min_periods=5).mean(), lambda x: x.expanding(min_periods=5).std(), lambda x: x.expanding(min_periods=5).var(), lambda x: x.expanding(min_periods=5).skew(), lambda x: x.expanding(min_periods=5).kurt(), lambda x: x.expanding(min_periods=5).quantile(0.5), lambda x: x.expanding(min_periods=5).median(), lambda x: x.expanding(min_periods=5).apply(sum, raw=False), lambda x: x.expanding(min_periods=5).apply(sum, raw=True), ], ) def test_moment_functions_zero_length(f): # GH 8056 s = Series(dtype=np.float64) s_expected = s df1 = DataFrame() df1_expected = df1 df2 = DataFrame(columns=["a"]) df2["a"] = df2["a"].astype("float64") df2_expected = df2 s_result = f(s) tm.assert_series_equal(s_result, s_expected) df1_result = f(df1) tm.assert_frame_equal(df1_result, df1_expected) df2_result = f(df2) tm.assert_frame_equal(df2_result, df2_expected) def test_expanding_apply_empty_series(engine_and_raw): engine, raw = engine_and_raw ser = Series([], dtype=np.float64) tm.assert_series_equal( ser, ser.expanding().apply(lambda x: x.mean(), raw=raw, engine=engine) ) def test_expanding_apply_min_periods_0(engine_and_raw): # GH 8080 engine, raw = engine_and_raw s = Series([None, None, None]) result = s.expanding(min_periods=0).apply(lambda x: len(x), raw=raw, engine=engine) expected = Series([1.0, 2.0, 3.0]) tm.assert_series_equal(result, expected) def test_expanding_cov_diff_index(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.expanding().cov(s2) expected = Series([None, None, 2.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.expanding().cov(s2a) tm.assert_series_equal(result, expected) s1 = Series([7, 8, 10], index=[0, 1, 3]) s2 = Series([7, 9, 10], index=[0, 2, 3]) result = s1.expanding().cov(s2) expected = Series([None, None, None, 4.5]) tm.assert_series_equal(result, expected) def test_expanding_corr_diff_index(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.expanding().corr(s2) expected = Series([None, None, 1.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.expanding().corr(s2a) tm.assert_series_equal(result, expected) s1 = Series([7, 8, 10], index=[0, 1, 3]) s2 =
Series([7, 9, 10], index=[0, 2, 3])
pandas.Series
import logging from fastapi import APIRouter import pandas as pd from pydantic import BaseModel, Field, validator import os from dotenv import load_dotenv from app.spotify_client import SpotifyAPI load_dotenv() client_id = os.getenv("SPOTIPY_CLIENT_ID") client_secret = os.getenv("SPOTIPY_CLIENT_SECRET", default="<PASSWORD> secret") log = logging.getLogger(__name__) router = APIRouter() spotify = SpotifyAPI(client_id, client_secret) @router.post('/predictfav') async def predictfav(search_term: str, type_of_search: str): """(CURRENTLY IN TEST MODE) Make song predictions from favorite songs and return Song ID's in an array""" songs = spotify.search(search_term, search_type=type_of_search) return songs # parse JSON from mood class Itemmood(BaseModel): """Use this data model to send the request body correctly, so data is received back (in JSON) based on the moods selected.""" moods: list=Field(..., example=[{"mood": "Danceability", "value": "high"}, {"mood": "Energy", "value": "medium"}, {"mood": "Speechiness", "value": "medium"}, {"mood": "Acousticness", "value": "low"}]) def to_df(self): """Convert pydantic object to pandas dataframe with 1 row.""" return
pd.DataFrame(self)
pandas.DataFrame
"""Argument parser for obtaining WR distances""" import argparse import wrdists.collated_functions as cf import pandas as pd def main(): """Incorporate into function to be run using the command line when installed.""" parser = argparse.ArgumentParser() """Set Pandas dataframes to show all elements""" pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) """Necessary arguments to calculate distances""" parser.add_argument('-p', help='Gaia parallax (mas) when in single mode (float). Column number containing parallax \ list when in file mode (int).', action='store', dest='par', type=float, required=True) parser.add_argument('-pe', help='Gaia parallax error (mas) when in single mode (float). Column number containing \ parallax error list when in file mode (int).', action='store', dest='parerr', type=float, required=True) parser.add_argument('-g', help='Gaia G band magnitude when in single mode (float). Column number containing G mag list \ when in file mode (int).', action='store', dest='g', type=float, required=True) parser.add_argument('-ra', help='Gaia right ascension (RA) when in single mode (float). Column number containing RA \ list when in file mode (int).', action='store', dest='ra', type=float, required=True) parser.add_argument('-dec', help='Gaia declination (DEC) when in single mode (float). Column number containing DEC \ list when in file mode (int).', action='store', dest='dec', type=float, required=True) parser.add_argument('-ast', help='Gaia astrometric excess noise when in single mode (float). Column number containing \ excess noise list when in file mode (int).', action='store', dest='ast', type=float, required=True) parser.add_argument('-n', help='Star name or identifier (e.g WR1) when in single mode (str). Column number containing \ list of names when in file mode (int).', action='store', dest='name', type=str, required=True) """Optional arguments""" # Load in a list of results: parser.add_argument('-fin', help='File path from which to load a file containing parameters when executing for \ lists of stars (str).', action='store', dest='list_mode_fin', type=str, default=False) parser.add_argument('-fout', help='File path to store ouput to when executing with a file input (str).', action='store', dest='list_mode_fout', type=str, default=False) parser.add_argument('-ph', help='Preserve the header if the file input contains one (no argument)', action='store_true', dest='header', default=False) parser.add_argument('-dmt', help='Specify a delimiter for the input file (str).', action='store', dest='delimit', type=str, default=',') parser.add_argument('-zpt_list', help='Specify the column number containing the zero points (if used) (int).', action='store', dest='zpt_list', type=int, default=False) # Other options: parser.add_argument('-zpt', help='Set the zero point of the parallaxes (mas) to an alternative value \ (default = -0.029 mas) (float).', action='store', default=-0.029, type=float, dest='zpt') parser.add_argument('-md','--minimum_dist', help='Set the minimum distance of the prior (pc), which is useful for \ constraining the prior (float).', action='store', default=300, type=float, dest='md') parser.add_argument('-es','--error_sigma', help='Set the credible interval coverage range (float).', action='store', default=0.68, type=float, dest='esig') # Save plots and/or posterior distribution: parser.add_argument('-pt', '--plot', help='Plot the output distributions of the prior, likelihood and posterior, \ along with the credible intervals (uncertainty bounds) and most likely \ distance (default = False). The input string should be the path to save \ the plotted image(s) (str).', action='store', default=False, type=str, dest='plot_data') parser.add_argument('-dist', '--distribution', help='Saves the posterior distance distribution as a csv ' 'which can be loaded and used in another python program. The ' 'input string should be the path to save the distribution data (str).', action='store', default=False, type=str, dest='save_distribution') # Exclude dust distribution or parallax resizing: parser.add_argument('-ed','--exclude_dust', help='Exclude dust from the prior (use HII regions only), which may be \ useful to compare the effects of different priors (default = False) (no argument).', action='store_true', default=False, dest='dust_exc') parser.add_argument('-ee','--exclude_err', help='Exclude resizing of parallax errors (compared to external catalogues, \ Arenou et al. 2018) and zero point correction. May be useful for data \ comparison or application to non Gaia parallaxes (e.g Hipparcos) \ (default = False) (no argument)', action='store_true', default=False, dest='err_exc') """Run the code to get distances""" args = parser.parse_args() if args.list_mode_fin: args.par = int(args.par) args.parerr = int(args.parerr) args.g = int(args.g) args.ra = int(args.ra) args.dec = int(args.dec) args.ast = int(args.ast) args.name = int(args.name) # Convert params to integer types. if args.header: data = pd.read_csv(args.list_mode_fin, delimiter=args.delimit) else: data = pd.read_csv(args.list_mode_fin, header=None, delimiter=args.delimit) # Load in the file. pars = data.iloc[:, args.par].values parserrs = data.iloc[:, args.parerr].values phots = data.iloc[:, args.g].values ras = data.iloc[:, args.ra].values decs = data.iloc[:, args.dec].values asts = data.iloc[:, args.ast].values names = data.iloc[:, args.name].values # Slice out columns with parameters (according to the column number). if args.zpt_list: print(args.zpt_list) # If zero point list is specified, load zero point from csv file: zpt_data = data.iloc[:, args.zpt_list].values else: # use single zero point for all WR stars. zpt_data = args.zpt maxr, upper, lower, heights, heights_upper, heights_lower, omega, omega_err, flags = cf.run_dist(pars, parserrs, phots, ras, decs, asts, names, wdust= not args.dust_exc, werr= not args.err_exc, md=args.md, zpt_data=zpt_data, err_sig=args.esig, plot_image=args.plot_data, save_distributions=args.save_distribution) # Calculate the distances for all data points in the list. data_dict = {'Distance (pc)':maxr, 'Upper distance (pc)':upper, 'Lower distance (pc)':lower, 'Flags for distance':flags, 'Distance from plane (|z|) (pc)':heights, '|z| upper bound (pc)':heights_upper, '|z| lower bound':heights_lower, 'Omega (zero point corrected parallax) (mas)':omega} if not args.err_exc: data_dict.update({'Sigma omega (increased error) (mas)':omega_err}) # If using expanded uncertainty estimates (i.e getting results for DR2 data), this will include the increased # errors in the results file. if args.zpt_list: data_dict.update({'Zero points applied (mas)':zpt_data}) # If loading in a list of individual zero points from the original data file, include a list of the zero points used in the results file. df =
pd.DataFrame(data=data_dict, index=names)
pandas.DataFrame
""" Test for the normalization operation """ from datetime import datetime from unittest import TestCase import numpy as np import pandas as pd import pyproj import xarray as xr from jdcal import gcal2jd from numpy.testing import assert_array_almost_equal from xcube.core.gridmapping import GridMapping from xcube.core.new import new_cube from xcube.core.normalize import DatasetIsNotACubeError from xcube.core.normalize import adjust_spatial_attrs from xcube.core.normalize import decode_cube from xcube.core.normalize import encode_cube from xcube.core.normalize import normalize_coord_vars from xcube.core.normalize import normalize_dataset from xcube.core.normalize import normalize_missing_time # noinspection PyPep8Naming def assertDatasetEqual(expected, actual): # this method is functionally equivalent to # `assert expected == actual`, but it # checks each aspect of equality separately for easier debugging assert expected.equals(actual), (expected, actual) class DecodeCubeTest(TestCase): def test_cube_stays_cube(self): dataset = new_cube(variables=dict(a=1, b=2, c=3)) cube, grid_mapping, rest = decode_cube(dataset) self.assertIs(dataset, cube) self.assertIsInstance(grid_mapping, GridMapping) self.assertTrue(grid_mapping.crs.is_geographic) self.assertIsInstance(rest, xr.Dataset) self.assertEqual(set(), set(rest.data_vars)) def test_no_cube_vars_are_dropped(self): dataset = new_cube(variables=dict(a=1, b=2, c=3)) dataset = dataset.assign( d=xr.DataArray([8, 9, 10], dims='level'), crs=xr.DataArray(0, attrs=pyproj.CRS.from_string('CRS84').to_cf()), ) self.assertEqual({'a', 'b', 'c', 'd', 'crs'}, set(dataset.data_vars)) cube, grid_mapping, rest = decode_cube(dataset) self.assertIsInstance(cube, xr.Dataset) self.assertIsInstance(grid_mapping, GridMapping) self.assertEqual({'a', 'b', 'c'}, set(cube.data_vars)) self.assertEqual(pyproj.CRS.from_string('CRS84'), grid_mapping.crs) self.assertIsInstance(rest, xr.Dataset) self.assertEqual({'d', 'crs'}, set(rest.data_vars)) def test_encode_is_inverse(self): dataset = new_cube(variables=dict(a=1, b=2, c=3), x_name='x', y_name='y') dataset = dataset.assign( d=xr.DataArray([8, 9, 10], dims='level'), crs=xr.DataArray(0, attrs=pyproj.CRS.from_string('CRS84').to_cf()), ) cube, grid_mapping, rest = decode_cube(dataset) dataset2 = encode_cube(cube, grid_mapping, rest) self.assertEqual(set(dataset.data_vars), set(dataset2.data_vars)) self.assertIn('crs', dataset2.data_vars) def test_no_cube_vars_found(self): dataset = new_cube() self.assertEqual(set(), set(dataset.data_vars)) with self.assertRaises(DatasetIsNotACubeError) as cm: decode_cube(dataset, force_non_empty=True) self.assertEqual("No variables found with dimensions" " ('time', [...] 'lat', 'lon')" " or dimension sizes too small", f'{cm.exception}') def test_no_grid_mapping(self): dataset = xr.Dataset(dict(a=[1, 2, 3], b=0.5)) with self.assertRaises(DatasetIsNotACubeError) as cm: decode_cube(dataset) self.assertEqual("Failed to detect grid mapping:" " cannot find any grid mapping in dataset", f'{cm.exception}') def test_grid_mapping_not_geographic(self): dataset = new_cube(x_name='x', y_name='y', variables=dict(a=0.5), crs='epsg:25832') with self.assertRaises(DatasetIsNotACubeError) as cm: decode_cube(dataset, force_geographic=True) self.assertEqual("Grid mapping must use geographic CRS," " but was 'ETRS89 / UTM zone 32N'", f'{cm.exception}') class EncodeCubeTest(TestCase): def test_geographical_crs(self): cube = new_cube(variables=dict(a=1, b=2, c=3)) gm = GridMapping.from_dataset(cube) dataset = encode_cube(cube, gm) self.assertIs(cube, dataset) dataset = encode_cube(cube, gm, xr.Dataset(dict(d=True))) self.assertIsInstance(dataset, xr.Dataset) self.assertEqual({'a', 'b', 'c', 'd'}, set(dataset.data_vars)) def test_non_geographical_crs(self): cube = new_cube(x_name='x', y_name='y', crs='epsg:25832', variables=dict(a=1, b=2, c=3)) gm = GridMapping.from_dataset(cube) dataset = encode_cube(cube, gm, xr.Dataset(dict(d=True))) self.assertIsInstance(dataset, xr.Dataset) self.assertEqual({'a', 'b', 'c', 'd', 'crs'}, set(dataset.data_vars)) class TestNormalize(TestCase): def test_normalize_zonal_lat_lon(self): resolution = 10 lat_size = 3 lat_coords = np.arange(0, 30, resolution) lon_coords = [i + 5. for i in np.arange(-180.0, 180.0, resolution)] lon_size = len(lon_coords) one_more_dim_size = 2 one_more_dim_coords = np.random.random(2) var_values_1_1d = xr.DataArray(np.random.random(lat_size), coords=[('latitude_centers', lat_coords)], dims=['latitude_centers'], attrs=dict(chunk_sizes=[lat_size], dimensions=['latitude_centers'])) var_values_1_1d.encoding = {'chunks': (lat_size,)} var_values_1_2d = xr.DataArray(np.array([var_values_1_1d.values for _ in lon_coords]).T, coords={'lat': lat_coords, 'lon': lon_coords}, dims=['lat', 'lon'], attrs=dict(chunk_sizes=[lat_size, lon_size], dimensions=['lat', 'lon'])) var_values_1_2d.encoding = {'chunks': (lat_size, lon_size)} var_values_2_2d = xr.DataArray(np.random.random(lat_size * one_more_dim_size). reshape(lat_size, one_more_dim_size), coords={'latitude_centers': lat_coords, 'one_more_dim': one_more_dim_coords}, dims=['latitude_centers', 'one_more_dim'], attrs=dict(chunk_sizes=[lat_size, one_more_dim_size], dimensions=['latitude_centers', 'one_more_dim'])) var_values_2_2d.encoding = {'chunks': (lat_size, one_more_dim_size)} var_values_2_3d = xr.DataArray(np.array([var_values_2_2d.values for _ in lon_coords]).T, coords={'one_more_dim': one_more_dim_coords, 'lat': lat_coords, 'lon': lon_coords, }, dims=['one_more_dim', 'lat', 'lon', ], attrs=dict(chunk_sizes=[one_more_dim_size, lat_size, lon_size], dimensions=['one_more_dim', 'lat', 'lon'])) var_values_2_3d.encoding = {'chunks': (one_more_dim_size, lat_size, lon_size)} dataset = xr.Dataset({'first': var_values_1_1d, 'second': var_values_2_2d}) expected = xr.Dataset({'first': var_values_1_2d, 'second': var_values_2_3d}) expected = expected.assign_coords( lon_bnds=xr.DataArray([[i - (resolution / 2), i + (resolution / 2)] for i in expected.lon.values], dims=['lon', 'bnds'])) expected = expected.assign_coords( lat_bnds=xr.DataArray([[i - (resolution / 2), i + (resolution / 2)] for i in expected.lat.values], dims=['lat', 'bnds'])) actual = normalize_dataset(dataset) xr.testing.assert_equal(actual, expected) self.assertEqual(actual.first.chunk_sizes, expected.first.chunk_sizes) self.assertEqual(actual.second.chunk_sizes, expected.second.chunk_sizes) def test_normalize_lon_lat_2d(self): """ Test nominal execution """ dims = ('time', 'y', 'x') attrs = {'valid_min': 0., 'valid_max': 1.} t_size = 2 y_size = 3 x_size = 4 a_data = np.random.random_sample((t_size, y_size, x_size)) b_data = np.random.random_sample((t_size, y_size, x_size)) time_data = [1, 2] lat_data = [[10., 10., 10., 10.], [20., 20., 20., 20.], [30., 30., 30., 30.]] lon_data = [[-10., 0., 10., 20.], [-10., 0., 10., 20.], [-10., 0., 10., 20.]] dataset = xr.Dataset({'a': (dims, a_data, attrs), 'b': (dims, b_data, attrs) }, {'time': (('time',), time_data), 'lat': (('y', 'x'), lat_data), 'lon': (('y', 'x'), lon_data) }, {'geospatial_lon_min': -15., 'geospatial_lon_max': 25., 'geospatial_lat_min': 5., 'geospatial_lat_max': 35. } ) new_dims = ('time', 'lat', 'lon') expected = xr.Dataset({'a': (new_dims, a_data, attrs), 'b': (new_dims, b_data, attrs)}, {'time': (('time',), time_data), 'lat': (('lat',), [10., 20., 30.]), 'lon': (('lon',), [-10., 0., 10., 20.]), }, {'geospatial_lon_min': -15., 'geospatial_lon_max': 25., 'geospatial_lat_min': 5., 'geospatial_lat_max': 35.}) actual = normalize_dataset(dataset) xr.testing.assert_equal(actual, expected) def test_normalize_lon_lat(self): """ Test nominal execution """ dataset = xr.Dataset({'first': (['latitude', 'longitude'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['lat', 'lon'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize_dataset(dataset) assertDatasetEqual(actual, expected) dataset = xr.Dataset({'first': (['lat', 'long'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['lat', 'lon'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize_dataset(dataset) assertDatasetEqual(actual, expected) dataset = xr.Dataset({'first': (['latitude', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['lat', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize_dataset(dataset) assertDatasetEqual(actual, expected) dataset = xr.Dataset({'first': (['zef', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['zef', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize_dataset(dataset) assertDatasetEqual(actual, expected) def test_normalize_does_not_reorder_increasing_lat(self): first = np.zeros([3, 45, 90]) first[0, :, :] = np.eye(45, 90) ds = xr.Dataset({ 'first': (['time', 'lat', 'lon'], first), 'second': (['time', 'lat', 'lon'], np.zeros([3, 45, 90])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 4)]}).chunk( chunks={'time': 1}) actual = normalize_dataset(ds) xr.testing.assert_equal(actual, ds) def test_normalize_with_missing_time_dim(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, attrs={'time_coverage_start': '20120101', 'time_coverage_end': '20121231'}) norm_ds = normalize_dataset(ds) self.assertIsNot(norm_ds, ds) self.assertEqual(len(norm_ds.coords), 4) self.assertIn('lon', norm_ds.coords) self.assertIn('lat', norm_ds.coords) self.assertIn('time', norm_ds.coords) self.assertIn('time_bnds', norm_ds.coords) self.assertEqual(norm_ds.first.shape, (1, 90, 180)) self.assertEqual(norm_ds.second.shape, (1, 90, 180)) self.assertEqual(norm_ds.coords['time'][0], xr.DataArray(pd.to_datetime('2012-07-01T12:00:00'))) self.assertEqual(norm_ds.coords['time_bnds'][0][0], xr.DataArray(pd.to_datetime('2012-01-01'))) self.assertEqual(norm_ds.coords['time_bnds'][0][1], xr.DataArray(pd.to_datetime('2012-12-31'))) def test_normalize_with_time_called_t(self): ds = xr.Dataset({'first': (['time', 'lat', 'lon'], np.zeros([4, 90, 180])), 'second': (['time', 'lat', 'lon'], np.zeros([4, 90, 180])), 't': ('time', np.array(['2005-07-02T00:00:00.000000000', '2006-07-02T12:00:00.000000000', '2007-07-03T00:00:00.000000000', '2008-07-02T00:00:00.000000000'], dtype='datetime64[ns]'))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, attrs={'time_coverage_start': '2005-01-17', 'time_coverage_end': '2008-08-17'}) norm_ds = normalize_dataset(ds) self.assertIsNot(norm_ds, ds) self.assertEqual(len(norm_ds.coords), 3) self.assertIn('lon', norm_ds.coords) self.assertIn('lat', norm_ds.coords) self.assertIn('time', norm_ds.coords) self.assertEqual(norm_ds.first.shape, (4, 90, 180)) self.assertEqual(norm_ds.second.shape, (4, 90, 180)) self.assertEqual(norm_ds.coords['time'][0], xr.DataArray(pd.to_datetime('2005-07-02T00:00'))) def test_normalize_julian_day(self): """ Test Julian Day -> Datetime conversion """ tuples = [gcal2jd(2000, x, 1) for x in range(1, 13)] ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([88, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([88, 90, 12])), 'lat': np.linspace(-88, 45, 88), 'lon': np.linspace(-178, 178, 90), 'time': [x[0] + x[1] for x in tuples]}) ds.time.attrs['long_name'] = 'time in julian days' expected = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.zeros([12, 88, 90])), 'second': (['time', 'lat', 'lon'], np.zeros([12, 88, 90])), 'lat': np.linspace(-88, 45, 88), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) expected.time.attrs['long_name'] = 'time' actual = normalize_dataset(ds) assertDatasetEqual(actual, expected) class AdjustSpatialTest(TestCase): def test_nominal(self): ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' ds1 = adjust_spatial_attrs(ds) # Make sure original dataset is not altered with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['geospatial_lat_min'] # Make sure expected values are in the new dataset self.assertEqual(ds1.attrs['geospatial_lat_min'], -90) self.assertEqual(ds1.attrs['geospatial_lat_max'], 90) self.assertEqual(ds1.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds1.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_lon_min'], -180) self.assertEqual(ds1.attrs['geospatial_lon_max'], 180) self.assertEqual(ds1.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds1.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_bounds'], 'POLYGON((-180.0 -90.0, -180.0 90.0, 180.0 90.0,' ' 180.0 -90.0, -180.0 -90.0))') # Test existing attributes update lon_min, lat_min, lon_max, lat_max = -20, -40, 60, 40 indexers = {'lon': slice(lon_min, lon_max), 'lat': slice(lat_min, lat_max)} ds2 = ds1.sel(**indexers) ds2 = adjust_spatial_attrs(ds2) self.assertEqual(ds2.attrs['geospatial_lat_min'], -42) self.assertEqual(ds2.attrs['geospatial_lat_max'], 42) self.assertEqual(ds2.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds2.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_lon_min'], -20) self.assertEqual(ds2.attrs['geospatial_lon_max'], 60) self.assertEqual(ds2.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds2.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_bounds'], 'POLYGON((-20.0 -42.0, -20.0 42.0, 60.0 42.0, 60.0' ' -42.0, -20.0 -42.0))') def test_nominal_inverted(self): # Inverted lat ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'lat': np.linspace(88, -88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' ds1 = adjust_spatial_attrs(ds) # Make sure original dataset is not altered with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['geospatial_lat_min'] # Make sure expected values are in the new dataset self.assertEqual(ds1.attrs['geospatial_lat_min'], -90) self.assertEqual(ds1.attrs['geospatial_lat_max'], 90) self.assertEqual(ds1.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds1.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_lon_min'], -180) self.assertEqual(ds1.attrs['geospatial_lon_max'], 180) self.assertEqual(ds1.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds1.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_bounds'], 'POLYGON((-180.0 -90.0, -180.0 90.0, 180.0 90.0,' ' 180.0 -90.0, -180.0 -90.0))') # Test existing attributes update lon_min, lat_min, lon_max, lat_max = -20, -40, 60, 40 indexers = {'lon': slice(lon_min, lon_max), 'lat': slice(lat_max, lat_min)} ds2 = ds1.sel(**indexers) ds2 = adjust_spatial_attrs(ds2) self.assertEqual(ds2.attrs['geospatial_lat_min'], -42) self.assertEqual(ds2.attrs['geospatial_lat_max'], 42) self.assertEqual(ds2.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds2.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_lon_min'], -20) self.assertEqual(ds2.attrs['geospatial_lon_max'], 60) self.assertEqual(ds2.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds2.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_bounds'], 'POLYGON((-20.0 -42.0, -20.0 42.0, 60.0 42.0, 60.0' ' -42.0, -20.0 -42.0))') def test_bnds(self): ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' lat_bnds = np.empty([len(ds.lat), 2]) lon_bnds = np.empty([len(ds.lon), 2]) ds['nv'] = [0, 1] lat_bnds[:, 0] = ds.lat.values - 2 lat_bnds[:, 1] = ds.lat.values + 2 lon_bnds[:, 0] = ds.lon.values - 2 lon_bnds[:, 1] = ds.lon.values + 2 ds['lat_bnds'] = (['lat', 'nv'], lat_bnds) ds['lon_bnds'] = (['lon', 'nv'], lon_bnds) ds.lat.attrs['bounds'] = 'lat_bnds' ds.lon.attrs['bounds'] = 'lon_bnds' ds1 = adjust_spatial_attrs(ds) # Make sure original dataset is not altered with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['geospatial_lat_min'] # Make sure expected values are in the new dataset self.assertEqual(ds1.attrs['geospatial_lat_min'], -90) self.assertEqual(ds1.attrs['geospatial_lat_max'], 90) self.assertEqual(ds1.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds1.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_lon_min'], -180) self.assertEqual(ds1.attrs['geospatial_lon_max'], 180) self.assertEqual(ds1.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds1.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_bounds'], 'POLYGON((-180.0 -90.0, -180.0 90.0, 180.0 90.0,' ' 180.0 -90.0, -180.0 -90.0))') # Test existing attributes update lon_min, lat_min, lon_max, lat_max = -20, -40, 60, 40 indexers = {'lon': slice(lon_min, lon_max), 'lat': slice(lat_min, lat_max)} ds2 = ds1.sel(**indexers) ds2 = adjust_spatial_attrs(ds2) self.assertEqual(ds2.attrs['geospatial_lat_min'], -42) self.assertEqual(ds2.attrs['geospatial_lat_max'], 42) self.assertEqual(ds2.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds2.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_lon_min'], -20) self.assertEqual(ds2.attrs['geospatial_lon_max'], 60) self.assertEqual(ds2.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds2.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_bounds'], 'POLYGON((-20.0 -42.0, -20.0 42.0, 60.0 42.0, 60.0' ' -42.0, -20.0 -42.0))') def test_bnds_inverted(self): # Inverted lat ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'lat': np.linspace(88, -88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' lat_bnds = np.empty([len(ds.lat), 2]) lon_bnds = np.empty([len(ds.lon), 2]) ds['nv'] = [0, 1] lat_bnds[:, 0] = ds.lat.values + 2 lat_bnds[:, 1] = ds.lat.values - 2 lon_bnds[:, 0] = ds.lon.values - 2 lon_bnds[:, 1] = ds.lon.values + 2 ds['lat_bnds'] = (['lat', 'nv'], lat_bnds) ds['lon_bnds'] = (['lon', 'nv'], lon_bnds) ds.lat.attrs['bounds'] = 'lat_bnds' ds.lon.attrs['bounds'] = 'lon_bnds' ds1 = adjust_spatial_attrs(ds) # Make sure original dataset is not altered with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['geospatial_lat_min'] # Make sure expected values are in the new dataset self.assertEqual(ds1.attrs['geospatial_lat_min'], -90) self.assertEqual(ds1.attrs['geospatial_lat_max'], 90) self.assertEqual(ds1.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds1.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_lon_min'], -180) self.assertEqual(ds1.attrs['geospatial_lon_max'], 180) self.assertEqual(ds1.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds1.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_bounds'], 'POLYGON((-180.0 -90.0, -180.0 90.0, 180.0 90.0,' ' 180.0 -90.0, -180.0 -90.0))') # Test existing attributes update lon_min, lat_min, lon_max, lat_max = -20, -40, 60, 40 indexers = {'lon': slice(lon_min, lon_max), 'lat': slice(lat_max, lat_min)} ds2 = ds1.sel(**indexers) ds2 = adjust_spatial_attrs(ds2) self.assertEqual(ds2.attrs['geospatial_lat_min'], -42) self.assertEqual(ds2.attrs['geospatial_lat_max'], 42) self.assertEqual(ds2.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds2.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_lon_min'], -20) self.assertEqual(ds2.attrs['geospatial_lon_max'], 60) self.assertEqual(ds2.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds2.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_bounds'], 'POLYGON((-20.0 -42.0, -20.0 42.0, 60.0 42.0, 60.0 -42.0, -20.0 -42.0))') def test_once_cell_with_bnds(self): # Only one cell in lat/lon ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([1, 1, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([1, 1, 12])), 'lat': np.array([52.5]), 'lon': np.array([11.5]), 'lat_bnds': (['lat', 'bnds'], np.array([[52.4, 52.6]])), 'lon_bnds': (['lon', 'bnds'], np.array([[11.4, 11.6]])), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' ds1 = adjust_spatial_attrs(ds) self.assertAlmostEqual(ds1.attrs['geospatial_lat_resolution'], 0.2) self.assertAlmostEqual(ds1.attrs['geospatial_lat_min'], 52.4) self.assertAlmostEqual(ds1.attrs['geospatial_lat_max'], 52.6) self.assertEqual(ds1.attrs['geospatial_lat_units'], 'degrees_north') self.assertAlmostEqual(ds1.attrs['geospatial_lon_resolution'], 0.2) self.assertAlmostEqual(ds1.attrs['geospatial_lon_min'], 11.4) self.assertAlmostEqual(ds1.attrs['geospatial_lon_max'], 11.6) self.assertEqual(ds1.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds1.attrs['geospatial_bounds'], 'POLYGON((11.4 52.4, 11.4 52.6, 11.6 52.6, 11.6 52.4, 11.4 52.4))') def test_once_cell_without_bnds(self): # Only one cell in lat/lon ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([1, 1, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([1, 1, 12])), 'lat': np.array([52.5]), 'lon': np.array([11.5]), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' ds2 = adjust_spatial_attrs(ds) # Datasets should be the same --> not modified self.assertIs(ds2, ds) class NormalizeCoordVarsTest(TestCase): def test_ds_with_potential_coords(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180])), 'lat_bnds': (['lat', 'bnds'], np.zeros([90, 2])), 'lon_bnds': (['lon', 'bnds'], np.zeros([180, 2]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}) new_ds = normalize_coord_vars(ds) self.assertIsNot(ds, new_ds) self.assertEqual(len(new_ds.coords), 4) self.assertIn('lon', new_ds.coords) self.assertIn('lat', new_ds.coords) self.assertIn('lat_bnds', new_ds.coords) self.assertIn('lon_bnds', new_ds.coords) self.assertEqual(len(new_ds.data_vars), 2) self.assertIn('first', new_ds.data_vars) self.assertIn('second', new_ds.data_vars) def test_ds_with_potential_coords_and_bounds(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180])), 'lat_bnds': (['lat', 'bnds'], np.zeros([90, 2])), 'lon_bnds': (['lon', 'bnds'], np.zeros([180, 2])), 'lat': (['lat'], np.linspace(-89.5, 89.5, 90)), 'lon': (['lon'], np.linspace(-179.5, 179.5, 180))}) new_ds = normalize_coord_vars(ds) self.assertIsNot(ds, new_ds) self.assertEqual(len(new_ds.coords), 4) self.assertIn('lon', new_ds.coords) self.assertIn('lat', new_ds.coords) self.assertIn('lat_bnds', new_ds.coords) self.assertIn('lon_bnds', new_ds.coords) self.assertEqual(len(new_ds.data_vars), 2) self.assertIn('first', new_ds.data_vars) self.assertIn('second', new_ds.data_vars) def test_ds_with_no_potential_coords(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, attrs={'time_coverage_start': '20120101'}) new_ds = normalize_coord_vars(ds) self.assertIs(ds, new_ds) class NormalizeMissingTimeTest(TestCase): def test_ds_without_time(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, attrs={'time_coverage_start': '20120101', 'time_coverage_end': '20121231'}) new_ds = normalize_missing_time(ds) self.assertIsNot(ds, new_ds) self.assertEqual(len(new_ds.coords), 4) self.assertIn('lon', new_ds.coords) self.assertIn('lat', new_ds.coords) self.assertIn('time', new_ds.coords) self.assertIn('time_bnds', new_ds.coords) self.assertEqual(new_ds.coords['time'].attrs.get('long_name'), 'time') self.assertEqual(new_ds.coords['time'].attrs.get('bounds'), 'time_bnds') self.assertEqual(new_ds.first.shape, (1, 90, 180)) self.assertEqual(new_ds.second.shape, (1, 90, 180)) self.assertEqual(new_ds.coords['time'][0], xr.DataArray(pd.to_datetime('2012-07-01T12:00:00'))) self.assertEqual(new_ds.coords['time'].attrs.get('long_name'), 'time') self.assertEqual(new_ds.coords['time'].attrs.get('bounds'), 'time_bnds') self.assertEqual(new_ds.coords['time_bnds'][0][0], xr.DataArray(pd.to_datetime('2012-01-01'))) self.assertEqual(new_ds.coords['time_bnds'][0][1], xr.DataArray(pd.to_datetime('2012-12-31'))) self.assertEqual(new_ds.coords['time_bnds'].attrs.get('long_name'), 'time') def test_ds_without_bounds(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, attrs={'time_coverage_start': '20120101'}) new_ds = normalize_missing_time(ds) self.assertIsNot(ds, new_ds) self.assertEqual(len(new_ds.coords), 3) self.assertIn('lon', new_ds.coords) self.assertIn('lat', new_ds.coords) self.assertIn('time', new_ds.coords) self.assertNotIn('time_bnds', new_ds.coords) self.assertEqual(new_ds.first.shape, (1, 90, 180)) self.assertEqual(new_ds.second.shape, (1, 90, 180)) self.assertEqual(new_ds.coords['time'][0], xr.DataArray(pd.to_datetime('2012-01-01'))) self.assertEqual(new_ds.coords['time'].attrs.get('long_name'), 'time') self.assertEqual(new_ds.coords['time'].attrs.get('bounds'), None) def test_ds_without_time_attrs(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}) new_ds = normalize_missing_time(ds) self.assertIs(ds, new_ds) def test_ds_with_cftime(self): time_data = xr.cftime_range(start='2010-01-01T00:00:00', periods=6, freq='D', calendar='gregorian').values ds = xr.Dataset({'first': (['time', 'lat', 'lon'], np.zeros([6, 90, 180])), 'second': (['time', 'lat', 'lon'], np.zeros([6, 90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180), 'time': time_data}, attrs={'time_coverage_start': '20120101', 'time_coverage_end': '20121231'}) new_ds = normalize_missing_time(ds) self.assertIs(ds, new_ds) def test_normalize_with_missing_time_dim(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, attrs={'time_coverage_start': '20120101', 'time_coverage_end': '20121231'}) norm_ds = normalize_dataset(ds) self.assertIsNot(norm_ds, ds) self.assertEqual(len(norm_ds.coords), 4) self.assertIn('lon', norm_ds.coords) self.assertIn('lat', norm_ds.coords) self.assertIn('time', norm_ds.coords) self.assertIn('time_bnds', norm_ds.coords) self.assertEqual(norm_ds.first.shape, (1, 90, 180)) self.assertEqual(norm_ds.second.shape, (1, 90, 180)) self.assertEqual(norm_ds.coords['time'][0], xr.DataArray(pd.to_datetime('2012-07-01T12:00:00'))) self.assertEqual(norm_ds.coords['time_bnds'][0][0], xr.DataArray(pd.to_datetime('2012-01-01'))) self.assertEqual(norm_ds.coords['time_bnds'][0][1], xr.DataArray(pd.to_datetime('2012-12-31'))) def test_normalize_with_missing_time_dim_from_filename(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, ) ds_encoding = dict(source='20150204_etfgz_20170309_dtsrgth') ds.encoding.update(ds_encoding) norm_ds = normalize_dataset(ds) self.assertIsNot(norm_ds, ds) self.assertEqual(len(norm_ds.coords), 4) self.assertIn('lon', norm_ds.coords) self.assertIn('lat', norm_ds.coords) self.assertIn('time', norm_ds.coords) self.assertIn('time_bnds', norm_ds.coords) self.assertEqual(norm_ds.first.shape, (1, 90, 180)) self.assertEqual(norm_ds.second.shape, (1, 90, 180)) self.assertEqual(norm_ds.coords['time'][0], xr.DataArray(pd.to_datetime('2016-02-21T00:00:00'))) self.assertEqual(norm_ds.coords['time_bnds'][0][0], xr.DataArray(pd.to_datetime('2015-02-04'))) self.assertEqual(norm_ds.coords['time_bnds'][0][1], xr.DataArray(
pd.to_datetime('2017-03-09')
pandas.to_datetime
import functools import inspect import os from functools import singledispatch from typing import Callable, Collection, Iterable, List, Union import joblib import numpy as np import pandas as pd import requests from IPython.display import display from numpy import ndarray from pandas.api.types import ( is_categorical_dtype, is_float, is_hashable, is_integer, is_list_like, ) from pandas.core.frame import DataFrame from pandas.core.series import Series from tqdm.notebook import tqdm from sklearn.preprocessing import FunctionTransformer from sklearn.utils import check_consistent_length, compute_sample_weight, deprecated from ndg_tools._validation import _check_1d from ndg_tools.typing import FrameOrSeries, ArrayLike from fuzzywuzzy.process import dedupe, extractOne from fuzzywuzzy import fuzz def get_columns(data: DataFrame, subset: Union[str, Iterable[str]]): if subset is None: pass elif isinstance(subset, str): data = data.loc[:, [subset]].copy() elif isinstance(subset, Iterable): data = data.loc[:, list(subset)].copy() else: raise TypeError( f"Expected str or iterable of str, got {type(subset).__name__}." ) return data def numeric_cols(data: pd.DataFrame) -> list: """Returns a list of all numeric column names. Parameters ---------- data : DataFrame DataFrame to get column names from. Returns ------- list All and only the numeric column names. """ return data.select_dtypes("number").columns.to_list() def true_numeric_cols(data: pd.DataFrame, min_unique=3) -> list: """Returns numeric columns with at least `min_unique` unique values. Parameters ---------- data : DataFrame DataFrame to get column names from. Returns ------- list Numeric column names. """ num = data.select_dtypes("number") return num.columns[min_unique <= num.nunique()].to_list() def hashable_cols(data: pd.DataFrame) -> list: valid_idx = data.apply(lambda x: x.first_valid_index() or x.index[0]) test_row = data.loc[valid_idx].fillna(method="bfill").iloc[0] hashable = data.columns[test_row.map(is_hashable)] return hashable.to_list() def cat_cols(data: pd.DataFrame, min_cats: int = None, max_cats: int = None) -> list: """Returns a list of categorical column names. Parameters ---------- data : DataFrame DataFrame to get column names from. min_cats : int, optional Minimum number of categories, by default None. max_cats : int, optional Maximum number of categories, by default None. Returns ------- list Categorical column names. """ cats = data.select_dtypes("category") cat_counts = cats.nunique() if min_cats is None: min_cats = cat_counts.min() if max_cats is None: max_cats = cat_counts.max() keep = (min_cats <= cat_counts) & (cat_counts <= max_cats) return cats.columns[keep].to_list() def multicat_cols(data: pd.DataFrame) -> list: """Returns column names of categoricals with 3+ categories. Parameters ---------- data : DataFrame DataFrame to get column names from. Returns ------- list Categorical (3+) column names. """ cats = data.select_dtypes("category") return cats.columns[3 <= cats.nunique()].to_list() def noncat_cols(data: pd.DataFrame) -> list: """Returns a list of all non-categorical column names. Parameters ---------- data : DataFrame DataFrame to get column names from. Returns ------- list All and only the non-categorical column names. """ return data.columns.drop(cat_cols(data)).to_list() def binary_cols(data: pd.DataFrame) -> list: """Returns a list of columns with exactly 2 unique values. Parameters ---------- data : DataFrame DataFrame to get column names from. Returns ------- list All and only the binary column names. """ return data.columns[data.nunique() == 2].to_list() def get_defaults(func: Callable) -> dict: """Returns dict of parameters with their default values, if any. Parameters ---------- func : Callable Callable to look up parameters for. Returns ------- dict Parameters with default values, if any. Raises ------ TypeError `callable` must be Callable. """ if not isinstance(func, Callable): raise TypeError(f"`callable` must be Callable, not {type(func)}") params = pd.Series(inspect.signature(func).parameters) defaults = params.map(lambda x: x.default) return defaults.to_dict() def get_param_names(func: Callable, include_self=False) -> list: """Returns list of parameter names. Parameters ---------- func : Callable Callable to look up parameter names for. Returns ------- list List of parameter names. """ params = list(inspect.signature(func).parameters.keys()) if "self" in params: params.remove("self") return params def pandas_heatmap( frame: pd.DataFrame, subset=None, na_rep="", precision=3, cmap="vlag", low=0, high=0, vmin=None, vmax=None, axis=None, ): """Style DataFrame as a heatmap.""" table = frame.style.background_gradient( subset=subset, cmap=cmap, low=low, high=high, vmin=vmin, vmax=vmax, axis=axis ) table.set_na_rep(na_rep) table.set_precision(precision) return table def filter_pipe( data: FrameOrSeries, like: List[str] = None, regex: List[str] = None, axis: int = None, ) -> FrameOrSeries: """Subset the DataFrame or Series labels with more than one filter at once. Parameters ---------- data: DataFrame or Series DataFrame or Series to filter labels on. like : list of str Keep labels from axis for which "like in label == True". regex : list of str Keep labels from axis for which re.search(regex, label) == True. axis : {0 or ‘index’, 1 or ‘columns’, None}, default None The axis to filter on, expressed either as an index (int) or axis name (str). By default this is the info axis, 'index' for Series, 'columns' for DataFrame. Returns ------- Dataframe or Series Subset of `data`. """ if like and regex: raise ValueError("Cannot pass both `like` and `regex`") elif like: if isinstance(like, str): like = [like] for exp in like: data = data.filter(like=exp, axis=axis) elif regex: if isinstance(regex, str): regex = [regex] for exp in like: data = data.filter(regex=exp, axis=axis) else: raise ValueError("Must pass either `like` or `regex` but not both") return data def title(snake_case: str): """Format snake case string as title.""" return snake_case.replace("_", " ").strip().title() def title_mode(data: pd.DataFrame): """Return copy of `data` with strings formatted as titles.""" result = data.copy() result.update(result.select_dtypes("object").applymap(title)) for label, column in result.select_dtypes("category").items(): result[label] = column.cat.rename_categories(title) if result.columns.dtype == "object": result.columns = result.columns.map(title) if result.index.dtype == "object": result.index = result.index.map(title) return result def cartesian(*arrays: ArrayLike) -> np.ndarray: """Returns the Cartesian product of some 1d arrays. Returns ------- ndarray Cartesian product. """ arrays = list(arrays) for i, array in enumerate(arrays): array = np.asarray(array) arrays[i] = array _check_1d(array) return np.array(np.meshgrid(*arrays)).T.reshape(-1, len(arrays)) def broad_corr(frame: pd.DataFrame, other: pd.DataFrame) -> pd.DataFrame: """Get correlations between features of one frame with those of another. Parameters ---------- frame : DataFrame First DataFrame. other : DataFrame Second DataFrame. Returns ------- DataFrame Pearson correlations. """ return other.apply(lambda x: frame.corrwith(x)) def swap_index(data: pd.Series) -> pd.Series: """Swap index and values. Parameters ---------- data : Series Series for swapping index and values. Returns ------- Series Swapped Series. """ return pd.Series(data.index, index=data.values, name=data.name, copy=True) def explicit_sort( data: FrameOrSeries, *, order: list, mode: str = "values", inplace: bool = False, **kwargs, ) -> FrameOrSeries: """Sort DataFrame or Series values in explicitly specified order. Parameters ---------- data : FrameOrSeries Data structure to sort. order : list List specifying sort order. mode : str, optional Whether to sort 'values' (default) or 'index'. inplace : bool, optional Perform operation in place; False by default. Returns ------- FrameOrSeries Sorted data structure or None if `inplace` is set. """ order = list(order) mode = mode.lower() if mode not in {"values", "index"}: raise ValueError("`mode` must be 'values' or 'index'") # Define vectorized key function get_rank = np.vectorize(lambda x: order.index(x)) # Sort according to mode if mode == "values": data = data.sort_values(key=get_rank, inplace=inplace, **kwargs) else: data = data.sort_index(key=get_rank, inplace=inplace, **kwargs) # Return copy or None return data def bitgen(seed: Union[None, int, ArrayLike] = None): return np.random.default_rng(seed).bit_generator @singledispatch def get_func_name( func: Union[ Callable, FunctionTransformer, Collection[Callable], Collection[FunctionTransformer], ] ) -> Union[str, Collection[str]]: """Get function name(s) from function-like objects. Parameters ---------- func : Callable, FunctionTransformer, collection of Function-like object(s) to get names of. Returns ------- str or collection of Function name(s). """ if hasattr(func, "pyfunc"): name = get_func_name(func.pyfunc) elif hasattr(func, "func"): name = get_func_name(func.func) elif hasattr(func, "__wrapped__"): name = get_func_name(func.__wrapped__) elif isinstance(func, Callable): name = func.__name__ else: raise TypeError( f"Expected Callable or FunctionTransformer but encountered {type(func)}." ) return name @get_func_name.register def _(func: FunctionTransformer) -> str: return get_func_name(func.func) @get_func_name.register def _(func: Series) -> pd.Series: return func.map(get_func_name) @get_func_name.register def _(func: ndarray) -> ndarray: return flat_map(get_func_name, func) @get_func_name.register def _(func: list) -> list: return [get_func_name(x) for x in func] @singledispatch def implode( data: FrameOrSeries, column: Union[str, List[str]] = None, allow_dups=False ) -> FrameOrSeries: """Retract "exploded" DataFrame or Series into container of nested lists. Parameters ---------- data : DataFrame or Series Exploded data structure. Returns ------- DataFrame or Series (same as input) Frame with values retracted into list-likes. """ raise TypeError(f"Expected DataFrame or Series, got {type(data).__name__}.") @implode.register def _(data: Series, column: Union[str, List[str]] = None, allow_dups=False) -> Series: """Dispatch for Series.""" if not allow_dups: data = ( data.reset_index() .drop_duplicates() .set_index(data.index.name or "index") .squeeze() ) return data.groupby(data.index).agg(lambda x: x.to_list()) @implode.register def _( data: DataFrame, columns: Union[str, List[str]] = None, allow_dups=False ) -> DataFrame: """Dispatch for DataFrame""" if columns is None: raise ValueError("Must pass `columns` if input is DataFrame.") if isinstance(columns, str): columns = [columns] imploded = {x: implode(data.loc[:, x], allow_dups=allow_dups) for x in columns} data = data.loc[~data.index.duplicated()].copy() return data.assign(**imploded) @singledispatch def expand( data: Union[DataFrame, Series], column: str = None, labels: List[str] = None ) -> DataFrame: """Expand a column of length-N list-likes into N columns. Parameters ---------- data : Series or DataFrame Series or DataFrame with column to expand. column : str, optional Column of length-N list-likes to expand into N columns, by default None. Only relevant for DataFrame input. labels : list of str, optional Labels for new columns (must provide N labels), by default None Returns ------- DataFrame Expanded frame. """ # This is the fallback dispatch. raise TypeError(f"Expected Series or DataFrame, got {type(data)}.") @expand.register def _(data: Series, column: str = None, labels: List[str] = None) -> DataFrame: """Dispatch for Series. Expands into DataFrame.""" if not data.map(is_list_like).all(): raise ValueError("Elements must all be list-like") lengths = data.str.len() if not (lengths == lengths.iloc[0]).all(): raise ValueError("List-likes must all be same length") col_data = list(zip(*data)) if labels is not None: if len(labels) != len(col_data): raise ValueError("Number of `labels` must equal number of new columns") else: labels = range(len(col_data)) if data.name is not None: labels = [f"{data.name}_{x}" for x in labels] col_data = dict(zip(labels, col_data)) return DataFrame(col_data, index=data.index) @expand.register def _(data: DataFrame, column: str = None, labels: List[str] = None) -> DataFrame: """Dispatch for DataFrame. Returns DataFrame.""" if data.columns.value_counts()[column] > 1: raise ValueError("`column` must be unique in DataFrame") if column is None: raise ValueError("Must pass `column` if input is DataFrame") expanded = expand(data.loc[:, column], labels=labels) insert_at = data.columns.get_loc(column) data = data.drop(columns=column) for i, label in enumerate(expanded.columns): data.insert( insert_at + i, label, expanded.loc[:, label], allow_duplicates=False ) return data def flat_map(func: Callable, arr: np.ndarray, **kwargs): # Record shape shape = arr.shape # Make list flat = [func(x, **kwargs) for x in arr.flat] # Construct flat array arr = np.array(flat, dtype=arr.dtype) # Reshape in original shape return arr.reshape(shape) @singledispatch def prune_categories( data: FrameOrSeries, column: str = None, cut=None, qcut=None, inclusive=True, show_report=True, ): raise TypeError(f"`data` must be Series or DataFrame, got {type(data).__name__}.") @prune_categories.register def _( data: Series, column: str = None, cut=None, qcut=None, inclusive=True, show_report=True, ): if column is not None: raise UserWarning("Param `column` is irrelevant for Series input.") if cut is not None: if isinstance(cut, float): assert 0.0 <= cut <= 1.0 counts = data.value_counts(True) elif isinstance(cut, int): assert 0 <= cut <= data.size counts = data.value_counts() elif qcut is not None: assert 0.0 <= qcut <= 1.0 counts = data.value_counts() cut = counts.quantile(qcut) else: raise ValueError("Must provide either `cut` or `qcut`.") # Slice out categories to keep keep = counts.loc[counts >= cut if inclusive else counts > cut] keep = set(keep.index) data = data.loc[data.isin(keep)].copy() # Remove unused categories if necessary if is_categorical_dtype(data): data = data.cat.remove_unused_categories() if show_report: if set(counts.index) == keep: print("No categories dropped.\n") else: report = counts.to_frame("Support") status = pd.Series(data="dropped", index=counts.index, name="Status") status[keep] = "retained" report =
pd.merge(status, report, left_index=True, right_index=True)
pandas.merge
"""Genetic evaluation of individuals.""" import os import sys # import time from collections import Counter from itertools import compress from numba import njit import pkg_resources import numpy as np import pandas as pd import scipy.linalg import scipy.stats def example_data(): """Provide data to the package.""" cwd = os.getcwd() stream = pkg_resources.resource_stream(__name__, 'data/chr.txt') chrmosomedata = pd.read_table(stream, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/group.txt') groupdata =
pd.read_table(stream, sep=" ")
pandas.read_table
""" Database connections and engines. |pic1| |pic2| |pic3| |pic4| .. |pic1| image:: ../images_source/db_etl_tools/oracle1.png :width: 20% .. |pic2| image:: ../images_source/db_etl_tools/postgres1.png :width: 20% .. |pic3| image:: ../images_source/db_etl_tools/teradata.png :width: 20% .. |pic4| image:: ../images_source/db_etl_tools/redshift1.png :width: 20% """ from datetime import datetime import os import re import time import cx_Oracle import numpy as np import pandas as pd import psycopg2 from colorama import Fore from sqlalchemy import text import psycopg2.extras from fusetools.text_tools import Export class Generic: """ Generic functions for SQL queries and ETL. """ @classmethod def make_groupby(cls, sql, dim_fact_delim): """ Creates a dynmaically generated GROUP BY clause for a given SQL statement. :param sql: SQL statement provided. :param dim_fact_delim: Delimiter between selected columns. :return: A complete SQL statement with dynamically generated GROUP BY clause. """ dim_segs_ = [] for idxx, d in enumerate(sql.replace("\n", "").split("SELECT")[1].split(dim_fact_delim)[0].split(", ")): if d.strip() != '': dim_segs_.append(d.split(" as ")[1].strip()) sql_all = sql + " GROUP BY " + ', '.join(dim_segs_) sql_all = sql_all.replace("\n", " ").replace('"', "") return sql_all @classmethod def make_db_schema(cls, df): """ Creates a mapping of Pandas data types to SQL data types. :param df: A Pandas DataFrame with column types to be converted. :return: A Pandas DataFrame of columns with corresponding SQL data types. """ cols = [] dtypes = [] for col in df.columns: cols.append(col) col_series = df[col].replace(r'^\s*$', np.nan, regex=True) col_series = col_series.dropna() try: date_len = max(col_series.astype("str").str[:10].str.split("-").apply(lambda x: len(x))) if date_len == 3: dtypes.append("datetime64[ns]") continue except: date_len = 0 try: if col_series.astype("float").apply(float.is_integer).all(): int = True else: int = False except: dtypes.append("object") continue if int and date_len != 3: dtype = "Int64" elif not int and date_len != 3: dtype = "float" elif date_len == 3: dtype = "datetime64[ns]" else: dtype = "object" dtypes.append(dtype) schema_df = pd.DataFrame({"col": cols, "dtype_new": dtypes}) old_schema_df = pd.DataFrame(df.dtypes, columns=["dtype_old"]).reset_index() schema_df2 = pd.merge(schema_df, old_schema_df, how="inner", left_on="col", right_on="index") schema_df2['dtype_final'] = np.where( schema_df2['dtype_new'] != "object", schema_df2['dtype_new'], schema_df2['dtype_old'] ) return schema_df2 @classmethod def db_apply_schema(cls, df, schema_df): """ Converts Pandas DataFrame columns based on schema DataFrame provided. :param df: A Pandas DataFrame with column types to be converted. :param schema_df: A Pandas DataFrame of columns with corresponding SQL data types. :return: Pandas DataFrame with columns converted to SQL schema. """ df_ret = df df_ret = df_ret.replace(r'^\s*$', np.nan, regex=True) df_ret = df_ret.replace('', np.nan, regex=True) df_ret = df_ret.replace({pd.np.nan: None}) for idx, row in schema_df.iterrows(): if row['dtype_final'] == "Int64": df_ret[row['col']] = df_ret[row['col']].replace({pd.np.nan: None}) df_ret[row['col']] = df_ret[row['col']].astype(float).astype("Int64") elif row['dtype_final'] == "datetime64[ns]": df_ret[row['col']] = pd.to_datetime(df_ret[row['col']], errors="coerce") else: df_ret[row['col']] = df_ret[row['col']].replace({pd.np.nan: None}) df_ret[row['col']] = df_ret[row['col']].astype(row['dtype_final']) return df_ret @classmethod def make_db_cols(cls, df): """ Returns a Pandas DataFrame column names that are converted for database standards. :param df: A Pandas DataFrame with columns to be transformed :return: Pandas DataFrame column names that are converted for database standards. """ columns = [re.sub('#', 'num', col) for col in df.columns] columns = [re.sub('%', 'pct', col) for col in columns] columns = [re.sub('[^a-zA-Z0-9]+', ' ', col) for col in columns] columns = [col.replace(" ", "_") for col in columns] columns = [col[:200] for col in columns] columns = [col.lower() for col in columns] columns = [c.lstrip("_").rstrip("_") for c in columns] df.columns = columns return df @classmethod def run_query(cls, engine, sql): """ Executes a SQL query. :param engine: A database engine object. :param sql: A SQL statement to be executed. :return: Time for execution of SQL query. """ rptg_tstart = datetime.now() engine.execute(sql) rptg_tend = datetime.now() tdelta = rptg_tend - rptg_tstart tdelta = tdelta.total_seconds() / 60 print(Fore.RED + f"Runtime: {tdelta}") class Oracle: """ Generic functions for Oracle SQL queries and ETL. .. image:: ../images_source/db_etl_tools/oracle1.png """ @classmethod def make_tbl(cls, df, tbl_name): """ Provides a CREATE TABLE SQL statement for a given Pandas DataFrame. :param df: A Pandas DataFrame to be added as an Oracle table. :param tbl_name: Oracle table name to be created. :return: CREATE TABLE SQL statement. """ for idx, col in enumerate(df): col_desc = col + "-" + str(df[col].map(lambda x: len(str(x))).max()) if idx == 0: col_desc_all = [col_desc] else: col_desc_all.append(col_desc) col_desc_all = pd.DataFrame(col_desc_all) col_desc_all.columns = ["char"] col_desc_all['column'], col_desc_all['length'] = col_desc_all['char'].str.split('-', 1).str col_desc_types = pd.DataFrame(df.dtypes).reset_index() col_desc_types.columns = ["column", "type"] col_desc_all = pd.merge( col_desc_all, col_desc_types, how="inner", on="column") d = {'object': 'VARCHAR', 'int64': 'NUMBER', 'float64': 'VARCHAR', 'datetime64[ns]': 'VARCHAR'} col_desc_all = col_desc_all.replace(d) col_desc_all['concat'] = np.where(col_desc_all['type'] != "NUMBER", col_desc_all['column'] + " " + col_desc_all['type'] + "(" + col_desc_all[ 'length'] + ")", col_desc_all['column'] + " " + col_desc_all['type']) col_desc_all = col_desc_all.apply(', '.join).reset_index() col_desc_all.columns = ["index", "statement"] statement = col_desc_all[col_desc_all['index'] == 'concat'] sql = statement['statement'].values sql = str(sql) sql = sql.replace("[", "") sql = sql.replace("]", "") sql = "CREATE TABLE " + tbl_name + " ( " + sql + " )" sql = sql.replace("'", "") return sql @classmethod def insert_tbl(cls, df, tbl_name): """ Executes an INSERT INTO statement for a given Pandas DataFrame. :param df: A Pandas DataFrame with values to be inserted. :param tbl_name: An Oracle table for Pandas DataFrame to be inserted into. :return: SQL for INSERT INTO statement. """ sql = 'INSERT INTO ' + tbl_name + '(' + ', '.join(df.columns) + ') VALUES (' + ''.join( [':' + str(v) + ', ' for v in list(range(1, len(df.columns)))]) + ':' + str(len(df.columns)) + ')' return sql @classmethod def insert_exec(cls, sql, conn, df): """ Executes a provided SQL statement. :param sql: A provided SQL query. :param conn: A database connection. :param df: A Pandas DataFrame. :return: Nothing. """ cursor = cx_Oracle.Cursor(conn) cursor.prepare(sql) cursor.executemany(None, df.values.tolist()) conn.commit() cursor.close() # conn.close() @classmethod def make_tbl_complete_force(cls, df, tbl_name, eng, conn, attempt_n, subcols=False, chunks=False, chunks_delay=False): """ Executes a series of SQL statements to CREATE and INSERT into a table from a Pandas DataFrame. :param df: Pandas DataFrame to create a table from. :param tbl_name: Name of table to be created. :param eng: Oracle database engine object. :param conn: Oracle database connection object. :param attempt_n: Number of times to attempt to run INSERT statement. :param subcols: A list of columns of the Pandas DataFrame to apply operations on. :param chunks: Number of chunks to split Pandas DataFrame into. :param chunks_delay: Delay between chunk's INSERT statement. :return: Print statements outline sequential SQL statements executed. """ if len(df) > 0: if subcols: df = df[subcols] df.fillna(' ', inplace=True) df = df.astype(str) # make create table sql sql = cls.make_tbl(df, tbl_name) print(sql) # drop table try: eng.execute("drop table " + str(tbl_name)) except Exception as e: print(str(e)) pass # create table eng.execute(sql) # split large df into chunks if chunks: df_split = np.array_split(df, chunks) for sub in df_split: # make insert table sql sql = cls.insert_tbl(sub, tbl_name) print(sql) # execute insert statement # add try counter attempts = attempt_n while attempts > 0: try: cls.insert_exec(sql, conn, sub) except: attempts -= 1 print(Fore.RED + f"Failed upload attempt...{attempts} remaining.") time.sleep(1) if chunks_delay: time.sleep(chunks_delay) else: time.sleep(2) else: # make insert table sql sql = cls.insert_tbl(df, tbl_name) print(sql) # execute insert statement cls.insert_exec(sql, conn, df) @classmethod def make_tbl_complete(cls, df, tbl_name, eng, conn, subcols=False, chunks=False, chunks_delay=False): """ Executes a series of SQL statements to CREATE and INSERT into a table from a Pandas DataFrame. :param df: Pandas DataFrame to create a table from. :param tbl_name: Name of table to be created. :param eng: Oracle database engine object. :param conn: Oracle database connection object. :param subcols: A list of columns of the Pandas DataFrame to apply operations on. :param chunks: Number of chunks to split Pandas DataFrame into. :param chunks_delay: Delay between chunk's INSERT statement. :return: Print statements outline sequential SQL statements executed. """ if len(df) > 0: if subcols: df = df[subcols] df.fillna(' ', inplace=True) df = df.astype(str) # make create table sql sql = cls.make_tbl(df, tbl_name) print(sql) # drop table try: eng.execute("drop table " + str(tbl_name)) except: pass # create table eng.execute(sql) # split large df into chunks if chunks: df_split = np.array_split(df, chunks) for sub in df_split: # make insert table sql sql = cls.insert_tbl(sub, tbl_name) print(sql) # execute insert statement cls.insert_exec(sql, conn, sub) if chunks_delay: time.sleep(chunks_delay) else: time.sleep(2) else: # make insert table sql sql = cls.insert_tbl(df, tbl_name) print(sql) # execute insert statement cls.insert_exec(sql, conn, df) @classmethod def get_oracle_date(cls, date): """ Converts a date to an Oracle date of format "DD-MMM-YYY" :param date: A provided date. :return: An Oracle database date. """ # given a datetime YYYY-MM-DD if "-" in date: year, month, day = str(pd.to_datetime(date)).split("-") year = year[2:] day = day.replace(" 00:00:00", "") month_name = { '01': 'JAN', '02': 'FEB', '03': 'MAR', '04': 'APR', '05': 'MAY', '06': 'JUN', '07': 'JUL', '08': 'AUG', '09': 'SEP', '10': 'OCT', '11': 'NOV', '12': 'DEC'} month = month_name.get(month) date = day + "-" + month + "-" + year # given an excel date elif "/" in date: date = str(pd.to_datetime(date)).replace(" 00:00:00", "") year, month, day = str(pd.to_datetime(date)).split("-") year = year[2:] day = day.replace(" 00:00:00", "") month_name = { '01': 'JAN', '02': 'FEB', '03': 'MAR', '04': 'APR', '05': 'MAY', '06': 'JUN', '07': 'JUL', '08': 'AUG', '09': 'SEP', '10': 'OCT', '11': 'NOV', '12': 'DEC'} month = month_name.get(month) date = day + "-" + month + "-" + year return date @classmethod def get_orcl_date(cls, dat): """ Converts a date to an Oracle date of format "DD-MMM-YYY". :param dat: A provided date column of a Pandas Series. :return: An Oracle database date. """ dat['mon'] = dat.dt.month dat['day'] = dat.dt.day # .astype(str).str.pad(width=2, fillchar="0", side="left") dat['year'] = dat.dt.year mon_abbrevs = { 1: 'JAN', 2: 'FEB', 3: 'MAR', 4: 'APR', 5: 'MAY', 6: 'JUN', 7: 'JUL', 8: 'AUG', 9: 'SEP', 10: 'OCT', 11: 'NOV', 12: 'DEC'} dat['mon_abbrevs'] = \ dat['mon'].map(mon_abbrevs) dat['day'] = dat['day'].str[:-2] dat['year'] = dat['year'].astype(str).str[:4] dat['year'] = dat['year'].astype(str).str[-2:] dat['date_comb'] = \ dat['day'].astype(str) + "-" + dat['mon_abbrevs'].astype(str) + "-" + dat['year'].astype(str) return dat['date_comb'] @classmethod def orcl_tbl_varchar_convert(cls, tbl_name, convert_cols, engine): """ Converts a set of columns to VARCHAR(300) for a given Oracle table. :param tbl_name: Oracle table name. :param convert_cols: List of columns to convert. :param engine: Oracle database engine. :return: Printed ALTER table statements for each column. """ # loop through for col in convert_cols: sql = f''' alter table {tbl_name} modify {col} varchar(300) ''' print(sql) engine.execute(text(sql).execution_options(autocommit=True)) time.sleep(1) class Postgres: """ Generic functions for Postgres SQL queries and ETL. .. image:: ../images_source/db_etl_tools/postgres1.png """ @classmethod def run_query_pg(cls, conn, sql): """ Executes a SQL statement with a Postgres database connection. :param conn: Postgres database connection object, :param sql: SQL Statement to execute. :return: Elapsed time to execute query. """ rptg_tstart = datetime.now() cur = conn.cursor() cur.execute(sql) conn.commit() rptg_tend = datetime.now() tdelta = rptg_tend - rptg_tstart tdelta = tdelta.total_seconds() / 60 print(Fore.RED + f"Runtime: {tdelta}") @classmethod def insert_val_pg(cls, col_list, val_list, tbl_name): """ Creates SQL to run an INSERT operation of a given Postgres table. :param col_list: List of columns to INSERT or UPDATE. :param val_list: List of values to INSERT or UPDATE. :param tbl_name: Name of Postgres table. :return: SQL to run an INSERT statement. """ sql = f''' INSERT INTO {tbl_name} ( {str(col_list).replace("[", "").replace("]", "").replace("'", "")} ) values ( {str(val_list).replace("[", "").replace("]", "")} ) ''' return sql @classmethod def upsert_val_pg(cls, col_list, val_list, tbl_name, constraint_col): """ Creates SQL to run an UPSERT (INSERT new records or UPDATE existing records) operation of a given Postgres table. :param col_list: List of columns to INSERT or UPDATE. :param val_list: List of values to INSERT or UPDATE. :param constraint_col: Column/value logic to check against for INSERT or UPDATE. :param tbl_name: Name of Postgres table. :return: SQL to run an UPSERT statement. """ update = "" for idx, col in zip(col_list, val_list): update = update + idx + f"='{col}'," update = update[:update.rfind(",")] sql = f''' INSERT INTO {tbl_name} ({str(col_list).replace("[", "").replace("]", "").replace("'", "")}) VALUES ({str(val_list).replace("[", "").replace("]", "")}) ON CONFLICT ({constraint_col}) DO UPDATE SET {update} ''' return sql @classmethod def upsert_tbl_pg(cls, src_tbl, tgt_tbl, src_join_cols, src_insert_cols, src_update_cols=False, update_compare_cols=False): """ Creates SQL to run an UPSERT (INSERT new records or UPDATE existing records) operation of a given Postgres table. :param src_tbl: Postgres source table that contains data to be merged from. :param tgt_tbl: Postgres target table to receive UPSERT operation. :param src_join_cols: Columns to use to join source and target tables. :param src_insert_cols: Columns to be inserted from source table. :param src_update_cols: Columns to be updated from source table. :param update_compare_cols: Columns to use to compare values across source and target tables. :return: A SQL Insert statement and a SQL Update statement. """ src_join_cols_ = ( str([f"t.{c} = s.{c} AND " for c in src_join_cols]) .replace("[", "") .replace("]", "") .replace("'", "") .replace(",", "") ) src_join_cols_ = src_join_cols_[:src_join_cols_.rfind("AND")] src_join_cols_f = ( str([f"t.{c} IS NULL AND " for c in src_join_cols]) .replace("[", "") .replace("]", "") .replace("'", "") .replace(",", "") ) src_join_cols_f = src_join_cols_f[:src_join_cols_f.rfind("AND")] src_insert_cols_ = ( str([f"s.{c}" for c in src_insert_cols]) .replace("[", "") .replace("]", "") .replace("'", "") ) if src_update_cols: src_update_cols_ = ( str([f"{c} = s.{c}," for c in src_update_cols]) .replace("[", "") .replace("]", "") .replace("', '", "") .replace("'", "") ) src_update_cols_ = src_update_cols_[:src_update_cols_.rfind(",")] # update join statement src_join_cols2_ = src_join_cols_.replace("t.", f"{tgt_tbl}.") if update_compare_cols: update_compare_cols_ = ( str([f"s.{c} != {tgt_tbl}.{c}," for c in update_compare_cols]) .replace("[", "") .replace("]", "") .replace("', '", "") .replace("'", "") ) update_compare_cols_ = update_compare_cols_[:update_compare_cols_.rfind(",")] src_join_cols2_ = src_join_cols2_ + " AND " + update_compare_cols_ # src_join_cols2_ = src_join_cols2_.replace("t.", f"{tgt_tbl}.") # https://dwgeek.com/amazon-redshift-merge-statement-alternative-and-example.html/ sql_update = f''' /* Update records*/ UPDATE {tgt_tbl} SET {src_update_cols_} FROM {src_tbl} s WHERE {src_join_cols2_} '''.replace("\n", " ") else: sql_update = "" sql_insert = f''' /* Insert records*/ INSERT INTO {tgt_tbl} SELECT {src_insert_cols_} FROM {src_tbl} s LEFT JOIN {tgt_tbl} t ON {src_join_cols_} WHERE {src_join_cols_f} '''.replace("\n", " ") return sql_update, sql_insert @classmethod def make_df_tbl_pg(cls, tbl_name, df): """ Creates SQL to run a CREATE TABLE statement based on a Pandas DataFrame. :param tbl_name: Postgres table name. :param df: Pandas DataFrame. :return: CREATE TABLE SQL statement. """ # fix columns df = Generic.make_db_cols(df) # loop thru the columns for idx, col in enumerate(df): # find the max length of each field col_desc = col + "-" + str(df[col].map(lambda x: len(str(x))).max()) # find the max value of each fields try: col_max = col + "-" + str(max(df[col])) except: col_max = col + "-" + 'NA' if idx == 0: col_desc_all = [col_desc] col_max_all = [col_max] else: col_desc_all.append(col_desc) col_max_all.append(col_max) # make df of column lengths col_desc_all = pd.DataFrame(col_desc_all) col_desc_all.columns = ["char"] col_desc_all['column'], col_desc_all['length'] = \ col_desc_all['char'].str.split('-', 1).str # make df of column max col_max_all = pd.DataFrame(col_max_all) col_max_all.columns = ["char"] col_max_all['column'], col_max_all['max'] = \ col_max_all['char'].str.split('-', 1).str # make df of column dtypes col_desc_types = pd.DataFrame(df.dtypes).reset_index() col_desc_types.columns = ["column", "type"] # join dfs col_desc_all = pd.merge( col_desc_all, col_desc_types, how="inner", on="column") col_desc_all = pd.merge( col_desc_all, col_max_all[["column", "max"]], how="inner", on="column") # define data type mapping (pandas --> teradata) d = {'object': 'VARCHAR', 'int64': 'INTEGER', 'Int64': 'INTEGER', 'int32': 'INTEGER', 'bool': 'VARCHAR', 'float64': 'FLOAT', 'datetime64[ns]': 'TIMESTAMP', "datetime64[ns, UTC]": "TIMESTAMP"} col_desc_all = col_desc_all.astype(str).replace(d) # list the columns where you want to specify the lengths col_desc_all['concat'] = np.where( # if varchar, use the length of the longest char col_desc_all['type'] == "VARCHAR", col_desc_all['column'] + " " + \ col_desc_all['type'].astype(str) + \ "(" + col_desc_all['length'] + ")", col_desc_all['column'] + " " + \ col_desc_all['type'].astype(str)) # convert integers with a max val over certain amount to varchar for idx, row in col_desc_all.iterrows(): if str(row['type']) == 'INTEGER' and row['max'] != "nan" and int(row['max']) > 2147483647: val = row['concat'] col_desc_all.loc[idx, 'concat'] = \ val.replace( " INTEGER", f" VARCHAR({row['length']})") col_desc_all = col_desc_all.apply(', '.join).reset_index() col_desc_all.columns = ["index", "statement"] statement = col_desc_all[col_desc_all['index'] == 'concat'] sql = statement['statement'].values sql = str(sql) sql = sql.replace("[", "") sql = sql.replace("]", "") sql = "CREATE TABLE " + tbl_name + " ( " + sql + " )" sql = sql.replace("'", "") return sql @classmethod def insert_df_pg(cls, cursor, conn, df, tbl_name): """ Executes an INSERT INTO statement for a given Pandas DataFrame into a Postgres table.. :param cursor: Postgres database cursor object. :param conn: Postgres database connection object. :param df: Pandas DataFrame to insert into a Postgres table. :param tbl_name: Postgres table name. :return: Elapsed time to execute query. """ df_load = df.replace({pd.np.nan: None}) df_load = df_load.round(3) df_columns = list(df_load) # create (col1,col2,...) columns = ",".join(df_columns) values = "VALUES({})".format(",".join(["%s" for _ in df_columns])) insert_stmt = "INSERT INTO {} ({}) {}".format(tbl_name, columns, values) rptg_tstart = datetime.now() psycopg2.extras.execute_batch(cursor, insert_stmt, df_load.values) conn.commit() rptg_tend = datetime.now() tdelta = rptg_tend - rptg_tstart tdelta = tdelta.total_seconds() / 60 print(Fore.RED + f"Runtime: {tdelta}") @classmethod def make_tbl_complete_pg(cls, df, tbl_name, conn, cursor, batch_size=False): """ Executes a series of SQL statements to CREATE and INSERT into a table from a Pandas DataFrame. :param df: Pandas DataFrame to create a table from. :param tbl_name: Name of table to be created. :param conn: Postgres database connection object. :param cursor: Postgres database cursor object. :param batch_size: Records to load per batch. :return: Elapsed time to execute query. """ # 1 drop the table print(f"dropping table: {tbl_name}") try: cls.run_query_pg(sql=f"drop table {tbl_name}", conn=conn) except: print(f"table doesn't exist: {tbl_name}") pass # create the table print(f"creating table: {tbl_name}") sql = cls.make_tbl_pg(df=df, tbl_name=tbl_name) print(sql) cls.run_query_pg(sql=sql, conn=conn) print(f"inserting DF values into table: {tbl_name}") rptg_tstart = datetime.now() cls.insert_pg(df=df, tbl=tbl_name, cursor=cursor, conn=conn, batch_size=batch_size) rptg_tend = datetime.now() tdelta = rptg_tend - rptg_tstart tdelta = tdelta.total_seconds() / 60 print(Fore.RED + f"Runtime: {tdelta}") @classmethod def sequential_load_pg(cls, override, tgt_tbl, conn, dt_start, dt_end, saved_day_id_range_placeholder, dt1_interval, dt2_interval, sql_loop_fn, sql_loop_fn_type, filter_day_id_field1=False, sql_loop_fn_dt_placeholder1=False, filter_day_id_field2=False, filter_id_type2=False, sql_loop_fn_dt_placeholder2=False, filter_day_id_field3=False, filter_id_type3=False, sql_loop_fn_dt_placeholder3=False, loop_src1=False, loop_src2=False, loop_src3=False, log_dir=False): """ :param override: :param tgt_tbl: :param conn: :param dt_start: :param dt_end: :param saved_day_id_range_placeholder: :param dt1_interval: :param dt2_interval: :param sql_loop_fn: :param sql_loop_fn_type: :param filter_day_id_field1: :param sql_loop_fn_dt_placeholder1: :param filter_day_id_field2: :param filter_id_type2: :param sql_loop_fn_dt_placeholder2: :param filter_day_id_field3: :param filter_id_type3: :param sql_loop_fn_dt_placeholder3: :param loop_src1: :param loop_src2: :param loop_src3: :param log_dir: :return: """ # define the month startend dates to loop through rptg_dates = pd.date_range(dt_start, dt_end, freq=dt1_interval) - pd.offsets.MonthBegin(1) rptg_dates = [str(x)[:10] for x in rptg_dates.to_list()] rptg_dates = pd.DataFrame({ "start_date": rptg_dates, "end_date": rptg_dates }) rptg_dates['end_date'] = rptg_dates['end_date'].shift(-1) rptg_dates = rptg_dates[pd.to_datetime(rptg_dates['start_date']) <= datetime.now()].dropna() # define the weekly start/end dates to loop thru rptg_dates_wk = pd.date_range(dt_start, dt_end, freq=dt2_interval) rptg_dates_wk = [str(x)[:10] for x in rptg_dates_wk.to_list()] rptg_dates_wk = pd.DataFrame({ "start_date": rptg_dates_wk, "end_date": rptg_dates_wk }) rptg_dates_wk['end_date'] = rptg_dates_wk['end_date'].shift(-1) rptg_dates_wk = rptg_dates_wk[pd.to_datetime(rptg_dates_wk['start_date']) <= datetime.now()].dropna() # dropping table if override = True if override: print(f'''table override True: Dropping table: {tgt_tbl} ''') try: cls.run_query_pg(conn=conn, sql=f'''drop table {tgt_tbl}''') except: conn.commit() pass # getting max day id value try: sql = f'''select max(date(trim(substring(dt_range,regexp_instr(dt_range,'to ')+3,10)))) as day_idnt FROM {tgt_tbl}''' saved_dates = pd.read_sql_query(sql=sql, con=conn) except: conn.commit() saved_dates = pd.DataFrame({"day_idnt": ["1999-12-31"]}) # arbitrarily old date saved_date_dt = \ datetime( year=int(str(saved_dates['day_idnt'].astype(str).values[0]).split("-")[0]), month=int(str(saved_dates['day_idnt'].astype(str).values[0]).split("-")[1]), day=int(str(saved_dates['day_idnt'].astype(str).values[0]).split("-")[2]) ).replace(day=1).strftime("%Y-%m-%d") rptg_dates = rptg_dates[ pd.to_datetime(rptg_dates['start_date']) >= \ pd.to_datetime(saved_date_dt)].reset_index(drop=True) print("Starting load from:") print(rptg_dates.head(1)) rptg_freq = "M" for idx, row in rptg_dates.iterrows(): print(f'''{row['start_date']} to {row['end_date']}''') # if idx == 0: # break if idx == 0 and saved_dates['day_idnt'][0] != pd.to_datetime(row['start_date']): print(Fore.RED + f'''latest saved data date in table is {str(saved_dates['day_idnt'][0])} ...''') # bump up start range: new_start = str(pd.to_datetime(str(saved_dates['day_idnt'][0])) + pd.DateOffset(1))[:10] print(Fore.RED + f'''revising start date to: {new_start} to {row['end_date']}''') # if its a function, pass in params if sql_loop_fn_type == "fn": sql = sql_loop_fn(src=loop_src1, src2=loop_src2, src3=loop_src3, start=new_start, end=row['end_date']) # otherwise, we will just replace strings else: # date range column for logging sql = sql_loop_fn.replace( saved_day_id_range_placeholder, f" '{new_start} to {row['end_date']}' as dt_range," ) # date filters sql = sql.replace( sql_loop_fn_dt_placeholder1, f" AND date({filter_day_id_field1}) >= '{new_start}' AND date({filter_day_id_field1}) < '{row['end_date']}'" ) # check for other date fields if sql_loop_fn_dt_placeholder2: if filter_id_type2 == "range": sql = sql.replace( sql_loop_fn_dt_placeholder2, f" AND date({filter_day_id_field2}) >= '{new_start}' AND date({filter_day_id_field2}) < '{row['end_date']}'" ) elif filter_id_type2 == "<": sql = sql.replace( sql_loop_fn_dt_placeholder2, f" AND date({filter_day_id_field2}) < '{row['end_date']}'" ) if sql_loop_fn_dt_placeholder3: if filter_day_id_field3 == "range": sql = sql.replace( sql_loop_fn_dt_placeholder3, f" AND date({filter_day_id_field3}) >= '{new_start}' AND date({filter_day_id_field3}) < '{row['end_date']}'" ) elif filter_id_type3 == "<": sql = sql.replace( sql_loop_fn_dt_placeholder3, f" AND date({filter_day_id_field3}) < '{row['end_date']}'" ) else: if sql_loop_fn_type == "fn": sql = sql_loop_fn( start=row['start_date'], end=row['end_date'], src=loop_src1, src2=loop_src2, src3=loop_src3 ) else: # date range column for logging sql = sql_loop_fn.replace( saved_day_id_range_placeholder, f" '{row['start_date']} to {row['end_date']}' as dt_range," ) # date range column for logging sql = sql.replace( saved_day_id_range_placeholder, f" '{row['start_date']} to {row['end_date']}' as dt_range," ) sql = sql.replace( sql_loop_fn_dt_placeholder1, f" AND date({filter_day_id_field1}) >= '{row['start_date']}' AND date({filter_day_id_field1}) < '{row['end_date']}'" ) # check for other date fields if sql_loop_fn_dt_placeholder2: if filter_id_type2 == "range": sql = sql.replace( sql_loop_fn_dt_placeholder2, f" AND date({filter_day_id_field2}) >= '{row['start_date']}' AND date({filter_day_id_field2}) < '{row['end_date']}'" ) elif filter_id_type2 == "<": sql = sql.replace( sql_loop_fn_dt_placeholder2, f" AND date({filter_day_id_field2}) < '{row['end_date']}'" ) if sql_loop_fn_dt_placeholder3: if filter_id_type2 == "range": sql = sql.replace( sql_loop_fn_dt_placeholder3, f" AND date({filter_day_id_field3}) >= '{row['start_date']}' AND date({filter_day_id_field3}) < '{row['end_date']}'" ) elif filter_id_type3 == "<": sql = sql.replace( sql_loop_fn_dt_placeholder3, f" AND date({filter_day_id_field3}) < '{row['end_date']}'" ) if idx == 0 and override: sql_prefix = f"CREATE TABLE {tgt_tbl} AS " else: sql_prefix = f"INSERT INTO {tgt_tbl} " Export.dump_sql(obj=sql_prefix + sql, dir=log_dir + f"{tgt_tbl}_{idx}.sql") try: cls.run_query_pg(conn=conn, sql=sql_prefix + sql) except Exception as e: print(str(e)) rptg_freq = "W" conn.commit() break # if the insert failed on a monthly level, cycle down to weekly level if rptg_freq == "W": print("Insert failed on monthly level...cycling down to weekly") # getting max day id value try: sql = f'''select max(date(trim(substring(dt_range,regexp_instr(dt_range,'to ')+3,10)))) as day_idnt FROM {tgt_tbl}''' saved_dates = pd.read_sql_query(sql=sql, con=conn) except: conn.commit() saved_dates = pd.DataFrame({"day_idnt": ["1999-12-31"]}) # arbitrarily old date saved_date_dt = \ datetime( year=int(str(saved_dates['day_idnt'].astype(str).values[0]).split("-")[0]), month=int(str(saved_dates['day_idnt'].astype(str).values[0]).split("-")[1]), day=int(str(saved_dates['day_idnt'].astype(str).values[0]).split("-")[2]) ).replace(day=1).strftime("%Y-%m-%d") rptg_dates_wk = rptg_dates_wk[ pd.to_datetime(rptg_dates_wk['start_date']) >= \ pd.to_datetime(saved_date_dt)].reset_index(drop=True) for idx, row in rptg_dates_wk.iterrows(): print(f'''{row['start_date']} to {row['end_date']}''') if idx == 0 and saved_dates['day_idnt'][0] != pd.to_datetime(row['start_date']): print(Fore.RED + f'''latest saved data date in table is {str(saved_dates['day_idnt'][0])} ...''') # bump up start range: new_start = str(pd.to_datetime(str(saved_dates['day_idnt'][0])) + pd.DateOffset(1))[:10] print(Fore.RED + f'''revising start date to: {new_start} to {row['end_date']}''') if sql_loop_fn_type == "fn": sql = sql_loop_fn(src=loop_src1, src2=loop_src2, src3=loop_src3, start=new_start, end=row['end_date']) else: # date range column for logging sql = sql_loop_fn.replace( saved_day_id_range_placeholder, f" '{new_start} to {row['end_date']}' as dt_range," ) sql = sql.replace( sql_loop_fn_dt_placeholder1, f" AND date({filter_day_id_field1}) >= '{new_start}' AND date({filter_day_id_field1}) < '{row['end_date']}'" ) # check for other date fields if sql_loop_fn_dt_placeholder2: sql = sql.replace( sql_loop_fn_dt_placeholder2, f" AND date({filter_day_id_field2}) >= '{new_start}' AND date({filter_day_id_field2}) < '{row['end_date']}'" ) if sql_loop_fn_dt_placeholder3: sql = sql.replace( sql_loop_fn_dt_placeholder3, f" AND date({filter_day_id_field3}) >= '{new_start}' AND date({filter_day_id_field3}) < '{row['end_date']}'" ) else: if sql_loop_fn_type == "fn": sql = sql_loop_fn( start=row['start_date'], end=row['end_date'], src=loop_src1, src2=loop_src2, src3=loop_src3 ) else: # date range column for logging sql = sql_loop_fn.replace( saved_day_id_range_placeholder, f" '{row['start_date']} to {row['end_date']}' as dt_range," ) sql = sql.replace( sql_loop_fn_dt_placeholder1, f" AND date({filter_day_id_field1}) >= '{row['start_date']}' AND date({filter_day_id_field1}) < '{row['end_date']}'" ) # check for other date fields if sql_loop_fn_dt_placeholder2: sql = sql.replace( sql_loop_fn_dt_placeholder2, f" AND date({filter_day_id_field2}) >= '{row['start_date']}' AND date({filter_day_id_field2}) < '{row['end_date']}'" ) if sql_loop_fn_dt_placeholder3: sql = sql.replace( sql_loop_fn_dt_placeholder3, f" AND date({filter_day_id_field3}) >= '{row['start_date']}' AND date({filter_day_id_field3}) < '{row['end_date']}'" ) if idx == 0 and override: sql_prefix = f"CREATE TABLE {tgt_tbl} AS " else: sql_prefix = f"INSERT INTO {tgt_tbl} " Export.dump_sql(obj=sql_prefix + sql, dir=log_dir + f"{tgt_tbl}_{idx}.sql") cls.run_query_pg(conn=conn, sql=sql_prefix + sql) @classmethod def sequential_load_pg_wk(cls, rptg_dates, override, tgt_tbl, conn, rptg_wk, rptg_wk_start, rptg_wk_end, sql_loop_fn, # filter dates set 1 filter_dt_field1=False, filter_dt_type1=False, filter_dt_placeholder1=False, # filter dates set 2 filter_dt_field2=False, filter_dt_type2=False, filter_dt_placeholder2=False, # filter dates set 3 filter_dt_field3=False, filter_dt_type3=False, filter_dt_placeholder3=False, log_dir=False ): """ :param rptg_dates: :param override: :param tgt_tbl: :param conn: :param rptg_wk: :param rptg_wk_start: :param rptg_wk_end: :param sql_loop_fn: :param filter_dt_field1: :param filter_dt_type1: :param filter_dt_placeholder1: :param filter_dt_field2: :param filter_dt_type2: :param filter_dt_placeholder2: :param filter_dt_field3: :param filter_dt_type3: :param filter_dt_placeholder3: :param log_dir: :return: """ # dropping table if override = True if override: print(f'''table override True: Dropping table: {tgt_tbl} ''') try: cls.run_query_pg(conn=conn, sql=f'''drop table {tgt_tbl}''') except: conn.commit() pass for idx, row in rptg_dates.iterrows(): print(f'''{row['start_date']} to {row['end_date']}''') # date range column for logging sql = sql_loop_fn.replace( rptg_wk, f" '{row['rptg_wk']}' as rptg_wk," ) sql = sql.replace( rptg_wk_start, f" '{row['start_date']}' as rptg_wk_start," ) sql = sql.replace( rptg_wk_end, f" '{row['end_date']}' as rptg_wk_end," ) # date filters sql = sql.replace( filter_dt_placeholder1, f" AND date({filter_dt_field1}) > '{row['start_date']}' " f" AND date({filter_dt_field1}) <= '{row['end_date']}'" ) # check for other date fields if filter_dt_placeholder2: if filter_dt_type2 == "range": sql = sql.replace( filter_dt_placeholder2, f" AND date({filter_dt_field2}) > '{row['start_date']}' " f" AND date({filter_dt_field2}) <= '{row['end_date']}'" ) elif filter_dt_type2 == "<=": sql = sql.replace( filter_dt_placeholder2, f" AND date({filter_dt_field2}) <= '{row['end_date']}'" ) if filter_dt_placeholder3: if filter_dt_type3 == "range": sql = sql.replace( filter_dt_placeholder3, f" AND date({filter_dt_field3}) > '{row['start_date']}' " f" AND date({filter_dt_field3}) <= '{row['end_date']}'" ) elif filter_dt_type3 == "<=": sql = sql.replace( filter_dt_placeholder3, f" AND date({filter_dt_field3}) <= '{row['end_date']}'" ) if idx == 0 and override: sql_prefix = f"CREATE TABLE {tgt_tbl} AS " else: sql_prefix = f"INSERT INTO {tgt_tbl} " Export.dump_sql(obj=sql_prefix + sql, dir=log_dir + f"{tgt_tbl}_{idx}.sql") try: cls.run_query_pg(conn=conn, sql=sql_prefix + sql) except Exception as e: print(str(e)) conn.commit() break class Redshift: """ Generic functions for Redshift SQL queries and ETL. .. image:: ../images_source/db_etl_tools/redshift1.png """ @classmethod def run_query_rs(cls, conn, sql): """ Executes a SQL statement with a Redshift database connection. :param conn: Redshift database connection object, :param sql: SQL Statement to execute. :return: Elapsed time to execute query. """ rptg_tstart = datetime.now() cur = conn.cursor() cur.execute(sql) conn.commit() rptg_tend = datetime.now() tdelta = rptg_tend - rptg_tstart tdelta = tdelta.total_seconds() / 60 print(Fore.RED + f"Runtime: {tdelta}") @classmethod def insert_val_rs(cls, col_list, val_list, tbl_name): """ Creates SQL to run an INSERT operation of a given Redshift table. :param col_list: List of columns to INSERT or UPDATE. :param val_list: List of values to INSERT or UPDATE. :param tbl_name: Name of Postgres table. :return: SQL to run an INSERT statement. """ sql = f''' INSERT INTO {tbl_name} ( {str(col_list).replace("[", "").replace("]", "").replace("'", "")} ) values ( {str(val_list).replace("[", "").replace("]", "")} ) ''' return sql @classmethod def upsert_tbl_rs(cls, src_tbl, tgt_tbl, src_join_cols, src_insert_cols, src_update_cols=False, update_compare_cols=False): """ Creates SQL to run an UPSERT (INSERT new records or UPDATE existing records) operation of a given Redshift table. :param src_tbl: Redshift source table that contains data to be merged from. :param tgt_tbl: Redshift target table to receive UPSERT operation. :param src_join_cols: Columns to use to join source and target tables. :param src_insert_cols: Columns to be inserted from source table. :param src_update_cols: Columns to be updated from source table. :param update_compare_cols: Columns to use to compare values across source and target tables. :return: A SQL Insert statement and a SQL Update statement. """ src_join_cols_ = ( str([f"t.{c} = s.{c} AND " for c in src_join_cols]) .replace("[", "") .replace("]", "") .replace("'", "") .replace(",", "") ) src_join_cols_ = src_join_cols_[:src_join_cols_.rfind("AND")] src_join_cols_f = ( str([f"t.{c} IS NULL AND " for c in src_join_cols]) .replace("[", "") .replace("]", "") .replace("'", "") .replace(",", "") ) src_join_cols_f = src_join_cols_f[:src_join_cols_f.rfind("AND")] src_insert_cols_ = ( str([f"s.{c}" for c in src_insert_cols]) .replace("[", "") .replace("]", "") .replace("'", "") ) if src_update_cols: src_update_cols_ = ( str([f"{c} = s.{c}," for c in src_update_cols]) .replace("[", "") .replace("]", "") .replace("', '", "") .replace("'", "") ) src_update_cols_ = src_update_cols_[:src_update_cols_.rfind(",")] # update join statement src_join_cols2_ = src_join_cols_.replace("t.", f"{tgt_tbl}.") if update_compare_cols: update_compare_cols_ = ( str([f"s.{c} != {tgt_tbl}.{c}," for c in update_compare_cols]) .replace("[", "") .replace("]", "") .replace("', '", "") .replace("'", "") ) update_compare_cols_ = update_compare_cols_[:update_compare_cols_.rfind(",")] src_join_cols2_ = src_join_cols2_ + " AND " + update_compare_cols_ # src_join_cols2_ = src_join_cols2_.replace("t.", f"{tgt_tbl}.") # https://dwgeek.com/amazon-redshift-merge-statement-alternative-and-example.html/ sql_update = f''' /* Update records*/ UPDATE {tgt_tbl} SET {src_update_cols_} FROM {src_tbl} s WHERE {src_join_cols2_} '''.replace("\n", " ") else: sql_update = "" sql_insert = f''' /* Insert records*/ INSERT INTO {tgt_tbl} SELECT {src_insert_cols_} FROM {src_tbl} s LEFT JOIN {tgt_tbl} t ON {src_join_cols_} WHERE {src_join_cols_f} '''.replace("\n", " ") return sql_update, sql_insert @classmethod def make_df_tbl_rs(cls, tbl_name, df): """ Creates SQL to run a CREATE TABLE statement based on a Pandas DataFrame. :param tbl_name: Redshift table name. :param df: Pandas DataFrame. :return: CREATE TABLE SQL statement. """ # fix columns df = Generic.make_db_cols(df) # loop thru the columns for idx, col in enumerate(df): # find the max length of each field col_desc = col + "-" + str(df[col].map(lambda x: len(str(x))).max()) # find the max value of each fields try: col_max = col + "-" + str(max(df[col])) except: col_max = col + "-" + 'NA' if idx == 0: col_desc_all = [col_desc] col_max_all = [col_max] else: col_desc_all.append(col_desc) col_max_all.append(col_max) # make df of column lengths col_desc_all =
pd.DataFrame(col_desc_all)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Mar 23 13:23:20 2022 @author: lawashburn """ import os import csv import pandas as pd import numpy as np from datetime import datetime now = datetime.now() spectra_import = r"C:\Users\lawashburn\Documents\HyPep1.0\HyPep_Simple_ASMS_Results\Raw_Files\Formatted_MS2\PO_3_untarget_ms2_output_list.csv"#path to spectra after RawConverter ion_list_import = r"C:\Users\lawashburn\Documents\Nhu_Prescursor_Matching\ion_list.csv" precursor_list_import = r"C:\Users\lawashburn\Documents\Nhu_Prescursor_Matching\precursor_list.csv" working_directory = r"C:\Users\lawashburn\Documents\Nhu_Prescursor_Matching\num_test" final_dir =r"C:\Users\lawashburn\Documents\Nhu_Prescursor_Matching\Final_results" data_type = 'PO_' trial = '3_' sample_name = 'PO 3' error_marg = 10 #+/- ppm h_mass = 1.00784 #spectra_import = input('Enter path to formatted spectra .txt file: ') #ion_list_import = input('Enter path to ion fragment list .csv: ') #precursor_list_import = input('Enter path to precursor mass .csv: ') #working_directory = input('Enter path to working directory: ') #final_dir = input('Enter path to output directory: ') #data_type = input('Enter tissue type: ') #trial = input('Enter trial number: ') #sample_name = input('Enter sample name (e.g. TG2') #error_marg = input('Enter ppm error cutoff: ') print('loading files', datetime.now()) #formats spectra import values spectra_import = pd.read_csv(spectra_import, sep=",",skiprows=[0], names= ["m/z", "resolution", "charge", "intensity","MS2",'scan_number','empty']) spectra_value =
pd.DataFrame()
pandas.DataFrame
import os import glob import pandas as pd game_files = glob.glob(os.path.join(os.getcwd(), 'games', '*.EVE')) game_files.sort() game_frames =[] for game_file in game_files: game_frame = pd.read_csv(game_file, names =['type', 'multi2', 'multi3', 'multi4','multi5', 'multi6', 'event']) game_frames.append(game_frame) # print(type(game_frames)) games =
pd.concat(game_frames)
pandas.concat
""" Classes for retrieving and removing data column by column. """ # from copy import deepcopy import numbers # import inspect import itertools import pandas # from alignmentrs.utils import add_to_history __all__ = ['ColData'] class ColMethods: def __init__(self, instance): self._instance = instance self._axis = 1 @property def metadata(self): """pandas.core.DataFrame: Returns the column metadata of the alignment. """ return self._instance.col_metadata @metadata.setter def set_metadata(self, metadata): """Sets the row metadata of the alignment.""" if not isinstance(metadata, pandas.DataFrame): data = pandas.DataFrame(metadata) self._instance.col_metadata = metadata @property def index(self): """pandas.indexes.base.Index: Returns the column index of the alignment. """ return self._instance.col_metadata.index @index.setter def set_index(self, index): """Sets the column index of the alignment.""" if not isinstance(index, pandas.Index): index = pandas.Index(index) self._instance.col_metadata.index = index def get(self, positions, **kwargs): """Returns one or more columns from the alignment as a new alignment. Parameters ---------- positions : int or iterable Position index/indices of columns to return. Returns ------- Alignment Returns the subset of the alignment containing only the specified columns. This returns a copy of the original alignment. """ # Check input if isinstance(positions, int): positions = [positions] elif isinstance(positions, list) and \ sum((isinstance(pos, int) for pos in positions)) == len(positions): pass else: raise TypeError('positions must be an int or a list of int') aln = self._instance return aln.col.retain(positions, copy=True) def remove(self, positions, copy=False, **kwargs): """Removes the specified column/s from the alignment. Parameters ---------- positions : int or iterable Position index/indices of columns to remove. copy : bool, optional Whether to return a new copy of the edited alignment, keeping the original intact, or edit the alignment inplace. (default is False, editing is done inplace) Returns ------- Alignment When `copy` is True, returns the edited alignment after removing the specified columns. """ # Check input if isinstance(positions, int): positions = [positions] elif isinstance(positions, list) and \ len(positions) == 0: pass elif isinstance(positions, list) and \ sum((isinstance(pos, int) for pos in positions)) == len(positions): pass else: raise TypeError('positions must be an int or a list of int') aln = self._instance if copy is True: aln = self._instance.copy() # Remove columns from SeqMatrix aln.data.remove_cols(positions) # Remove column metadata indices = aln.column_metadata.index[positions] aln.column_metadata.drop(indices, axis=0, inplace=True) # # Add to history # add_to_history( # self._instance, '.col.remove', positions, # copy=copy, # **kwargs # ) if copy is True: return aln def retain(self, positions, copy=False, **kwargs): """Retains the specified column/s in the alignment. Removes all the other columns. Parameters ---------- positions : int or iterable Position index/indices of columns to be retained. copy : bool, optional Whether to return a new copy of the edited alignment, keeping the original intact, or edit the alignment inplace. (default is False, editing is done inplace) Returns ------- Alignment When `copy` is True, returns the edited alignment after removing columns. """ # Check input if isinstance(positions, int): positions = [positions] elif isinstance(positions, list) and \ sum((isinstance(pos, int) for pos in positions)) == len(positions): pass else: raise TypeError('positions must be an int or a list of int') aln = self._instance if copy is True: aln = self._instance.copy() aln.data.retain_cols(positions) aln.column_metadata = aln.column_metadata.iloc[positions] # # Add to history # add_to_history( # self._instance, '.col.retain', positions, # copy=copy, # **kwargs # ) if copy is True: return aln def reorder(self, position_list, copy=False, **kwargs): """Reorders columns according the specified list of positions. Parameters ---------- position_list : list of int Ordered list of position indices indicating the new order of columns. copy : bool, optional Whether to return a new copy of the reordered alignment, keeping the original intact, or reorder the alignment inplace. (default is False, reordering is done inplace) Returns ------- Alignment When `copy` is True, returns the edited alignment after reordering columns. """ # Check input if isinstance(position_list, list) and \ sum((isinstance(pos, int) for pos in position_list)): if len(list) != self._instance.ncols: raise TypeError('length of position list must be equal to the ' 'number of columns in the alignment: {} != {}'.format( len(list), self._instance.ncols )) else: raise TypeError('position list must be a list of int') aln = self._instance if copy is True: aln = self._instance.copy() aln.data.reorder_cols(position_list) aln.column_metadata = aln.column_metadata.iloc[position_list] # # Add to history # add_to_history( # aln, '.col.reorder', positions, # copy=copy, # **kwargs # ) if copy is True: return aln def filter(self, function, copy=False, dry_run=False, inverse=False, chunk_size=1, **kwargs): """Returns the list of column positions where the given function is True. Parameters ---------- function : callable Function used to evaluate each column. The function should expect a list of list of str as input and return a bool as output. copy : bool, optional Whether to return a new copy of the filtered alignment, keeping the original intact, or filter the alignment inplace. (default is False, filtering is performed inplace) dry_run : bool, optional If True, evaluates the function and returns the list of True and False column position only. Nothing is edited. Otherwise, column positions that evaluated False are removed from the alignment. (the default is False, the alignment is edited) inverse : bool, optional If True, columns that evaluate True are removed. (default is False, column positions that evaluate False are removed) chunk_size : int, optional Number of characters to group as one column. (default is 1) Returns ------- Alignment When `copy` is True, returns the edited alignment after removing columns that evaluated False. dict When `dry_run` is True, return a dictionary where True and False are keys, and the list of respective column positions are the values. """ # Check input # Checks if function is callable # Function accepts a list of str, outputs true or false if not(function is not None and callable(function)): raise TypeError('missing filter function') # Checks if chunk_size value is valid if chunk_size < 1: raise ValueError('chunk_size value must be greater than zero') # Check optional kwargs custom_title = 'Filter' if 'custom_title' in kwargs.keys(): custom_title = kwargs['custom_title'] custom_class_true = True if 'custom_class_true' in kwargs.keys(): custom_class_true = kwargs['custom_class_true'] + ' (True)' custom_class_false = False if 'custom_class_false' in kwargs.keys(): custom_class_false = kwargs['custom_class_false'] + ' (False)' aln = self._instance if copy is True: aln = self._instance.copy() # Get the list of positions based on the result of the # filtering function. Only columns that are True are recorded. # There are 2 different ways to create the positions list depending on # whether the chunk_size is 1 (default) or greater than 1. positions = [ i for i, col in enumerate(aln.col.iter(chunk_size=chunk_size)) if function(col) ] # Positions are adjusted if chunk_size is greater than 1 # For example, if chunk_size = 3 and positions = [0,1,3] # The positions value is converted back to nucleotide positions # [0, 1, 2, 3, 4, 5, 9, 10, 11] if chunk_size > 1: positions = list(itertools.chain( *[range(i*chunk_size, (i*chunk_size)+chunk_size) for i in positions])) # Generate list of column ids that are "opposite" of what was given other_positions = aln.data.invert_cols(positions) # "dry_run" shows the columns that will are True or False based # on the given filtering function. # This prints out the number of columns in the True or False categories # and returns the lists of column ids that are classified as True or # False. if dry_run: parts = [] parts.append('[{}]'.format(custom_title)) parts.append('{} = {}/{}'.format( custom_class_true, len(positions), aln.ncols)) parts.append('{} = {}/{}'.format( custom_class_false, len(other_positions), aln.ncols)) print('\n'.join(parts)) return { True: positions, False: other_positions } # By default, the filter method will keep columns that are # True according to the filter function, and will remove # columns that are False. # However, if `inverse` is True, the filter method will do the # opposite. It will keep columns that are False and will remove # columsn that are True if inverse: aln.col.remove(positions, _record_history=False) else: aln.col.retain(positions, _record_history=False) # # Add to history # func_sig = function.__qualname__ + \ # repr(inspect.signature(function)) \ # .lstrip('<Signature ').rstrip('>') # add_to_history( # aln, '.col.filter', func_sig, # copy=copy, # dry_run=dry_run, # inverse=inverse, # **kwargs # ) if copy is True: return aln def map(self, function, step=None, chunk_size=None): """Maps a function to the sequence matrix column-wise. Parameters ---------- function : callable Function to be mapped. The function should expect a list of str as input. step : int, optional Number of characters to skip. (default is None) chunk_size : int, optional Number of characters to group as one column. (default is None) Yields ------- object Each column is evaluated using the given function """ for col in self.iter(step=step, chunk_size=chunk_size, lazy=True): yield function(col) def iter(self, step=None, chunk_size=None, lazy=False): """Iterates over the sequence matrix column-wise. Returns a list of list of str, the inner list representing a column. Parameters ---------- step : int, optional Number of characters to skip. (default is None) chunk_size : int, optional Number of characters to group as one column. (default is None) lazy : bool, optional If True, uses lazy execution (saves memory), otherwise uses eager execution. (default is False, uses eager execution) Yields ------- list of str Each column is represented as a list of str whose order is based on the ordering of samples in the alignment. """ # Check input type if step is not None: if not isinstance(step, int): raise ValueError( '`step` must be None or int: {} ({})'.format( step, type(step) )) if chunk_size is not None: if not isinstance(chunk_size, int): raise ValueError( '`chunk_size` must be None or int: {} ({})'.format( chunk_size, type(chunk_size) )) if (step and chunk_size) and (step > 1 and chunk_size > 1): raise ValueError( '`step` and `chunk_size` cannot be used simultaneously') # Initialize values # Default for step and chunk_size is None # The values are changed depending on how step and chunk_size are # set by the user. # Note that both step and chunk_size cannot be set simultaneously by # the user. # step is not set, chunk_size is set if step is None: if chunk_size is None: # If both step and chunk_size are None, then step is 1 step = 1 else: # If step is None but chunk_size is specified, step # adopts the value of chunk_size to get consecutive # columns. step = chunk_size # chunk_size is not set if chunk_size is None: chunk_size = 1 # Check step and chunk_size values if step < 1: raise ValueError('`step` must be greater than zero: {}'.format( step )) if chunk_size < 1: raise ValueError( '`chunk_size` must be greater than zero: {}'.format( chunk_size )) # Initialize other values cnt = 0 col_range = range(0, self._instance.ncols - (chunk_size-1), step) # iter method offers two ways to iterate: lazy and eager # In lazy execution, the function uses yield to return a copy of # the current column. Either get_chunk or get_col is used depending # on whether the chunk_size is specified or not if lazy: for i in col_range: if chunk_size == 1: yield self._instance.data.get_col(i) else: yield self._instance.data.get_chunk(i, chunk_size) # In eager execution, the function transforms the sequence matrix # into a list of list of str column-wise using get_chunks or get_cols # depending on whether the chunk_size is specified or not. # Then the list of list of str is iterated, using yield to return # each column (list of str) one by one. else: indices = list(col_range) if chunk_size == 1: for col in self._instance.data.get_cols(indices): yield col else: for col in self._instance.data.get_chunks(indices, chunk_size): yield col def reset_index(self, copy=False, drop=False, **kwargs): """Resets the column index to the default integer index. Parameters ---------- copy : bool, optional Whether to return a new copy of the edited alignment, keeping the original intact, or edit the alignment inplace. (default is False, editing is done inplace) drop : bool, optional If True, do not try to insert the original index into dataframe columns. (default is False, the original index is inserted as a column named `index`) Returns ------- Alignment When `copy` is True, returns the edited alignment after removing columns that evaluated False. Note that this returns the whole Alignment object and not only the pandas DataFrame containing column metadata. """ aln = self._instance if copy is True: aln = self._instance.copy() aln.column_metadata.reset_index(drop=drop, inplace=True) # # Add to history # add_to_history( # aln, '.col.reset_index', # copy=copy, # **kwargs # ) if copy is True: return aln def add_metadata(self, metadata, name=None, copy=False, **kwargs): """Adds a new category to the column metadata. This adds a column to the column metadata DataFrame. Parameters ---------- metadata : list, dict, pandas.Series or pandas.DataFrame Metadata to be added. name : str, optional Name of the new metadata category. copy : bool, optional Whether to return a new copy of the edited alignment, keeping the original intact, or edit the alignment inplace. (default is False, editing is done inplace) Returns ------- Alignment When `copy` is True, returns the edited alignment after adding new column metadata categories. """ raise NotImplementedError() def remove_metadata(self, name, copy=False, **kwargs): """Removes one or more categories from the column metadata. This removes columns from the column metadata DataFrame. Parameters ---------- name : str or list of str Name/s of the new metadata categories. copy : bool, optional Whether to return a new copy of the edited alignment, keeping the original intact, or edit the alignment inplace. (default is False, editing is done inplace) Returns ------- Alignment When `copy` is True, returns the edited alignment after removing column metadata categories. """ raise NotImplementedError() def replace_metadata(self, name, metadata, copy=False): """Replaces metadata in the given column metadata category. Parameters ---------- name : str Name of the metadata category. This is also the column name in the underlying column metadata DataFrame. metadata: list List of metadata to replace existing information. copy : bool, optional Whether to return a new copy of the edited alignment, keeping the original intact, or edit the alignment inplace. (default is False, editing is done inplace) Returns ------- Alignment When `copy` is True, returns the edited alignment after replacing the metadata in the specified column metadata category. """ raise NotImplementedError() @staticmethod def _insert_metadata(aln, position, column_values): if isinstance(column_values, list) and \ sum((isinstance(val, list) for val in column_values)): df = pandas.DataFrame( {k:v for k,v in zip(aln.column_metadata, column_values)}) elif isinstance(column_values, list) and \ sum((isinstance(val, dict) for val in column_values)): df = pandas.DataFrame(column_values) elif isinstance(column_values, list) and \ sum((isinstance(val, numbers.Number) or isinstance(val, str) for val in column_values)): df = pandas.DataFrame( {k:v for k,v in zip(aln.column_metadata, column_values)}) elif isinstance(column_values, dict) and \ sum((isinstance(val, list) for val in column_values)): df = pandas.DataFrame(column_values) elif isinstance(column_values, dict) and \ sum((isinstance(val, numbers.Number) or isinstance(val, str) for val in column_values)): df =
pandas.DataFrame(column_values)
pandas.DataFrame
from scipy.optimize import leastsq, curve_fit, minimize, OptimizeResult import matplotlib from matplotlib import axes import matplotlib.pyplot as plt import numpy as np import math from typing import Callable import datetime import pandas as pd from io import StringIO from numpy import mean, std, median def f_logistic(x:np.ndarray, A, B, C, D) -> np.ndarray: return (A - D)/(1 + (x/C)**B) + D def loss_logistic(p, y, x): A, B, C, D = p return np.sum((y - f_logistic(x, A, B, C, D))**2) def f_gompertz(x:np.ndarray, A, B, C, D) -> np.ndarray: # return D + A * (np.exp(np.exp(B * (C * x)))) return D + C * np.exp(-B * np.exp(-x / A)) def loss_gompertz(p, y, x): A, B, C, D = p return np.sum((y - f_gompertz(x, A, B, C, D))**2) def fit(x:np.ndarray, y:np.ndarray, lossFunc:Callable) -> OptimizeResult: """Tries to fit x and y data to using given loss function. loss function itself contains the function to be fit Args: x (np.ndarray): x data y (np.ndarray): y data lossFunc (function): loss function Returns: OptimizeResult: scipy OptimizeResult object. Member x is numpy.ndarray which contains the optimization solution. """ idx = (~np.isnan(x+y)) # eliminate missing data points x = x[idx] y = y[idx] A0 = y.max() * 2 D0 = y.min() / 2 C0 = x.mean() * 2 B0 = 1 p0 = [A0, B0, C0, D0] # starting values to begin optimization. r = minimize(lossFunc, x0=p0, args=(y, x), method='CG') return r def plotfunc(xrange:tuple, f:Callable, r:OptimizeResult, axs:matplotlib.axes) -> tuple: xp = np.linspace(xrange[0], xrange[1], 100) yp = f(xp, *r.x) axs.plot(xp, yp) return xp, yp def plotdata(x:np.ndarray, y:np.ndarray, axs:matplotlib.axes, xrange=(-1,-1)) -> tuple: idx = (~np.isnan(x+y)) # eliminate missing data points x = x[idx] y = y[idx] xmin = xrange[0] xmax = xrange[1] if xmin == -1: xmin = x.min() if xmax == -1: xmax = x.max() x, y = x[x >= xmin], y[x >= xmin] x, y = x[x <= xmax], y[x <= xmax] axs.scatter(x, y) return np.array(x), np.array(y) def doublingt(xrange:tuple, f:Callable, r:OptimizeResult, axs:matplotlib.axes) -> tuple: """Plots doubling time chart in semi-log scale (log y - linear x axis). Returns x and y lists in a tuple. Time point for minimum doubling time can be retrieved by: dx[dy.argmin()] Args: xrange (tuple): (xmin, xmax) f (Callable): fit function r (OptimizeResult): optimization results axs (matplotlib.axes): the axis for the plot Returns: tuple: x and y as lists """ xp = np.linspace(xrange[0], xrange[1], 100) yp = f(xp, *r.x) dy = [] for i in range(0, len(xp)-1): dx = xp[i+1] - xp[i] _dy = math.log(2) * dx / (math.log(yp[i+1]) - math.log(yp[i])) dy.append(_dy) axs.set_yscale('log') axs.minorticks_on() axs.yaxis.set_minor_locator(plt.MaxNLocator(4)) axs.grid(b=True, which='major', color='#666666', linestyle='-') axs.grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.2) axs.plot(xp[:-1], dy, c='g') return np.array(xp[:-1]), np.array(dy) def timestr(s:str, century='20') -> datetime: """Converts YYMMDD-hhmm to datetime.datetime object. century is set to 20 as default Args: s (str): date signature string YYMMDDhhmm century (str): 2-digit century string. 20 as default Returns: datetime: datetime.datetime object """ return datetime.datetime( int('{0}{1}'.format(century, s[0:2])), # year int(s[2:4]), # month int(s[4:6]), # day int(s[7:9]), # hr int(s[9:11]) # min ) def dt(t0:str, t1:str) -> int: """Delta t as minutes between t0 and t1 date-time strings Args: t0 (str): date-time string in YYMMDD-hhmm format t1 (str): date-time string in YYMMDD-hhmm format Returns: int: delta t in minutes """ return (timestr(t1).timestamp() - timestr(t0).timestamp()) / 60 def readPlates(fn:str) -> (pd.DataFrame, dict): f = open(fn, 'r') layout = [] plates = [] plateNames = [] tempFile = StringIO('') line = f.readline() header = '' while line: if '#' in line: if header != '': tempFile.flush() tempFile.seek(0) #print(header) if header == 'layout': df =
pd.read_csv(tempFile, sep='\t', header=None)
pandas.read_csv
import pickle import numpy as np import matplotlib.pyplot as plt import scipy.stats as scp_stats import pandas as pd import matplotlib matplotlib.rcParams.update({'font.size': 20}) N_trials = 20 type_color = {'Scnn1a': 'darkorange', 'Rorb': 'red', 'Nr5a1': 'magenta', 'PV1': 'blue', 'PV2': 'cyan', 'Exp.E.': 'gray', 'Exp.I.': 'gray'} type_order = ['Scnn1a', 'Rorb', 'Nr5a1', 'Exp.E.', 'PV1', 'PV2', 'Exp.I.'] #type_color = {'Scnn1a': 'darkorange', 'Rorb': 'red', 'Nr5a1': 'magenta', 'PV1': 'blue', 'PV2': 'cyan'} #type_order = ['Scnn1a', 'Rorb', 'Nr5a1', 'PV1', 'PV2'] # Decide which systems we are doing analysis for. sys_dict = {} sys_dict['ll1'] = { 'cells_file': '../build/ll1.csv', 'f_1': '../simulations_ll1/spont/output_ll1_spont_', 'f_2': '_sd278/spk.dat', 'f_3': '_sd278/tot_f_rate.dat', 'f_out': 'spont_activity/ll1_spont.csv', 'types': [] } sys_dict['ll2'] = { 'cells_file': '../build/ll2.csv', 'f_1': '../simulations_ll2/spont/output_ll2_spont_', 'f_2': '_sd278/spk.dat', 'f_3': '_sd278/tot_f_rate.dat', 'f_out': 'spont_activity/ll2_spont.csv', 'types': [] } sys_dict['ll3'] = { 'cells_file': '../build/ll3.csv', 'f_1': '../simulations_ll3/spont/output_ll3_spont_', 'f_2': '_sd278/spk.dat', 'f_3': '_sd278/tot_f_rate.dat', 'f_out': 'spont_activity/ll3_spont.csv', 'types': [] } #sys_dict['rr2'] = { 'cells_file': '../build/rr2.csv', 'f_1': '../output_rr2_spont_', 'f_2': '_sd282_cn0/spk.dat', 'f_3': '_sd282_cn0/tot_f_rate.dat', 'f_out': 'spont_activity/rr2_spont.csv', 'types': [] } #sys_dict['ll1_LIF'] = { 'cells_file': '../build/ll1.csv', 'f_1': '/data/mat/ZiqiangW/simulation_ll_syn_data_lif_z102/simulation_ll1/output_ll1_spont_', 'f_2': '_sdlif_z101/spk.dat', 'f_3': '_sdlif_z101/tot_f_rate.dat', 'f_out': 'spont_activity_LIF/ll1_spont.csv', 'types': [] } #sys_dict['ll2_LIF'] = { 'cells_file': '../build/ll2.csv', 'f_1': '/data/mat/ZiqiangW/simulation_ll_syn_data_lif_z102/simulation_ll2/output_ll2_spont_', 'f_2': '_sdlif_z101/spk.dat', 'f_3': '_sdlif_z101/tot_f_rate.dat', 'f_out': 'spont_activity_LIF/ll2_spont.csv', 'types': [] } #sys_dict['ll3_LIF'] = { 'cells_file': '../build/ll3.csv', 'f_1': '/data/mat/ZiqiangW/simulation_ll_syn_data_lif_z102/simulation_ll3/output_ll3_spont_', 'f_2': '_sdlif_z101/spk.dat', 'f_3': '_sdlif_z101/tot_f_rate.dat', 'f_out': 'spont_activity_LIF/ll3_spont.csv', 'types': [] } result_fname_prefix = 'spont_activity/new_av_spont_rates_by_type' #result_fname_prefix = 'spont_activity_LIF/new_av_spont_rates_by_type' result_fig_fname = result_fname_prefix + '.eps' ''' # Read files containing firing rates for each trial, average over all trials, and save to file. for i_sys, sys_name in enumerate(sys_dict.keys()): # Obtain information about cell types. cells = pd.read_csv(sys_dict[sys_name]['cells_file'], sep=' ') gids = cells['index'].values out_df = pd.DataFrame({'gid': gids, 'type': cells['type'].values}) # Process the firing rate files. rates = np.zeros(gids.size) for i_trial in xrange(0, N_trials): f_name = '%s%d%s' % (sys_dict[sys_name]['f_1'], i_trial, sys_dict[sys_name]['f_3']) print 'Processing file %s.' % (f_name) tmp_rates = np.genfromtxt(f_name, delimiter=' ')[:, 1] # Assume all files have the same columns of gids; use the 2nd column for rates. rates += tmp_rates rates = rates / (1.0 * N_trials) out_df['%s_frate' % (sys_name)] = rates out_df.to_csv(sys_dict[sys_name]['f_out'], sep=' ', index=False) ''' # Read files with firing rate averages over trials for simulations. rates_df = pd.DataFrame() for sys_name in sys_dict.keys(): tmp_df = pd.read_csv(sys_dict[sys_name]['f_out'], sep=' ') # Combine firing rates from all systems into one file. tmp_df.rename(columns={'%s_frate' % (sys_name): 'frate'}, inplace=True) rates_df = pd.concat([rates_df, tmp_df], axis=0) # Read file with firing rate averages over trials for experiments. exp_df =
pd.read_csv('/allen/aibs/mat/antona/experimental_data/2017_07_25_ephys_Sev_processed_by_Yazan/f_avg_per_cell_Spont.csv', sep=' ', header=None)
pandas.read_csv
import json import logging from pathlib import Path from typing import Any, Dict, List, Optional, Tuple import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.colors import LogNorm from pylossmap import BLMData # from tensorflow.keras.utils import Sequence from tqdm.auto import tqdm UFO_LABEL = 1 NON_UFO_LABEL = 0 def augment_mirror(data: np.ndarray) -> np.ndarray: """Augment the data with the mirrored data. Args: data: data to augment Returns: the data with the mirrored data appended to the data. """ return np.vstack([data, data[:, ::-1]]) def create_labels( ufo: np.ndarray, non_ufo: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: """Create the label arrays. Args: ufo: ufo data non_ufo: non ufo data Returns: The labels of the ufo and non ufo data. """ ufo_labels = np.array([UFO_LABEL] * len(ufo))[:, None] non_ufo_labels = np.array([NON_UFO_LABEL] * len(non_ufo))[:, None] return ufo_labels, non_ufo_labels def truncate_data(data: List[pd.DataFrame], target_length: int) -> np.ndarray: """Truncate the rows to a given length, centered. Args: data: iterable containing vector data to truncate target_length: the desired length of the vector conatining the blm signals Returns: Array containing the truncated data. """ truncated_rows = [] for row in data: length = row.shape[1] half_delta = (length - target_length) / 2 start_shift = int(np.floor(half_delta)) end_cutoff = int(np.ceil(half_delta)) row_chunk = row.iloc[0, start_shift:-end_cutoff] truncated_rows.append(row_chunk.to_numpy()) truncated_rows = np.array(truncated_rows) return truncated_rows def create_peak_dataset( ufo_meta: pd.DataFrame, raw_data_dir: Path, dcum_around: int = 24000, target_length: int = 33, prior_dt: int = 3, post_dt: int = 3, non_ufo_threshold: float = 1e-3, include_meta: bool = True, ) -> Dict[str, np.ndarray]: """Create a ufo and non ufo peak dataset. Args: ufo_meta: metadata of the ufo events raw_data_dir: directory containing the raw data dcum_around: dcum range around the ufo target_length: the desired length of the vector conatining the blm signals prior_dt: how many seconds back to get the prior events post_dt: how many seconds forward to get the post events non_ufo_threshold: don't include non ufo samples when the max is above threshold include_meta: include the metadata of the samples in the returned dictionary Returns: Dictionary containing the ufo and non ufo data and metadata. """ non_ufo_prior = [] non_ufo_prior_meta = [] peaks = [] peaks_meta = [] non_ufo_post = [] non_ufo_post_meta = [] for idx, ufo in tqdm(ufo_meta.iterrows(), total=len(ufo_meta)): raw_fill_data = BLMData.load(raw_data_dir / f"{ufo.fill}.h5") raw_fill_data.df = raw_fill_data.df.droplevel("mode") raw_fill_data.df = raw_fill_data.df.iloc[~raw_fill_data.df.index.duplicated()] raw_idx = raw_fill_data.df.index.get_loc(ufo.datetime, method="nearest") + 1 around_blms = raw_fill_data.meta[ (raw_fill_data.meta["dcum"] < ufo.dcum + dcum_around) & (raw_fill_data.meta["dcum"] > ufo.dcum - dcum_around) ] around_data = raw_fill_data.df[around_blms.index].iloc[raw_idx : raw_idx + 1] if around_data.shape[1] < target_length: print("skipping sample, not enough blms.") continue peaks.append(around_data) if include_meta: peaks_meta.append(ufo) around_prior_data = raw_fill_data.df[around_blms.index].iloc[ raw_idx - prior_dt : raw_idx + 1 - prior_dt ] around_post_data = raw_fill_data.df[around_blms.index].iloc[ raw_idx + post_dt : raw_idx + 1 + post_dt ] print("===============") print("prior max: ", around_prior_data.max().max()) print("prior min: ", around_prior_data.min().min()) print("prior shape: ", around_prior_data.shape) if around_prior_data.max().max() > non_ufo_threshold: print("High value, skipping") print(idx, ufo) elif around_prior_data.min().min() == 0: print("found a zero min value, skipping") print(idx, ufo) else: non_ufo_prior.append(around_prior_data) if include_meta: prior_meta = ufo.copy() prior_meta["datetime"] = prior_meta["datetime"] - pd.Timedelta( f"{prior_dt}s" ) non_ufo_prior_meta.append(prior_meta) print("post max: ", around_post_data.max().max()) print("post min: ", around_post_data.min().min()) print("post shape: ", around_post_data.shape) if around_post_data.max().max() > non_ufo_threshold: print("High value, skipping") print(idx, ufo) elif around_post_data.min().min() == 0: print("found a zero min value, skipping") print(idx, ufo) else: non_ufo_post.append(around_post_data) if include_meta: post_meta = ufo.copy() post_meta["datetime"] = post_meta["datetime"] + pd.Timedelta( f"{post_dt}s" ) non_ufo_post_meta.append(post_meta) out = { "ufo": truncate_data(peaks, target_length=target_length), "non_ufo_prior": truncate_data(non_ufo_prior, target_length=target_length), "non_ufo_post": truncate_data(non_ufo_post, target_length=target_length), } if include_meta: out["ufo_meta"] = pd.DataFrame(peaks_meta) out["non_ufo_prior_meta"] = pd.DataFrame(non_ufo_prior_meta) out["non_ufo_post_meta"] =
pd.DataFrame(non_ufo_post_meta)
pandas.DataFrame
import os import sys import json import pandas as pd from bentoml.configuration import get_bentoml_deploy_version def test_pip_install_saved_bentoservice_bundle(bento_bundle_path, tmpdir): import subprocess install_path = str(tmpdir.mkdir("pip_local")) bentoml_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) stdout = subprocess.check_output( ["pip", "install", "-U", "--target={}".format(install_path), bento_bundle_path] ).decode('utf-8') assert "Processing {}".format(bento_bundle_path) in stdout assert "Collecting bentoml=={}".format(get_bentoml_deploy_version()) in stdout assert "Successfully built TestBentoService" in stdout # ensure BentoML is installed as dependency assert os.path.isfile(os.path.join(install_path, "bin/bentoml")) assert os.path.isdir(os.path.join(install_path, "bentoml")) sys.path.insert(0, install_path) TestBentoService = __import__("TestBentoService") sys.path.remove(install_path) svc = TestBentoService.load() res = svc.predict_dataframe(pd.DataFrame(
pd.DataFrame([1], columns=["col1"])
pandas.DataFrame
import pandas as pd import numpy as np import os import math from gluonts_forecasts.model import Model from dku_constants import ( METRICS_DATASET, METRICS_COLUMNS_DESCRIPTIONS, TIMESERIES_KEYS, EVALUATION_METRICS_DESCRIPTIONS, ROW_ORIGIN, ) from gluonts_forecasts.gluon_dataset import DkuGluonDataset from gluonts_forecasts.model_config_registry import ModelConfigRegistry from gluonts_forecasts.utils import add_row_origin from safe_logger import SafeLogger logger = SafeLogger("Forecast plugin") class TrainingSession: """ Class to train and evaluate multiple GluonTS estimators on a training dataframe, and to retrieve an aggregated metrics dataframe Attributes: target_columns_names (list): List of column names to predict time_column_name (str) frequency (str): Pandas timeseries frequency (e.g. '3M') epoch (int): Number of epochs used by the GluonTS Trainer class models_parameters (dict): Dictionary of model names (key) and their parameters (value) prediction_length (int): Number of time steps to predict training_df (DataFrame): Training dataframe make_forecasts (bool): True to output the evaluation predictions of the last prediction_length time steps external_features_columns_names (list, optional): List of columns with dynamic real features over time timeseries_identifiers_names (list, optional): Columns to identify multiple time series when data is in long format batch_size (int, optional): Size of batch used by the GluonTS Trainer class user_num_batches_per_epoch (int, optional): Number of batches per epoch selected by user. -1 means to compute scaled number num_batches_per_epoch (int, optional): Number of batches per epoch season_length (int, optional): Length of the seasonality parameter. mxnet_context (mxnet.context.Context, optional): MXNet context to use for Deep Learning models training. timeseries_cross_validation (bool, optional): Whether to use timeseries cross-validation. rolling_windows_number (int, optional): Number of splits used in the training set. Mandatory for cross-validation. cutoff_period (int, optional): Number of time steps between each split. Mandatory for cross-validation. """ def __init__( self, target_columns_names, time_column_name, frequency, epoch, models_parameters, prediction_length, training_df, make_forecasts, external_features_columns_names=None, timeseries_identifiers_names=None, batch_size=None, user_num_batches_per_epoch=None, season_length=None, mxnet_context=None, timeseries_cross_validation=False, rolling_windows_number=1, cutoff_period=-1, ): self.models_parameters = models_parameters self.models = [] self.glutonts_dataset = None self.training_df = training_df self.prediction_length = prediction_length self.target_columns_names = target_columns_names self.time_column_name = time_column_name self.frequency = frequency self.epoch = epoch self.make_forecasts = make_forecasts self.external_features_columns_names = external_features_columns_names self.use_external_features = bool(external_features_columns_names) self.timeseries_identifiers_names = timeseries_identifiers_names self.session_name = None self.session_path = None if self.make_forecasts: self.evaluation_forecasts_df = None self.metrics_df = None self.batch_size = batch_size self.user_num_batches_per_epoch = user_num_batches_per_epoch self.num_batches_per_epoch = None self.season_length = season_length self.mxnet_context = mxnet_context self.timeseries_cross_validation = timeseries_cross_validation self.rolling_windows_number = rolling_windows_number if timeseries_cross_validation else 1 self.cutoff_period = cutoff_period self.gluon_list_datasets_by_cut_length = None self.rolling_windows_cut_lengths_train_test_pairs = None def init(self, session_name, partition_root=None): """Create the session_path. Args: session_name (Timestamp) partition_root (str, optional): Partition root path, concatenated to session_name to create the session_path. Defaults to None. """ self.session_name = session_name if partition_root is None: self.session_path = session_name else: self.session_path = os.path.join(partition_root, session_name) def create_gluon_list_datasets(self): """Create train and test gluon list datasets. The last prediction_length time steps are removed from each timeseries of the train dataset. Compute optimal num_batches_per_epoch value based on the train dataset size. """ gluon_dataset = DkuGluonDataset( time_column_name=self.time_column_name, frequency=self.frequency, target_columns_names=self.target_columns_names, timeseries_identifiers_names=self.timeseries_identifiers_names, external_features_columns_names=self.external_features_columns_names, min_length=2 * self.prediction_length, # Assuming that context_length = prediction_length ) self.rolling_windows_cut_lengths_train_test_pairs = self._compute_rolling_windows_cut_lengths_train_test_pairs() rolling_windows_unique_cut_lengths = self._compute_rolling_windows_unique_cut_lengths( self.rolling_windows_cut_lengths_train_test_pairs ) self.gluon_list_datasets_by_cut_length = gluon_dataset.create_list_datasets( self.training_df, cut_lengths=rolling_windows_unique_cut_lengths ) if self.user_num_batches_per_epoch == -1: self.num_batches_per_epoch = self._compute_optimal_num_batches_per_epoch() else: self.num_batches_per_epoch = self.user_num_batches_per_epoch def instantiate_models(self): """Instantiate all the selected models.""" for model_name, model_parameters in self.models_parameters.items(): self.models.append( Model( model_name, model_parameters=model_parameters, frequency=self.frequency, prediction_length=self.prediction_length, epoch=self.epoch, use_external_features=self.use_external_features, batch_size=self.batch_size, num_batches_per_epoch=self.num_batches_per_epoch, season_length=self.season_length, mxnet_context=self.mxnet_context, ) ) def train_evaluate_models(self, retrain=False): """ Evaluate all the selected models (then retrain on complete data if specified), get the metrics dataframe and create the forecasts dataframe if make_forecasts=True. """ metrics_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import requests import io import os from sqlalchemy import create_engine def init_sql_conn(): user = "root" host = os.getenv('MYSQL_HOST') db = "covid" engine = create_engine(f'mysql://{user}@{host}/{db}') conn = engine.connect() return conn if __name__ == "__main__": start_date = "3/1/20" url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series" datasets = { "deaths": "time_series_covid19_deaths_global.csv", "cases": "time_series_covid19_confirmed_global.csv", } columns = ["day", "region"] df_all =
pd.DataFrame(columns=columns)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 """ Created on Sun Jun 20 16:38:50 2021 @author: Team_16 """ #%% # ============================================================================= # 前期準備 # ============================================================================= ''' 置入所需資料處理與繪圖套件 ''' import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import display ''' 匯入資料 ''' df_train = pd.read_csv("train.csv") df_test = pd.read_csv("test.csv") df_data = df_train.append(df_test) #重新索引 df_data = df_data.reset_index() #%% # ============================================================================= # 遺漏值處理 # ============================================================================= ''' 遺漏值個數 ''' #Pclass(133), Age(189), Cabin(690) 缺失值較多 for col in df_data.columns.tolist(): print('{} column missing values: {}'.format(col, df_data[col].isnull().sum())) ''' Fare補值 ''' #查看遺漏值乘客的資訊 df_data[df_data['Fare'].isnull()] #因具遺漏值的乘客為三等艙,故補三等艙、SibSp=0、Parch=0的fare中位數 med_fare = df_data.groupby(['Pclass', 'Parch', 'SibSp']).Fare.median()[3][0][0] df_data['Fare'] = df_data['Fare'].fillna(med_fare) ''' Pclass補值 ''' #補值第一步驟,按ticket補值,同樣ticket會是同樣艙等: deplicate_ticket = [] for ticket in df_data.Ticket.unique(): tem = df_data.loc[df_data.Ticket == ticket, 'Fare'] if tem.count() > 1: deplicate_ticket.append(df_data.loc[df_data.Ticket == ticket,['Name','Ticket','Fare','Pclass','Survived']]) deplicate_ticket = pd.concat(deplicate_ticket) #一個ticket對一個pclass deplicate_ticket_dropna = deplicate_ticket.dropna() #先刪除Pclass是NA的人 match_tp = deplicate_ticket_dropna.drop_duplicates(subset=['Ticket'], keep='first', inplace=False) match_tp = pd.concat((match_tp['Ticket'],match_tp['Pclass']),axis = 1) match_tp_dict = match_tp.set_index('Ticket')['Pclass'].to_dict() #按ticket上的艙等補值 df_data.Pclass = df_data.Pclass.fillna(df_data.Ticket.map(match_tp_dict)) #補值第二步驟,按fare補值: #觀察Pclass與fare的彼此分布狀況 f, ax = plt.subplots(figsize=(8,3)) ax.set_title('Pclass Fare dist', size=20) sns.distplot(df_data[df_data.Pclass == 1].dropna().Fare, hist=False, color='black', label='P-1') sns.distplot(df_data[df_data.Pclass == 2].dropna().Fare, hist=False, color='green', label='P-2') sns.distplot(df_data[df_data.Pclass == 3].dropna().Fare, hist=False, color='blue', label='P-3') sns.distplot(df_data[df_data.Pclass.isnull() == True].Fare, hist=False, color='red', label='P-NA') ax.legend(fontsize=15) #觀察Fare在各艙等的四分位線狀況 print(df_data[df_data.Pclass==2].Fare.describe()) print(df_data[df_data.Pclass==3].Fare.describe()) print(df_data[df_data.Pclass==1].Fare.describe()) #觀察結論:75%的三艙等fare低於15.5;75%的二艙等fare低於26 #補值條件:Fare低於15.5為三艙等,Fare低於26為二艙等,其他為一艙等 #取出pclass不為na的dataframe no_na = df_data.loc[df_data['Pclass'].isnull() == False] #取出pclass為na的dataframe yes_na = df_data.loc[df_data['Pclass'].isnull() == True] fill_p1 = yes_na.loc[df_data['Fare'] > 26] fill_p2 = yes_na.loc[(df_data['Fare'] >15.5) & (df_data['Fare'] <= 26)] fill_p3 = yes_na.loc[df_data['Fare'] <= 15.5] p1 = fill_p1.fillna({'Pclass':1}) p2 = fill_p2.fillna({'Pclass':2}) p3 = fill_p3.fillna({'Pclass':3}) df_data =
pd.concat([no_na, p1, p2, p3])
pandas.concat
from lib.utils import ErrorMetricCalculator import argparse import os import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import train_test_split from sklearn.model_selection import LeaveOneOut from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder from sklearn import metrics import seaborn as sns from matplotlib import pyplot as plt from sklearn.dummy import DummyClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV from skfeature.function.statistical_based import CFS from collections import OrderedDict from multiprocessing import Pool import numpy as np from collections import Counter from sklearn.linear_model import LogisticRegression from sklearn.feature_selection import RFECV from sklearn.feature_selection import VarianceThreshold from sklearn.svm import SVC random_state=42 def preprocess(data,igCol): data_preproc = data.copy(deep=True) data_preproc['len'] = data_preproc['len'].astype(float) data_preproc['max_fft_imag'] = data_preproc['max_fft_imag'].astype(float) # data_preproc.dropna(subset=['Winner','Community_0','Community_1','Community_2'],inplace=True) data_preproc.dropna(subset=['Winner'],inplace=True) if igCol is not None and len(igCol)>0: data_preproc.drop(columns=igCol,inplace=True) le = LabelEncoder() data_preproc['Winner'] = le.fit_transform(data_preproc['Winner']) cat_columns = ['sector'] if igCol is None or 'sector' not in igCol else [] for i in range(7): ## GAMBIARRA. DEIXAR MAIs ORG DEPOIS col_name='Community_{}'.format(i) if col_name in data_preproc.columns: print("================COMMUNITY COLUMN DETECTED=================") data_preproc[col_name] = data_preproc[col_name].astype(str) data_preproc.fillna(value={col_name: 'NA'},inplace=True) cat_columns.append(col_name) data_preproc =
pd.get_dummies(data_preproc, prefix_sep="__", columns=cat_columns,dtype=float)
pandas.get_dummies
import email import glob import json from argparse import ArgumentParser, Namespace from email.header import decode_header, make_header from email.message import Message from urllib.parse import urlparse import numpy as np from bs4 import BeautifulSoup from pandas import DataFrame def find_spy_pixels(): args = parse_arguments() df =
DataFrame([], columns=["domain", "src", "sender", "filename", "attributes"])
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function, absolute_import, division from builtins import map, range, object, zip, sorted from past.builtins import basestring from numbers import Real from .base import BaseClass from .utils import Utils, Tuple from .iterators import RowIterator, ColIterator from . import amplpython try: import pandas as pd except ImportError: pd = None try: import numpy as np except ImportError: np = None class Row(BaseClass): """ Represents a row in a :class:`~amplpy.DataFrame`. """ def __init__(self, _impl): self._impl = _impl def __iter__(self): return RowIterator(self._impl) def __getitem__(self, key): return Utils.castVariantRef(self._impl.getIndex(key)) def toString(self): return str(list(self)) class Column(BaseClass): """ Represents a column in a :class:`~amplpy.DataFrame`. """ def __init__(self, _impl): self._impl = _impl def __iter__(self): return ColIterator(self._impl) def toString(self): return str(list(self)) class DataFrame(BaseClass): """ A DataFrame object, used to communicate data to and from the AMPL entities. An object of this class can be used to do the following tasks: - Assign values to AMPL entities (once the DataFrame is populated, use :func:`~amplpy.AMPL.setData` to assign its values to the modelling entities in its columns) - Get values from AMPL, decoupling the values from the AMPL entities they originate via :func:`~amplpy.Entity.getValues`. A DataFrame object can be created in various ways. - Create a skeleton by specifiying manually the indexing columns and the column headers. - Get values from AMPL, decoupling the values from the AMPL entities they originate from (via :func:`~amplpy.Entity.getValues`). Populating a DataFrame object can be done adding row by row to a pre-existing skeleton via :func:`~amplpy.DataFrame.addRow`, setting whole columns of a pre-existing skeleton via :func:`~amplpy.DataFrame.setColumn` or adding columns (including indexing columns) via :func:`~amplpy.DataFrame.addColumn`. Modifying a DataFrame object can be done via :func:`~amplpy.DataFrame.setColumn` or, item by item, via :func:`~amplpy.DataFrame.setValue`. Accessing data in a DataFrame can be done row by row using :func:`~amplpy.DataFrame.getRow` or by column via :func:`~amplpy.DataFrame.getColumn`. """ def __init__(self, index, columns=tuple(), **kwargs): """ Create a new DataFrame with specifed index and column headers. Args: index: Index column; columns: Column headers. """ if index is not None: if isinstance(index, basestring): index = (index,) if isinstance(columns, basestring): columns = (columns,) index_names = [ col[0] if isinstance(col, tuple) else col for col in index ] column_names = [ col[0] if isinstance(col, tuple) else col for col in columns ] self._impl = amplpython.DataFrame.factory( len(index_names), list(index_names) + list(column_names), len(index_names) + len(column_names) ) for col in index: if isinstance(col, tuple): self.setColumn(col[0], col[1]) for col in columns: if isinstance(col, tuple): self.setColumn(col[0], col[1]) else: self._impl = kwargs.get('_impl', None) def __iter__(self): # FIXME: C++ iterators for dataframes not working with SWIG. return (self.getRowByIndex(i) for i in range(self.getNumRows())) def getNumCols(self): """ Get the total number of columns in this dataframe (indexarity + number of values). Returns: The number of columns. """ return self._impl.getNumCols() def getNumRows(self): """ Get the number of data rows in this dataframe. Returns: The number of rows. """ return self._impl.getNumRows() def getNumIndices(self): """ Get the number of indices (the indexarity) of this dataframe. Returns: The number of indices needed to access one row of this dataframe. """ return self._impl.getNumIndices() def addRow(self, *value): """ Add a row to the DataFrame. The size of the tuple must be equal to the total number of columns in the dataframe. Args: value: A single argument with a tuple containing all the values for the row to be added, or multiple arguments with the values for each column. """ if len(value) == 1 and isinstance(value[0], (tuple, list)): value = value[0] assert len(value) == self.getNumCols() self._impl.addRow(Tuple(value)._impl) def addColumn(self, header, values=[]): """ Add a new column with the corresponding header and values to the dataframe. Args: header: The name of the new column. values: A list of size :func:`~amplpy.DataFrame.getNumRows` with all the values of the new column. """ if len(values) == 0: self._impl.addColumn(header) else: assert len(values) == self.getNumRows() if any(isinstance(value, basestring) for value in values): values = list(map(str, values)) self._impl.addColumnStr(header, values) elif all(isinstance(value, Real) for value in values): values = list(map(float, values)) self._impl.addColumnDbl(header, values) else: raise NotImplementedError def getColumn(self, header): """ Get the specified column as a view object. Args: header: The header of the column. """ return Column(self._impl.getColumn(header)) def setColumn(self, header, values): """ Set the values of a column. Args: header: The header of the column to be set. values: The values to set. """ if any(isinstance(value, basestring) for value in values): values = list(map(str, values)) self._impl.setColumnStr(header, values, len(values)) elif all(isinstance(value, Real) for value in values): values = list(map(float, values)) self._impl.setColumnDbl(header, values, len(values)) else: print(values) raise NotImplementedError def getRow(self, key): """ Get a row by value of the indexing columns. If the index is not specified, gets the only row of a dataframe with no indexing columns. Args: key: Tuple representing the index of the desired row. Returns: The row. """ return Row(self._impl.getRow(Tuple(key)._impl)) def getRowByIndex(self, index): """ Get row by numeric index. Args: index: Zero-based index of the row to get. Returns: The corresponding row. """ assert isinstance(index, int) return Row(self._impl.getRowByIndex(index)) def getHeaders(self): """ Get the headers of this DataFrame. Returns: The headers of this DataFrame. """ headers = self._impl.getHeaders() return tuple( headers.getIndex(i) for i in range(self._impl.getNumCols()) ) def setValues(self, values): """ Set the values of a DataFrame from a dictionary. Args: values: Dictionary with the values to set. """ ncols = self.getNumCols() nindices = self.getNumIndices() for key, value in values.items(): key = Utils.convToList(key) assert len(key) == nindices value = Utils.convToList(value) assert len(value) == ncols-nindices self.addRow(key + value) def toDict(self): """ Return a dictionary with the DataFrame data. """ d = {} nindices = self.getNumIndices() for i in range(self.getNumRows()): row = list(self.getRowByIndex(i)) if nindices > 1: key = tuple(row[:nindices]) elif nindices == 1: key = row[0] else: key = None if len(row) - nindices == 0: d[key] = None elif len(row) - nindices == 1: d[key] = row[nindices] else: d[key] = tuple(row[nindices:]) return d def toList(self): """ Return a list with the DataFrame data. """ if self.getNumCols() > 1: return [ tuple(self.getRowByIndex(i)) for i in range(self.getNumRows()) ] else: return [ self.getRowByIndex(i)[0] for i in range(self.getNumRows()) ] def toPandas(self): """ Return a pandas DataFrame with the DataFrame data. """ assert pd is not None nindices = self.getNumIndices() headers = self.getHeaders() columns = { header: list(self.getColumn(header)) for header in headers[nindices:] } index = zip(*[ list(self.getColumn(header)) for header in headers[:nindices] ]) index = [key if len(key) > 1 else key[0] for key in index] if index == []: return pd.DataFrame(columns, index=None) else: return pd.DataFrame(columns, index=index) @classmethod def fromDict(cls, dic, index_names=None, column_names=None): """ Create a :class:`~amplpy.DataFrame` from a dictionary. Args: dic: dictionary to load. index_names: index names to use. column_names: column names to use. """ assert isinstance(dic, dict) assert len(dic) != 0 def to_tuple(e): if isinstance(e, (tuple, list)): return tuple(e) else: return (e,) lst_index = list(map(to_tuple, dic.keys())) lst_columns = list(map(to_tuple, dic.values())) nindices, ncolumns = len(lst_index[0]), len(lst_columns[0]) assert index_names is None or nindices == len(index_names) assert column_names is None or ncolumns == len(column_names) assert all(len(k) == nindices for k in lst_index) assert all(len(v) == ncolumns for v in lst_columns) index = zip(*lst_index) columns = zip(*lst_columns) if index_names is None: index_names = ['index{}'.format(i) for i in range(nindices)] if column_names is None: column_names = ['value{}'.format(i) for i in range(ncolumns)] index = [ (index_names[i], cindex) for i, cindex in enumerate(zip(*lst_index)) ] columns = [ (column_names[i], column) for i, column in enumerate(zip(*lst_columns)) ] return cls(index=index, columns=columns) @classmethod def fromPandas(cls, df, index_names=None): """ Create a :class:`~amplpy.DataFrame` from a pandas DataFrame. Args: df: Pandas DataFrame to load. index_names: index names to use. """ assert pd is not None if isinstance(df, pd.Series): df =
pd.DataFrame(df)
pandas.DataFrame
''' Group enabled ANPNetwork class and supporting classes. ''' from pyanp.pairwise import Pairwise from pyanp.prioritizer import Prioritizer, PriorityType from pyanp.general import islist, unwrap_list, get_matrix, matrix_as_df from typing import Union import pandas as pd from copy import deepcopy from pyanp.limitmatrix import normalize, calculus, priority_from_limit import numpy as np import re from pyanp.rating import Rating class ANPNode: ''' A node inside a cluster, inside a netowrk. The basic building block of an ANP netowrk. :param network: An ANPNetwork object that this node lives inside. :param cluster: An ANPCluster object that this node lives inside. :param name: The name of this node. ''' def __init__(self, network, cluster, name:str): self.name = name self.cluster = cluster self.network = network self.node_prioritizers = {} self.subnetwork = None self.invert = False def is_node_cluster_connection(self, dest_cluster:str)->bool: ''' Is this node connected to a cluster. :param dest_cluster: The name of the cluster :return: True/False ''' if dest_cluster in self.node_prioritizers: return True else: return False def node_connect(self, dest_node)->None: '''' Make a node connection from this node to dest_node :param dest_node: The destination node as a str, int, or ANPNode. It can be a list of nodes, and then we will coonect each node from this node. The dest_node should be in any format accepted by ANPNetwork._get_node() ''' if islist(dest_node): for dn in dest_node: self.node_connect(dn) else: prioritizer = self.get_node_prioritizer(dest_node, create=True) prioritizer.add_alt(dest_node, ignore_existing=True) #Make sure parent clusters are connected src_cluster = self.cluster dest_cluster = self.network._get_node_cluster(dest_node) src_cluster.cluster_connect(dest_cluster) def get_node_prioritizer(self, dest_node, create=False, create_class=Pairwise, dest_is_cluster=False)->Prioritizer: ''' Gets the node prioritizer for the other_node :param dest_node: The node as a int, str, or ANPNode object. :return: The prioritizer if it exists, or None ''' if dest_is_cluster: dest_cluster = self.network.cluster_obj(dest_node) dest_name = dest_cluster.name else: dest_cluster = self.network._get_node_cluster(dest_node) dest_name = dest_cluster.name if dest_name not in self.node_prioritizers: if create: prioritizer = create_class() self.node_prioritizers[dest_name] = prioritizer return prioritizer else: return None else: return self.node_prioritizers[dest_name] def is_node_node_connection(self, dest_node)->bool: ''' Checks if there is a node connection from this node to dest_node :param dest_node: The node as a int, str, or ANPNode object. :return: ''' pri = self.get_node_prioritizer(dest_node) if pri is None: return False elif not pri.is_alt(dest_node): return False else: return True def get_unscaled_column(self, username=None)->pd.Series: ''' Returns the column in the unscaled supermatrix for this node. :param username: The user/users to do this for. Typical Prioritizer calculation usage, i.e. None means do for all group average. :return: A pandas series indexed by the node names. ''' nnodes = self.network.nnodes() rval = pd.Series(data=[0.0]*nnodes, index=self.network.node_names()) prioritizer:Prioritizer for prioritizer in self.node_prioritizers.values(): vals = prioritizer.priority(username, PriorityType.NORMALIZE) for alt, val in vals.iteritems(): rval[alt] = val return rval def data_names(self, append_to=None): ''' Used when exporting an Excel header for a network, for its data. :param append_to: If not None, append header strings to this list. Otherwise we create a new list to append to. :return: List of strings of comparison name headers. If append_to is not None, we return append_to with the new string headers appended. ''' if append_to is None: append_to = [] pri:Prioritizer for pri in self.node_prioritizers.values(): pri.data_names(append_to, post_pend="wrt "+self.name) return append_to def set_node_prioritizer_type(self, destNode, prioritizer_class): ''' Sets the node prioritizer type :param destNode: An ANPNode object, string, or integer location :param prioritizer_class: The new type :return: None ''' pri = self.get_node_prioritizer(destNode, create_class=prioritizer_class) if not isinstance(pri, prioritizer_class): #Wrong type, get alts from this one, and create correct one rval = prioritizer_class() rval.add_alt(pri.alt_names()) dest_cluster = self.network._get_node_cluster(destNode) dest_name = dest_cluster.name self.node_prioritizers[dest_name] = rval else: pass class ANPCluster: ''' A cluster in an ANP object :param network: The ANPNetowrk object this cluster is in. :param name: The name of the cluster to create. ''' def __init__(self, network, name:str): self.prioritizer = Pairwise() self.name = name self.network = network # The list of ANP nodes in this cluster self.nodes = {} def add_node(self, *nodes)->None: """ Adds one or more nodes :param nodes: A vararg list of node names to add to this cluster. The names should all be strings. :return: Nonthing """ nodes = unwrap_list(nodes) if islist(nodes): for node in nodes: if isinstance(node, str): self.add_node(node) else: self.nodes[nodes] = ANPNode(self.network, self, nodes) def nnodes(self)->int: """ :return: The number of nodes in this cluster. """ return len(self.nodes) def is_node(self, node_name:str)->bool: ''' Does a node by that name exist in this cluster :param node_name: The name of the node to look for :return: True/False ''' return node_name in self.nodes def node_obj(self, node_name): """ Get a node in this cluster. :param node_name: The node as either a string name, integer position, or simply the ANPObject, in which case there is nothing to do except return it. :return: ANPNode object. If it wasn't found, None is returned. """ if isinstance(node_name, ANPNode): return node_name else: return get_item(self.nodes, node_name) def node_names(self)->list: ''' :return: List of the string names of the nodes in this cluster ''' return list(self.nodes.keys()) def node_objs(self)->list: ''' :return: List of the ANPNode objects in this cluster. ''' return self.nodes.values() def cluster_connect(self, dest_cluster)->None: """ Make a cluster->cluster connection from this node to the destination. :param dest_cluster: Either the ANPCluster object to connect to, or the name of the destination cluster. :return: """ if isinstance(dest_cluster, ANPCluster): dest_cluster_name = dest_cluster.name else: dest_cluster_name = dest_cluster self.prioritizer.add_alt(dest_cluster_name, ignore_existing=True) def set_prioritizer_type(self, prioritizer_class)->None: ''' Sets the cluster prioritizer type :param prioritizer_class: The new type :return: None ''' pri = self.prioritizer if not isinstance(pri, prioritizer_class): #Wrong type, get alts from this one, and create correct one rval = prioritizer_class() rval.add_alt(pri.alt_names()) self.prioritizer = rval else: pass def data_names(self, append_to=None): ''' Used when exporting an Excel header for a network, for its data. :param append_to: If not None, append header strings to this list. Otherwise we create a new list to append to. :return: List of strings of comparison name headers. If append_to is not None, we return append_to with the new string headers appended. ''' if append_to is None: append_to = [] if self.prioritizer is not None: self.prioritizer.data_names(append_to, post_pend="wrt "+self.name) return append_to def get_item(tbl:dict, key): """ Looks up an item in a dictionary by key first, assuming the key is in the dictionary. Otherwise, it checks if the key is an integer, and returns the item in that position. :param tbl: The dictionary to look in :param key: The key, or integer position to get the item of :return: The item, or it not found, None """ if key in tbl: return tbl[key] elif not isinstance(key, int): return None # We have an integer key by this point if key < 0: return None elif key >= len(tbl): return None else: count = 0 for rval in tbl.values(): if count == key: return rval count+=1 #Should never make it here raise ValueError("Shouldn't happen in anp.get_item") __CLEAN_SPACES_RE = re.compile('\\s+') def clean_name(name:str)->str: """ Cleans up a string for usage by: 1. stripping off begging and ending spaces 2. All spaces convert to one space 3. \t and \n are treated like a space :param name: The string name to be cleaned :return: The cleaned name. """ rval = name.strip() return __CLEAN_SPACES_RE.sub(string=rval, repl=' ') def sum_subnetwork_formula(priorities:pd.Series, dict_of_series:dict): """ A function that takes the weighted sum of values. Used for synthesis. :param priorities: Series whose index are the nodes with subnetworks and values are their weights. :param dict_of_series: A dictionary whose keys are the same as the keys of priorities, i.e. the nodes with subnetworks. The values are Series whose keys are alternative names and values are the synthesized alternative scores under that subnetwork. :return: """ subpriorities = priorities[dict_of_series.keys()] if sum(subpriorities) != 0: subpriorities /= sum(subpriorities) rval = pd.Series() counts = pd.Series(dtype=int) for subnet_name, vals in dict_of_series.items(): priority = subpriorities[subnet_name] for alt_name, val in vals.iteritems(): if alt_name in rval: rval[alt_name] += val * priority counts[alt_name] += priority else: rval[alt_name] = val counts[alt_name] = priority # Now let's calculate the averages for alt_name, val in rval.iteritems(): if counts[alt_name] > 0: rval[alt_name] /= counts[alt_name] return rval class ANPNetwork(Prioritizer): ''' Represents an ANP prioritizer. Has clusters/nodes, comparisons, etc. :param create_alts_cluster: If True (which is the default) we start with a cluster that is the alternatives cluster. Otherwise the model starts empty. ''' def __init__(self, create_alts_cluster=True): self.clusters = {} if create_alts_cluster: cl = self.add_cluster("Alternatives") self.alts_cluster = cl self.users=[] self.limitcalc = calculus self.subnet_formula = sum_subnetwork_formula self.default_priority_type = None def add_cluster(self, *args)->ANPCluster: ''' Adds one or more clusters to a network :param args: Can be either a single string, or a list of strings :return: ANPCluster object or list of ANPCluster objects ''' clusters = unwrap_list(args) if islist(clusters): rval = [] for cl in clusters: rval.append(self.add_cluster(cl)) return rval else: #Adding a single cluster cl = ANPCluster(self, clusters) self.clusters[clusters] = cl return cl def cluster_names(self)->list: ''' :return: List of string names of the clusters ''' return list(self.clusters.keys()) def nclusters(self)->int: ''' :return: The number of clusters in the network. ''' return len(self.clusters) def cluster_obj(self, cluster_info:Union[ANPCluster, str])->ANPCluster: ''' Returns the cluster with given information :param cluster_info: Either the name of the cluster object to get or the cluster object, or its int position :return: The ANPCluster object ''' if isinstance(cluster_info, ANPCluster): return cluster_info else: return get_item(self.clusters, cluster_info) def add_node(self, cl, *nodes): ''' Adds nodes to a cluster :param cl: The cluster name or object :param nodes: The name or names of the nodes :return: Nothing ''' cluster = self.cluster_obj(cl) cluster.add_node(nodes) def nnodes(self, cluster=None)->int: """ Returns the number of nodes in the network, or a cluster. :param cluster: If None, we return the number of nodes in the network. Otherwise this is the integer position, string name, or ANPCluster object of the cluster to get the node count within. :return: The count. """ if cluster is None: rval = pd.Series() for cname, cluster in self.clusters.items(): rval[cname] = cluster.nnodes() return sum(rval) else: clobj = self.cluster_obj(cluster) return clobj.nnodes() def add_alt(self, alt_name:str): """ Adds an alternative to the model: 1. Adds the altenrative to alts_cluster if not None 2. For each node with a subnetwork, we add the alternative to that subnetwork. :param alt_name: The name of the alternative to add :return: Nothing """ if self.alts_cluster is not None: self.add_node(self.alts_cluster, alt_name) # We should add this alternative to each subnetwork for node in self.node_objs_with_subnet(): node.subnetwork.add_alt(alt_name) def is_user(self, uname)->bool: ''' Checks if a user exists :param uname: The name of the user to check for :return: bool ''' return uname in self.users def is_alt(self, altname)->bool: ''' Checks if an alternative exists :param altname: The alterantive name to look for :return: bool ''' return self.alts_cluster.is_node(altname) def add_user(self, uname, ignore_dupe=False): ''' Adds a user to the system :param uname: The name of the new user :return: Nothing :raise ValueError If the user already existed ''' if islist(uname): for un in uname: self.add_user(un, ignore_dupe=ignore_dupe) return if self.is_user(uname): if not ignore_dupe: raise ValueError("User by the name "+uname+" already existed") else: return self.users.append(uname) def nusers(self)->int: ''' :return: The number of users ''' return len(self.users) def user_names(self)->list: ''' :return: List of names of the users ''' return deepcopy(self.users) def node_obj(self, node_name)->ANPNode: ''' Gets the ANPNode object of the node with the given name :param node_name: The name of the node to get, or it's overall integer position, or the ANPNode object itself :return: The ANPNode if it exists, or None ''' if isinstance(node_name, ANPNode): return node_name elif isinstance(node_name, int): #Reference by integer node_pos = node_name node_count = 0 for cluster in self.clusters.values(): rel_pos = node_pos - node_count if rel_pos < cluster.nnodes(): return cluster.node_obj(rel_pos) #If we make it here, we were out of bounds return None #Okay handle string node name cluster: ANPCluster for cname, cluster in self.clusters.items(): rval = cluster.node_obj(node_name) if rval is not None: return rval #Made it here, the node didn't exist return None def _get_node_cluster(self, node)->ANPCluster: ''' Gets the ANPCluster object a node lives in :param node: The name/integer positions, or ANPNode object itself. See node_obj() method for more details. :return: The ANPCluster object this node lives in, or None if it doesn't exist. ''' n = self.node_obj(node) if n is None: # Could not find the node return None return n.cluster def node_connect(self, src_node, dest_node): ''' connects 2 nodes :param src_node: Source node as prescribed by node_object() function :param dest_node: Destination node as prescribed by node_object() function :return: Nothing ''' src = self.node_obj(src_node) src.node_connect(dest_node) def node_names(self, cluster=None)->list: ''' Returns a list of nodes in this network, organized by cluster :param cluster: If None, we get all nodes in network, else we get nodes in that cluster, otherwise format as specified by cluster_obj() function. :return: List of strs of node names ''' if cluster is not None: cl = self.cluster_obj(cluster) return cl.node_names() rval = [] cl:ANPCluster for cl in self.clusters.values(): cnodes = cl.node_names() for name in cnodes: rval.append(name) return rval def node_objs(self)->list: ''' Returns a list of ANPNodes in this network, organized by cluster :return: List of strs of node names ''' rval = [] cl:ANPCluster for cl in self.clusters.values(): cnodes = cl.node_objs() for name in cnodes: rval.append(name) return rval def cluster_objs(self)->list: """ :return: List of ANPCluster objects in the network """ return list(self.clusters.values()) def node_connections(self)->np.ndarray: """ Returns the node conneciton matrix for this network. :return: A numpy array of shape [nnode, nnodes] where item [row, col] 1 means there is a node connection from col -> row, and 0 means no connection. """ nnodes = self.nnodes() nnames = self.node_names() rval = np.zeros([nnodes, nnodes]) src_node:ANPNode for src in range(nnodes): srcname = nnames[src] src_node = self.node_obj(srcname) for dest in range(nnodes): dest_name = nnames[dest] if src_node.is_node_node_connection(dest_name): rval[dest,src]=1 return rval def unscaled_supermatrix(self, username=None, as_df=False)->np.array: ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param as_df: If True, returns as a dataframe with index and column names as the names of the nodes in the network. Otherwise just returns the array. :return: The unscaled supermatrix as a numpy.array of shape [nnode, nnodes] ''' nnodes = self.nnodes() rval = np.zeros([nnodes, nnodes]) nodes = self.node_objs() col = 0 node:ANPNode for node in nodes: rval[:,col] = node.get_unscaled_column(username) col += 1 if not as_df: return rval else: return matrix_as_df(rval, self.node_names()) def scaled_supermatrix(self, username=None, as_df=False)->np.ndarray: ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param as_df: If True, returns as a dataframe with index and column names as the names of the nodes in the network. Otherwise just returns the array. :return: The scaled supermatrix ''' rval = self.unscaled_supermatrix(username) # Now I need to normalized by cluster weights clusters = self.cluster_objs() nclusters = len(clusters) col = 0 for col_cp in range(nclusters): col_cluster:ANPCluster = clusters[col_cp] row_nnodes = col_cluster.nnodes() cluster_pris = col_cluster.prioritizer.priority(username, PriorityType.NORMALIZE) row_offset = 0 for col_node in col_cluster.node_objs(): row=0 for row_cp in range(nclusters): row_cluster:ANPCluster = clusters[row_cp] row_cluster_name = row_cluster.name if row_cluster_name in cluster_pris: priority = cluster_pris[row_cluster_name] else: priority = 0 for row_node in row_cluster.node_objs(): rval[row, col] *= priority row += 1 col += 1 normalize(rval, inplace=True) if not as_df: return rval else: return matrix_as_df(rval, self.node_names()) def global_priority(self, username=None)->pd.Series: ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :return: The global priorities Series, index by node name ''' lm = self.limit_matrix(username) rval = priority_from_limit(lm) node_names = self.node_names() return pd.Series(data=rval, index=node_names) def global_priority_df(self, user_infos=None)->pd.DataFrame: ''' :param user_infos: A list of users to do this for, if None is a part of this list, it means group average. If None, it defaults to None plus all users. :return: The global priorities dataframe. Rows are the nodes and columns are the users. The first user/column is the Group Average ''' if user_infos is None: user_infos = list(self.user_names()) user_infos.insert(0, None) rval = pd.DataFrame() for user in user_infos: if user is None: uname = "Group Average" else: uname = user rval[uname] = self.global_priority(user) return rval def limit_matrix(self, username=None, as_df=False): ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param as_df: If True, returns as a dataframe with index and column names as the names of the nodes in the network. Otherwise just returns the array. :return: The limit supermatrix ''' sm = self.scaled_supermatrix(username) rval = self.limitcalc(sm) if not as_df: return rval else: return matrix_as_df(rval, self.node_names()) def alt_names(self)->list: ''' :return: List of alt names in this ANP model ''' if self.has_subnet(): # We have some v1 subnetworks, we get alternative names by looking # there. rval = [] node: ANPNode for node in self.node_objs_with_subnet(): alts = node.subnetwork.alt_names() for alt in alts: if alt not in rval: rval.append(alt) return rval else: return self.alts_cluster.node_names() def priority(self, username=None, ptype:PriorityType=None)->pd.Series: ''' Synthesize and return the alternative scores :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param ptype: The priority type to use :return: A pandas.Series indexed on alt names, values are the score ''' if ptype is None: # Use the default priority type for this network ptype = self.default_priority_type if self.has_subnet(): # Need to synthesize using subnetworks return self.subnet_synthesize(username=username, ptype=ptype) else: gp = self.global_priority(username) alt_names = self.alt_names() rval = gp[alt_names] if sum(rval) != 0: rval /= sum(rval) if ptype is not None: rval = ptype.apply(rval) return rval def data_names(self): ''' Returns the column headers needed to fill in the data for this model :return: A list of strings that would be usable in excel for parsing headers ''' node:ANPNode rval = [] cluster: ANPCluster for cluster in self.cluster_objs(): cluster.data_names(rval) for node in self.node_objs(): node.data_names(rval) return rval def node_connection_matrix(self, new_mat:np.ndarray=None): ''' Returns the current node conneciton matrix if new_mat is None. Otherwise, for each item [row, col] in the matrix with a value of 1 we connect from node[row] to node[col]. :param new_mat: The new node connection matrix. If None, we return the current one. :return: Current connection matrix. ''' src_node:ANPNode nnodes = self.nnodes() nodes = self.node_objs() node_names = self.node_names() if new_mat is not None: for src_node_pos in range(nnodes): src_node = nodes[src_node_pos] for dest_node_pos in range(nnodes): if new_mat[dest_node_pos, src_node_pos] != 0: src_node.node_connect(node_names[dest_node_pos]) rval = np.zeros([nnodes, nnodes]) for src_node_pos in range(nnodes): src_node = nodes[src_node_pos] for dest_node_pos in range(nnodes): if src_node.is_node_node_connection(node_names[dest_node_pos]): rval[dest_node_pos, src_node_pos] = 1 return rval def import_pw_series(self, series:pd.Series)->None: ''' Takes in a well titled series of data, and pushes it into the right node's prioritizer (or cluster). The name should be A vs B wrt C, where A, B, C are node or cluster names. :param series: The series of data for each user. Index is usernames. Values are the votes. :return: Nothing ''' name = series.name name = clean_name(name) info = name.split(' wrt ') if len(info) < 2: # We cannot do anything with this, we need a wrt raise ValueError("No wrt in "+name) wrt = info[1].strip() wrtNode:ANPNode wrtNode = self.node_obj(wrt) info = info[0].split( ' vs ') if len(info) < 2: raise ValueError(" vs was not present in "+name) row, col = info rowNode = self.node_obj(row) colNode = self.node_obj(col) npri: Pairwise if (wrtNode is not None) and (rowNode is not None) and (colNode is not None): # Node pairwise npri = wrtNode.get_node_prioritizer(rowNode, create=True) #print("Node comparison "+name) if not isinstance(npri, Pairwise): raise ValueError("Node prioritizer was not pairwise") npri.vote_series(series, row, col, createUnknownUser=True) self.add_user(series.index, ignore_dupe=True) else: # Try cluster pairwise wrtcluster = self.cluster_obj(wrt) rowcluster = self.cluster_obj(row) colcluster = self.cluster_obj(col) if wrtcluster is None: raise ValueError("wrt="+wrt+" was not a cluster, and the group was not a node comparison") if rowcluster is None: raise ValueError("row="+row+" was not a cluster, and the group was not a node comparison") if colcluster is None: raise ValueError("col="+col+" was not a cluster, and the group was not a node comparison") npri = self.cluster_prioritizer(wrtcluster) npri.vote_series(series, row, col, createUnknownUser=True) self.add_user(series.index, ignore_dupe=True) #print("Cluster comparison "+name) def set_alts_cluster(self, new_cluster): ''' Sets the new alternatives cluster :param new_cluster: Cluster specified as cluster_obj() expects. :return: Nothing ''' cl = self.cluster_obj(new_cluster) self.alts_cluster = cl def import_rating_series(self, series:pd.Series): ''' Takes in a well titled series of data, and pushes it into the right node's prioritizer as ratings (or cluster). Title should be A wrt B, where A and B are either both node names or both column names. :param series: The series of data for each user. Index is usernames. Values are the votes. :return: Nothing ''' name = series.name name = clean_name(name) info = name.split(' wrt ') if len(info) < 2: # We cannot do anything with this, we need a wrt raise ValueError("No wrt in "+name) wrt = info[1].strip() dest = info[0].strip() wrtNode:ANPNode destNode:ANPNode wrtNode = self.node_obj(wrt) destNode = self.node_obj(dest) npri:Rating if (wrtNode is not None) and (destNode is not None): # Node ratings npri = wrtNode.get_node_prioritizer(destNode, create=True, create_class=Rating) if not isinstance(npri, Rating): wrtNode.set_node_prioritizer_type(destNode, Rating) npri = wrtNode.get_node_prioritizer(destNode, create=True) npri.vote_column(votes=series, alt_name=dest, createUnknownUsers=True) else: # Trying cluster ratings wrtcluster = self.cluster_obj(wrt) destcluster = self.cluster_obj(dest) if wrtcluster is None: raise ValueError("Ratings: wrt is not a cluster wrt="+wrt+" and wasn't a node either") if destcluster is None: raise ValueError("Ratings: dest is not a cluster dest="+dest+" and wasn't a node either") npri = wrtcluster.prioritizer if not isinstance(npri, Rating): wrtcluster.set_prioritizer_type(Rating) npri = wrtcluster.prioritizer npri.vote_column(votes=series, alt_name=dest, createUnknownUsers=True) def node_prioritizer(self, wrtnode=None, cluster=None): ''' Gets the prioritizer for node->cluster connection :param wrtnode: The node as understood by node_obj() function. :param cluster: Cluster as understood by cluster_obj() function. :return: If both wrtnode and cluster are specified, a single node prioritizer is returned for that comparison (or None if there was nothing there). Otherwise it returns a dictionary indexed by [wrtnode, cluster] and whose values are the prioritizers for that (only the non-None ones). ''' if wrtnode is not None and cluster is not None: node = self.node_obj(wrtnode) cl_obj = self.cluster_obj(cluster) cluster_name = cl_obj.name return node.get_node_prioritizer(dest_node=cluster_name, dest_is_cluster=True) elif wrtnode is not None: # Have wrtnode, do not have cluster rval = {} for cluster in self.cluster_names(): pri = self.node_prioritizer(wrtnode, cluster) if pri is not None: rval[(wrtnode, cluster)] = pri return rval elif cluster is not None: # Have cluster, but not wrtnode rval = {} for wrtnode in self.node_names(): pri = self.node_prioritizer(wrtnode, cluster) if pri is not None: rval[(wrtnode, cluster)] = pri return rval else: # Both wrtnode and cluster are none, want all rval = {} for wrtnode in self.node_names(): for cluster in self.cluster_names(): pri = self.node_prioritizer(wrtnode, cluster) if pri is not None: rval[(wrtnode, cluster)] = pri return rval def subnet(self, wrtnode): ''' Makes wrtnode have a subnetwork if it did not already. :param wrtnode: The node to give a subnetwork to, or get the subnetwork of. Node specified as node_obj() function expects. :return: The ANPNetwork that is the subnet of this node ''' node = self.node_obj(wrtnode) if node.subnetwork is not None: return node.subnetwork else: rval = ANPNetwork(create_alts_cluster=False) node.subnetwork = rval rval.default_priority_type = PriorityType.IDEALIZE return rval def node_invert(self, node, value=None): ''' Either sets, or tells if a node is inverted :param node: The node to do this on, as expected by node_obj() function :param value: If None, we return the boolean about if this node is inverted. Otherwise specifies the new value. :return: T/F if value=None, telling if the node is inverted. Otherwise returns nothing. ''' node = self.node_obj(node) if value is None: return node.invert else: node.invert = value def has_subnet(self)->bool: ''' :return: True/False telling if some node had a subentwork ''' for node in self.node_objs(): if node.subnetwork is not None: return True return False def subnet_synthesize(self, username=None, ptype:PriorityType=None): ''' Does the standard V1 subnetowrk synthesis. :param username: The user/users to synthesize for. If None, we group synthesize across all. If a single user, we sythesize for that user across all. If it is a list, we synthesize for the group that is that list of users. :return: Nothing ''' # First we need our global priorities pris = self.global_priority(username) # Next we need the alternative priorities from each subnetwork subnets = {} node:ANPNode for node in self.node_objs_with_subnet(): p = node.subnetwork.priority(username, ptype) if node.invert: p = self.invert_priority(p) subnets[node.name]=p rval = self.synthesize_combine(pris, subnets) if ptype is not None: rval = ptype.apply(rval) return rval def node_objs_with_subnet(self): """ :return: List of ANPNode objects in this network that have v1 subnets """ return [node for node in self.node_objs() if node.subnetwork is not None] def invert_priority(self, p): """ Makes a copy of the list like element p, and inverts. The current standard inversion is 1-p. There could be others implemented later. :param p: The list like to invert :return: New list-like of same type as p, with inverted priorities """ rval = deepcopy(p) for i in range(len(p)): rval[i] = 1 - rval[i] return rval def synthesize_combine(self, priorities:pd.Series, alt_scores:dict): """ Performs the actual sythesis step from anp v1 synthesis. :param priorities: Priorities of the subnetworks :param alt_scores: Alt scores as dictionary, keys are subnetwork names values are Series whose keys are alt names. :return: Series whose keys are alt names, and whose values are the synthesized scores. """ return self.subnet_formula(priorities, alt_scores) def cluster_prioritizer(self, wrtcluster=None): """ Gets the prioritizer for the clusters wrt a given cluster. :param wrtcluster: WRT cluster identifier as expected by cluster_obj() function. If None, then we return a dictionary indexed by cluster names and values are the prioritizers :return: THe prioritizer for that cluster, or a dictionary of all cluster prioritizers """ if wrtcluster is not None: cluster = self.cluster_obj(wrtcluster) return cluster.prioritizer else: rval = {} for cluster in self.cluster_objs(): rval[cluster.name] = cluster.prioritizer return rval def to_excel(self, fname): struct = pd.DataFrame() cluster:ANPCluster writer = pd.ExcelWriter(fname, engine='openpyxl') for cluster in self.cluster_objs(): cluster_name = cluster.name if cluster == self.alts_cluster: cluster_name = "*"+str(cluster_name) struct[cluster_name] = cluster.node_names() struct.to_excel(writer, sheet_name="struct", index=False) # Now the node connections mat = self.node_connection_matrix() pd.DataFrame(mat).to_excel(writer, sheet_name="connection", index=False, header=False) # Lastly let's write just the comparison structure cmp = self.data_names() pd.DataFrame({"":cmp}).to_excel(writer, sheet_name="votes", index=False, header=True) writer.save() writer.close() def cluster_incon_std_df(self, user_infos=None) -> pd.DataFrame: """ :param user_infos: A list of users to do this for, if None is a part of this list, it means group average. If None, it defaults to None plus all users. :return: DataFrame whose columns are clusters, rows are users (as controlled by user_infos params) and the value is the inconsistency for the given user on the given comparison. """ if user_infos is None: user_infos = list(self.user_names()) user_infos.insert(0, None) rval = pd.DataFrame() # We need the name for the group (i.e. None) to be something useful) for cluster, pw in self.cluster_prioritizer().items(): if isinstance(pw, Pairwise): incon = [pw.incon_std(user) for user in user_infos] rval[cluster] = pd.Series(incon, index=user_infos) if None in rval.index: rval = rval.rename( lambda x: x if x is not None else "Group Average") return rval def node_incon_std_df(self, user_infos=None)->pd.DataFrame: """ :param user_infos: A list of users to do this for, if None is a part of this list, it means group average. If None, it defaults to None plus all users. :return: DataFrame whose columns are (node,cluster) pairs, rows are users (as controlled by user_infos params) and the value is the inconsistency for the given user on the given comparison. """ if user_infos is None: user_infos = list(self.user_names()) user_infos.insert(0, None) rval = pd.DataFrame() # We need the name for the group (i.e. None) to be something useful) for info, pw in self.node_prioritizer().items(): if isinstance(pw, Pairwise): incon = [pw.incon_std(user) for user in user_infos] rval[info] = pd.Series(incon, index=user_infos) if None in rval.index: rval = rval.rename(lambda x: x if x is not None else "Group Average") return rval def set_pairwise_from_supermatrix(self, mat, username="Imported"): """ Sets up all pairwise comparisons from supermatrix :param mat: As numpy array :return: Nothing """ node_names = self.node_names() nnodes = len(node_names) ## Handle node pairwise comparisons first for wrtnode_pos in range(nnodes): wrtnode = node_names[wrtnode_pos] offset=0 cluster_offsets = [] for cluster in self.cluster_names(): cluster_nodes = self.node_names(cluster) npri:Pairwise npri = self.node_prioritizer(wrtnode, cluster) if npri is not None and isinstance(npri, Pairwise): nclusternodes=len(cluster_nodes) for node_row_pos in range(nclusternodes): for node_col_pos in range(node_row_pos+1, nclusternodes): rownode = cluster_nodes[node_row_pos] colnode = cluster_nodes[node_col_pos] vr = mat[offset+node_row_pos, wrtnode_pos] vc = mat[offset+node_col_pos, wrtnode_pos] #print("wrt="+wrtnode+" "+str(vr)+", "+str(vc)+": "+rownode+", "+colnode) if vr!=0 and vc!= 0: val = vr/vc npri.vote(username, rownode, colnode, val, createUnknownUser=True) cluster_offsets.append(range(offset, offset+len(cluster_nodes))) offset+=len(cluster_nodes) ## Handle cluster pairwise comparisons now cluster_names = self.cluster_names() nclusters = len(cluster_names) for wrt_cluster_pos in range(nclusters): node_range = cluster_offsets[wrt_cluster_pos] matrix_cols:np.ndarray matrix_cols = mat[:,node_range] avg_cols = matrix_cols.mean(axis=1) cluster_pris = np.array([0.0]*nclusters) for other_cluster_pos in range(nclusters): cluster_pris[other_cluster_pos]=0 for node_pos in cluster_offsets[other_cluster_pos]: cluster_pris[other_cluster_pos]+=avg_cols[node_pos] #Now we have cluster priorities, now we can compare cpri:Pairwise cpri = self.cluster_obj(wrt_cluster_pos).prioritizer for row_cluster_pos in range(nclusters): for col_cluster_pos in range(row_cluster_pos+1, nclusters): rowcluster = cluster_names[row_cluster_pos] colcluster = cluster_names[col_cluster_pos] vr = cluster_pris[row_cluster_pos] vc = cluster_pris[col_cluster_pos] if vr!=0 and vc!=0: val = vr/vc cpri.vote(username, rowcluster, colcluster, val, createUnknownUser=True) def unscaled_structurematrix(self, username=None, as_df=False, add_self_connections=False): rval = self.unscaled_supermatrix(username=username) for row in rval: for i in range(len(row)): if row[i] != 0: row[i] = 1 if add_self_connections: for i in range(len(rval)): row = rval[i] if len(row) > i: row[i] = 1 return rval def scaled_structurematrix(self, username=None, as_df=False): rval = self.unscaled_structurematrix(username=username, as_df=False) normalize(rval, inplace=True) return self._node_matrix_as_df(rval, as_df) def limit_structurematrix(self, username=None, as_df=False): rval = self.scaled_structurematrix(username=username, as_df=as_df) rval = self.limitcalc(rval) return self._node_matrix_as_df(rval, as_df) def structure_global_priority(self, username=None): lm = self.limit_structurematrix(username) rval = priority_from_limit(lm) node_names = self.node_names() return pd.Series(data=rval, index=node_names) def _node_matrix_as_df(self, matrix, as_df=False): if not as_df: return matrix else: return matrix_as_df(matrix, self.node_names()) def structure_priority(self, username=None, ptype:PriorityType=None, alt_names=None)->pd.Series: ''' ''' if ptype is None: # Use the default priority type for this network ptype = self.default_priority_type gp = self.structure_global_priority(username) if alt_names is None: alt_names = self.alt_names() rval = gp[alt_names] if sum(rval) != 0: rval /= sum(rval) if ptype is not None: rval = ptype.apply(rval) return rval def structure_cluster_priority(self, username=None, ptype:PriorityType=None, mean=False)->pd.Series: gp = self.structure_global_priority(username) cluster_names = self.cluster_names() nclusters = self.nclusters() rval = pd.Series(data=[0.0]*nclusters, index=cluster_names) for cluster in cluster_names: count=0 for node in self.node_names(cluster): rval[cluster]+=gp[node] count+=1 if mean and count > 0: rval[cluster]/=count return rval __PW_COL_REGEX = re.compile('\\s+vs\\s+.+\\s+wrt\\s+') def is_pw_col_name(col:str)->bool: """ Checks to see if the name matches the naming convention for a pairwise comparison, i.e. A vs B wrt C :param col: The title of the column to check :return: T/F """ if col is None: return False elif isinstance(col, (float, int)) and np.isnan(col): return False else: return __PW_COL_REGEX.search(col) is not None __RATING_COL_REGEX = re.compile('\\s+wrt\\s+') def is_rating_col_name(col:str)->bool: """ Checks to see if the name matches the naming convention for a rating column of data, i.e. A wrt B :param col: The name of the column :return: T/F """ if col is None: return False elif isinstance(col, (float, int)) and np.isnan(col): return False elif is_pw_col_name(col): return False else: return __RATING_COL_REGEX.search(col) is not None def anp_manual_scales_from_excel(anp:ANPNetwork, excel_fname): """ Parses manual rating scales from an Excel file :param anp: The model to put the scale values in. :param excel_fname: The string file name of the excel file with the data :return: Nothing """ xl = pd.ExcelFile(excel_fname) if "scales" not in xl.sheet_names: # We have no scales, do nothing return # Scales exist, read in df = xl.parse(sheet_name="scales") for scale_info in df: # See if it has a wrt and whatnot pieces = scale_info.split(" wrt ") if len(pieces) == 2: # Found one cluster = pieces[0].strip() wrtnode = pieces[1].strip() scale_data = {} for item in df[scale_info]: name, val = str(item).split("=") name = name.lower().strip() val = float(val) scale_data[name]=[val] rating:Rating rating = anp.node_prioritizer(wrtnode, cluster) #print(scale_data) rating.set_word_eval(scale_data) # We are done! def anp_from_excel(excel_fname:str)->ANPNetwork: """ Parses an excel file to get an ANPNetwork :param excel_fname: The name of the excel file :return: The newly created ANPNetwork object """ ## Structure first df = pd.read_excel(excel_fname, sheet_name=0) anp = ANPNetwork(create_alts_cluster=False) for col in df: if col.startswith("*"): is_alt = True cname = col[1:len(col)] else: is_alt = False cname = col anp.add_cluster(cname) anp.add_node(cname, df[col]) if is_alt: anp.set_alts_cluster(cname) ## Now conneciton data conn_mat = get_matrix(excel_fname, sheet=1) #print(conn_mat) #print(conn_mat) #print(conn_mat.shape) anp.node_connection_matrix(conn_mat) #If the matrix is full of floating points, we assume it is a scaled supermatrix if conn_mat.dtype == np.dtype('float'): anp.set_pairwise_from_supermatrix(conn_mat) ## Now pairwise data xl = pd.ExcelFile(excel_fname) if len(xl.sheet_names) <= 2: # No pairwise data, please stop return anp df =
pd.read_excel(excel_fname, sheet_name=2)
pandas.read_excel
''' Author: <NAME> @License: MIT, See License.txt at root of project. Method calls to this object serve the purpose of preparing data for the model and saving/loading the scale used to train the model. The same scale must be used to standardise data used for predicitions which is why this is important. There also exists a method for performing PCA analysis on data. ''' import pandas as pd import numpy as np import random from sklearn.model_selection import train_test_split #splitting up data for testing from sklearn import preprocessing #standardisation of data from sklearn.externals import joblib #saving/loading the scale used for standardising the data during training from sklearn.decomposition import PCA #principal component analysis import random class Standardiser: def __init__(self): pass #load in data, then standardise and split it for training/testing. def initialise(self): print("standardiser initialising") self.data = self.loadData() self.X_train, self.X_test, self.y_train, self.y_test = self.splitData(self.data) self.std_scale, self.X_train_std, self.X_test_std = self.standardise(self.X_train, self.X_test, self.y_train, self.y_test) #getter functions for retreiving split standardised data def get_std_X_train(self): return self.X_train_std def get_std_X_test(self): return self.X_test_std def get_y_train(self): return self.y_train def get_y_test(self): return self.y_test #read in the data as a pandas dataframe. ignore the first row (headers) and only use columns PCA deemed good for training on. def loadData(self): df = pd.io.parsers.read_csv( 'Data/NewBalanced.csv', header=None, skiprows = [0], usecols=[5,10,15,17,18,19,20,22]) return df #loads in Darkskies weather predictions for the coming week. def loadForecast(self,forecast_loc): #load in forecast csv self.foredf = pd.io.parsers.read_csv( forecast_loc, header=None, skiprows = [0], usecols=[1,2,3,4,5,6,7,8,9]) X_forecast = self.foredf.values[:,3:] X_forecast = self.standardise_Pred(X_forecast) return X_forecast #split data into training and testing samples def splitData(self, data): X = data.values[:,:7] y = data.values[:,7] #split the data into training and testing data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=random.randint(10,100000)) return X_train, X_test, y_train, y_test #standardise the data and save the scale it was standardised on. def standardise(self, X_train, X_test, y_train, y_test): #standardisation using sklearn self.std_scale = preprocessing.StandardScaler().fit(X_train) X_train_std = self.std_scale.transform(X_train) X_test_std = self.std_scale.transform(X_test) self.saveScale() return self.std_scale, X_train_std, X_test_std #standardises data readin for prediction def standardise_Pred(self, X_forecast): X_forecast_std = self.std_scale.transform(X_forecast) return X_forecast_std #performs PCA on the traning data. def PCAan(self, X_train_std, X_test_std, y_train): pca_std = PCA(n_components=2).fit(X_train_std) X_train_std = pca_std.transform(X_train_std) X_test_std = pca_std.transform(X_test_std) return pca_std, X_train_std, X_test_std #appends forecast predictions (both class and probability based) to the svm input csv and then produces a new svmoutput csv def make_CSV(self, fore_pred, fore_prob,outputfile): print("make_CSV") forearray = self.foredf.values.tolist() i = 0 for element in forearray: element.append(fore_pred[i]) element.append(fore_prob[i][1]) i +=1 df =
pd.DataFrame(forearray)
pandas.DataFrame
import pandas as pd import numpy as np # import tensorflow as tf import tensorflow.compat.v1 as tf def data_prepare(): tf.disable_v2_behavior() ratings_df = pd.read_csv('./ml-latest-small/ratings.csv') ratings_df.tail() movies_df = pd.read_csv('./ml-latest-small/movies.csv') movies_df.tail() movies_df['movieRow'] = movies_df.index movies_df.tail() movies_df = movies_df[['movieRow', 'movieId', 'title']] movies_df.to_csv('./ml-latest-small/moviesProcessed.csv', index=False, header=True, encoding='utf-8') movies_df.tail() ratings_df =
pd.merge(ratings_df, movies_df, on='movieId')
pandas.merge