prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd from functions import downloadECBBonds # The path to the folder in the S3 bucket in which the data is stored eikon_data_folder = "https://s3groupsweden.s3.eu-central-1.amazonaws.com/Data/EIKON/" # Get dataframes with the data in the files holdingsECBEnvironment.txt and holdingsECBGeneralInfo.txt def get_eikon_data_general(): eikon_data_environment =
pd.read_csv(eikon_data_folder+"holdingsECBEnvironment.txt",sep="\t")
pandas.read_csv
# Copyright (c) 2021, salesforce.com, inc. # All rights reserved. # Licensed under the BSD 3-Clause license. # For full license text, see the LICENSE file in the repo root # or https://opensource.org/licenses/BSD-3-Clause """ Additional utils """ import csv import json import pandas as pd from colorama import Fore, Back from tabulate import tabulate OK_GREEN = "\033[92m" GREY = "\33[90m" END = "\033[0m" def print_yellow(string): """Print yellow text""" print(f"{Fore.YELLOW}{string}{END}") def print_green(string): """Print green text""" print(f"{Fore.GREEN}{string}{END}") def print_grey(string): """Print grey text""" print(f"{Fore.GREY}{string}{END}") def print_red(string): """Print red text""" print(f"{Fore.RED}{string}{END}") def convert_red(string): """Return red text""" return f"{Fore.RED}{string}{END}" def convert_green(string): """Return green text""" return f"{Fore.GREEN}{string}{END}" def convert_yellow(string): """Return green text""" return f"{Fore.YELLOW}{string}{END}" def pretty_grid_keys(output: dict): """Print grid keys from dictionary""" df =
pd.DataFrame(output)
pandas.DataFrame
import pandas as pd import numpy as np from statsmodels.formula.api import ols from swstats import * from scipy.stats import ttest_ind import xlsxwriter from statsmodels.stats.multitest import multipletests from statsmodels.stats.proportion import proportions_ztest debugging = False def pToSign(pval): if pval < .001: return "***" elif pval < .01: return "**" elif pval < .05: return "*" elif pval < .1: return "+" else: return "" def analyzeExperiment_ContinuousVar(dta, varName): order_value_control_group = dta.loc[dta.surveyArm == "arm1_control", varName] order_value_arm2_group = dta.loc[dta.surveyArm == "arm2_written_techniques", varName] order_value_arm3_group = dta.loc[dta.surveyArm == "arm3_existingssa", varName] order_value_arm4_group = dta.loc[dta.surveyArm == "arm4_interactive_training", varName] # Arm 1 arm1mean = np.mean(order_value_control_group) arm1sd = np.std(order_value_control_group) arm1text = "" + "{:.2f}".format(arm1mean) + " (" + "{:.2f}".format(arm1sd) + ")" # Effect of Arm 2 arm2mean = np.mean(order_value_arm2_group) arm2sd = np.std(order_value_arm2_group) tscore, pval2 = ttest_ind(order_value_control_group, order_value_arm2_group) arm2sign = pToSign(pval2) arm2text = "" + "{:.2f}".format(arm2mean) + " (" + "{:.2f}".format(arm2sd) + ")" + arm2sign + " p:" + "{:.3f}".format(pval2) # Effect of Arm 3 arm3mean = np.mean(order_value_arm3_group) arm3sd = np.std(order_value_arm3_group) tscore, pval3 = ttest_ind(order_value_control_group, order_value_arm3_group) arm3sign = pToSign(pval3) arm3text = "" + "{:.2f}".format(arm3mean) + " (" + "{:.2f}".format(arm3sd) + ")" + arm3sign + " p:" + "{:.3f}".format(pval3) # Effect of Arm 4 arm4mean = np.mean(order_value_arm4_group) arm4sd = np.std(order_value_arm4_group) tscore, pval4 = ttest_ind(order_value_control_group, order_value_arm4_group) arm4sign = pToSign(pval4) arm4text = "" + "{:.2f}".format(arm4mean) + " (" + "{:.2f}".format(arm4sd) + ")" + arm4sign + " p:" + "{:.3f}".format(pval4) # Correct P-values y = multipletests(pvals=[pval2, pval3, pval4], alpha=0.05, method="holm") # print(len(y[1][np.where(y[1] < 0.05)])) # y[1] returns corrected P-vals (array) sigWithCorrection = y[1] < 0.05 if sigWithCorrection[0]: arm2text = arm2text + ",#" if sigWithCorrection[1]: arm3text = arm3text + ",#" if sigWithCorrection[2]: arm4text = arm4text + ",#" # Additional checks tscore, pval2to4 = ttest_ind(order_value_arm2_group, order_value_arm4_group) arm2to4sign = pToSign(pval2to4) arm2to4text = "" + "{:.2f}".format(arm4mean - arm2mean) + " " + arm2to4sign + " p:" + "{:.3f}".format(pval2to4) tscore, pval3to4 = ttest_ind(order_value_arm3_group, order_value_arm4_group) arm3to4sign = pToSign(pval3to4) arm3to4text = "" + "{:.2f}".format(arm4mean - arm3mean) + " " + arm3to4sign + " p:" + "{:.3f}".format(pval3to4) results = {"Outcome": varName, "Arm1": arm1text, "Arm2": arm2text, "Arm3": arm3text, "Arm4": arm4text, "Arm2To4": arm2to4text, "Arm3To4": arm3to4text, } return results def analyzeExperiment_BinaryVar(dta, varName): order_value_control_group = dta.loc[dta.surveyArm == "arm1_control", varName] order_value_arm2_group = dta.loc[dta.surveyArm == "arm2_written_techniques", varName] order_value_arm3_group = dta.loc[dta.surveyArm == "arm3_existingssa", varName] order_value_arm4_group = dta.loc[dta.surveyArm == "arm4_interactive_training", varName] # Arm 1 arm1Successes = sum(order_value_control_group.isin([True, 1])) arm1Count = sum(order_value_control_group.isin([True, False, 1, 0])) arm1PercentSuccess = arm1Successes/arm1Count arm1text = "" + "{:.2f}".format(arm1PercentSuccess) + " (" + "{:.0f}".format(arm1Successes) + ")" # Effect of Arm 2 arm2Successes = sum(order_value_arm2_group.isin([True, 1])) arm2Count = sum(order_value_arm2_group.isin([True, False, 1, 0])) arm2PercentSuccess = arm2Successes/arm2Count zstat, pval2 = proportions_ztest(count=[arm1Successes,arm2Successes], nobs=[arm1Count,arm2Count], alternative='two-sided') arm2sign = pToSign(pval2) arm2text = "" + "{:.2f}".format(arm2PercentSuccess) + " (" + "{:.0f}".format(arm2Successes) + ")" + arm2sign + " p:" + "{:.3f}".format(pval2) # Effect of Arm 3 arm3Successes = sum(order_value_arm3_group.isin([True, 1])) arm3Count = sum(order_value_arm3_group.isin([True, False, 1, 0])) arm3PercentSuccess = arm3Successes/arm3Count zstat, pval3 = proportions_ztest(count=[arm1Successes,arm3Successes], nobs=[arm1Count,arm3Count], alternative='two-sided') arm3sign = pToSign(pval3) arm3text = "" + "{:.2f}".format(arm3PercentSuccess) + " (" + "{:.0f}".format(arm3Successes) + ")" + arm3sign + " p:" + "{:.3f}".format(pval3) # Effect of Arm 4 arm4Successes = sum(order_value_arm4_group.isin([True, 1])) arm4Count = sum(order_value_arm4_group.isin([True, False, 1, 0])) arm4PercentSuccess = arm4Successes/arm4Count zstat, pval4 = proportions_ztest(count=[arm1Successes,arm4Successes], nobs=[arm1Count,arm4Count], alternative='two-sided') arm4sign = pToSign(pval4) arm4text = "" + "{:.2f}".format(arm4PercentSuccess) + " (" + "{:.0f}".format(arm4Successes) + ")" + arm4sign + " p:" + "{:.3f}".format(pval4) # Correct P-values y = multipletests(pvals=[pval2, pval3, pval4], alpha=0.05, method="holm") # print(len(y[1][np.where(y[1] < 0.05)])) # y[1] returns corrected P-vals (array) sigWithCorrection = y[1] < 0.05 if sigWithCorrection[0]: arm2text = arm2text + ",#" if sigWithCorrection[1]: arm3text = arm3text + ",#" if sigWithCorrection[2]: arm4text = arm4text + ",#" # Additional checks zstat, pval2to4 = proportions_ztest(count=[arm2Successes,arm4Successes], nobs=[arm2Count,arm4Count], alternative='two-sided') arm2to4sign = pToSign(pval2to4) arm2to4text = "" + "{:.2f}".format(arm4PercentSuccess - arm2PercentSuccess) + " " + arm2to4sign + " p:" + "{:.3f}".format(pval2to4) zstat, pval3to4 = proportions_ztest(count=[arm3Successes,arm4Successes], nobs=[arm3Count,arm4Count], alternative='two-sided') arm3to4sign = pToSign(pval3to4) arm3to4text = "" + "{:.2f}".format(arm4PercentSuccess - arm3PercentSuccess) + " " + arm3to4sign + " p:" + "{:.3f}".format(pval3to4) results = {"Outcome": varName, "Arm1": arm1text, "Arm2": arm2text, "Arm3": arm3text, "Arm4": arm4text, "Arm2To4": arm2to4text, "Arm3To4": arm3to4text, } return results def analyzeResults(dta, outputFileName, scoringVars, surveyVersion, primaryOnly=True): if primaryOnly: dta = dta[dta.IsPrimaryWave].copy() dataDir = "C:/Dev/src/ssascams/data/" ''' Analyze the answers''' writer = pd.ExcelWriter(dataDir + 'RESULTS_' + outputFileName + '.xlsx', engine='xlsxwriter') # ############### # Export summary stats # ############### demographicVars = ['trustScore', 'TotalIncome', 'incomeAmount', 'Race', 'race5', 'employment3', 'educYears', 'Married', 'marriedI', 'Age', 'ageYears', 'Gender', 'genderI'] allSummaryVars = ["percentCorrect", "surveyArm", "Wave", "daysFromTrainingToTest"] + scoringVars + demographicVars summaryStats = dta[allSummaryVars].describe() summaryStats.to_excel(writer, sheet_name="summary_FullPop", startrow=0, header=True, index=True) grouped = dta[allSummaryVars].groupby(["surveyArm"]) summaryStats = grouped.describe().unstack().transpose().reset_index() summaryStats.rename(columns={'level_0' :'VarName', 'level_1' :'Metric'}, inplace=True) summaryStats.sort_values(['VarName', 'Metric'], inplace=True) summaryStats.to_excel(writer, sheet_name="summary_ByArm", startrow=0, header=True, index=False) if ~primaryOnly: grouped = dta[allSummaryVars].groupby(["surveyArm", "Wave"]) summaryStats = grouped.describe().unstack().transpose().reset_index() summaryStats.rename(columns={'level_0' :'VarName', 'level_1' :'Metric'}, inplace=True) summaryStats.sort_values(['Wave','VarName', 'Metric'], inplace=True) # grouped.describe().reset_index().pivot(index='name', values='score', columns='level_1') summaryStats.to_excel(writer, sheet_name="summary_ByArmAndWave", startrow=0, header=True, index=False) # summaryStats.to_csv(dataDir + "RESULTS_" + outputFileName + '.csv') # ############### # RQ1: What is the effect? # ############### row1 = analyzeExperiment_ContinuousVar(dta, "numCorrect") row2 = analyzeExperiment_ContinuousVar(dta, "numFakeLabeledReal") row3 = analyzeExperiment_ContinuousVar(dta, "numRealLabeledFake") row4 = analyzeExperiment_ContinuousVar(dta, "percentCorrect")
pd.DataFrame([row1, row2, row3, row4])
pandas.DataFrame
from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from itertools import product import units import moments def _format_obs_history(obs_history, field, save_to_disk=None): """ Parameters ---------- obs_history : Pandas.DataFrame field : Pandas.DataFrame save_to_disk : str Note ---- We use the dithered RA, Dec and express all positions in arcsec. Returns ------- DataFrame obs_history, formatted with new column conventions and units """ # Join with Field table obs_history =
pd.merge(obs_history, field, left_on='Field_fieldID', right_on='fieldID')
pandas.merge
import pandas as pd #designed to be run from the root folder of the project # read in raw datasets df =
pd.read_csv("data/raw/world-data-gapminder_raw.csv")
pandas.read_csv
""" Preprocess sites scripts. Written by <NAME>. Winter 2020 """ import os import configparser import json import csv import math import glob import pandas as pd import geopandas as gpd import pyproj from shapely.geometry import Polygon, MultiPolygon, mapping, shape, MultiLineString, LineString from shapely.ops import transform, unary_union, nearest_points import fiona from fiona.crs import from_epsg import rasterio from rasterio.mask import mask from rasterstats import zonal_stats import networkx as nx from rtree import index import numpy as np import random CONFIG = configparser.ConfigParser() CONFIG.read(os.path.join(os.path.dirname(__file__), 'script_config.ini')) BASE_PATH = CONFIG['file_locations']['base_path'] DATA_RAW = os.path.join(BASE_PATH, 'raw') DATA_INTERMEDIATE = os.path.join(BASE_PATH, 'intermediate') DATA_PROCESSED = os.path.join(BASE_PATH, 'processed') def find_country_list(continent_list): """ This function produces country information by continent. Parameters ---------- continent_list : list Contains the name of the desired continent, e.g. ['Africa'] Returns ------- countries : list of dicts Contains all desired country information for countries in the stated continent. """ glob_info_path = os.path.join(BASE_PATH, 'global_information.csv') countries = pd.read_csv(glob_info_path, encoding = "ISO-8859-1") countries = countries[countries.exclude != 1] if len(continent_list) > 0: data = countries.loc[countries['continent'].isin(continent_list)] else: data = countries output = [] for index, country in data.iterrows(): output.append({ 'country_name': country['country'], 'iso3': country['ISO_3digit'], 'iso2': country['ISO_2digit'], 'regional_level': country['lowest'], 'region': country['region'] }) return output def process_coverage_shapes(country): """ Load in coverage maps, process and export for each country. Parameters ---------- country : string Three digit ISO country code. """ iso3 = country['iso3'] iso2 = country['iso2'] technologies = [ 'GSM', '3G', '4G' ] for tech in technologies: folder_coverage = os.path.join(DATA_INTERMEDIATE, iso3, 'coverage') filename = 'coverage_{}.shp'.format(tech) path_output = os.path.join(folder_coverage, filename) if os.path.exists(path_output): continue print('----') print('Working on {} in {}'.format(tech, iso3)) filename = 'Inclusions_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_MCE') inclusions = gpd.read_file(os.path.join(folder, filename)) if iso2 in inclusions['CNTRY_ISO2']: filename = 'MCE_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_MCE') coverage = gpd.read_file(os.path.join(folder, filename)) coverage = coverage.loc[coverage['CNTRY_ISO3'] == iso3] else: filename = 'OCI_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_OCI') coverage = gpd.read_file(os.path.join(folder, filename)) coverage = coverage.loc[coverage['CNTRY_ISO3'] == iso3] if len(coverage) > 0: print('Dissolving polygons') coverage['dissolve'] = 1 coverage = coverage.dissolve(by='dissolve', aggfunc='sum') coverage = coverage.to_crs('epsg:3857') print('Excluding small shapes') coverage['geometry'] = coverage.apply(clean_coverage,axis=1) print('Removing empty and null geometries') coverage = coverage[~(coverage['geometry'].is_empty)] coverage = coverage[coverage['geometry'].notnull()] print('Simplifying geometries') coverage['geometry'] = coverage.simplify( tolerance = 0.005, preserve_topology=True).buffer(0.0001).simplify( tolerance = 0.005, preserve_topology=True ) coverage = coverage.to_crs('epsg:4326') if not os.path.exists(folder_coverage): os.makedirs(folder_coverage) coverage.to_file(path_output, driver='ESRI Shapefile') return #print('Processed coverage shapes') def process_regional_coverage(country): """ This functions estimates the area covered by each cellular technology. Parameters ---------- country : dict Contains specific country parameters. Returns ------- output : dict Results for cellular coverage by each technology for each region. """ level = country['regional_level'] iso3 = country['iso3'] gid_level = 'GID_{}'.format(level) filename = 'regions_{}_{}.shp'.format(level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path) technologies = [ 'GSM', '3G', '4G' ] output = {} for tech in technologies: folder = os.path.join(DATA_INTERMEDIATE, iso3, 'coverage') path = os.path.join(folder, 'coverage_{}.shp'.format(tech)) if os.path.exists(path): coverage = gpd.read_file(path, encoding="utf-8") segments = gpd.overlay(regions, coverage, how='intersection') tech_coverage = {} for idx, region in segments.iterrows(): area_km2 = round(area_of_polygon(region['geometry']) / 1e6) tech_coverage[region[gid_level]] = area_km2 output[tech] = tech_coverage return output def get_regional_data(country): """ Extract regional data including luminosity and population. Parameters ---------- country : string Three digit ISO country code. """ iso3 = country['iso3'] level = country['regional_level'] gid_level = 'GID_{}'.format(level) path_output = os.path.join(DATA_INTERMEDIATE, iso3, 'regional_coverage.csv') if os.path.exists(path_output): return #print('Regional data already exists') path_country = os.path.join(DATA_INTERMEDIATE, iso3, 'national_outline.shp') coverage = process_regional_coverage(country) single_country = gpd.read_file(path_country) # print('----') # print('working on {}'.format(iso3)) path_settlements = os.path.join(DATA_INTERMEDIATE, iso3, 'settlements.tif') filename = 'regions_{}_{}.shp'.format(level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path) results = [] for index, region in regions.iterrows(): with rasterio.open(path_settlements) as src: affine = src.transform array = src.read(1) array[array <= 0] = 0 population_summation = [d['sum'] for d in zonal_stats( region['geometry'], array, stats=['sum'], nodata=0, affine=affine)][0] area_km2 = round(area_of_polygon(region['geometry']) / 1e6) if 'GSM' in [c for c in coverage.keys()]: if region[gid_level] in coverage['GSM']: coverage_GSM_km2 = coverage['GSM'][region[gid_level]] else: coverage_GSM_km2 = 0 else: coverage_GSM_km2 = 0 if '3G' in [c for c in coverage.keys()]: if region[gid_level] in coverage['3G']: coverage_3G_km2 = coverage['3G'][region[gid_level]] else: coverage_3G_km2 = 0 else: coverage_3G_km2 = 0 if '4G' in [c for c in coverage.keys()]: if region[gid_level] in coverage['4G']: coverage_4G_km2 = coverage['4G'][region[gid_level]] else: coverage_4G_km2 = 0 else: coverage_4G_km2 = 0 results.append({ 'GID_0': region['GID_0'], 'GID_id': region[gid_level], 'GID_level': gid_level, # 'mean_luminosity_km2': luminosity_summation / area_km2 if luminosity_summation else 0, 'population': population_summation, # 'pop_under_10_pop': pop_under_10_pop, 'area_km2': area_km2, 'population_km2': population_summation / area_km2 if population_summation else 0, # 'pop_adults_km2': ((population_summation - pop_under_10_pop) / # area_km2 if pop_under_10_pop else 0), 'coverage_GSM_percent': round(coverage_GSM_km2 / area_km2 * 100 if coverage_GSM_km2 else 0, 1), 'coverage_3G_percent': round(coverage_3G_km2 / area_km2 * 100 if coverage_3G_km2 else 0, 1), 'coverage_4G_percent': round(coverage_4G_km2 / area_km2 * 100 if coverage_4G_km2 else 0, 1), }) # print('Working on backhaul') backhaul_lut = estimate_backhaul(iso3, country['region'], '2025') # print('Working on estimating sites') results = estimate_sites(results, iso3, backhaul_lut) results_df = pd.DataFrame(results) results_df.to_csv(path_output, index=False) # print('Completed {}'.format(single_country.NAME_0.values[0])) return #print('Completed night lights data querying') def find_pop_under_10(region, iso3): """ Find the estimated population under 10 years old. Parameters ---------- region : pandas series The region being modeled. iso3 : string ISO3 country code. Returns ------- population : int Population sum under 10 years of age. """ path = os.path.join(DATA_INTERMEDIATE, iso3, 'under_10') all_paths = glob.glob(path + '/*.tif') population = [] for path in all_paths: with rasterio.open(path) as src: affine = src.transform array = src.read(1) array[array <= 0] = 0 population_summation = [d['sum'] for d in zonal_stats( region['geometry'], array, stats=['sum'], nodata=0, affine=affine)][0] if population_summation is not None: population.append(population_summation) return sum(population) def estimate_sites(data, iso3, backhaul_lut): """ Estimate the sites by region. Parameters ---------- data : dataframe Pandas df with regional data. iso3 : string ISO3 country code. backhaul_lut : dict Lookup table of backhaul composition. Returns ------- output : list of dicts All regional data with estimated sites. """ output = [] existing_site_data_path = os.path.join(DATA_INTERMEDIATE, iso3, 'sites', 'sites.csv') existing_site_data = {} if os.path.exists(existing_site_data_path): site_data = pd.read_csv(existing_site_data_path) site_data = site_data.to_dict('records') for item in site_data: existing_site_data[item['GID_id']] = item['sites'] population = 0 for region in data: if region['population'] == None: continue population += int(region['population']) path = os.path.join(DATA_RAW, 'wb_mobile_coverage', 'wb_population_coverage_2G.csv') coverage = pd.read_csv(path, encoding='latin-1') coverage = coverage.loc[coverage['Country ISO3'] == iso3] if len(coverage) > 1: coverage = coverage['2020'].values[0] else: coverage = 0 population_covered = population * (coverage / 100) path = os.path.join(DATA_RAW, 'real_site_data', 'site_counts.csv') towers = pd.read_csv(path, encoding = "ISO-8859-1") towers = towers.loc[towers['iso3'] == iso3] towers = towers['sites'].values[0] if np.isnan(towers): towers = 0 towers_per_pop = 0 else: towers_per_pop = towers / population_covered tower_backhaul_lut = estimate_backhaul_type(backhaul_lut) data = sorted(data, key=lambda k: k['population_km2'], reverse=True) covered_pop_so_far = 0 for region in data: #first try to use actual data if len(existing_site_data) > 0: sites_estimated_total = existing_site_data[region['GID_id']] if region['area_km2'] > 0: sites_estimated_km2 = sites_estimated_total / region['area_km2'] else: sites_estimated_km2 = 0 #or if we don't have data estimates of sites per area else: if covered_pop_so_far < population_covered: sites_estimated_total = region['population'] * towers_per_pop sites_estimated_km2 = region['population_km2'] * towers_per_pop else: sites_estimated_total = 0 sites_estimated_km2 = 0 backhaul_fiber = 0 backhaul_copper = 0 backhaul_wireless = 0 backhaul_satellite = 0 for i in range(1, int(round(sites_estimated_total)) + 1): num = random.uniform(0, 1) if num <= tower_backhaul_lut['fiber']: backhaul_fiber += 1 elif tower_backhaul_lut['fiber'] < num <= tower_backhaul_lut['copper']: backhaul_copper += 1 elif tower_backhaul_lut['copper'] < num <= tower_backhaul_lut['microwave']: backhaul_wireless += 1 elif tower_backhaul_lut['microwave'] < num: backhaul_satellite += 1 output.append({ 'GID_0': region['GID_0'], 'GID_id': region['GID_id'], 'GID_level': region['GID_level'], # 'mean_luminosity_km2': region['mean_luminosity_km2'], 'population': region['population'], # 'pop_under_10_pop': region['pop_under_10_pop'], 'area_km2': region['area_km2'], 'population_km2': region['population_km2'], # 'pop_adults_km2': region['pop_adults_km2'], 'coverage_GSM_percent': region['coverage_GSM_percent'], 'coverage_3G_percent': region['coverage_3G_percent'], 'coverage_4G_percent': region['coverage_4G_percent'], 'total_estimated_sites': sites_estimated_total, 'total_estimated_sites_km2': sites_estimated_km2, 'sites_3G': sites_estimated_total * (region['coverage_3G_percent'] /100), 'sites_4G': sites_estimated_total * (region['coverage_4G_percent'] /100), 'backhaul_fiber': backhaul_fiber, 'backhaul_copper': backhaul_copper, 'backhaul_wireless': backhaul_wireless, 'backhaul_satellite': backhaul_satellite, }) if region['population'] == None: continue covered_pop_so_far += region['population'] return output def estimate_backhaul(iso3, region, year): """ Get the correct backhaul composition for the region. Parameters ---------- iso3 : string ISO3 country code. region : string The continent the country is part of. year : int The year of the backhaul composition desired. Returns ------- output : list of dicts All regional data with estimated sites. """ output = [] path = os.path.join(BASE_PATH, 'raw', 'gsma', 'backhaul.csv') backhaul_lut = pd.read_csv(path) backhaul_lut = backhaul_lut.to_dict('records') for item in backhaul_lut: if region == item['Region'] and int(item['Year']) == int(year): output.append({ 'tech': item['Technology'], 'percentage': int(item['Value']), }) return output def estimate_backhaul_type(backhaul_lut): """ Process the tower backhaul lut. Parameters ---------- backhaul_lut : dict Lookup table of backhaul composition. Returns ------- output : dict Tower backhaul lookup table. """ output = {} preference = [ 'fiber', 'copper', 'microwave', 'satellite' ] perc_so_far = 0 for tech in preference: for item in backhaul_lut: if tech == item['tech'].lower(): perc = item['percentage'] output[tech] = (perc + perc_so_far) / 100 perc_so_far += perc return output def area_of_polygon(geom): """ Returns the area of a polygon. Assume WGS84 before converting to projected crs. Parameters ---------- geom : shapely geometry A shapely geometry object. Returns ------- poly_area : int Area of polygon in square kilometers. """ geod = pyproj.Geod(ellps="WGS84") poly_area, poly_perimeter = geod.geometry_area_perimeter( geom ) return abs(int(poly_area)) def length_of_line(geom): """ Returns the length of a linestring. Assume WGS84 as crs. Parameters ---------- geom : shapely geometry A shapely geometry object. Returns ------- total_length : int Length of the linestring given in kilometers. """ geod = pyproj.Geod(ellps="WGS84") total_length = geod.line_length(*geom.xy) return abs(int(total_length)) def estimate_numers_of_sites(linear_regressor, x_value): """ Function to predict the y value from the stated x value. Parameters ---------- linear_regressor : object Linear regression object. x_value : float The stated x value we want to use to predict y. Returns ------- result : float The predicted y value. """ if not x_value == 0: result = linear_regressor.predict(x_value) result = result[0,0] else: result = 0 return result def exclude_small_shapes(x): """ Remove small multipolygon shapes. Parameters --------- x : polygon Feature to simplify. Returns ------- MultiPolygon : MultiPolygon Shapely MultiPolygon geometry without tiny shapes. """ # if its a single polygon, just return the polygon geometry if x.geometry.geom_type == 'Polygon': return x.geometry # if its a multipolygon, we start trying to simplify # and remove shapes if its too big. elif x.geometry.geom_type == 'MultiPolygon': area1 = 0.01 area2 = 50 # dont remove shapes if total area is already very small if x.geometry.area < area1: return x.geometry # remove bigger shapes if country is really big if x['GID_0'] in ['CHL','IDN']: threshold = 0.01 elif x['GID_0'] in ['RUS','GRL','CAN','USA']: threshold = 0.01 elif x.geometry.area > area2: threshold = 0.1 else: threshold = 0.001 # save remaining polygons as new multipolygon for # the specific country new_geom = [] for y in x.geometry: if y.area > threshold: new_geom.append(y) return MultiPolygon(new_geom) def clean_coverage(x): """ Cleans the coverage polygons by remove small multipolygon shapes. Parameters --------- x : polygon Feature to simplify. Returns ------- MultiPolygon : MultiPolygon Shapely MultiPolygon geometry without tiny shapes. """ # if its a single polygon, just return the polygon geometry if x.geometry.geom_type == 'Polygon': if x.geometry.area > 1e7: return x.geometry # if its a multipolygon, we start trying to simplify and # remove shapes if its too big. elif x.geometry.geom_type == 'MultiPolygon': threshold = 1e7 # save remaining polygons as new multipolygon for # the specific country new_geom = [] for y in x.geometry: if y.area > threshold: new_geom.append(y) return MultiPolygon(new_geom) def estimate_core_nodes(iso3, pop_density_km2, settlement_size): """ This function identifies settlements which exceed a desired settlement size. It is assumed fiber exists at settlements over, for example, 20,000 inhabitants. Parameters ---------- iso3 : string ISO 3 digit country code. pop_density_km2 : int Population density threshold for identifying built up areas. settlement_size : int Overall sittelement size assumption, e.g. 20,000 inhabitants. Returns ------- output : list of dicts Identified major settlements as Geojson objects. """ path = os.path.join(DATA_INTERMEDIATE, iso3, 'settlements.tif') with rasterio.open(path) as src: data = src.read() threshold = pop_density_km2 data[data < threshold] = 0 data[data >= threshold] = 1 polygons = rasterio.features.shapes(data, transform=src.transform) shapes_df = gpd.GeoDataFrame.from_features( [ {'geometry': poly, 'properties':{'value':value}} for poly, value in polygons if value > 0 ], crs='epsg:4326' ) stats = zonal_stats(shapes_df['geometry'], path, stats=['count', 'sum']) stats_df = pd.DataFrame(stats) nodes = pd.concat([shapes_df, stats_df], axis=1).drop(columns='value') nodes = nodes[nodes['sum'] >= settlement_size] nodes['geometry'] = nodes['geometry'].centroid nodes = get_points_inside_country(nodes, iso3) output = [] for index, item in enumerate(nodes.to_dict('records')): output.append({ 'type': 'Feature', 'geometry': mapping(item['geometry']), 'properties': { 'network_layer': 'core', 'id': 'core_{}'.format(index), 'node_number': index, } }) return output def get_points_inside_country(nodes, iso3): """ Check settlement locations lie inside target country. Parameters ---------- nodes : dataframe A geopandas dataframe containing settlement nodes. iso3 : string ISO 3 digit country code. Returns ------- nodes : dataframe A geopandas dataframe containing settlement nodes. """ filename = 'national_outline.shp' path = os.path.join(DATA_INTERMEDIATE, iso3, filename) national_outline = gpd.read_file(path) bool_list = nodes.intersects(national_outline.unary_union) nodes = pd.concat([nodes, bool_list], axis=1) nodes = nodes[nodes[0] == True].drop(columns=0) return nodes def generate_agglomeration_lut(country): """ Generate a lookup table of agglomerations. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] regional_level = country['regional_level'] GID_level = 'GID_{}'.format(regional_level) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations') if not os.path.exists(folder): os.makedirs(folder) path_output = os.path.join(folder, 'agglomerations.shp') if os.path.exists(path_output): return print('Agglomeration processing has already completed') print('Working on {} agglomeration lookup table'.format(iso3)) filename = 'regions_{}_{}.shp'.format(regional_level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path, crs="epsg:4326") path_settlements = os.path.join(DATA_INTERMEDIATE, iso3, 'settlements.tif') settlements = rasterio.open(path_settlements, 'r+') settlements.nodata = 255 settlements.crs = {"epsg:4326"} folder_tifs = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations', 'tifs') if not os.path.exists(folder_tifs): os.makedirs(folder_tifs) for idx, region in regions.iterrows(): bbox = region['geometry'].envelope geo = gpd.GeoDataFrame() geo = gpd.GeoDataFrame({'geometry': bbox}, index=[idx]) coords = [json.loads(geo.to_json())['features'][0]['geometry']] #chop on coords out_img, out_transform = mask(settlements, coords, crop=True) # Copy the metadata out_meta = settlements.meta.copy() out_meta.update({"driver": "GTiff", "height": out_img.shape[1], "width": out_img.shape[2], "transform": out_transform, "crs": 'epsg:4326'}) path_output = os.path.join(folder_tifs, region[GID_level] + '.tif') with rasterio.open(path_output, "w", **out_meta) as dest: dest.write(out_img) print('Completed settlement.tif regional segmentation') nodes, missing_nodes = find_nodes(country, regions) missing_nodes = get_missing_nodes(country, regions, missing_nodes, 10, 10) nodes = nodes + missing_nodes nodes = gpd.GeoDataFrame.from_features(nodes, crs='epsg:4326') bool_list = nodes.intersects(regions['geometry'].unary_union) nodes = pd.concat([nodes, bool_list], axis=1) nodes = nodes[nodes[0] == True].drop(columns=0) agglomerations = [] print('Identifying agglomerations') for idx1, region in regions.iterrows(): seen = set() for idx2, node in nodes.iterrows(): if node['geometry'].intersects(region['geometry']): agglomerations.append({ 'type': 'Feature', 'geometry': mapping(node['geometry']), 'properties': { 'id': idx1, 'GID_0': region['GID_0'], GID_level: region[GID_level], 'population': node['sum'], } }) seen.add(region[GID_level]) if len(seen) == 0: agglomerations.append({ 'type': 'Feature', 'geometry': mapping(region['geometry'].centroid), 'properties': { 'id': 'regional_node', 'GID_0': region['GID_0'], GID_level: region[GID_level], 'population': 1, } }) agglomerations = gpd.GeoDataFrame.from_features( [ { 'geometry': item['geometry'], 'properties': { 'id': item['properties']['id'], 'GID_0':item['properties']['GID_0'], GID_level: item['properties'][GID_level], 'population': item['properties']['population'], } } for item in agglomerations ], crs='epsg:4326' ) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations') path_output = os.path.join(folder, 'agglomerations' + '.shp') agglomerations.to_file(path_output) agglomerations['lon'] = agglomerations['geometry'].x agglomerations['lat'] = agglomerations['geometry'].y agglomerations = agglomerations[['lon', 'lat', GID_level, 'population']] agglomerations.to_csv(os.path.join(folder, 'agglomerations.csv'), index=False) return print('Agglomerations layer complete') def process_existing_fiber(country): """ Load and process existing fiber data. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] iso2 = country['iso2'].lower() folder = os.path.join(DATA_INTERMEDIATE, iso3, 'network_existing') if not os.path.exists(folder): os.makedirs(folder) filename = 'core_edges_existing.shp' path_output = os.path.join(folder, filename) if os.path.exists(path_output): return print('Existing fiber already processed') path = os.path.join(DATA_RAW, 'afterfiber', 'afterfiber.shp') shape = fiona.open(path) data = [] for item in shape: if item['properties']['iso2'].lower() == iso2.lower(): if item['geometry']['type'] == 'LineString': if int(item['properties']['live']) == 1: data.append({ 'type': 'Feature', 'geometry': { 'type': 'LineString', 'coordinates': item['geometry']['coordinates'], }, 'properties': { 'operators': item['properties']['operator'], 'source': 'existing' } }) if item['geometry']['type'] == 'MultiLineString': if int(item['properties']['live']) == 1: try: geom = MultiLineString(item['geometry']['coordinates']) for line in geom: data.append({ 'type': 'Feature', 'geometry': mapping(line), 'properties': { 'operators': item['properties']['operator'], 'source': 'existing' } }) except: # some geometries are incorrect from data source # exclude to avoid issues pass if len(data) == 0: return print('No existing infrastructure') data = gpd.GeoDataFrame.from_features(data) data.to_file(path_output, crs='epsg:4326') return print('Existing fiber processed') def find_nodes_on_existing_infrastructure(country): """ Find those agglomerations which are within a buffered zone of existing fiber links. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] folder = os.path.join(DATA_INTERMEDIATE, iso3, 'network_existing') filename = 'core_nodes_existing.shp' path_output = os.path.join(folder, filename) if os.path.exists(path_output): return print('Already found nodes on existing infrastructure') else: if not os.path.dirname(path_output): os.makedirs(os.path.dirname(path_output)) path = os.path.join(folder, 'core_edges_existing.shp') if not os.path.exists(path): return print('No existing infrastructure') existing_infra = gpd.read_file(path, crs='epsg:4326') existing_infra = existing_infra.to_crs(epsg=3857) existing_infra['geometry'] = existing_infra['geometry'].buffer(5000) existing_infra = existing_infra.to_crs(epsg=4326) # shape_output = os.path.join(DATA_INTERMEDIATE, iso3, 'network', 'core_edges_buffered.shp') # existing_infra.to_file(shape_output, crs='epsg:4326') path = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations', 'agglomerations.shp') agglomerations = gpd.read_file(path, crs='epsg:4326') bool_list = agglomerations.intersects(existing_infra.unary_union) agglomerations = pd.concat([agglomerations, bool_list], axis=1) agglomerations = agglomerations[agglomerations[0] == True].drop(columns=0) agglomerations['source'] = 'existing' agglomerations.to_file(path_output, crs='epsg:4326') return print('Found nodes on existing infrastructure') def find_nodes(country, regions): """ Find key nodes. Parameters ---------- country : dict Contains all country specfic information. regions : dataframe All regions to be assessed. Returns ------- interim : list of dicts Contains geojson dicts for nodes. missing_nodes : list Contains the id of regions with missing nodes. """ iso3 = country['iso3'] regional_level = country['regional_level'] GID_level = 'GID_{}'.format(regional_level) threshold = country['pop_density_km2'] settlement_size = country['settlement_size'] folder_tifs = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations', 'tifs') interim = [] missing_nodes = set() print('Working on gathering data from regional rasters') for idx, region in regions.iterrows(): path = os.path.join(folder_tifs, region[GID_level] + '.tif') with rasterio.open(path) as src: data = src.read() data[data < threshold] = 0 data[data >= threshold] = 1 polygons = rasterio.features.shapes(data, transform=src.transform) shapes_df = gpd.GeoDataFrame.from_features( [ {'geometry': poly, 'properties':{'value':value}} for poly, value in polygons if value > 0 ], crs='epsg:4326' ) geojson_region = [ { 'geometry': region['geometry'], 'properties': { GID_level: region[GID_level] } } ] gpd_region = gpd.GeoDataFrame.from_features( [ {'geometry': poly['geometry'], 'properties':{ GID_level: poly['properties'][GID_level] }} for poly in geojson_region ], crs='epsg:4326' ) if len(shapes_df) == 0: continue nodes = gpd.overlay(shapes_df, gpd_region, how='intersection') stats = zonal_stats(shapes_df['geometry'], path, stats=['count', 'sum']) stats_df = pd.DataFrame(stats) nodes = pd.concat([shapes_df, stats_df], axis=1).drop(columns='value') nodes_subset = nodes[nodes['sum'] >= settlement_size] if len(nodes_subset) == 0: missing_nodes.add(region[GID_level]) for idx, item in nodes_subset.iterrows(): interim.append({ 'geometry': item['geometry'].centroid, 'properties': { GID_level: region[GID_level], 'count': item['count'], 'sum': item['sum'] } }) return interim, missing_nodes def get_missing_nodes(country, regions, missing_nodes, threshold, settlement_size): """ Find any missing nodes. Parameters ---------- country : dict Contains all country specfic information. regions : dataframe All regions to be assessed. missing_nodes : list Contains the id of regions with missing nodes. threshold : int Population density threshold in persons per square kilometer. settlement_size : int Overall settlement size threshold. Returns ------- interim : list of dicts Contains geojson dicts for nodes. """ iso3 = country['iso3'] regional_level = country['regional_level'] GID_level = 'GID_{}'.format(regional_level) folder_tifs = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations', 'tifs') interim = [] for idx, region in regions.iterrows(): if not region[GID_level] in list(missing_nodes): continue path = os.path.join(folder_tifs, region[GID_level] + '.tif') with rasterio.open(path) as src: data = src.read() data[data < threshold] = 0 data[data >= threshold] = 1 polygons = rasterio.features.shapes(data, transform=src.transform) shapes_df = gpd.GeoDataFrame.from_features( [ {'geometry': poly, 'properties':{'value':value}} for poly, value in polygons if value > 0 ], crs='epsg:4326' ) geojson_region = [ { 'geometry': region['geometry'], 'properties': { GID_level: region[GID_level] } } ] gpd_region = gpd.GeoDataFrame.from_features( [ {'geometry': poly['geometry'], 'properties':{ GID_level: poly['properties'][GID_level] }} for poly in geojson_region ], crs='epsg:4326' ) nodes = gpd.overlay(shapes_df, gpd_region, how='intersection') stats = zonal_stats(shapes_df['geometry'], path, stats=['count', 'sum']) stats_df = pd.DataFrame(stats) nodes = pd.concat([shapes_df, stats_df], axis=1).drop(columns='value') max_sum = nodes['sum'].max() nodes = nodes[nodes['sum'] > max_sum - 1] for idx, item in nodes.iterrows(): interim.append({ 'geometry': item['geometry'].centroid, 'properties': { GID_level: region[GID_level], 'count': item['count'], 'sum': item['sum'] } }) return interim def find_regional_nodes(country): """ Find the nodes in each region. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] regional_level = country['regional_level'] GID_level = 'GID_{}'.format(regional_level) folder = os.path.join(DATA_INTERMEDIATE, iso3) input_path = os.path.join(folder, 'agglomerations', 'agglomerations.shp') existing_nodes_path = os.path.join(folder, 'network_existing', 'core_nodes_existing.shp') output_path = os.path.join(folder, 'network', 'core_nodes.shp') regional_output_path = os.path.join(folder, 'network', 'regional_nodes') regions = gpd.read_file(input_path, crs="epsg:4326") unique_regions = regions[GID_level].unique() if os.path.exists(output_path): return print('Regional nodes layer already generated') folder = os.path.dirname(output_path) if not os.path.exists(folder): os.makedirs(folder) if not os.path.exists(regional_output_path): os.makedirs(regional_output_path) interim = [] for unique_region in unique_regions: if unique_region in country['regions_to_skip']: continue agglomerations = [] for idx, region in regions.iterrows(): if unique_region == region[GID_level]: agglomerations.append({ 'type': 'Feature', 'geometry': region['geometry'], 'properties': { GID_level: region[GID_level], 'population': region['population'], 'source': 'existing', } }) regional_nodes = gpd.GeoDataFrame.from_features(agglomerations, crs='epsg:4326') path = os.path.join(regional_output_path, unique_region + '.shp') regional_nodes.to_file(path) agglomerations = sorted(agglomerations, key=lambda k: k['properties']['population'], reverse=True) interim.append(agglomerations[0]) if os.path.exists(existing_nodes_path): output = [] new_nodes = [] seen = set() existing_nodes = gpd.read_file(existing_nodes_path, crs='epsg:4326') existing_nodes = existing_nodes.to_dict('records') for item in existing_nodes: seen.add(item[GID_level]) output.append({ 'type': 'Point', 'geometry': mapping(item['geometry']), 'properties': { GID_level: item[GID_level], 'population': item['population'], 'source': 'existing', } }) for item in interim: if not item['properties'][GID_level] in seen: new_node = { 'type': 'Point', 'geometry': mapping(item['geometry']), 'properties': { GID_level: item['properties'][GID_level], 'population': item['properties']['population'], 'source': 'new', } } output.append(new_node) new_nodes.append(new_node) output = gpd.GeoDataFrame.from_features(output) output.to_file(output_path, crs='epsg:4326')#write core nodes if len(new_nodes) > 0: new_nodes = gpd.GeoDataFrame.from_features(new_nodes) path = os.path.join(DATA_INTERMEDIATE, iso3, 'network', 'new_nodes.shp') new_nodes.to_file(path, crs='epsg:4326')#write core nodes if not os.path.exists(output_path): output = gpd.GeoDataFrame.from_features( [ {'geometry': item['geometry'], 'properties': item['properties']} for item in interim ], crs='epsg:4326' ) output['source'] = 'new' output.to_file(output_path)#write core nodes output = [] for unique_region in unique_regions: path = os.path.join(regional_output_path, unique_region + '.shp') if os.path.exists(path): regional_nodes = gpd.read_file(path, crs='epsg:4326') for idx, regional_node in regional_nodes.iterrows(): output.append({ 'geometry': regional_node['geometry'], 'properties': { 'value': regional_node['population'], 'source': 'new', } }) output = gpd.GeoDataFrame.from_features(output, crs='epsg:4326') path = os.path.join(folder, 'regional_nodes.shp') output.to_file(path) return print('Completed regional node estimation') def prepare_edge_fitting(country): """ Meta function for fitting edges to nodes using a minimum spanning tree. Parameters ---------- country : dict Contains all country specfic information. """ folder = os.path.join(DATA_INTERMEDIATE, country['iso3']) core_edges_path = os.path.join(folder, 'network_existing', 'core_edges_existing.shp') if not os.path.exists(core_edges_path): input_path = os.path.join(folder, 'network', 'core_nodes.shp') output_path = os.path.join(folder, 'network', 'core_edges.shp') fit_edges(input_path, output_path) else: core_nodes_path = os.path.join(folder, 'network_existing', 'core_nodes_existing.shp') existing_nodes = gpd.read_file(core_nodes_path, crs='epsg:4326') path = os.path.join(folder, 'network', 'new_nodes.shp') output = [] if os.path.exists(path): new_nodes = gpd.read_file(path, crs='epsg:4326') for idx, new_node in new_nodes.iterrows(): nearest = nearest_points(new_node.geometry, existing_nodes.unary_union)[1] geom = LineString([ ( new_node['geometry'].coords[0][0], new_node['geometry'].coords[0][1] ), ( nearest.coords[0][0], nearest.coords[0][1] ), ]) output.append({ 'type': 'LineString', 'geometry': mapping(geom), 'properties': { 'id': idx, 'source': 'new' } }) existing_edges = gpd.read_file(core_edges_path, crs='epsg:4326') for idx, existing_edge in existing_edges.iterrows(): output.append({ 'type': 'LineString', 'geometry': mapping(existing_edge['geometry']), 'properties': { 'id': idx, 'source': 'existing' } }) output = gpd.GeoDataFrame.from_features(output) path = os.path.join(folder, 'network', 'core_edges.shp') output.to_file(path, crs='epsg:4326') def fit_edges(input_path, output_path): """ Fit edges to nodes using a minimum spanning tree. Parameters ---------- input_path : string Path to nodes shapefile. output_path : string Path to write edges to as shapefiles. """ folder = os.path.dirname(output_path) if not os.path.exists(folder): os.makedirs(folder) nodes = gpd.read_file(input_path, crs='epsg:4326') nodes = nodes.to_crs('epsg:3857') all_possible_edges = [] for node1_id, node1 in nodes.iterrows(): for node2_id, node2 in nodes.iterrows(): if node1_id != node2_id: geom1 = shape(node1['geometry']) geom2 = shape(node2['geometry']) line = LineString([geom1, geom2]) all_possible_edges.append({ 'type': 'Feature', 'geometry': mapping(line), 'properties':{ 'from': node1_id, 'to': node2_id, 'length': line.length, 'source': 'new', } }) if len(all_possible_edges) == 0: return G = nx.Graph() for node_id, node in enumerate(nodes): G.add_node(node_id, object=node) for edge in all_possible_edges: G.add_edge(edge['properties']['from'], edge['properties']['to'], object=edge, weight=edge['properties']['length']) tree = nx.minimum_spanning_edges(G) edges = [] for branch in tree: link = branch[2]['object'] if link['properties']['length'] > 0: if 'geometry' in link: edges.append(link) if len(edges) > 0: edges = gpd.GeoDataFrame.from_features(edges, crs='epsg:3857') edges = edges.to_crs('epsg:4326') edges.to_file(output_path) return def fit_regional_edges(country): """ Fit the regional network edges. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] regional_level = country['regional_level'] GID_level = 'GID_{}'.format(regional_level) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'network') path = os.path.join(folder, 'core_nodes.shp') nodes = gpd.read_file(path, crs="epsg:4326") unique_regions = nodes[GID_level].unique() for unique_region in unique_regions: input_path = os.path.join(folder, 'regional_nodes', unique_region + '.shp') output_path = os.path.join(DATA_INTERMEDIATE, country['iso3'], 'network', 'regional_edges', unique_region + '.shp') fit_edges(input_path, output_path) output = [] for unique_region in unique_regions: path = os.path.join(DATA_INTERMEDIATE, country['iso3'], 'network', 'regional_edges', unique_region + '.shp') if os.path.exists(path): regional_edges = gpd.read_file(path, crs='epsg:4326') for idx, regional_edge in regional_edges.iterrows(): output.append({ 'geometry': regional_edge['geometry'], 'properties': { 'value': regional_edge['length'], 'source': 'new', } }) output = gpd.GeoDataFrame.from_features(output, crs='epsg:4326') path = os.path.join(folder, 'regional_edges.shp') output.to_file(path) return print('Regional edge fitting complete') def generate_core_lut(country): """ Generate core lut. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] level = country['regional_level'] regional_level = 'GID_{}'.format(level) filename = 'core_lut.csv' folder = os.path.join(DATA_INTERMEDIATE, iso3) output_path = os.path.join(folder, filename) # if os.path.exists(output_path): # return print('Core LUT already generated') filename = 'regions_{}_{}.shp'.format(level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path) regions.crs = 'epsg:4326' output = [] path = os.path.join(DATA_INTERMEDIATE, iso3, 'network', 'core_edges.shp') core_edges = gpd.read_file(path) core_edges.crs = 'epsg:4326' core_edges = gpd.GeoDataFrame( {'geometry': core_edges['geometry'], 'source': core_edges['source']}) existing_edges = core_edges.loc[core_edges['source'] == 'existing'] existing_edges = gpd.clip(regions, existing_edges) existing_edges = existing_edges.to_crs('epsg:3857') existing_edges['length'] = existing_edges['geometry'].length for idx, edge in existing_edges.iterrows(): output.append({ 'GID_id': edge[regional_level], 'asset': 'core_edge', 'value': edge['length'], 'source': 'existing', }) new_edges = core_edges.loc[core_edges['source'] == 'new'] new_edges = gpd.clip(regions, new_edges) new_edges = new_edges.to_crs('epsg:3857') new_edges['length'] = new_edges['geometry'].length for idx, edge in new_edges.iterrows(): output.append({ 'GID_id': edge[regional_level], 'asset': 'core_edge', 'value': edge['length'], 'source': 'new', }) path = os.path.join(DATA_INTERMEDIATE, iso3, 'network', 'regional_edges.shp') if os.path.exists(path): regional_edges = gpd.read_file(path, crs='epsg:4326') regional_edges = gpd.clip(regions, regional_edges) regional_edges = regional_edges.to_crs('epsg:3857') regional_edges['length'] = regional_edges['geometry'].length for idx, edge in regional_edges.iterrows(): output.append({ 'GID_id': edge[regional_level], 'asset': 'regional_edge', 'value': edge['length'], 'source': 'new', #all regional edges are assumed to be new }) path = os.path.join(DATA_INTERMEDIATE, iso3, 'network', 'core_nodes.shp') nodes = gpd.read_file(path, crs='epsg:4326') existing_nodes = nodes.loc[nodes['source'] == 'existing'] f = lambda x:np.sum(existing_nodes.intersects(x)) regions['nodes'] = regions['geometry'].apply(f) for idx, region in regions.iterrows(): output.append({ 'GID_id': region[regional_level], 'asset': 'core_node', 'value': region['nodes'], 'source': 'existing', }) new_nodes = nodes.loc[nodes['source'] == 'new'] f = lambda x:np.sum(new_nodes.intersects(x)) regions['nodes'] = regions['geometry'].apply(f) for idx, region in regions.iterrows(): output.append({ 'GID_id': region[regional_level], 'asset': 'core_node', 'value': region['nodes'], 'source': 'new', }) path = os.path.join(DATA_INTERMEDIATE, iso3, 'network', 'regional_nodes.shp') regional_nodes = gpd.read_file(path, crs='epsg:4326') existing_nodes = regional_nodes.loc[regional_nodes['source'] == 'existing'] f = lambda x:np.sum(existing_nodes.intersects(x)) regions['regional_nodes'] = regions['geometry'].apply(f) for idx, region in regions.iterrows(): output.append({ 'GID_id': region[regional_level], 'asset': 'regional_node', 'value': region['regional_nodes'], 'source': 'existing', }) new_nodes = regional_nodes.loc[regional_nodes['source'] == 'new'] f = lambda x:np.sum(new_nodes.intersects(x)) regions['regional_nodes'] = regions['geometry'].apply(f) for idx, region in regions.iterrows(): output.append({ 'GID_id': region[regional_level], 'asset': 'regional_node', 'value': region['regional_nodes'], 'source': 'new', }) output = pd.DataFrame(output) output = output.drop_duplicates() output.to_csv(output_path, index=False) return print('Completed core lut') def forecast_subscriptions(country): """ Forecast the number of unique cellular subscriptions. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] path = os.path.join(DATA_RAW, 'gsma', 'gsma_unique_subscribers.csv') historical_data = load_subscription_data(path, country['iso3']) start_point = 2021 end_point = 2030 horizon = 4 forecast = forecast_linear( country, historical_data, start_point, end_point, horizon ) forecast_df = pd.DataFrame(historical_data + forecast) path = os.path.join(DATA_INTERMEDIATE, iso3, 'subscriptions') if not os.path.exists(path): os.mkdir(path) forecast_df.to_csv(os.path.join(path, 'subs_forecast.csv'), index=False) path = os.path.join(BASE_PATH, '..', 'vis', 'subscriptions', 'data_inputs') forecast_df.to_csv(os.path.join(path, '{}.csv'.format(iso3)), index=False) return print('Completed subscription forecast') def load_subscription_data(path, iso3): """ Load in itu cell phone subscription data. Parameters ---------- path : string Location of itu data as .csv. iso3 : string ISO3 digital country code. Returns ------- output : list of dicts Time series data of cell phone subscriptions. """ output = [] historical_data = pd.read_csv(path, encoding = "ISO-8859-1") historical_data = historical_data.to_dict('records') scenarios = ['low', 'baseline', 'high'] for scenario in scenarios: for year in range(2010, 2021): year = str(year) for item in historical_data: if item['iso3'] == iso3: output.append({ 'scenario': scenario, 'country': iso3, 'penetration': float(item[year]) * 100, 'year': year, }) return output def forecast_linear(country, historical_data, start_point, end_point, horizon): """ Forcasts subscription adoption rate. Parameters ---------- historical_data : list of dicts Past penetration data. start_point : int Starting year of forecast period. end_point : int Final year of forecast period. horizon : int Number of years to use to estimate mean growth rate. Returns ------- output : list of dicts Time series data of cell phone subscriptions. """ output = [] scenarios = ['low', 'baseline', 'high'] for scenario in scenarios: scenario_data = [] subs_growth = country['subs_growth_{}'.format(scenario)] year_0 = sorted(historical_data, key = lambda i: i['year'], reverse=True)[0] for year in range(start_point, end_point + 1): if year == start_point: penetration = year_0['penetration'] * (1 + (subs_growth/100)) else: penetration = penetration * (1 + (subs_growth/100)) if year not in [item['year'] for item in scenario_data]: scenario_data.append({ 'scenario': scenario, 'country': country['iso3'], 'year': year, 'penetration': round(penetration, 2), }) output = output + scenario_data return output def forecast_smartphones(country): """ Forecast smartphone adoption. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] filename = 'wb_smartphone_survey.csv' path = os.path.join(DATA_RAW, 'wb_smartphone_survey', filename) survey_data = load_smartphone_data(path, country) start_point = 2020 end_point = 2030 forecast = forecast_smartphones_linear( survey_data, country, start_point, end_point ) forecast_df =
pd.DataFrame(forecast)
pandas.DataFrame
# libraries import numpy as np import pandas as pd import requests import scipy.stats as ss import matplotlib as mpl import json import plotly.graph_objects as go from urllib.request import urlopen with open('../data/census-key.txt') as key: api_key = key.read().strip() years = ['2017', '2018'] county = '*' state = '*' for year in years: # pulls five of the components from the acs 5-year data api and creates a dataframe dsource = 'acs' dname = 'acs5' dset = 'profile' cols = 'NAME,DP02_0066PE,DP03_0128PE,DP03_0009PE,DP03_0062E' base_url = f'https://api.census.gov/data/{year}/{dsource}/{dname}/{dset}' data_url = f'{base_url}?get={cols}&for=county:{county}&in=state:{state}&key={api_key}' response = requests.get(data_url) state_url = f'{base_url}?get=DP03_0062E&for=state:{state}&key={api_key}' state_response = requests.get(state_url) data = response.json() df = pd.DataFrame(data[1:], columns=data[0]).\ rename(columns={ 'DP02_0066PE':'hs_higher', 'DP03_0128PE':'poverty_rate', 'DP03_0009PE':'unemployment_rate', 'DP03_0062E':'median_income' }) df['fips'] = df['state']+df['county'] df.drop(columns=['county'], inplace=True) df = df.astype(dtype={ 'hs_higher':'float64', 'unemployment_rate':'float64', 'poverty_rate':'float64', 'median_income':'float64' }).reset_index() df['county'] = df['NAME'].str.split(' County').str.get(0) df['state_name'] = df['NAME'].str.split(', ').str.get(-1) df['hs_lower'] = 100 - df['hs_higher'] inc_data = state_response.json() dfs = pd.DataFrame(inc_data[1:], columns=inc_data[0]).\ rename(columns={'DP03_0062E':'st_med_inc'}) dfs = dfs.astype(dtype={'st_med_inc':'float64'}) df = pd.merge(df, dfs, how='left', on='state') df['med_inc_rate'] = (df['median_income']/df['st_med_inc']).round(3)*100 df.drop(df[df['state']=='72'].index, inplace=True) df_acs = df[[ 'fips', 'state', 'county', 'state_name', 'hs_lower', 'unemployment_rate', 'poverty_rate', 'median_income', 'st_med_inc', 'med_inc_rate' ]] # pulls data from cbp api and calculates averages change over specified years dfs = [] yrs = [str(year) for year in list(range(int(year)-1, int(year)+1))] for yr in yrs: dsource = 'cbp' cols = 'ESTAB,EMP' base_url = f'https://api.census.gov/data/{yr}/{dsource}' data_url = f'{base_url}?get={cols}&for=county:{county}&in=state:{state}&key={api_key}' response=requests.get(data_url) # turns the json data into a dataframe object data = response.json() dfy = pd.DataFrame(data[1:], columns=data[0]).\ rename(columns={'ESTAB':'establishments', 'EMP':'employment'}) dfy['fips'] = dfy['state']+dfy['county'] dfy['year'] = yr dfy.drop(columns=['state', 'county'], inplace=True) dfy = dfy.astype(dtype={'establishments':'float64', 'employment':'float64'}) # appends the year dataframe to the list dfs.append(dfy) # concatenates the individual dataframes and returns a single dataframe df = pd.concat(dfs, ignore_index=True) df.sort_values(by=['fips', 'year'], inplace=True) df['employment'] = df['employment'].replace(0, np.nan) df['employment'] = df['employment'].fillna(df.groupby('fips')['employment'].transform('mean')) df['est_chg'] = df.sort_values('year').groupby('fips')['establishments'].pct_change()*100 df['emp_chg'] = df.sort_values('year').groupby('fips')['employment'].pct_change()*100 df1 = df.groupby('fips')['est_chg'].mean().round(1).reset_index() df2 = df.groupby('fips')['emp_chg'].mean().round(1).reset_index() df_cbp = pd.merge(df1, df2, how='left', on='fips') # pulls vacancy data from acs 5-year detailed dataset dsource = 'acs' dname = 'acs5' cols = 'NAME,B25002_001E,B25002_003E,B25004_006E' base_url = f'https://api.census.gov/data/{year}/{dsource}/{dname}' with open('../data/census-key.txt') as key: api_key = key.read().strip() data_url = f'{base_url}?get={cols}&for=county:{county}&in=state:{state}&key={api_key}' response = requests.get(data_url) state_url = f'{base_url}?get=DP03_0062E&for=state:{state}&key={api_key}' state_response = requests.get(state_url) data = response.json() df =
pd.DataFrame(data[1:], columns=data[0])
pandas.DataFrame
from .core import mofa_model from .utils import * import sys from warnings import warn from typing import Union, Optional, List, Iterable, Sequence from functools import partial import numpy as np from scipy.stats import pearsonr import pandas as pd from pandas.api.types import is_numeric_dtype import matplotlib.pyplot as plt from matplotlib import rcParams import seaborn as sns from .utils import maybe_factor_indices_to_factors, _make_iterable, _is_iter from .plot_utils import _plot_grid ### WEIGHTS ### def plot_weights( model: mofa_model, factors=None, views=None, n_features: int = 5, w_scaled: bool = False, w_abs: bool = False, size=2, color="black", label_size=5, x_offset=0.01, y_offset=0.15, jitter=0.01, line_width=0.5, line_color="black", line_alpha=0.2, zero_line=True, zero_line_width=1, ncols=4, sharex=True, sharey=False, **kwargs, ): """ Plot weights for a specific factor Parameters ---------- model : mofa_model An instance of the mofa_model class factors : str or int or list of str or None Factors to use (default is all) views : str or int or list of str or None The views to get the factors weights for (first view by default) n_features : int Number of features with the largest weights to label (in absolute values) w_scaled : bool If scale weights to unite variance (False by default) w_abs : bool If plot absolute weight values (False by default) size : float Dot size (2 by default) color : str Colour for the labelled dots (black by default) label_size : int or float Font size of feature labels (default is 5) x_offset : int or float Offset the feature labels from the left/right side (by 0.03 points by default) y_offset : int or float Parameter to repel feature labels along the y axis (0.1 by default) jitter : bool Jitter dots per factors (True by default) line_width : int or float Width of the lines connecting labels with dots (0.5 by default) line_color : str Color of the lines connecting labels with dots (black by default) line_alpha : float Alpha level for the lines connecting labels with dots (0.2 by default) zero_line : bool If to plot a dotted line at zero (False by default) zero_line_width : int or float Width of the line at 0 (1 by default) ncols : int Number of columns in the grid of multiple plots, one plot per view (4 by default) sharex : bool If to use the same X axis across panels (True by default) sharey : bool If to use the same Y axis across panels (False by default) """ w = model.get_weights( views=views, factors=factors, df=True, scale=w_scaled, absolute_values=w_abs, ) wm = ( w.join(model.features_metadata.loc[:, ["view"]]) .rename_axis("feature") .reset_index() .melt(id_vars=["feature", "view"], var_name="factor", value_name="value") ) wm["abs_value"] = abs(wm.value) # Assign ranks to features, per factor wm["rank"] = wm.groupby("factor")["value"].rank(ascending=False) wm["abs_rank"] = wm.groupby("factor")["abs_value"].rank(ascending=False) wm = wm.sort_values(["factor", "abs_rank"], ascending=True) # Sort factors wm["factor"] = wm["factor"].astype("category") wm["factor"] = wm["factor"].cat.reorder_categories( sorted(wm["factor"].cat.categories, key=lambda x: int(x.split("Factor")[1])) ) # Set default colour to black if none set if "c" not in kwargs and "color" not in kwargs: kwargs["color"] = "black" # Fetch top features to label features_to_label = model.get_top_features( factors=factors, views=views, n_features=n_features, df=True ) features_to_label["to_label"] = True wm = ( features_to_label.loc[:, ["feature", "view", "factor", "to_label"]] .set_index(["feature", "view", "factor"]) .join(wm.set_index(["feature", "factor", "view"]), how="right") .reset_index() .fillna({"to_label": False}) .sort_values(["factor", "to_label"]) ) # Figure out rows & columns for the grid with plots (one plot per view) view_vars = wm.view.unique() ncols = min(ncols, len(view_vars)) nrows = int(np.ceil(len(view_vars) / ncols)) fig, axes = plt.subplots( nrows, ncols, sharex=sharex, sharey=sharey, figsize=( ncols * rcParams["figure.figsize"][0], nrows * rcParams["figure.figsize"][1], ), ) if ncols == 1: axes = np.array(axes).reshape(-1, 1) if nrows == 1: axes = np.array(axes).reshape(1, -1) for m, view in enumerate(view_vars): ri = m // ncols ci = m % ncols wm_view = wm.query("view == @view") # Construct the plot g = sns.stripplot( data=wm_view, x="value", y="factor", jitter=jitter, size=size, hue="to_label", palette=["lightgrey", color], ax=axes[ri, ci], ) sns.despine(offset=10, trim=True, ax=g) g.legend().remove() # Label some points for fi, factor in enumerate(wm_view.factor.cat.categories): for sign_i in [1, -1]: to_label = features_to_label.query( "factor == @factor & view == @view" ).feature.tolist() w_set = wm_view.query( "factor == @factor & value * @sign_i > 0 & feature == @to_label & view == @view" ).sort_values("abs_value", ascending=False) x_start_pos = sign_i * (w_set.abs_value.max() + x_offset) y_start_pos = fi - ((w_set.shape[0] - 1) // 2) * y_offset y_prev = y_start_pos for i, row in enumerate(w_set.iterrows()): name, point = row y_loc = y_prev + y_offset if i != 0 else y_start_pos g.annotate( point["feature"], xy=(point.value, fi), xytext=(x_start_pos, y_loc), arrowprops=dict( arrowstyle="-", connectionstyle="arc3", color=line_color, alpha=line_alpha, linewidth=line_width, ), horizontalalignment="left" if sign_i > 0 else "right", size=label_size, color="black", weight="regular", alpha=0.9, ) y_prev = y_loc # Set plot axes labels g.set(ylabel="", xlabel="Feature weight", title=view) if zero_line: axes[ri, ci].axvline( 0, ls="--", color="lightgrey", linewidth=zero_line_width, zorder=0 ) # Remove unused axes for i in range(len(view_vars), ncols * nrows): ri = i // ncols ci = i % ncols fig.delaxes(axes[ri, ci]) return g def plot_weights_ranked( model: mofa_model, factor="Factor1", view=0, n_features: int = 10, size: int = 25, label_size=5, x_rank_offset=10, x_rank_offset_neg=0, y_repel_coef=0.03, attract_to_points=True, **kwargs, ): """ Plot weights for a specific factor Parameters ---------- model : mofa_model Factor model factor : optional Factor to use (default is Factor1) view : options The view to get the factors weights for (first view by default) n_features : optional Number of features to label with most positive and most negative weights size : int Dit size for labelled features (default is 25) label_size : optional Font size of feature labels (default is 5) x_rank_offset : optional Offset the feature labels from the left/right side (by 10 points by default) x_rank_offset_neg : optional Offset but for the negative weights only (i.e. from the right side) y_repel_coef : optional Parameter to repel feature labels along the y axis (0.03 by default) attract_to_points : optional If place labels according to the Y coordinate of the point (False by default) """ w = model.get_weights(views=view, factors=factor, df=True) w = pd.melt( w.reset_index().rename(columns={"index": "feature"}), id_vars="feature", var_name="factor", value_name="value", ) w["abs_value"] = abs(w.value) # Assign ranks to features, per factor w["rank"] = w.groupby("factor")["value"].rank(ascending=False) w["abs_rank"] = w.groupby("factor")["abs_value"].rank(ascending=False) w = w.sort_values(["factor", "abs_rank"], ascending=True) # Set default colour to black if none set if "c" not in kwargs and "color" not in kwargs: kwargs["color"] = "black" # Construct the plot ax = sns.lineplot( x="rank", y="value", data=w, markers=True, dashes=False, linewidth=0.5, **kwargs ) sns.despine(offset=10, trim=True, ax=ax) # Plot top features as dots sns.scatterplot( x="rank", y="value", data=w[w["abs_rank"] < n_features], linewidth=0.2, s=size, alpha=0.75, **kwargs, ) # Label top features # Positive weights y_start_pos = w[w.value > 0].sort_values("abs_rank").iloc[0].value y_prev = y_start_pos for i, point in ( w[(w["abs_rank"] < n_features) & (w["value"] >= 0)].reset_index().iterrows() ): y_loc = y_prev - y_repel_coef if i != 0 else y_start_pos y_loc = min(point["value"], y_loc) if attract_to_points else y_loc ax.text( x_rank_offset, y_loc, point["feature"], horizontalalignment="left", size=label_size, color="black", weight="regular", ) y_prev = y_loc # Negative weights y_start_neg = w[w.value < 0].sort_values("abs_rank").iloc[0].value y_prev = y_start_neg for i, point in ( w[(w["abs_rank"] < n_features) & (w["value"] < 0)].reset_index().iterrows() ): y_loc = y_prev + y_repel_coef if i != 0 else y_start_neg y_loc = max(point["value"], y_loc) if attract_to_points else y_loc ax.text( w.shape[0] - x_rank_offset_neg, y_loc, point["feature"], horizontalalignment="left", size=label_size, color="black", weight="regular", ) y_prev = y_loc # Set plot axes labels factor_label = f"Factor{factor+1}" if isinstance(factor, int) else factor ax.set(ylabel=f"{factor_label} weight", xlabel="Feature rank") return ax def plot_weights_scaled( model: mofa_model, x="Factor1", y="Factor2", view=0, n_features: int = 10, w_scaled: bool = True, label_size=5, y_repel_coef=0.05, attract_to_points=True, **kwargs, ): """ Scatterplot of feature weights for two factors Parameters ---------- model : mofa_model Factor model factor : optional Factor to use (default is Factor1) view : options The view to get the factors weights for (first view by default) n_features : optional Number of features to label with most positive and most negative weights label_size : optional Font size of feature labels (default is 5) y_repel_coef : optional Parameter to repel feature labels along the y axis (0.03 by default) attract_to_points : optional If place labels according to the Y coordinate of the point (False by default) """ w = model.get_weights(views=view, factors=[x, y], df=True) w.columns = ["x", "y"] if w_scaled: w.x = w.x / abs(w.loc[abs(w.x).idxmax()].x) w.y = w.y / abs(w.loc[abs(w.y).idxmax()].y) wm = ( w.rename_axis("feature") .reset_index() .melt(var_name="factor", id_vars=["feature"]) .assign( value_abs=lambda x: np.abs(x.value), value_sign=lambda x: np.sign(x.value) ) .sort_values("value_abs", ascending=False) .head(n_features) .sort_values(["factor", "value_sign"], ascending=True) .drop_duplicates("feature") ) top_features = wm.sort_values("factor", ascending=True).feature.values # Construct the plot ax = sns.scatterplot("x", "y", data=w, linewidth=0, color="#CCCCCC", **kwargs) ax.set_xlim(-1.5, 1.5) ax.set_ylim(-1.5, 1.5) ax.set_aspect(1) for factor in wm.factor.unique(): for sign in wm[wm.factor == factor].value_sign.unique(): feature_set = wm[ (wm.factor == factor) & (wm.value_sign == sign) ].feature.values w_set = w.loc[feature_set].sort_values("y", ascending=False) y_start_pos = w_set.y.max() y_prev = y_start_pos for i, row in enumerate(w_set.iterrows()): name, point = row y_loc = y_prev - y_repel_coef if i != 0 else y_start_pos y_loc = min(point.y, y_loc) if attract_to_points else y_loc y_prev = y_loc ax.text(point.x, y_loc, str(name), size=label_size) ax.plot([0, point.x], [0, point.y], linewidth=0.5, color="#333333") sns.despine(offset=10, trim=True, ax=ax) ax.set_xticks(np.arange(-1, 2.0, step=1.0)) ax.set_yticks(np.arange(-1, 2.0, step=1.0)) # Set plot axes labels x_factor_label = f"Factor{x+1}" if isinstance(x, int) else x y_factor_label = f"Factor{y+1}" if isinstance(y, int) else y ax.set(xlabel=f"{x_factor_label} weight", ylabel=f"{y_factor_label} weight") return ax def plot_weights_heatmap( model: mofa_model, factors: Union[int, List[int]] = None, view=0, n_features: int = None, w_threshold: float = None, w_abs: bool = False, only_positive: bool = False, only_negative: bool = False, features_col: pd.DataFrame = None, cmap=None, xticklabels_size=10, yticklabels_size=None, cluster_factors=True, cluster_features=True, **kwargs, ): """ Plot weights for top features in a heatmap Parameters ---------- model : mofa_model Factor model factors : optional Factors to use (all factors in the model by default) view : options The view to get the factors weights for (first view by default) n_features : optional Number of features for each factor by their absolute value (10 by default) w_threshold : optional Absolute weight threshold for a feature to plot (no threshold by default) w_abs : optional If to plot absolute weight values only_positive : optional If to plot only positive weights only_negative : optional If to plot only negative weights features_col : optional Pandas data frame with index by feature name with the first column containing the colour for every feature cmap : optional Color map (blue-to-red divergent palette with by default) xticklabels_size : optional Font size for features labels (default is 10) yticklabels_size : optional Font size for factors labels (default is None) cluster_factors : optional If cluster factors (in rows; default is True) cluster_features : optional If cluster features (in columns; default in True) """ # Set defaults n_features_default = 10 if factors is None: factors = list(range(model.nfactors)) if cmap is None: cmap = sns.diverging_palette(240, 10, n=9, as_cmap=True) # Fetch weights for the relevant factors w = ( model.get_weights(views=view, factors=factors, df=True, absolute_values=w_abs) .rename_axis("feature") .reset_index() ) wm = w.melt(id_vars="feature", var_name="factor", value_name="value") wm = wm.assign(value_abs=lambda x: x.value.abs()) wm["factor"] = wm["factor"].astype("category") if only_positive and only_negative: print("Please specify either only_positive or only_negative") sys.exit(1) elif only_positive: wm = wm[wm.value > 0] elif only_negative: wm = wm[wm.value < 0] if n_features is None and w_threshold is not None: features = wm[wm.value_abs >= w_threshold].feature.unique() else: if n_features is None: n_features = n_features_default # Get a subset of features wm = wm.sort_values(["factor", "value_abs"], ascending=False).groupby("factor") if w_threshold is None: features = wm.head(n_features).feature.unique() else: features = wm[wm.value_abs >= w_threshold].head(n_features).feature.unique() w = w[w.feature.isin(features)].set_index("feature").T col_colors = features_col.loc[features, :] if features_col is not None else None if not isinstance(factors, Iterable) or len(factors) < 2: cluster_factors = False cg = sns.clustermap( w, cmap=cmap, col_colors=col_colors, xticklabels=True, row_cluster=cluster_factors, col_cluster=cluster_features, **kwargs, ) cg.ax_heatmap.set_xticklabels( cg.ax_heatmap.xaxis.get_ticklabels(), rotation=90, size=xticklabels_size ) cg.ax_heatmap.set_yticklabels( cg.ax_heatmap.yaxis.get_ticklabels(), rotation=0, size=yticklabels_size ) return cg def plot_weights_dotplot( model: mofa_model, factors: Union[int, List[int]] = None, view=0, n_features: int = None, w_threshold: float = None, w_abs: bool = False, only_positive: bool = False, only_negative: bool = False, palette=None, size: int = 30, linewidth: int = 1, xticklabels_size=8, yticklabels_size=5, ncols=1, sharex=True, sharey=False, **kwargs, ): """ Plot weights for top features in a heatmap Parameters ---------- model : mofa_model Factor model factors : optional Factors to use (all factors in the model by default) view : options The view to get the factors weights for (first view by default) n_features : optional Number of features for each factor by their absolute value (5 by default) w_threshold : optional Absolute weight threshold for a feature to plot (no threshold by default) w_abs : optional If to plot absolute weight values only_positive : optional If to plot only positive weights only_negative : optional If to plot only negative weights palette : optional Color map (blue-to-red divergent palette with by default) size : optional Dot size (default in 30) lienwidth : optional Dot outline width (default is 1) xticklabels_size : optional Font size for features labels (default is 10) yticklabels_size : optional Font size for factors labels (default is None) ncols : optional Number of columns when plotting multiple views (default is 1) sharex : bool If to use the same X axis across panels (True by default) sharey : bool If to use the same Y axis across panels (False by default) """ # Set defaults n_features_default = 5 if factors is None: factors = list(range(model.nfactors)) if palette is None: palette = sns.diverging_palette(240, 10, n=9, as_cmap=True) # Fetch weights for the relevant factors w = ( model.get_weights(views=view, factors=factors, df=True, absolute_values=w_abs) .rename_axis("feature") .join(model.features_metadata.loc[:, ["view"]]) .reset_index() ) wm = w.melt(id_vars=["feature", "view"], var_name="factor", value_name="value") wm = wm.assign(value_abs=lambda x: x.value.abs()) wm["factor"] = wm["factor"].astype("category") if only_positive and only_negative: print("Please specify either only_positive or only_negative") sys.exit(1) elif only_positive: wm = wm[wm.value > 0] elif only_negative: wm = wm[wm.value < 0] # Fix factors order wm.factor = wm.factor.astype("category") wm.factor = wm.factor.cat.reorder_categories( sorted(wm.factor.cat.categories, key=lambda x: int(x.split("Factor")[1])) ) wm.sort_values("factor") if n_features is None and w_threshold is not None: features = wm[wm.value_abs >= w_threshold].feature.unique() else: if n_features is None: n_features = n_features_default # Get a subset of features wm_g = wm.sort_values(["factor", "value_abs"], ascending=False).groupby( ["factor", "view"] ) if w_threshold is None: features = wm_g.head(n_features).feature.unique() else: features = ( wm_g[wm_g.value_abs >= w_threshold].head(n_features).feature.unique() ) wm = wm[wm.feature.isin(features)] # Fix features order wm.feature = wm.feature.astype("category") wm.feature = wm.feature.cat.reorder_categories(features) wm = wm.sort_values(["factor", "feature"]) # Figure out rows & columns for the grid with plots (one plot per view) view_vars = wm.view.unique() ncols = min(ncols, len(view_vars)) nrows = int(np.ceil(len(view_vars) / ncols)) fig, axes = plt.subplots( nrows, ncols, sharex=sharex, sharey=sharey, figsize=( ncols * rcParams["figure.figsize"][0], nrows * rcParams["figure.figsize"][1], ), ) if ncols == 1: axes = np.array(axes).reshape(-1, 1) if nrows == 1: axes = np.array(axes).reshape(1, -1) for m, view in enumerate(view_vars): ri = m // ncols ci = m % ncols wm_view = wm.query("view == @view") # Construct the plot g = sns.scatterplot( data=wm_view, x="factor", y="feature", hue="value", linewidth=linewidth, s=size, palette=palette, ax=axes[ri, ci], **kwargs, ) sns.despine(offset=10, trim=True, ax=g) g.legend().remove() norm = plt.Normalize(wm_view.value.min(), wm_view.value.max()) cmap = ( palette if palette is not None else sns.diverging_palette(220, 20, as_cmap=True) ) sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm) sm.set_array([]) try: g.figure.colorbar(sm, ax=axes[ri, ci]) g.get_legend().remove() except Exception: warn("Cannot make a proper colorbar") plt.draw() g.set_title(view) g.set_xticklabels(g.get_xticklabels(), rotation=90, size=xticklabels_size) g.set_yticklabels(g.get_yticklabels(), size=yticklabels_size) # Remove unused axes for i in range(len(view_vars), ncols * nrows): ri = i // ncols ci = i % ncols fig.delaxes(axes[ri, ci]) return g def plot_weights_scatter( model: mofa_model, x="Factor1", y="Factor2", view=0, hist=False, n_features: int = 10, label_size: int = 5, **kwargs, ): """ Plot weights for two factors Parameters ---------- model : mofa_model Factor model x : optional Factor which weights to plot along X axis (Factor1 by default) y : optional Factor which weights to plot along Y axis (Factor2 by default) view : options The view to get the factors weights for (first view by default) hist : optional Boolean value if to add marginal histograms to the scatterplot (jointplot) n_features : optional Number of features to label (default is 10) label_size : optional Font size of feature labels (default is 5) """ w = ( model.get_weights(views=view, factors=[x, y], df=True) .rename_axis("feature") .reset_index() ) # Get features to label wm = w.melt(id_vars="feature", var_name="factor", value_name="value") wm = wm.assign(value_abs=lambda x: x.value.abs()) wm["factor"] = wm["factor"].astype("category") # Set default colour to darkgrey if none set if "c" not in kwargs and "color" not in kwargs: kwargs["color"] = "darkgrey" sns_plot = sns.jointplot if hist else sns.scatterplot plot = sns_plot(x=x, y=y, data=w, **kwargs) sns.despine(offset=10, trim=True) # Label some features add_text = plot.ax_joint.text if hist else plot.text if n_features is not None and n_features > 0: # Get a subset of features wm = wm.sort_values(["factor", "value_abs"], ascending=False).groupby("factor") features = wm.head(n_features).feature.unique() w_label = w[w.feature.isin(features)].set_index("feature") del wm # Add labels to the plot for i, point in w_label.iterrows(): add_text( point[x], point[y], point.name, horizontalalignment="left", size=label_size, color="black", weight="regular", ) return plot def plot_weights_correlation( model: mofa_model, factors: Optional[Union[int, List[int]]] = None, views=None, covariates=None, linewidths=0, diag=False, full=True, cmap=None, square=True, **kwargs, ): """ Plot correlation of weights and, if provided, covariates Parameters ---------- model : mofa_model Factor model factors : optional Index of a factor (or indices of factors) to use (all factors by default) groups : optional Subset of groups to consider covarites : optional A vector, a matrix, or a data frame with covariates (one per column) linewidths : optional Heatmap linewidths argument (default is 0) diag : optional If to only plot lower triangle of the correlation matrix (False by default) full : optional If covariates are provided, also plot inter-factor and inter-covariates correlation coefficients (True by default) square : optional Heatmap square argument (True by default) cmap : optional Heatmap cmap argument """ w = model.get_weights(factors=factors, views=views) if covariates is not None: # Transform a vector to a matrix if len(covariates.shape) == 1: covariates =
pd.DataFrame(covariates)
pandas.DataFrame
#basics from gensim import utils import numpy as np from numpy.lib.utils import deprecate import pandas as pd import re from functools import wraps from typing import Union # pytorch import torch from torch import Tensor from torch._C import dtype from torch.nn.utils.rnn import pad_sequence # segnlp from .label_encoder import LabelEncoder from .array import ensure_numpy from .array import ensure_list from .array import create_mask from .array import np_cumsum_zero from .overlap import find_overlap from .misc import timer class Batch: def __init__(self, df: pd.DataFrame, label_encoder : LabelEncoder, pretrained_features: dict = {}, device = None ): self._df : pd.DataFrame = df self._pred_df : pd.DataFrame = df.copy(deep=True) self.label_encoder : LabelEncoder = label_encoder self._task_regexp = re.compile("seg|link|label|link_label") self._pretrained_features = pretrained_features self.device = device self.__ok_levels = set(["seg", "token", "span", "pair"]) self.use_target_segs : bool = False self._size = self._df["sample_id"].nunique() # cache self.__cache = {} if "am_id" in self._df.columns: self.__ok_levels.update(["am", "adu"]) if "seg" in label_encoder.task_labels: self._pred_df["seg_id"] = None self._pred_df["target_id"] = None for task in label_encoder.task_labels: self._pred_df[task] = None # #remove columns we dont need # for c in list(self._pred_df.columns): # if self._task_regexp.search(c) and c not in label_encoder.task_labels: # del self._df[c] # del self._pred_df[c] def __len__(self): return self._size def __sampling_wrapper(func): @wraps(func) def wrapped_get(self, *args, **kwargs): if self.use_target_segs: kwargs["pred"] = False return func(self, *args, **kwargs) return wrapped_get def __get_column_values(self, df: pd.DataFrame, level: str, key:str): if level == "token": flat_values = df.loc[:, key].to_numpy() else: flat_values = df.groupby(f"{level}_id", sort = False).first().loc[:, key].to_numpy() if isinstance(flat_values[0], str): return flat_values else: return torch.LongTensor(flat_values) def __get_span_idxs(self, df: pd.DataFrame, level:str ): if level == "am": ADU_start = df.groupby("adu_id", sort=False).first()["sample_token_id"].to_numpy() ADU_end = df.groupby("adu_id", sort=False).last()["sample_token_id"].to_numpy() + 1 AC_lens = df.groupby("seg_id", sort=False).size().to_numpy() AM_start = ADU_start AM_end = ADU_end - AC_lens return torch.LongTensor(np.column_stack((AM_start, AM_end))) else: start_tok_ids = df.groupby(f"{level}_id", sort=False).first()["sample_token_id"].to_numpy() end_tok_ids = df.groupby(f"{level}_id", sort=False).last()["sample_token_id"].to_numpy() + 1 return torch.LongTensor(np.column_stack((start_tok_ids, end_tok_ids))) def __get_mask(self, level:str, pred : bool = False): return create_mask(self.get(level, "lengths", pred = pred), as_bool = True) # def __seg_tok_lengths(self, df: pd.DataFrame, level:str): # return df.groupby(level, sort=False).size().to_numpy() def __get_lengths(self, df: pd.DataFrame, level:str): if level == "token": return torch.LongTensor(df.groupby(level=0, sort = False).size().to_numpy()) else: return torch.LongTensor(df.groupby(level=0, sort=False)[f"{level}_id"].nunique().to_numpy()) def __get_pretrained_embeddings(self, df:pd.DataFrame, level:str, flat:bool): if level == "token": embs = self._pretrained_features["word_embs"] else: embs = self._pretrained_features["seg_embs"] embs = embs[:, :max(self.__get_lengths(df, level)), :] if flat: embs = embs[self.__get_mask("level")] return torch.tensor(embs, dtype = torch.float) def __add_link_matching_info(self, pair_df:pd.DataFrame, j2i:dict): def check_true_pair(row, mapping): p1 = row["p1"] p2 = row["p2"] dir = row["direction"] source = p2 if dir == 2 else p1 target = p1 if dir == 2 else p2 if source not in mapping: return False else: correct_target = mapping[source] return correct_target == target j_jt = self._df.loc[:, ["seg_id", "target_id"]].dropna() # maps a true source to the correct target using the ids of predicted pairs source2target = { j2i.get(j, "NONE"): j2i.get(jt, "NONE") for j,jt in zip(j_jt["seg_id"], j_jt["target_id"]) } if "NONE" in source2target: source2target.pop("NONE") if not source2target: pair_df["true_link"] = False return pair_df["true_link"] = pair_df.apply(check_true_pair, axis = 1, args = (source2target, )) def __create_pair_df(self, df: pd.DataFrame, pred :bool): def set_id_fn(): pair_dict = dict() def set_id(row): p = tuple(sorted((row["p1"], row["p2"]))) if p not in pair_dict: pair_dict[p] = len(pair_dict) return pair_dict[p] return set_id # we also have information about whether the seg_id is a true segments # and if so, which TRUE segmentent id it overlaps with, and how much i2ratio, j2ratio, i2j, j2i = find_overlap( target_df = self._df, pred_df = self._pred_df ) first_df = df.groupby("seg_id", sort=False).first() first_df.reset_index(inplace=True) last_df = df.groupby("seg_id", sort=False).last() last_df.reset_index(inplace=True) if pred: first_target_df = self._df.groupby("seg_id", sort=False).first() j2link_label = {j:row["link_label"] for j, row in first_target_df.iterrows()} link_labels = [-1 if i not in i2j else j2link_label.get(i2j[i], -1) for i in first_df.index.to_numpy()] first_df["link_label"] = link_labels # we create ids for each memeber of the pairs # the segments in the batch will have unique ids starting from 0 to # the total mumber of segments p1, p2 = [], [] j = 0 for _, gdf in df.groupby("sample_id", sort = False): n = len(gdf.loc[:, "seg_id"].dropna().unique()) sample_seg_ids = np.arange( start= j, stop = j+n ) p1.extend(np.repeat(sample_seg_ids, n).astype(int)) p2.extend(np.tile(sample_seg_ids, n)) j += n # setup pairs pair_df = pd.DataFrame({ "p1": p1, "p2": p2, }) if not len(pair_df.index): return
pd.DataFrame()
pandas.DataFrame
import kgx import os, sys, click, logging, itertools, pickle, json, yaml import pandas as pd from typing import List from urllib.parse import urlparse from kgx import Transformer, map_graph, Filter, FilterLocation from kgx.validator import Validator from kgx.cli.error_logging import append_errors_to_file, append_errors_to_files from kgx.cli.decorators import handle_exception from kgx.cli.utils import get_file_types, get_type, get_transformer, is_writable from kgx.cli.utils import Config from kgx.utils import file_write from neo4j.v1 import GraphDatabase from neo4j.v1.types import Node, Record from collections import Counter, defaultdict, OrderedDict from terminaltables import AsciiTable import pandas as pd from datetime import datetime pass_config = click.make_pass_decorator(Config, ensure=True) def error(msg): click.echo(msg) quit() @click.group() @click.option('--debug', is_flag=True, help='Prints the stack trace if error occurs') @click.version_option(version=kgx.__version__, prog_name=kgx.__name__) @pass_config def cli(config, debug): """ Knowledge Graph Exchange """ config.debug = debug if debug: logging.basicConfig(level=logging.DEBUG) def get_prefix(curie:str) -> str: if ':' in curie: prefix, _ = curie.split(':', 1) return prefix else: return None @cli.command('node-summary') @click.argument('filepath', type=click.Path(exists=True), required=True) @click.option('--input-type', type=click.Choice(get_file_types())) @click.option('--max-rows', '-m', type=int, help='The maximum number of rows to return') @click.option('--output', '-o', type=click.Path(exists=False)) def node_summary(filepath, input_type, max_rows, output): """ Loads and summarizes a knowledge graph node set """ t = build_transformer(filepath, input_type) t.parse(filepath) g = t.graph tuples = [] xrefs = set() with click.progressbar(g.nodes(data=True), label='Reading knowledge graph') as bar: for n, data in bar: if 'same_as' in data: for xref in data['same_as']: xrefs.add(get_prefix(xref)) category = data.get('category') prefix = get_prefix(n) if category is not None and len(category) > 1 and 'named thing' in category: category.remove('named thing') if isinstance(category, (list, set)): category = ", ".join("'{}'".format(c) for c in category) if prefix is not None: prefix = "'{}'".format(prefix) tuples.append((prefix, category)) click.echo('|nodes|: {}'.format(len(g.nodes()))) click.echo('|edges|: {}'.format(len(g.edges()))) xrefs = [x for x in xrefs if x is not None] if len(xrefs) != 0: line = 'xref prefixes: {}'.format(', '.join(xrefs)) if output is not None: file_write(output, '|nodes|: {}'.format(len(g.nodes()))) file_write(output, '|edges|: {}'.format(len(g.edges()))) file_write(output, line) else: click.echo('|nodes|: {}'.format(len(g.nodes()))) click.echo('|edges|: {}'.format(len(g.edges()))) click.echo(line) tuple_count = OrderedDict(Counter(tuples).most_common(max_rows)) headers = [['Prefix', 'Category', 'Frequency']] rows = [[*k, v] for k, v in tuple_count.items()] if output is not None: file_write(output, AsciiTable(headers + rows).table, mode='a') else: click.echo(AsciiTable(headers + rows).table) category_count = defaultdict(lambda: 0) prefix_count = defaultdict(lambda: 0) for (prefix, category), frequency in tuple_count.items(): category_count[category] += frequency prefix_count[prefix] += frequency headers = [['Category', 'Frequency']] rows = [[k, v] for k, v in category_count.items()] if output is not None: file_write(output, AsciiTable(headers + rows).table, mode='a') else: click.echo(AsciiTable(headers + rows).table) headers = [['Prefixes', 'Frequency']] rows = [[k, v] for k, v in prefix_count.items()] if output is not None: file_write(output, AsciiTable(headers + rows).table, mode='a') else: click.echo(AsciiTable(headers + rows).table) def stringify(s): if isinstance(s, list): if s is not None and len(s) > 1 and 'named thing' in s: s.remove('named thing') return ", ".join("'{}'".format(c) for c in s) elif isinstance(s, str): return "'{}'".format(s) else: return str(s) @cli.command('edge-summary') @click.argument('filepath', type=click.Path(exists=True), required=True) @click.option('--input-type', type=click.Choice(get_file_types())) @click.option('--max_rows', '-m', type=int, help='The maximum number of rows to return') @click.option('--output', '-o', type=click.Path(exists=False)) def edge_summary(filepath, input_type, max_rows, output): """ Loads and summarizes a knowledge graph edge set """ t = build_transformer(filepath, input_type) t.parse(filepath) g = t.graph tuples = [] with click.progressbar(g.edges(data=True), label='Reading knowledge graph') as bar: for s, o, edge_attr in bar: subject_attr = g.node[s] object_attr = g.node[o] subject_prefix = stringify(get_prefix(s)) object_prefix = stringify(get_prefix(o)) subject_category = stringify(subject_attr.get('category')) object_category = stringify(object_attr.get('category')) edge_label = stringify(edge_attr.get('edge_label')) relation = stringify(edge_attr.get('relation')) tuples.append((subject_prefix, subject_category, edge_label, relation, object_prefix, object_category)) tuple_count = OrderedDict(Counter(tuples).most_common(max_rows)) headers = [['Subject Prefix', 'Subject Category', 'Edge Label', 'Relation', 'Object Prefix', 'Object Category', 'Frequency']] rows = [[*k, v] for k, v in tuple_count.items()] if output is not None: file_write(output, AsciiTable(headers + rows).table) else: click.echo(AsciiTable(headers + rows).table) @cli.command(name='neo4j-node-summary') @click.option('-a', '--address', type=str, required=True) @click.option('-u', '--username', type=str, required=True) @click.option('-p', '--password', type=str, required=True) @click.option('-o', '--output', type=click.Path(exists=False)) @pass_config def neo4j_node_summary(config, address, username, password, output=None): if output is not None and not is_writable(output): error(f'Cannot write to {output}') bolt_driver = GraphDatabase.driver(address, auth=(username, password)) query = """ MATCH (x) RETURN DISTINCT x.category AS category """ with bolt_driver.session() as session: records = session.run(query) categories = set() for record in records: category = record['category'] if isinstance(category, str): categories.add(category) elif isinstance(category, (list, set, tuple)): categories.update(category) elif category is None: continue else: error('Unrecognized value for node.category: {}'.format(category)) rows = [] with click.progressbar(categories, length=len(categories)) as bar: for category in bar: query = """ MATCH (x) WHERE x.category = {category} OR {category} IN x.category RETURN DISTINCT {category} AS category, split(x.id, ':')[0] AS prefix, COUNT(*) AS frequency ORDER BY category, frequency DESC; """ with bolt_driver.session() as session: records = session.run(query, category=category) for record in records: rows.append({ 'category' : record['category'], 'prefix' : record['prefix'], 'frequency' : record['frequency'] }) df = pd.DataFrame(rows) df = df[['category', 'prefix', 'frequency']] if output is None: click.echo(df) else: df.to_csv(output, sep='|', header=True) click.echo('Saved report to {}'.format(output)) @cli.command(name='neo4j-edge-summary') @click.option('-a', '--address', type=str, required=True) @click.option('-u', '--username', type=str, required=True) @click.option('-p', '--password', type=str, required=True) @click.option('-o', '--output', type=click.Path(exists=False)) @pass_config def neo4j_edge_summary(config, address, username, password, output=None): if output is not None and not is_writable(output): error(f'Cannot write to {output}') bolt_driver = GraphDatabase.driver(address, auth=(username, password)) query = """ MATCH (x) RETURN DISTINCT x.category AS category """ with bolt_driver.session() as session: records = session.run(query) categories = set() for record in records: category = record['category'] if isinstance(category, str): categories.add(category) elif isinstance(category, (list, set, tuple)): categories.update(category) elif category is None: continue else: error('Unrecognized value for node.category: {}'.format(category)) categories = list(categories) query = """ MATCH (n)-[r]-(m) WHERE (n.category = {category1} OR {category1} IN n.category) AND (m.category = {category2} OR {category2} IN m.category) RETURN DISTINCT {category1} AS subject_category, {category2} AS object_category, type(r) AS edge_type, split(n.id, ':')[0] AS subject_prefix, split(m.id, ':')[0] AS object_prefix, COUNT(*) AS frequency ORDER BY subject_category, object_category, frequency DESC; """ combinations = [(c1, c2) for c1 in categories for c2 in categories] rows = [] with click.progressbar(combinations, length=len(combinations)) as bar: for category1, category2 in bar: with bolt_driver.session() as session: records = session.run(query, category1=category1, category2=category2) for r in records: rows.append({ 'subject_category' : r['subject_category'], 'object_category' : r['object_category'], 'subject_prefix' : r['subject_prefix'], 'object_prefix' : r['object_prefix'], 'frequency' : r['frequency'] }) df =
pd.DataFrame(rows)
pandas.DataFrame
import pandas as pd import numpy as np import nltk from nltk.corpus import stopwords from nltk.stem import SnowballStemmer import re from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt import datetime, time, json from string import punctuation from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Embedding, Dense, Dropout, Reshape, Merge, BatchNormalization, TimeDistributed, Lambda, Activation, LSTM, Flatten, Convolution1D, GRU, MaxPooling1D from keras.regularizers import l2 from keras.callbacks import Callback, ModelCheckpoint, EarlyStopping from keras import initializers from keras import backend as K from keras.optimizers import SGD from collections import defaultdict # In[6]: train = pd.read_csv("../data/train.csv") test = pd.read_csv("../data/test.csv") # In[7]: #train.head(6) # In[8]: #test.head() # In[9]: print(train.shape) print(test.shape) # In[10]: # Check for any null values print(train.isnull().sum()) print(test.isnull().sum()) # In[11]: # Add the string 'empty' to empty strings train = train.fillna('empty') test = test.fillna('empty') # In[12]: print(train.isnull().sum()) print(test.isnull().sum()) # In[13]: # Preview some of the pairs of questions for i in range(6): print(train.question1[i]) print(train.question2[i]) print() # In[14]: stop_words = ['the','a','an','and','but','if','or','because','as','what','which','this','that','these','those','then', 'just','so','than','such','both','through','about','for','is','of','while','during','to','What','Which', 'Is','If','While','This'] # In[191]: def text_to_wordlist(text, remove_stop_words=True, stem_words=False): # Clean the text, with the option to remove stop_words and to stem words. # Convert words to lower case and split them #text = text.lower() # Clean the text text = re.sub(r"[^A-Za-z0-9]", " ", text) text = re.sub(r"what's", "", text) text = re.sub(r"What's", "", text) text = re.sub(r"\'s", " ", text) text = re.sub(r"\'ve", " have ", text) text = re.sub(r"can't", "cannot ", text) text = re.sub(r"n't", " not ", text) text = re.sub(r"I'm", "I am", text) text = re.sub(r" m ", " am ", text) text = re.sub(r"\'re", " are ", text) text = re.sub(r"\'d", " would ", text) text = re.sub(r"\'ll", " will ", text) text = re.sub(r"\0k ", "0000 ", text) text = re.sub(r" e g ", " eg ", text) text = re.sub(r" b g ", " bg ", text) text = re.sub(r"\0s", "0", text) text = re.sub(r" 9 11 ", "911", text) text = re.sub(r"e-mail", "email", text) text = re.sub(r"\s{2,}", " ", text) text = re.sub(r"quikly", "quickly", text) text = re.sub(r" usa ", " America ", text) text = re.sub(r" USA ", " America ", text) text = re.sub(r" u s ", " America ", text) text = re.sub(r" uk ", " England ", text) text = re.sub(r" UK ", " England ", text) text = re.sub(r"india", "India", text) text = re.sub(r"china", "China", text) text = re.sub(r"chinese", "Chinese", text) text = re.sub(r"imrovement", "improvement", text) text = re.sub(r"intially", "initially", text) text = re.sub(r"quora", "Quora", text) text = re.sub(r" dms ", "direct messages ", text) text = re.sub(r"demonitization", "demonetization", text) text = re.sub(r"actived", "active", text) text = re.sub(r"kms", " kilometers ", text) text = re.sub(r"KMs", " kilometers ", text) text = re.sub(r" cs ", " computer science ", text) text = re.sub(r" upvotes ", " up votes ", text) text = re.sub(r" iPhone ", " phone ", text) text = re.sub(r"\0rs ", " rs ", text) text = re.sub(r"calender", "calendar", text) text = re.sub(r"ios", "operating system", text) text = re.sub(r"gps", "GPS", text) text = re.sub(r"gst", "GST", text) text = re.sub(r"programing", "programming", text) text = re.sub(r"bestfriend", "best friend", text) text = re.sub(r"dna", "DNA", text) text = re.sub(r"III", "3", text) text = re.sub(r"the US", "America", text) text = re.sub(r"Astrology", "astrology", text) text = re.sub(r"Method", "method", text) text = re.sub(r"Find", "find", text) text = re.sub(r"banglore", "Banglore", text) text = re.sub(r" J K ", " JK ", text) # Remove punctuation from text text = ''.join([c for c in text if c not in punctuation]) # Optionally, remove stop words if remove_stop_words: text = text.split() text = [w for w in text if not w in stop_words] text = " ".join(text) # Optionally, shorten words to their stems if stem_words: text = text.split() stemmer = SnowballStemmer('english') stemmed_words = [stemmer.stem(word) for word in text] text = " ".join(stemmed_words) # Return a list of words return(text) # In[192]: def process_questions(question_list, questions, question_list_name, dataframe): '''transform questions and display progress''' for question in questions: question_list.append(text_to_wordlist(question)) if len(question_list) % 100000 == 0: progress = len(question_list)/len(dataframe) * 100 print("{} is {}% complete.".format(question_list_name, round(progress, 1))) # In[193]: train_question1 = [] process_questions(train_question1, train.question1, 'train_question1', train) # In[194]: train_question2 = [] process_questions(train_question2, train.question2, 'train_question2', train) # In[165]: test_question1 = [] process_questions(test_question1, test.question1, 'test_question1', test) # In[166]: test_question2 = [] process_questions(test_question2, test.question2, 'test_question2', test) # In[195]: # Preview some transformed pairs of questions i = 0 for i in range(i,i+10): print(train_question1[i]) print(train_question2[i]) print() # In[168]: # Find the length of questions lengths = [] for question in train_question1: lengths.append(len(question.split())) for question in train_question2: lengths.append(len(question.split())) # Create a dataframe so that the values can be inspected lengths =
pd.DataFrame(lengths, columns=['counts'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Jan 27 13:30:31 2020 @author: User """ import sys import datetime as dt from collections import Counter import pprint import matplotlib import matplotlib.pyplot as plt import matplotlib.lines as mlines from matplotlib import cm from matplotlib import gridspec from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import # import os from platform import system import glob import cycler import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype from bs4 import BeautifulSoup import re from scipy.stats import linregress # from sklearn import linear_model import scipy.signal import itertools from itertools import chain, repeat import logging import datetime as dt from pathlib import Path # import h5py from multiprocessing import Pool, cpu_count # import timeit # import time matplotlib.rcParams.update({"font.size": 16}) plt.rcParams["font.family"] = "sans-serif" plt.rcParams["font.sans-serif"] = "Helvetica" plt.rcParams["axes.edgecolor"] = "#333F4B" plt.rcParams["xtick.color"] = "#333F4B" plt.rcParams["ytick.color"] = "#333F4B" try: import statsmodels.formula.api as smf import statsmodels.api as sm import seaborn as sns except Exception as e: print("No modules: %s" % e) from file_py_helper.find_folders import FindExpFolder from file_py_helper.file_functions import FileOperations from file_py_helper.PostChar import ( SampleSelection, Characterization_TypeSetting, SampleCodesChar, ) if __name__ == "__main__": print(f"Package: {__package__}, File: {__file__}") from elchempy.main_run_PAR_DW import ECRunOVV from elchempy.indexer.prepare_input import CleanUpCrew from elchempy.experiments.EIS.models import Model_Collection import post_helper import merger # import EC # sys.path.append(list(FH_path.rglob('*.py'))) # import FH_path.joinpath('FindExpFolder.py') # import FindExpFolder.py # from FileHelper import FindExpFolder # from FindExpFolder import * # from .experiments import EIS # from .runEC import run_PAR_DW from elchempy.runEC.EC_logging_config import start_logging # logger = start_logging(__name__) else: # print('\n\n***** run_PAR_DW *****') print(f"File: {__file__}, Name:{__name__}, Package:{__package__}") # FH_path = Path(__file__).parent.parent.parent # sys.path.append(str(FH_path)) # import FileHelper from elchempy.main_run_PAR_DW import ECRunOVV from elchempy.indexer.prepare_input import CleanUpCrew from elchempy.runEC.EC_logging_config import start_logging from elchempy.PostEC import post_helper, merger from elchempy.experiments.EIS.models import Model_Collection # logger = start_logging(__name__) _logger = logging.getLogger(__name__) _logger.setLevel(20) EvRHE = "E_AppV_RHE" class PostEC: AllColls = [ "Unnamed: 0", "Segment #", "Point #", "E(V)", "I(A)", "Elapsed Time(s)", "Current Range", "Status", "E Applied(V)", "Frequency(Hz)", "Z Real", "Z Imag", "ActionId", "AC Amplitude", "RHE_OCP", "E_AppV_RHE", "E_Applied_VRHE", "j A/cm2", "jmAcm-2", "jcorr", "Gas", "EXP", "Electrode", "j_ring", "RPM", "Comment", "Measured_OCP", "pH", "Electrolyte", "ScanRate_calc", "SampleID", "File", "BaseName", "hash", "Instrument", "DATE", "EvRHE_diff", "DestFile", "Sweep_Type", "Type", "Cycle", "DAC_V", "Scanrate", "ORR_scan", "Jcorr", "J_N2_scan", "J_O2_diff", "J_O2_diff_diff", "Analysis_date", "J_2nd_diff", "Jkin_max", "Jkin_min", "E_onset", "Diff_lim", "E_half", "I(A)_ring", "I(A)_disk", "Frac_H2O2", "J_ring", "n_ORR", ] DropColls = [ "Unnamed: 0", "Segment #", "Point #", "E(V)", "I(A)", "Elapsed Time(s)", "Current Range", "Status", "E Applied(V)", "Frequency(Hz)", "Z Real", "Z Imag", "ActionId", "AC Amplitude", "RHE_OCP", "E_AppV_RHE", "jmAcm-2", "jcorr", "Gas", "EXP", "Electrode", "j_ring", "RPM", "Comment", "Measured_OCP", "pH", "Electrolyte", "ScanRate_calc", "SampleID", "File", "BaseName", "hash", "Instrument", "DATE", "EvRHE_diff", "DestFile", "Sweep_Type", "Type", "Cycle", "DAC_V", "Scanrate", "ORR_scan", "Jcorr", "J_N2_scan", "J_O2_diff", "J_O2_diff_diff", "Analysis_date", "J_2nd_diff", "Jkin_max", "Jkin_min", "E_onset", "Diff_lim", "E_half", "I(A)_ring", "I(A)_disk", "Frac_H2O2", "J_ring", "n_ORR", ] KeepColls = [ "E_AppV_RHE", "jmAcm-2", "Jcorr", "J_N2_scan", "Jkin_max", "Jkin_min", "Frac_H2O2", "J_ring", "n_ORR", ] # SampleCodes = FindExpFolder.LoadSampleCode() # FindExpFolder('VERSASTAT').SampleCodeLst # PostDestDir.mkdir(parents=True,exist_ok=True) # ExpPARovv = EC_loadOVV() # OnlyRecentMissingOVV = runEC.MainPrepareList() # ExpPARovv = ExpPARovv.iloc[100:120] OutParsID = pd.DataFrame() # Go1, Go2, Go3 = True, False, False # Go1, Go2, Go3 = False, True, False Go1, Go2, Go3 = False, False, True # KL_coeff = KL_coefficients() EvRHE_List = [ 0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 1, ] def __init__(self): self.DestDir = FindExpFolder("VERSASTAT").PostDir @staticmethod def StartLogging(level_log="INFO"): # level_log = kwargs['level'] log_fn = FindExpFolder("VERSASTAT").PostDir.joinpath("PostEC_logger.log") logging.basicConfig( filename=log_fn, filemode="w", level=level_log, format="%(asctime)s %(levelname)s, %(lineno)d: %(message)s", ) logging.warning("Started logging for PostEC script...") def applyParallel(dfGrouped, func): with Pool(cpu_count() - 1) as p: ret_list = p.map(func, [group for name, group in dfGrouped]) return ret_list def check_status(file, verbose=False): """Check status will return (status,extra) of filename""" PAR_file_test = Path(str(file)).stem match = [ re.search("(?<!VERS|Vers)(AST|postAST|pAST)", str(a)) for a in PAR_file_test.split("_") ] if any(match): status = "EoL" extra = [ a for a in PAR_file_test.split("_") if [i for i in match if i][0][0] in a ] if verbose: print(file, status, *extra) return status, extra[0] # if any([re.search(r'', i) for i in str(Path(str(file)).stem.split('_'))]): else: return "BoL", 0 # status = # extra = [0] # return status,extra def postEC_Status(files, verbose=False): # files = ['N2_HER_1500rpm_JOS6_pAST-sHA_285_#3_Disc_Parstat'] if len(files) > 1: status_lst, extra_lst = [], [] for file in files: status, extra = PostEC.check_status(file) status_lst.append(status) extra_lst.append(extra) return status_lst, extra_lst else: return PostEC.check_status(files) def OLD_PostOrganizeFolders(TakeRecentList=True): postOVV = [] PostDestDir = FindExpFolder("VERSASTAT").DestDir.joinpath("PostEC") PAR_version = FileOperations.version RunOVV_fn_opts = list( FindExpFolder("VERSASTAT").DestDir.rglob( "RunOVV_v{0}.xlsx".format(PAR_version) ) ) RunOVV_fn = [i for i in RunOVV_fn_opts if not "_Conflict" in i.stem][0] if RunOVV_fn.is_file() and TakeRecentList == True: OvvFromFile = pd.read_excel(RunOVV_fn, index_col=[0]) status, extra = PostEC.postEC_Status(OvvFromFile.PAR_file.values) OvvFromFile = OvvFromFile.assign( **{ "Date_PAR_EXP": OvvFromFile.PAR_date - OvvFromFile.EXP_date, "Status": status, "Extra": extra, } ) OnlyRecentMissingOVV = OvvFromFile # OvvFromFile['Date_PAR_EXP'] = OvvFromFile.PAR_date-OvvFromFile.EXP_date # OvvFromFile['Status'] = OvvFromFile.PAR_file.values print("EC OVV loaded from file:{0}".format(RunOVV_fn)) OnlyRecentMissingOVV = FileOperations.ChangeRoot_DF( OnlyRecentMissingOVV, ["Dest_dir", "EXP_dir", "PAR_file"] ) # CS_parts_PDD = FileOperations.find_CS_parts(PostDestDir) # CS_parts_pOVV = FileOperations.find_CS_parts(OnlyRecentMissingOVV.Dest_dir.iloc[0]) # chLst =[] # if CS_parts_PDD[0] != CS_parts_pOVV[0]: # chLst = [CS_parts_PDD[0].joinpath(FileOperations.find_CS_parts(i)[1]) for i in OnlyRecentMissingOVV.Dest_dir.values] # OnlyRecentMissingOVV['Dest_dir'] = chLst # else: # pass postOVVlst, outLst = [], [] postOVVcols = [ "DestFilename", "SampleID", "Status", "Status_extra", "Electrolyte", "Gas", "RPM", "Scanrate", "EXP_date", "Type_Exp", "SourceFilename", "Exp_dir", ] # postOVVout = PostEC.FromListgrp(group) # postOVVlst = PostEC.applyParallel(OnlyRecentMissingOVV.groupby('Dest_dir'),PostEC.FromListgrp) # postOVVlst = [outLst.append(PostEC.FromListgrp(i)) for i in OnlyRecentMissingOVV.groupby('Dest_dir')] # for i in OnlyRecentMissingOVV.groupby('Dest_dir'): # PostEC.FromListgrp(i) # try: # postOVVout = pd.DataFrame(postOVVlst,columns=) # except Exception as e: # postOVVout = pd.DataFrame(postOVVlst) # for n,gr in OnlyRecentMissingOVV.groupby(by=['Dest_dir']): # PostEC.FromListgrp(n,gr.EXP_dir.unique()[0]) # pass # postOVVlst = [outLst.append(PostEC.FromListgrp(n,gr.EXP_dir.unique()[0])) for n,gr in OnlyRecentMissingOVV.groupby(by=['Dest_dir'])] postOVVout = pd.concat( [pd.DataFrame(i, columns=postOVVcols) for i in outLst], sort=False, ignore_index=True, ) postOVVout.to_excel(PostDestDir.joinpath("postEC_Organized.xlsx")) return postOVVout class EnterExitLog: def __init__(self, funcName): self.funcName = funcName def __enter__(self): _logger.info(f"Started: {self.funcName}") self.init_time = dt.datetime.now() return self def __exit__(self, type, value, tb): self.end_time = dt.datetime.now() self.duration = self.end_time - self.init_time _logger.info(f"Finished: {self.funcName} in {self.duration} seconds") def func_timer_decorator(func): def func_wrapper(*args, **kwargs): with EnterExitLog(func.__name__): return func(*args, **kwargs) return func_wrapper def get_daily_pickle(exp_type=""): today = dt.datetime.now().date() _result = {"today": today} if exp_type: daily_pickle_path = FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}.pkl.compress" ) daily_pkl_options = list( FindExpFolder("VERSASTAT").PostDir.rglob( f"*_{exp_type}_{system()}.pkl.compress" ) ) daily_pkl_options = sorted(daily_pkl_options, key=lambda x: x.stat().st_ctime) _result.update( { "daily_path": daily_pickle_path, "_exists": daily_pickle_path.exists(), "daily_options": daily_pkl_options, } ) daily_pickle_path_RAW = FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}_RAW.pkl.compress" ) daily_pkl_options_RAW = list( FindExpFolder("VERSASTAT").PostDir.rglob( f"*_{exp_type}_{system()}_RAW.pkl.compress" ) ) daily_pkl_options_RAW = sorted( daily_pkl_options_RAW, key=lambda x: x.stat().st_ctime ) _result.update( { "daily_path_RAW": daily_pickle_path_RAW, "_raw_exists": daily_pickle_path_RAW.exists(), "daily_options_RAW": daily_pkl_options_RAW, } ) if "EIS" in exp_type: _result.update( { "daily_path_BRUTE": FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_BRUTE_{system()}.pkl.compress" ), "daily_path_RAW_WB": FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_RAW_WB_{system()}.pkl.compress" ), } ) return _result def _collect_test(): tt = CollectLoadPars(load_type="fast") class CollectLoadPars: def __init__(self, load_type="fast"): self.load_type = load_type self.load_pars() self.collect_dict() def load_pars(self): _BaseLoad = BaseLoadPars() _kws = {"EC_index": _BaseLoad.EC_index, "SampleCodes": _BaseLoad.SampleCodes} if "fast" in self.load_type: _kws.update(**{"reload": False, "reload_raw": False}) self.EIS_load = EIS_LoadPars(**_kws) self.ORR_load = ORR_LoadPars(**_kws) self.N2_load = N2_LoadPars(**_kws) def collect_dict(self): _load_attrs = [i for i in self.__dict__.keys() if i.endswith("_load")] _collect = {} for _load_pars in _load_attrs: _pars_name = f'{_load_pars.split("_")[0]}_pars' if hasattr(getattr(self, _load_pars), _pars_name): _pars = getattr(getattr(self, _load_pars), _pars_name) _collect.update({_pars_name: _pars}) self.pars_collection = _collect class BaseLoadPars: _required_funcs = [ "make_raw_pars_from_scratch", "edit_raw_columns", "search_pars_files", "read_in_pars_files", "extra_stuff_delegator", ] def __init__( self, EC_index=pd.DataFrame(), SampleCodes=pd.DataFrame(), exp_type="", reload=False, reload_raw=False, ): self.exp_type = exp_type self._auto_set_exp_type() self.EC_index = EC_index self.SampleCodes = SampleCodes self._check_class_req_functions() self.check_EC_index() self.set_OVV_exp_type() self._reload = reload self._reload_raw = reload_raw self.get_daily_pickle() if self.exp_type: self.load_delegator() def _auto_set_exp_type(self): _cls_name = self.__class__.__name__ if "_" in _cls_name: _cls_exp_type = _cls_name.split("_")[0] _exp_type = f"{_cls_exp_type}_pars" self.exp_type = _exp_type def check_EC_index(self): if self.EC_index.empty: EC_index = ECRunOVV(load=1).EC_index EC_index = FileOperations.ChangeRoot_DF(EC_index, []) EC_index.PAR_file = EC_index.PAR_file.astype(str) EC_index["Loading_cm2"] = EC_index["Loading_cm2"].round(3) self.EC_index = EC_index if self.SampleCodes.empty: SampleCodes = FindExpFolder().LoadSampleCode() self.SampleCodes = SampleCodes # SampleCodesChar().load def set_OVV_exp_type(self): if not self.EC_index.empty and self.exp_type: PAR_exp_uniq = self.EC_index.PAR_exp.unique() PAR_match = [ parexp for parexp in PAR_exp_uniq if self.exp_type.split("_")[0] in parexp ] self.exp_type_match = PAR_match # if PAR_match: EC_index_exp = self.EC_index.loc[self.EC_index.PAR_exp.isin(PAR_match)] self.EC_index_exp = EC_index_exp if EC_index_exp.empty: _logger.error(f'set_OVV_exp_type "{self.__class__.__name__}" empty') self.EC_index_exp_destdirs = EC_index_exp.Dest_dir.unique() def get_daily_pickle(self): exp_type = self.exp_type today = dt.datetime.now().date() _result = {"today": today} if exp_type: daily_pickle_path = FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}.pkl.compress" ) daily_pkl_options = list( FindExpFolder("VERSASTAT").PostDir.rglob( f"*_{exp_type}_{system()}.pkl.compress" ) ) daily_pkl_options = sorted( daily_pkl_options, key=lambda x: x.stat().st_ctime ) _result.update( { "daily_path": daily_pickle_path, "_exists": daily_pickle_path.exists(), "daily_options": daily_pkl_options, } ) if not daily_pkl_options and not self._reload_raw: self._reload_raw = True daily_pickle_path_RAW = FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}_RAW.pkl.compress" ) _pickle_path_RAW_read_in = FindExpFolder("VERSASTAT").PostDir.joinpath( f"{exp_type}_{system()}_RAW_read_in.pkl.compress" ) daily_pkl_options_RAW = list( FindExpFolder("VERSASTAT").PostDir.rglob( f"*_{exp_type}_{system()}_RAW.pkl.compress" ) ) daily_pkl_options_RAW = sorted( daily_pkl_options_RAW, key=lambda x: x.stat().st_ctime ) _result.update( { "daily_path_RAW": daily_pickle_path_RAW, "_raw_exists": daily_pickle_path_RAW.exists(), "daily_options_RAW": daily_pkl_options_RAW, "pkl_path_RAW_read_in": _pickle_path_RAW_read_in, } ) if "EIS" in exp_type: daily_pkl_options_RAW_WB = list( FindExpFolder("VERSASTAT").PostDir.rglob( f"*_{exp_type}_{system()}_RAW_WB.pkl.compress" ) ) daily_pkl_options_RAW_WB = sorted( daily_pkl_options_RAW_WB, key=lambda x: x.stat().st_ctime ) _result.update( { "daily_path_BRUTE": FindExpFolder("VERSASTAT").PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}_BRUTE.pkl.compress" ), "daily_path_RAW_WB": FindExpFolder( "VERSASTAT" ).PostDir.joinpath( f"{today:%Y-%m-%d}_{exp_type}_{system()}_RAW_WB.pkl.compress" ), "daily_options_RAW_WB": daily_pkl_options_RAW_WB, } ) self.daily_pickle_path = _result def load_delegator(self): setattr(self, self.exp_type, pd.DataFrame()) if self._reload: if self._reload_raw: self.make_raw_pars_from_scratch() else: self.read_in_daily_raw() if hasattr(self, "edit_raw_columns"): try: self.edit_raw_columns() except Exception as e: _logger.warning( f'edit_raw_columns in load_delegator "{self.__class__.__name__}" {self.exp_type} failed because {e}' ) self.save_daily_pars() else: self.read_in_daily_pars() try: self.extra_stuff_delegator() except Exception as e: _logger.warning( f'extra_stuff_delegator "{self.__class__.__name__}" {self.exp_type} failed because {e}' ) def _check_class_req_functions(self): for _f in self._required_funcs: if not hasattr(self, _f) and "BaseLoadPars" not in self.__class__.__name__: _logger.warning( f'Class "{self.__class__.__name__}" is missing required func: "{_f}"' ) def save_daily_pars(self): pars = getattr(self, self.exp_type) pars.to_pickle(self.daily_pickle_path["daily_path"]) _logger.info( f'{self.exp_type} len({len(pars)}) OVV to daily pickle: {self.daily_pickle_path.get("daily_path")}' ) def read_in_daily_pars(self): if self.daily_pickle_path.get("daily_options"): _pars_fp = self.daily_pickle_path.get("daily_options")[-1] _logger.info( f"start read_in_daily_pars {self.exp_type} pars OVV from daily {_pars_fp} " ) _pars = pd.read_pickle(_pars_fp) try: _pars = FileOperations.ChangeRoot_DF(_pars, [], coltype="string") setattr(self, self.exp_type, _pars) _logger.info(f"Loaded {self.exp_type} pars OVV from daily {_pars_fp} ") except Exception as e: _pars = pd.DataFrame() _logger.error( f" ERROR in Loaded {self.exp_type} pars OVV from daily {_pars_fp} {e} " ) else: _pars = pd.DataFrame() _pars_fp = "options empty list" if _pars.empty: _logger.error( f" ERROR in Loaded {self.exp_type} pars OVV from daily {_pars_fp}: empty " ) def reload_raw_df_delegator(self): _raw_read_fp = self.daily_pickle_path.get("pkl_path_RAW_read_in") if _raw_read_fp.exists() and not (self._reload or self._reload_raw): _pars_RAW_read_in = pd.read_pickle(_raw_read_fp) setattr(self, f"{self.exp_type}_RAW", _pars_RAW_read_in) else: self.generate_raw_df() self.reload_raw_df() _pars_RAW_read_in = getattr(self, f"{self.exp_type}_RAW") _pars_RAW_read_in.to_pickle(_raw_read_fp) def read_in_daily_raw(self): _raw_fp = self.daily_pickle_path.get("daily_options_RAW")[-1] _pars_RAW = pd.read_pickle(_raw_fp) _pars_RAW.sort_values("source_delta_mtime", inplace=True) if not "level_0" in _pars_RAW.columns: _pars_RAW = _pars_RAW.reset_index() setattr(self, f"{self.exp_type}_RAW", _pars_RAW) _logger.info(f"Loaded raw df {self.exp_type} from daily {_raw_fp} ") def save_daily_raw(self): _pars_RAW = getattr(self, f"{self.exp_type}_RAW") _pars_RAW.to_pickle(self.daily_pickle_path.get("daily_path_RAW")) _logger.info( f'{self.exp_type} OVV to daily pickle: {self.daily_pickle_path.get("daily_path_RAW")}' ) def set_gen_raw_fls(self): _par_files = [ list(self.search_pars_files(d)) for d in self.EC_index_exp_destdirs ] self._par_files = _par_files if not _par_files: _logger.warning(f"{self.exp_type} set_gen_raw_fls: list empty ") self._par_fls_gen = (a for i in self._par_files for a in i) @func_timer_decorator def generate_raw_df(self): if not hasattr(self, "_par_fls_gen"): self.set_gen_raw_fls() _pars_lst = list(self.read_in_pars_files(self._par_fls_gen)) try: _pars_RAW = pd.concat(_pars_lst, sort=False) except Exception as e: _pars_RAW = pd.DataFrame() _logger.warning(f"{self.exp_type} generate_raw_df: {e}") setattr(self, f"{self.exp_type}_RAW", _pars_RAW) @staticmethod def get_source_meta(filepath): i = filepath _source_mtime = dt.datetime.fromtimestamp(i.stat().st_mtime) _delta_mtime = dt.datetime.now() - _source_mtime _meta_res = { "sourceFilename": i, "source_mtime": _source_mtime, "source_delta_mtime": _delta_mtime, "sourcebasename": i.stem, } return _meta_res def extra_stuff_delegator(self): _extra_funcs = [i for i in self.__dict__.keys() if i.startswith("_extra")] for _func in _extra_funcs: try: func = getattr(self, _func) func() # self._extra_plotting() except Exception as e: _logger.info( f"{self.__class__.__name__} Extra stuff failed because {e}" ) def _testing(): tt = EIS_LoadPars(reload=False, reload_raw=False) tt._reload_raw self = tt self.load_delegator() self.make_raw_pars_from_scratch() class EIS_LoadPars(BaseLoadPars): col_names = ["File_SpecFit", "File_SpecRaw", "PAR_file"] def __init__( self, EC_index=pd.DataFrame(), SampleCodes=pd.DataFrame(), exp_type="EIS_pars", BRUTE_out=False, **kws, ): self.BRUTE_out = BRUTE_out super().__init__( EC_index=EC_index, SampleCodes=SampleCodes, exp_type=exp_type, **kws ) def read_in_pars_files(self, _genlist): # _ps = Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) while True: try: i = next(_genlist) if i.name.endswith("xlsx"): _pp = pd.read_excel(i, index_col=[0]) elif i.name.endswith("pkl"): _pp = pd.read_pickle(i) _pp = FileOperations.ChangeRoot_DF(_pp, [], coltype="string") _meta = self.get_source_meta(i) _pp = _pp.assign(**_meta) yield _pp except StopIteration: return "all done" print("gen empty") def search_pars_files(self, _dest_dir): return Path(_dest_dir.joinpath("EIS")).rglob( f"*_pars_v{FileOperations.EIS_version}.xlsx" ) @func_timer_decorator def make_raw_pars_from_scratch(self): _logger.info( f'Reloading raw extra steps "{self.__class__.__name__}" {self.exp_type}' ) self.reload_raw_df_delegator() self._load_WB_delegator() self._merge_WB_pars_raw() self._raw_finish_edit_columns() self.save_daily_raw() def reload_raw_df_delegator(self): _raw_read_fp = self.daily_pickle_path.get("pkl_path_RAW_read_in") if _raw_read_fp.exists() and not (self._reload or self._reload_raw): EIS_pars_RAW_read_in = pd.read_pickle(_raw_read_fp) setattr(self, f"{self.exp_type}_RAW", EIS_pars_RAW_read_in) else: self.generate_raw_df() self.reload_raw_df() EIS_pars_RAW_read_in = getattr(self, f"{self.exp_type}_RAW") EIS_pars_RAW_read_in.to_pickle(_raw_read_fp) def reload_raw_df(self): _pars_RAW = getattr(self, f"{self.exp_type}_RAW") _pars_RAW.sort_values("source_delta_mtime", inplace=True) _pars_RAW = _pars_RAW.reset_index() setattr(self, f"{self.exp_type}_RAW", _pars_RAW) self._raw_extra_steps() _logger.info(f'Reloading "{self.__class__.__name__}" {self.exp_type}') # self.EIS_pars_RAW = EIS_pars_RAW def _raw_extra_steps(self): _logger.info( f'Reloading raw extra steps "{self.__class__.__name__}" {self.exp_type}' ) EIS_pars_all = getattr(self, f"{self.exp_type}_RAW") float_cols = set( [ a for i in EIS_pars_all.lmfit_var_names.unique() if type(i) == str and not "(" in i for a in i.split(", ") ] ) float_cols.update( set( [a for i in float_cols for a in EIS_pars_all.columns if a.startswith(i)] ) ) EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].fillna(0) # EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].astype(float) obj_flt_cols = [ i for i in EIS_pars_all.columns if str(EIS_pars_all[i].dtype) == "object" and i in float_cols ] EIS_pars_all[obj_flt_cols] = EIS_pars_all[obj_flt_cols].replace("", 0) EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].astype(float) wrong_fls = [ EIS_pars_all.loc[EIS_pars_all[i].astype(str).str.contains("Parameter")] for i in obj_flt_cols ] if wrong_fls: wrong_objflt_df = pd.concat(wrong_fls) fix_dct = { i: [ float(v.split("value=")[-1].split(",")[0]) for v in wrong_objflt_df[i].values ] for i in obj_flt_cols } fixed_objflt_df = wrong_objflt_df.assign(**fix_dct) EIS_pars_all = pd.concat( [ EIS_pars_all.drop(index=wrong_objflt_df.index, axis=0), fixed_objflt_df, ], axis=0, sort=True, ) setattr(self, f"{self.exp_type}_RAW", EIS_pars_all) def _load_WB_delegator(self): daily_options_WB = self.daily_pickle_path.get("daily_options_RAW_WB") if daily_options_WB: _WB_RAW_daily_path = daily_options_WB[-1] if _WB_RAW_daily_path.exists() and not (self._reload or self._reload_raw): _EIS_WB_pars_all = pd.read_pickle(_WB_RAW_daily_path) setattr(self, f"{self.exp_type}_WB", _EIS_WB_pars_all) else: self.reload_raw_WB_df() else: self.reload_raw_WB_df() def reload_raw_WB_df(self): _logger.info(f'Reloading "{self.__class__.__name__}" {self.exp_type} WB') _EIS_WB_files = [ list(Path(d.joinpath("EIS/lin_Warburg")).rglob(f"lin_Warburg*.pkl")) for d in self.EC_index_exp_destdirs ] self._EIS_WB_files = _EIS_WB_files self._EIS_WB_fls = (a for i in _EIS_WB_files for a in i) _WB_lst = list(self.read_in_pars_files(self._EIS_WB_fls)) _EIS_WB_pars_all = pd.concat(_WB_lst, sort=False, ignore_index=True) setattr(self, f"{self.exp_type}_WB", _EIS_WB_pars_all) _EIS_WB_pars_all.to_pickle(self.daily_pickle_path.get("daily_path_RAW_WB")) def _merge_WB_pars_raw(self): _EIS_WB_pars_all = getattr(self, f"{self.exp_type}_WB") EIS_pars_all = getattr(self, f"{self.exp_type}_RAW") _diffcols = set(EIS_pars_all.columns).difference(_EIS_WB_pars_all.columns) _mcols = [ i for i in set(EIS_pars_all.columns).intersection(_EIS_WB_pars_all.columns) if i not in [ "sourceFilename", "source_mtime", "source_delta_mtime", "sourcebasename", ] ] _dtype_mismatch = [ (i, EIS_pars_all[i].dtype, _EIS_WB_pars_all[i].dtype) for i in _mcols if EIS_pars_all[i].dtype != _EIS_WB_pars_all[i].dtype ] if _dtype_mismatch: _excl = [] for i in _dtype_mismatch: try: _EIS_WB_pars_all[i[0]] = _EIS_WB_pars_all[i[0]].astype(i[1]) except Exception as e: _excl.append(i[0]) print(i, "\n", e) _mcols = [i for i in _mcols if i not in _excl] # EIS_pars_all[i[0]] = EIS_pars_all[i[0]].astype(i[2]) _merge = pd.merge( EIS_pars_all, _EIS_WB_pars_all, on=_mcols, how="left", suffixes=("", "_WB") ) if not _merge.empty: return _merge else: print("WB merge was empty") return EIS_pars_all setattr(self, f"{self.exp_type}_RAW", EIS_pars_all) def _raw_finish_edit_columns(self): # EIS_pars_all = self._merge_WB_pars_raw(EIS_pars_all) EIS_pars_all = getattr(self, f"{self.exp_type}_RAW") EIS_pars_all = EIS_pars_all.assign( **{ "EIS_fake": [ "fakeZmean" in Path(i).name for i in EIS_pars_all.PAR_file.to_numpy() ] } ) _not_in_index = EIS_pars_all.loc[ ( ~(EIS_pars_all.PAR_file.isin(self.EC_index.PAR_file.values)) & (~EIS_pars_all.EIS_fake == True) ) ] CleanUpCrew(list_of_files=_not_in_index.sourceFilename.unique(), delete=True) EIS_pars_all = EIS_pars_all.iloc[ ~(EIS_pars_all.index.isin(_not_in_index.index)) ] EIS_pars_all = Load_from_Indexes.test_update_from_index( EIS_pars_all, self.EC_index ) setattr(self, f"{self.exp_type}_RAW", EIS_pars_all) def edit_raw_columns(self): EIS_pars_all = getattr(self, f"{self.exp_type}_RAW") # EIS_pars_RAW = self._raw_extra_steps(EIS_pars_RAW) E_dc_RHE_cols = [ (np.round(i, 3), np.round(i, 3) * 1e3) for i in EIS_pars_all[EvRHE].values ] EIS_pars_all = EIS_pars_all.assign( **{ "E_dc_RHE": [i[0] for i in E_dc_RHE_cols], "E_dc_RHE_mV": [i[1] for i in E_dc_RHE_cols], } ) EIS_pars_recent = EIS_pars_all.loc[ (EIS_pars_all.source_mtime > pd.Timestamp(dt.date(2020, 11, 25))) & (EIS_pars_all.PAR_file.str.contains("None") == False) ] EIS_pars_undup = EIS_pars_recent.dropna(subset=self.col_names).drop_duplicates( keep="first" ) # === POST EDITING OF LOADED PARS === EIS_pars_undup = EIS_pars_undup.assign( **{"Loading_cm2": EIS_pars_undup["Loading_cm2"].round(3)} ) EIS_pars_undup = post_helper.make_uniform_EvRHE(EIS_pars_undup) EIS_pars_undup = CollectPostOVV.MatchECconditions(EIS_pars_undup) # EIS_pars_undup = Load_from_Indexes.add_missing_ECindex_cols(EC_index, EIS_pars_undup) _oc_OVV = list(EIS_pars_undup.columns.intersection(self.EC_index_exp.columns)) if not set(self.EC_index_exp.groupby(_oc_OVV).groups.keys()).intersection( EIS_pars_undup.groupby(_oc_OVV).groups.keys() ): _drpcols = [ a for a in EIS_pars_undup.columns if ( a in [i for i in _oc_OVV if i not in "PAR_file"] or "_".join(a.split("_")[0:-1]) in [i for i in _oc_OVV if i not in "PAR_file"] ) ] # EIS_pars_undup.drop(columns =_drpcols) EIS_pars_undup = Load_from_Indexes.add_missing_ECindex_cols( self.EC_index, EIS_pars_undup.drop(columns=_drpcols) ) # EIS_pars_undup = pd.merge(EIS_pars_undup,EIS_OVV,on=_oc_OVV, how='left') _oc_SC = list(EIS_pars_undup.columns.intersection(self.SampleCodes.columns)) EIS_pars_undup = pd.merge( EIS_pars_undup, self.SampleCodes, how="left", on=_oc_SC ) EIS_pars_BRUTE = EIS_pars_undup.loc[ (EIS_pars_undup.BRUTE_FIT == 1) | (EIS_pars_undup.FINAL_FIT == 0) ] if self.BRUTE_out: EIS_pars_BRUTE.to_pickle(eis_daily["daily_path_BRUTE"]) EIS_pars = EIS_pars_undup.loc[(EIS_pars_undup.FINAL_FIT == 1)] EIS_pars = EIS_extra_methods.add_best_model_per_spectrum(EIS_pars) setattr(self, self.exp_type, EIS_pars) # def extra_stuff_delegator(self): # try: # self._extra_best_models() # self._extra_plotting() # except Exception as e: # _logger.info(f'{self.__class__.__name__} Extra stuff failed because {e}') def _extra_best_models(self): _err_type = "lmfit_MSE" _filter = "(EIS_pars.lmfit_MSE < 65E4) & (EIS_pars.Rct < 2E3) & (EIS_pars.Rct > 2E-2) \ & (EIS_pars.Rs > 0.01) & (EIS_pars.Rs < 200) & (EIS_pars.Cdlp < 0.075)\ & (EIS_pars.lmfit_redchi < 1E3) & (EIS_pars.Aw < 10E3) & (EIS_pars.Aw > 10E-2)\ & (EIS_pars.Qad < 1) & (EIS_pars.tau < 1E3)" _filter += '& (EIS_pars.SampleID.str.contains("JOS1|JOS2|JOS3|JOS4|JOS5"))' _filter += "& (EIS_pars.EIS_fake == False)" _grps = ["Model_EEC", "Gas", "lmfit_var_names"][0:2] EIS_pars = self.EIS_pars best_models = ( EIS_pars.loc[eval(_filter)] .dropna(axis=0, subset=[_err_type]) .groupby(_grps)[_err_type] .agg(["count", "mean", "std"]) .sort_values(["Gas", "mean"], ascending=True) ) print(best_models) keep_models = ( best_models.loc[(best_models["count"] > 5) & (best_models["std"] > 0)] .index.get_level_values(0) .unique() ) EIS_pars = EIS_pars.loc[EIS_pars.Model_EEC.isin(keep_models)] if hasattr(EIS_pars, "best_mod_name"): # EIS_best_mods = EIS_pars.loc[EIS_pars.Model_EEC_name.isin([i for i in EIS_pars.best_mod_name.unique() if not pd.isna(i)])] EIS_best_mods = EIS_pars.loc[ EIS_pars.index.isin( [i for i in EIS_pars.best_mod_n.unique() if not pd.isna(i)] ) ] self.EIS_pars_best_mods = EIS_best_mods _agg = ( EIS_best_mods.dropna(subset=[_err_type]) .groupby(_grps + ["E_RHE"])[_err_type] .agg(["count", "mean", "std"]) ) _agg_best = _agg.loc[_agg["count"] > 3].sort_values( ["Gas", "E_RHE", "mean"], ascending=True ) def _extra_plotting(self): if hasattr(self, "EIS_pars_best_mods"): self.EIS_pars_best_mods.query("pH < 15").plot( y="Qad", x="E_RHE", c="pH", colormap="rainbow_r", kind="scatter", ylim=(0, 0.05), ) self.EIS_pars_best_mods.query("pH < 15").plot( y="Rs", x="E_RHE", c="pH", colormap="rainbow_r", kind="scatter", ylim=(0, 80), ) self.EIS_pars_best_mods.query("pH < 15").plot( y="Rs", x="R_ion", c="E_RHE", colormap="rainbow_r", kind="scatter", ylim=(0, 80), xlim=(0.1, 2e3), logx=True, ) def _testing(): t2 = ORR_LoadPars(reload=True, reload_raw=True) tf2 = ORR_LoadPars(reload=False, reload_raw=False) t2._reload_raw self = tf2 self.load_delegator() self.make_raw_pars_from_scratch() class ORR_LoadPars(BaseLoadPars): read_types = ["ORR_pars", "KL_pars"] def __init__( self, EC_index=pd.DataFrame(), SampleCodes=pd.DataFrame(), exp_type="ORR_pars", BRUTE_out=False, **kws, ): self.BRUTE_out = BRUTE_out super().__init__( EC_index=EC_index, SampleCodes=SampleCodes, exp_type=exp_type, **kws ) def read_in_pars_files(self, _genlist): # _ps = Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) while True: try: i = next(_genlist) # _source_mtime = dt.datetime.fromtimestamp(i.stat().st_mtime) # _delta_mtime = dt.datetime.now() - _source_mtime _i_stem = i.stem _pparts = i.parent.parts if "KL" == _pparts[-1]: if _i_stem.startswith("KL_"): _type = "KL_data" else: _type = "KL_unknown" elif "RingDisk" == _pparts[-1]: _type = "ORR_ringdisk" elif "TAFEL" == _pparts[-1]: _type = "Tafel" else: if _i_stem.startswith("ORR_pars"): _type = "ORR_pars" elif _i_stem.startswith("KL_pars"): _type = "KL_pars" elif _i_stem.startswith("O2_ORR") and _i_stem.endswith( f"_RRDE_v{FileOperations.version}" ): _type = "ORR_RRDE" else: _type = "O2_ORR_unknown" _meta = self.get_source_meta(i) _meta.update({"source_type": _type}) if _type in self.read_types: _pp = pd.read_excel(i, index_col=[0]) _pp = FileOperations.ChangeRoot_DF(_pp, [], coltype="string") _pp = _pp.assign(**_meta) else: _pp = pd.DataFrame(_meta, index=[0]) # _meta.update({'DF' : _pp}) yield _pp except StopIteration: return "all done" print("gen empty") @func_timer_decorator def make_raw_pars_from_scratch(self): _logger.info( f'Reloading raw extra steps "{self.__class__.__name__}" {self.exp_type}' ) self.reload_raw_df_delegator() if hasattr(self, "_raw_finish_edit_columns"): self._raw_finish_edit_columns() self.save_daily_raw() def search_pars_files(self, dest_dir): return Path(dest_dir.joinpath(f"ORR_v{FileOperations.version}")).rglob("*xlsx") def reload_raw_df(self): _pars_RAW = getattr(self, f"{self.exp_type}_RAW") _pars_RAW.sort_values("source_delta_mtime", inplace=True) _pars_RAW = _pars_RAW.reset_index() setattr(self, f"{self.exp_type}_RAW", _pars_RAW) # self._raw_extra_steps() _logger.info(f'Reloading "{self.__class__.__name__}" {self.exp_type}') # self.EIS_pars_RAW = EIS_pars_RAW def edit_raw_columns(self): ### Fixing the pars after loading... # TODO : taking out duplicates based on time_since_run.... ORR_pars_char = getattr(self, f"{self.exp_type}_RAW") # Load_na = ORR_pars_char.loc[(ORR_pars_char.Loading_cm2.isna()) & (ORR_pars_char.PAR_file.isna() == False)] # if not Load_na.empty: # Load_na_missingvalues =[(n,*GetSampleID.ink_loading_from_filename(i.PAR_file)) for n,i in Load_na.iterrows()] # Load_na_vals = pd.DataFrame(Load_na_missingvalues).rename(columns={1 : 'Loading_name',2 : 'Loading_cm2'}).set_index([0]) # ORR_pars_char.Loading_cm2.fillna(value=Load_na_vals.Loading_cm2,inplace=True) # # ORR_char_merge_cols = [i for i in ORR_pars.columns if i in SampleCodes.columns] ORR_pars_char = ORR_pars_char.drop( columns=[i for i in ORR_pars_char.columns if "Unnamed" in i] ) if not ORR_pars_char.loc[ORR_pars_char.Loading_cm2.isna()].empty: _loading_cols = ["Loading_cm2", "Loading_name", "Loading_date"] ORR_pars_char = ORR_pars_char.drop(columns=_loading_cols) ORR_pars_char = pd.merge( ORR_pars_char, self.EC_index[["PAR_file"] + _loading_cols], on="PAR_file", how="left", ) ORR_pars_char.Loading_cm2 = ORR_pars_char.Loading_cm2.fillna( value=0.379 ) # fillna for Loading_cm2 ORR_pars_char.Loading_cm2 = ORR_pars_char.Loading_cm2.round(3) if ORR_pars_char.postAST.dropna().empty: ORR_pars_char = ORR_pars_char.drop(columns="postAST") # _int = list(set(ORR_pars_char.columns).intersection(set(EC_index.columns))) ORR_pars_char = pd.merge( ORR_pars_char, self.EC_index[["PAR_file", "postAST"]], on="PAR_file", suffixes=("", ""), ) ORR_pars_char = make_uniform_RPM_DAC(ORR_pars_char) setattr(self, f"{self.exp_type}", ORR_pars_char) # def extra_stuff_delegator(self): # try: # self._extra_plotting() # except Exception as e: # _logger.info(f'{self.__class__.__name__} Extra stuff failed because {e}') def _extra_plotting(self): ORR_pars_char = getattr(self, f"{self.exp_type}") for swp, swgrp in ORR_pars_char.query("(pH < 14) & (RPM_DAC > 900)").groupby( "Sweep_Type" ): fig, (ax1, ax2) = plt.subplots(figsize=(10, 4), ncols=2) # plt.figure() swgrp.plot( y="ORR_Jkin_min_750", x="ORR_E_onset", c="pH", title=f"{swp}", kind="scatter", logy=True, colormap="rainbow_r", ylim=[0.1, 50], xlim=(0.5, 1), ax=ax1, ) ax1.set_xlabel("E onset / mV_RHE") swgrp.plot( y="ORR_Frac_H2O2_600", x="ORR_E_onset", c="pH", title=f"{swp}", kind="scatter", logy=True, colormap="rainbow_r", ylim=[0.1, 100], xlim=(0.5, 1), ax=ax2, ) # ax2.set_xlabel('E onset / mV_RHE') plt.suptitle("ORR with E_onset") plt.show() fig, (ax1, ax2) = plt.subplots(figsize=(10, 4), ncols=2) swgrp.plot( y="ORR_E_onset", x="N2_BG_lin_slope", c="pH", title=f"{swp}", kind="scatter", logy=True, logx=True, colormap="rainbow_r", xlim=[0.01, 4], ylim=(0.5, 1), ax=ax1, ) swgrp.plot( y="ORR_Jkin_min_750", x="N2_BG_lin_slope", c="pH", title=f"{swp}", kind="scatter", logy=True, logx=True, colormap="rainbow_r", xlim=[0.01, 4], ylim=(0.001, 50), ax=ax2, ) # ax2.set_xlabel('E onset / mV_RHE') plt.suptitle("ORR with N2_BG lin slope") plt.show() plt.close() def _N2_testing(): n2 = N2_LoadPars(reload=True, reload_raw=True) n2r = N2_LoadPars(reload=True, reload_raw=False) class N2_LoadPars(BaseLoadPars): def __init__( self, EC_index=pd.DataFrame(), SampleCodes=pd.DataFrame(), exp_type="", BRUTE_out=False, **kws, ): self.BRUTE_out = BRUTE_out super().__init__( EC_index=EC_index, SampleCodes=SampleCodes, exp_type=exp_type, **kws ) @func_timer_decorator def make_raw_pars_from_scratch(self): _logger.info( f'Reloading raw extra steps "{self.__class__.__name__}" {self.exp_type}' ) self.reload_raw_df_delegator() if hasattr(self, "_raw_finish_edit_columns"): self._raw_finish_edit_columns() self.save_daily_raw() def _old(self): IndexOVV_N2_pars_fn = FindExpFolder("VERSASTAT").PostDir.joinpath( "N2Cdl_pars_IndexOVV_v{0}.pkl.compress".format(FileOperations.version) ) n2_daily = get_daily_pickle(exp_type="N2_all") if n2_daily.get("_exists", False) and reload != True: # Cdl_pars_char = pd.read_excel(IndexOVV_N2_pars_fn,index_col=[0]) Cdl_pars_char = pd.read_pickle(n2_daily.get("daily_path")) Cdl_pars_char = FileOperations.ChangeRoot_DF( Cdl_pars_char, [], coltype="string" ) else: # @@ Check POST_AST status from OVV and PRM _logger.info( f'START reloading N2_pars OVV from daily {n2_daily["today"]:%Y-%m-%d}' ) # EC_index = ECRunOVV(load=1).index # ['EXP_dir','Dest_dir','PAR_file','PAR_file_Ring', 'ORR_act_N2_bg','DestFile'] # EC_index = FileOperations.ChangeRoot_DF(OnlyRecentMissingOVV,[]) # OnlyRecentMissingOVV.PAR_file = OnlyRecentMissingOVV.PAR_file.astype(str) # OnlyRecentMissingOVV['Loading_cm2'] = OnlyRecentMissingOVV['Loading_cm2'].round(3) # SampleCodes = SampleCodesChar().load # EC_index, SampleCodes = Load_from_Indexes.get_EC_index() # def read_df(_par_fls, ): # _ps = Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) def search_pars_files(self, destdir): return Path(destdir.joinpath(f"N2_scans_v{FileOperations.version}")).rglob( "*.xlsx" ) def read_in_pars_files(self, _genlist, read_types=["Cdl_data", "Cdl_pars"]): while True: try: i = next(_genlist) _i_stem = i.stem _meta = self.get_source_meta(i) if _i_stem.endswith("_BG"): _N2_type = "BG" else: if _i_stem.startswith("CV_"): _N2_type = "CV" if _i_stem.endswith(f"_first_v{FileOperations.version}"): _N2_type = "CV_first" # if not 'Scan Rate' in _pp.columns: # 'N2_CV_raw = N2_CV_raw.assign(**{'ScanRate' : [i.split(f'_v{FileOperations.version}')[0].split('_')[-1] for i in N2_CV_raw.basename.to_numpy()]}) elif _i_stem.startswith("Cdl_data_"): _N2_type = "Cdl_data" elif _i_stem.startswith("Cdl_pars"): _N2_type = "Cdl_pars" else: _N2_type = "N2_unknown" _meta.update({"N2_type": _N2_type}) if _N2_type in read_types: _pp = pd.read_excel(i, index_col=[0]) _pp = FileOperations.ChangeRoot_DF(_pp, [], coltype="string") _pp = _pp.assign(**_meta) else: _pp = pd.DataFrame(_meta, index=[0]) # _meta.update({'DF' : _pp}) yield _pp except StopIteration: return "all done" print("gen empty") def reload_raw_df(self): _pars_RAW = getattr(self, f"{self.exp_type}_RAW") if not _pars_RAW.empty: _pars_RAW.sort_values("source_delta_mtime", inplace=True) _pars_RAW = _pars_RAW.reset_index() setattr(self, f"{self.exp_type}_RAW", _pars_RAW) _logger.info( f'Reloading "{self.__class__.__name__}" {self.exp_type} len({len(_pars_RAW)}' ) def _old_stuff(): if n2_daily.get("_raw_exists", False) and use_daily is True: N2_pars_all = pd.read_pickle(n2_daily.get("daily_path_RAW")) elif n2_daily.get("daily_options_RAW", False) and use_daily is True: if n2_daily.get("daily_options_RAW")[-1]: N2_pars_all = pd.read_pickle(n2_daily.get("daily_options_RAW")[-1]) else: # Construct new N2 pars ovv from reading in files N2_OVV = EC_index.loc[EC_index.PAR_exp == "N2_act"] _par_files = [ list(Path(d.joinpath("N2_scans_v30")).rglob("*.xlsx")) for d in N2_OVV.Dest_dir.unique() ] _par_fls = (a for i in _par_files for a in i) # if 'EIS' in a.name) _par_reads = read_df(_par_fls, read_types=["Cdl_data", "Cdl_pars"]) N2_pars_all = pd.concat([i["DF"] for i in _par_reads], sort=False) for n, gr in N2_pars_all.groupby("PAR_file"): print( n, f'\nSamples: {", ".join([str(i) for i in gr.SampleID.unique()])}', ",".join(gr.N2_type.unique()), ) N2_pars_all, _missing_index = Load_from_Indexes.check_missing_ECindex( EC_index, N2_pars_all, clean_up=True ) N2_pars_all.to_pickle(n2_daily["daily_path_RAW"]) def _extra_pivot_CV(self): N2_type_grps = N2_pars_all.groupby("N2_type") if "CV" in N2_type_grps.groups.keys(): # N2 CVs TODO add Scan Rate column N2_CV_raw = N2_type_grps.get_group("CV").dropna(axis=1, how="all") # N2_CV_raw.plot(x=EvRHE,y='jmAcm-2') N2_CV_pivot_SR_lst = [] for PF, PFgr in N2_CV_raw.groupby("PAR_file"): # PF ,PFgr for swp, swgrp in PFgr.groupby("Sweep_Type"): # swp, swgrp # swgrp.plot(x=EvRHE,y='jmAcm-2') # E_T_idx = pd.MultiIndex.from_tuples(zip(swgrp['Elapsed Time(s)'].to_numpy(),swgrp[EvRHE].to_numpy()),names=['Elapsed_Time_s',EvRHE]) # swgrp.index = E_T_idx # {n : len(gr) for n,gr in swgrp.groupby('Segment #')} pvt = swgrp.pivot( index="Elapsed Time(s)", columns="ScanRate_mVs", values=[EvRHE, "jmAcm-2", "Segment #"], ) # pvt = swgrp.pivot(index=EvRHE,columns='ScanRate_mVs',values='jmAcm-2') pvt.columns = pd.MultiIndex.from_tuples( [(f"{i[0]}_{int(i[1])}", i[1]) for i in pvt.columns] ) # pvt.rename(columns=pd.MultiIndex.from_tuples([(f'{i[0]}_{int(i[1])}', i[1]) for i in pvt.columns],names=['data','ScanRate_mVs']),inplace=True) indx = pd.MultiIndex.from_tuples( zip(repeat(PF), repeat(swp), pvt.index), names=["PAR_file", "Sweep_Type", EvRHE], ) pvt.index = indx N2_CV_pivot_SR_lst.append(pvt) # for sr, srgrp in PFgr.groupby('ScanRate_mVs'): # SR = int(sr) N2_CV_pivot_SR = pd.concat(N2_CV_pivot_SR_lst, sort=False) # N2Cdl_pars_index = N2_grps.groupby('N2_type').get_group('Cdl_pars') # N2Cdl_pars_files = [Path(i) for i in N2Cdl_pars_index['SourceFilename'].unique() if re.search('(?i)(_pars|_v20)',Path(i).stem) and Path(i).exists()] # cdl = pd.read_excel(N2Cdl_pars_files[0],index_col=[0]) # N2Cdl_pars.rename(columns={'Filename' : 'PAR_file'}) # EPtest = N2Cdl_pars_index.loc[no_match] # a slice for testing purpose # pd.merge(N2Cdl_pars_raw,N2_CV_index[['PAR_file','DestFile']],on='PAR_file',how='left') # N2Cdl_pars_raw = N2_type_grps.get_group('Cdl_pars').dropna(axis=1,how='all') # N2Cdl_data_index = postOVVout.groupby('Type_output').get_group('N2_Cdl_data') # N2_CV_index = postOVVout.groupby('Type_output').get_group('N2_CV') # lst, no_match, non_exist = [],[],[] # for n,r in N2Cdl_pars_raw.iterrows(): # Cdl_data_file = N2Cdl_data_index.loc[N2Cdl_data_index.PAR_file == r.PAR_file].DestFile.unique() # CV_files = N2_CV_index.loc[N2_CV_index.PAR_file == r.PAR_file].DestFile.unique() # lst.append([set(Cdl_data_file),set(CV_files)]) # if len(N2Cdl_pars_raw) == len(lst): # N2Cdl_pars_raw = N2Cdl_pars_raw.assign(**{'Cdl_data_file' : [i[0] for i in lst], 'Cdl_CV_data_files' : [i[1] for i in lst]}) # Cdl_pars = pd.concat([i for i in lst],sort=False,ignore_index=True) def edit_raw_columns(self): N2Cdl_pars_raw = getattr(self, f"{self.exp_type}_RAW") N2_type_grps = N2Cdl_pars_raw.groupby("N2_type") N2Cdl_pars_raw = N2_type_grps.get_group("Cdl_pars").dropna(axis=1, how="all") N2Cdl_pars_raw.drop_duplicates( subset=N2Cdl_pars_raw.columns[0:19], keep="first", inplace=True ) N2Cdl_pars_raw = FileOperations.ChangeRoot_DF( N2Cdl_pars_raw, [], coltype="string" ) Cdl_pars = post_helper.make_uniform_EvRHE(N2Cdl_pars_raw) Cdl_pars.drop_duplicates(subset=Cdl_pars.columns[0:19], inplace=True) # Cdl_pars_merge_cols = [i for i in Cdl_pars.columns if i in SampleCodes.columns and not 'Unnamed' in i] # Cdl_pars_char = pd.merge(Cdl_pars,SampleCodes,on=Cdl_pars_merge_cols,how='left') # Cdl_pars_char.drop_duplicates(subset=Cdl_pars_char.columns[0:19],inplace=True) _int = list(set(Cdl_pars.columns).intersection(set(self.EC_index.columns))) if Cdl_pars.postAST.dropna().empty and len(self.EC_index.columns) != len(_int): Cdl_pars = Cdl_pars.drop(columns="postAST") # _int = list(set(Cdl_pars_char.columns).intersection(set(EC_index.columns))) Cdl_pars = pd.merge( Cdl_pars, self.EC_index[["PAR_file", "postAST"]], on="PAR_file", suffixes=("", ""), ) Cdl_pars = Load_from_Indexes.add_missing_ECindex_cols(self.EC_index, Cdl_pars) setattr(self, f"{self.exp_type}", Cdl_pars) def _extra_xls_out(self): if xls_out: new_N2_pars_char_target = FileOperations.CompareHashDFexport( Cdl_pars_char, IndexOVV_N2_pars_fn ) _logger.info( "PostEC Cdl N2 CVs re-indexed and saved: {0}".format( new_N2_pars_char_target ) ) Cdl_pars_char.to_pickle(IndexOVV_N2_pars_fn) def _extra_plotting(self): try: Cdl_pars_char.query('(Sweep_Type_N2 == "cathodic") & (pH < 7)').plot( y="Cdl", x="E_RHE", kind="scatter", ylim=(0, 0.08), title="checking plot: Cdl in acid", ) # Cdl_pars_char.query('(Sweep_Type_N2 == "cathodic") & (pH < 7)').groupby('BET_cat_agg').plot(y='Cdl',x='E_RHE',colormap='viridis',kind='scatter',ylim=(0,0.08),title='Cdl in acid') if extra_plotting: Cdl_pars_char.query('(Sweep_Type_N2 == "cathodic") & (pH > 7)').plot( y="Cdl", x="E_RHE", c="BET_cat_agg", colormap="viridis", kind="scatter", ylim=(0, 0.03), title="Cdl in alkaline", ) alkCdl = Cdl_pars_char.query('(Sweep_Type_N2 == "cathodic") & (pH > 7)') acidCdl = Cdl_pars_char.query( '(Sweep_Type_N2 == "cathodic") & (pH < 7)' ) # fig = plt.figure() # ax = fig.add_subplot(111, projection='3d') # ax.plot_trisurf(alkCdl.E_RHE,alkCdl.Cdl,alkCdl.BET_cat_agg,cmap=cm.viridis) Cdl_atE = Cdl_pars_char.loc[ (Cdl_pars_char.Sweep_Type_N2 == "cathodic") & (np.isclose(Cdl_pars_char["E_RHE"], 0.5, atol=0.02)) ] fig, ax = plt.subplots() for n, Ogr in Cdl_atE.query( '(Sweep_Type_N2 == "cathodic") & (pH < 7)' ).groupby("postAST"): c_set = "g" if n == "no" else "r" Ogr.plot( x="BET_cat_agg", y="Cdl", s=50, c=c_set, kind="scatter", label=n, title="N2 Cdl vs BET in acid", ax=ax, ylim=(0, 50e-3), ) fig, ax = plt.subplots() for n, Ogr in Cdl_atE.query( '(Sweep_Type_N2 == "cathodic") & (pH > 7)' ).groupby("postAST"): c_set = "g" if n == "no" else "r" Ogr.plot( x="BET_cat_agg", y="Cdl", s=50, c=c_set, kind="scatter", label=n, title="N2 Cdl vs BET in alk", ax=ax, ylim=(0, 50e-3), ) except Exception as e: _logger.warning(f"PostEC Cdl N2 CVs extra plotting fail:\n{e}") class CollectPostOVV: """Loops over all index files and merges them with the RunOVV""" def __init__(): pass @staticmethod def LoadPostOVV(reload=False): PostDestDir = FindExpFolder("VERSASTAT").DestDir.joinpath("PostEC") SampleCodes = FindExpFolder().LoadSampleCode() # CS_parts_PDD = FileOperations.find_CS_parts(PostDestDir) if reload == True: postOVVout = CollectPostOVV.LoadIndexes(reload=True) else: try: postOVVout = CollectPostOVV.LoadIndexes(reload=False) except Exception as e: logging.warning( "CollectPostOVV no Indexes available: {0}. Using postEC_Organized".format( e ) ) postOVVout = pd.read_excel( PostDestDir.joinpath("postEC_Organized.xlsx"), index_col=[0] ) # pd.read_excel(PostDestDir.joinpath('SampleCodeLst.xlsx')) # CS_parts_pOVV = FileOperations.find_CS_parts(postOVVout.Exp_dir.iloc[0]) # if CS_parts_PDD[0] != CS_parts_pOVV[0]: # chLst = [CS_parts_PDD[0].joinpath(FileOperations.find_CS_parts(i)[1]) for i in postOVVout.SourceFilename.values] # postOVVout['SourceFilename'] = chLst # else: # pass postSample = pd.merge(postOVVout, SampleCodes, on="SampleID", how="left") print("Types:", " , ".join([str(i) for i in postSample.Type_output.unique()])) postSample.PAR_file = postSample.PAR_file.astype(str) postSample = FileOperations.ChangeRoot_DF( postSample, [ "EXP_dir", "Dest_dir", "PAR_file", "PAR_file_Ring", "ORR_act_N2_bg", "DestFile", "SourceFilename", ], ) return postSample # def RunFolderCopy(serie): # postOVVlst = [outLst.append(PostEC.FromListgrp(n,gr.EXP_dir.unique()[0])) for n,gr in serie.groupby(by=['Dest_dir'])] # return postOVVlst @staticmethod def LoadIndexes(reload=False): IndexOVV_fn = FindExpFolder("VERSASTAT").DestDir.joinpath( "IndexOVV_v{0}.xlsx".format(FileOperations.version) ) if IndexOVV_fn.exists() and not reload: Index_merged = pd.read_excel(IndexOVV_fn, index_col=[0]) Index_merged = FileOperations.ChangeRoot_DF( Index_merged, [ "EXP_dir", "Dest_dir", "PAR_file", "PAR_file_Ring", "ORR_act_N2_bg", "DestFile", "SourceFilename", ], ) _logger.info("PostEC loaded IndexOVV from recent: {0}".format(IndexOVV_fn)) else: _logger.info( "PostEC reloading IndexOVV from Index files and Exp dir files!!" ) OnlyRecentMissingOVV = ECRunOVV(load=1).index # ['EXP_dir','Dest_dir','PAR_file','PAR_file_Ring', 'ORR_act_N2_bg','DestFile'] OnlyRecentMissingOVV = FileOperations.ChangeRoot_DF( OnlyRecentMissingOVV, [] ) OnlyRecentMissingOVV.PAR_file = OnlyRecentMissingOVV.PAR_file.astype(str) # if index_source == 'ExpDirs': idx_files = [ list(Path(i).rglob("**/*index*.xlsx")) for i in OnlyRecentMissingOVV.Dest_dir.unique() if list(Path(i).rglob("**/*index.xlsx")) ] # for i in OnlyRecentMissingOVV.Dest_dir.unique(): # [idx_files.append([a for a in a if a]) for a in [(Path(i).rglob('index.xlsx')) for i in OnlyRecentMissingOVV.Dest_dir.unique()]] # idx_dir = FindExpFolder('VERSASTAT').IndexDir # idx_files = idx_dir.rglob('*.xlsx') # subset=['PAR_file','DestFile','Type_output','Script_run_date'] idx_lst = set([a for i in idx_files for a in i]) idx_mtime = [ (i, (dt.datetime.now() - dt.datetime.fromtimestamp(i.stat().st_mtime))) for i in idx_lst ] # print(f'len {len(idx_lst)} and set {len(set(idx_lst))}') alst = ( [] ) # Alternative = pd.concat([[pd.read_excel(c,index_col=[0]) for c in a ] for b in idx_files],sort=False,ignore_index=True) for idxfp in idx_lst: df = pd.read_excel(idxfp, index_col=[0]) df["IndexSource"] = idxfp alst.append(df) Index_from_expdirs_all = pd.concat( [i for i in alst], sort=False, ignore_index=True ) Index_from_expdirs_all.sort_values( "Script_run_date", ascending=False, inplace=True ) Index_from_expdirs = Index_from_expdirs_all.drop_duplicates(keep="first") Index_from_expdirs = FileOperations.ChangeRoot_DF(Index_from_expdirs, []) idx_exp_tDelta = [ (n, pd.to_datetime(dt.datetime.now()) - i["Script_run_date"]) for n, i in Index_from_expdirs.iterrows() ] Index_from_expdirs = Index_from_expdirs.assign( **{ "Source": "ExpDirs", "Time_since_run": [pd.to_timedelta(i[1]) for i in idx_exp_tDelta], } ) # Index_from_expdirs['Time_since_run'] = [pd.to_timedelta(pd.to_datetime(datetime.now())-i) for i in Index_from_expdirs['Script_run_date'].values] # limit = pd.to_timedelta('7h') # ['Time_since_run'] = [pd.to_timedelta(pd.to_datetime(datetime.now())-i) for i in Index['Script_run_date'].values] # Index = Index.loc[Index['Time_since_run'] < limit] # Index = Index.iloc[dups].loc[Index['Time_since_run'] < limit] # else: # dups.append(gr.Time_since_run.idxmin()) # 1elif index_source == 'IndexDir': IndexDir_idxfiles = list( FindExpFolder("VERSASTAT").IndexDir.rglob("*.xlsx") ) Index_from_idxdir_all = pd.concat( [ pd.read_excel(i, index_col=[0]).assign(IndexSource=i) for i in IndexDir_idxfiles ], sort=False, ignore_index=True, ) Index_from_idxdir_all.sort_values( "Script_run_date", ascending=False, inplace=True ) Index_from_idxdir = Index_from_idxdir_all.drop_duplicates(keep="first") Index_from_idxdir = FileOperations.ChangeRoot_DF(Index_from_idxdir, []) Index_from_idxdir = Index_from_idxdir.assign(**{"Source": "IndexDir"}) Index_from_idxdir["Time_since_run"] = [ pd.to_timedelta(pd.to_datetime(dt.datetime.now()) - i) for i in Index_from_idxdir["Script_run_date"].values ] # dup_idxdir = Index_from_idxdir.loc[Index_from_idxdir.DestFile.duplicated() == True] dups_date, singles, others, unused_dups = [], [], [], [] for n, gr in Index_from_idxdir.groupby( ["PAR_file", "DestFile", "Type_output"] ): # Indexes.groupby(['PAR_file','DestFile','Type_output','ScanRate','Segment']): if len(gr) > 1: dgr = gr # print(n,gr.Time_since_run.unique()) dups_date.append(gr.Time_since_run.idxmin()) unused_dups.append( list(set(gr.index) - {gr.Time_since_run.idxmin()}) ) elif len(gr) == 1: singles.append(gr.index[0]) else: others.append(gr.index) dup_fltr_idxdir = Index_from_idxdir.loc[singles + dups_date] # Indexes = pd.merge(Index_from_expdirs,Index_from_idxdir, on=['PAR_file','DestFile','Type_output','ScanRate','Segment','Sweep_Type','Source']) Indexes = pd.concat([Index_from_expdirs, dup_fltr_idxdir], sort=False) # Indexes['Time_since_run'] = [pd.to_timedelta(pd.to_datetime(datetime.now())-i) for i in Indexes['Script_run_date'].values] Indexes = Indexes.dropna( subset=["PAR_file", "DestFile", "Type_output"] ).reset_index() dups_date, singles, others = [], [], [] Idxgr = Indexes.groupby(["PAR_file", "DestFile", "Type_output"]) for n, gr in Idxgr: # Indexes.groupby(['PAR_file','DestFile','Type_output','ScanRate','Segment']): if len(gr) > 1: dgr = gr idxmin = gr.Time_since_run.idxmin() # print(n,gr.Time_since_run.unique()) dups_date.append([idxmin, gr.loc[idxmin, "Source"]]) elif len(gr) == 1: singles.append(gr.index[0]) else: others.append(gr.index) # for n2,gr2 in OnlyRecentMissingOVV.groupby('PAR_file'): # if len(gr2) > 1: # dgr2 = gr2 # Index = Index.iloc[dups].loc[Index['Time_since_run'] < limit] Index = Indexes.loc[singles + [i[0] for i in dups_date]].dropna( subset=["DestFile"] ) # for a in Index.DestFile.values: # try: Path(a).is_file() # except: print(a) # if not any([Path(i).exists() for i in Index.DestFile.values]): # Index = FileOperations.ChangeRoot_DF(Index,['PAR_file','DestFile']) 'EXP_dir','Dest_dir','PAR_file','PAR_file_Ring','ORR_act_N2_bg','DestFile','SourceFilename' Index = FileOperations.ChangeRoot_DF(Index, []) Index = Index.assign( **{ "Type_Exp": Index["Type_output"], "SourceFilename": [Path(str(i)) for i in Index["DestFile"].values], } ) # Index['Type_Exp'] = Index['Type_output'] # Index['SourceFilename'] = [Path(str(i)) for i in Index['DestFile'].values] Index.PAR_file = Index.PAR_file.astype(str) Index_undup = Index.loc[ ( Index.duplicated( subset=[ "PAR_file", "DestFile", "Type_output", "Time_since_run", "Source", ] ) == False ) ] idx_merge_cols = [ i for i in Index_undup.columns if i in OnlyRecentMissingOVV.columns and not "Segment" in i ] Index_merged = pd.merge( Index_undup, OnlyRecentMissingOVV, on="PAR_file", how="left" ) Index_merged.PAR_file = [ Path(str(i)) for i in Index_merged["PAR_file"].values ] new_IndexOVV_target = FileOperations.CompareHashDFexport( Index_merged, IndexOVV_fn ) try: _logger.info( "PostEC re-indexed and saved: {0}".format(new_IndexOVV_target) ) except: print("no log") return Index_merged @staticmethod def MatchPostASTs(postOVVout): # postOVVout.postAST.unique() # [(n,len(gr)) for n,gr in postOVVout.groupby('postAST')] faillst, fail_index_gr = [], [] matchAST_lst, non_uniq_lst = [], [] for nAST, ASTgr in postOVVout.query( '(postAST != "no") & (postAST != "postORR")' ).groupby(["postAST", "PAR_date", "PAR_file"]): nAST, ASTgr # for nDT,grDT in ASTgr.groupby(') if ASTgr.PAR_file.nunique() == 1 and ASTgr.Source.nunique() > 1: ASTgr_grSource = ASTgr.groupby("Source") ASTgr_info = [ (n, len(gr), gr.Time_since_run.mean()) for n, gr in ASTgr_grSource ] if len(set([i[1] for i in ASTgr_info])) == 1: take_source = ASTgr_info[np.argmin([i[2] for i in ASTgr_info])][0] ASTgr = ASTgr_grSource.get_group(take_source) fail_index_source_gr = ASTgr_grSource.get_group( ASTgr_info[np.argmax([i[2] for i in ASTgr_info])][0] ) fail_index_gr.append(fail_index_source_gr) EC_exp_uniq = [ (i, ASTgr[i].unique(), ASTgr[i].nunique()) for i in [ c for c in SampleSelection.EC_exp_cols + ["SampleID", "Type_exp", "PAR_file"] if c in ASTgr.columns ] ] EC_exp_non_uniq = [i for i in EC_exp_uniq if i[2] != 1] if EC_exp_non_uniq: print( "Not unique PAR_date {0},multiple: {1}".format( nAST[1], EC_exp_non_uniq ) ) non_uniq_lst.append([nAST, EC_exp_non_uniq, EC_exp_uniq]) faillst.append(ASTgr) EC_exp_query = " & ".join( [ '({0} == "{1}")'.format(i[0], i[1][0]) for i in EC_exp_uniq[1:-1] + [("postAST", ["no"])] if not "Loading" in i[0] ] ) past = nAST[1] - pd.to_timedelta(1, unit="D") past_slice = postOVVout.query("(PAR_date > @past) & (PAR_date < @nAST[1])") past_query = past_slice.query(EC_exp_query) if past_query.query(EC_exp_query).empty: # expand search to all OVV for similar conditions all_query = postOVVout.query(EC_exp_query) if not all_query.empty: preAST = tuple(all_query.PAR_file.unique()) else: preAST = "no-preAST" else: # find previous preAST measurments preAST = tuple(past_query.PAR_file.unique()) matchAST_lst.append(list(nAST) + [preAST]) if fail_index_gr: fail_index_filter = pd.concat(fail_index_gr) postOVVout = postOVVout.loc[ ~postOVVout.index.isin(fail_index_filter.index), : ] non_uniq = pd.DataFrame(non_uniq_lst) if faillst: fails = pd.concat(faillst) matchAST = pd.DataFrame( matchAST_lst, columns=["postAST", "PAR_date", "PAR_file", "preAST"] ) postOVVout = pd.merge( postOVVout, matchAST[["PAR_file", "preAST"]], on="PAR_file", how="left" ) return postOVVout # ASTgr.SampleID.unique() @staticmethod def MatchECconditions(OVV_df): # postOVVout.postAST.unique() # [(n,len(gr)) for n,gr in postOVVout.groupby('postAST')] matchAST_lst = [] # 'DW16_2018-03-06 00:00:00_no_0.1MHClO4+10mMH2O2_1.0_0.379' OVV_df["PAR_date_day"] = [ dt.datetime.strftime(i, format="%Y-%m-%d") for i in OVV_df.PAR_date.fillna(dt.date(1970, 12, 12)).to_list() ] # [pd.datetime.strftime(pd.to_datetime(i),format='%Y-%m-%d') for i in postOVVout.PAR_date.fillna(0).to_list()] EC_label_cols = [ "SampleID", "pH", "Electrolyte", "Loading_cm2", "postAST", "PAR_date_day", ] post_prev_cols = OVV_df.columns # +[i for i in SampleSelection.EC_exp_cols if i not in ['RPM','Gas']] for nAST, ASTgr in OVV_df.groupby(EC_label_cols): nAST, ASTgr # for nDT,grDT in ASTgr.groupby(') minDT, maxDT = ASTgr.PAR_date.min(), ASTgr.PAR_date.max() deltaDT = maxDT - minDT # par_Day = pd.datetime.strftime(nAST[-1],format='%Y-%m-%d') EC_exp_query = "_".join([str(i) for i in list(nAST)]) EC_exp_nodate = "_".join([str(i) for i in list(nAST)[0:-1]]) matchAST_lst.append( pd.DataFrame( [ (i, EC_exp_query, EC_exp_nodate, deltaDT) for i in ASTgr.PAR_file.unique() ], columns=["PAR_file", "ECexp", "ECuniq", "EC_deltaDT"], ) ) EC_exp_match = pd.concat( [i for i in matchAST_lst], ignore_index=True, sort=False ) OVV_df = pd.merge(OVV_df, EC_exp_match, on=["PAR_file"], how="left") print( 'Added columns: "{0}" to postOVV with len({1})'.format( ", ".join(list(set(post_prev_cols) - set(OVV_df.columns))), len(OVV_df) ) ) return OVV_df # ASTgr.SampleID.unique() # merge_cols = [i for i in Index.columns if i in OnlyRecentMissingOVV.columns and not 'Segment' in i] # p2,ovv2 = Index.set_index(merge_cols), OnlyRecentMissingOVV.set_index(merge_cols) # merge = p2.update(ovv2) # merge = p2.combine_first(ovv2) # else: # AllEIS_BoL = pd.concat([pd.read_excel(i) for i in list(PostDestDir.joinpath('EIS','0.1MH2SO4').rglob('*BoL*'))]) # AllEIS_EoL = pd.concat([pd.read_excel(i) for i in list(PostDestDir.joinpath('EIS','0.1MH2SO4').rglob('*EoL*'))]) # AllEIS_BoL = AllEIS_BoL.loc[(AllEIS_BoL['Unnamed: 0'] > 0.2901) & (AllEIS_BoL['Unnamed: 0'] < 0.301) & (AllEIS_BoL.SampleID != 'O2'),:] # AllEIS300_EoL = AllEIS_EoL.loc[(AllEIS_EoL['Unnamed: 0'] > 0.2901) & (AllEIS_EoL['Unnamed: 0'] < 0.301) & (AllEIS_EoL.SampleID != 'O2'),:] # .query('(EXP_date > 20181001)') # refl = [] # for a in postOVVout.SampleID.values: # ScodeRef = SampleCodes.loc[SampleCodes.SampleID == a,:] # if ScodeRef.empty: # Scode = EISovv['SampleID'].unique()[0] # else: # Scode = ScodeRef.Sample.values[0] # refl.append(Scode) # postOVVout['SampleLabel'] = refl # return postOVVout # for a in postOVVout.SampleID.values: # ScodeRef = SampleCodes.loc[SampleCodes.SampleID == a,:] # if ScodeRef.empty: # Scode = EISovv['SampleID'].unique()[0] # else: # Scode = ScodeRef.Sample.values[0] # refl.append(Scode) # postOVVout['SampleLabel'] = refl # postOVVout.loc[postOVVout.Type_Exp == 'EIS_Combined'] # def recently_modified(file,20): # file_mtime = pd.to_datetime(DestFile.stat().st_mtime,unit='s') class Load_from_Indexes: """This class loads the parameters of Electrochemical Data files and merge it with the Overview""" SampleCodes = FindExpFolder().LoadSampleCode() # EC_label_cols = ['SampleID','pH','Electrolyte','Loading_cm2','postAST','PAR_date_day'] EC_label_cols = [ "PAR_file", "SampleID", "postAST", "Loading_cm2", "Electrolyte", "pH", "Gas", "RPM_DAC", "E_RHE", ] PostDestDir = FindExpFolder("VERSASTAT").PostDir def __init__(self, **kwargs): if "reload" in kwargs: # self.postOVVout = CollectPostOVV.LoadPostOVV(kwargs['reload']) print( "Exp types found in overview: {0}".format( ", ".join([str(i) for i in self.postOVVout.Type_Exp.unique()]) ) ) pass @staticmethod def PreparePostOVV(fastload=False): postOVV_pickle_path = FindExpFolder("VERSASTAT").PostDir.joinpath( "PostOVVout_v20_{0}.pkl.compress".format(system()) ) if postOVV_pickle_path.is_file(): tdelta = dt.datetime.now() - dt.datetime.fromtimestamp( postOVV_pickle_path.stat().st_mtime ) if tdelta.seconds > 600: fastload = False print(f"Fastload overwrite to False, {tdelta}") if fastload == True: try: postOVVout = pd.read_pickle(postOVV_pickle_path, compression="xz") return postOVVout except Exception as e: print("Load postOVVout from pickle error: ", e) LoadOVV = Load_from_Indexes(reload=True) else: LoadOVV = Load_from_Indexes(reload=True) postOVVout = LoadOVV.postOVVout print("Types:", " , ".join([str(i) for i in postOVVout.Type_output.unique()])) postOVVout.Loading_cm2 = np.round(postOVVout.Loading_cm2, 3) postOVVout = CollectPostOVV.MatchPostASTs(postOVVout) postOVVout = CollectPostOVV.MatchECconditions(postOVVout) postOVVout.PAR_file = postOVVout.PAR_file.astype(str) postOVVout["PAR_date_day"] = [ pd.datetime.strftime(pd.to_datetime(i), format="%Y-%m-%d") for i in postOVVout.PAR_date.fillna(0).values ] postOVVout = FileOperations.ChangeRoot_DF(postOVVout, [], coltype="string") postOVVout.to_pickle(postOVV_pickle_path, compression="xz") return postOVVout def CollectAllExpTypeOVV(): PostDestDir = FindExpFolder("VERSASTAT").DestDir.joinpath("PostEC") today = datetime.today() postOVVout = Load_from_Indexes.PreparePostOVV(fastload=False) # len(22965) # postOVVout.PAR_file = postOVVout.PAR_file.astype(str) # === Loading preparation overview of Samples and merging with the data from Characterization techniques === # SampleCodes = PostChar.SampleCodeChar() # Reload_set = True logger = start_logger() EIS_pars = Load_from_Indexes.EIS_pars_OVV( postOVVout, SampleCodes, reload=Reload_set ) # EIS_Pars2 6745, 22813 HPRR_pars = Load_from_Indexes.HPRR_pars_OVV( postOVVout, SampleCodes, reload=Reload_set ) # HPRR 1668 Cdl_pars = Load_from_Indexes.N2_pars_OVV(reload=Reload_set) # Cdl runs 20322 Cdl_pars_catan = MergeEISandCdl.splitcol_Sweep_Cdl(Cdl_pars) # 10342 HER_pars = Load_from_Indexes.HER_pars_OVV( postOVVout, SampleCodes, reload=Reload_set ) # 2539 OER_pars = Load_from_Indexes.OER_pars_OVV( postOVVout, SampleCodes, reload=Reload_set ) # run 1347 if list( PostDestDir.rglob( f"{today.year}-{today.month}-*_ORR_pars_{system()}.pkl.compress" ) )[-1].is_file(): ORR_pars = Load_from_Indexes.ORR_pars_OVV( postOVVout, SampleCodes, reload=Reload_set ) # ORR 1908 ORR_pars.to_pickle( PostDestDir.joinpath( f"{today.year}-{today.month}-{today.day}_ORR_pars_{system()}.pkl.compress" ) ) EIS_pars.to_pickle( PostDestDir.joinpath( f"{today.year}-{today.month}-{today.day}_EIS_pars_{system()}.pkl.compress" ) ) # FindExpFolder().LoadSampleCode() # SampleCodes = ExportECfromCV.SampleCodes # SampleSelect_all = SampleSelection('*','*') # SampleCodesChar = SampleSelect_all.Prep_EA_BET # SampleCodes = pd.merge(SampleCodes,SampleCodesChar,how='left',on='SampleID',suffixes=('','_char')).drop_duplicates(subset=['SampleID','N_content']) # === Start preparing pars OVV from index per Experimental type === # # postOVVout,SampleCodes = pd.DataFrame(),pd.DataFrame() def extraPostOVV(): OnlyRecentMissingOVV = run_PAR_DW.ECRunOVV(load=1).index # === Checking expirements from index to analyzed data=== # [ (i) for i, gr in OnlyRecentMissingOVV.query('PAR_exp == "EIS"').groupby( "SampleID" ) if gr.Loading_cm2.nunique() > 1 ] [ (i) for i, gr in postOVVout.query('PAR_exp == "EIS"').groupby("SampleID") if gr.Loading_cm2.nunique() > 1 ] eismiss = OnlyRecentMissingOVV.loc[ OnlyRecentMissingOVV.PAR_file.isin( [ i for i in OnlyRecentMissingOVV.query( 'PAR_exp == "EIS"' ).PAR_file.values if i not in postOVVout.PAR_file.values ] ) ].sort_values( by="PAR_date", ) # 40 eismiss.to_excel( FindExpFolder("VERSASTAT").PostDir.joinpath("OVV_EIS_missing.xlsx") ) orrmiss = OnlyRecentMissingOVV.loc[ OnlyRecentMissingOVV.PAR_file.isin( [ i for i in OnlyRecentMissingOVV.query( 'PAR_exp == "ORR" & Electrode != "Pt_ring"' ).PAR_file.values if i not in ORR_pars.PAR_file.values ] ) ].sort_values( by="PAR_date", ) # 279 # orrmiss = OnlyRecentMissingOVV.loc[OnlyRecentMissingOVV.PAR_file.isin([i for i in OnlyRecentMissingOVV.query('PAR_exp == "ORR"').PAR_file.values if i not in ORR_pars.PAR_file.values])].sort_values(by='PAR_date',) orrmiss.to_pickle(PostDestDir.joinpath("ORR_missing.pkl.compress")) SampleSelection.EC_exp_cols + "SampleID" + EvRHE for n, gr in Cdl_pars.groupby( [i for i in SampleSelection.EC_exp_cols if i in Cdl_pars.columns] ): fig, ax = plt.subplots() for sID, sgr in gr.groupby("SampleID"): sgr.plot( y="Cdl", x="Qad", c="BET_cat_agg_x", colormap="jet", kind="scatter", title="Cdl in acid", ax=ax, ) EIS_pars.query(SampleSelection.acid1500).query('Gas == "O2" & pH == 1 ').plot( x="BET_cat_agg", y="Rct", kind="scatter", c="N_content", colormap="viridis" ) mcls = [i for i in EIS_pars.columns if i in Cdl_pars.dropna(axis=1).columns] mcls2 = [ i for i in SampleSelection.EC_exp_cols + ["SampleID", "E_RHE"] if i in EIS_pars.columns and i in Cdl_pars.dropna(axis=1).columns ] mcls3 = [ i for i in SampleSelection.EC_exp_cols + ["SampleID", "E_RHE"] if i in EIS_pars.columns and i in Cdl_pars.dropna(axis=1).columns and i in ORR_pars_char.columns ] [ (i, EIS_pars[i].dtypes, Cdl_pars[i].dtypes) for i in mcls if EIS_pars[i].dtypes != Cdl_pars[i].dtypes ] EIS_Cdl = pd.merge(EIS_pars, Cdl_pars, on=mcls2, how="outer") EIS_Cdl_ORR = pd.merge(EIS_Cdl, ORR_pars_char, on=mcls3, how="outer") # [['E_RHE','Cdl','Cdlp']] ECdl = EIS_Cdl.dropna(how="any", axis=0, subset=["Cdl", "Cdlp"]) ECdl_ORR = EIS_Cdl.dropna(how="any", axis=0, subset=["Cdl", "Cdlp"]) test1_alk = ECdl.query( '(pH > 7) & (pH < 15) & (E_RHE > 0.494) & (E_RHE < 0.516) & (Sweep_Type_N2 == "cathodic")' ) test1_acid = ECdl.query( '(pH < 7) & (E_RHE > 0.494) & (E_RHE < 0.516) & (Sweep_Type_N2 == "cathodic")' ) test1_alk.plot( y="Cdl", x="Qad", c="BET_cat_agg_x", colormap="jet", kind="scatter", title="Cdl in alkaline", ) test1_alk.plot( y="Cdl_corr", x="Rct", c="BET_cat_agg_x", colormap="jet", kind="scatter", title="Cdl in alkaline", ) test1_acid.plot( y="Cdl", x="Qad", c="BET_cat_agg_x", colormap="jet", kind="scatter", title="Cdl in acid", ) test1_acid.plot( y="Cdl", x="Rct_kin", c="BET_cat_agg_x", colormap="jet", kind="scatter", title="Cdl in acid", ) # HPRR_pars = pd.merge(HPRR_pars,postOVVout,on='PAR_file',how='left') # print('Leftover SampleIDs: {0}'.format(set(HPRR_pars.SampleID.unique()) - set(SampleCodes.SampleID.unique()))) # HPRR_pars = pd.merge(HPRR_pars,SampleCodes,on='SampleID',how='left') # @@ Check POST_AST status from OVV and PRM... print( "Leftover SampleIDs: {0}".format( set(ORR_pars.SampleID.unique()) - set(SampleCodes.SampleID.unique()) ) ) ORR_pars = pd.merge(ORR_pars, SampleCodes, on="SampleID", how="left") return HPRR_pars_ovv, EIS_pars_ovv def get_EC_index(): EC_index = ECRunOVV(load=1).EC_index # ['EXP_dir','Dest_dir','PAR_file','PAR_file_Ring', 'ORR_act_N2_bg','DestFile'] EC_index = FileOperations.ChangeRoot_DF(EC_index, []) EC_index.PAR_file = EC_index.PAR_file.astype(str) EC_index["Loading_cm2"] = EC_index["Loading_cm2"].round(3) SampleCodes = FindExpFolder().LoadSampleCode() # SampleCodesChar().load return EC_index, SampleCodes @staticmethod def check_missing_ECindex(OnlyRecentMissingOVV, DF_pars, clean_up=False): not_in_index = DF_pars.loc[ ~DF_pars.PAR_file.isin(OnlyRecentMissingOVV.PAR_file.values) ] CleanUpCrew(list_of_files=not_in_index.sourceFilename.unique(), delete=clean_up) return ( DF_pars.loc[DF_pars.PAR_file.isin(OnlyRecentMissingOVV.PAR_file.values)], not_in_index, ) @staticmethod def add_missing_ECindex_cols(EC_index, DF): if list(EC_index.columns.difference(DF.columns)): DF = pd.merge( DF, EC_index[["PAR_file"] + list(EC_index.columns.difference(DF.columns))], on="PAR_file", how="left", ) return DF @staticmethod def IndexPars_CB_paper(): postOVVout, SampleCodes = pd.DataFrame(), pd.DataFrame() PostECddSeries = FindExpFolder("VERSASTAT").DestDir.joinpath( "PostEC/{0}".format(SampleSelection.Series_CB_paper["name"]) ) PostECddSeries.mkdir(exist_ok=True, parents=True) EIS_pars = Load_from_Indexes.EIS_pars_OVV( postOVVout, SampleCodes, reload=False ) # EIS_Pars2 HPRR_pars = Load_from_Indexes.HPRR_pars_OVV( postOVVout, SampleCodes, reload=False ) # HPRR ORR_pars = Load_from_Indexes.ORR_pars_OVV( postOVVout, SampleCodes, reload=False ) # ORR Cdl_pars = Load_from_Indexes.N2_pars_OVV(reload=False) HER_pars = Load_from_Indexes.HER_pars_OVV(postOVVout, SampleCodes, reload=False) OER_pars = Load_from_Indexes.OER_pars_OVV(postOVVout, SampleCodes, reload=False) CBsamples = SampleSelection.Series_CB_paper["sIDs"] EIS_CB_paper = EIS_pars.loc[EIS_pars.SampleID.isin(CBsamples)] # 7644 HPRR_CB_paper = HPRR_pars.loc[HPRR_pars.SampleID.isin(CBsamples)] HPRR_CB_paper.to_excel(PostECddSeries.joinpath("HPRR_CB_paper.xlsx")) ORR_CB_paper = ORR_pars.loc[ORR_pars.SampleID.isin(CBsamples)] ORR_CB_paper.to_excel(PostECddSeries.joinpath("ORR_CB_paper.xlsx")) Cdl_CB_paper = Cdl_pars.loc[Cdl_pars.SampleID.isin(CBsamples)] Cdl_CB_paper.to_excel(PostECddSeries.joinpath("Cdl_CB_paper.xlsx")) HER_CB_paper = HER_pars.loc[HER_pars.SampleID.isin(CBsamples)] OER_CB_paper = OER_pars.loc[OER_pars.SampleID.isin(CBsamples)] Cdl_CB_cath, Cdl_CB_an = Cdl_CB_paper.query( 'Sweep_Type_N2 == "cathodic"' ), Cdl_CB_paper.query('Sweep_Type_N2 == "anodic"') merge_cols_catan = [i for i in Cdl_CB_cath.columns if i in Cdl_CB_an.columns] Cdl_CB_catan = pd.merge( Cdl_CB_cath, Cdl_CB_an, on=[i for i in merge_cols_catan if i not in SampleSelection.EC_N2Cdl_cols], how="left", suffixes=["_cat", "_an"], ) Cdl_CB_catan["Cdl_sum"] = Cdl_CB_catan["Cdl_an"] + Cdl_CB_catan["Cdl_cat"] return ( EIS_CB_paper, HPRR_CB_paper, ORR_CB_paper, Cdl_CB_paper, HER_CB_paper, OER_CB_paper, ) @staticmethod def IndexPars_Porph_SiO2(): postOVVout, SampleCodes = pd.DataFrame(), pd.DataFrame() serie = SampleSelection.Series_Porhp_SiO2["sIDslice"] EIS_pars = Load_from_Indexes.EIS_pars_OVV( postOVVout, SampleCodes, reload=False ) # EIS_Pars2 Cdl_pars = Load_from_Indexes.N2_pars_OVV(reload=False) EIS_Porph_SiO2 = EIS_pars.loc[EIS_pars.SampleID.isin(serie)] Cdl_Porph_SiO2 = Cdl_pars.loc[Cdl_pars.SampleID.isin(serie)] Cdl_Porph_SiO2_cath, Cdl_Porph_SiO2_an = Cdl_Porph_SiO2.query( 'Sweep_Type_N2 == "cathodic"' ), Cdl_Porph_SiO2.query('Sweep_Type_N2 == "anodic"') HPRR_pars_char = Load_from_Indexes.HPRR_pars_OVV( postOVVout, SampleCodes, reload=False ) # HPRR ORR_pars_char = Load_from_Indexes.ORR_pars_OVV( postOVVout, SampleCodes, reload=False ) # ORR HER_pars = Load_from_Indexes.HER_pars_OVV(postOVVout, SampleCodes, reload=False) OER_pars = Load_from_Indexes.OER_pars_OVV(postOVVout, SampleCodes, reload=False) HPRR_Porph_SiO2 = HPRR_pars_char.loc[HPRR_pars_char.SampleID.isin(serie)] ORR_Porph_SiO2 = ORR_pars_char.loc[ORR_pars_char.SampleID.isin(serie)] HER_Porph_SiO2 = HER_pars.loc[Cdl_pars.SampleID.isin(serie)] OER_Porph_SiO2 = OER_pars.loc[Cdl_pars.SampleID.isin(serie)] return ORR_Porph_SiO2 def test_update_from_index(pars, EC_index): _olap = pars.columns.intersection(EC_index.columns) _olap_minus = [i for i in _olap if not "PAR_file" == i] _mtime = [i for i in pars.columns if i.endswith("delta_mtime")] if _mtime: _idx = pars[_mtime[0]].idxmin() else: _idx = 0 _ECidx = ( EC_index.loc[EC_index.PAR_file == pars.iloc[_idx].PAR_file][_olap] .iloc[0] .to_dict() ) _prsx = pars.iloc[_idx][_olap].to_dict() _check = { key: {"pars": val, "EC_index": _ECidx.get(key, "xx")} for key, val in _prsx.items() if _ECidx.get(key, "xx") != val } _pars_bad = False if _check: _pars_bad = any( "error" in str(i) for i in [i["pars"] for i in _check.values()] ) if _pars_bad: _logger.info(f"Overwriting columns in Pars from EC_index") _new_pars = pd.merge( pars[[i for i in pars.columns if i not in _olap_minus]], EC_index[_olap], on="PAR_file", how="left", ) else: _new_pars = pars return _new_pars @staticmethod def EIS_pars_OVV( reload=False, extra_plotting=False, xls_out=False, BRUTE_out=False, use_daily=True, use_latest=False, **kwargs, ): # IndexOVV_EISpars_fn_xls = PostDestDir.joinpath('EIS_pars_IndexOVV_v{0}.xlsx'.format(FileOperations.version)) # IndexOVV_EISpars_fn = PostDestDir.joinpath('EIS_pars_IndexOVV_v{0}.pkl.compress'.format(FileOperations.version)) # PostDestDir = Load_from_Indexes.PostDestDir # FindExpFolder('VERSASTAT').PostDir eis_daily = get_daily_pickle(exp_type="EIS_pars") # today = dt.datetime.now().date() # eis_daily_pickle_path = PostDestDir.joinpath(f'{today.year}-{today.month}-{today.day}_EIS_pars_{system()}.pkl.compress') # eis_daily_pickle_path_RAW = PostDestDir.joinpath(f'{today.year}-{today.month}-{today.day}_EIS_pars_{system()}_RAW.pkl.compress') if eis_daily.get("_exists", False) and not reload and use_daily: EIS_pars = pd.read_pickle(eis_daily.get("daily_path")) EIS_pars = FileOperations.ChangeRoot_DF(EIS_pars, [], coltype="string") _logger.info( f'Loaded EIS_pars OVV from daily {eis_daily["today"]} pickle: {eis_daily.get("daily_path","")}' ) elif ( eis_daily.get("daily_options", []) and not reload and (use_latest or use_daily) ): EIS_pars = pd.read_pickle(eis_daily.get("daily_options")[-1]) EIS_pars = FileOperations.ChangeRoot_DF(EIS_pars, [], coltype="string") _logger.info( f'Loaded EIS_pars OVV from daily {eis_daily.get("daily_options")[-1]} ' ) else: # @@ Read EIS pars files and extend with columns from Samples # try other way:: idx_files_EIS = [list(Path(i).rglob('**/EIS/*pars_v20.xlsx')) for i in OnlyRecentMissingOVV.Dest_dir.unique() if list(Path(i).rglob('**/EIS/*pars_v20.xlsx'))] _logger.info( f'START reloading EIS_pars OVV from daily {eis_daily["today"]}' ) # OnlyRecentMissingOVV = ECRunOVV(load=1).index ## ['EXP_dir','Dest_dir','PAR_file','PAR_file_Ring', 'ORR_act_N2_bg','DestFile'] # OnlyRecentMissingOVV = FileOperations.ChangeRoot_DF(OnlyRecentMissingOVV,[]) # OnlyRecentMissingOVV.PAR_file = OnlyRecentMissingOVV.PAR_file.astype(str) # OnlyRecentMissingOVV['Loading_cm2'] = OnlyRecentMissingOVV['Loading_cm2'].round(3) # SampleCodes = SampleCodesChar().load EC_index, SampleCodes = Load_from_Indexes.get_EC_index() def read_df(_par_fls): # _ps = Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) while True: try: i = next(_par_fls) if i.name.endswith("xlsx"): _pp = pd.read_excel(i, index_col=[0]) elif i.name.endswith("pkl"): _pp = pd.read_pickle(i) _pp = FileOperations.ChangeRoot_DF(_pp, [], coltype="string") _source_mtime = dt.datetime.fromtimestamp(i.stat().st_mtime) _delta_mtime = dt.datetime.now() - _source_mtime _pp = _pp.assign( **{ "sourceFilename": i, "source_mtime": _source_mtime, "source_delta_mtime": _delta_mtime, "sourcebasename": i.stem, } ) yield _pp except StopIteration: return "all done" print("gen empty") # finally: # yield _pp # _pf = _pp.PAR_file.unique()[0] # _pfstem = Path(_pf).stem # _spectraf = list(Path(Path(i).parent).rglob(f'{_pfstem}_v{FileOperations.version}.xlsx' ))[0] # _spectradf = pd.read_excel(_spectraf ) # yield _pp # bn = 'O2_EIS-range_1500rpm_JOS1_285_5mV_1500rpm_pars_v20.xlsx' EIS_OVV = EC_index.loc[EC_index.PAR_exp == "EIS"] col_names = ["File_SpecFit", "File_SpecRaw", "PAR_file"] # +['PAR_file','Segment',EvRHE, 'RPM_DAC'] # [ Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) for d in EIS_OVV.Dest_dir.unique()] _par_files = [ list( Path(d.joinpath("EIS")).rglob( f"*_pars_v{FileOperations.EIS_version}.xlsx" ) ) for d in EIS_OVV.Dest_dir.unique() ] _EIS_WB_files = [ list(Path(d.joinpath("EIS/lin_Warburg")).rglob(f"lin_Warburg*.pkl")) for d in EIS_OVV.Dest_dir.unique() ] _EIS_WB_fls = (a for i in _EIS_WB_files for a in i) _par_fls = (a for i in _par_files for a in i) # if 'EIS' in a.name) # tt = (i for i in _par_fls if bn in i.name) # __ttp = list(read_df(tt, col_names)) if eis_daily.get("_raw_exists", False) and use_daily == True: EIS_pars_all = pd.read_pickle(eis_daily.get("daily_path_RAW")) elif ( not eis_daily.get("_raw_exists", False) and use_daily == True and eis_daily.get("daily_options_RAW") ): EIS_pars_all = pd.read_pickle(eis_daily.get("daily_options_RAW")[-1]) else: _pars_lst = list(read_df(_par_fls)) EIS_pars_RAW = pd.concat(_pars_lst, sort=False) EIS_pars_RAW.sort_values("source_delta_mtime", inplace=True) EIS_pars_RAW = EIS_pars_RAW.reset_index() EIS_pars_all = EIS_pars_RAW float_cols = set( [ a for i in EIS_pars_all.lmfit_var_names.unique() if type(i) == str and not "(" in i for a in i.split(", ") ] ) float_cols.update( set( [ a for i in float_cols for a in EIS_pars_all.columns if a.startswith(i) ] ) ) EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].fillna( 0 ) # EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].astype(float) obj_flt_cols = [ i for i in EIS_pars_all.columns if str(EIS_pars_all[i].dtype) == "object" and i in float_cols ] EIS_pars_all[obj_flt_cols] = EIS_pars_all[obj_flt_cols].replace("", 0) EIS_pars_all[list(float_cols)] = EIS_pars_all[list(float_cols)].astype( float ) wrong_fls = [ EIS_pars_all.loc[ EIS_pars_all[i].astype(str).str.contains("Parameter") ] for i in obj_flt_cols ] if wrong_fls: wrong_objflt_df = pd.concat(wrong_fls) fix_dct = { i: [ float(v.split("value=")[-1].split(",")[0]) for v in wrong_objflt_df[i].values ] for i in obj_flt_cols } fixed_objflt_df = wrong_objflt_df.assign(**fix_dct) EIS_pars_all = pd.concat( [ EIS_pars_all.drop(index=wrong_objflt_df.index, axis=0), fixed_objflt_df, ], axis=0, sort=True, ) def _add_WB_pars(EIS_pars_all): _WB_RAW_daily_path = eis_daily.get("daily_path_RAW_WB") if _WB_RAW_daily_path.exists(): _EIS_WB_pars_all = pd.read_pickle(_WB_RAW_daily_path) else: _WB_lst = list(read_df(_EIS_WB_fls)) _EIS_WB_pars_all = pd.concat( _WB_lst, sort=False, ignore_index=True ) _EIS_WB_pars_all.to_pickle(_WB_RAW_daily_path) _diffcols = set(EIS_pars_all.columns).difference( _EIS_WB_pars_all.columns ) _mcols = [ i for i in set(EIS_pars_all.columns).intersection( _EIS_WB_pars_all.columns ) if i not in [ "sourceFilename", "source_mtime", "source_delta_mtime", "sourcebasename", ] ] _dtype_mismatch = [ (i, EIS_pars_all[i].dtype, _EIS_WB_pars_all[i].dtype) for i in _mcols if EIS_pars_all[i].dtype != _EIS_WB_pars_all[i].dtype ] if _dtype_mismatch: _excl = [] for i in _dtype_mismatch: try: _EIS_WB_pars_all[i[0]] = _EIS_WB_pars_all[i[0]].astype( i[1] ) except Exception as e: _excl.append(i[0]) print(i, "\n", e) _mcols = [i for i in _mcols if i not in _excl] # EIS_pars_all[i[0]] = EIS_pars_all[i[0]].astype(i[2]) _merge = pd.merge( EIS_pars_all, _EIS_WB_pars_all, on=_mcols, how="left", suffixes=("", "_WB"), ) if not _merge.empty: return _merge else: print("WB merge was empty") return EIS_pars_all EIS_pars_all = _add_WB_pars(EIS_pars_all) EIS_pars_all = EIS_pars_all.assign( **{ "EIS_fake": [ "fakeZmean" in Path(i).name for i in EIS_pars_all.PAR_file.to_numpy() ] } ) _not_in_index = EIS_pars_all.loc[ ( ~(EIS_pars_all.PAR_file.isin(EC_index.PAR_file.values)) & (~EIS_pars_all.EIS_fake == True) ) ] CleanUpCrew( list_of_files=_not_in_index.sourceFilename.unique(), delete=True ) EIS_pars_all = EIS_pars_all.iloc[ ~(EIS_pars_all.index.isin(_not_in_index.index)) ] EIS_pars_all = Load_from_Indexes.test_update_from_index( EIS_pars_all, EC_index ) EIS_pars_all.to_pickle(eis_daily.get("daily_path_RAW")) # EIS_pars_all = pd.read_pickle(eis_daily.get('daily_path_RAW')) # === TAKING ONLY NEWEST FITTING PARS === # # for n ,gr in EIS_pars_all.groupby(by=col_names): # n,gr E_dc_RHE_cols = [ (np.round(i, 3), np.round(i, 3) * 1e3) for i in EIS_pars_all[EvRHE].values ] EIS_pars_all = EIS_pars_all.assign( **{ "E_dc_RHE": [i[0] for i in E_dc_RHE_cols], "E_dc_RHE_mV": [i[1] for i in E_dc_RHE_cols], } ) EIS_pars_recent = EIS_pars_all.loc[ (EIS_pars_all.source_mtime > pd.Timestamp(dt.date(2020, 11, 25))) & (EIS_pars_all.PAR_file.str.contains("None") == False) ] EIS_pars_undup = EIS_pars_recent.dropna(subset=col_names).drop_duplicates( keep="first" ) # EIS_pars = EIS_pars.loc[EIS_pars.lmfit_var_names.str.contains('/(')] # set([a for i in EIS_pars_all.lmfit_var_names.unique() if not '(' in i for a in i.split(', ')]) # === POST EDITING OF LOADED PARS === EIS_pars_undup = EIS_pars_undup.assign( **{"Loading_cm2": EIS_pars_undup["Loading_cm2"].round(3)} ) EIS_pars_undup = post_helper.make_uniform_EvRHE(EIS_pars_undup) EIS_pars_undup = CollectPostOVV.MatchECconditions(EIS_pars_undup) # EIS_pars_undup = Load_from_Indexes.add_missing_ECindex_cols(EC_index, EIS_pars_undup) _oc_OVV = list(EIS_pars_undup.columns.intersection(EIS_OVV.columns)) if not set(EIS_OVV.groupby(_oc_OVV).groups.keys()).intersection( EIS_pars_undup.groupby(_oc_OVV).groups.keys() ): _drpcols = [ a for a in EIS_pars_undup.columns if ( a in [i for i in _oc_OVV if i not in "PAR_file"] or "_".join(a.split("_")[0:-1]) in [i for i in _oc_OVV if i not in "PAR_file"] ) ] # EIS_pars_undup.drop(columns =_drpcols) EIS_pars_undup = Load_from_Indexes.add_missing_ECindex_cols( EC_index, EIS_pars_undup.drop(columns=_drpcols) ) # EIS_pars_undup = pd.merge(EIS_pars_undup,EIS_OVV,on=_oc_OVV, how='left') _oc_SC = list(EIS_pars_undup.columns.intersection(SampleCodes.columns)) EIS_pars_undup = pd.merge( EIS_pars_undup, SampleCodes, how="left", on=_oc_SC ) EIS_pars_BRUTE = EIS_pars_undup.loc[ (EIS_pars_undup.BRUTE_FIT == 1) | (EIS_pars_undup.FINAL_FIT == 0) ] if BRUTE_out: EIS_pars_BRUTE.to_pickle(eis_daily["daily_path_BRUTE"]) EIS_pars = EIS_pars_undup.loc[(EIS_pars_undup.FINAL_FIT == 1)] EIS_pars = EIS_extra_methods.add_best_model_per_spectrum(EIS_pars) EIS_pars.to_pickle(eis_daily["daily_path"]) _logger.info(f'EIS_pars OVV to daily pickle: {eis_daily.get("daily_path")}') _err_type = "lmfit_MSE" _filter = "(EIS_pars.lmfit_MSE < 65E4) & (EIS_pars.Rct < 2E3) & (EIS_pars.Rct > 2E-2) \ & (EIS_pars.Rs > 0.01) & (EIS_pars.Rs < 200) & (EIS_pars.Cdlp < 0.075)\ & (EIS_pars.lmfit_redchi < 1E3) & (EIS_pars.Aw < 10E3) & (EIS_pars.Aw > 10E-2)\ & (EIS_pars.Qad < 1) & (EIS_pars.tau < 1E3)" _filter += '& (EIS_pars.SampleID.str.contains("JOS1|JOS2|JOS3|JOS4|JOS5"))' _filter += "& (EIS_pars.EIS_fake == False)" _grps = ["Model_EEC", "Gas", "lmfit_var_names"][0:2] best_models = ( EIS_pars.loc[eval(_filter)] .dropna(axis=0, subset=[_err_type]) .groupby(_grps)[_err_type] .agg(["count", "mean", "std"]) .sort_values("mean", ascending=True) ) print(best_models) keep_models = ( best_models.loc[(best_models["count"] > 5) & (best_models["std"] > 0)] .index.get_level_values(0) .unique() ) EIS_pars = EIS_pars.loc[EIS_pars.Model_EEC.isin(keep_models)] best_models = ( EIS_pars.loc[eval(_filter)] .dropna(axis=0, subset=[_err_type]) .groupby(_grps)[_err_type] .agg(["count", "mean", "std"]) .sort_values(["Gas", "mean"], ascending=True) ) print(best_models) if hasattr(EIS_pars, "best_mod_name"): # EIS_best_mods = EIS_pars.loc[EIS_pars.Model_EEC_name.isin([i for i in EIS_pars.best_mod_name.unique() if not pd.isna(i)])] EIS_best_mods = EIS_pars.loc[ EIS_pars.index.isin( [i for i in EIS_pars.best_mod_n.unique() if not pd.isna(i)] ) ] _agg = ( EIS_best_mods.dropna(subset=[_err_type]) .groupby(_grps + ["E_RHE"])[_err_type] .agg(["count", "mean", "std"]) ) _agg_best = _agg.loc[_agg["count"] > 3].sort_values( ["Gas", "E_RHE", "mean"], ascending=True ) # fast_checking_EEC_models =[(2, 'EEC_2CPEpRW',50), # (3, 'EEC_2CPEpW',120),(4,'EEC_2CPE_W',100), # (5, 'EEC_2CPE',100), (6,'EEC_Randles_RWpCPE_CPE',60)] # # ['Model(Singh2015_RQRQR)', 'Model(Singh2015_RQRWR)', 'Model(Singh2015_R3RQ)', 'Model(Bandarenka_2011_RQRQR)' ] if extra_plotting == "blocked": for n, r in best_models.head(1).iterrows(): modname = r.name[0] varnames = [ a for i in EIS_pars.loc[ EIS_pars["Model_EEC"] == modname ].lmfit_var_names.unique() for a in i.split(", ") ] # [1]]+[fast_checking_EEC_models[4]]: # modname = f'Model({_modname})' EIS_pars_fltr = EIS_pars.loc[ (EIS_pars["Model_EEC"] == modname) & eval(_filter) ] for var in varnames: EIS_pars_fltr.query("pH < 7 & Rct < 2E3").plot( y=var, x="E_RHE", c="BET_cat_agg", colormap="rainbow_r", kind="scatter", title=modname, logy=0, ) # .query('pH < 15').plot(y='Rs',x='E_RHE',c='pH',colormap='rainbow_r',kind='scatter',ylim=(0,100),title=modname) EIS_pars.loc[EIS_pars["Model_EEC"] == modname].query("pH < 15").plot( y="Qad", x="E_RHE", c="pH", colormap="rainbow_r", kind="scatter", ylim=(0, 0.05), title=modname, ) EIS_pars.loc[EIS_pars["Model_EEC"] == modname].query("pH < 7").plot( y="R_ion", x="E_RHE", c="BET_cat_agg", colormap="rainbow_r", kind="scatter", title=modname, ) EIS_pars.loc[EIS_pars["Model_EEC"] == modname].query("pH < 7").plot( y="tau", x="E_RHE", c="BET_cat_agg", colormap="rainbow_r", kind="scatter", ylim=(0, 100), title=modname, ) EIS_pars.loc[EIS_pars["Model_EEC"] == modname].query("pH < 7").plot( y="Rct", x="E_RHE", c="BET_cat_agg", colormap="rainbow_r", kind="scatter", ylim=(0.1, 1e4), logy=True, title=modname, ) if ( not EIS_pars.loc[EIS_pars["Model_EEC"] == modname] .query("pH > 7") .empty ): EIS_pars.loc[EIS_pars["Model_EEC"] == modname].query("pH > 7").plot( y="Qad+Cdlp", x="E_RHE", c="BET_cat_agg", colormap="rainbow_r", kind="scatter", ylim=(0.1, 1e-4), logy=True, title=modname, ) plt.close() # EIS_pars.query('pH < 17').groupby('Model_EEC').plot(y='RedChisqr',x='E_RHE',colormap='viridis',kind='scatter',ax=ax) _porph = EIS_pars.loc[EIS_pars.PAR_file.str.contains("06.05")] fig, ax = plt.subplots() for n, Hgr in _porph.query("pH < 7").groupby("postAST"): c_set = "g" if n == "no" else "r" Hgr.plot( x="E_RHE", y="Rct_kin", s=50, c=c_set, kind="scatter", label=n, title="EIS, E vs Qad at", ax=ax, ylim=(1e-6, 1), logy=True, ) plt.show() plt.close() if "update_index" in kwargs.keys(): pass return EIS_pars # dest_files.append({'index' : n, 'PAR_file' : str(r.PAR_file),'EIS_dest_dir' : EIS_dest_dir, # 'EIS_dest_Pars' : EIS_dest_dir.joinpath( Path(r.PAR_file).stem + '_pars.xlsx'), # 'EIS_dest_spectra' :EIS_dest_dir.joinpath( Path(r.PAR_file).stem + '_Combined.xlsx') # }) # EIS_pars_index_p1 = postOVVout.query('Type_output == "EIS_Pars1"') ## EIS_pars_index_p2 = postOVVout.query('Type_output == "EIS_Pars2"') # EIS_pars_indexes = postOVVout.query('Type_output == "EIS_Pars"') # if 'source' in kwargs.keys(): # EIS_pars_indexes = EIS_pars_indexes.loc[EIS_pars_indexes.Source == kwargs.get('source','ExpDirs')] ## pars_index_from_read = EIS_get_index_column_names() ## EIS_pars_index = pd.concat([EIS_pars_index_p1,EIS_pars_index_p2]) ## EIS_pars_index = postOVVout.groupby('Type_output').get_group('EIS_Pars1') # EIS_pars_spectra = postOVVout.groupby('Type_output').get_group('EIS_AllData_combined').drop_duplicates(subset=['PAR_file','DestFile','Time_since_run']) ## EPtest = EIS_pars_indexes.loc[no_match] # a slice for testing purpose ## test_load_nm = no_matches.loc[no_matches[2].str.contains('Columns not matching! "Loading_cm2" values:'),0].values ## EPtest = EIS_pars_indexes.loc[EIS_pars_indexes.index.isin(test_load_nm)] # EISlst,no_match,faillst = [],[],[] @staticmethod def HPRR_pars_OVV( postOVVout, SampleCodes, reload=False, extra_plotting=False, xls_out=False ): # exp_type = 'H IndexOVV_HPRRpars_fn = FindExpFolder("VERSASTAT").PostDir.joinpath( "Pars_IndexOVV_HPRR_v{0}.xlsx".format(FileOperations.version) ) if IndexOVV_HPRRpars_fn.exists() and reload != True: HPRR_pars_char = pd.read_excel(IndexOVV_HPRRpars_fn, index_col=[0]) HPRR_pars_char = FileOperations.ChangeRoot_DF( HPRR_pars_char, [], coltype="string" ) else: # === Making destination directories === # PostDestDir = FindExpFolder("VERSASTAT").DestDir.joinpath("PostEC") PPD_HPRR = PostDestDir.joinpath("HPRR") PPD_HPRR.mkdir(parents=True, exist_ok=True) PPD_HPRR_data = PPD_HPRR.joinpath("DataFiles") PPD_HPRR_data.mkdir(parents=True, exist_ok=True) # # === Loading Index files for HPRR and reading the Parameters files into one DataFrame === # HPRR_pars_index = postOVVout.groupby("Type_output").get_group("HPRR") HP_Pars_files = [ Path(i) for i in HPRR_pars_index["SourceFilename"].unique() if "_Pars" in Path(i).stem ] HPRR_pars_raw = pd.concat( [pd.read_excel(i, index_col=[0]) for i in HP_Pars_files], sort=False ) HPRR_pars_raw = FileOperations.ChangeRoot_DF( HPRR_pars_raw, [], coltype="string" ) HPRR_merge_cols = [ i for i in HPRR_pars_raw.columns if i in HPRR_pars_index.columns and not "Segment" in i ] HPRR_p2, HPRR_ovv2 = HPRR_pars_raw.set_index( HPRR_merge_cols ), HPRR_pars_index.set_index(HPRR_merge_cols) HPRR_pars_ovv = HPRR_p2.join(HPRR_ovv2, rsuffix="_ovv").reset_index() HPRR_pars_merge_cols = [ i for i in HPRR_pars_ovv.columns if i in postOVVout.columns and not "Segment" in i and not "Unnamed" in i ] HPRR_pars = pd.merge( HPRR_pars_ovv, postOVVout, on=HPRR_pars_merge_cols, how="left" ) # HPRR_pars = pd.merge(HPRR_pars_ovv,postOVVout,on='PAR_file',how='left') print( "Leftover SampleIDs: {0}".format( set(HPRR_pars.SampleID.unique()) - set(SampleCodes.SampleID.unique()) ) ) HPRR_char_merge_cols = [ i for i in HPRR_pars_ovv.columns if i in SampleCodes.columns if not "Unnamed" in i ] HPRR_pars_char = pd.merge( HPRR_pars_ovv, SampleCodes, on=HPRR_char_merge_cols, how="left" ) HPRR_pars_char = HPRR_pars_char.drop( columns=[i for i in HPRR_pars_char.columns if "Unnamed" in i] ) new_IndexOVV_HPRRpars_target = FileOperations.CompareHashDFexport( HPRR_pars_char, IndexOVV_HPRRpars_fn ) _logger.info( "PostEC HPRR re-indexed and saved: {0}".format( new_IndexOVV_HPRRpars_target ) ) if extra_plotting: try: HPRR_pars_char.query( '(RPM_HPRR > 700) & (Loading_cm2 > 0.1) & (E_name == "E_j0")' ).plot(x="AD/AG", y="fit_slope_HPRR", kind="scatter") except Exception as e: print("HPRR plot fail:", e) try: HPRR_pars_char.query( '(RPM_HPRR > 700) & (Loading_cm2 > 0.1) & (E_name == "E_j0")' ).plot(x="N_content", y="fit_slope_HPRR", kind="scatter") except Exception as e: print("HPRR plot fail:", e) return HPRR_pars_char @staticmethod def HER_pars_OVV(reload=False, use_daily=True, extra_plotting=False, xls_out=False): # exp_type = 'H # PostDestDir = Load_from_Indexes.PostDestDir her_daily = get_daily_pickle(exp_type="HER_pars") # IndexOVV_HER_pars_fn = FindExpFolder('VERSASTAT').PostDir.joinpath('Pars_IndexOVV_HER_v{0}.pkl.compress'.format(FileOperations.version)) if her_daily.get("_exists", False) and reload != True: # Cdl_pars_char = pd.read_excel(IndexOVV_N2_pars_fn,index_col=[0]) HER_pars_char = pd.read_pickle(her_daily.get("daily_path")) HER_pars_char = FileOperations.ChangeRoot_DF( HER_pars_char, [], coltype="string" ) else: # @@ Check POST_AST status from OVV and PRM EC_index, SampleCodes = Load_from_Indexes.get_EC_index() def read_df(_par_fls, read_types=["HER_pars"]): # _ps = Path(d).rglob(f'*_pars_v{FileOperations.version}.xlsx' ) while True: try: i = next(_par_fls) _source_mtime = dt.datetime.fromtimestamp(i.stat().st_mtime) _delta_mtime = dt.datetime.now() - _source_mtime _i_stem = i.stem _pparts = i.parent.parts if f"HER_v{FileOperations.version}" in _pparts[-2]: if _i_stem.startswith("HER") or "HER" in _i_stem.split("_"): # any([_i_stem.startswith(_p) for _p in ['N2_HER|N2_EIS']]): _type = "HER_pars" else: _type = "HER_unknown" else: _type = "_unknown" _meta = { "sourceFilename": i, "source_mtime": _source_mtime, "source_delta_mtime": _delta_mtime, "source_basename": _i_stem, "source_type": _type, } if _type in read_types: _pp = pd.read_excel(i, index_col=[0]) _pp = FileOperations.ChangeRoot_DF( _pp, [], coltype="string" ) _pp = _pp.assign(**_meta) else: _pp = pd.DataFrame(_meta, index=[0]) if not "Analysis_date" in _pp.columns: _pp = _pp.assign( **{ "Analysis_date": dt.datetime.fromtimestamp( i.stat().st_ctime ) } ) _meta.update({"DF": _pp}) yield _meta except StopIteration: return "all done" print("gen empty") if her_daily.get("_raw_exists", False) and use_daily: HER_pars_all = pd.read_pickle(her_daily.get("daily_path_RAW")) elif her_daily.get("daily_options_RAW", False) and use_daily: HER_pars_all = pd.read_pickle(her_daily.get("daily_options_RAW")[-1]) else: # Construct new N2 pars ovv from reading in files HER_OVV = EC_index.loc[EC_index.PAR_exp.str.contains("HER")] _par_files = [ list( Path(d.joinpath(f"HER_v{FileOperations.version}")).rglob( "*xlsx" ) ) for d in HER_OVV.Dest_dir.unique() ] _par_fls = (a for i in _par_files for a in i) # if 'EIS' in a.name) _par_reads = read_df(_par_fls, read_types=["HER_pars"]) _reads_out = [i for i in _par_reads] HER_pars_all = pd.concat( [i["DF"] for i in _reads_out], sort=False, ignore_index=True ) not_in_index = HER_pars_all.loc[ ~HER_pars_all.PAR_file.isin(EC_index.PAR_file.values) ] if not_in_index.empty: print("HER pars, not-in-index is empty... success!") else: print("HER pars, not-in-index is NOT empty... delete wrong pars??") # CleanUpCrew(list_of_files = not_in_index.SourceFilename.unique(), delete = True) HER_pars_all = HER_pars_all.loc[ HER_pars_all.PAR_file.isin(EC_index.PAR_file.values) ] HER_pars_recent = HER_pars_all.loc[ HER_pars_all.Analysis_date > dt.datetime.fromisoformat("2020-07-15") ] for n, gr in HER_pars_recent.groupby("_type"): print( n, f" len {len(gr)}", f'\nSamples: {", ".join([str(i) for i in gr.SampleID.unique()])}', ) HER_pars_recent.to_pickle(her_daily["daily_path_RAW"]) # ORR_merge_cols = [i for i in ORR_pars.columns if i in ORR_pars_index.columns and not 'Segment' in i] # p2,ovv2 = ORR_pars.dropna(subset=ORR_merge_cols).set_index(ORR_merge_cols), ORR_pars_index.dropna(subset=ORR_merge_cols).set_index(ORR_merge_cols) # ORR_pars_ovv = p2.join(ovv2,rsuffix='_ovv').reset_index() # ORR_pars_ovv.query('(pH < 7)').plot(y='E_onset',x='Loading_cm2',kind='scatter',logy=False) # ORR_pars_ovv = pd.merge(ORR_pars,ORR_pars_index,on=ORR_merge_cols,suffixes=('','_ovv'),how='left') # ORR_pars = pd.merge(ORR_pars,postOVVout,on=['PAR_file','SampleID','Electrolyte','pH','postAST'],how='left',suffixes=('','_ovv')) # print('Leftover SampleIDs: {0}'.format(set(ORR_pars.SampleID.unique()) - set(SampleCodes.SampleID.unique()))) HER_pars_char = pd.merge( HER_pars_recent, SampleCodes, on="SampleID", how="left" ) HER_pars_char = pd.merge( HER_pars_char, EC_index, on="PAR_file", suffixes=("", "_index") ) ### Fixing the pars after loading... # TODO : taking out duplicates based on time_since_run.... Load_na = HER_pars_char.loc[HER_pars_char.Loading_cm2.isna()] if not Load_na.empty: Load_na_missingvalues = [ (n, *GetSampleID.ink_loading_from_filename(i.PAR_file)) for n, i in Load_na.iterrows() ] Load_na_vals = ( pd.DataFrame(Load_na_missingvalues) .rename(columns={1: "Loading_name", 2: "Loading_cm2"}) .set_index([0]) ) HER_pars_char.Loading_cm2.fillna( value=Load_na_vals.Loading_cm2, inplace=True ) # ORR_char_merge_cols = [i for i in ORR_pars.columns if i in SampleCodes.columns] # ORR_pars_char = pd.merge(ORR_pars,SampleCodes,on=ORR_char_merge_cols,how='left') HER_pars_char = HER_pars_char.drop( columns=[i for i in HER_pars_char.columns if "Unnamed" in i] ) if HER_pars_char.loc[HER_pars_char.Loading_cm2.isna()].empty == False: HER_pars_char.Loading_cm2 = HER_pars_char.Loading_cm2.fillna( value=0.379 ) # fillna for Loading_cm2 HER_pars_char.Loading_cm2 = HER_pars_char.Loading_cm2.round(3) HER_pars_char.HER_at_E_slice = HER_pars_char.HER_at_E_slice.round(3) if HER_pars_char.postAST.dropna().empty: HER_pars_char = HER_pars_char.drop(columns="postAST") # _int = list(set(ORR_pars_char.columns).intersection(set(EC_index.columns))) HER_pars_char = pd.merge( HER_pars_char, EC_index, on="PAR_file", suffixes=("", "_index") ) HER_pars_char = make_uniform_RPM_DAC(HER_pars_char) # ORR_pars_char = pd.merge(ORR_pars_char, EC_index[['PAR_file', 'postAST']], on = 'PAR_file') _sgdct = [] for pf, pfgrp in HER_pars_char.groupby("PAR_file"): _segs = pfgrp["Segment #"].unique() for _n, _seg in enumerate(_segs): _sgdct.append({"PAR_file": pf, "Segment #": _seg, "HER_Segnum": _n}) _HER_segnums = pd.DataFrame(_sgdct) HER_pars_char = pd.merge( HER_pars_char, _HER_segnums, on=["PAR_file", "Segment #"] ) # ORR_pars_char.loc[ORR_pars_char.Loading_cm2.isna() == True] # if xls_out: # IndexOVV_HER_pars_fn = FileOperations.CompareHashDFexport(HER_pars_char,IndexOVV_HER_pars_fn) HER_pars_char.to_pickle(her_daily["daily_path"]) if extra_plotting: jmA2_slice = HER_pars_char.loc[(HER_pars_char["Segment #"] > 1)].query( '(HER_type == "j_slice_onset") & (HER_at_J_slice == -2)' ) jmA2_slice.plot( x="Metal_wt", y="HER_Tafel_slope", kind="scatter", ylim=(0, 1e3) ) jmA2_slice.plot( x="N_content", y="HER_Tafel_slope", s=50, c="g", kind="scatter", ylim=(0, 1e3), ) # HER_atE = HER_pars_char.loc[(HER_pars_char['Segment #'] > 1) & np.isclose(HER_pars_char[EvRHE+'_upper'],-0.3,atol=0.02)].query('(E_type == "E_slice")') if extra_plotting: E_350mV_slice = HER_pars_char.loc[ (HER_pars_char["Segment #"] > 1) ].query( '(HER_type == "E_slice") & (HER_at_E_slice < -0.29) & (HER_at_E_slice > -0.33)' ) fig, ax = plt.subplots() for n, Hgr in E_350mV_slice.groupby(["postAST", "RPM"]): c_set = "g" if "no" in n else "r" _ms_set = "o" if n[-1] < 100 else "*" Hgr.plot( x="N_content", y="HER_J_upper", s=50, c=c_set, kind="scatter", label=n, title="HER at -0.3 Vrhe, j vs N_content", ax=ax, **{"marker": _ms_set}, ) E_350mV_slice.plot( x="N_content", y="HER_J_upper", kind="bar", title="HER, j vs N_content at", ) E_350mV_slice.plot( x="BET_cat_agg", y="HER_J_upper", s=50, c="g", kind="scatter", title="HER, j vs N_content at", ) return HER_pars_char def old_HER(): if IndexOVV_HER_pars_fn.exists() and reload is not True: HER_pars_char =
pd.read_pickle(IndexOVV_HER_pars_fn)
pandas.read_pickle
import pandas as pd intervention_df =
pd.read_csv("intervention_data.csv",dtype=str)
pandas.read_csv
import os import getpass import logging # For warning from datetime import datetime import time import re import pandas as pd import numpy as np import shutil # Notably for copyfile from pathlib import Path import seaborn as sns import matplotlib.pyplot as plt import jenkspy # Jenks clustering import smtplib from email.mime.text import MIMEText from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email import encoders # Set / fix styles issues sns.set_style() pd.DataFrame._repr_latex_ = lambda self: """\centering{}""".format(self.to_latex()) import warnings warnings.filterwarnings("ignore", category=FutureWarning) # Constants _FAIL_LETTER = 'f' _ALL_LETTERS = ['f', 'd', 'd+', 'c', 'c+', 'b', 'b+', 'a', 'a+'] _ALL_PASSING_LETTERS = ['d', 'd+', 'c', 'c+', 'b', 'b+', 'a', 'a+'] _ALL_PASSING_NORMAL_LETTERS = ['d', 'd+', 'c', 'c+', 'b', 'b+', 'a'] # Text strings for automated messages _txt_salutation = """\ <html> <body> <p> Bonjour {} {}, <br><br> """ _txt_end = """ </p> </body> </html> """ _txt_score_overview = """ La moyenne du groupe est de {:.1f} points, et sa note médiane est de {:.1f} points. Vous avez obtenu une note de {:.1f} points. <hr> Voici le détail de vos points: """.replace('\n', '<br>') _txt_score_details = """ {} : {} points sur {} """.replace('\n', '<br>') _txt_mistakes_details = """ <hr> Et voici le détail des points perdus: {} <hr> """.replace('\n', '<br>') def correction_parser(filename, exam_name): """ Reads in correction template and generates `Grader` object Parameters ---------- filename : str exam_name : str Returns ------- Grader object """ with pd.ExcelFile(filename) as f: raw = pd.read_excel(f, sheet_name='Corrections', header=0, index_col=0) raw_codes = pd.read_excel(f, sheet_name='codes', header=0, index_col=[0, 1]) universal_codes = pd.read_excel(f, sheet_name='codes_universels', header=0, index_col=0) totals = pd.read_excel(f, sheet_name='totaux', header=0, index_col=0).squeeze() init = pd.read_excel(f, sheet_name='init', header=0, index_col=0).squeeze() versions = pd.read_excel(f, sheet_name='versions', header=0, index_col=0).squeeze() return Grader(exam_name, raw, raw_codes, universal_codes, totals, init, versions) class Grader: def __init__(self, exam_name, raw_corr, raw_codes, universal_codes, totals, init, versions=None): """ Grader class to contain raw correction data and processed grades Parameters ---------- exam_name : str Name of exam, used for documentation raw_corr: DataFrame Correction codes for each student (row) and each question (columns) read from template raw_codes: DataFrame Definition and weight of each correction/error code; A negative "penalty" means that points are being added. universal_codes : DataFrame Definition and weight (relative and/or absolute penalty) of error codes that can apply to any question totals : Data Series Total points for each question versions: DataFrame (optional) For each question (row) and each version of the exam (columns, 'A', 'B', etc.) the name/number of the question as seen by the student on the exam. """ # Data from tremplate self.exam_name = exam_name self.raw_corr = raw_corr self.raw_codes = raw_codes self.universal_codes = universal_codes self.totals = totals self.init = init self.versions = versions # Constants - hardcoded self._OK_TERMS = ['ok', '0', '', 'OK'] self._CONTACT_COLS = ['prénom', 'nom', 'courriel'] self._COLS_TO_ALWAYS_DROP = ['version', 'Exemple/explication'] # Refined data self.contacts = raw_corr[self._CONTACT_COLS] self.corr = raw_corr.drop(self._CONTACT_COLS, axis=1) # Semi-final variables self.correction_matrix = None self.codes = None # Variables finales self.grades = None self.message = dict() self.message['salutation'] = _txt_salutation self.message['foreword'] = "" self.message['score_overview'] = _txt_score_overview self.message['score_details'] = _txt_score_details self.message['mistakes_details'] = _txt_mistakes_details self.message['closing'] = "" def calc_grades(self, cols_to_drop=None): """ The main method. Calculates the grade of each student. Calls in sequence `_pivot_corr()`, `_clean_codes()`, `_check_sanity_and_harmonize()`, and `_calc_grades()` Parameters ---------- cols_to_drop : list Columns in the template to ignore in the calculation process (custom additionnal columns, etc.) """ if cols_to_drop is None: cols_to_drop = [] self._pivot_corr(cols_to_drop=cols_to_drop) self._clean_codes(cols_to_drop=cols_to_drop) self._check_sanity_and_harmonize() self._calc_grades() def _pivot_corr(self, cols_to_drop=None): """ Pivot the correction comments in raw_corr into a binary matrix For each student, we go from a list of error codes to a binary matrix indicating which students (rows) did what mistake (columns, level 1) in what question (columns, level 0) Parameters ---------- cols_to_drop : list Columns in the template to ignore in the calculation process (custom additionnal columns, etc.) """ cols_to_drop = self._COLS_TO_ALWAYS_DROP + cols_to_drop # Define dataframe with multi-index columns capturing all correction types for cx in self.corr.columns: all_codes = self.corr[cx].dropna().unique().tolist() all_codes = {y for x in all_codes for y in _clean(x)} new_cx = pd.MultiIndex.from_product([[cx], all_codes]) try: mcx = mcx.append(new_cx) except NameError: mcx = new_cx correction_matrix = pd.DataFrame(0.0, index=self.corr.index, columns=mcx) # Fill for ix in self.corr.index: for cx in self.corr.columns: erreurs = _clean(self.corr.loc[ix, cx]) for err in erreurs: correction_matrix.loc(axis=0)[ix].loc[[cx], err] += 1 # Remove other stuff if cols_to_drop is not None: correction_matrix = correction_matrix.drop(cols_to_drop, axis=1, level=0, errors='ignore') correction_matrix = correction_matrix.reindex(columns=self.totals.index, level=0) # Enlève OK self.correction_matrix = correction_matrix.drop(labels=self._OK_TERMS, axis=1, level=1, errors='ignore') def _clean_codes(self, cols_to_drop): """ Clean correction codes and weighting (drop empty, expand universal correction codes, etc.) Parameters ---------- cols_to_drop : list Columns in the template to ignore in the calculation process (custom additionnal columns, etc.) """ # Drop extraneous columns cols_to_drop = self._COLS_TO_ALWAYS_DROP + cols_to_drop codes = self.raw_codes.drop(cols_to_drop, axis=1, errors='ignore') # Drop empty rows todrop = codes['points'].isna() self.codes = codes.loc[~todrop] # Scale and insert universal codes for ix, v in self.totals.items(): scaled_codes = (self.universal_codes[['pénalités relatives', 'pénalités_absolues']] * [v, 1]) selected_codes = scaled_codes.dropna(axis=0, how='all').min(axis=1, skipna=True).to_frame('points') new_codes =
pd.concat([self.universal_codes['définition'], selected_codes], axis=1, join='inner')
pandas.concat
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import pandas from pandas.compat import string_types from pandas.core.dtypes.cast import find_common_type from pandas.core.dtypes.common import ( is_list_like, is_numeric_dtype, is_datetime_or_timedelta_dtype, is_bool_dtype, ) from pandas.core.index import _ensure_index from pandas.core.base import DataError from modin.error_message import ErrorMessage from modin.engines.base.block_partitions import BaseBlockPartitions class PandasQueryCompiler(object): """This class implements the logic necessary for operating on partitions with a Pandas backend. This logic is specific to Pandas.""" def __init__( self, block_partitions_object: BaseBlockPartitions, index: pandas.Index, columns: pandas.Index, dtypes=None, ): assert isinstance(block_partitions_object, BaseBlockPartitions) self.data = block_partitions_object self.index = index self.columns = columns if dtypes is not None: self._dtype_cache = dtypes def __constructor__(self, block_paritions_object, index, columns, dtypes=None): """By default, constructor method will invoke an init""" return type(self)(block_paritions_object, index, columns, dtypes) # Index, columns and dtypes objects _dtype_cache = None def _get_dtype(self): if self._dtype_cache is None: map_func = self._prepare_method(lambda df: df.dtypes) def dtype_builder(df): return df.apply(lambda row: find_common_type(row.values), axis=0) self._dtype_cache = self.data.full_reduce(map_func, dtype_builder, 0) self._dtype_cache.index = self.columns elif not self._dtype_cache.index.equals(self.columns): self._dtype_cache.index = self.columns return self._dtype_cache def _set_dtype(self, dtypes): self._dtype_cache = dtypes dtypes = property(_get_dtype, _set_dtype) # These objects are currently not distributed. _index_cache = None _columns_cache = None def _get_index(self): return self._index_cache def _get_columns(self): return self._columns_cache def _validate_set_axis(self, new_labels, old_labels): new_labels = _ensure_index(new_labels) old_len = len(old_labels) new_len = len(new_labels) if old_len != new_len: raise ValueError( "Length mismatch: Expected axis has %d elements, " "new values have %d elements" % (old_len, new_len) ) return new_labels def _set_index(self, new_index): if self._index_cache is None: self._index_cache = _ensure_index(new_index) else: new_index = self._validate_set_axis(new_index, self._index_cache) self._index_cache = new_index def _set_columns(self, new_columns): if self._columns_cache is None: self._columns_cache = _ensure_index(new_columns) else: new_columns = self._validate_set_axis(new_columns, self._columns_cache) self._columns_cache = new_columns columns = property(_get_columns, _set_columns) index = property(_get_index, _set_index) # END Index, columns, and dtypes objects def compute_index(self, axis, data_object, compute_diff=True): """Computes the index after a number of rows have been removed. Note: In order for this to be used properly, the indexes must not be changed before you compute this. Args: axis: The axis to extract the index from. data_object: The new data object to extract the index from. compute_diff: True to use `self` to compute the index from self rather than data_object. This is used when the dimension of the index may have changed, but the deleted rows/columns are unknown. Returns: A new pandas.Index object. """ def pandas_index_extraction(df, axis): if not axis: return df.index else: try: return df.columns except AttributeError: return pandas.Index([]) index_obj = self.index if not axis else self.columns old_blocks = self.data if compute_diff else None new_indices = data_object.get_indices( axis=axis, index_func=lambda df: pandas_index_extraction(df, axis), old_blocks=old_blocks, ) return index_obj[new_indices] if compute_diff else new_indices # END Index and columns objects # Internal methods # These methods are for building the correct answer in a modular way. # Please be careful when changing these! def _prepare_method(self, pandas_func, **kwargs): """Prepares methods given various metadata. Args: pandas_func: The function to prepare. Returns Helper function which handles potential transpose. """ if self._is_transposed: def helper(df, internal_indices=[]): return pandas_func(df.T, **kwargs) else: def helper(df, internal_indices=[]): return pandas_func(df, **kwargs) return helper def numeric_columns(self, include_bool=True): """Returns the numeric columns of the Manager. Returns: List of index names. """ columns = [] for col, dtype in zip(self.columns, self.dtypes): if is_numeric_dtype(dtype) and ( include_bool or (not include_bool and dtype != np.bool_) ): columns.append(col) return columns def numeric_function_clean_dataframe(self, axis): """Preprocesses numeric functions to clean dataframe and pick numeric indices. Args: axis: '0' if columns and '1' if rows. Returns: Tuple with return value(if any), indices to apply func to & cleaned Manager. """ result = None query_compiler = self # If no numeric columns and over columns, then return empty Series if not axis and len(self.index) == 0: result = pandas.Series(dtype=np.int64) nonnumeric = [ col for col, dtype in zip(self.columns, self.dtypes) if not is_numeric_dtype(dtype) ] if len(nonnumeric) == len(self.columns): # If over rows and no numeric columns, return this if axis: result = pandas.Series([np.nan for _ in self.index]) else: result = pandas.Series([0 for _ in self.index]) else: query_compiler = self.drop(columns=nonnumeric) return result, query_compiler # END Internal methods # Metadata modification methods def add_prefix(self, prefix): new_column_names = self.columns.map(lambda x: str(prefix) + str(x)) new_dtype_cache = self._dtype_cache.copy() if new_dtype_cache is not None: new_dtype_cache.index = new_column_names return self.__constructor__( self.data, self.index, new_column_names, new_dtype_cache ) def add_suffix(self, suffix): new_column_names = self.columns.map(lambda x: str(x) + str(suffix)) new_dtype_cache = self._dtype_cache.copy() if new_dtype_cache is not None: new_dtype_cache.index = new_column_names return self.__constructor__( self.data, self.index, new_column_names, new_dtype_cache ) # END Metadata modification methods # Copy # For copy, we don't want a situation where we modify the metadata of the # copies if we end up modifying something here. We copy all of the metadata # to prevent that. def copy(self): return self.__constructor__( self.data.copy(), self.index.copy(), self.columns.copy(), self._dtype_cache ) # Append/Concat/Join (Not Merge) # The append/concat/join operations should ideally never trigger remote # compute. These operations should only ever be manipulations of the # metadata of the resulting object. It should just be a simple matter of # appending the other object's blocks and adding np.nan columns for the new # columns, if needed. If new columns are added, some compute may be # required, though it can be delayed. # # Currently this computation is not delayed, and it may make a copy of the # DataFrame in memory. This can be problematic and should be fixed in the # future. TODO (devin-petersohn): Delay reindexing def _join_index_objects(self, axis, other_index, how, sort=True): """Joins a pair of index objects (columns or rows) by a given strategy. Args: axis: The axis index object to join (0 for columns, 1 for index). other_index: The other_index to join on. how: The type of join to join to make (e.g. right, left). Returns: Joined indices. """ if isinstance(other_index, list): joined_obj = self.columns if not axis else self.index # TODO: revisit for performance for obj in other_index: joined_obj = joined_obj.join(obj, how=how) return joined_obj if not axis: return self.columns.join(other_index, how=how, sort=sort) else: return self.index.join(other_index, how=how, sort=sort) def join(self, other, **kwargs): """Joins a list or two objects together Args: other: The other object(s) to join on. Returns: Joined objects. """ if isinstance(other, list): return self._join_list_of_managers(other, **kwargs) else: return self._join_query_compiler(other, **kwargs) def concat(self, axis, other, **kwargs): """Concatenates two objects together. Args: axis: The axis index object to join (0 for columns, 1 for index). other: The other_index to concat with. Returns: Concatenated objects. """ return self._append_list_of_managers(other, axis, **kwargs) def _append_list_of_managers(self, others, axis, **kwargs): if not isinstance(others, list): others = [others] assert all( isinstance(other, type(self)) for other in others ), "Different Manager objects are being used. This is not allowed" sort = kwargs.get("sort", None) join = kwargs.get("join", "outer") ignore_index = kwargs.get("ignore_index", False) # Concatenating two managers requires aligning their indices. After the # indices are aligned, it should just be a simple concatenation of the # `BaseBlockPartitions` objects. This should not require remote compute. joined_axis = self._join_index_objects( axis, [other.columns if axis == 0 else other.index for other in others], join, sort=sort, ) # Since we are concatenating a list of managers, we will align all of # the indices based on the `joined_axis` computed above. to_append = [other.reindex(axis ^ 1, joined_axis).data for other in others] new_self = self.reindex(axis ^ 1, joined_axis).data new_data = new_self.concat(axis, to_append) if axis == 0: # The indices will be appended to form the final index. # If `ignore_index` is true, we create a RangeIndex that is the # length of all of the index objects combined. This is the same # behavior as pandas. new_index = ( self.index.append([other.index for other in others]) if not ignore_index else pandas.RangeIndex( len(self.index) + sum(len(other.index) for other in others) ) ) return self.__constructor__(new_data, new_index, joined_axis) else: # The columns will be appended to form the final columns. new_columns = self.columns.append([other.columns for other in others]) return self.__constructor__(new_data, joined_axis, new_columns) def _join_query_compiler(self, other, **kwargs): assert isinstance( other, type(self) ), "This method is for data manager objects only" # Uses join's default value (though should not revert to default) how = kwargs.get("how", "left") sort = kwargs.get("sort", False) lsuffix = kwargs.get("lsuffix", "") rsuffix = kwargs.get("rsuffix", "") joined_index = self._join_index_objects(1, other.index, how, sort=sort) to_join = other.reindex(0, joined_index).data new_self = self.reindex(0, joined_index).data new_data = new_self.concat(1, to_join) # We are using proxy DataFrame objects to build the columns based on # the `lsuffix` and `rsuffix`. self_proxy = pandas.DataFrame(columns=self.columns) other_proxy = pandas.DataFrame(columns=other.columns) new_columns = self_proxy.join( other_proxy, lsuffix=lsuffix, rsuffix=rsuffix ).columns return self.__constructor__(new_data, joined_index, new_columns) def _join_list_of_managers(self, others, **kwargs): assert isinstance( others, list ), "This method is for lists of DataManager objects only" assert all( isinstance(other, type(self)) for other in others ), "Different Manager objects are being used. This is not allowed" # Uses join's default value (though should not revert to default) how = kwargs.get("how", "left") sort = kwargs.get("sort", False) lsuffix = kwargs.get("lsuffix", "") rsuffix = kwargs.get("rsuffix", "") joined_index = self._join_index_objects( 1, [other.index for other in others], how, sort=sort ) to_join = [other.reindex(0, joined_index).data for other in others] new_self = self.reindex(0, joined_index).data new_data = new_self.concat(1, to_join) # This stage is to efficiently get the resulting columns, including the # suffixes. self_proxy = pandas.DataFrame(columns=self.columns) others_proxy = [pandas.DataFrame(columns=other.columns) for other in others] new_columns = self_proxy.join( others_proxy, lsuffix=lsuffix, rsuffix=rsuffix ).columns return self.__constructor__(new_data, joined_index, new_columns) # END Append/Concat/Join # Inter-Data operations (e.g. add, sub) # These operations require two DataFrames and will change the shape of the # data if the index objects don't match. An outer join + op is performed, # such that columns/rows that don't have an index on the other DataFrame # result in NaN values. def inter_manager_operations(self, other, how_to_join, func): """Inter-data operations (e.g. add, sub). Args: other: The other Manager for the operation. how_to_join: The type of join to join to make (e.g. right, outer). Returns: New DataManager with new data and index. """ assert isinstance( other, type(self) ), "Must have the same DataManager subclass to perform this operation" joined_index = self._join_index_objects(1, other.index, how_to_join, sort=False) new_columns = self._join_index_objects( 0, other.columns, how_to_join, sort=False ) reindexed_other = other.reindex(0, joined_index).data reindexed_self = self.reindex(0, joined_index).data # THere is an interesting serialization anomaly that happens if we do # not use the columns in `inter_data_op_builder` from here (e.g. if we # pass them in). Passing them in can cause problems, so we will just # use them from here. self_cols = self.columns other_cols = other.columns def inter_data_op_builder(left, right, self_cols, other_cols, func): left.columns = self_cols right.columns = other_cols result = func(left, right) result.columns = pandas.RangeIndex(len(result.columns)) return result new_data = reindexed_self.inter_data_operation( 1, lambda l, r: inter_data_op_builder(l, r, self_cols, other_cols, func), reindexed_other, ) return self.__constructor__(new_data, joined_index, new_columns) def _inter_df_op_handler(self, func, other, **kwargs): """Helper method for inter-manager and scalar operations. Args: func: The function to use on the Manager/scalar. other: The other Manager/scalar. Returns: New DataManager with new data and index. """ axis = pandas.DataFrame()._get_axis_number(kwargs.get("axis", 0)) if isinstance(other, type(self)): return self.inter_manager_operations( other, "outer", lambda x, y: func(x, y, **kwargs) ) else: return self.scalar_operations( axis, other, lambda df: func(df, other, **kwargs) ) def add(self, other, **kwargs): """Adds this manager with other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with added data and new index. """ func = pandas.DataFrame.add return self._inter_df_op_handler(func, other, **kwargs) def div(self, other, **kwargs): """Divides this manager with other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with divided data and new index. """ func = pandas.DataFrame.div return self._inter_df_op_handler(func, other, **kwargs) def eq(self, other, **kwargs): """Compares equality (==) with other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with compared data and index. """ func = pandas.DataFrame.eq return self._inter_df_op_handler(func, other, **kwargs) def floordiv(self, other, **kwargs): """Floordivs this manager with other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with floordiv-ed data and index. """ func = pandas.DataFrame.floordiv return self._inter_df_op_handler(func, other, **kwargs) def ge(self, other, **kwargs): """Compares this manager >= than other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with compared data and index. """ func = pandas.DataFrame.ge return self._inter_df_op_handler(func, other, **kwargs) def gt(self, other, **kwargs): """Compares this manager > than other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with compared data and index. """ func = pandas.DataFrame.gt return self._inter_df_op_handler(func, other, **kwargs) def le(self, other, **kwargs): """Compares this manager < than other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with compared data and index. """ func = pandas.DataFrame.le return self._inter_df_op_handler(func, other, **kwargs) def lt(self, other, **kwargs): """Compares this manager <= than other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with compared data and index. """ func = pandas.DataFrame.lt return self._inter_df_op_handler(func, other, **kwargs) def mod(self, other, **kwargs): """Mods this manager against other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with mod-ed data and index. """ func = pandas.DataFrame.mod return self._inter_df_op_handler(func, other, **kwargs) def mul(self, other, **kwargs): """Multiplies this manager against other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with multiplied data and index. """ func = pandas.DataFrame.mul return self._inter_df_op_handler(func, other, **kwargs) def ne(self, other, **kwargs): """Compares this manager != to other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with compared data and index. """ func = pandas.DataFrame.ne return self._inter_df_op_handler(func, other, **kwargs) def pow(self, other, **kwargs): """Exponential power of this manager to other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with pow-ed data and index. """ func = pandas.DataFrame.pow return self._inter_df_op_handler(func, other, **kwargs) def rdiv(self, other, **kwargs): """Divides other object (manager or scalar) with this manager. Args: other: The other object (manager or scalar). Returns: New DataManager with divided data and new index. """ func = pandas.DataFrame.rdiv return self._inter_df_op_handler(func, other, **kwargs) def rfloordiv(self, other, **kwargs): """Floordivs this manager with other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with floordiv-ed data and index. """ func = pandas.DataFrame.rfloordiv return self._inter_df_op_handler(func, other, **kwargs) def rmod(self, other, **kwargs): """Mods this manager with other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with mod data and index. """ func = pandas.DataFrame.rmod return self._inter_df_op_handler(func, other, **kwargs) def rpow(self, other, **kwargs): """Exponential power of other object (manager or scalar) to this manager. Args: other: The other object (manager or scalar). Returns: New DataManager with pow-ed data and new index. """ func = pandas.DataFrame.rpow return self._inter_df_op_handler(func, other, **kwargs) def rsub(self, other, **kwargs): """Subtracts other object (manager or scalar) from this manager. Args: other: The other object (manager or scalar). Returns: New DataManager with subtracted data and new index. """ func = pandas.DataFrame.rsub return self._inter_df_op_handler(func, other, **kwargs) def sub(self, other, **kwargs): """Subtracts this manager from other object (manager or scalar). Args: other: The other object (manager or scalar). Returns: New DataManager with subtracted data and new index. """ func = pandas.DataFrame.sub return self._inter_df_op_handler(func, other, **kwargs) def truediv(self, other, **kwargs): """Divides this manager with other object (manager or scalar). Functionally same as div Args: other: The other object (manager or scalar). Returns: New DataManager with divided data and new index. """ func = pandas.DataFrame.truediv return self._inter_df_op_handler(func, other, **kwargs) def clip(self, lower, upper, **kwargs): kwargs["upper"] = upper kwargs["lower"] = lower axis = kwargs.get("axis", 0) func = self._prepare_method(pandas.DataFrame.clip, **kwargs) if is_list_like(lower) or is_list_like(upper): df = self.map_across_full_axis(axis, func) return self.__constructor__(df, self.index, self.columns) return self.scalar_operations(axis, lower or upper, func) def update(self, other, **kwargs): """Uses other manager to update corresponding values in this manager. Args: other: The other manager. Returns: New DataManager with updated data and index. """ assert isinstance( other, type(self) ), "Must have the same DataManager subclass to perform this operation" def update_builder(df, other, **kwargs): # This is because of a requirement in Arrow df = df.copy() df.update(other, **kwargs) return df return self._inter_df_op_handler(update_builder, other, **kwargs) def where(self, cond, other, **kwargs): """Gets values from this manager where cond is true else from other. Args: cond: Condition on which to evaluate values. Returns: New DataManager with updated data and index. """ assert isinstance( cond, type(self) ), "Must have the same DataManager subclass to perform this operation" if isinstance(other, type(self)): # Note: Currently we are doing this with two maps across the entire # data. This can be done with a single map, but it will take a # modification in the `BlockPartition` class. # If this were in one pass it would be ~2x faster. # TODO (devin-petersohn) rewrite this to take one pass. def where_builder_first_pass(cond, other, **kwargs): return cond.where(cond, other, **kwargs) def where_builder_second_pass(df, new_other, **kwargs): return df.where(new_other.eq(True), new_other, **kwargs) # We are required to perform this reindexing on everything to # shuffle the data together reindexed_cond = cond.reindex(0, self.index).data reindexed_other = other.reindex(0, self.index).data reindexed_self = self.reindex(0, self.index).data first_pass = reindexed_cond.inter_data_operation( 1, lambda l, r: where_builder_first_pass(l, r, **kwargs), reindexed_other, ) final_pass = reindexed_self.inter_data_operation( 1, lambda l, r: where_builder_second_pass(l, r, **kwargs), first_pass ) return self.__constructor__(final_pass, self.index, self.columns) else: axis = kwargs.get("axis", 0) # Rather than serializing and passing in the index/columns, we will # just change this index to match the internal index. if isinstance(other, pandas.Series): other.index = [i for i in range(len(other))] def where_builder_series(df, cond, other, **kwargs): return df.where(cond, other, **kwargs) reindexed_self = self.reindex( axis, self.index if not axis else self.columns ).data reindexed_cond = cond.reindex( axis, self.index if not axis else self.columns ).data new_data = reindexed_self.inter_data_operation( axis, lambda l, r: where_builder_series(l, r, other, **kwargs), reindexed_cond, ) return self.__constructor__(new_data, self.index, self.columns) # END Inter-Data operations # Single Manager scalar operations (e.g. add to scalar, list of scalars) def scalar_operations(self, axis, scalar, func): """Handler for mapping scalar operations across a Manager. Args: axis: The axis index object to execute the function on. scalar: The scalar value to map. func: The function to use on the Manager with the scalar. Returns: New DataManager with updated data and new index. """ if isinstance(scalar, (list, np.ndarray, pandas.Series)): new_data = self.map_across_full_axis(axis, func) return self.__constructor__(new_data, self.index, self.columns) else: return self.map_partitions(func) # END Single Manager scalar operations # Reindex/reset_index (may shuffle data) def reindex(self, axis, labels, **kwargs): """Fits a new index for this Manger. Args: axis: The axis index object to target the reindex on. labels: New labels to conform 'axis' on to. Returns: New DataManager with updated data and new index. """ # To reindex, we need a function that will be shipped to each of the # partitions. def reindex_builer(df, axis, old_labels, new_labels, **kwargs): if axis: while len(df.columns) < len(old_labels): df[len(df.columns)] = np.nan df.columns = old_labels new_df = df.reindex(columns=new_labels, **kwargs) # reset the internal columns back to a RangeIndex new_df.columns = pandas.RangeIndex(len(new_df.columns)) return new_df else: while len(df.index) < len(old_labels): df.loc[len(df.index)] = np.nan df.index = old_labels new_df = df.reindex(index=new_labels, **kwargs) # reset the internal index back to a RangeIndex new_df.reset_index(inplace=True, drop=True) return new_df old_labels = self.columns if axis else self.index new_index = self.index if axis else labels new_columns = labels if axis else self.columns func = self._prepare_method( lambda df: reindex_builer(df, axis, old_labels, labels, **kwargs) ) # The reindex can just be mapped over the axis we are modifying. This # is for simplicity in implementation. We specify num_splits here # because if we are repartitioning we should (in the future). # Additionally this operation is often followed by an operation that # assumes identical partitioning. Internally, we *may* change the # partitioning during a map across a full axis. new_data = self.map_across_full_axis(axis, func) return self.__constructor__(new_data, new_index, new_columns) def reset_index(self, **kwargs): """Removes all levels from index and sets a default level_0 index. Returns: New DataManager with updated data and reset index. """ drop = kwargs.get("drop", False) new_index = pandas.RangeIndex(len(self.index)) if not drop: if isinstance(self.index, pandas.MultiIndex): # TODO (devin-petersohn) ensure partitioning is properly aligned new_column_names = pandas.Index(self.index.names) new_columns = new_column_names.append(self.columns) index_data = pandas.DataFrame(list(zip(*self.index))).T result = self.data.from_pandas(index_data).concat(1, self.data) return self.__constructor__(result, new_index, new_columns) else: new_column_name = "index" if "index" not in self.columns else "level_0" new_columns = self.columns.insert(0, new_column_name) result = self.insert(0, new_column_name, self.index) return self.__constructor__(result.data, new_index, new_columns) else: # The copies here are to ensure that we do not give references to # this object for the purposes of updates. return self.__constructor__( self.data.copy(), new_index, self.columns.copy(), self._dtype_cache ) # END Reindex/reset_index # Transpose # For transpose, we aren't going to immediately copy everything. Since the # actual transpose operation is very fast, we will just do it before any # operation that gets called on the transposed data. See _prepare_method # for how the transpose is applied. # # Our invariants assume that the blocks are transposed, but not the # data inside. Sometimes we have to reverse this transposition of blocks # for simplicity of implementation. # # _is_transposed, 0 for False or non-transposed, 1 for True or transposed. _is_transposed = 0 def transpose(self, *args, **kwargs): """Transposes this DataManager. Returns: Transposed new DataManager. """ new_data = self.data.transpose(*args, **kwargs) # Switch the index and columns and transpose the new_manager = self.__constructor__(new_data, self.columns, self.index) # It is possible that this is already transposed new_manager._is_transposed = self._is_transposed ^ 1 return new_manager # END Transpose # Full Reduce operations # # These operations result in a reduced dimensionality of data. # Currently, this means a Pandas Series will be returned, but in the future # we will implement a Distributed Series, and this will be returned # instead. def full_reduce(self, axis, map_func, reduce_func=None, numeric_only=False): """Apply function that will reduce the data to a Pandas Series. Args: axis: 0 for columns and 1 for rows. Default is 0. map_func: Callable function to map the dataframe. reduce_func: Callable function to reduce the dataframe. If none, then apply map_func twice. numeric_only: Apply only over the numeric rows. Return: Returns Pandas Series containing the results from map_func and reduce_func. """ if numeric_only: result, query_compiler = self.numeric_function_clean_dataframe(axis) if result is not None: return result else: query_compiler = self if reduce_func is None: reduce_func = map_func # The XOR here will ensure that we reduce over the correct axis that # exists on the internal partitions. We flip the axis result = query_compiler.data.full_reduce( map_func, reduce_func, axis ^ self._is_transposed ) if result.shape == (0,): return result elif not axis: result.index = query_compiler.columns else: result.index = query_compiler.index return result def _process_min_max(self, func, **kwargs): """Calculates the min or max of the DataFrame. Return: Pandas series containing the min or max values from each column or row. """ # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) numeric_only = True if axis else kwargs.get("numeric_only", False) def min_max_builder(df, **kwargs): if not df.empty: return func(df, **kwargs) map_func = self._prepare_method(min_max_builder, **kwargs) return self.full_reduce(axis, map_func, numeric_only=numeric_only) def count(self, **kwargs): """Counts the number of non-NaN objects for each column or row. Return: Pandas series containing counts of non-NaN objects from each column or row. """ axis = kwargs.get("axis", 0) numeric_only = kwargs.get("numeric_only", False) map_func = self._prepare_method(pandas.DataFrame.count, **kwargs) reduce_func = self._prepare_method(pandas.DataFrame.sum, **kwargs) return self.full_reduce(axis, map_func, reduce_func, numeric_only) def max(self, **kwargs): """Returns the maximum value for each column or row. Return: Pandas series with the maximum values from each column or row. """ return self._process_min_max(pandas.DataFrame.max, **kwargs) def mean(self, **kwargs): """Returns the mean for each numerical column or row. Return: Pandas series containing the mean from each numerical column or row. """ # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) sums = self.sum(**kwargs) counts = self.count(axis=axis, numeric_only=kwargs.get("numeric_only", None)) try: # If we need to drop any columns, it will throw a TypeError return sums.divide(counts) # In the case that a TypeError is thrown, we need to iterate through, similar to # how pandas does and do the division only on things that can be divided. # NOTE: We will only hit this condition if numeric_only is not True. except TypeError: def can_divide(l, r): try: pandas.Series([l]).divide(r) except TypeError: return False return True # Iterate through the sums to check that we can divide them. If not, then # drop the record. This matches pandas behavior. return pandas.Series( { idx: sums[idx] / counts[idx] for idx in sums.index if can_divide(sums[idx], counts[idx]) } ) def min(self, **kwargs): """Returns the minimum from each column or row. Return: Pandas series with the minimum value from each column or row. """ return self._process_min_max(pandas.DataFrame.min, **kwargs) def _process_sum_prod(self, func, **kwargs): """Calculates the sum or product of the DataFrame. Args: func: Pandas func to apply to DataFrame. ignore_axis: Whether to ignore axis when raising TypeError Return: Pandas Series with sum or prod of DataFrame. """ axis = kwargs.get("axis", 0) numeric_only = kwargs.get("numeric_only", None) if not axis else True min_count = kwargs.get("min_count", 0) reduce_index = self.columns if axis else self.index if numeric_only: result, query_compiler = self.numeric_function_clean_dataframe(axis) else: query_compiler = self new_index = query_compiler.index if axis else query_compiler.columns def sum_prod_builder(df, **kwargs): if not df.empty: return func(df, **kwargs) else: return pandas.DataFrame([]) map_func = self._prepare_method(sum_prod_builder, **kwargs) if min_count <= 1: return self.full_reduce(axis, map_func, numeric_only=numeric_only) elif min_count > len(reduce_index): return pandas.Series( [np.nan] * len(new_index), index=new_index, dtype=np.dtype("object") ) else: return self.full_axis_reduce(map_func, axis) def prod(self, **kwargs): """Returns the product of each numerical column or row. Return: Pandas series with the product of each numerical column or row. """ return self._process_sum_prod(pandas.DataFrame.prod, **kwargs) def sum(self, **kwargs): """Returns the sum of each numerical column or row. Return: Pandas series with the sum of each numerical column or row. """ return self._process_sum_prod(pandas.DataFrame.sum, **kwargs) # END Full Reduce operations # Map partitions operations # These operations are operations that apply a function to every partition. def map_partitions(self, func, new_dtypes=None): return self.__constructor__( self.data.map_across_blocks(func), self.index, self.columns, new_dtypes ) def abs(self): func = self._prepare_method(pandas.DataFrame.abs) return self.map_partitions(func, new_dtypes=self.dtypes.copy()) def applymap(self, func): remote_func = self._prepare_method(pandas.DataFrame.applymap, func=func) return self.map_partitions(remote_func) def isin(self, **kwargs): func = self._prepare_method(pandas.DataFrame.isin, **kwargs) new_dtypes = pandas.Series( [np.dtype("bool") for _ in self.columns], index=self.columns ) return self.map_partitions(func, new_dtypes=new_dtypes) def isna(self): func = self._prepare_method(pandas.DataFrame.isna) new_dtypes = pandas.Series( [np.dtype("bool") for _ in self.columns], index=self.columns ) return self.map_partitions(func, new_dtypes=new_dtypes) def isnull(self): func = self._prepare_method(pandas.DataFrame.isnull) new_dtypes = pandas.Series( [np.dtype("bool") for _ in self.columns], index=self.columns ) return self.map_partitions(func, new_dtypes=new_dtypes) def negative(self, **kwargs): func = self._prepare_method(pandas.DataFrame.__neg__, **kwargs) return self.map_partitions(func) def notna(self): func = self._prepare_method(pandas.DataFrame.notna) new_dtypes = pandas.Series( [np.dtype("bool") for _ in self.columns], index=self.columns ) return self.map_partitions(func, new_dtypes=new_dtypes) def notnull(self): func = self._prepare_method(pandas.DataFrame.notnull) new_dtypes = pandas.Series( [np.dtype("bool") for _ in self.columns], index=self.columns ) return self.map_partitions(func, new_dtypes=new_dtypes) def round(self, **kwargs): func = self._prepare_method(pandas.DataFrame.round, **kwargs) return self.map_partitions(func, new_dtypes=self._dtype_cache) # END Map partitions operations # Map partitions across select indices def astype(self, col_dtypes, **kwargs): """Converts columns dtypes to given dtypes. Args: col_dtypes: Dictionary of {col: dtype,...} where col is the column name and dtype is a numpy dtype. Returns: DataFrame with updated dtypes. """ # Group indices to update by dtype for less map operations dtype_indices = {} columns = col_dtypes.keys() numeric_indices = list(self.columns.get_indexer_for(columns)) # Create Series for the updated dtypes new_dtypes = self.dtypes.copy() for i, column in enumerate(columns): dtype = col_dtypes[column] if dtype != self.dtypes[column]: # Only add dtype only if different if dtype in dtype_indices.keys(): dtype_indices[dtype].append(numeric_indices[i]) else: dtype_indices[dtype] = [numeric_indices[i]] # Update the new dtype series to the proper pandas dtype new_dtype = np.dtype(dtype) if dtype != np.int32 and new_dtype == np.int32: new_dtype = np.dtype("int64") elif dtype != np.float32 and new_dtype == np.float32: new_dtype = np.dtype("float64") new_dtypes[column] = new_dtype # Update partitions for each dtype that is updated new_data = self.data for dtype in dtype_indices.keys(): def astype(df, internal_indices=[]): block_dtypes = {} for ind in internal_indices: block_dtypes[df.columns[ind]] = dtype return df.astype(block_dtypes) new_data = new_data.apply_func_to_select_indices( 0, astype, dtype_indices[dtype], keep_remaining=True ) return self.__constructor__(new_data, self.index, self.columns, new_dtypes) # END Map partitions across select indices # Column/Row partitions reduce operations # # These operations result in a reduced dimensionality of data. # Currently, this means a Pandas Series will be returned, but in the future # we will implement a Distributed Series, and this will be returned # instead. def full_axis_reduce(self, func, axis, alternate_index=None): """Applies map that reduce Manager to series but require knowledge of full axis. Args: func: Function to reduce the Manager by. This function takes in a Manager. axis: axis to apply the function to. alternate_index: If the resulting series should have an index different from the current query_compiler's index or columns. Return: Pandas series containing the reduced data. """ # We XOR with axis because if we are doing an operation over the columns # (i.e. along the rows), we want to take the transpose so that the # results from the same parition will be concated together first. # We need this here because if the operations is over the columns, # map_across_full_axis does not transpose the result before returning. result = self.data.map_across_full_axis(axis, func).to_pandas( self._is_transposed ^ axis ) if result.empty: return result if not axis: result.index = ( alternate_index if alternate_index is not None else self.columns ) else: result.index = ( alternate_index if alternate_index is not None else self.index ) return result def all(self, **kwargs): """Returns whether all the elements are true, potentially over an axis. Return: Pandas Series containing boolean values or boolean. """ return self._process_all_any(lambda df, **kwargs: df.all(**kwargs), **kwargs) def any(self, **kwargs): """Returns whether any the elements are true, potentially over an axis. Return: Pandas Series containing boolean values or boolean. """ return self._process_all_any(lambda df, **kwargs: df.any(**kwargs), **kwargs) def _process_all_any(self, func, **kwargs): """Calculates if any or all the values are true. Return: Pandas Series containing boolean values or boolean. """ axis = kwargs.get("axis", 0) axis_none = True if axis is None else False axis = 0 if axis is None else axis kwargs["axis"] = axis bool_only = kwargs.get("bool_only", None) kwargs["bool_only"] = False if bool_only is None else bool_only not_bool_col = [] numeric_col_count = 0 for col, dtype in zip(self.columns, self.dtypes): if not is_bool_dtype(dtype): not_bool_col.append(col) numeric_col_count += 1 if is_numeric_dtype(dtype) else 0 if bool_only: if axis == 0 and not axis_none and len(not_bool_col) == len(self.columns): return pandas.Series(dtype=bool) if len(not_bool_col) == len(self.columns): query_compiler = self else: query_compiler = self.drop(columns=not_bool_col) else: if ( bool_only is False and axis_none and len(not_bool_col) == len(self.columns) and numeric_col_count != len(self.columns) ): if func == pandas.DataFrame.all: return self.getitem_single_key(self.columns[-1])[self.index[-1]] elif func == pandas.DataFrame.any: return self.getitem_single_key(self.columns[0])[self.index[0]] query_compiler = self builder_func = query_compiler._prepare_method(func, **kwargs) result = query_compiler.full_axis_reduce(builder_func, axis) if axis_none: return func(result) else: return result def first_valid_index(self): """Returns index of first non-NaN/NULL value. Return: Scalar of index name. """ # It may be possible to incrementally check each partition, but this # computation is fairly cheap. def first_valid_index_builder(df): df.index = pandas.RangeIndex(len(df.index)) return df.apply(lambda df: df.first_valid_index()) func = self._prepare_method(first_valid_index_builder) # We get the minimum from each column, then take the min of that to get # first_valid_index. first_result = self.full_axis_reduce(func, 0) return self.index[first_result.min()] def _post_process_idx_ops(self, axis, intermediate_result): """Converts internal index to external index. Args: axis: 0 for columns and 1 for rows. Defaults to 0. intermediate_result: Internal index of self.data. Returns: External index of the intermediate_result. """ index = self.index if not axis else self.columns result = intermediate_result.apply(lambda x: index[x]) return result def idxmax(self, **kwargs): """Returns the first occurance of the maximum over requested axis. Returns: Series containing the maximum of each column or axis. """ # The reason for the special treatment with idxmax/min is because we # need to communicate the row number back here. def idxmax_builder(df, **kwargs): df.index = pandas.RangeIndex(len(df.index)) return df.idxmax(**kwargs) axis = kwargs.get("axis", 0) func = self._prepare_method(idxmax_builder, **kwargs) max_result = self.full_axis_reduce(func, axis) # Because our internal partitions don't track the external index, we # have to do a conversion. return self._post_process_idx_ops(axis, max_result) def idxmin(self, **kwargs): """Returns the first occurance of the minimum over requested axis. Returns: Series containing the minimum of each column or axis. """ # The reason for the special treatment with idxmax/min is because we # need to communicate the row number back here. def idxmin_builder(df, **kwargs): df.index = pandas.RangeIndex(len(df.index)) return df.idxmin(**kwargs) axis = kwargs.get("axis", 0) func = self._prepare_method(idxmin_builder, **kwargs) min_result = self.full_axis_reduce(func, axis) # Because our internal partitions don't track the external index, we # have to do a conversion. return self._post_process_idx_ops(axis, min_result) def last_valid_index(self): """Returns index of last non-NaN/NULL value. Return: Scalar of index name. """ def last_valid_index_builder(df): df.index = pandas.RangeIndex(len(df.index)) return df.apply(lambda df: df.last_valid_index()) func = self._prepare_method(last_valid_index_builder) # We get the maximum from each column, then take the max of that to get # last_valid_index. first_result = self.full_axis_reduce(func, 0) return self.index[first_result.max()] def median(self, **kwargs): """Returns median of each column or row. Returns: Series containing the median of each column or row. """ # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) result, query_compiler = self.numeric_function_clean_dataframe(axis) if result is not None: return result func = self._prepare_method(pandas.DataFrame.median, **kwargs) return query_compiler.full_axis_reduce(func, axis) def memory_usage(self, **kwargs): """Returns the memory usage of each column. Returns: Series containing the memory usage of each column. """ def memory_usage_builder(df, **kwargs): return df.memory_usage(index=False, deep=deep) deep = kwargs.get("deep", False) func = self._prepare_method(memory_usage_builder, **kwargs) return self.full_axis_reduce(func, 0) def nunique(self, **kwargs): """Returns the number of unique items over each column or row. Returns: Series of ints indexed by column or index names. """ axis = kwargs.get("axis", 0) func = self._prepare_method(pandas.DataFrame.nunique, **kwargs) return self.full_axis_reduce(func, axis) def quantile_for_single_value(self, **kwargs): """Returns quantile of each column or row. Returns: Series containing the quantile of each column or row. """ axis = kwargs.get("axis", 0) q = kwargs.get("q", 0.5) numeric_only = kwargs.get("numeric_only", True) assert type(q) is float if numeric_only: result, query_compiler = self.numeric_function_clean_dataframe(axis) if result is not None: return result else: query_compiler = self def quantile_builder(df, **kwargs): try: return pandas.DataFrame.quantile(df, **kwargs) except ValueError: return pandas.Series() func = self._prepare_method(quantile_builder, **kwargs) result = query_compiler.full_axis_reduce(func, axis) result.name = q return result def skew(self, **kwargs): """Returns skew of each column or row. Returns: Series containing the skew of each column or row. """ # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) result, query_compiler = self.numeric_function_clean_dataframe(axis) if result is not None: return result func = self._prepare_method(pandas.DataFrame.skew, **kwargs) return query_compiler.full_axis_reduce(func, axis) def std(self, **kwargs): """Returns standard deviation of each column or row. Returns: Series containing the standard deviation of each column or row. """ # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) result, query_compiler = self.numeric_function_clean_dataframe(axis) if result is not None: return result func = self._prepare_method(pandas.DataFrame.std, **kwargs) return query_compiler.full_axis_reduce(func, axis) def to_datetime(self, **kwargs): """Converts the Manager to a Series of DateTime objects. Returns: Series of DateTime objects. """ columns = self.columns def to_datetime_builder(df, **kwargs): df.columns = columns return pandas.to_datetime(df, **kwargs) func = self._prepare_method(to_datetime_builder, **kwargs) return self.full_axis_reduce(func, 1) def var(self, **kwargs): """Returns variance of each column or row. Returns: Series containing the variance of each column or row. """ # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) result, query_compiler = self.numeric_function_clean_dataframe(axis) if result is not None: return result func = query_compiler._prepare_method(pandas.DataFrame.var, **kwargs) return query_compiler.full_axis_reduce(func, axis) # END Column/Row partitions reduce operations # Column/Row partitions reduce operations over select indices # # These operations result in a reduced dimensionality of data. # Currently, this means a Pandas Series will be returned, but in the future # we will implement a Distributed Series, and this will be returned # instead. def full_axis_reduce_along_select_indices( self, func, axis, index, pandas_result=True ): """Reduce Manger along select indices using function that needs full axis. Args: func: Callable that reduces Manager to Series using full knowledge of an axis. axis: 0 for columns and 1 for rows. Defaults to 0. index: Index of the resulting series. pandas_result: Return the result as a Pandas Series instead of raw data. Returns: Either a Pandas Series with index or BaseBlockPartitions object. """ # Convert indices to numeric indices old_index = self.index if axis else self.columns numeric_indices = [i for i, name in enumerate(old_index) if name in index] result = self.data.apply_func_to_select_indices_along_full_axis( axis, func, numeric_indices ) if pandas_result: result = result.to_pandas(self._is_transposed) result.index = index return result def describe(self, **kwargs): """Generates descriptive statistics. Returns: DataFrame object containing the descriptive statistics of the DataFrame. """ # Only describe numeric if there are numeric columns # Otherwise, describe all new_columns = self.numeric_columns(include_bool=False) if len(new_columns) != 0: numeric = True exclude = kwargs.get("exclude", None) include = kwargs.get("include", None) # This is done to check against the default dtypes with 'in'. # We don't change `include` in kwargs, so we can just use this for the # check. if include is None: include = [] default_excludes = [np.timedelta64, np.datetime64, np.object, np.bool] add_to_excludes = [e for e in default_excludes if e not in include] if is_list_like(exclude): exclude.append(add_to_excludes) else: exclude = add_to_excludes kwargs["exclude"] = exclude else: numeric = False # If only timedelta and datetime objects, only do the timedelta # columns if all( ( dtype for dtype in self.dtypes if dtype == np.datetime64 or dtype == np.timedelta64 ) ): new_columns = [ self.columns[i] for i in range(len(self.columns)) if self.dtypes[i] != np.dtype("datetime64[ns]") ] else: # Describe all columns new_columns = self.columns def describe_builder(df, **kwargs): try: return pandas.DataFrame.describe(df, **kwargs) except ValueError: return pandas.DataFrame(index=df.index) # Apply describe and update indices, columns, and dtypes func = self._prepare_method(describe_builder, **kwargs) new_data = self.full_axis_reduce_along_select_indices( func, 0, new_columns, False ) new_index = self.compute_index(0, new_data, False) if numeric: new_dtypes = pandas.Series( [np.float64 for _ in new_columns], index=new_columns ) else: new_dtypes = pandas.Series( [np.object for _ in new_columns], index=new_columns ) return self.__constructor__(new_data, new_index, new_columns, new_dtypes) # END Column/Row partitions reduce operations over select indices # Map across rows/columns # These operations require some global knowledge of the full column/row # that is being operated on. This means that we have to put all of that # data in the same place. def map_across_full_axis(self, axis, func): return self.data.map_across_full_axis(axis, func) def _cumulative_builder(self, func, **kwargs): axis = kwargs.get("axis", 0) func = self._prepare_method(func, **kwargs) new_data = self.map_across_full_axis(axis, func) return self.__constructor__( new_data, self.index, self.columns, self._dtype_cache ) def cumsum(self, **kwargs): return self._cumulative_builder(pandas.DataFrame.cumsum, **kwargs) def cummax(self, **kwargs): return self._cumulative_builder(pandas.DataFrame.cummax, **kwargs) def cummin(self, **kwargs): return self._cumulative_builder(pandas.DataFrame.cummin, **kwargs) def cumprod(self, **kwargs): return self._cumulative_builder(pandas.DataFrame.cumprod, **kwargs) def diff(self, **kwargs): axis = kwargs.get("axis", 0) func = self._prepare_method(pandas.DataFrame.diff, **kwargs) new_data = self.map_across_full_axis(axis, func) return self.__constructor__(new_data, self.index, self.columns) def dropna(self, **kwargs): """Returns a new DataManager with null values dropped along given axis. Return: a new DataManager """ axis = kwargs.get("axis", 0) subset = kwargs.get("subset") thresh = kwargs.get("thresh") how = kwargs.get("how", "any") # We need to subset the axis that we care about with `subset`. This # will be used to determine the number of values that are NA. if subset is not None: if not axis: compute_na = self.getitem_column_array(subset) else: compute_na = self.getitem_row_array(self.index.get_indexer_for(subset)) else: compute_na = self if not isinstance(axis, list): axis = [axis] # We are building this dictionary first to determine which columns # and rows to drop. This way we do not drop some columns before we # know which rows need to be dropped. if thresh is not None: # Count the number of NA values and specify which are higher than # thresh. drop_values = { ax ^ 1: compute_na.isna().sum(axis=ax ^ 1) > thresh for ax in axis } else: drop_values = { ax ^ 1: getattr(compute_na.isna(), how)(axis=ax ^ 1) for ax in axis } if 0 not in drop_values: drop_values[0] = None if 1 not in drop_values: drop_values[1] = None rm_from_index = ( [obj for obj in compute_na.index[drop_values[1]]] if drop_values[1] is not None else None ) rm_from_columns = ( [obj for obj in compute_na.columns[drop_values[0]]] if drop_values[0] is not None else None ) else: rm_from_index = ( compute_na.index[drop_values[1]] if drop_values[1] is not None else None ) rm_from_columns = ( compute_na.columns[drop_values[0]] if drop_values[0] is not None else None ) return self.drop(index=rm_from_index, columns=rm_from_columns) def eval(self, expr, **kwargs): """Returns a new DataManager with expr evaluated on columns. Args: expr: The string expression to evaluate. Returns: A new PandasDataManager with new columns after applying expr. """ inplace = kwargs.get("inplace", False) columns = self.index if self._is_transposed else self.columns index = self.columns if self._is_transposed else self.index # Make a copy of columns and eval on the copy to determine if result type is # series or not columns_copy = pandas.DataFrame(columns=self.columns) columns_copy = columns_copy.eval(expr, inplace=False, **kwargs) expect_series = isinstance(columns_copy, pandas.Series) # if there is no assignment, then we simply save the results # in the first column if expect_series: if inplace: raise ValueError("Cannot operate inplace if there is no assignment") else: expr = "{0} = {1}".format(columns[0], expr) def eval_builder(df, **kwargs): df.columns = columns result = df.eval(expr, inplace=False, **kwargs) result.columns = pandas.RangeIndex(0, len(result.columns)) return result func = self._prepare_method(eval_builder, **kwargs) new_data = self.map_across_full_axis(1, func) if expect_series: result = new_data.to_pandas()[0] result.name = columns_copy.name result.index = index return result else: columns = columns_copy.columns return self.__constructor__(new_data, self.index, columns) def mode(self, **kwargs): """Returns a new DataManager with modes calculated for each label along given axis. Returns: A new PandasDataManager with modes calculated. """ axis = kwargs.get("axis", 0) def mode_builder(df, **kwargs): result = df.mode(**kwargs) # We return a dataframe with the same shape as the input to ensure # that all the partitions will be the same shape if not axis and len(df) != len(result): # Pad columns append_values = pandas.DataFrame( columns=result.columns, index=range(len(result), len(df)) ) result = pandas.concat([result, append_values], ignore_index=True) elif axis and len(df.columns) != len(result.columns): # Pad rows append_vals = pandas.DataFrame( columns=range(len(result.columns), len(df.columns)), index=result.index, ) result = pandas.concat([result, append_vals], axis=1) return result func = self._prepare_method(mode_builder, **kwargs) new_data = self.map_across_full_axis(axis, func) new_index = pandas.RangeIndex(len(self.index)) if not axis else self.index new_columns = self.columns if not axis else pandas.RangeIndex(len(self.columns)) return self.__constructor__( new_data, new_index, new_columns, self._dtype_cache ).dropna(axis=axis, how="all") def fillna(self, **kwargs): """Replaces NaN values with the method provided. Returns: A new PandasDataManager with null values filled. """ axis = kwargs.get("axis", 0) value = kwargs.get("value") if isinstance(value, dict): value = kwargs.pop("value") if axis == 0: index = self.columns else: index = self.index value = { idx: value[key] for key in value for idx in index.get_indexer_for([key]) } def fillna_dict_builder(df, func_dict={}): # We do this to ensure that no matter the state of the columns we get # the correct ones. func_dict = {df.columns[idx]: func_dict[idx] for idx in func_dict} return df.fillna(value=func_dict, **kwargs) new_data = self.data.apply_func_to_select_indices( axis, fillna_dict_builder, value, keep_remaining=True ) return self.__constructor__(new_data, self.index, self.columns) else: func = self._prepare_method(pandas.DataFrame.fillna, **kwargs) new_data = self.map_across_full_axis(axis, func) return self.__constructor__(new_data, self.index, self.columns) def query(self, expr, **kwargs): """Query columns of the DataManager with a boolean expression. Args: expr: Boolean expression to query the columns with. Returns: DataManager containing the rows where the boolean expression is satisfied. """ columns = self.columns def query_builder(df, **kwargs): # This is required because of an Arrow limitation # TODO revisit for Arrow error df = df.copy() df.index = pandas.RangeIndex(len(df)) df.columns = columns df.query(expr, inplace=True, **kwargs) df.columns = pandas.RangeIndex(len(df.columns)) return df func = self._prepare_method(query_builder, **kwargs) new_data = self.map_across_full_axis(1, func) # Query removes rows, so we need to update the index new_index = self.compute_index(0, new_data, True) return self.__constructor__(new_data, new_index, self.columns, self.dtypes) def rank(self, **kwargs): """Computes numerical rank along axis. Equal values are set to the average. Returns: DataManager containing the ranks of the values along an axis. """ axis = kwargs.get("axis", 0) numeric_only = True if axis else kwargs.get("numeric_only", False) func = self._prepare_method(pandas.DataFrame.rank, **kwargs) new_data = self.map_across_full_axis(axis, func) # Since we assume no knowledge of internal state, we get the columns # from the internal partitions. if numeric_only: new_columns = self.compute_index(1, new_data, True) else: new_columns = self.columns new_dtypes = pandas.Series([np.float64 for _ in new_columns], index=new_columns) return self.__constructor__(new_data, self.index, new_columns, new_dtypes) def sort_index(self, **kwargs): """Sorts the data with respect to either the columns or the indices. Returns: DataManager containing the data sorted by columns or indices. """ axis = kwargs.pop("axis", 0) index = self.columns if axis else self.index # sort_index can have ascending be None and behaves as if it is False. # sort_values cannot have ascending be None. Thus, the following logic is to # convert the ascending argument to one that works with sort_values ascending = kwargs.pop("ascending", True) if ascending is None: ascending = False kwargs["ascending"] = ascending def sort_index_builder(df, **kwargs): if axis: df.columns = index else: df.index = index return df.sort_index(axis=axis, **kwargs) func = self._prepare_method(sort_index_builder, **kwargs) new_data = self.map_across_full_axis(axis, func) if axis: new_columns = pandas.Series(self.columns).sort_values(**kwargs) new_index = self.index else: new_index = pandas.Series(self.index).sort_values(**kwargs) new_columns = self.columns return self.__constructor__( new_data, new_index, new_columns, self.dtypes.copy() ) # END Map across rows/columns # Map across rows/columns # These operations require some global knowledge of the full column/row # that is being operated on. This means that we have to put all of that # data in the same place. def map_across_full_axis_select_indices( self, axis, func, indices, keep_remaining=False ): """Maps function to select indices along full axis. Args: axis: 0 for columns and 1 for rows. func: Callable mapping function over the BlockParitions. indices: indices along axis to map over. keep_remaining: True if keep indices where function was not applied. Returns: BaseBlockPartitions containing the result of mapping func over axis on indices. """ return self.data.apply_func_to_select_indices_along_full_axis( axis, func, indices, keep_remaining ) def quantile_for_list_of_values(self, **kwargs): """Returns Manager containing quantiles along an axis for numeric columns. Returns: DataManager containing quantiles of original DataManager along an axis. """ axis = kwargs.get("axis", 0) q = kwargs.get("q") numeric_only = kwargs.get("numeric_only", True) assert isinstance(q, (pandas.Series, np.ndarray, pandas.Index, list)) if numeric_only: new_columns = self.numeric_columns() else: new_columns = [ col for col, dtype in zip(self.columns, self.dtypes) if (is_numeric_dtype(dtype) or
is_datetime_or_timedelta_dtype(dtype)
pandas.core.dtypes.common.is_datetime_or_timedelta_dtype
import importlib import sys import numpy as np import pandas as pd import pytest from sweat import utils from sweat.metrics import power @pytest.fixture() def reload_power_module(): yield key_values = [(key, value) for key, value in sys.modules.items()] for key, value in key_values: if ( key.startswith("sweat.hrm") or key.startswith("sweat.pdm") or key.startswith("sweat.metrics") ): importlib.reload(value) def test_enable_type_casting_module(reload_power_module): pwr = [1, 2, 3] wap = [1, 2, 3] weight = 80 threshold_power = 80 assert isinstance(power.wpk(np.asarray(pwr), weight), np.ndarray) assert isinstance( power.relative_intensity(np.asarray(wap), threshold_power), np.ndarray ) with pytest.raises(TypeError): power.wpk(pwr, weight) with pytest.raises(TypeError): power.relative_intensity(wap, threshold_power) doc_string = power.wpk.__doc__ utils.enable_type_casting(power) assert isinstance(power.wpk(pwr, weight), list) assert isinstance(power.wpk(pd.Series(pwr), weight), pd.Series) assert isinstance(power.wpk(np.asarray(pwr), weight), np.ndarray) assert isinstance(power.relative_intensity(wap, threshold_power), list) assert isinstance( power.relative_intensity(
pd.Series(wap)
pandas.Series
""" Developed by: <NAME> This module is used to read and process 3-hourly UTCI output derived from CMIP6 models. Function call ============= The main wrapper function is:: calc_percentile_difference() This calculates the percentile values (default 95th) for each scenario within a given time period (default 30 years from 2071-2100) and subtracts the same percentile from historical data (default 30 years from 1985-2014). It does this monthly over the 30 year time period and produces a DataArray (output netcdf file) containing 12 monthly values for each lat, lon, model and scenario. This can be called as:: calc_percentile_difference(output_path) where `output_path` specifies where to write the output data file. This file can be run as:: $ python utci_diff.py This will call the __main__ block below and output to the output_path specified there (to our project10 gws for the hackathon). Note: ** At the moment this is hardwired to expect certain models and scenarios but this can be updated either within the function or additional inputs added to allow this to be updated ** Expected data structure and files ================================= Expected directory structure for these files:: model/scenario/run_name/ e.g. BCC-CSM2-MR/historical/r1i1p1f1/ Example filename:: utci_3hr_BCC-CSM2-MR_historical_r1i1p1f1_gn_198501010300-198601010000.nc The date string of the form YYYYMMDDhhmmss-YYYYMMDDhhmmss (e.g. 198501010300-198601010000) is expected and used when extracting the files with an input date range. This is also expected as a netcdf (.nc) file. File should contain (at least) the "utci" variable with (time, lat, lon) dimensions. """ import os import re import numpy as np import pandas as pd import xarray as xr from pathlib import Path data_path = Path("/gws/pw/j05/cop26_hackathons/bristol/project10/utci_projections_1deg") def define_path(model, scenario, base_path=data_path, run="r1i1p1f1"): ''' Define path to each set of 3hr UTCI input files ''' path = Path(os.path.join(base_path, model, scenario, run)) return path def extract_files(filenames, start, end): ''' Extract filenames within a given date range. Expect filename strings of the format: *YYYYMMDDhhmmss-YYYYMMDDhhmmss*.nc e.g. ./utci_3hr_BCC-CSM2-MR_historical_r1i1p1f1_gn_198501010300-198601010000.nc Input: filenames (list) : List of filenames extracted from a folder start, end (str) : Start and end date to use for filtering the file names. Will definitely work when start and end is included as "YYYY" Should also work for other recognised pandas formats e.g. "YYYY-MM-DD". Returns: list : List of filenames within the date range specified. Filtered from input filenames. ValueError: No files are found in that date range TODO: Only start date extracted from file name is used at present to filter the filenamea. Could also use end date. ''' # dateformat example "198501010300-198601010000" # Expect input start and end date as string e.g. "2013" for now start = pd.to_datetime(start)#, format="%Y") end = pd.to_datetime(end)#, format="%Y") filenames_match = [] for filename in filenames: filename = str(filename) try: re_str = "\d{12}[-]\d{12}" d = re.search(re_str, filename) d = d.group() # Extract value from regular expression compiler except AttributeError: pass else: s = d.split('-')[0] s =
pd.to_datetime(s, format="%Y%m%d%H%M%S")
pandas.to_datetime
import os root_path = os.path.dirname(os.path.abspath('__file__')) import sys import glob import pandas as pd import numpy as np from sklearn import decomposition import deprecated import logging sys.path.append(root_path) from config.globalLog import logger def generate_monoscale_samples(source_file, save_path, lags_dict, column, test_len, lead_time=1,regen=False): """Generate learning samples for autoregression problem using original time series. Args: 'source_file' -- ['String'] The source data file path. 'save_path' --['String'] The path to restore the training, development and testing samples. 'lags_dict' -- ['int dict'] The lagged time for original time series. 'column' -- ['String']The column's name for read the source data by pandas. 'test_len' --['int'] The length of development and testing set. 'lead_time' --['int'] The lead time. """ logger.info('Generating muliti-step decomposition-ensemble hindcasting samples') save_path = save_path+'/'+str(lead_time)+'_ahead_pacf/' logger.info('Source file:{}'.format(source_file)) logger.info('Save path:{}'.format(save_path)) if not os.path.exists(save_path): os.makedirs(save_path) if len(os.listdir(save_path))>0 and not regen: logger.info('Learning samples have been generated!') else: # Load data from local dick if '.xlsx' in source_file: dataframe = pd.read_excel(source_file)[column] elif '.csv' in source_file: dataframe = pd.read_csv(source_file)[column] # convert pandas dataframe to numpy array nparr = np.array(dataframe) # Create an empty pandas Dataframe full_samples = pd.DataFrame() # Generate input series based on lag and add these series to full dataset lag = lags_dict['ORIG'] for i in range(lag): x = pd.DataFrame(nparr[i:dataframe.shape[0] - (lag - i)], columns=['X' + str(i + 1)]) x = x.reset_index(drop=True) full_samples = pd.concat([full_samples, x], axis=1, sort=False) # Generate label data label = pd.DataFrame(nparr[lag+lead_time-1:], columns=['Y']) label = label.reset_index(drop=True) full_samples = full_samples[:full_samples.shape[0]-(lead_time-1)] full_samples = full_samples.reset_index(drop=True) # Add labled data to full_data_set full_samples = pd.concat([full_samples, label], axis=1, sort=False) # Get the length of this series series_len = full_samples.shape[0] # Get the training and developing set train_dev_samples = full_samples[0:(series_len - test_len)] # Get the testing set. test_samples = full_samples[(series_len - test_len):series_len] # train_dev_len = train_dev_samples.shape[0] train_samples = full_samples[0:(series_len - test_len - test_len)] dev_samples = full_samples[( series_len - test_len - test_len):(series_len - test_len)] assert (train_samples.shape[0] + dev_samples.shape[0] + test_samples.shape[0]) == series_len # Get the max and min value of each series series_max = train_samples.max(axis=0) series_min = train_samples.min(axis=0) # Normalize each series to the range between -1 and 1 train_samples = 2 * (train_samples - series_min) / \ (series_max - series_min) - 1 dev_samples = 2 * (dev_samples - series_min) / \ (series_max - series_min) - 1 test_samples = 2 * (test_samples - series_min) / \ (series_max - series_min) - 1 logger.info('Series length:{}'.format(series_len)) logger.info('Series length:{}'.format(series_len)) logger.info( 'Training-development sample size:{}'.format(train_dev_samples.shape[0])) logger.info('Training sample size:{}'.format(train_samples.shape[0])) logger.info('Development sample size:{}'.format(dev_samples.shape[0])) logger.info('Testing sample size:{}'.format(test_samples.shape[0])) series_max = pd.DataFrame(series_max, columns=['series_max']) series_min = pd.DataFrame(series_min, columns=['series_min']) normalize_indicators = pd.concat([series_max, series_min], axis=1) normalize_indicators.to_csv(save_path+'norm_unsample_id.csv') train_samples.to_csv(save_path+'minmax_unsample_train.csv', index=None) dev_samples.to_csv(save_path+'minmax_unsample_dev.csv', index=None) test_samples.to_csv(save_path+'minmax_unsample_test.csv', index=None) def gen_one_step_hindcast_samples(station, decomposer, lags_dict, input_columns, output_column, test_len, wavelet_level="db10-2", lead_time=1,regen=False): """ Generate one step hindcast decomposition-ensemble learning samples. Args: 'station'-- ['string'] The station where the original time series come from. 'decomposer'-- ['string'] The decompositin algorithm used for decomposing the original time series. 'lags_dict'-- ['int dict'] The lagged time for each subsignal. 'input_columns'-- ['string list'] The input columns' name used for generating the learning samples. 'output_columns'-- ['string'] The output column's name used for generating the learning samples. 'test_len'-- ['int'] The size of development and testing samples (). """ logger.info('Generating one-step decomposition ensemble hindcasting samples') logger.info('Station:{}'.format(station)) logger.info('Decomposer:{}'.format(decomposer)) logger.info('Lags_dict:{}'.format(lags_dict)) logger.info('Input columns:{}'.format(input_columns)) logger.info('Output column:{}'.format(output_column)) logger.info('Testing sample length:{}'.format(test_len)) logger.info( 'Mother wavelet and decomposition level:{}'.format(wavelet_level)) logger.info('Lead time:{}'.format(lead_time)) # Load data from local dick if decomposer == "dwt" or decomposer == 'modwt': data_path = root_path+"/"+station+"_"+decomposer+"/data/"+wavelet_level+"/" else: data_path = root_path+"/"+station+"_"+decomposer+"/data/" save_path = data_path+"one_step_"+str(lead_time)+"_ahead_hindcast_pacf/" if not os.path.exists(save_path): os.makedirs(save_path) if len(os.listdir(save_path))>0 and not regen: logger.info('Learning samples have been generated!') else: decompose_file = data_path+decomposer.upper()+"_FULL.csv" decompositions = pd.read_csv(decompose_file) # Drop NaN decompositions.dropna() # Get the input data (the decompositions) input_data = decompositions[input_columns] # Get the output data (the original time series) output_data = decompositions[output_column] # Get the number of input features subsignals_num = input_data.shape[1] # Get the data size data_size = input_data.shape[0] # Compute the samples size max_lag = max(lags_dict.values()) samples_size = data_size-max_lag # Generate feature columns samples_cols = [] for i in range(sum(lags_dict.values())): samples_cols.append('X'+str(i+1)) samples_cols.append('Y') # Generate input colmuns for each subsignal full_samples = pd.DataFrame() for i in range(subsignals_num): # Get one subsignal one_in = (input_data[input_columns[i]]).values oness = pd.DataFrame() lag = lags_dict[input_columns[i]] for j in range(lag): x = pd.DataFrame(one_in[j:data_size-(lag-j)], columns=['X' + str(j + 1)]) x = x.reset_index(drop=True) oness = pd.concat([oness, x], axis=1, sort=False) # make all sample size of each subsignal identical oness = oness.iloc[oness.shape[0]-samples_size:] oness = oness.reset_index(drop=True) full_samples = pd.concat([full_samples, oness], axis=1, sort=False) # Get the target target = (output_data.values)[max_lag+lead_time-1:] target = pd.DataFrame(target, columns=['Y']) full_samples = full_samples[:full_samples.shape[0]-(lead_time-1)] full_samples = full_samples.reset_index(drop=True) # Concat the features and target full_samples = pd.concat([full_samples, target], axis=1, sort=False) full_samples = pd.DataFrame(full_samples.values, columns=samples_cols) full_samples.to_csv(save_path+'full_samples.csv') assert samples_size == full_samples.shape[0] # Get the training and developing set train_dev_samples = full_samples[0:(samples_size - test_len)] # Get the testing set. test_samples = full_samples[(samples_size - test_len):samples_size] # train_dev_len = train_dev_samples.shape[0] train_samples = full_samples[0:(samples_size - test_len - test_len)] dev_samples = full_samples[( samples_size - test_len - test_len):(samples_size - test_len)] assert (train_samples['X1'].size + dev_samples['X1'].size + test_samples['X1'].size) == samples_size # Get the max and min value of training set series_max = train_samples.max(axis=0) series_min = train_samples.min(axis=0) # Normalize each series to the range between -1 and 1 train_samples = 2 * (train_samples - series_min) / \ (series_max - series_min) - 1 dev_samples = 2 * (dev_samples - series_min) / \ (series_max - series_min) - 1 test_samples = 2 * (test_samples - series_min) / \ (series_max - series_min) - 1 logger.info('Save path:{}'.format(save_path)) logger.info('Series length:{}'.format(samples_size)) logger.info('Training and development sample size:{}'.format( train_dev_samples.shape[0])) logger.info('Training sample size:{}'.format(train_samples.shape[0])) logger.info('Development sample size:{}'.format(dev_samples.shape[0])) logger.info('Testing sample size:{}'.format(test_samples.shape[0])) series_max = pd.DataFrame(series_max, columns=['series_max']) series_min = pd.DataFrame(series_min, columns=['series_min']) normalize_indicators = pd.concat([series_max, series_min], axis=1) normalize_indicators.to_csv(save_path+'norm_unsample_id.csv') train_samples.to_csv(save_path + 'minmax_unsample_train.csv', index=None) dev_samples.to_csv(save_path + 'minmax_unsample_dev.csv', index=None) test_samples.to_csv(save_path+'minmax_unsample_test.csv', index=None) def gen_one_step_forecast_samples_triandev_test(station, decomposer, lags_dict, input_columns, output_column, start, stop, test_len, wavelet_level="db10-2", lead_time=1,regen=False): """ Generate one step forecast decomposition-ensemble samples. Args: 'station'-- ['string'] The station where the original time series come from. 'decomposer'-- ['string'] The decompositin algorithm used for decomposing the original time series. 'lags_dict'-- ['int dict'] The lagged time for subsignals. 'input_columns'-- ['string lsit'] the input columns' name for read the source data by pandas. 'output_columns'-- ['string'] the output column's name for read the source data by pandas. 'start'-- ['int'] The start index of appended decomposition file. 'stop'-- ['int'] The stop index of appended decomposotion file. 'test_len'-- ['int'] The size of development and testing samples. """ logger.info( 'Generateing one-step decomposition ensemble forecasting samples (traindev-test pattern)') logger.info('Station:{}'.format(station)) logger.info('Decomposer:{}'.format(decomposer)) logger.info('Lags_dict:{}'.format(lags_dict)) logger.info('Input columns:{}'.format(input_columns)) logger.info('Output column:{}'.format(output_column)) logger.info('Validation start index:{}'.format(start)) logger.info('Validation stop index:{}'.format(stop)) logger.info('Testing sample length:{}'.format(test_len)) logger.info( 'Mother wavelet and decomposition level:{}'.format(wavelet_level)) logger.info('Lead time:{}'.format(lead_time)) # Load data from local dick if decomposer == "dwt" or decomposer == 'modwt': data_path = root_path+"/"+station+"_"+decomposer+"/data/"+wavelet_level+"/" else: data_path = root_path+"/"+station+"_"+decomposer+"/data/" save_path = data_path+"one_step_" + \ str(lead_time)+"_ahead_forecast_pacf_traindev_test/" if not os.path.exists(save_path): os.makedirs(save_path) if len(os.listdir(save_path))>0 and not regen: logger.info('Learning samples have been generated!') else: # !!!!!!Generate training samples traindev_decompose_file = data_path+decomposer.upper()+"_TRAINDEV.csv" traindev_decompositions = pd.read_csv(traindev_decompose_file) # Drop NaN traindev_decompositions.dropna() # Get the input data (the decompositions) traindev_input_data = traindev_decompositions[input_columns] # Get the output data (the original time series) traindev_output_data = traindev_decompositions[output_column] # Get the number of input features subsignals_num = traindev_input_data.shape[1] # Get the data size traindev_data_size = traindev_input_data.shape[0] # Compute the samples size max_lag = max(lags_dict.values()) traindev_samples_size = traindev_data_size-max_lag # Generate feature columns samples_cols = [] for i in range(sum(lags_dict.values())): samples_cols.append('X'+str(i+1)) samples_cols.append('Y') # Generate input colmuns for each input feature train_dev_samples = pd.DataFrame() for i in range(subsignals_num): # Get one input feature one_in = (traindev_input_data[input_columns[i]]).values # subsignal lag = lags_dict[input_columns[i]] oness = pd.DataFrame() # restor input features for j in range(lag): x = pd.DataFrame(one_in[j:traindev_data_size-(lag-j)], columns=['X' + str(j + 1)])['X' + str(j + 1)] x = x.reset_index(drop=True) oness = pd.DataFrame(pd.concat([oness, x], axis=1)) oness = oness.iloc[oness.shape[0]-traindev_samples_size:] oness = oness.reset_index(drop=True) train_dev_samples = pd.DataFrame( pd.concat([train_dev_samples, oness], axis=1)) # Get the target target = (traindev_output_data.values)[max_lag+lead_time-1:] target = pd.DataFrame(target, columns=['Y']) train_dev_samples = train_dev_samples[:traindev_samples_size-(lead_time-1)] train_dev_samples = train_dev_samples.reset_index(drop=True) # Concat the features and target train_dev_samples = pd.concat([train_dev_samples, target], axis=1) train_dev_samples = pd.DataFrame( train_dev_samples.values, columns=samples_cols) train_dev_samples.to_csv(save_path+'train_dev_samples.csv') train_samples = train_dev_samples[:train_dev_samples.shape[0]-120] dev_samples = train_dev_samples[train_dev_samples.shape[0]-120:] assert traindev_samples_size == train_dev_samples.shape[0] # normalize the train_samples series_max = train_samples.max(axis=0) series_min = train_samples.min(axis=0) # Normalize each series to the range between -1 and 1 train_samples = 2 * (train_samples - series_min) / \ (series_max - series_min) - 1 dev_samples = 2 * (dev_samples - series_min) / \ (series_max - series_min) - 1 test_samples = pd.DataFrame() appended_file_path = data_path+decomposer+"-test/" for k in range(start, stop+1): # Load data from local dick appended_decompositions = pd.read_csv( appended_file_path+decomposer+'_appended_test'+str(k)+'.csv') # Drop NaN appended_decompositions.dropna() # Get the input data (the decompositions) input_data = appended_decompositions[input_columns] # Get the output data (the original time series) output_data = appended_decompositions[output_column] # Get the number of input features subsignals_num = input_data.shape[1] # Get the data size data_size = input_data.shape[0] # Compute the samples size samples_size = data_size-max_lag # Generate input colmuns for each subsignal appended_samples = pd.DataFrame() for i in range(subsignals_num): # Get one subsignal one_in = (input_data[input_columns[i]]).values lag = lags_dict[input_columns[i]] oness = pd.DataFrame() for j in range(lag): x = pd.DataFrame( one_in[j:data_size-(lag-j)], columns=['X' + str(j + 1)])['X' + str(j + 1)] x = x.reset_index(drop=True) oness = pd.DataFrame(pd.concat([oness, x], axis=1)) oness = oness.iloc[oness.shape[0]-samples_size:] oness = oness.reset_index(drop=True) appended_samples = pd.DataFrame( pd.concat([appended_samples, oness], axis=1)) # Get the target target = (output_data.values)[max_lag+lead_time-1:] target = pd.DataFrame(target, columns=['Y']) appended_samples = appended_samples[: appended_samples.shape[0]-(lead_time-1)] appended_samples = appended_samples.reset_index(drop=True) # Concat the features and target appended_samples = pd.concat([appended_samples, target], axis=1) appended_samples = pd.DataFrame( appended_samples.values, columns=samples_cols) # Get the last sample of full samples last_sample = appended_samples.iloc[appended_samples.shape[0]-1:] test_samples = pd.concat([test_samples, last_sample], axis=0) test_samples = test_samples.reset_index(drop=True) test_samples.to_csv(save_path+'test_samples.csv') test_samples = 2*(test_samples-series_min)/(series_max-series_min)-1 assert test_len == test_samples.shape[0] logger.info('Save path:{}'.format(save_path)) logger.info('The size of training samples:{}'.format( train_samples.shape[0])) logger.info('The size of development samples:{}'.format( dev_samples.shape[0])) logger.info('The size of testing samples:{}'.format(test_samples.shape[0])) series_max = pd.DataFrame(series_max, columns=['series_max']) series_min = pd.DataFrame(series_min, columns=['series_min']) normalize_indicators = pd.concat([series_max, series_min], axis=1) normalize_indicators.to_csv(save_path+"norm_unsample_id.csv") train_samples.to_csv(save_path+'minmax_unsample_train.csv', index=None) dev_samples.to_csv(save_path+'minmax_unsample_dev.csv', index=None) test_samples.to_csv(save_path+'minmax_unsample_test.csv', index=None) def gen_one_step_forecast_samples(station, decomposer, lags_dict, input_columns, output_column, start, stop, test_len, wavelet_level="db10-2", lead_time=1, mode='PACF', pre_times=20, filter_boundary=0.2, n_components=None,regen=False): """ Generate one step forecast decomposition-ensemble samples based on Partial autocorrelation function (PACF), Pearson coefficient correlation (pearson). Set n_components to 'mle' or an integer to perform principle component analysis (PCA). Args: 'station'-- ['string'] The station where the original time series come from. 'decomposer'-- ['string'] The decomposition algorithm used for decomposing the original time series. 'lags_dict'-- ['int dict'] The lagged time for subsignals in 'PACF' mode. 'input_columns'-- ['string list'] the input columns' name for read the source data by pandas. 'output_column'-- ['string'] the output column's name for read the source data by pandas. 'start'-- ['int'] The start index of appended decomposition file. 'stop'-- ['int'] The stop index of appended decomposition file. 'test_len'-- ['int'] The size of development and testing samples. 'wavelet_level'-- ['String'] The mother wavelet and decomposition level of DWT. 'lead_time'-- ['int'] The lead time for auto regression models. 'mode'-- ['String'] The samples generation mode, i.e., "PACF" and "Pearson", for auto regression models. 'pre_times'-- ['int'] The lag times for compute Pearson coefficient correlation. 'filter_boundary'-- ['float'] The filter threshold of Pearson coefficient correlation for selecting input predictors. 'n_components'-- ['String or int'] The number of reserved components in PCA. If n_components is set to None, PCA will not be performed. """ logger.info( "Generateing one-step decomposition ensemble forecasting samples (train-devtest pattern)") logger.info('Station:{}'.format(station)) logger.info('Decomposer:{}'.format(decomposer)) logger.info('Lags_dict:{}'.format(lags_dict)) logger.info('Input columns:{}'.format(input_columns)) logger.info('Output column:{}'.format(output_column)) logger.info('Validation start index:{}'.format(start)) logger.info('Validation stop index:{}'.format(stop)) logger.info('Testing sample length:{}'.format(test_len)) logger.info( 'Mother wavelet and decomposition level:{}'.format(wavelet_level)) logger.info('Lead time:{}'.format(lead_time)) logger.info('Generation mode:{}'.format(mode)) logger.info('Selected previous lag times:{}'.format(pre_times)) logger.info( 'Filter threshold of predictors selection:{}'.format(filter_boundary)) logger.info('Number of components for PCA:{}'.format(n_components)) # Load data from local dick if decomposer == "dwt" or decomposer == 'modwt': data_path = root_path+"/"+station+"_"+decomposer+"/data/"+wavelet_level+"/" else: data_path = root_path+"/"+station+"_"+decomposer+"/data/" if mode == 'PACF' and n_components == None: save_path = data_path+"one_step_" + \ str(lead_time)+"_ahead_forecast_pacf/" elif mode == 'PACF' and n_components != None: save_path = data_path+"one_step_" + \ str(lead_time)+"_ahead_forecast_pacf_pca"+str(n_components)+"/" elif mode == 'Pearson' and n_components == None: save_path = data_path+"one_step_" + \ str(lead_time)+"_ahead_forecast_pearson"+str(filter_boundary)+"/" elif mode == 'Pearson' and n_components != None: save_path = data_path+"one_step_" + \ str(lead_time)+"_ahead_forecast_pearson" + \ str(filter_boundary)+"_pca"+str(n_components)+"/" if not os.path.exists(save_path): os.makedirs(save_path) if len(os.listdir(save_path))>0 and not regen: logger.info('Learning samples have been generated!') else: # !!!!!!Generate training samples if mode == 'PACF': train_decompose_file = data_path+decomposer.upper()+"_TRAIN.csv" train_decompositions = pd.read_csv(train_decompose_file) # Drop NaN train_decompositions.dropna() # Get the input data (the decompositions) train_input_data = train_decompositions[input_columns] # Get the output data (the original time series) train_output_data = train_decompositions[output_column] # Get the number of input features subsignals_num = train_input_data.shape[1] # Get the data size train_data_size = train_input_data.shape[0] # Compute the samples size max_lag = max(lags_dict.values()) logger.debug('max lag:{}'.format(max_lag)) train_samples_size = train_data_size-max_lag # Generate feature columns samples_cols = [] for i in range(sum(lags_dict.values())): samples_cols.append('X'+str(i+1)) samples_cols.append('Y') # Generate input colmuns for each input feature train_samples = pd.DataFrame() for i in range(subsignals_num): # Get one input feature one_in = (train_input_data[input_columns[i]]).values # subsignal lag = lags_dict[input_columns[i]] logger.debug('lag:{}'.format(lag)) oness = pd.DataFrame() # restor input features for j in range(lag): x = pd.DataFrame(one_in[j:train_data_size-(lag-j)], columns=['X' + str(j + 1)]) x = x.reset_index(drop=True) oness = pd.concat([oness, x], axis=1, sort=False) logger.debug("oness:\n{}".format(oness)) oness = oness.iloc[oness.shape[0]-train_samples_size:] oness = oness.reset_index(drop=True) train_samples = pd.concat([train_samples, oness], axis=1, sort=False) # Get the target target = (train_output_data.values)[max_lag+lead_time-1:] target = pd.DataFrame(target, columns=['Y']) # Concat the features and target train_samples = train_samples[:train_samples.shape[0]-(lead_time-1)] train_samples = train_samples.reset_index(drop=True) train_samples = pd.concat([train_samples, target], axis=1) train_samples = pd.DataFrame(train_samples.values, columns=samples_cols) train_samples.to_csv(save_path+'train_samples.csv') # assert train_samples_size == train_samples.shape[0] # !!!!!!!!!!!Generate development and testing samples dev_test_samples = pd.DataFrame() appended_file_path = data_path+decomposer+"-test/" for k in range(start, stop+1): # Load data from local dick appended_decompositions = pd.read_csv( appended_file_path+decomposer+'_appended_test'+str(k)+'.csv') # Drop NaN appended_decompositions.dropna() # Get the input data (the decompositions) input_data = appended_decompositions[input_columns] # Get the output data (the original time series) output_data = appended_decompositions[output_column] # Get the number of input features subsignals_num = input_data.shape[1] # Get the data size data_size = input_data.shape[0] # Compute the samples size samples_size = data_size-max_lag # Generate input colmuns for each subsignal appended_samples = pd.DataFrame() for i in range(subsignals_num): # Get one subsignal one_in = (input_data[input_columns[i]]).values lag = lags_dict[input_columns[i]] oness = pd.DataFrame() for j in range(lag): x = pd.DataFrame( one_in[j:data_size-(lag-j)], columns=['X' + str(j + 1)]) x = x.reset_index(drop=True) oness = pd.concat([oness, x], axis=1, sort=False) oness = oness.iloc[oness.shape[0]-samples_size:] oness = oness.reset_index(drop=True) appended_samples = pd.concat( [appended_samples, oness], axis=1, sort=False) # Get the target target = (output_data.values)[max_lag+lead_time-1:] target = pd.DataFrame(target, columns=['Y']) # Concat the features and target appended_samples = appended_samples[: appended_samples.shape[0]-(lead_time-1)] appended_samples = appended_samples.reset_index(drop=True) appended_samples = pd.concat( [appended_samples, target], axis=1, sort=False) appended_samples = pd.DataFrame( appended_samples.values, columns=samples_cols) # Get the last sample of full samples last_sample = appended_samples.iloc[appended_samples.shape[0]-1:] dev_test_samples = pd.concat( [dev_test_samples, last_sample], axis=0) dev_test_samples = dev_test_samples.reset_index(drop=True) dev_test_samples.to_csv(save_path+'dev_test_samples.csv') dev_samples = dev_test_samples.iloc[0: dev_test_samples.shape[0]-test_len] test_samples = dev_test_samples.iloc[dev_test_samples.shape[0]-test_len:] if n_components != None: logger.info('Performa PCA on samples based on PACF') samples = pd.concat([train_samples, dev_samples, test_samples], axis=0, sort=False) samples = samples.reset_index(drop=True) y = samples['Y'] X = samples.drop('Y', axis=1) logger.debug('X contains Nan:{}'.format(X.isnull().values.any())) logger.debug("Input features before PAC:\n{}".format(X)) pca = decomposition.PCA(n_components=n_components) pca.fit(X) pca_X = pca.transform(X) columns = [] for i in range(1, pca_X.shape[1]+1): columns.append('X'+str(i)) pca_X = pd.DataFrame(pca_X, columns=columns) logger.debug("Input features after PAC:\n{}".format(pca_X.tail())) pca_samples = pd.concat([pca_X, y], axis=1) train_samples = pca_samples.iloc[:train_samples.shape[0]] train_samples = train_samples.reset_index(drop=True) logger.debug('Training samples after PCA:\n{}'.format(train_samples)) dev_samples = pca_samples.iloc[train_samples.shape[0]:train_samples.shape[0]+dev_samples.shape[0]] dev_samples = dev_samples.reset_index(drop=True) logger.debug('Development samples after PCA:\n{}'.format(dev_samples)) test_samples = pca_samples.iloc[train_samples.shape[0] +dev_samples.shape[0]:] test_samples = test_samples.reset_index(drop=True) logger.debug('Testing samples after PCA:\n{}'.format(test_samples)) # Normalize each series to the range between -1 and 1 series_max = train_samples.max(axis=0) series_min = train_samples.min(axis=0) train_samples = 2 * (train_samples - series_min) / \ (series_max - series_min) - 1 dev_samples = 2 * (dev_samples-series_min) / \ (series_max-series_min) - 1 test_samples = 2 * (test_samples-series_min) / \ (series_max-series_min) - 1 logger.info('Save path:{}'.format(save_path)) logger.info('The size of training samples:{}'.format( train_samples.shape[0])) logger.info('The size of development samples:{}'.format( dev_samples.shape[0])) logger.info('The size of testing samples:{}'.format( test_samples.shape[0])) series_max = pd.DataFrame(series_max, columns=['series_max']) series_min = pd.DataFrame(series_min, columns=['series_min']) normalize_indicators = pd.concat([series_max, series_min], axis=1) normalize_indicators.to_csv(save_path+"norm_unsample_id.csv") train_samples.to_csv(save_path+'minmax_unsample_train.csv', index=None) dev_samples.to_csv(save_path+'minmax_unsample_dev.csv', index=None) test_samples.to_csv(save_path+'minmax_unsample_test.csv', index=None) elif mode == 'Pearson': # lag pre_times+lead_time(e.g.,30+3) lag = pre_times+lead_time pre_cols = [] for i in range(1, pre_times+1): pre_cols.append("X"+str(i)) logger.debug("Previous columns of lagged months:\n{}".format(pre_cols)) train_decompose_file = data_path+decomposer.upper()+"_TRAIN.csv" train_decompositions = pd.read_csv(train_decompose_file) orig = train_decompositions[output_column][lag:] orig = orig.reset_index(drop=True) selected = {} input_df = pd.DataFrame() for col in input_columns: logger.debug("Perform subseries:{}".format(col)) subsignal = np.array(train_decompositions[col]) inputs = pd.DataFrame() for k in range(lag): x = pd.DataFrame( subsignal[k:subsignal.size-(lag-k)], columns=["X"+str(k+1)])["X"+str(k+1)] x = x.reset_index(drop=True) inputs = pd.DataFrame(pd.concat([inputs, x], axis=1)) pre_inputs = inputs[pre_cols] logger.debug("Previous inputs:\n{}".format(pre_inputs.head())) partin_out = pd.concat([pre_inputs, orig], axis=1) logger.debug( "Partial inputs and output:\n{}".format(partin_out.head())) corrs = partin_out.corr(method="pearson") logger.debug("Entire pearson coefficients:\n{}".format(corrs)) corrs = (corrs[output_column]).iloc[0:corrs.shape[0]-1] orig_corrs = corrs.squeeze() logger.debug("Selected pearson coefficients:\n{}".format(orig_corrs)) bools = abs(orig_corrs) >= filter_boundary logger.debug("Conditions judge:{}".format(bools)) select = list((orig_corrs.loc[bools == True]).index.values) logger.debug("Selected inputs:\n{}".format(select)) selected[col] = select input_df = pd.concat([input_df, pre_inputs[select]], axis=1) logger.debug("Selected inputs:\n{}".format(selected)) logger.debug("Entire inputs:\n{}".format(input_df.head())) columns = [] for i in range(0, input_df.shape[1]): columns.append("X"+str(i+1)) columns.append("Y") train_samples = pd.DataFrame( (pd.concat([input_df, orig], axis=1)).values, columns=columns) dev_test_samples = pd.DataFrame() for i in range(start, stop+1): append_decompositions = pd.read_csv( data_path+decomposer+"-test/"+decomposer+"_appended_test"+str(i)+".csv") append_orig = append_decompositions[output_column][lag:] append_orig = append_orig.reset_index(drop=True) append_input_df = pd.DataFrame() for col in input_columns: append_subsignal = np.array(append_decompositions[col]) append_inputs = pd.DataFrame() for k in range(lag): x = pd.DataFrame( append_subsignal[k:append_subsignal.size-(lag-k)], columns=["X"+str(k+1)])["X"+str(k+1)] x = x.reset_index(drop=True) append_inputs = pd.concat([append_inputs, x], axis=1) append_input_df = pd.concat( [append_input_df, append_inputs[selected[col]]], axis=1) append_samples = pd.concat([append_input_df, append_orig], axis=1) append_samples = pd.DataFrame(append_samples.values, columns=columns) last_sample = append_samples.iloc[append_samples.shape[0]-1:] dev_test_samples = pd.concat( [dev_test_samples, last_sample], axis=0) dev_test_samples = dev_test_samples.reset_index(drop=True) dev_samples = dev_test_samples.iloc[0: dev_test_samples.shape[0]-test_len] test_samples = dev_test_samples.iloc[dev_test_samples.shape[0]-test_len:] dev_samples = dev_samples.reset_index(drop=True) test_samples = test_samples.reset_index(drop=True) # Perform PCA on samples based on Pearson if n_components != None: logger.info('Performa PCA on samples based on PACF') samples = pd.concat( [train_samples, dev_samples, test_samples], axis=0, sort=False) samples = samples.reset_index(drop=True) y = samples['Y'] X = samples.drop('Y', axis=1) logger.debug("Input features before PAC:\n{}".format(X.tail())) pca = decomposition.PCA(n_components=n_components) pca.fit(X) pca_X = pca.transform(X) columns = [] for i in range(1, pca_X.shape[1]+1): columns.append('X'+str(i)) pca_X = pd.DataFrame(pca_X, columns=columns) logger.debug("Input features after PAC:\n{}".format(pca_X.tail())) pca_samples = pd.concat([pca_X, y], axis=1) train_samples = pca_samples.iloc[:train_samples.shape[0]] train_samples = train_samples.reset_index(drop=True) dev_samples = pca_samples.iloc[train_samples.shape[0]:train_samples.shape[0]+dev_samples.shape[0]] dev_samples = dev_samples.reset_index(drop=True) test_samples = pca_samples.iloc[train_samples.shape[0] +dev_samples.shape[0]:] test_samples = test_samples.reset_index(drop=True) # Normalize the samples series_max = train_samples.max(axis=0) series_min = train_samples.min(axis=0) train_samples = 2 * (train_samples - series_min) / \ (series_max - series_min) - 1 dev_samples = 2*(dev_samples-series_min)/(series_max-series_min)-1 test_samples = 2*(test_samples-series_min)/(series_max-series_min)-1 # Save results series_max = pd.DataFrame(series_max, columns=['series_max']) series_min = pd.DataFrame(series_min, columns=['series_min']) normalize_indicators = pd.concat([series_max, series_min], axis=1) normalize_indicators.to_csv(save_path+"norm_unsample_id.csv") train_samples.to_csv(save_path+'minmax_unsample_train.csv', index=None) dev_samples.to_csv(save_path+'minmax_unsample_dev.csv', index=None) test_samples.to_csv(save_path+'minmax_unsample_test.csv', index=None) def gen_multi_step_hindcast_samples(station, decomposer, lags_dict, columns, test_len, wavelet_level="db10-2", lead_time=1,regen=False): """ Generate muliti-step learning samples for autoregression problem. This program could generate source CSV fflie for .tfrecords file generating. Args: -station: The station where the original time series observed. -decomposer: The decomposition algorithm for decomposing the original time series. -lags_dict: The lags for autoregression. -columns: the columns' name for read the source data by pandas. -save_path: The path to restore the training, development and testing samples. -test_len: The length of validation(development or testing) set. """ logger.info( "Generating muliti-step decompositionensemble hindcasting samples") logger.info('Station:{}'.format(station)) logger.info('Decomposer:{}'.format(decomposer)) logger.info('Lags_dict:{}'.format(lags_dict)) logger.info('Signals:{}'.format(columns)) logger.info('Testing sample length:{}'.format(test_len)) logger.info( 'Mother wavelet and decomposition level:{}'.format(wavelet_level)) logger.info('Lead time:{}'.format(lead_time)) if decomposer == "dwt" or decomposer == 'modwt': data_path = root_path+"/"+station+"_"+decomposer+"/data/"+wavelet_level+"/" else: data_path = root_path+"/"+station+"_"+decomposer+"/data/" save_path = data_path+"multi_step_"+str(lead_time)+"_ahead_hindcast_pacf/" if not os.path.exists(save_path): os.makedirs(save_path) if len(os.listdir(save_path))>0 and not regen: logger.info('Learning samples have been generated!') else: decompose_file = data_path+decomposer.upper()+"_FULL.csv" decompositions = pd.read_csv(decompose_file) for k in range(len(columns)): lag = lags_dict[columns[k]] if lag == 0: logger.info("The lag of sub-signal({:.0f})".format(k+1)+" equals to 0") continue # Obtain decomposed sub-signal sub_signal = decompositions[columns[k]] # convert pandas dataframe to numpy array nparr = np.array(sub_signal) # Create an empty pandas Dataframe full_samples = pd.DataFrame() # Generate input series based on lag and add these series to full dataset for i in range(lag): x = pd.DataFrame( nparr[i:sub_signal.shape[0] - (lag - i)], columns=['X' + str(i + 1)]) x = x.reset_index(drop=True) full_samples = pd.DataFrame(pd.concat([full_samples, x], axis=1)) # Generate label data label = pd.DataFrame(nparr[lag+lead_time-1:], columns=['Y'])['Y'] label = label.reset_index(drop=True) full_samples = full_samples[:full_samples.shape[0]-(lead_time-1)] full_samples = full_samples.reset_index(drop=True) # Add labled data to full_data_set full_samples = pd.concat([full_samples, label], axis=1, sort=False) # Get the length of this series series_len = full_samples.shape[0] # Get the training and developing set train_dev_samples = full_samples[0:(series_len - test_len)] # Get the testing set. test_samples = full_samples[(series_len - test_len):series_len] # Do sampling if 'sampling' is True train_samples = full_samples[0:(series_len - test_len - test_len)] dev_samples = full_samples[( series_len - test_len - test_len):(series_len - test_len)] assert (train_samples.shape[0] + dev_samples.shape[0] + test_samples.shape[0]) == series_len # Get the max and min value of each series series_max = train_samples.max(axis=0) series_min = train_samples.min(axis=0) # Normalize each series to the range between -1 and 1 train_samples = 2 * (train_samples - series_min) / \ (series_max - series_min) - 1 dev_samples = 2 * (dev_samples - series_min) / \ (series_max - series_min) - 1 test_samples = 2 * (test_samples - series_min) / \ (series_max - series_min) - 1 logger.info('Series length:{}'.format(series_len)) logger.info('Save path:{}'.format(save_path)) logger.info('The size of training and development samples:{}'.format( train_dev_samples.shape[0])) logger.info('The size of training samples:{}'.format( train_samples.shape[0])) logger.info('The size of development samples:{}'.format( dev_samples.shape[0])) logger.info('The size of testing samples:{}'.format( test_samples.shape[0])) series_max = pd.DataFrame(series_max, columns=['series_max']) series_min = pd.DataFrame(series_min, columns=['series_min']) normalize_indicators = pd.concat([series_max, series_min], axis=1) normalize_indicators.to_csv( save_path+'norm_unsample_id_imf'+str(k+1)+'.csv') train_samples.to_csv( save_path+'minmax_unsample_train_imf'+str(k+1)+'.csv', index=None) dev_samples.to_csv( save_path+'minmax_unsample_dev_imf'+str(k+1)+'.csv', index=None) test_samples.to_csv( save_path+'minmax_unsample_test_imf'+str(k+1)+'.csv', index=None) def gen_multi_step_forecast_samples(station, decomposer, lags_dict, columns, start, stop, test_len, wavelet_level="db10-2", lead_time=1,regen=False): """ Generate multi-step training samples for autoregression problem. This program could generate source CSV fflie for .tfrecords file generating. Args: -station: The station where the original time series observed. -decomposer: The decomposition algorithm for decomposing the original time series. -lags_dict: The lags for autoregression. -columns: the columns name for read the source data by pandas -save_path: The path to save the training samples """ logger.info( "Generating muliti-step decompositionensemble forecasting samples") logger.info('Station:{}'.format(station)) logger.info('Decomposer:{}'.format(decomposer)) logger.info('Lags_dict:{}'.format(lags_dict)) logger.info('Signals:{}'.format(columns)) logger.info('Validation start index:{}'.format(start)) logger.info('Validation stop index:{}'.format(stop)) logger.info('Testing sample length:{}'.format(test_len)) logger.info( 'Mother wavelet and decomposition level:{}'.format(wavelet_level)) logger.info('Lead time:{}'.format(lead_time)) if decomposer == "dwt" or decomposer == 'modwt': data_path = root_path+"/"+station+"_"+decomposer+"/data/"+wavelet_level+"/" else: data_path = root_path+"/"+station+"_"+decomposer+"/data/" save_path = data_path+"multi_step_"+str(lead_time)+"_ahead_forecast_pacf/" if not os.path.exists(save_path): os.makedirs(save_path) if len(os.listdir(save_path))>0 and not regen: logger.info('Learning samples have been generated!') else: logger.info("Save path:{}".format(save_path)) # !!!!!!!!!!Generate training samples train_decompose_file = data_path+decomposer.upper()+"_TRAIN.csv" train_decompositions = pd.read_csv(train_decompose_file) train_decompositions.dropna() for k in range(len(columns)): lag = lags_dict[columns[k]] if lag == 0: logger.info("The lag of sub-signal({:.0f})".format(k+1)+" equals to 0") continue # Generate sample columns samples_columns = [] for l in range(1, lag+1): samples_columns.append('X'+str(l)) samples_columns.append('Y') # Obtain decomposed sub-signal sub_signal = train_decompositions[columns[k]] # convert pandas dataframe to numpy array nparr = np.array(sub_signal) # Create an empty pandas Dataframe train_samples = pd.DataFrame() # Generate input series based on lag and add these series to full dataset for i in range(lag): x = pd.DataFrame( nparr[i:sub_signal.shape[0] - (lag - i)], columns=['X' + str(i + 1)]) x = x.reset_index(drop=True) train_samples = pd.DataFrame(pd.concat([train_samples, x], axis=1)) # Generate label data label = pd.DataFrame(nparr[lag+lead_time-1:], columns=['Y'])['Y'] label = label.reset_index(drop=True) train_samples = train_samples[:train_samples.shape[0]-(lead_time-1)] train_samples = train_samples.reset_index(drop=True) # Add labled data to full_data_set train_samples = pd.concat([train_samples, label], axis=1, sort=False) # Do sampling if 'sampling' is True # Get the max and min value of each series series_max = train_samples.max(axis=0) series_min = train_samples.min(axis=0) # Normalize each series to the range between -1 and 1 train_samples = 2 * (train_samples - series_min) / \ (series_max - series_min) - 1 # !!!!!Generate development and testing samples dev_test_samples = pd.DataFrame() appended_file_path = data_path+decomposer+"-test/" for j in range(start, stop+1): # 遍历每一个附加分解结果 data = pd.read_csv(appended_file_path+decomposer + '_appended_test'+str(j)+'.csv') imf = data[columns[k]] nparr = np.array(imf) inputs = pd.DataFrame() for i in range(lag): x = pd.DataFrame( nparr[i:nparr.size - (lag - i)], columns=['X' + str(i + 1)]) x = x.reset_index(drop=True) inputs = pd.concat([inputs, x], axis=1, sort=False) label =
pd.DataFrame(nparr[lag+lead_time-1:], columns=['Y'])
pandas.DataFrame
#%% import numpy as np import scipy as sp import pandas as pd import ccutils #%% # Set random seed np.random.seed(42) # Define number of boostrap estimates n_estimates = 10000 # Define percentiles to save percentiles = [.01, .05, .10, .25, .50, .75, .90, .95, .99] # Read single cell data df_micro = pd.read_csv('../../../data/csv_microscopy/' + 'single_cell_microscopy_data.csv') #%% # group by date and by IPTG concentration df_group = df_micro.groupby(['date']) # Define names for columns in data frame names = ['date', 'IPTG_uM','operator', 'binding_energy', 'repressor', 'percentile', 'fold_change', 'fold_change_lower', 'fold_change_upper', 'noise', 'noise_lower', 'noise_upper', 'skewness', 'skewness_lower', 'skewness_upper'] # Initialize data frame to save the noise df_noise =
pd.DataFrame(columns=names)
pandas.DataFrame
import pandas as pd import warnings import os def get_train_test(PATH="./data/realworld", getScalar=False): warnings.filterwarnings('ignore') """ load data """ # https://data.seoul.go.kr/dataList/datasetView.do?infId=OA-15245&srvType=F&serviceKind=1¤tPageNo=1&searchValue=&searchKey=null dirs = PATH + "/rentals" files = os.listdir(dirs) files = [file for file in files if '2018' in file] column_types = { '대여일자': 'datetime64[ns]', '대여시간': 'int32', '대여소번호': 'category', '대여소명': 'category', '대여구분코드': 'category', '성별': 'category', '연령대코드': 'category', '이용건수': 'int32', '운동량': 'float32', '탄소량': 'float32', '이동거리': 'int32', '이동시간': 'int32', } try: df =
pd.read_pickle(PATH + '/dataframes/2018.pkl')
pandas.read_pickle
# The MIT License (MIT) # # Copyright (c) 2015 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """PortfolioOpt: Financial Portfolio Optimization This module provides a set of functions for financial portfolio optimization, such as construction of Markowitz portfolios, minimum variance portfolios and tangency portfolios (i.e. maximum Sharpe ratio portfolios) in Python. The construction of long-only, long/short and market neutral portfolios is supported.""" import numpy as np import pandas as pd import cvxopt as opt import cvxopt.solvers as optsolvers import warnings __all__ = ['markowitz_portfolio', 'min_var_portfolio', 'tangency_portfolio', 'max_ret_portfolio', 'truncate_weights'] def markowitz_portfolio(cov_mat, exp_rets, target_ret, allow_short=False, market_neutral=False): """ Computes a Markowitz portfolio. Parameters ---------- cov_mat: pandas.DataFrame Covariance matrix of asset returns. exp_rets: pandas.Series Expected asset returns (often historical returns). target_ret: float Target return of portfolio. allow_short: bool, optional If 'False' construct a long-only portfolio. If 'True' allow shorting, i.e. negative weights. market_neutral: bool, optional If 'False' sum of weights equals one. If 'True' sum of weights equal zero, i.e. create a market neutral portfolio (implies allow_short=True). Returns ------- weights: pandas.Series Optimal asset weights. """ if not isinstance(cov_mat, pd.DataFrame): raise ValueError("Covariance matrix is not a DataFrame") if not isinstance(exp_rets, pd.Series): raise ValueError("Expected returns is not a Series") if not isinstance(target_ret, float): raise ValueError("Target return is not a float") if not cov_mat.index.equals(exp_rets.index): raise ValueError("Indices do not match") if market_neutral and not allow_short: warnings.warn("A market neutral portfolio implies shorting") allow_short=True n = len(cov_mat) P = opt.matrix(cov_mat.values) q = opt.matrix(0.0, (n, 1)) # Constraints Gx <= h if not allow_short: # exp_rets*x >= target_ret and x >= 0 G = opt.matrix(np.vstack((-exp_rets.values, -np.identity(n)))) h = opt.matrix(np.vstack((-target_ret, +np.zeros((n, 1))))) else: # exp_rets*x >= target_ret G = opt.matrix(-exp_rets.values).T h = opt.matrix(-target_ret) # Constraints Ax = b # sum(x) = 1 A = opt.matrix(1.0, (1, n)) if not market_neutral: b = opt.matrix(1.0) else: b = opt.matrix(0.0) # Solve optsolvers.options['show_progress'] = False sol = optsolvers.qp(P, q, G, h, A, b) if sol['status'] != 'optimal': warnings.warn("Convergence problem") # Put weights into a labeled series weights = pd.Series(sol['x'], index=cov_mat.index) return weights def min_var_portfolio(cov_mat, allow_short=False): """ Computes the minimum variance portfolio. Note: As the variance is not invariant with respect to leverage, it is not possible to construct non-trivial market neutral minimum variance portfolios. This is because the variance approaches zero with decreasing leverage, i.e. the market neutral portfolio with minimum variance is not invested at all. Parameters ---------- cov_mat: pandas.DataFrame Covariance matrix of asset returns. allow_short: bool, optional If 'False' construct a long-only portfolio. If 'True' allow shorting, i.e. negative weights. Returns ------- weights: pandas.Series Optimal asset weights. """ if not isinstance(cov_mat, pd.DataFrame): raise ValueError("Covariance matrix is not a DataFrame") n = len(cov_mat) P = opt.matrix(cov_mat.values) q = opt.matrix(0.0, (n, 1)) # Constraints Gx <= h if not allow_short: # x >= 0 G = opt.matrix(-np.identity(n)) h = opt.matrix(0.0, (n, 1)) else: G = None h = None # Constraints Ax = b # sum(x) = 1 A = opt.matrix(1.0, (1, n)) b = opt.matrix(1.0) # Solve optsolvers.options['show_progress'] = False sol = optsolvers.qp(P, q, G, h, A, b) if sol['status'] != 'optimal': warnings.warn("Convergence problem") # Put weights into a labeled series weights = pd.Series(sol['x'], index=cov_mat.index) return weights def tangency_portfolio(cov_mat, exp_rets, allow_short=False): """ Computes a tangency portfolio, i.e. a maximum Sharpe ratio portfolio. Note: As the Sharpe ratio is not invariant with respect to leverage, it is not possible to construct non-trivial market neutral tangency portfolios. This is because for a positive initial Sharpe ratio the sharpe grows unbound with increasing leverage. Parameters ---------- cov_mat: pandas.DataFrame Covariance matrix of asset returns. exp_rets: pandas.Series Expected asset returns (often historical returns). allow_short: bool, optional If 'False' construct a long-only portfolio. If 'True' allow shorting, i.e. negative weights. Returns ------- weights: pandas.Series Optimal asset weights. """ if not isinstance(cov_mat, pd.DataFrame): raise ValueError("Covariance matrix is not a DataFrame") if not isinstance(exp_rets, pd.Series): raise ValueError("Expected returns is not a Series") if not cov_mat.index.equals(exp_rets.index): raise ValueError("Indices do not match") n = len(cov_mat) P = opt.matrix(cov_mat.values) q = opt.matrix(0.0, (n, 1)) # Constraints Gx <= h if not allow_short: # exp_rets*x >= 1 and x >= 0 G = opt.matrix(np.vstack((-exp_rets.values, -np.identity(n)))) h = opt.matrix(np.vstack((-1.0, np.zeros((n, 1))))) else: # exp_rets*x >= 1 G = opt.matrix(-exp_rets.values).T h = opt.matrix(-1.0) # Solve optsolvers.options['show_progress'] = False sol = optsolvers.qp(P, q, G, h) if sol['status'] != 'optimal': warnings.warn("Convergence problem") # Put weights into a labeled series weights =
pd.Series(sol['x'], index=cov_mat.index)
pandas.Series
import struct import json import datetime import crc16 import binascii import math import logging import pandas as pd import numpy as np class Ensemble: """ RoweTech Binary Ensemble. RTB format. """ # Ensemble header size in bytes HeaderSize = 32 # Checksum size ChecksumSize = 4 # Maximum number of datasets. MaxNumDataSets = 20 # Number of bytes in Int32 BytesInInt32 = 4 # Number of bytes in Float BytesInFloat = 4 # Number of elements in dataset header NUM_DATASET_HEADER_ELEMENTS = 6 # Bad Velocity BadVelocity = float(88.888000) # CSV Data Types CSV_AMP = "Amp" CSV_CORR = "Corr" CSV_BEAM_VEL = "BeamVel" CSV_INSTR_VEL = "InstrVel" CSV_EARTH_VEL = "EarthVel" CSV_GOOD_BEAM = "GoodBeam" CSV_GOOD_EARTH = "GoodEarth" CSV_PRESSURE = "Pressure" CSV_XDCR_DEPTH = "XdcrDepth" CSV_HEADING = "Heading" CSV_PITCH = "Pitch" CSV_ROLL = "Roll" CSV_WATER_TEMP = "WaterTemp" CSV_SYS_TEMP = "SysTemp" CSV_SOS = "SpeedOfSound" CSV_FIRST_PING_TIME = "FirstPingTime" CSV_LAST_PING_TIME = "LastPingTime" CSV_STATUS = "Status" CSV_RT = "RT" CSV_BT_HEADING = "BT_Heading" CSV_BT_PITCH = "BT_PITCH" CSV_BT_ROLL = "BT_ROLL" CSV_BT_PRESSURE = "BT_PRESSURE" CSV_BT_XDCR_DEPTH = "BT_XdcrDepth" CSV_BT_STATUS = "BT_Status" CSV_BT_RANGE = "BT_Range" CSV_BT_AVG_RANGE = "BT_Avg_Range" CSV_BT_BEAM_VEL = "BT_BeamVel" CSV_BT_BEAM_GOOD = "BT_BeamGood" CSV_BT_INSTR_VEL = "BT_InstrVel" CSV_BT_INSTR_GOOD = "BT_InstrGood" CSV_BT_EARTH_VEL = "BT_EarthVel" CSV_BT_EARTH_GOOD = "BT_EarthGood" CSV_RT_RANGE = "RT_Range" CSV_RT_PINGS = "RT_Pings" CSV_RT_BEAM_VEL = "RT_BeamVel" CSV_RT_INSTR_VEL = "RT_InstrVel" CSV_RT_EARTH_VEL = "RT_EarthVel" CSV_GPS_HEADING = "GPS_Heading" CSV_GPS_VTG = "GPS_VTG" CSV_NMEA = "NMEA" CSV_VOLTAGE = "Voltage" CSV_MAG = "Magnitude" CSV_DIR = "Direction" CSV_DATETIME_FORMAT = "%m/%d/%Y %H:%M:%S.%f" def __init__(self): self.RawData = None self.IsBeamVelocity = False self.BeamVelocity = None self.IsInstrumentVelocity = False self.InstrumentVelocity = None self.IsEarthVelocity = False self.EarthVelocity = None self.IsAmplitude = False self.Amplitude = None self.IsCorrelation = False self.Correlation = None self.IsGoodBeam = False self.GoodBeam = None self.IsGoodEarth = False self.GoodEarth = None self.IsEnsembleData = False self.EnsembleData = None self.IsAncillaryData = False self.AncillaryData = None self.IsBottomTrack = False self.BottomTrack = None self.IsWavesInfo = False self.WavesInfo = None self.IsRangeTracking = False self.RangeTracking = None self.IsSystemSetup = False self.SystemSetup = None self.IsNmeaData = False self.NmeaData = None def AddRawData(self, data): """ Add Raw bytearray data to the ensemble. :param data: Raw data. """ self.RawData = data def AddBeamVelocity(self, ds): """ Add a Beam Velocity object to the ensemble. Set the flag that the dataset is added. :param ds: Beam Velocity object. """ self.IsBeamVelocity = True self.BeamVelocity = ds def AddInstrumentVelocity(self, ds): """ Add a Instrument Velocity object to the ensemble. Set the flag that the dataset is added. :param ds: Instrument Velocity object. """ self.IsInstrumentVelocity = True self.InstrumentVelocity = ds def AddEarthVelocity(self, ds): """ Add a Earth Velocity object to the ensemble. Set the flag that the dataset is added. :param ds: Earth Velocity object. """ self.IsEarthVelocity = True self.EarthVelocity = ds def AddAmplitude(self, ds): """ Add a Amplitude object to the ensemble. Set the flag that the dataset is added. :param ds: Amplitude object. """ self.IsAmplitude = True self.Amplitude = ds def AddCorrelation(self, ds): """ Add a Correlation object to the ensemble. Set the flag that the dataset is added. :param ds: Correlation object. """ self.IsCorrelation = True self.Correlation = ds def AddGoodBeam(self, ds): """ Add a Good Beam object to the ensemble. Set the flag that the dataset is added. :param ds: GoodBeam object. """ self.IsGoodBeam = True self.GoodBeam = ds def AddGoodEarth(self, ds): """ Add a Good Earth object to the ensemble. Set the flag that the dataset is added. :param ds: Good Earth object. """ self.IsGoodEarth = True self.GoodEarth = ds def AddEnsembleData(self, ds): """ Add a EnsembleData object to the ensemble. Set the flag that the dataset is added. :param ds: Ensemble Data object. """ self.IsEnsembleData = True self.EnsembleData = ds def AddAncillaryData(self, ds): """ Add a AncillaryData object to the ensemble. Set the flag that the dataset is added. :param ds: Ancillary Data object. """ self.IsAncillaryData = True self.AncillaryData = ds def AddBottomTrack(self, ds): """ Add a Bottom Track Data object to the ensemble. Set the flag that the dataset is added. :param ds: Bottom Track Data object. """ self.IsBottomTrack = True self.BottomTrack = ds def AddRangeTracking(self, ds): """ Add a Range Tracking object to the ensemble. Set the flag that the dataset is added. :param ds: Range Tracking Data object. """ self.IsRangeTracking = True self.RangeTracking = ds def AddSystemSetup(self, ds): """ Add a System Setup object to the ensemble. Set the flag that the dataset is added. :param ds: System Setup Data object. """ self.IsSystemSetup = True self.SystemSetup = ds def AddNmeaData(self, ds): """ Add a NMEA data object to the ensemble. Set the flag that the dataset is added. :param ds: NMEA data Data object. """ self.IsNmeaData = True self.NmeaData = ds def encode(self): """ Encode the ensemble to RTB format. :return: """ payload = [] # Generate Payload if self.IsEnsembleData: payload += self.EnsembleData.encode() if self.IsAncillaryData: payload += self.AncillaryData.encode() if self.IsAmplitude: payload += self.Amplitude.encode() if self.IsCorrelation: payload += self.Correlation.encode() if self.IsBeamVelocity: payload += self.BeamVelocity.encode() if self.IsInstrumentVelocity: payload += self.InstrumentVelocity.encode() if self.IsEarthVelocity: payload += self.EarthVelocity.encode() if self.IsGoodBeam: payload += self.GoodBeam.encode() if self.IsGoodEarth: payload += self.GoodEarth.encode() if self.IsBottomTrack: payload += self.BottomTrack.encode() if self.IsRangeTracking: payload += self.RangeTracking.encode() if self.IsSystemSetup: payload += self.SystemSetup.encode() if self.IsNmeaData: payload += self.NmeaData.encode() # Generate the header # Get the ensemble number ens_num = 0 if self.IsEnsembleData: ens_num = self.EnsembleData.EnsembleNumber # Get the payload size payload_size = len(payload) header = Ensemble.generate_ens_header(ens_num, payload_size) # Generate the Checksum CITT # Parameters found at https: // pycrc.org / models.html #crc = pycrc.algorithms.Crc(width=16, poly=0x1021, # reflect_in=False, xor_in=0x1d0f, # reflect_out=False, xor_out=0x0000) #checksum = crc.bit_by_bit_fast(binascii.a2b_hex(bytes(payload))) #checksum = Ensemble.int32_to_bytes(CRCCCITT().calculate(input_data=bytes(payload))) checksum = crc16.crc16xmodem(payload) result = [] result += header result += payload result += checksum return bytearray(result) @staticmethod def generate_ens_header(ens_num, payload_size): """ Generate the header for an ensemble. This will include 16 0x80 and then the ensemble number and payload size. The inverse of the ensemble number and payload size are included. :param ens_num: Ensemble number. :param payload_size: Payload size. :return: Header for an ensemble. """ header = [] # Get the Header ID for cnt in range(0, 16): header.append(0x80) # Ensemble Number and inverse header += Ensemble.int32_to_bytes(ens_num) header += struct.pack("i", ~ens_num) # Payload size and inverse header += Ensemble.int32_to_bytes(payload_size) header += struct.pack("i", ~payload_size) return header def encode_csv(self, is_ensemble_data=True, is_ancillary_data=True, is_amplitude=True, is_correlation=True, is_beam_velocity=True, is_instrument_velocity=True, is_earth_velocity=True, is_good_beam=True, is_good_earth=True, is_bottom_track=True, is_range_tracking=True, is_nmea_data=True, is_system_setup=True): """ Encode the ensemble into CSV data. Each line is a value with a the datetime, KEY, subsystem config, subsystem code, bin and beam number. :return: """ result = [] dt = datetime.datetime.now() blank = 0 bin_size = 0 if self.IsAncillaryData: blank = self.AncillaryData.FirstBinRange bin_size = self.AncillaryData.BinSize # Get the subsystem code and config ss_code = "" ss_config = "" if self.IsEnsembleData and is_ensemble_data: ss_code = self.EnsembleData.SysFirmwareSubsystemCode ss_config = self.EnsembleData.SubsystemConfig # Create a new datetime based off ensemble date and time dt = self.EnsembleData.datetime() result += self.EnsembleData.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsAncillaryData and is_ancillary_data: result += self.AncillaryData.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsAmplitude and is_amplitude: result += self.Amplitude.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsCorrelation and is_correlation: result += self.Correlation.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsBeamVelocity and is_beam_velocity: result += self.BeamVelocity.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsInstrumentVelocity and is_instrument_velocity: result += self.InstrumentVelocity.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsEarthVelocity and is_earth_velocity: result += self.EarthVelocity.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsGoodBeam and is_good_beam: result += self.GoodBeam.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsGoodEarth and is_good_earth: result += self.GoodEarth.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsBottomTrack and is_bottom_track: result += self.BottomTrack.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsRangeTracking and is_range_tracking: result += self.RangeTracking.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsNmeaData and is_nmea_data: result += self.NmeaData.encode_csv(dt, ss_code, ss_config, blank, bin_size) if self.IsSystemSetup and is_system_setup: result += self.SystemSetup.encode_csv(dt, ss_code, ss_config, blank, bin_size) return result def is_good_bin(self, bin_num: int, min_amp: float = 0.25, min_corr: float = 0.10) -> bool: """ Verify the data is good for a given bin. This will check the Amplitude, Correlation and Earth Velocity data. It will check the Amplitude bin against the minimum amplitude value. It will check the Correlation against the minimum correlation value. It will check for BAD_VELOCITY in the Earth Velocity data. :param ens: Ensemble data. :param bin_num: Bin Number. :param min_amp: Minimum Amplitude value. :param min_corr: Minimum Correlation value. :return: TRUE if all values pass. """ # Verify Amplitude data exist and all is good for the bin if self.IsAmplitude and not self.Amplitude.is_good_bin(bin_num, min_amp): return False # Verify Correlation data exist and all is good for the bin if self.IsCorrelation and not self.Correlation.is_good_bin(bin_num, min_corr): return False # Verify Earth Velocity data exist and all is good for the bin if self.IsEarthVelocity and not self.EarthVelocity.is_good_bin(bin_num): return False return True @staticmethod def generate_header(value_type, num_elements, element_multiplier, imag, name_length, name): """ Generate the header for an ensemble dataset. Big Endian :param value_type: Value type (float, int, string) :param num_elements: Number of elements or number of bins. :param element_multiplier: Element multipler or number of beams. :param imag: NOT USED :param name_length: Length of the name. :param name: Name of the dataset. :return: Header for a dataset. """ result = [] result += Ensemble.int32_to_bytes(value_type) # Value Type result += Ensemble.int32_to_bytes(num_elements) # Number of elements result += Ensemble.int32_to_bytes(element_multiplier) # Element Multiplier result += Ensemble.int32_to_bytes(imag) # Image result += Ensemble.int32_to_bytes(name_length) # Name Length result += name.encode() # Name return result @staticmethod def crc16_ccitt(crc, data): msb = crc >> 8 lsb = crc & 255 for c in data: x = ord(c) ^ msb x ^= (x >> 4) msb = (lsb ^ (x >> 3) ^ (x << 4)) & 255 lsb = (x ^ (x << 5)) & 255 return (msb << 8) + lsb @staticmethod def array_2d_to_df(vel_array, dt, ss_code, ss_config, blank, bin_size, first_ens_num, last_ens_num): """ Convert the given 2D array to a dataframe. Columns: Index, TimeStamp, Bin, Beam, SS_Code, SS_Config, BinSize, Blank, BinDepth, Value Columns: Index, time_stamp, ss_code, ss_config, bin_num, beam_num, bin_depth, first_ens_num, last_ens_num, value dictionary to dataframe to speed up performance https://stackoverflow.com/questions/27929472/improve-row-append-performance-on-pandas-dataframes :param vel_array: 2D array containing the data :param dt: DateTime :param ss_code: SS Code as a string :param ss_config: SS Configuration as int :param blank: Blanking distance. :param bin_size: Bin Size :param first_ens_num: First Ensemble Number. :param last_ens_num: Last Ensemble Number. :return: Dataframe of all the data from the array given. """ # Dictionary to create dataframe # Faster than appending to a dataframe dict_result = {} # A counter to use to add entries to dict i = 0 if vel_array: # Go through each bin and beam for bin_num in range(len(vel_array)): for beam_num in range(len(vel_array[0])): # Get the bin depth bin_depth = Ensemble.get_bin_depth(blank, bin_size, bin_num) # Get the value value = vel_array[bin_num][beam_num] # Create a dict entry dict_result[i] = {'time_stamp': dt, 'ss_code': ss_code, 'ss_config': ss_config, 'bin_num': bin_num, 'beam_num': beam_num, 'bin_depth': bin_depth, 'first_ens_num': first_ens_num, 'last_ens_num': last_ens_num, 'value': value} # Increment index i = i + 1 # Create the dataframe from the dictionary # important to set the 'orient' parameter to "index" to make the keys as rows df = pd.DataFrame.from_dict(dict_result, "index") return df @staticmethod def array_1d_to_df(vel_array, dt, ss_code, ss_config, blank, bin_size, first_ens_num, last_ens_num): """ Convert the given 1D array to a dataframe. Columns: Index, TimeStamp, Bin, Beam, SS_Code, SS_Config, BinSize, Blank, BinDepth, Value Columns: Index, time_stamp, ss_code, ss_config, bin_num, beam_num, bin_depth, first_ens_num, last_ens_num, value dictionary to dataframe to speed up performance https://stackoverflow.com/questions/27929472/improve-row-append-performance-on-pandas-dataframes :param vel_array: 2D array containing the data :param dt: DateTime :param ss_code: SS Code as a string :param ss_config: SS Configuration as int :param blank: Blanking distance. :param bin_size: Bin Size :param first_ens_num: First Ensemble Number. :param last_ens_num: Last Ensemble Number. :return: Dataframe of all the data from the array given. """ # Dictionary to create dataframe # Faster than appending to a dataframe dict_result = {} # A counter to use to add entries to dict i = 0 if vel_array: # Go through each bin and beam for bin_num in range(len(vel_array)): # Get the bin depth bin_depth = Ensemble.get_bin_depth(blank, bin_size, bin_num) # Get the value value = vel_array[bin_num] # Create a dict entry dict_result[i] = {'time_stamp': dt, 'ss_code': ss_code, 'ss_config': ss_config, 'bin_num': bin_num, 'beam_num': 0, 'bin_depth': bin_depth, 'first_ens_num': first_ens_num, 'last_ens_num': last_ens_num, 'value': value} # Increment index i = i + 1 # Create the dataframe from the dictionary # important to set the 'orient' parameter to "index" to make the keys as rows df =
pd.DataFrame.from_dict(dict_result, "index")
pandas.DataFrame.from_dict
# Exports PRISM temperature and PRISM precipitation averaged with Naselle gauge for a given time period # Script written in Python 3.7 import __init__ import scripts.config as config import pandas as pd import matplotlib.pyplot as plt import mpld3 import numpy as np # ======================================================================= # Config start = pd.to_datetime('01-01-1984') end = pd.to_datetime('12-31-2020') # Average PRISM and Naselle gauge precipitation gauge = pd.read_csv(config.daily_ppt.parents[0] / 'GHCND_USC00455774_1929_2020.csv', parse_dates=True, index_col=5) gauge['SNOW'].fillna(0, inplace=True) gauge['SNOW_SWE'] = gauge['SNOW'] / 13 gauge['PRCP_TOT'] = gauge['PRCP'] + gauge['SNOW_SWE'] gauge_precip = gauge[['PRCP_TOT']] prism_precip = pd.read_csv(config.daily_ppt, parse_dates=True, index_col=0) # Expand precip record to full date range in case some days are missing rng =
pd.date_range(start, end)
pandas.date_range
""" Operator to slide a fixed length window across a timeseries dataframe """ import pandas as pd from tqdm import tqdm from tasrif.processing_pipeline import ProcessingOperator class SlidingWindowOperator(ProcessingOperator): """ From a timeseries dataframe of participants, this function generates two dataframes: <time_series_features>, <labels> The first dataframe can be used with tsfresh later on, while the second has all the labels that we want to predict. Notice that the default winsize is 1h and 15 minutres (`1h15t`). We use the first hour to extract the features and the 15 min only to collect the ground_truth labels. Examples -------- import pandas as pd from tasrif.processing_pipeline.custom import SlidingWindowOperator >>> df = pd.DataFrame([ ... ["2020-02-16 11:45:00",27,102.5], ... ["2020-02-16 12:00:00",27,68.5], ... ["2020-02-16 12:15:00",27,40.0], ... ["2020-02-16 15:15:00",27,282.5], ... ["2020-02-16 15:30:00",27,275.0], ... ["2020-02-16 15:45:00",27,250.0], ... ["2020-02-16 16:00:00",27,235.0], ... ["2020-02-16 16:15:00",27,206.5], ... ["2020-02-16 16:30:00",27,191.0], ... ["2020-02-16 16:45:00",27,166.5], ... ["2020-02-16 17:00:00",27,171.5], ... ["2020-02-16 17:15:00",27,152.0], ... ["2020-02-16 17:30:00",27,124.0], ... ["2020-02-16 17:45:00",27,106.0], ... ["2020-02-16 18:00:00",27,96.5], ... ["2020-02-16 18:15:00",27,86.5], ... ["2020-02-16 17:30:00",31,186.0], ... ["2020-02-16 17:45:00",31,177.0], ... ["2020-02-16 18:00:00",31,171.0], ... ["2020-02-16 18:15:00",31,164.0], ... ["2020-02-16 18:30:00",31,156.0], ... ["2020-02-16 18:45:00",31,157.0], ... ["2020-02-16 19:00:00",31,158.0], ... ["2020-02-16 19:15:00",31,158.5], ... ["2020-02-16 19:30:00",31,150.0], ... ["2020-02-16 19:45:00",31,145.0], ... ["2020-02-16 20:00:00",31,137.0], ... ["2020-02-16 20:15:00",31,141.0], ... ["2020-02-16 20:45:00",31,146.0], ... ["2020-02-16 21:00:00",31,141.0]], ... columns=['dateTime','patientID','CGM']) >>> df['dateTime'] = pd.to_datetime(df['dateTime']) >>> df >>> op = SlidingWindowOperator(winsize="1h15t", ... time_col="dateTime", ... label_col="CGM", ... participant_identifier="patientID") >>> df_timeseries, df_labels, df_label_time, df_pids = op.process(df)[0] >>> df_timeseries . dateTime CGM seq_id 0 2020-02-16 15:15:00 282.5 0 1 2020-02-16 15:30:00 275.0 0 2 2020-02-16 15:45:00 250.0 0 3 2020-02-16 16:00:00 235.0 0 4 2020-02-16 15:30:00 275.0 1 ... ... ... ... 143 2020-02-16 19:45:00 145.0 35 144 2020-02-16 19:15:00 158.5 36 145 2020-02-16 19:30:00 150.0 36 146 2020-02-16 19:45:00 145.0 36 147 2020-02-16 20:00:00 137.0 36 148 rows × 3 columns """ def __init__( # pylint: disable=too-many-arguments self, winsize="1h15t", period=15, time_col="time", label_col="CGM", participant_identifier="patientID", ): """Creates a new instance of SlidingWindowsOperator Args: winsize (int, offset): Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. period (int): periodicity expected between rows. Only used if winsize is an offset time_col (str): time column in the dataframe label_col (str): label column in the dataframe participant_identifier (str): participant id column in the dataframe """ super().__init__() self.winsize = winsize self.period = period self.time_col = time_col self.label_col = label_col self.participant_identifier = participant_identifier def _process(self, *data_frames): """Processes the passed data frame as per the configuration define in the constructor. Args: *data_frames (list of pd.DataFrame): Variable number of pandas dataframes to be processed Returns: pd.DataFrame -or- list[pd.DataFrame] Processed dataframe(s) resulting from applying the operator """ # Determine window size if self.winsize is an offset window_size_in_rows = self.winsize if isinstance(self.winsize, str): window_size_in_rows = self._determine_window_size() processed = [] for data_frame in data_frames: df_labels = [] df_label_time = [] df_timeseries = [] df_pids = [] last_seq_id = 0 for pid in tqdm(data_frame[self.participant_identifier].unique()): ( last_seq_id, df_ts_tmp, df_label_tmp, df_label_time_tmp, df_pid, ) = self._generate_slide_wins( data_frame[data_frame[self.participant_identifier] == pid], start_seq=last_seq_id, max_size=window_size_in_rows, ) df_timeseries.append(df_ts_tmp) df_labels.append(df_label_tmp) df_label_time.append(df_label_time_tmp) df_pids.append(df_pid) df_labels = pd.concat(df_labels).reset_index(drop=True) df_label_time = pd.concat(df_label_time).reset_index(drop=True) df_timeseries = pd.concat(df_timeseries).reset_index(drop=True) df_pids = pd.concat(df_pids).reset_index(drop=True) df_pids.name = "pid" processed.append([df_timeseries, df_labels, df_label_time, df_pids]) return processed def _generate_slide_wins(self, df_in, start_seq=0, max_size=5): """ The following code will construct a rolling win that could be based on either time or #win This will feed list_of_indexes with the sub-win indices that will be used in the next for loop Time-based win might be smaller than the expected size. We fix it by comparing the size of each value in the list_of_indices with the size of the last element Args: df_in (pd.DataFrame): Pandas DataFrame that has been filtered by `_process_epoch` start_seq (int): sequence id max_size: window size to keep for the returned data Returns: seq_id (int): last sequence id transformed_df (pd.DataFrame): Dataframe that contains the windows labeled by sequence ids lables (pd.Series): Series of ground truths of self.label_col label_times (pd.Series): Series of ground truths of datetime pid (pd.Series): Series of patient ID that belong to transformed_df Raises: ValueError: Occurs when _generate_slide_wins is called for more than one pid """ seq_id = start_seq transformed_df = [] list_of_indices = [] labels = [] label_times = [] pid = df_in[self.participant_identifier].unique() if len(pid) > 1: raise ValueError("_generate_slide_wins must be called with one pid") pid = pid[0] dataframe = df_in.reset_index(drop=True).copy() dataframe.reset_index().rolling(self.winsize, on=self.time_col, center=False)[ "index" ].apply((lambda x: list_of_indices.append(x.tolist()) or 0)) # Append label index to labels list for idx in list_of_indices: if len(idx) != max_size: continue labels.append(dataframe.loc[idx].iloc[-1][self.label_col]) label_times.append(dataframe.loc[idx].iloc[-1][self.time_col]) tmp_df = dataframe.loc[idx[0:-1]].copy() tmp_df["seq_id"] = seq_id seq_id += 1 del tmp_df[self.participant_identifier] transformed_df.append(tmp_df) labels = pd.Series(labels) labels.name = "ground_truth" label_times = pd.Series(label_times) label_times.name = "gt_time" if transformed_df: transformed_df =
pd.concat(transformed_df)
pandas.concat
#! /usr/bin/env python import argparse import os import sys from time import strftime import pysam from hashed_read_genome_array import HashedReadBAMGenomeArray, ReadKeyMapFactory, read_length_nmis #, get_hashed_counts from plastid.genomics.roitools import SegmentChain, positionlist_to_segments import multiprocessing as mp from scipy.optimize import nnls import numpy as np import pandas as pd parser = argparse.ArgumentParser(description='Use linear regression to quantify expression of the ORFs identified by ORF-RATER. Reported values are ' 'in reads per nucleotide; any additional normalization(s) (such as for read depth must be performed in ' 'post-processing. The number of nucleotides used to quantify each ORF is also included in the output. ' 'ORFs may receive NaN values if they are too short (and therefore masked out by STARTMASK and STOPMASK) ' 'or if they are indistinguishable from another ORF after those regions have been masked.') parser.add_argument('bamfiles', nargs='+', help='Path to transcriptome-aligned BAM file(s) for read data. Expression values will be quantified from ' 'each independently.') parser.add_argument('--names', nargs='+', help='Names to use to refer to BAMFILES, e.g. if the filenames themselves are inconveniently long or ' 'insufficiently descriptive. (Default: inferred from BAMFILES)') parser.add_argument('--subdir', default=os.path.curdir, help='Convenience argument when dealing with multiple datasets. In such a case, set SUBDIR to an appropriate name (e.g. HARR, ' 'CHX) to avoid file conflicts. (Default: current directory)') parser.add_argument('--inbed', default='transcripts.bed', help='Transcriptome BED-file (Default: transcripts.bed)') parser.add_argument('--offsetfile', default='offsets.txt', help='Path to 2-column tab-delimited file with 5\' offsets for variable P-site mappings. First column indicates read length, ' 'second column indicates offset to apply. Read lengths are calculated after trimming up to MAX5MIS 5\' mismatches. Accepted ' 'read lengths are defined by those present in the first column of this file. If SUBDIR is set, this file is assumed to be ' 'in that directory. (Default: offsets.txt)') parser.add_argument('--max5mis', type=int, default=1, help='Maximum 5\' mismatches to trim. Reads with more than this number will be excluded. ' '(Default: 1)') parser.add_argument('--startmask', type=int, nargs=2, default=[1, 2], help='Region around start codons (in codons) to exclude from quantification. (Default: 1 2, meaning one full codon before the ' 'start is excluded, as are the start codon and the codon following it).') parser.add_argument('--stopmask', type=int, nargs=2, default=[3, 0], help='Region around stop codons (in codons) to exclude from quantification. (Default: 3 0, meaning three codons before and ' 'including the stop are excluded, but none after).') parser.add_argument('--metagenefile', default='metagene.txt', help='File to be used as the metagene, generated by regress_orfs.py. If SUBDIR is set, this file is assumed to be in that ' 'directory. (Default: metagene.txt)') parser.add_argument('--ratingsfile', default='orfratings.h5', help='Path to pandas HDF store containing ORF ratings; generated by rate_regression_output.py (Default: orfratings.h5)') parser.add_argument('--minrating', type=float, default=0.8, help='Minimum ORF rating to require for an ORF to be quantified (Default: 0.8)') parser.add_argument('--minlen', type=int, default=0, help='Minimum ORF length (in amino acids) to be included in the BED file (Default: 0)') parser.add_argument('--quantfile', default='quant.h5', help='Filename to which to output the table of quantified translation values for each ORF. Formatted as pandas HDF; table name ' 'is "quant". If SUBDIR is set, this file will be placed in that directory. (Default: quant.h5)') parser.add_argument('--CSV', help='If included, also write output in CSV format to the provided filename.') parser.add_argument('-v', '--verbose', action='count', help='Output a log of progress and timing (to stdout). Repeat for higher verbosity level.') parser.add_argument('-p', '--numproc', type=int, default=1, help='Number of processes to run. Defaults to 1 but more recommended if available.') parser.add_argument('-f', '--force', action='store_true', help='Force file overwrite') opts = parser.parse_args() offsetfilename = os.path.join(opts.subdir, opts.offsetfile) metafilename = os.path.join(opts.subdir, opts.metagenefile) quantfilename = os.path.join(opts.subdir, opts.quantfile) if not opts.force: if os.path.exists(quantfilename): raise IOError('%s exists; use --force to overwrite' % quantfilename) if opts.CSV and os.path.exists(opts.CSV): raise IOError('%s exists; use --force to overwrite' % opts.CSV) if opts.names: if len(opts.bamfiles) != len(opts.names): raise ValueError('Precisely one name must be provided for each BAMFILE') colnames = opts.names else: colnames = [os.path.splitext(os.path.basename(bamfile))[0] for bamfile in opts.bamfiles] # '/path/to/myfile.bam' -> 'myfile' if opts.verbose: sys.stdout.write(' '.join(sys.argv) + '\n') def logprint(nextstr): sys.stdout.write('[%s] %s\n' % (strftime('%Y-%m-%d %H:%M:%S'), nextstr)) sys.stdout.flush() log_lock = mp.Lock() rdlens = [] Pdict = {} with open(offsetfilename, 'rU') as infile: for line in infile: ls = line.strip().split() rdlen = int(ls[0]) for nmis in range(opts.max5mis+1): Pdict[(rdlen, nmis)] = int(ls[1])+nmis # e.g. if nmis == 1, offset as though the read were missing that base entirely rdlens.append(rdlen) rdlens.sort() # hash transcripts by ID for easy reference later with open(opts.inbed, 'rU') as inbed: bedlinedict = {line.split()[3]: line for line in inbed} with pd.HDFStore(opts.ratingsfile, mode='r') as ratingstore: chroms = ratingstore.select('orfratings/meta/chrom/meta').values # because saved as categorical, this is the list of all chromosomes if opts.verbose: logprint('Loading metagene') metagene =
pd.read_csv(metafilename, sep='\t')
pandas.read_csv
import argparse import json import os import pandas as pd import numpy as np import csv import glob from pathlib import Path # requirements.txt import subprocess import sys # this doesn't work #subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt']) subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'simpletransformers==0.22.1']) subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'tensorboardx==2.0']) subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'torch==1.4.0']) subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'torchvision==0.5.0']) import torch import transformers as ppb import sklearn from sklearn.model_selection import train_test_split def list_arg(raw_value): """argparse type for a list of strings""" return str(raw_value).split(',') def parse_args(): # Unlike SageMaker training jobs (which have `SM_HOSTS` and `SM_CURRENT_HOST` env vars), processing jobs to need to parse the resource config file directly resconfig = {} try: with open('/opt/ml/config/resourceconfig.json', 'r') as cfgfile: resconfig = json.load(cfgfile) except FileNotFoundError: print('/opt/ml/config/resourceconfig.json not found. current_host is unknown.') pass # Ignore # Local testing with CLI args parser = argparse.ArgumentParser(description='Process') parser.add_argument('--hosts', type=list_arg, default=resconfig.get('hosts', ['unknown']), help='Comma-separated list of host names running the job' ) parser.add_argument('--current-host', type=str, default=resconfig.get('current_host', 'unknown'), help='Name of this host running the job' ) parser.add_argument('--input-data', type=str, default='/opt/ml/processing/input/data', ) parser.add_argument('--output-data', type=str, default='/opt/ml/processing/output', ) return parser.parse_args() def process(args): print('Current host: {}'.format(args.current_host)) # print('Listing contents of {}'.format(args.input_data)) # dirs_input = os.listdir(args.input_data) train_data = None validation_data = None test_data = None # This would print all the files and directories for file in glob.glob('{}/*.tsv.gz'.format(args.input_data)): print(file) filename_without_extension = Path(Path(file).stem).stem # chunksize=100 seems to work well df_reader = pd.read_csv(file, delimiter='\t', quoting=csv.QUOTE_NONE, compression='gzip', chunksize=100) for df in df_reader: df.shape df.head(5) df.isna().values.any() df = df.dropna() df = df.reset_index(drop=True) df.shape df['is_positive_sentiment'] = (df['star_rating'] >= 4).astype(int) df.shape ########### # TODO: increase batch size and run through all the data ########### # Note: we need to keep this at size 100 batch_1 = df[['review_body', 'is_positive_sentiment']] batch_1.shape batch_1.head(5) # ## Loading the Pre-trained BERT model # Let's now load a pre-trained BERT model. # For DistilBERT (lightweight for a notebook like this): #model_class, tokenizer_class, pretrained_weights = (ppb.DistilBertModel, ppb.DistilBertTokenizer, 'distilbert-base-uncased') # For Bert (requires a lot more memory): model_class, tokenizer_class, pretrained_weights = (ppb.BertModel, ppb.BertTokenizer, 'bert-base-uncased') # Load pretrained model/tokenizer tokenizer = tokenizer_class.from_pretrained(pretrained_weights) model = model_class.from_pretrained(pretrained_weights) # Right now, the variable `model` holds a pretrained BERT or distilBERT model (a version of BERT that is smaller, but much faster and requiring a lot less memory.) # # ## Preparing the Dataset # Before we can hand our sentences to BERT, we need to so some minimal processing to put them in the format it requires. # # ### Tokenization # Our first step is to tokenize the sentences -- break them up into word and subwords in the format BERT is comfortable with. tokenized = batch_1['review_body'].apply((lambda x: tokenizer.encode(x, add_special_tokens=True))) # ### Padding # After tokenization, `tokenized` is a list of sentences -- each sentences is represented as a list of tokens. We want BERT to process our examples all at once (as one batch). It's just faster that way. For that reason, we need to pad all lists to the same size, so we can represent the input as one 2-d array, rather than a list of lists (of different lengths). max_len = 0 for i in tokenized.values: if len(i) > max_len: max_len = len(i) padded = np.array([i + [0]*(max_len-len(i)) for i in tokenized.values]) # Our dataset is now in the `padded` variable, we can view its dimensions below: np.array(padded).shape # ### Masking # If we directly send `padded` to BERT, that would slightly confuse it. We need to create another variable to tell it to ignore (mask) the padding we've added when it's processing its input. That's what attention_mask is: attention_mask = np.where(padded != 0, 1, 0) attention_mask.shape # The `model()` function runs our sentences through BERT. The results of the processing will be returned into `last_hidden_states`. input_ids = torch.tensor(padded) attention_mask = torch.tensor(attention_mask) with torch.no_grad(): last_hidden_states = model(input_ids, attention_mask=attention_mask) features = last_hidden_states[0][:,0,:].numpy() print(features) print(type(features)) labels = batch_1['is_positive_sentiment'] print(labels) print(type(labels)) # TODO: Merge features and labels for our purpose here train_features, test_features, train_labels, test_labels = train_test_split(features, labels, stratify=batch_1['is_positive_sentiment']) # # Split all data into 90% train and 10% holdout # train_features, holdout_features, train_labels, holdout_labels = train_test_split(features, labels, stratify=batch_1['is_positive_sentiment']) # # Split the holdout into 50% validation and 50% test # validation_features, test_features, validation_labels, test_labels = train_test_split(holdout_features, holdout_labels, stratify=batch_1['is_positive_sentiment']) train_features.shape print(train_features) print(type(train_features)) df_train_features = pd.DataFrame(train_features) df_train_labels =
pd.DataFrame(train_labels)
pandas.DataFrame
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd from pandas import Timestamp def create_dataframe(tuple_data): """Create pandas df from tuple data with a header.""" return pd.DataFrame.from_records(tuple_data[1:], columns=tuple_data[0]) ### REUSABLE FIXTURES -------------------------------------------------------- @pytest.fixture() def indices_3years(): """Three indices over 3 years.""" return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 100.0, 100.0, 100.0), (Timestamp('2012-02-01 00:00:00'), 101.239553643, 96.60525323799999, 97.776838217), (Timestamp('2012-03-01 00:00:00'), 102.03030533, 101.450821724, 96.59101862), (Timestamp('2012-04-01 00:00:00'), 104.432402661, 98.000263617, 94.491213369), (Timestamp('2012-05-01 00:00:00'), 105.122830333, 95.946873831, 93.731891785), (Timestamp('2012-06-01 00:00:00'), 103.976692567, 97.45914568100001, 90.131064035), (Timestamp('2012-07-01 00:00:00'), 106.56768678200001, 94.788761174, 94.53487522), (Timestamp('2012-08-01 00:00:00'), 106.652151036, 98.478217946, 92.56165627700001), (Timestamp('2012-09-01 00:00:00'), 108.97290730799999, 99.986521241, 89.647230903), (Timestamp('2012-10-01 00:00:00'), 106.20124385700001, 99.237117891, 92.27819603799999), (Timestamp('2012-11-01 00:00:00'), 104.11913898700001, 100.993436318, 95.758970985), (Timestamp('2012-12-01 00:00:00'), 107.76600978, 99.60424011299999, 95.697091336), (Timestamp('2013-01-01 00:00:00'), 98.74350698299999, 100.357120656, 100.24073830200001), (Timestamp('2013-02-01 00:00:00'), 100.46305431100001, 99.98213513200001, 99.499007278), (Timestamp('2013-03-01 00:00:00'), 101.943121499, 102.034291064, 96.043392231), (Timestamp('2013-04-01 00:00:00'), 99.358987741, 106.513055039, 97.332012817), (Timestamp('2013-05-01 00:00:00'), 97.128074038, 106.132168479, 96.799806436), (Timestamp('2013-06-01 00:00:00'), 94.42944162, 106.615734964, 93.72086654600001), (Timestamp('2013-07-01 00:00:00'), 94.872365481, 103.069773446, 94.490515359), (Timestamp('2013-08-01 00:00:00'), 98.239415397, 105.458081805, 93.57271149299999), (Timestamp('2013-09-01 00:00:00'), 100.36774827100001, 106.144579258, 90.314524375), (Timestamp('2013-10-01 00:00:00'), 100.660205114, 101.844838294, 88.35136848399999), (Timestamp('2013-11-01 00:00:00'), 101.33948384799999, 100.592230114, 93.02874928899999), (Timestamp('2013-12-01 00:00:00'), 101.74876982299999, 102.709038791, 93.38277933200001), (Timestamp('2014-01-01 00:00:00'), 101.73439491, 99.579700011, 104.755837919), (Timestamp('2014-02-01 00:00:00'), 100.247760523, 100.76732961, 100.197855834), (Timestamp('2014-03-01 00:00:00'), 102.82080245600001, 99.763171909, 100.252537549), (Timestamp('2014-04-01 00:00:00'), 104.469889684, 96.207920184, 98.719797067), (Timestamp('2014-05-01 00:00:00'), 105.268899775, 99.357641836, 99.99786671), (Timestamp('2014-06-01 00:00:00'), 107.41649204299999, 100.844974811, 96.463821506), (Timestamp('2014-07-01 00:00:00'), 110.146087435, 102.01075029799999, 94.332755083), (Timestamp('2014-08-01 00:00:00'), 109.17068484100001, 101.562418115, 91.15410351700001), (Timestamp('2014-09-01 00:00:00'), 109.872892919, 101.471759564, 90.502291475), (Timestamp('2014-10-01 00:00:00'), 108.508436998, 98.801947543, 93.97423224399999), (Timestamp('2014-11-01 00:00:00'), 109.91248118, 97.730489099, 90.50638234200001), (Timestamp('2014-12-01 00:00:00'), 111.19756703600001, 99.734704555, 90.470418612), ], ).set_index(0, drop=True) @pytest.fixture() def weights_3years(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2013-01-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2014-01-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), ], ).set_index(0, drop=True) @pytest.fixture() def weights_3years_start_feb(weights_3years): return weights_3years.shift(1, freq='MS') @pytest.fixture() def weight_shares_3years(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 0.489537029, 0.21362007800000002, 0.29684289199999997), (Timestamp('2013-01-01 00:00:00'), 0.535477885, 0.147572705, 0.31694941), (Timestamp('2014-01-01 00:00:00'), 0.512055362, 0.1940439, 0.293900738), ], ).set_index(0, drop=True) @pytest.fixture() def weights_shares_start_feb(weight_shares_3years): return weight_shares_3years.shift(1, freq='MS') @pytest.fixture() def indices_1year(indices_3years): return indices_3years.loc['2012', :] @pytest.fixture() def weights_1year(weights_3years): return weights_3years.loc['2012', :] @pytest.fixture() def indices_6months(indices_3years): return indices_3years.loc['2012-Jan':'2012-Jun', :] @pytest.fixture() def weights_6months(weights_3years): return weights_3years.loc['2012', :] @pytest.fixture() def indices_transposed(indices_3years): return indices_3years.T @pytest.fixture() def weights_transposed(weights_3years): return weights_3years.T @pytest.fixture() def indices_missing(indices_3years): indices_missing = indices_3years.copy() change_to_nans = [ ('2012-06', 2), ('2012-12', 3), ('2013-10', 2), ('2014-07', 1), ] for sl in change_to_nans: indices_missing.loc[sl] = np.nan return indices_missing @pytest.fixture() def indices_missing_transposed(indices_missing): return indices_missing.T ### AGGREGATION FIXTURES ----------------------------------------------------- @pytest.fixture() def aggregate_outcome_3years(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 100.0), (Timestamp('2012-02-01 00:00:00'), 99.22169156), (Timestamp('2012-03-01 00:00:00'), 100.29190240000001), (Timestamp('2012-04-01 00:00:00'), 100.10739720000001), (Timestamp('2012-05-01 00:00:00'), 99.78134264), (Timestamp('2012-06-01 00:00:00'), 98.47443727), (Timestamp('2012-07-01 00:00:00'), 100.4796172), (Timestamp('2012-08-01 00:00:00'), 100.7233716), (Timestamp('2012-09-01 00:00:00'), 101.31654509999998), (Timestamp('2012-10-01 00:00:00'), 100.5806089), (Timestamp('2012-11-01 00:00:00'), 100.9697697), (Timestamp('2012-12-01 00:00:00'), 102.4399192), (Timestamp('2013-01-01 00:00:00'), 99.45617890000001), (Timestamp('2013-02-01 00:00:00'), 100.08652959999999), (Timestamp('2013-03-01 00:00:00'), 100.0866599), (Timestamp('2013-04-01 00:00:00'), 99.7722843), (Timestamp('2013-05-01 00:00:00'), 98.35278839), (Timestamp('2013-06-01 00:00:00'), 96.00322344), (Timestamp('2013-07-01 00:00:00'), 95.96105198), (Timestamp('2013-08-01 00:00:00'), 97.82558448), (Timestamp('2013-09-01 00:00:00'), 98.03388747), (Timestamp('2013-10-01 00:00:00'), 96.93374613), (Timestamp('2013-11-01 00:00:00'), 98.59512718), (Timestamp('2013-12-01 00:00:00'), 99.23888357), (Timestamp('2014-01-01 00:00:00'), 102.2042938), (Timestamp('2014-02-01 00:00:00'), 100.3339127), (Timestamp('2014-03-01 00:00:00'), 101.4726729), (Timestamp('2014-04-01 00:00:00'), 101.17674840000001), (Timestamp('2014-05-01 00:00:00'), 102.57269570000001), (Timestamp('2014-06-01 00:00:00'), 102.9223313), (Timestamp('2014-07-01 00:00:00'), 103.9199248), (Timestamp('2014-08-01 00:00:00'), 102.3992605), (Timestamp('2014-09-01 00:00:00'), 102.54967020000001), (Timestamp('2014-10-01 00:00:00'), 102.35333840000001), (Timestamp('2014-11-01 00:00:00'), 101.8451732), (Timestamp('2014-12-01 00:00:00'), 102.8815443), ], ).set_index(0, drop=True).squeeze() @pytest.fixture() def aggregate_outcome_1year(aggregate_outcome_3years): return aggregate_outcome_3years.loc['2012'] @pytest.fixture() def aggregate_outcome_6months(aggregate_outcome_3years): return aggregate_outcome_3years.loc['2012-Jan':'2012-Jun'] @pytest.fixture() def aggregate_outcome_missing(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 100.0), (Timestamp('2012-02-01 00:00:00'), 99.22169156), (Timestamp('2012-03-01 00:00:00'), 100.29190240000001), (Timestamp('2012-04-01 00:00:00'), 100.10739720000001), (Timestamp('2012-05-01 00:00:00'), 99.78134264), (Timestamp('2012-06-01 00:00:00'), 98.75024119), (Timestamp('2012-07-01 00:00:00'), 100.4796172), (Timestamp('2012-08-01 00:00:00'), 100.7233716), (Timestamp('2012-09-01 00:00:00'), 101.31654509999998), (Timestamp('2012-10-01 00:00:00'), 100.5806089), (Timestamp('2012-11-01 00:00:00'), 100.9697697), (Timestamp('2012-12-01 00:00:00'), 105.2864531), (Timestamp('2013-01-01 00:00:00'), 99.45617890000001), (Timestamp('2013-02-01 00:00:00'), 100.08652959999999), (Timestamp('2013-03-01 00:00:00'), 100.0866599), (Timestamp('2013-04-01 00:00:00'), 99.7722843), (Timestamp('2013-05-01 00:00:00'), 98.35278839), (Timestamp('2013-06-01 00:00:00'), 96.00322344), (Timestamp('2013-07-01 00:00:00'), 95.96105198), (Timestamp('2013-08-01 00:00:00'), 97.82558448), (Timestamp('2013-09-01 00:00:00'), 98.03388747), (Timestamp('2013-10-01 00:00:00'), 96.08353503), (Timestamp('2013-11-01 00:00:00'), 98.59512718), (Timestamp('2013-12-01 00:00:00'), 99.23888357), (Timestamp('2014-01-01 00:00:00'), 102.2042938), (Timestamp('2014-02-01 00:00:00'), 100.3339127), (Timestamp('2014-03-01 00:00:00'), 101.4726729), (Timestamp('2014-04-01 00:00:00'), 101.17674840000001), (Timestamp('2014-05-01 00:00:00'), 102.57269570000001), (Timestamp('2014-06-01 00:00:00'), 102.9223313), (Timestamp('2014-07-01 00:00:00'), 97.38610996), (Timestamp('2014-08-01 00:00:00'), 102.3992605), (Timestamp('2014-09-01 00:00:00'), 102.54967020000001), (Timestamp('2014-10-01 00:00:00'), 102.35333840000001), (Timestamp('2014-11-01 00:00:00'), 101.8451732), (Timestamp('2014-12-01 00:00:00'), 102.8815443), ], ).set_index(0, drop=True).squeeze() ### WEIGHTS FIXTURES ------------------------------------------------------ @pytest.fixture() def reindex_weights_to_indices_outcome_start_jan(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-02-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-03-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-04-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-05-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-06-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-07-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-08-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-09-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-10-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-11-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-12-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2013-01-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-02-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-03-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-04-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-05-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-06-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-07-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-08-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-09-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-10-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-11-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-12-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2014-01-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-02-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-03-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-04-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-05-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-06-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-07-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-08-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-09-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-10-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-11-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-12-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), ], ).set_index(0, drop=True) @pytest.fixture() def reindex_weights_to_indices_outcome_start_feb(): return pd.DataFrame.from_records( [ (Timestamp('2012-01-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-02-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-03-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-04-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-05-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-06-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-07-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-08-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-09-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-10-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-11-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2012-12-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2013-01-01 00:00:00'), 5.1869643839999995, 2.263444179, 3.145244219), (Timestamp('2013-02-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-03-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-04-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-05-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-06-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-07-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-08-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-09-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-10-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-11-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2013-12-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2014-01-01 00:00:00'), 6.74500585, 1.8588606330000002, 3.992369584), (Timestamp('2014-02-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-03-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-04-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-05-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-06-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-07-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (Timestamp('2014-08-01 00:00:00'), 6.23115844, 2.361303832, 3.5764532489999996), (
Timestamp('2014-09-01 00:00:00')
pandas.Timestamp
from smartapi import SmartConnect import pandas as pd from datetime import datetime, timedelta import credentials import requests import numpy as np from time import time, sleep from talib.abstract import * import threading import warnings warnings.filterwarnings('ignore') SYMBOL_LIST = ['CDSL','IEX'] TRADED_SYMBOL = [] timeFrame = 60 + 5 #5 sec coz dealy repsone of historical API def place_order(token,symbol,qty,buy_sell,ordertype,price,variety= 'NORMAL',exch_seg='NSE',triggerprice=0): try: orderparams = { "variety": variety, "tradingsymbol": symbol, "symboltoken": token, "transactiontype": buy_sell, "exchange": exch_seg, "ordertype": ordertype, "producttype": "INTRADAY", "duration": "DAY", "price": price, "squareoff": "0", "stoploss": "0", "quantity": qty, "triggerprice":triggerprice } orderId=credentials.SMART_API_OBJ.placeOrder(orderparams) print("The order id is: {}".format(orderId)) except Exception as e: print("Order placement failed: {}".format(e.message)) def intializeSymbolTokenMap(): url = 'https://margincalculator.angelbroking.com/OpenAPI_File/files/OpenAPIScripMaster.json' d = requests.get(url).json() global token_df token_df = pd.DataFrame.from_dict(d) token_df['expiry'] =
pd.to_datetime(token_df['expiry'])
pandas.to_datetime
#!/usr/bin/env python """Tests for `qnorm` package.""" import unittest import numpy as np import pandas as pd import qnorm import tracemalloc tracemalloc.start() df1 = pd.DataFrame( { "C1": {"A": 5.0, "B": 2.0, "C": 3.0, "D": 4.0}, "C2": {"A": 4.0, "B": 1.0, "C": 4.0, "D": 2.0}, "C3": {"A": 3.0, "B": 4.0, "C": 6.0, "D": 8.0}, } ) df1.to_csv("test.csv") df1.to_hdf("test.hdf", key="qnorm", format="table", data_columns=True, mode="w") df1.to_parquet("test.parquet") class TestQnorm(unittest.TestCase): def test_000_numpy(self): """ test numpy support """ arr = np.random.normal(size=(20, 2)) qnorm.quantile_normalize(arr) def test_001_pandas(self): """ test pandas support """ df = pd.DataFrame( { "C1": {"A": 5.0, "B": 2.0, "C": 3.0, "D": 4.0}, "C2": {"A": 4.0, "B": 1.0, "C": 4.0, "D": 2.0}, "C3": {"A": 3.0, "B": 4.0, "C": 6.0, "D": 8.0}, } ) qnorm.quantile_normalize(df) def test_002_wiki(self): """ test the wiki example https://en.wikipedia.org/wiki/Quantile_normalization """ df = pd.DataFrame( { "C1": {"A": 5.0, "B": 2.0, "C": 3.0, "D": 4.0}, "C2": {"A": 4.0, "B": 1.0, "C": 4.0, "D": 2.0}, "C3": {"A": 3.0, "B": 4.0, "C": 6.0, "D": 8.0}, } ) result = np.array( [ [5.66666667, 5.16666667, 2.0], [2.0, 2.0, 3.0], [3.0, 5.16666667, 4.66666667], [4.66666667, 3.0, 5.66666667], ] ) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(df).values, result ) def test_003_no_change(self): """ no sorting should happen here """ arr = np.empty(shape=(20, 3)) for col in range(arr.shape[1]): vals = np.arange(arr.shape[0]) np.random.shuffle(vals) arr[:, col] = vals qnorm_arr = qnorm.quantile_normalize(arr) np.testing.assert_array_almost_equal(arr, qnorm_arr) def test_004_double(self): """ if dtype is double, return double """ arr = np.random.normal(0, 1, size=(20, 3)) arr = arr.astype(np.float64) qnorm_arr = qnorm.quantile_normalize(arr) assert qnorm_arr.dtype == np.float64 def test_005_single(self): """ if dtype is single, return single """ arr = np.random.normal(0, 1, size=(20, 3)) arr = arr.astype(np.float32) qnorm_arr = qnorm.quantile_normalize(arr) assert qnorm_arr.dtype == np.float32 def test_006_target(self): """ test if the target is used instead of the qnorm values """ arr = np.array([np.arange(0, 10), np.arange(0, 10)]).T np.random.shuffle(arr) target = np.arange(10, 20) qnorm_arr = qnorm.quantile_normalize(arr, target=target) for val in target: assert ( val in qnorm_arr[:, 0] and val in qnorm_arr[:, 1] ), f"value {val} not in qnorm array" def test_007_target_notsorted(self): """ make sure an unsorted target gets sorted first """ arr = np.array([np.arange(0, 10), np.arange(0, 10)]).T np.random.shuffle(arr) # take the reverse, which should be sorted by qnorm target = np.arange(10, 20)[::-1] qnorm_arr = qnorm.quantile_normalize(arr, target=target) for val in target: assert ( val in qnorm_arr[:, 0] and val in qnorm_arr[:, 1] ), f"value {val} not in qnorm array" def test_008_short_target(self): """ test if an error is raised with a invalid sized target """ arr = np.array([np.arange(0, 10), np.arange(0, 10)]).T target = np.arange(10, 15) self.assertRaises(ValueError, qnorm.quantile_normalize, arr, target) def test_009_wiki_ncpus(self): """ test if an error is raised with a invalid sized target """ df = pd.DataFrame( { "C1": {"A": 5.0, "B": 2.0, "C": 3.0, "D": 4.0}, "C2": {"A": 4.0, "B": 1.0, "C": 4.0, "D": 2.0}, "C3": {"A": 3.0, "B": 4.0, "C": 6.0, "D": 8.0}, } ) result = np.array( [ [5.66666667, 5.16666667, 2.0], [2.0, 2.0, 3.0], [3.0, 5.16666667, 4.66666667], [4.66666667, 3.0, 5.66666667], ] ) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(df, ncpus=10).values, result ) def test_010_axis_numpy(self): """ test numpy axis support """ arr = np.random.normal(size=(50, 4)) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(arr.T, axis=0).T, qnorm.quantile_normalize(arr, axis=1), ) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(arr, axis=1), qnorm.quantile_normalize(arr.T, axis=0).T, ) def test_011_axis_pandas(self): """ test numpy axis support """ df = pd.DataFrame( { "C1": {"A": 5.0, "B": 2.0, "C": 3.0, "D": 4.0}, "C2": {"A": 4.0, "B": 1.0, "C": 4.0, "D": 2.0}, "C3": {"A": 3.0, "B": 4.0, "C": 6.0, "D": 8.0}, } ) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(df.T, axis=0).T, qnorm.quantile_normalize(df, axis=1), ) np.testing.assert_array_almost_equal( qnorm.quantile_normalize(df, axis=1), qnorm.quantile_normalize(df.T, axis=0).T, ) def test_012_from_csv(self): """ test the basic incremental_quantile_normalize functionality """ qnorm.incremental_quantile_normalize("test.csv", "test_out.csv") df1 = pd.read_csv("test.csv", index_col=0, header=0) df2 = pd.read_csv("test_out.csv", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_013_from_csv_rowchunk(self): """ test the incremental_quantile_normalize with rowchunks functionality """ df1 = pd.read_csv("test.csv", index_col=0, header=0) for rowchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.csv", "test_out.csv", rowchunksize=rowchunksize ) df2 = pd.read_csv("test_out.csv", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_014_from_csv_colchunk(self): """ test the incremental_quantile_normalize with colchunks functionality """ df1 = pd.read_csv("test.csv", index_col=0, header=0) for colchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.csv", "test_out.csv", colchunksize=colchunksize ) df2 = pd.read_csv("test_out.csv", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_015_from_csv_colrowchunk(self): """ test the incremental_quantile_normalize with both row and colchunks """ df1 = pd.read_csv("test.csv", index_col=0, header=0) for colchunksize in range(1, 10): for rowchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.csv", "test_out.csv", rowchunksize=rowchunksize, colchunksize=colchunksize, ) df2 = pd.read_csv("test_out.csv", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_016_from_csv_largefile(self): """ test whether or not incremental_quantile_normalize works with a larger random file """ np.random.seed(42) df1 = pd.DataFrame(index=range(5000), columns=range(100)) df1[:] = np.random.randint(0, 100, size=df1.shape) df1.to_csv("test_large.csv") qnorm.incremental_quantile_normalize( "test_large.csv", "test_large_out.csv", rowchunksize=11, colchunksize=11, ) df2 = pd.read_csv("test_large_out.csv", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=4 ) def test_017_from_hdf(self): """ test the basic incremental_quantile_normalize functionality """ qnorm.incremental_quantile_normalize("test.hdf", "test_out.hdf") df1 = pd.read_hdf("test.hdf", index_col=0, header=0) df2 = pd.read_hdf("test_out.hdf", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_018_from_hdf_rowchunk(self): """ test the incremental_quantile_normalize with rowchunks functionality """ df1 = pd.read_hdf("test.hdf", index_col=0, header=0) for rowchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.hdf", "test_out.hdf", rowchunksize=rowchunksize ) df2 = pd.read_hdf("test_out.hdf", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_019_from_hdf_colchunk(self): """ test the incremental_quantile_normalize with colchunks functionality """ df1 = pd.read_hdf("test.hdf", index_col=0, header=0) for colchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.hdf", "test_out.hdf", colchunksize=colchunksize ) df2 = pd.read_hdf("test_out.hdf", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_020_from_hdf_colrowchunk(self): """ test the incremental_quantile_normalize with both row and colchunks """ df1 = pd.read_hdf("test.hdf", index_col=0, header=0) for colchunksize in range(1, 10): for rowchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.hdf", "test_out.hdf", rowchunksize=rowchunksize, colchunksize=colchunksize, ) df2 = pd.read_hdf("test_out.hdf", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_021_from_hdf_largefile(self): """ test whether or not incremental_quantile_normalize works with a larger random file """ np.random.seed(42) df1 = pd.DataFrame( index=range(5000), columns=["sample" + str(col) for col in range(100)], dtype=int, ) df1[:] = np.random.randint(0, 100, size=df1.shape) df1.to_hdf( "test_large.hdf", key="qnorm", format="table", data_columns=True ) qnorm.incremental_quantile_normalize( "test_large.hdf", "test_large_out.hdf", rowchunksize=11, colchunksize=11, ) df2 = pd.read_hdf("test_large_out.hdf", index_col=0, header=0) np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=4 ) def test_022(self): """ Test another array, not just wiki example. """ df = pd.DataFrame( { "C1": { "A": 2.0, "B": 2.0, "C": 2.0, "D": 2.0, "E": 6.0, "F": 1.0, }, "C2": { "A": 2.0, "B": 2.0, "C": 1.0, "D": 3.5, "E": 5.0, "F": 1.0, }, } ) np.testing.assert_almost_equal( qnorm.quantile_normalize(df).values, np.array( [ [2.0625, 2.0], [2.0625, 2.0], [2.0625, 1.25], [2.0625, 2.75], [5.5, 5.5], [1.0, 1.25], ] ), ) def test_023_from_parquet(self): """ test the basic incremental_quantile_normalize functionality """ qnorm.incremental_quantile_normalize("test.parquet", "test_out.parquet") df1 = pd.read_parquet("test.parquet") df2 = pd.read_parquet("test_out.parquet") np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_024_from_parquet_rowchunk(self): """ test the incremental_quantile_normalize with rowchunks functionality """ df1 = pd.read_parquet("test.parquet") for rowchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.parquet", "test_out.parquet", rowchunksize=rowchunksize ) df2 = pd.read_parquet("test_out.parquet") np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_025_from_parquet_colchunk(self): """ test the incremental_quantile_normalize with colchunks functionality """ df1 = pd.read_parquet("test.parquet") for colchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.parquet", "test_out.parquet", colchunksize=colchunksize ) df2 = pd.read_parquet("test_out.parquet") np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_026_from_parquet_colrowchunk(self): """ test the incremental_quantile_normalize with both row and colchunks """ df1 = pd.read_parquet("test.parquet") for colchunksize in range(1, 10): for rowchunksize in range(1, 10): qnorm.incremental_quantile_normalize( "test.parquet", "test_out.parquet", rowchunksize=rowchunksize, colchunksize=colchunksize, ) df2 = pd.read_parquet("test_out.parquet") np.testing.assert_almost_equal( qnorm.quantile_normalize(df1), df2.values, decimal=5 ) def test_027_from_parquet_largefile(self): """ test whether or not incremental_quantile_normalize works with a larger random file """ np.random.seed(42) df1 = pd.DataFrame( index=range(5000), columns=["sample" + str(col) for col in range(100)], ) df1[:] = np.random.randint(0, 100, size=df1.shape) df1 = df1.astype(float) df1.to_parquet("test_large.parquet") qnorm.incremental_quantile_normalize( "test_large.parquet", "test_large_out.parquet", rowchunksize=11, colchunksize=11, ) df2 =
pd.read_parquet("test_large_out.parquet")
pandas.read_parquet
import numpy as np import pandas as pd import sys import pickle import matplotlib.pyplot as plt from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import pyqtgraph from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtTest import * from Model_module import Model_module from Data_module import Data_module # from Sub_widget import another_result_explain class Worker(QObject): # Signal을 보낼 그릇을 생성# ############# train_value = pyqtSignal(object) # nor_ab_value = pyqtSignal(object) procedure_value = pyqtSignal(object) verif_value = pyqtSignal(object) timer = pyqtSignal(object) symptom_db = pyqtSignal(object) shap = pyqtSignal(object) plot_db = pyqtSignal(object) display_ex = pyqtSignal(object, object, object) another_shap = pyqtSignal(object, object, object) another_shap_table = pyqtSignal(object) ########################################## @pyqtSlot(object) def generate_db(self): test_db = input('구현할 시나리오를 입력해주세요 : ') print(f'입력된 시나리오 : {test_db}를 실행합니다.') Model_module() # model module 내의 빈행렬 초기화 data_module = Data_module() db, check_db = data_module.load_data(file_name=test_db) # test_db 불러오기 data_module.data_processing() # Min-Max o, 2 Dimension liner = [] plot_data = [] normal_data = [] compare_data = {'Normal':[], 'Ab21-01':[], 'Ab21-02':[], 'Ab20-04':[], 'Ab15-07':[], 'Ab15-08':[], 'Ab63-04':[], 'Ab63-02':[], 'Ab21-12':[], 'Ab19-02':[], 'Ab21-11':[], 'Ab23-03':[], 'Ab60-02':[], 'Ab59-02':[], 'Ab23-01':[], 'Ab23-06':[]} for line in range(np.shape(db)[0]): QTest.qWait(0.01) print(np.shape(db)[0], line) data = np.array([data_module.load_real_data(row=line)]) liner.append(line) check_data, check_parameter = data_module.load_real_check_data(row=line) plot_data.append(check_data[0]) try: normal_data.append(normal_db.iloc[line]) except: pass try: compare_data['Normal'].append(normal_db.iloc[line]) except: pass try: compare_data['Ab21-01'].append(ab21_01.iloc[line]) except: pass try: compare_data['Ab21-02'].append(ab21_02.iloc[line]) except: pass try: compare_data['Ab20-04'].append(ab20_04.iloc[line]) except: pass try: compare_data['Ab15-07'].append(ab15_07.iloc[line]) except: pass try: compare_data['Ab15-08'].append(ab15_08.iloc[line]) except: pass try: compare_data['Ab63-04'].append(ab63_04.iloc[line]) except: pass try: compare_data['Ab63-02'].append(ab63_02.iloc[line]) except: pass try: compare_data['Ab21-12'].append(ab21_12.iloc[line]) except: pass try: compare_data['Ab19-02'].append(ab19_02.iloc[line]) except: pass try: compare_data['Ab21-11'].append(ab21_11.iloc[line]) except: pass try: compare_data['Ab23-03'].append(ab23_03.iloc[line]) except: pass try: compare_data['Ab60-02'].append(ab60_02.iloc[line]) except: pass try: compare_data['Ab59-02'].append(ab59_02.iloc[line]) except: pass try: compare_data['Ab23-01'].append(ab23_01.iloc[line]) except: pass try: compare_data['Ab23-06'].append(ab23_06.iloc[line]) except: pass if np.shape(data) == (1, 10, 46): dim2 = np.array(data_module.load_scaled_data(row=line - 9)) # 2차원 scale # check_data, check_parameter = data_module.load_real_check_data(row=line - 8) # plot_data.append(check_data[0]) train_untrain_reconstruction_error, train_untrain_error = model_module.train_untrain_classifier(data=data) # normal_abnormal_reconstruction_error = model_module.normal_abnormal_classifier(data=data) abnormal_procedure_result, abnormal_procedure_prediction, shap_add_des, shap_value = model_module.abnormal_procedure_classifier(data=dim2) abnormal_verif_reconstruction_error, verif_threshold, abnormal_verif_error = model_module.abnormal_procedure_verification(data=data) self.train_value.emit(train_untrain_error) # self.nor_ab_value.emit(np.argmax(abnormal_procedure_result[line-9], axis=1)[0]) self.procedure_value.emit(np.argmax(abnormal_procedure_prediction, axis=1)[0]) self.verif_value.emit([abnormal_verif_error, verif_threshold]) self.timer.emit([line, check_parameter]) self.symptom_db.emit([np.argmax(abnormal_procedure_prediction, axis=1)[0], check_parameter]) self.shap.emit(shap_add_des) self.plot_db.emit([liner, plot_data]) self.display_ex.emit(shap_add_des, [liner, plot_data], normal_data) self.another_shap.emit(shap_value, [liner, plot_data], compare_data) self.another_shap_table.emit(shap_value) class AlignDelegate(QStyledItemDelegate): def initStyleOption(self, option, index): super(AlignDelegate, self).initStyleOption(option, index) option.displayAlignment = Qt.AlignCenter class Mainwindow(QWidget): def __init__(self): super().__init__() self.setWindowTitle("Real-Time Abnormal Diagnosis for NPP") self.setGeometry(150, 50, 1700, 800) # 그래프 초기조건 pyqtgraph.setConfigOption("background", "w") pyqtgraph.setConfigOption("foreground", "k") ############################################# self.selected_para = pd.read_csv('./DataBase/Final_parameter.csv') # GUI part 1 Layout (진단 부분 통합) layout_left = QVBoxLayout() # 영 번째 그룹 설정 (Time and Power) gb_0 = QGroupBox("Training Status") # 영 번째 그룹 이름 설정 layout_left.addWidget(gb_0) # 전체 틀에 영 번째 그룹 넣기 gb_0_layout = QBoxLayout(QBoxLayout.LeftToRight) # 영 번째 그룹 내용을 넣을 레이아웃 설정 # 첫 번째 그룹 설정 gb_1 = QGroupBox("Training Status") # 첫 번째 그룹 이름 설정 layout_left.addWidget(gb_1) # 전체 틀에 첫 번째 그룹 넣기 gb_1_layout = QBoxLayout(QBoxLayout.LeftToRight) # 첫 번째 그룹 내용을 넣을 레이아웃 설정 # 두 번째 그룹 설정 gb_2 = QGroupBox('NPP Status') layout_left.addWidget(gb_2) gb_2_layout = QBoxLayout(QBoxLayout.LeftToRight) # 세 번째 그룹 설정 gb_3 = QGroupBox(self) layout_left.addWidget(gb_3) gb_3_layout = QBoxLayout(QBoxLayout.LeftToRight) # 네 번째 그룹 설정 gb_4 = QGroupBox('Predicted Result Verification') layout_left.addWidget(gb_4) gb_4_layout = QBoxLayout(QBoxLayout.LeftToRight) # 다섯 번째 그룹 설정 gb_5 = QGroupBox('Symptom check in scenario') layout_left.addWidget(gb_5) gb_5_layout = QBoxLayout(QBoxLayout.TopToBottom) # Spacer 추가 # layout_part1.addItem(QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)) # 영 번째 그룹 내용 self.time_label = QLabel(self) self.power_label = QPushButton(self) # 첫 번째 그룹 내용 # Trained / Untrained condition label self.trained_label = QPushButton('Trained') self.Untrained_label = QPushButton('Untrained') # 두 번째 그룹 내용 self.normal_label = QPushButton('Normal') self.abnormal_label = QPushButton('Abnormal') # 세 번째 그룹 내용 self.name_procedure = QLabel('Number of Procedure: ') self.num_procedure = QLineEdit(self) self.num_procedure.setAlignment(Qt.AlignCenter) self.name_scnario = QLabel('Name of Procedure: ') self.num_scnario = QLineEdit(self) self.num_scnario.setAlignment(Qt.AlignCenter) # 네 번째 그룹 내용 self.success_label = QPushButton('Diagnosis Success') self.failure_label = QPushButton('Diagnosis Failure') # 다섯 번째 그룹 내용 self.symptom_name = QLabel(self) self.symptom1 = QCheckBox(self) self.symptom2 = QCheckBox(self) self.symptom3 = QCheckBox(self) self.symptom4 = QCheckBox(self) self.symptom5 = QCheckBox(self) self.symptom6 = QCheckBox(self) # 영 번째 그룹 내용 입력 gb_0_layout.addWidget(self.time_label) gb_0_layout.addWidget(self.power_label) gb_0.setLayout(gb_0_layout) # 첫 번째 그룹 내용 입력 gb_1_layout.addWidget(self.trained_label) gb_1_layout.addWidget(self.Untrained_label) gb_1.setLayout(gb_1_layout) # 첫 번째 레이아웃 내용을 첫 번째 그룹 틀로 넣기 # 두 번째 그룹 내용 입력 gb_2_layout.addWidget(self.normal_label) gb_2_layout.addWidget(self.abnormal_label) gb_2.setLayout(gb_2_layout) # 세 번째 그룹 내용 입력 gb_3_layout.addWidget(self.name_procedure) gb_3_layout.addWidget(self.num_procedure) gb_3_layout.addWidget(self.name_scnario) gb_3_layout.addWidget(self.num_scnario) gb_3.setLayout(gb_3_layout) # 네 번째 그룹 내용 입력 gb_4_layout.addWidget(self.success_label) gb_4_layout.addWidget(self.failure_label) gb_4.setLayout(gb_4_layout) # 다섯 번째 그룹 내용 입력 gb_5_layout.addWidget(self.symptom_name) gb_5_layout.addWidget(self.symptom1) gb_5_layout.addWidget(self.symptom2) gb_5_layout.addWidget(self.symptom3) gb_5_layout.addWidget(self.symptom4) gb_5_layout.addWidget(self.symptom5) gb_5_layout.addWidget(self.symptom6) gb_5.setLayout(gb_5_layout) # Start 버튼 맨 아래에 위치 self.start_btn = QPushButton('Start') # layout_part1.addWidget(self.start_btn) self.tableWidget = QTableWidget(0, 0) self.tableWidget.setFixedHeight(500) self.tableWidget.setFixedWidth(800) # Plot 구현 self.plot_1 = pyqtgraph.PlotWidget(title=self) self.plot_2 = pyqtgraph.PlotWidget(title=self) self.plot_3 = pyqtgraph.PlotWidget(title=self) self.plot_4 = pyqtgraph.PlotWidget(title=self) # Explanation Alarm 구현 red_alarm = QGroupBox('Main basis for diagnosis') red_alarm_layout = QGridLayout() orange_alarm = QGroupBox('Sub basis for diagnosis') orange_alarm_layout = QGridLayout() # Display Button 생성 self.red1 = QPushButton(self) self.red2 = QPushButton(self) self.red3 = QPushButton(self) self.red4 = QPushButton(self) self.orange1 = QPushButton(self) self.orange2 = QPushButton(self) self.orange3 = QPushButton(self) self.orange4 = QPushButton(self) self.orange5 = QPushButton(self) self.orange6 = QPushButton(self) self.orange7 = QPushButton(self) self.orange8 = QPushButton(self) self.orange9 = QPushButton(self) self.orange10 = QPushButton(self) self.orange11 = QPushButton(self) self.orange12 = QPushButton(self) # Layout에 widget 삽입 red_alarm_layout.addWidget(self.red1, 0, 0) red_alarm_layout.addWidget(self.red2, 0, 1) red_alarm_layout.addWidget(self.red3, 1, 0) red_alarm_layout.addWidget(self.red4, 1, 1) orange_alarm_layout.addWidget(self.orange1, 0, 0) orange_alarm_layout.addWidget(self.orange2, 0, 1) orange_alarm_layout.addWidget(self.orange3, 1, 0) orange_alarm_layout.addWidget(self.orange4, 1, 1) orange_alarm_layout.addWidget(self.orange5, 2, 0) orange_alarm_layout.addWidget(self.orange6, 2, 1) orange_alarm_layout.addWidget(self.orange7, 3, 0) orange_alarm_layout.addWidget(self.orange8, 3, 1) orange_alarm_layout.addWidget(self.orange9, 4, 0) orange_alarm_layout.addWidget(self.orange10, 4, 1) orange_alarm_layout.addWidget(self.orange11, 5, 0) orange_alarm_layout.addWidget(self.orange12, 5, 1) # Group Box에 Layout 삽입 red_alarm.setLayout(red_alarm_layout) orange_alarm.setLayout(orange_alarm_layout) # 각 Group Box를 상위 Layout에 삽입 layout_part1 = QVBoxLayout() detail_part = QHBoxLayout() detailed_table = QPushButton('Detail Explanation [Table]') self.another_classification = QPushButton('Why other scenarios were not chosen') detail_part.addWidget(detailed_table) detail_part.addWidget(self.another_classification) alarm_main = QVBoxLayout() alarm_main.addWidget(red_alarm) alarm_main.addWidget(orange_alarm) layout_part1.addLayout(layout_left) layout_part1.addLayout(alarm_main) layout_part1.addLayout(detail_part) layout_part1.addItem(QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)) # GUI part2 Layout (XAI 구현) layout_part2 = QVBoxLayout() layout_part2.addWidget(self.plot_1) layout_part2.addWidget(self.plot_2) layout_part2.addWidget(self.plot_3) layout_part2.addWidget(self.plot_4) # layout_part2.addItem(QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)) # layout_part2.addWidget(self.tableWidget) # GUI part1 and part2 통합 layout_base = QHBoxLayout() layout_base.addLayout(layout_part1) layout_base.addLayout(layout_part2) # GUI 최종 통합 (start button을 하단에 배치시키기 위함) total_layout = QVBoxLayout() total_layout.addLayout(layout_base) total_layout.addWidget(self.start_btn) self.setLayout(total_layout) # setLayout : 최종 출력될 GUI 화면을 결정 # Threading Part############################################################################################################## # 데이터 연산 부분 Thread화 self.worker = Worker() self.worker_thread = QThread() # Signal을 Main Thread 내의 함수와 연결 self.worker.train_value.connect(self.Determine_train) self.worker.procedure_value.connect(self.Determine_abnormal) self.worker.procedure_value.connect(self.Determine_procedure) self.worker.verif_value.connect(self.verifit_result) self.worker.timer.connect(self.time_display) self.worker.symptom_db.connect(self.procedure_satisfaction) # self.worker.shap.connect(self.explain_result) self.worker.plot_db.connect(self.plotting) self.worker.display_ex.connect(self.display_explain) self.worker.moveToThread(self.worker_thread) # Worker class를 Thread로 이동 # self.worker_thread.started.connect(lambda: self.worker.generate_db()) self.start_btn.clicked.connect(lambda: self.worker.generate_db()) # 누르면 For문 실행 self.worker_thread.start() # Threading Part############################################################################################################## # 이벤트 처리 ---------------------------------------------------------------------------------------------------- detailed_table.clicked.connect(self.show_table) self.another_classification.clicked.connect(self.show_another_result) # Button 클릭 연동 이벤트 처리 convert_red_btn = {0: self.red1, 1: self.red2, 2: self.red3, 3: self.red4} # Red Button convert_red_plot = {0: self.red1_plot, 1: self.red2_plot, 2: self.red3_plot, 3: self.red4_plot} # convert_orange_btn = {0: self.orange1, 1: self.orange2, 2: self.orange3, 3: self.orange4, 4: self.orange5, 5: self.orange6, 6: self.orange7, 7: self.orange8, 8: self.orange9, 9: self.orange10, 10: self.orange11, 11: self.orange12} # Orange Button convert_orange_plot = {0: self.orange1_plot, 1: self.orange2_plot, 2: self.orange3_plot, 3: self.orange4_plot, 4: self.orange5_plot, 5: self.orange6_plot, 6: self.orange7_plot, 7: self.orange8_plot, 8: self.orange9_plot, 9: self.orange10_plot, 10: self.orange11_plot, 11: self.orange12_plot} # 초기 Button 위젯 선언 -> 초기에 선언해야 끊기지않고 유지됨. # Red Button [convert_red_btn[i].clicked.connect(convert_red_plot[i]) for i in range(4)] self.red_plot_1 = pyqtgraph.PlotWidget(title=self) self.red_plot_2 = pyqtgraph.PlotWidget(title=self) self.red_plot_3 = pyqtgraph.PlotWidget(title=self) self.red_plot_4 = pyqtgraph.PlotWidget(title=self) # Grid setting self.red_plot_1.showGrid(x=True, y=True, alpha=0.3) self.red_plot_2.showGrid(x=True, y=True, alpha=0.3) self.red_plot_3.showGrid(x=True, y=True, alpha=0.3) self.red_plot_4.showGrid(x=True, y=True, alpha=0.3) # Orange Button [convert_orange_btn[i].clicked.connect(convert_orange_plot[i]) for i in range(12)] self.orange_plot_1 = pyqtgraph.PlotWidget(title=self) self.orange_plot_2 = pyqtgraph.PlotWidget(title=self) self.orange_plot_3 = pyqtgraph.PlotWidget(title=self) self.orange_plot_4 = pyqtgraph.PlotWidget(title=self) self.orange_plot_5 = pyqtgraph.PlotWidget(title=self) self.orange_plot_6 = pyqtgraph.PlotWidget(title=self) self.orange_plot_7 = pyqtgraph.PlotWidget(title=self) self.orange_plot_8 = pyqtgraph.PlotWidget(title=self) self.orange_plot_9 = pyqtgraph.PlotWidget(title=self) self.orange_plot_10 = pyqtgraph.PlotWidget(title=self) self.orange_plot_11 = pyqtgraph.PlotWidget(title=self) self.orange_plot_12 = pyqtgraph.PlotWidget(title=self) # Grid setting self.orange_plot_1.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_2.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_3.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_4.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_5.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_6.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_7.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_8.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_9.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_10.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_11.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_12.showGrid(x=True, y=True, alpha=0.3) self.show() # UI show command def time_display(self, display_variable): # display_variable[0] : time, display_variable[1].iloc[1] self.time_label.setText(f'<b>Time :<b/> {display_variable[0]} sec') self.time_label.setFont(QFont('Times new roman', 15)) self.time_label.setAlignment(Qt.AlignCenter) self.power_label.setText(f'Power : {round(display_variable[1].iloc[1]["QPROREL"]*100, 2)}%') if round(display_variable[1].iloc[1]["QPROREL"]*100, 2) < 95: self.power_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: red;') else: self.power_label.setStyleSheet('color : black;' 'background-color: light gray;') def Determine_train(self, train_untrain_reconstruction_error): if train_untrain_reconstruction_error[0] <= 0.00225299: # Trained Data self.trained_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: green;') self.Untrained_label.setStyleSheet('color : black;' 'background-color: light gray;') else: # Untrianed Data self.Untrained_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: red;') self.trained_label.setStyleSheet('color : black;' 'background-color: light gray;') def Determine_abnormal(self, abnormal_diagnosis): if abnormal_diagnosis == 0: # 정상상태 self.normal_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: green;') self.abnormal_label.setStyleSheet('color : black;' 'background-color: light gray;') else: # 비정상상태 self.abnormal_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: red;') self.normal_label.setStyleSheet('color : black;' 'background-color: light gray;') def Determine_procedure(self, abnormal_procedure_result): if abnormal_procedure_result == 0: self.num_procedure.setText('Normal') self.num_scnario.setText('Normal') elif abnormal_procedure_result == 1: self.num_procedure.setText('Ab21-01') self.num_scnario.setText('가압기 압력 채널 고장 "고"') elif abnormal_procedure_result == 2: self.num_procedure.setText('Ab21-02') self.num_scnario.setText('가압기 압력 채널 고장 "저"') elif abnormal_procedure_result == 3: self.num_procedure.setText('Ab20-04') self.num_scnario.setText('가압기 수위 채널 고장 "저"') elif abnormal_procedure_result == 4: self.num_procedure.setText('Ab15-07') self.num_scnario.setText('증기발생기 수위 채널 고장 "저"') elif abnormal_procedure_result == 5: self.num_procedure.setText('Ab15-08') self.num_scnario.setText('증기발생기 수위 채널 고장 "고"') elif abnormal_procedure_result == 6: self.num_procedure.setText('Ab63-04') self.num_scnario.setText('제어봉 낙하') elif abnormal_procedure_result == 7: self.num_procedure.setText('Ab63-02') self.num_scnario.setText('제어봉의 계속적인 삽입') elif abnormal_procedure_result == 8: self.num_procedure.setText('Ab21-12') # self.num_scnario.setText('가압기 PORV 열림') self.num_scnario.setText('Pressurizer PORV opening') elif abnormal_procedure_result == 9: self.num_procedure.setText('Ab19-02') self.num_scnario.setText('가압기 안전밸브 고장') elif abnormal_procedure_result == 10: self.num_procedure.setText('Ab21-11') self.num_scnario.setText('가압기 살수밸브 고장 "열림"') elif abnormal_procedure_result == 11: self.num_procedure.setText('Ab23-03') self.num_scnario.setText('1차기기 냉각수 계통으로 누설 "CVCS->CCW"') elif abnormal_procedure_result == 12: self.num_procedure.setText('Ab60-02') self.num_scnario.setText('재생열교환기 전단부위 파열') elif abnormal_procedure_result == 13: self.num_procedure.setText('Ab59-02') self.num_scnario.setText('충전수 유량조절밸브 후단 누설') elif abnormal_procedure_result == 14: self.num_procedure.setText('Ab23-01') self.num_scnario.setText('1차기기 냉각수 계통으로 누설 "RCS->CCW"') elif abnormal_procedure_result == 15: self.num_procedure.setText('Ab23-06') self.num_scnario.setText('증기발생기 전열관 누설') def verifit_result(self, verif_value): if verif_value[0] <= verif_value[1]: # 진단 성공 self.success_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: green;') self.failure_label.setStyleSheet('color : black;' 'background-color: light gray;') else: # 진단 실패 self.failure_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: red;') self.success_label.setStyleSheet('color : black;' 'background-color: light gray;') def procedure_satisfaction(self, symptom_db): # symptom_db[0] : classification result [0~15] # symptom_db[1] : check_db [2,2222] -> 현시점과 이전시점 비교를 위함. # symptom_db[1].iloc[0] : 이전 시점 # symptom_db[1].iloc[1] : 현재 시점 if symptom_db[0] == 0: # 정상 상태 self.symptom_name.setText('Diagnosis Result : Normal → Symptoms : 0') self.symptom1.setText('') self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText('') self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom3.setText('') self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom4.setText('') self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom5.setText('') self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom6.setText('') self.symptom6.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") elif symptom_db[0] == 1: self.symptom_name.setText('Diagnosis Result : Ab21-01 Pressurizer pressure channel failure "High" → Symptoms : 6') self.symptom1.setText("채널 고장으로 인한 가압기 '고' 압력 지시") if symptom_db[1].iloc[1]['PPRZN'] > symptom_db[1].iloc[1]['CPPRZH']: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText("가압기 살수밸브 '열림' 지시") if symptom_db[1].iloc[1]['BPRZSP'] > 0: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom3.setText("가압기 비례전열기 꺼짐") if symptom_db[1].iloc[1]['QPRZP'] == 0: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom4.setText("가압기 보조전열기 꺼짐") if symptom_db[1].iloc[1]['QPRZB'] == 0: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom5.setText("실제 가압기 '저' 압력 지시") if symptom_db[1].iloc[1]['PPRZ'] < symptom_db[1].iloc[1]['CPPRZL']: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom6.setText("가압기 PORV 차단밸브 닫힘") if symptom_db[1].iloc[1]['BHV6'] == 0: self.symptom6.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom6.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") elif symptom_db[0] == 2: self.symptom_name.setText('진단 : Ab21-02 가압기 압력 채널 고장 "저" → 증상 : 5') self.symptom1.setText("채널 고장으로 인한 가압기 '저' 압력 지시") if symptom_db[1].iloc[1]['PPRZN'] < symptom_db[1].iloc[1]['CPPRZL']: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText('가압기 저압력으로 인한 보조 전열기 켜짐 지시 및 경보 발생') if (symptom_db[1].iloc[1]['PPRZN'] < symptom_db[1].iloc[1]['CQPRZB']) and (symptom_db[1].iloc[1]['KBHON'] == 1): self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom3.setText("실제 가압기 '고' 압력 지시") if symptom_db[1].iloc[1]['PPRZ'] > symptom_db[1].iloc[1]['CPPRZH']: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom4.setText('가압기 PORV 열림 지시 및 경보 발생') if symptom_db[1].iloc[1]['BPORV'] > 0: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom5.setText('실제 가압기 압력 감소로 가압기 PORV 닫힘') # 가압기 압력 감소에 대해 해결해야함. if symptom_db[1].iloc[1]['BPORV'] == 0 and (symptom_db[1].iloc[0]['PPRZ'] > symptom_db[1].iloc[1]['PPRZ']): self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") elif symptom_db[0] == 3: self.symptom_name.setText('진단 : Ab20-04 가압기 수위 채널 고장 "저" → 증상 : 5') self.symptom1.setText("채널 고장으로 인한 가압기 '저' 수위 지시") if symptom_db[1].iloc[1]['ZINST63'] < 17: # 나중에 다시 확인해야함. self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") # else: # self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText('"LETDN HX OUTLET FLOW LOW" 경보 발생') if symptom_db[1].iloc[1]['UNRHXUT'] > symptom_db[1].iloc[1]['CULDHX']: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") # else: # self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom3.setText('"CHARGING LINE FLOW HI/LO" 경보 발생') if (symptom_db[1].iloc[1]['WCHGNO'] < symptom_db[1].iloc[1]['CWCHGL']) or (symptom_db[1].iloc[1]['WCHGNO'] > symptom_db[1].iloc[1]['CWCHGH']): self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") # else: # self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom4.setText('충전 유량 증가') if symptom_db[1].iloc[0]['WCHGNO'] < symptom_db[1].iloc[1]['WCHGNO']: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") # else: # self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom5.setText('건전한 수위지시계의 수위 지시치 증가') if symptom_db[1].iloc[0]['ZPRZNO'] < symptom_db[1].iloc[1]['ZPRZNO']: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") # else: # self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") elif symptom_db[0] == 4: self.symptom_name.setText('진단 : Ab15-07 증기발생기 수위 채널 고장 "저" → 증상 : ') self.symptom1.setText('증기발생기 수위 "저" 경보 발생') if symptom_db[1].iloc[1]['ZINST78']*0.01 < symptom_db[1].iloc[1]['CZSGW'] or symptom_db[1].iloc[1]['ZINST77']*0.01 < symptom_db[1].iloc[1]['CZSGW'] or symptom_db[1].iloc[1]['ZINST76']*0.01 < symptom_db[1].iloc[1]['CZSGW']: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText('해당 SG MFCV 열림 방향으로 진행 및 해당 SG 실제 급수유량 증가') elif symptom_db[0] == 8: # self.symptom_name.setText('진단 : Ab21-12 가압기 PORV 열림 → 증상 : 5') self.symptom_name.setText('Diagnosis result : Ab21-12 Pressurizer PORV opening → Symptoms : 5') # self.symptom1.setText('가압기 PORV 열림 지시 및 경보 발생') self.symptom1.setText('Pressurizer PORV open indication and alarm') if symptom_db[1].iloc[1]['BPORV'] > 0: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") # self.symptom2.setText('가압기 저압력으로 인한 보조 전열기 켜짐 지시 및 경보 발생') self.symptom2.setText('Aux. heater turn on instruction and alarm due to pressurizer low pressure') if (symptom_db[1].iloc[1]['PPRZN'] < symptom_db[1].iloc[1]['CQPRZB']) and (symptom_db[1].iloc[1]['KBHON'] == 1): self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") # self.symptom3.setText("가압기 '저' 압력 지시 및 경보 발생") self.symptom3.setText("pressurizer 'low' pressure indication and alarm") if symptom_db[1].iloc[1]['PPRZ'] < symptom_db[1].iloc[1]['CPPRZL'] : self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") # self.symptom4.setText("PRT 고온 지시 및 경보 발생") self.symptom4.setText("PRT high temperature indication and alarm") if symptom_db[1].iloc[1]['UPRT'] > symptom_db[1].iloc[1]['CUPRT'] : self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") # self.symptom5.setText("PRT 고압 지시 및 경보 발생") self.symptom5.setText("PRT high pressure indication and alarm") if (symptom_db[1].iloc[1]['PPRT'] - 0.98E5) > symptom_db[1].iloc[1]['CPPRT']: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom6.setText("Blank") self.symptom6.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") elif symptom_db[0] == 10: self.symptom_name.setText("진단 : Ab21-11 가압기 살수밸브 고장 '열림' → 증상 : 4") self.symptom1.setText("가압기 살수밸브 '열림' 지시 및 상태 표시등 점등") if symptom_db[1].iloc[1]['BPRZSP'] > 0: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText("가압기 보조전열기 켜짐 지시 및 경보 발생") if (symptom_db[1].iloc[1]['PPRZN'] < symptom_db[1].iloc[1]['CQPRZB']) and (symptom_db[1].iloc[1]['KBHON'] == 1): self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom3.setText("가압기 '저' 압력 지시 및 경보 발생") if symptom_db[1].iloc[1]['PPRZ'] < symptom_db[1].iloc[1]['CPPRZL']: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom4.setText("가압기 수위 급격한 증가") # 급격한 증가에 대한 수정은 필요함 -> 추후 수정 if symptom_db[1].iloc[0]['ZINST63'] < symptom_db[1].iloc[1]['ZINST63']: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") def explain_result(self, shap_add_des): ''' # shap_add_des['index'] : 변수 이름 / shap_add_des[0] : shap value # shap_add_des['describe'] : 변수에 대한 설명 / shap_add_des['probability'] : shap value를 확률로 환산한 값 ''' self.tableWidget.setRowCount(len(shap_add_des)) self.tableWidget.setColumnCount(4) self.tableWidget.setHorizontalHeaderLabels(["value_name", 'probability', 'describe', 'system']) header = self.tableWidget.horizontalHeader() header.setSectionResizeMode(QHeaderView.ResizeToContents) header.setSectionResizeMode(0, QHeaderView.Stretch) header.setSectionResizeMode(1, QHeaderView.Stretch) header.setSectionResizeMode(2, QHeaderView.ResizeToContents) header.setSectionResizeMode(3, QHeaderView.Stretch) [self.tableWidget.setItem(i, 0, QTableWidgetItem(f"{shap_add_des['index'][i]}")) for i in range(len(shap_add_des['index']))] [self.tableWidget.setItem(i, 1, QTableWidgetItem(f"{round(shap_add_des['probability'][i],2)}%")) for i in range(len(shap_add_des['probability']))] [self.tableWidget.setItem(i, 2, QTableWidgetItem(f"{shap_add_des['describe'][i]}")) for i in range(len(shap_add_des['describe']))] [self.tableWidget.setItem(i, 3, QTableWidgetItem(f"{shap_add_des['system'][i]}")) for i in range(len(shap_add_des['system']))] delegate = AlignDelegate(self.tableWidget) self.tableWidget.setItemDelegate(delegate) def show_table(self): self.worker.shap.connect(self.explain_result) # 클릭시 Thread를 통해 신호를 전달하기 때문에 버퍼링이 발생함. 2초 정도? 이 부분은 나중에 생각해서 초기에 불러올지 고민해봐야할듯. self.tableWidget.show() def plotting(self, symptom_db): # symptom_db[0] : liner : appended time (axis-x) / symptom_db[1].iloc[1] : check_db (:line,2222)[1] # -- scatter -- # time = [] # value1, value2, value3 = [], [], [] # time.append(symptom_db[0]) # value1.append(round(symptom_db[1].iloc[1]['ZVCT'],2)) # value2.append(round(symptom_db[1].iloc[1]['BPORV'],2)) # value3.append(round(symptom_db[1].iloc[1]['UPRZ'],2)) # self.plotting_1 = self.plot_1.plot(pen=None, symbol='o', symbolBrush='w', symbolPen='w', symbolSize=5) # self.plotting_2 = self.plot_2.plot(pen=None, symbol='o', symbolBrush='w', symbolPen='w', symbolSize=5) # self.plotting_3 = self.plot_3.plot(pen=None, symbol='o', symbolBrush='w', symbolPen='w', symbolSize=5) # -- Line plotting -- # self.plotting_1 = self.plot_1.plot(pen='w') # self.plotting_2 = self.plot_2.plot(pen='w') # self.plotting_3 = self.plot_3.plot(pen='w') # self.plotting_4 = self.plot_4.plot(pen='w') self.plot_1.showGrid(x=True, y=True, alpha=0.3) self.plot_2.showGrid(x=True, y=True, alpha=0.3) self.plot_3.showGrid(x=True, y=True, alpha=0.3) self.plot_4.showGrid(x=True, y=True, alpha=0.3) self.plotting_1 = self.plot_1.plot(pen=pyqtgraph.mkPen('k',width=3)) self.plotting_2 = self.plot_2.plot(pen=pyqtgraph.mkPen('k',width=3)) self.plotting_3 = self.plot_3.plot(pen=pyqtgraph.mkPen('k',width=3)) self.plotting_4 = self.plot_4.plot(pen=pyqtgraph.mkPen('k',width=3)) self.plotting_1.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])['BPORV']) self.plot_1.setTitle('PORV open state') self.plotting_2.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])['PPRZN']) self.plot_2.setTitle('Pressurizer pressure') self.plotting_3.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])['UPRT']) self.plot_3.setTitle('PRT temperature') self.plotting_4.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])['PPRT']) self.plot_4.setTitle('PRT pressure') # red_range = display_db[display_db['probability'] >= 10] # 10% 이상의 확률을 가진 변수 # # print(bool(red_range["describe"].iloc[3])) # try : # self.plotting_1.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[0]]) # if red_range["describe"].iloc[0] == None: # self.plot_1.setTitle(self) # else: # self.plot_1.setTitle(f'{red_range["describe"].iloc[0]}') # # self.plot_1.clear() # except: # print('plot1 fail') # try: # self.plotting_2.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[1]]) # if red_range["describe"].iloc[1] == None: # self.plot_2.setTitle(self) # else: # self.plot_2.setTitle(f'{red_range["describe"].iloc[1]}') # # self.plot_2.clear() # except: # print('plot2 fail') # try: # self.plotting_3.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[2]]) # if red_range["describe"].iloc[2] == None: # self.plot_3.setTitle(self) # else: # self.plot_3.setTitle(f'{red_range["describe"].iloc[2]}') # # self.plot_3.clear() # except: # print('plot3 fail') # try: # self.plotting_4.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[3]]) # if red_range["describe"].iloc[3] == None: # self.plot_4.setTitle(self) # else: # self.plot_4.setTitle(f'{red_range["describe"].iloc[3]}') # # self.plot_4.clear() # except: # print('plot4 fail') def display_explain(self, display_db, symptom_db, normal_db): ''' # display_db['index'] : 변수 이름 / display_db[0] : shap value # display_db['describe'] : 변수에 대한 설명 / display_db['probability'] : shap value를 확률로 환산한 값 # symptom_db[0] : liner : appended time (axis-x) / symptom_db[1].iloc[1] : check_db (:line,2222)[1] ''' red_range = display_db[display_db['probability'] >=10] orange_range = display_db[[display_db['probability'].iloc[i]<10 and display_db['probability'].iloc[i]>1 for i in range(len(display_db['probability']))]] convert_red = {0: self.red1, 1: self.red2, 2: self.red3, 3: self.red4} convert_orange = {0: self.orange1, 1: self.orange2, 2: self.orange3, 3: self.orange4, 4: self.orange5, 5: self.orange6, 6: self.orange7, 7: self.orange8, 8: self.orange9, 9: self.orange10, 10: self.orange11, 11: self.orange12} if 4-len(red_range) == 0: red_del = [] elif 4-len(red_range) == 1: red_del = [3] elif 4-len(red_range) == 2: red_del = [2,3] elif 4-len(red_range) == 3: red_del = [1,2,3] elif 4-len(red_range) == 4: red_del = [0,1,2,3] if 12-len(orange_range) == 0: orange_del = [] elif 12-len(orange_range) == 1: orange_del = [11] elif 12-len(orange_range) == 2: orange_del = [10,11] elif 12-len(orange_range) == 3: orange_del = [9,10,11] elif 12-len(orange_range) == 4: orange_del = [8,9,10,11] elif 12-len(orange_range) == 5: orange_del = [7,8,9,10,11] elif 12-len(orange_range) == 6: orange_del = [6,7,8,9,10,11] elif 12-len(orange_range) == 7: orange_del = [5,6,7,8,9,10,11] elif 12-len(orange_range) == 8: orange_del = [4,5,6,7,8,9,10,11] elif 12-len(orange_range) == 9: orange_del = [3,4,5,6,7,8,9,10,11] elif 12-len(orange_range) == 10: orange_del = [2,3,4,5,6,7,8,9,10,11] elif 12-len(orange_range) == 11: orange_del = [1,2,3,4,5,6,7,8,9,10,11] elif 12-len(orange_range) == 12: orange_del = [0,1,2,3,4,5,6,7,8,9,10,11] [convert_red[i].setText(f'{red_range["describe"].iloc[i]} \n[{round(red_range["probability"].iloc[i],2)}%]') for i in range(len(red_range))] [convert_red[i].setText('None\nParameter') for i in red_del] [convert_red[i].setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: blue;') for i in range(len(red_range))] [convert_red[i].setStyleSheet('color : black;' 'background-color: light gray;') for i in red_del] [convert_orange[i].setText(f'{orange_range["describe"].iloc[i]} \n[{round(orange_range["probability"].iloc[i],2)}%]') for i in range(len(orange_range))] [convert_orange[i].setText('None\nParameter') for i in orange_del] # [convert_orange[i].setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: orange;') for i in range(len(orange_range))] # [convert_orange[i].setStyleSheet('color : black;' 'background-color: light gray;') for i in orange_del] # 각 Button에 호환되는 Plotting 데이터 구축 # Red1 Button if self.red1.text().split()[0] != 'None': self.red_plot_1.clear() self.red_plot_1.setTitle(red_range['describe'].iloc[0]) self.red_plot_1.addLegend(offset=(-30,20)) self.red_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[0]], pen=pyqtgraph.mkPen('b', width=3), name = 'Real Data') self.red_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[red_range['index'].iloc[0]], pen=pyqtgraph.mkPen('k', width=3), name = 'Normal Data') # Red2 Button if self.red2.text().split()[0] != 'None': self.red_plot_2.clear() self.red_plot_2.setTitle(red_range['describe'].iloc[1]) self.red_plot_2.addLegend(offset=(-30, 20)) self.red_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[1]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.red_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[red_range['index'].iloc[1]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Red3 Button if self.red3.text().split()[0] != 'None': self.red_plot_3.clear() self.red_plot_3.setTitle(red_range['describe'].iloc[2]) self.red_plot_3.addLegend(offset=(-30, 20)) self.red_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[2]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.red_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[red_range['index'].iloc[2]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Red4 Button if self.red4.text().split()[0] != 'None': self.red_plot_4.clear() self.red_plot_4.setTitle(red_range['describe'].iloc[3]) self.red_plot_4.addLegend(offset=(-30, 20)) self.red_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[3]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.red_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[red_range['index'].iloc[3]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange1 Button if self.orange1.text().split()[0] != 'None': self.orange_plot_1.clear() self.orange_plot_1.setTitle(orange_range['describe'].iloc[0]) self.orange_plot_1.addLegend(offset=(-30, 20)) self.orange_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[0]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[0]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange2 Button if self.orange2.text().split()[0] != 'None': self.orange_plot_2.clear() self.orange_plot_2.setTitle(orange_range['describe'].iloc[1]) self.orange_plot_2.addLegend(offset=(-30, 20)) self.orange_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[1]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[1]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange3 Button if self.orange3.text().split()[0] != 'None': self.orange_plot_3.clear() self.orange_plot_3.setTitle(orange_range['describe'].iloc[2]) self.orange_plot_3.addLegend(offset=(-30, 20)) self.orange_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[2]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[2]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange4 Button if self.orange4.text().split()[0] != 'None': self.orange_plot_4.clear() self.orange_plot_4.setTitle(orange_range['describe'].iloc[3]) self.orange_plot_4.addLegend(offset=(-30, 20)) self.orange_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[3]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[3]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange5 Button if self.orange5.text().split()[0] != 'None': self.orange_plot_5.clear() self.orange_plot_5.setTitle(orange_range['describe'].iloc[4]) self.orange_plot_5.addLegend(offset=(-30, 20)) self.orange_plot_5.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[4]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_5.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[4]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange6 Button if self.orange6.text().split()[0] != 'None': self.orange_plot_6.clear() self.orange_plot_6.setTitle(orange_range['describe'].iloc[5]) self.orange_plot_6.addLegend(offset=(-30, 20)) self.orange_plot_6.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[5]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_6.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[5]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange7 Button if self.orange7.text().split()[0] != 'None': self.orange_plot_7.clear() self.orange_plot_7.setTitle(orange_range['describe'].iloc[6]) self.orange_plot_7.addLegend(offset=(-30, 20)) self.orange_plot_7.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[6]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_7.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[6]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange8 Button if self.orange8.text().split()[0] != 'None': self.orange_plot_8.clear() self.orange_plot_8.setTitle(orange_range['describe'].iloc[7]) self.orange_plot_8.addLegend(offset=(-30, 20)) self.orange_plot_8.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[7]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_8.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[7]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange9 Button if self.orange9.text().split()[0] != 'None': self.orange_plot_9.clear() self.orange_plot_9.setTitle(orange_range['describe'].iloc[8]) self.orange_plot_9.addLegend(offset=(-30, 20)) self.orange_plot_9.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[8]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_9.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[8]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange10 Button if self.orange10.text().split()[0] != 'None': self.orange_plot_10.clear() self.orange_plot_10.setTitle(orange_range['describe'].iloc[9]) self.orange_plot_10.addLegend(offset=(-30, 20)) self.orange_plot_10.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[9]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_10.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[9]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange11 Button if self.orange11.text().split()[0] != 'None': self.orange_plot_11.clear() self.orange_plot_11.setTitle(orange_range['describe'].iloc[10]) self.orange_plot_11.addLegend(offset=(-30, 20)) self.orange_plot_11.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[10]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_11.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[10]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange12 Button if self.orange12.text().split()[0] != 'None': self.orange_plot_12.clear() self.orange_plot_12.setTitle(orange_range['describe'].iloc[11]) self.orange_plot_12.addLegend(offset=(-30, 20)) self.orange_plot_12.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[11]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_12.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[11]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') [convert_red[i].setCheckable(True) for i in range(4)] [convert_orange[i].setCheckable(True) for i in range(12)] def red1_plot(self): if self.red1.isChecked(): if self.red1.text().split()[0] != 'None': self.red_plot_1.show() self.red1.setCheckable(False) def red2_plot(self): if self.red2.isChecked(): if self.red2.text().split()[0] != 'None': self.red_plot_2.show() self.red2.setCheckable(False) def red3_plot(self): if self.red3.isChecked(): if self.red3.text().split()[0] != 'None': self.red_plot_3.show() self.red3.setCheckable(False) def red4_plot(self): if self.red4.isChecked(): if self.red4.text().split()[0] != 'None': self.red_plot_4.show() self.red4.setCheckable(False) def orange1_plot(self): if self.orange1.isChecked(): if self.orange1.text().split()[0] != 'None': self.orange_plot_1.show() self.orange1.setCheckable(False) def orange2_plot(self): if self.orange2.isChecked(): if self.orange2.text().split()[0] != 'None': self.orange_plot_2.show() self.orange2.setCheckable(False) def orange3_plot(self): if self.orange3.isChecked(): if self.orange3.text().split()[0] != 'None': self.orange_plot_3.show() self.orange3.setCheckable(False) def orange4_plot(self): if self.orange4.isChecked(): if self.orange4.text().split()[0] != 'None': self.orange_plot_4.show() self.orange4.setCheckable(False) def orange5_plot(self): if self.orange5.isChecked(): if self.orange5.text().split()[0] != 'None': self.orange_plot_5.show() self.orange5.setCheckable(False) def orange6_plot(self): if self.orange6.isChecked(): if self.orange6.text().split()[0] != 'None': self.orange_plot_6.show() self.orange6.setCheckable(False) def orange7_plot(self): if self.orange7.isChecked(): if self.orange7.text().split()[0] != 'None': self.orange_plot_7.show() self.orange7.setCheckable(False) def orange8_plot(self): if self.orange8.isChecked(): if self.orange8.text().split()[0] != 'None': self.orange_plot_8.show() self.orange8.setCheckable(False) def orange9_plot(self): if self.orange9.isChecked(): if self.orange9.text().split()[0] != 'None': self.orange_plot_9.show() self.orange9.setCheckable(False) def orange10_plot(self): if self.orange10.isChecked(): if self.orange10.text().split()[0] != 'None': self.orange_plot_10.show() self.orange10.setCheckable(False) def orange11_plot(self): if self.orange11.isChecked(): if self.orange11.text().split()[0] != 'None': self.orange_plot_11.show() self.orange11.setCheckable(False) def orange12_plot(self): if self.orange12.isChecked(): if self.orange12.text().split()[0] != 'None': self.orange_plot_12.show() self.orange12.setCheckable(False) def show_another_result(self): self.other = another_result_explain() self.worker.another_shap_table.connect(self.other.show_another_result_table) self.worker.another_shap.connect(self.other.show_shap) self.other.show() class another_result_explain(QWidget): def __init__(self): super().__init__() # 서브 인터페이스 초기 설정 self.setWindowTitle('Another Result Explanation') self.setGeometry(300, 300, 800, 500) self.selected_para = pd.read_csv('./DataBase/Final_parameter_200825.csv') # 레이아웃 구성 combo_layout = QVBoxLayout() self.title_label = QLabel("<b>선택되지 않은 시나리오에 대한 결과 해석<b/>") self.title_label.setAlignment(Qt.AlignCenter) self.blank = QLabel(self) # Enter를 위한 라벨 self.show_table = QPushButton("Show Table") self.cb = QComboBox(self) self.cb.addItem('Normal') self.cb.addItem('Ab21-01: Pressurizer pressure channel failure (High)') self.cb.addItem('Ab21-02: Pressurizer pressure channel failure (Low)') self.cb.addItem('Ab20-04: Pressurizer level channel failure (Low)') self.cb.addItem('Ab15-07: Steam generator level channel failure (High)') self.cb.addItem('Ab15-08: Steam generator level channel failure (Low)') self.cb.addItem('Ab63-04: Control rod fall') self.cb.addItem('Ab63-02: Continuous insertion of control rod') self.cb.addItem('Ab21-12: Pressurizer PORV opening') self.cb.addItem('Ab19-02: Pressurizer safety valve failure') self.cb.addItem('Ab21-11: Pressurizer spray valve failed opening') self.cb.addItem('Ab23-03: Leakage from CVCS to RCS') self.cb.addItem('Ab60-02: Rupture of the front end of the regenerative heat exchanger') self.cb.addItem('Ab59-02: Leakage at the rear end of the charging flow control valve') self.cb.addItem('Ab23-01: Leakage from CVCS to CCW') self.cb.addItem('Ab23-06: Steam generator u-tube leakage') # Explanation Alarm 구현 cb_red_alarm = QGroupBox('Main basis for diagnosis') cb_red_alarm_layout = QGridLayout() cb_orange_alarm = QGroupBox('Sub basis for diagnosis') cb_orange_alarm_layout = QGridLayout() # Display Button 생성 self.cb_red1 = QPushButton(self) self.cb_red2 = QPushButton(self) self.cb_red3 = QPushButton(self) self.cb_red4 = QPushButton(self) self.cb_orange1 = QPushButton(self) self.cb_orange2 = QPushButton(self) self.cb_orange3 = QPushButton(self) self.cb_orange4 = QPushButton(self) self.cb_orange5 = QPushButton(self) self.cb_orange6 = QPushButton(self) self.cb_orange7 = QPushButton(self) self.cb_orange8 = QPushButton(self) self.cb_orange9 = QPushButton(self) self.cb_orange10 = QPushButton(self) self.cb_orange11 = QPushButton(self) self.cb_orange12 = QPushButton(self) # Layout에 widget 삽입 cb_red_alarm_layout.addWidget(self.cb_red1, 0, 0) cb_red_alarm_layout.addWidget(self.cb_red2, 0, 1) cb_red_alarm_layout.addWidget(self.cb_red3, 1, 0) cb_red_alarm_layout.addWidget(self.cb_red4, 1, 1) cb_orange_alarm_layout.addWidget(self.cb_orange1, 0, 0) cb_orange_alarm_layout.addWidget(self.cb_orange2, 0, 1) cb_orange_alarm_layout.addWidget(self.cb_orange3, 1, 0) cb_orange_alarm_layout.addWidget(self.cb_orange4, 1, 1) cb_orange_alarm_layout.addWidget(self.cb_orange5, 2, 0) cb_orange_alarm_layout.addWidget(self.cb_orange6, 2, 1) cb_orange_alarm_layout.addWidget(self.cb_orange7, 3, 0) cb_orange_alarm_layout.addWidget(self.cb_orange8, 3, 1) cb_orange_alarm_layout.addWidget(self.cb_orange9, 4, 0) cb_orange_alarm_layout.addWidget(self.cb_orange10, 4, 1) cb_orange_alarm_layout.addWidget(self.cb_orange11, 5, 0) cb_orange_alarm_layout.addWidget(self.cb_orange12, 5, 1) cb_red_alarm.setLayout(cb_red_alarm_layout) cb_orange_alarm.setLayout(cb_orange_alarm_layout) combo_layout.addWidget(self.title_label) combo_layout.addWidget(self.blank) combo_layout.addWidget(self.cb) combo_layout.addWidget(self.blank) # combo_layout.addItem(QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)) combo_layout.addWidget(cb_red_alarm) combo_layout.addWidget(cb_orange_alarm) combo_layout.addWidget(self.blank) combo_layout.addWidget(self.show_table) combo_layout.addItem(QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)) self.setLayout(combo_layout) self.combo_tableWidget = QTableWidget(0, 0) self.combo_tableWidget.setFixedHeight(500) self.combo_tableWidget.setFixedWidth(800) # self.combo_tableWidget = QTableWidget(0, 0) # 이벤트 처리 부분 ######################################################## self.show_table.clicked.connect(self.show_anoter_table) self.cb.activated[str].connect(self.show_another_result_table) self.cb.activated[str].connect(self.show_shap) ########################################################################## # Button 클릭 연동 이벤트 처리 convert_cb_red_btn = {0: self.cb_red1, 1: self.cb_red2, 2: self.cb_red3, 3: self.cb_red4} # Red Button convert_cb_red_plot = {0: self.cb_red1_plot, 1: self.cb_red2_plot, 2: self.cb_red3_plot, 3: self.cb_red4_plot} convert_cb_orange_btn = {0: self.cb_orange1, 1: self.cb_orange2, 2: self.cb_orange3, 3: self.cb_orange4, 4: self.cb_orange5, 5: self.cb_orange6, 6: self.cb_orange7, 7: self.cb_orange8, 8: self.cb_orange9, 9: self.cb_orange10, 10: self.cb_orange11, 11: self.cb_orange12} # Orange Button convert_cb_orange_plot = {0: self.cb_orange1_plot, 1: self.cb_orange2_plot, 2: self.cb_orange3_plot, 3: self.cb_orange4_plot, 4: self.cb_orange5_plot, 5: self.cb_orange6_plot, 6: self.cb_orange7_plot, 7: self.cb_orange8_plot, 8: self.cb_orange9_plot, 9: self.cb_orange10_plot, 10: self.cb_orange11_plot, 11: self.cb_orange12_plot} ################################################################################################################ # 초기 Button 위젯 선언 -> 초기에 선언해야 끊기지않고 유지됨. # Red Button [convert_cb_red_btn[i].clicked.connect(convert_cb_red_plot[i]) for i in range(4)] self.cb_red_plot_1 = pyqtgraph.PlotWidget(title=self) self.cb_red_plot_2 = pyqtgraph.PlotWidget(title=self) self.cb_red_plot_3 = pyqtgraph.PlotWidget(title=self) self.cb_red_plot_4 = pyqtgraph.PlotWidget(title=self) # Grid setting self.cb_red_plot_1.showGrid(x=True, y=True, alpha=0.3) self.cb_red_plot_2.showGrid(x=True, y=True, alpha=0.3) self.cb_red_plot_3.showGrid(x=True, y=True, alpha=0.3) self.cb_red_plot_4.showGrid(x=True, y=True, alpha=0.3) # Orange Button [convert_cb_orange_btn[i].clicked.connect(convert_cb_orange_plot[i]) for i in range(12)] self.cb_orange_plot_1 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_2 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_3 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_4 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_5 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_6 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_7 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_8 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_9 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_10 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_11 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_12 = pyqtgraph.PlotWidget(title=self) # Grid setting self.cb_orange_plot_1.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_2.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_3.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_4.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_5.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_6.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_7.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_8.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_9.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_10.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_11.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_12.showGrid(x=True, y=True, alpha=0.3) ################################################################################################################ self.show() # Sub UI show command def show_shap(self, all_shap, symptom_db, compare_data): # all_shap : 전체 시나리오에 해당하는 shap_value를 가지고 있음. # symptom_db[0] : liner : appended time (axis-x) / symptom_db[1].iloc[1] : check_db (:line,2222)[1] if self.cb.currentText() == 'Normal': step1 = pd.DataFrame(all_shap[0], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()] elif self.cb.currentText() == 'Ab21-01: Pressurizer pressure channel failure (High)': step1 = pd.DataFrame(all_shap[1], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab21-02: Pressurizer pressure channel failure (Low)': step1 = pd.DataFrame(all_shap[2], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab20-04: Pressurizer level channel failure (Low)': step1 = pd.DataFrame(all_shap[3], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab15-07: Steam generator level channel failure (High)': step1 = pd.DataFrame(all_shap[4], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab15-08: Steam generator level channel failure (Low)': step1 = pd.DataFrame(all_shap[5], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab63-04: Control rod fall': step1 = pd.DataFrame(all_shap[6], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab63-02: Continuous insertion of control rod': step1 = pd.DataFrame(all_shap[7], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab21-12: Pressurizer PORV opening': step1 = pd.DataFrame(all_shap[8], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab19-02: Pressurizer safety valve failure': step1 = pd.DataFrame(all_shap[9], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab21-11: Pressurizer spray valve failed opening': step1 = pd.DataFrame(all_shap[10], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab23-03: Leakage from CVCS to RCS': step1 = pd.DataFrame(all_shap[11], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab60-02: Rupture of the front end of the regenerative heat exchanger': step1 = pd.DataFrame(all_shap[12], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab59-02: Leakage at the rear end of the charging flow control valve': step1 = pd.DataFrame(all_shap[13], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab23-01: Leakage from CVCS to CCW': step1 = pd.DataFrame(all_shap[14], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab23-06: Steam generator u-tube leakage': step1 = pd.DataFrame(all_shap[15], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] step2 = step1.sort_values(by=0, ascending=True, axis=1) step3 = step2[step2.iloc[:] < 0].dropna(axis=1).T self.step4 = step3.reset_index() col = self.step4['index'] var = [self.selected_para['0'][self.selected_para['0'] == col_].index for col_ in col] val_col = [self.selected_para['1'][var_].iloc[0] for var_ in var] proba = [(self.step4[0][val_num] / sum(self.step4[0])) * 100 for val_num in range(len(self.step4[0]))] val_system = [self.selected_para['2'][var_].iloc[0] for var_ in var] self.step4['describe'] = val_col self.step4['probability'] = proba self.step4['system'] = val_system red_range = self.step4[self.step4['probability'] >= 10] orange_range = self.step4[ [self.step4['probability'].iloc[i] < 10 and self.step4['probability'].iloc[i] > 1 for i in range(len(self.step4['probability']))]] convert_red = {0: self.cb_red1, 1: self.cb_red2, 2: self.cb_red3, 3: self.cb_red4} convert_orange = {0: self.cb_orange1, 1: self.cb_orange2, 2: self.cb_orange3, 3: self.cb_orange4, 4: self.cb_orange5, 5: self.cb_orange6, 6: self.cb_orange7, 7: self.cb_orange8, 8: self.cb_orange9, 9: self.cb_orange10, 10: self.cb_orange11, 11: self.cb_orange12} if 4 - len(red_range) == 0: red_del = [] elif 4 - len(red_range) == 1: red_del = [3] elif 4 - len(red_range) == 2: red_del = [2, 3] elif 4 - len(red_range) == 3: red_del = [1, 2, 3] elif 4 - len(red_range) == 4: red_del = [0, 1, 2, 3] if 12 - len(orange_range) == 0: orange_del = [] elif 12 - len(orange_range) == 1: orange_del = [11] elif 12 - len(orange_range) == 2: orange_del = [10, 11] elif 12 - len(orange_range) == 3: orange_del = [9, 10, 11] elif 12 - len(orange_range) == 4: orange_del = [8, 9, 10, 11] elif 12 - len(orange_range) == 5: orange_del = [7, 8, 9, 10, 11] elif 12 - len(orange_range) == 6: orange_del = [6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 7: orange_del = [5, 6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 8: orange_del = [4, 5, 6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 9: orange_del = [3, 4, 5, 6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 10: orange_del = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 11: orange_del = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 12: orange_del = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [convert_red[i].setText(f'{red_range["describe"].iloc[i]} \n[{round(red_range["probability"].iloc[i], 2)}%]') for i in range(len(red_range))] [convert_red[i].setText('None\nParameter') for i in red_del] [convert_red[i].setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: blue;') for i in range(len(red_range))] [convert_red[i].setStyleSheet('color : black;' 'background-color: light gray;') for i in red_del] [convert_orange[i].setText(f'{orange_range["describe"].iloc[i]} \n[{round(orange_range["probability"].iloc[i], 2)}%]') for i in range(len(orange_range))] [convert_orange[i].setText('None\nParameter') for i in orange_del] ##################################################################################################################################### # 각 Button에 호환되는 Plotting 데이터 구축 # Red1 Button if self.cb_red1.text().split()[0] != 'None': self.cb_red_plot_1.clear() self.cb_red_plot_1.setTitle(red_range['describe'].iloc[0]) self.cb_red_plot_1.addLegend(offset=(-30,20)) self.cb_red_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[0]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_red_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[red_range['index'].iloc[0]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Red2 Button if self.cb_red2.text().split()[0] != 'None': self.cb_red_plot_2.clear() self.cb_red_plot_2.setTitle(red_range['describe'].iloc[1]) self.cb_red_plot_2.addLegend(offset=(-30, 20)) self.cb_red_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[1]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_red_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[red_range['index'].iloc[1]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Red3 Button if self.cb_red3.text().split()[0] != 'None': self.cb_red_plot_3.clear() self.cb_red_plot_3.setTitle(red_range['describe'].iloc[2]) self.cb_red_plot_3.addLegend(offset=(-30, 20)) self.cb_red_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[2]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_red_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[red_range['index'].iloc[2]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Red4 Button if self.cb_red4.text().split()[0] != 'None': self.cb_red_plot_4.clear() self.cb_red_plot_4.setTitle(red_range['describe'].iloc[3]) self.cb_red_plot_4.addLegend(offset=(-30, 20)) self.cb_red_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[3]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_red_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[red_range['index'].iloc[3]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange1 Button if self.cb_orange1.text().split()[0] != 'None': self.cb_orange_plot_1.clear() self.cb_orange_plot_1.setTitle(orange_range['describe'].iloc[0]) self.cb_orange_plot_1.addLegend(offset=(-30, 20)) self.cb_orange_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[0]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_orange_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[orange_range['index'].iloc[0]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange2 Button if self.cb_orange2.text().split()[0] != 'None': self.cb_orange_plot_2.clear() self.cb_orange_plot_2.setTitle(orange_range['describe'].iloc[1]) self.cb_orange_plot_2.addLegend(offset=(-30, 20)) self.cb_orange_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[1]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_orange_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[orange_range['index'].iloc[1]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange3 Button if self.cb_orange3.text().split()[0] != 'None': self.cb_orange_plot_3.clear() self.cb_orange_plot_3.setTitle(orange_range['describe'].iloc[2]) self.cb_orange_plot_3.addLegend(offset=(-30, 20)) self.cb_orange_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[2]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_orange_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[orange_range['index'].iloc[2]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange4 Button if self.cb_orange4.text().split()[0] != 'None': self.cb_orange_plot_4.clear() self.cb_orange_plot_4.setTitle(orange_range['describe'].iloc[3]) self.cb_orange_plot_4.addLegend(offset=(-30, 20)) self.cb_orange_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[3]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_orange_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[orange_range['index'].iloc[3]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange5 Button if self.cb_orange5.text().split()[0] != 'None': self.cb_orange_plot_5.clear() self.cb_orange_plot_5.setTitle(orange_range['describe'].iloc[4]) self.cb_orange_plot_5.addLegend(offset=(-30, 20)) self.cb_orange_plot_5.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[4]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_orange_plot_5.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[orange_range['index'].iloc[4]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange6 Button if self.cb_orange6.text().split()[0] != 'None': self.cb_orange_plot_6.clear() self.cb_orange_plot_6.setTitle(orange_range['describe'].iloc[5]) self.cb_orange_plot_6.addLegend(offset=(-30, 20)) self.cb_orange_plot_6.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[5]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_orange_plot_6.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[orange_range['index'].iloc[5]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange7 Button if self.cb_orange7.text().split()[0] != 'None': self.cb_orange_plot_7.clear() self.cb_orange_plot_7.setTitle(orange_range['describe'].iloc[6]) self.cb_orange_plot_7.addLegend(offset=(-30, 20)) self.cb_orange_plot_7.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[6]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_orange_plot_7.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[orange_range['index'].iloc[6]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange8 Button if self.cb_orange8.text().split()[0] != 'None': self.cb_orange_plot_8.clear() self.cb_orange_plot_8.setTitle(orange_range['describe'].iloc[7]) self.cb_orange_plot_8.addLegend(offset=(-30, 20)) self.cb_orange_plot_8.plot(x=symptom_db[0], y=
pd.DataFrame(symptom_db[1])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2020/12/31 4:01 下午 # @File : compare_eval_result.py # @Author: johnson # @Contact : github: johnson7788 # @Desc : import json import pandas as pd import requests def collect_data(devfile="../data_root_dir/newcos/dev.json", eval_results="../output_root_dir/newcos/eval_results-newcos.json"): """ 生成excel, 对比main.trainer.py生成的结果和devfile :param devfile: 训练文件,格式是 [(text, keyword, labels),..] :param eval_results: main.trainer.py生成的文件output文件中的json文件 [(predid, probality)] :return: """ labels = ["是","否"] with open(devfile) as f: dev_data = json.load(f) with open(eval_results) as f: eval_data = json.load(f) assert len(dev_data) == len(eval_data) data = [] for d, res in zip(dev_data, eval_data): one_data = {"text": d[0], "keyword":d[1], "label": d[2], "predict":labels[res[0]], "probability": format(res[1], "0.3f")} data.append(one_data) df = pd.DataFrame(data) excel_file = "result2.xlsx" writer = pd.ExcelWriter(excel_file, engine='xlsxwriter') df.to_excel(writer) writer.save() print(f"保存到excel成功{excel_file}") return data def compare_model(hostname='http://127.0.0.1:3314'): """ 把收集到的数据,放到线上,对比一下准确率,不是和咱们自己的模型对比 :param hostname: :return: """ url = hostname + '/lavector/rest/aspect-sentiment-batch' headers = {'Content-Type': 'application/json'} mydata = collect_data() post_data = [] for d in mydata: one = (d["text"], [d["keyword"]]) post_data.append(one) data = {'channel': 'jd', 'data': post_data} print(f"发送请求到{url}, 数据量{len(post_data)}") res = requests.post(url, data=json.dumps(data), headers=headers) result = res.json() myresults = [] for r in result['result']: keyword_list = list(r.keys()) pres_list = list(r.values()) assert len(keyword_list) == 1 assert len(pres_list) == 1 keyword = keyword_list[0] pres = pres_list[0] for k,v in pres.items(): if v == 1: if k == "负向": predict = "消极" elif k =="正向": predict = "积极" else: predict = "中性" myresults.append([keyword,predict]) assert len(post_data) == len(myresults) #保存到文件 newdata = [] for d, res in zip(mydata, myresults): if res[0] != d["keyword"]: print(f"这条数据预测回来的关键字不一致{res[0]}") continue d["online_predict"] = res[1] newdata.append(d) df =
pd.DataFrame(newdata)
pandas.DataFrame
from __future__ import division from contextlib import contextmanager from datetime import datetime from functools import wraps import locale import os import re from shutil import rmtree import string import subprocess import sys import tempfile import traceback import warnings import numpy as np from numpy.random import rand, randn from pandas._libs import testing as _testing import pandas.compat as compat from pandas.compat import ( PY2, PY3, Counter, StringIO, callable, filter, httplib, lmap, lrange, lzip, map, raise_with_traceback, range, string_types, u, unichr, zip) from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetimelike_v_numeric, is_datetimelike_v_object, is_extension_array_dtype, is_interval_dtype, is_list_like, is_number, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, Panel, PeriodIndex, RangeIndex, Series, bdate_range) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArrayMixin as DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArrayMixin as TimedeltaArray, period_array) import pandas.core.common as com from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing N = 30 K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, compat.ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('always', _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE', 'None') if 'deprecate' in testing_mode: warnings.simplefilter('ignore', _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option('^display.', silent=True) def round_trip_pickle(obj, path=None): """ Pickle an object and then read it again. Parameters ---------- obj : pandas object The object to pickle and then re-read. path : str, default None The path where the pickled object is written and then read. Returns ------- round_trip_pickled_object : pandas object The original object that was pickled and then re-read. """ if path is None: path = u('__{random_bytes}__.pickle'.format(random_bytes=rands(10))) with ensure_clean(path) as path: pd.to_pickle(obj, path) return pd.read_pickle(path) def round_trip_pathlib(writer, reader, path=None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip('pathlib').Path if path is None: path = '___pathlib___' with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path=None): """ Write an object to file specified by a py.path LocalPath and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- round_trip_object : pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip('py.path').local if path is None: path = '___localpath___' with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object Parameters ---------- path : str The path where the file is read from compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- f : file object """ if compression is None: f = open(path, 'rb') elif compression == 'gzip': import gzip f = gzip.open(path, 'rb') elif compression == 'bz2': import bz2 f = bz2.BZ2File(path, 'rb') elif compression == 'xz': lzma = compat.import_lzma() f = lzma.LZMAFile(path, 'rb') elif compression == 'zip': import zipfile zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError('ZIP file {} error. Only one file per ZIP.' .format(path)) else: msg = 'Unrecognized compression type: {}'.format(compression) raise ValueError(msg) try: yield f finally: f.close() if compression == "zip": zip_file.close() def assert_almost_equal(left, right, check_dtype="equiv", check_less_precise=False, **kwargs): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool / string {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. """ if isinstance(left, pd.Index): return assert_index_equal(left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.Series): return assert_series_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) elif isinstance(left, pd.DataFrame): return assert_frame_equal(left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if (isinstance(left, np.ndarray) or isinstance(right, np.ndarray)): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) return _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ err_msg = "{name} Expected type {exp_type}, found {act_type} instead" cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(left))) if not isinstance(right, cls): raise AssertionError(err_msg.format(name=cls_name, exp_type=cls, act_type=type(right))) def assert_dict_equal(left, right, compare_keys=True): _check_isinstance(left, right, dict) return _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p=0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array(list(u("").join(map(unichr, lrange(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1)) def rands_array(nchars, size, dtype='O'): """Generate an array of byte strings.""" retval = (np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def randu_array(nchars, size, dtype='O'): """Generate an array of unicode strings.""" retval = (np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return ''.join(np.random.choice(RANDS_CHARS, nchars)) def randu(nchars): """ Generate one random unicode string. See `randu_array` if you want to create an array of random unicode strings. """ return ''.join(np.random.choice(RANDU_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # locale utilities def check_output(*popenargs, **kwargs): # shamelessly taken from Python 2.7 source r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The stdout argument is not allowed as it is used internally. To capture standard error in the result, use stderr=STDOUT. >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... stderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') process = subprocess.Popen(stdout=subprocess.PIPE, stderr=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output def _default_locale_getter(): try: raw_locales = check_output(['locale -a'], shell=True) except subprocess.CalledProcessError as e: raise type(e)("{exception}, the 'locale -a' command cannot be found " "on your system".format(exception=e)) return raw_locales def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except Exception: return None try: # raw_locales is "\n" separated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: if PY3: out_locales.append(str( x, encoding=pd.options.display.encoding)) else: out_locales.append(str(x)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) pattern = re.compile('{prefix}.*'.format(prefix=prefix)) found = pattern.findall('\n'.join(out_locales)) return _valid_locales(found, normalize) @contextmanager def set_locale(new_locale, lc_var=locale.LC_ALL): """Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". lc_var : int, default `locale.LC_ALL` The category of the locale being set. Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) normalized_locale = locale.getlocale() if com._all_not_none(*normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale) def can_set_locale(lc, lc_var=locale.LC_ALL): """ Check to see if we can set a locale, and subsequently get the locale, without raising an Exception. Parameters ---------- lc : str The locale to attempt to set. lc_var : int, default `locale.LC_ALL` The category of the locale being set. Returns ------- is_valid : bool Whether the passed locale can be set """ try: with set_locale(lc, lc_var=lc_var): pass except (ValueError, locale.Error): # horrible name for a Exception subclass return False else: return True def _valid_locales(locales, normalize): """Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(can_set_locale, map(normalizer, locales))) # ----------------------------------------------------------------------------- # Stdout / stderr decorators @contextmanager def set_defaultencoding(encoding): """ Set default encoding (as given by sys.getdefaultencoding()) to the given encoding; restore on exit. Parameters ---------- encoding : str """ if not PY2: raise ValueError("set_defaultencoding context is only available " "in Python 2.") orig = sys.getdefaultencoding() reload(sys) # noqa:F821 sys.setdefaultencoding(encoding) try: yield finally: sys.setdefaultencoding(orig) def capture_stdout(f): r""" Decorator to capture stdout in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stdout. Returns ------- f : callable The decorated test ``f``, which captures stdout. Examples -------- >>> from pandas.util.testing import capture_stdout >>> import sys >>> >>> @capture_stdout ... def test_print_pass(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "foo\n" >>> >>> @capture_stdout ... def test_print_fail(): ... print("foo") ... out = sys.stdout.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stdout = StringIO() f(*args, **kwargs) finally: sys.stdout = sys.__stdout__ return wrapper def capture_stderr(f): r""" Decorator to capture stderr in a buffer so that it can be checked (or suppressed) during testing. Parameters ---------- f : callable The test that is capturing stderr. Returns ------- f : callable The decorated test ``f``, which captures stderr. Examples -------- >>> from pandas.util.testing import capture_stderr >>> import sys >>> >>> @capture_stderr ... def test_stderr_pass(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "foo\n" >>> >>> @capture_stderr ... def test_stderr_fail(): ... sys.stderr.write("foo") ... out = sys.stderr.getvalue() ... assert out == "bar\n" ... AssertionError: assert 'foo\n' == 'bar\n' """ @compat.wraps(f) def wrapper(*args, **kwargs): try: sys.stderr = StringIO() f(*args, **kwargs) finally: sys.stderr = sys.__stderr__ return wrapper # ----------------------------------------------------------------------------- # Console debugging tools def debug(f, *args, **kwargs): from pdb import Pdb as OldPdb try: from IPython.core.debugger import Pdb kw = dict(color_scheme='Linux') except ImportError: Pdb = OldPdb kw = {} pdb = Pdb(**kw) return pdb.runcall(f, *args, **kwargs) def pudebug(f, *args, **kwargs): import pudb return pudb.runcall(f, *args, **kwargs) def set_trace(): from IPython.core.debugger import Pdb try: Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back) except Exception: from pdb import Pdb as OldPdb OldPdb().set_trace(sys._getframe().f_back) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False): """Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. """ filename = filename or '' fd = None if return_filelike: f = tempfile.TemporaryFile(suffix=filename) try: yield f finally: f.close() else: # don't generate tempfile if using a path with directory specified if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(suffix=filename) except UnicodeEncodeError: import pytest pytest.skip('no unicode file names on this system') try: yield filename finally: try: os.close(fd) except Exception: print("Couldn't close file descriptor: {fdesc} (file: {fname})" .format(fdesc=fd, fname=filename)) try: if os.path.exists(filename): os.remove(filename) except Exception as e: print("Exception on removing file: {error}".format(error=e)) @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix='') try: yield directory_name finally: try: rmtree(directory_name) except Exception: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2): """Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal(left, right, exact='equiv', check_names=True, check_less_precise=False, check_exact=True, check_categorical=True, obj='Index'): """Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True def _check_types(l, r, obj='Index'): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal('dtype', l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ('string', 'unicode'): assert r.inferred_type in ('string', 'unicode') else: assert_attr_equal('inferred_type', l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] labels = index.codes[level] filled = take_1d(unique.values, labels, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = '{obj} levels are different'.format(obj=obj) msg2 = '{nlevels}, {left}'.format(nlevels=left.nlevels, left=left) msg3 = '{nlevels}, {right}'.format(nlevels=right.nlevels, right=right) raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = '{obj} length are different'.format(obj=obj) msg2 = '{length}, {left}'.format(length=len(left), left=left) msg3 = '{length}, {right}'.format(length=len(right), right=right) raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = 'MultiIndex level [{level}]'.format(level=level) assert_index_equal(llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values) .astype(int)) * 100.0 / len(left) msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal(left.values, right.values, check_less_precise=check_less_precise, check_dtype=exact, obj=obj, lobj=left, robj=right) # metadata comparison if check_names: assert_attr_equal('names', left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal('freq', left, right, obj=obj) if (isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex)): assert_interval_array_equal(left.values, right.values) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj='{obj} category'.format(obj=obj)) def assert_class_equal(left, right, exact=True, obj='Input'): """checks classes are equal.""" __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x try: return x.__class__.__name__ except AttributeError: return repr(type(x)) if exact == 'equiv': if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {'Int64Index', 'RangeIndex'}): msg = '{obj} classes are not equivalent'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = '{obj} classes are different'.format(obj=obj) raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr, left, right, obj='Attributes'): """checks attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif (is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr)): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = 'Attribute "{attr}" are different'.format(attr=attr) raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ("one of 'objs' is not a matplotlib Axes instance, type " "encountered {name!r}").format(name=el.__class__.__name__) assert isinstance(el, (plt.Axes, dict)), msg else: assert isinstance(objs, (plt.Artist, tuple, dict)), ( 'objs is neither an ndarray of Artist instances nor a ' 'single Artist instance, tuple, or dict, "objs" is a {name!r}' .format(name=objs.__class__.__name__)) def isiterable(obj): return hasattr(obj, '__iter__') def is_sorted(seq): if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions return assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal(left, right, check_dtype=True, check_category_order=True, obj='Categorical'): """Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj='{obj}.categories'.format(obj=obj)) assert_numpy_array_equal(left.codes, right.codes, check_dtype=check_dtype, obj='{obj}.codes'.format(obj=obj)) else: assert_index_equal(left.categories.sort_values(), right.categories.sort_values(), obj='{obj}.categories'.format(obj=obj)) assert_index_equal(left.categories.take(left.codes), right.categories.take(right.codes), obj='{obj}.values'.format(obj=obj)) assert_attr_equal('ordered', left, right, obj=obj) def assert_interval_array_equal(left, right, exact='equiv', obj='IntervalArray'): """Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_index_equal(left.right, right.right, exact=exact, obj='{obj}.left'.format(obj=obj)) assert_attr_equal('closed', left, right, obj=obj) def assert_period_array_equal(left, right, obj='PeriodArray'): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}.values'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def assert_datetime_array_equal(left, right, obj='DatetimeArray'): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) assert_attr_equal('tz', left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj='TimedeltaArray'): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj='{obj}._data'.format(obj=obj)) assert_attr_equal('freq', left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None): __tracebackhide__ = True if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if PY2 and isinstance(left, string_types): # left needs to be printable in native text type in python2 left = left.encode('utf-8') if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) if PY2 and isinstance(right, string_types): # right needs to be printable in native text type in python2 right = right.encode('utf-8') msg = """{obj} are different {message} [left]: {left} [right]: {right}""".format(obj=obj, message=message, left=left, right=right) if diff is not None: msg += "\n[diff]: {diff}".format(diff=diff) raise AssertionError(msg) def assert_numpy_array_equal(left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj='numpy array'): """ Checks that 'np.ndarray' is equivalent Parameters ---------- left : np.ndarray or iterable right : np.ndarray or iterable strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype: bool, default True check dtype if both a and b are np.ndarray err_msg : str, default None If provided, used as assertion message check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, 'base', None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == 'same': if left_base is not right_base: msg = "{left!r} is not {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) elif check_same == 'copy': if left_base is right_base: msg = "{left!r} is {right!r}".format( left=left_base, right=right_base) raise AssertionError(msg) def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail(obj, '{obj} shapes are different' .format(obj=obj), left.shape, right.shape) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = '{obj} values are different ({pct} %)'.format( obj=obj, pct=np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal('dtype', left, right, obj=obj) return True def assert_extension_array_equal(left, right, check_dtype=True, check_less_precise=False, check_exact=False): """Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default False Whether to compare number exactly. Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. """ assert isinstance(left, ExtensionArray), 'left is not an ExtensionArray' assert isinstance(right, ExtensionArray), 'right is not an ExtensionArray' if check_dtype: assert_attr_equal('dtype', left, right, obj='ExtensionArray') left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal(left_na, right_na, obj='ExtensionArray NA mask') left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal(left_valid, right_valid, obj='ExtensionArray') else: _testing.assert_almost_equal(left_valid, right_valid, check_dtype=check_dtype, check_less_precise=check_less_precise, obj='ExtensionArray') # This could be refactored to use the NDFrame.equals method def assert_series_equal(left, right, check_dtype=True, check_index_type='equiv', check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, obj='Series'): """Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, Series) if check_series_type: # ToDo: There are some tests using rhs is sparse # lhs is dense. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = '{len}, {left}'.format(len=len(left), left=left.index) msg2 = '{len}, {right}'.format(len=len(right), right=right.index) raise_assert_detail(obj, 'Series length are different', msg1, msg2) # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.index'.format(obj=obj)) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if (is_categorical_dtype(left) and is_categorical_dtype(right) and not check_categorical): pass else: assert_attr_equal('dtype', left, right) if check_exact: assert_numpy_array_equal(left.get_values(), right.get_values(), check_dtype=check_dtype, obj='{obj}'.format(obj=obj),) elif check_datetimelike_compat: # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case if (is_datetimelike_v_numeric(left, right) or is_datetimelike_v_object(left, right) or needs_i8_conversion(left) or needs_i8_conversion(right)): # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left.values).equals(Index(right.values)): msg = ('[datetimelike_compat=True] {left} is not equal to ' '{right}.').format(left=left.values, right=right.values) raise AssertionError(msg) else: assert_numpy_array_equal(left.get_values(), right.get_values(), check_dtype=check_dtype) elif is_interval_dtype(left) or is_interval_dtype(right): assert_interval_array_equal(left.array, right.array) elif (is_extension_array_dtype(left) and not is_categorical_dtype(left) and is_extension_array_dtype(right) and not is_categorical_dtype(right)): return assert_extension_array_equal(left.array, right.array) else: _testing.assert_almost_equal(left.get_values(), right.get_values(), check_less_precise=check_less_precise, check_dtype=check_dtype, obj='{obj}'.format(obj=obj)) # metadata comparison if check_names: assert_attr_equal('name', left, right, obj=obj) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj='{obj} category'.format(obj=obj)) # This could be refactored to use the NDFrame.equals method def assert_frame_equal(left, right, check_dtype=True, check_index_type='equiv', check_column_type='equiv', check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, obj='DataFrame'): """ Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. Is is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : DataFrame First DataFrame to compare. right : DataFrame Second DataFrame to compare. check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool / string {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool / string {'equiv'}, default 'equiv' Whether to check the columns class, dtype and inferred_type are identical. Is passed as the ``exact`` argument of :func:`assert_index_equal`. check_frame_type : bool, default True Whether to check the DataFrame class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_names : bool, default True Whether to check that the `names` attribute for both the `index` and `column` attributes of the DataFrame is identical, i.e. * left.index.names == right.index.names * left.columns.names == right.columns.names by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_like : bool, default False If True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. See Also -------- assert_series_equal : Equivalent method for asserting Series equality. DataFrame.equals : Check DataFrame equality. Examples -------- This example shows comparing two DataFrames that are equal but with columns of differing dtypes. >>> from pandas.util.testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) df1 equals itself. >>> assert_frame_equal(df1, df1) df1 differs from df2 as column 'b' is of a different type. >>> assert_frame_equal(df1, df2) Traceback (most recent call last): AssertionError: Attributes are different Attribute "dtype" are different [left]: int64 [right]: float64 Ignore differing dtypes in columns with check_dtype. >>> assert_frame_equal(df1, df2, check_dtype=False) """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, DataFrame) if check_frame_type: # ToDo: There are some tests using rhs is SparseDataFrame # lhs is DataFrame. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # shape comparison if left.shape != right.shape: raise_assert_detail(obj, 'DataFrame shape mismatch', '{shape!r}'.format(shape=left.shape), '{shape!r}'.format(shape=right.shape)) if check_like: left, right = left.reindex_like(right), right # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.index'.format(obj=obj)) # column comparison assert_index_equal(left.columns, right.columns, exact=check_column_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj='{obj}.columns'.format(obj=obj)) # compare by blocks if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks assert_frame_equal(lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj='DataFrame.blocks') # compare by columns else: for i, col in enumerate(left.columns): assert col in right lcol = left.iloc[:, i] rcol = right.iloc[:, i] assert_series_equal( lcol, rcol, check_dtype=check_dtype, check_index_type=check_index_type, check_less_precise=check_less_precise, check_exact=check_exact, check_names=check_names, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, obj='DataFrame.iloc[:, {idx}]'.format(idx=i)) def assert_panel_equal(left, right, check_dtype=True, check_panel_type=False, check_less_precise=False, check_names=False, by_blocks=False, obj='Panel'): """Check that left and right Panels are equal. Parameters ---------- left : Panel (or nd) right : Panel (or nd) check_dtype : bool, default True Whether to check the Panel dtype is identical. check_panel_type : bool, default False Whether to check the Panel class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare check_names : bool, default True Whether to check the Index names attribute. by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. obj : str, default 'Panel' Specify the object name being compared, internally used to show the appropriate assertion message. """ if check_panel_type: assert_class_equal(left, right, obj=obj) for axis in left._AXIS_ORDERS: left_ind = getattr(left, axis) right_ind = getattr(right, axis) assert_index_equal(left_ind, right_ind, check_names=check_names) if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks array_equivalent(lblocks[dtype].values, rblocks[dtype].values) else: # can potentially be slow for i, item in enumerate(left._get_axis(0)): msg = "non-matching item (right) '{item}'".format(item=item) assert item in right, msg litem = left.iloc[i] ritem = right.iloc[i] assert_frame_equal(litem, ritem, check_less_precise=check_less_precise, check_names=check_names) for i, item in enumerate(right._get_axis(0)): msg = "non-matching item (left) '{item}'".format(item=item) assert item in left, msg def assert_equal(left, right, **kwargs): """ Wrapper for tm.assert_*_equal to dispatch to the appropriate test function. Parameters ---------- left : Index, Series, DataFrame, ExtensionArray, or np.ndarray right : Index, Series, DataFrame, ExtensionArray, or np.ndarray **kwargs """ __tracebackhide__ = True if isinstance(left, pd.Index): assert_index_equal(left, right, **kwargs) elif isinstance(left, pd.Series): assert_series_equal(left, right, **kwargs) elif isinstance(left, pd.DataFrame): assert_frame_equal(left, right, **kwargs) elif isinstance(left, IntervalArray): assert_interval_array_equal(left, right, **kwargs) elif isinstance(left, PeriodArray): assert_period_array_equal(left, right, **kwargs) elif isinstance(left, DatetimeArray): assert_datetime_array_equal(left, right, **kwargs) elif isinstance(left, TimedeltaArray): assert_timedelta_array_equal(left, right, **kwargs) elif isinstance(left, ExtensionArray): assert_extension_array_equal(left, right, **kwargs) elif isinstance(left, np.ndarray): assert_numpy_array_equal(left, right, **kwargs) else: raise NotImplementedError(type(left)) def box_expected(expected, box_cls, transpose=True): """ Helper function to wrap the expected output of a test in a given box_class. Parameters ---------- expected : np.ndarray, Index, Series box_cls : {Index, Series, DataFrame} Returns ------- subclass of box_cls """ if box_cls is pd.Index: expected = pd.Index(expected) elif box_cls is pd.Series: expected = pd.Series(expected) elif box_cls is pd.DataFrame: expected = pd.Series(expected).to_frame() if transpose: # for vector operations, we we need a DataFrame to be a single-row, # not a single-column, in order to operate against non-DataFrame # vectors of the same length. expected = expected.T elif box_cls is PeriodArray: # the PeriodArray constructor is not as flexible as period_array expected = period_array(expected) elif box_cls is DatetimeArray: expected = DatetimeArray(expected) elif box_cls is TimedeltaArray: expected = TimedeltaArray(expected) elif box_cls is np.ndarray: expected = np.array(expected) elif box_cls is to_array: expected = to_array(expected) else: raise NotImplementedError(box_cls) return expected def to_array(obj): # temporary implementation until we get pd.array in place if is_period_dtype(obj): return period_array(obj) elif is_datetime64_dtype(obj) or is_datetime64tz_dtype(obj): return DatetimeArray._from_sequence(obj) elif is_timedelta64_dtype(obj): return TimedeltaArray._from_sequence(obj) else: return np.array(obj) # ----------------------------------------------------------------------------- # Sparse def assert_sp_array_equal(left, right, check_dtype=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False): """Check that the left and right SparseArray are equal. Parameters ---------- left : SparseArray right : SparseArray check_dtype : bool, default True Whether to check the data dtype is identical. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. """ _check_isinstance(left, right, pd.SparseArray) assert_numpy_array_equal(left.sp_values, right.sp_values, check_dtype=check_dtype) # SparseIndex comparison assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex) assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex) if not check_kind: left_index = left.sp_index.to_block_index() right_index = right.sp_index.to_block_index() else: left_index = left.sp_index right_index = right.sp_index if consolidate_block_indices and left.kind == 'block': # we'll probably remove this hack... left_index = left_index.to_int_index().to_block_index() right_index = right_index.to_int_index().to_block_index() if not left_index.equals(right_index): raise_assert_detail('SparseArray.index', 'index are not equal', left_index, right_index) else: # Just ensure a pass if check_fill_value: assert_attr_equal('fill_value', left, right) if check_dtype: assert_attr_equal('dtype', left, right) assert_numpy_array_equal(left.values, right.values, check_dtype=check_dtype) def assert_sp_series_equal(left, right, check_dtype=True, exact_indices=True, check_series_type=True, check_names=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False, obj='SparseSeries'): """Check that the left and right SparseSeries are equal. Parameters ---------- left : SparseSeries right : SparseSeries check_dtype : bool, default True Whether to check the Series dtype is identical. exact_indices : bool, default True check_series_type : bool, default True Whether to check the SparseSeries class is identical. check_names : bool, default True Whether to check the SparseSeries name attribute. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. obj : str, default 'SparseSeries' Specify the object name being compared, internally used to show the appropriate assertion message. """ _check_isinstance(left, right, pd.SparseSeries) if check_series_type: assert_class_equal(left, right, obj=obj) assert_index_equal(left.index, right.index, obj='{obj}.index'.format(obj=obj)) assert_sp_array_equal(left.values, right.values, check_kind=check_kind, check_fill_value=check_fill_value, consolidate_block_indices=consolidate_block_indices) if check_names: assert_attr_equal('name', left, right) if check_dtype: assert_attr_equal('dtype', left, right) assert_numpy_array_equal(np.asarray(left.values), np.asarray(right.values)) def assert_sp_frame_equal(left, right, check_dtype=True, exact_indices=True, check_frame_type=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False, obj='SparseDataFrame'): """Check that the left and right SparseDataFrame are equal. Parameters ---------- left : SparseDataFrame right : SparseDataFrame check_dtype : bool, default True Whether to check the Series dtype is identical. exact_indices : bool, default True SparseSeries SparseIndex objects must be exactly the same, otherwise just compare dense representations. check_frame_type : bool, default True Whether to check the SparseDataFrame class is identical. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. obj : str, default 'SparseDataFrame' Specify the object name being compared, internally used to show the appropriate assertion message. """ _check_isinstance(left, right, pd.SparseDataFrame) if check_frame_type: assert_class_equal(left, right, obj=obj) assert_index_equal(left.index, right.index, obj='{obj}.index'.format(obj=obj)) assert_index_equal(left.columns, right.columns, obj='{obj}.columns'.format(obj=obj)) if check_fill_value: assert_attr_equal('default_fill_value', left, right, obj=obj) for col, series in compat.iteritems(left): assert (col in right) # trade-off? if exact_indices: assert_sp_series_equal( series, right[col], check_dtype=check_dtype, check_kind=check_kind, check_fill_value=check_fill_value, consolidate_block_indices=consolidate_block_indices ) else: assert_series_equal(series.to_dense(), right[col].to_dense(), check_dtype=check_dtype) # do I care? # assert(left.default_kind == right.default_kind) for col in right: assert (col in left) # ----------------------------------------------------------------------------- # Others def assert_contains_all(iterable, dic): for k in iterable: assert k in dic, "Did not contain item: '{key!r}'".format(key=k) def assert_copy(iter1, iter2, **eql_kwargs): """ iter1, iter2: iterables that produce elements comparable with assert_almost_equal Checks that the elements are equal, but not the same object. (Does not check that items in sequences are also not the same object) """ for elem1, elem2 in zip(iter1, iter2): assert_almost_equal(elem1, elem2, **eql_kwargs) msg = ("Expected object {obj1!r} and object {obj2!r} to be " "different objects, but they were the same object." ).format(obj1=type(elem1), obj2=type(elem2)) assert elem1 is not elem2, msg def getCols(k): return string.ascii_uppercase[:k] def getArangeMat(): return np.arange(N * K).reshape((N, K)) # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k), name=name) def makeCategoricalIndex(k=10, n=3, name=None, **kwargs): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex(np.random.choice(x, k), name=name, **kwargs) def makeIntervalIndex(k=10, name=None, **kwargs): """ make a length k IntervalIndex """ x = np.linspace(0, 100, num=(k + 1)) return IntervalIndex.from_breaks(x, name=name, **kwargs) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False, True], name=name) return Index([False, True] + [False] * (k - 2), name=name) def makeIntIndex(k=10, name=None): return Index(lrange(k), name=name) def makeUIntIndex(k=10, name=None): return Index([2**63 + i for i in lrange(k)], name=name) def makeRangeIndex(k=10, name=None, **kwargs): return RangeIndex(0, k, 1, name=name, **kwargs) def makeFloatIndex(k=10, name=None): values = sorted(np.random.random_sample(k)) - np.random.random_sample(1) return Index(values * (10 ** np.random.randint(0, 9)), name=name) def makeDateIndex(k=10, freq='B', name=None, **kwargs): dt = datetime(2000, 1, 1) dr = bdate_range(dt, periods=k, freq=freq, name=name) return DatetimeIndex(dr, name=name, **kwargs) def makeTimedeltaIndex(k=10, freq='D', name=None, **kwargs): return pd.timedelta_range(start='1 day', periods=k, freq=freq, name=name, **kwargs) def makePeriodIndex(k=10, name=None, **kwargs): dt = datetime(2000, 1, 1) dr = PeriodIndex(start=dt, periods=k, freq='B', name=name, **kwargs) return dr def makeMultiIndex(k=10, names=None, **kwargs): return MultiIndex.from_product( (('foo', 'bar'), (1, 2)), names=names, **kwargs) def all_index_generator(k=10): """Generator which can be iterated over to get instances of all the various index classes. Parameters ---------- k: length of each of the index instances """ all_make_index_funcs = [makeIntIndex, makeFloatIndex, makeStringIndex, makeUnicodeIndex, makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeBoolIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex] for make_index_func in all_make_index_funcs: yield make_index_func(k=k) def index_subclass_makers_generator(): make_index_funcs = [ makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, makeMultiIndex ] for make_index_func in make_index_funcs: yield make_index_func def all_timeseries_index_generator(k=10): """Generator which can be iterated over to get instances of all the classes which represent time-seires. Parameters ---------- k: length of each of the index instances """ make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex] for make_index_func in make_index_funcs: yield make_index_func(k=k) # make series def makeFloatSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeStringSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeObjectSeries(name=None): dateIndex = makeDateIndex(N) dateIndex = Index(dateIndex, dtype=object) index = makeStringIndex(N) return Series(dateIndex, index=index, name=name) def getSeriesData(): index = makeStringIndex(N) return {c: Series(randn(N), index=index) for c in getCols(K)} def makeTimeSeries(nper=None, freq='B', name=None): if nper is None: nper = N return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name) def makePeriodSeries(nper=None, name=None): if nper is None: nper = N return Series(randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq='B'): return {c: makeTimeSeries(nper, freq) for c in getCols(K)} def getPeriodData(nper=None): return {c: makePeriodSeries(nper) for c in getCols(K)} # make frame def makeTimeDataFrame(nper=None, freq='B'): data = getTimeSeriesData(nper, freq) return DataFrame(data) def makeDataFrame(): data = getSeriesData() return DataFrame(data) def getMixedTypeDict(): index = Index(['a', 'b', 'c', 'd', 'e']) data = { 'A': [0., 1., 2., 3., 4.], 'B': [0., 1., 0., 1., 0.], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': bdate_range('1/1/2009', periods=5) } return index, data def makeMixedDataFrame(): return DataFrame(getMixedTypeDict()[1]) def makePeriodFrame(nper=None): data = getPeriodData(nper) return
DataFrame(data)
pandas.DataFrame
import numpy as np import pandas as pd from sklearn.model_selection import StratifiedShuffleSplit from metalearn.metafeatures.base import build_resources_info, ResourceComputer import metalearn.metafeatures.constants as consts def get_X(X_raw): return X_raw.dropna(axis=1, how="all"), get_X = ResourceComputer(get_X, ["X"]) def get_cv_seed(seed_base, seed_offset): return (seed_base + seed_offset,) get_cv_seed = ResourceComputer(get_cv_seed, ["cv_seed"], {'seed_offset': 1}) def sample_columns(X, sample_shape, seed): if sample_shape[1] is None or X.shape[1] <= sample_shape[1]: X_sample = X else: np.random.seed(seed) sampled_column_indices = np.random.choice( X.shape[1], size=sample_shape[1], replace=False ) sampled_columns = X.columns[sampled_column_indices] X_sample = X[sampled_columns] return (X_sample,) sample_columns = ResourceComputer( sample_columns, ["XSampledColumns"], { "seed": 2 } ) def sample_rows(X, Y, sample_shape, seed): """ Stratified uniform sampling of rows, according to the classes in Y. Ensures there are enough samples from each class in Y for cross validation. """ if sample_shape[0] is None or X.shape[0] <= sample_shape[0]: X_sample, Y_sample = X, Y elif Y is None: np.random.seed(seed) row_indices = np.random.choice( X.shape[0], size=sample_shape[0], replace=False ) X_sample, Y_sample = X.iloc[row_indices], Y else: drop_size = X.shape[0] - sample_shape[0] sample_size = sample_shape[0] sss = StratifiedShuffleSplit( n_splits=2, test_size=drop_size, train_size=sample_size, random_state=seed ) row_indices, _ = next(sss.split(X, Y)) X_sample, Y_sample = X.iloc[row_indices], Y.iloc[row_indices] return (X_sample, Y_sample) sample_rows = ResourceComputer( sample_rows, ["XSample","YSample"], { "X": "XSampledColumns", "seed": 3 } ) def get_preprocessed_data(X_sample, X_sampled_columns, column_types, seed): series_array = [] for feature in X_sample.columns: is_text = False feature_series = X_sample[feature].copy() col = feature_series.values dropped_nan_series = X_sampled_columns[feature].dropna( axis=0,how='any' ) num_nan = np.sum(feature_series.isnull()) np.random.seed(seed) col[feature_series.isnull()] = np.random.choice( dropped_nan_series, size=num_nan ) if column_types[feature_series.name] == consts.CATEGORICAL: feature_series = pd.get_dummies(feature_series) elif column_types[feature_series.name] == consts.TEXT: is_text = True if not is_text: series_array.append(feature_series) return (pd.concat(series_array, axis=1, copy=False),) get_preprocessed_data = ResourceComputer( get_preprocessed_data, ["XPreprocessed"], { "X_sample": "XSample", "X_sampled_columns": "XSampledColumns", "seed": 4 } ) def get_categorical_features_with_no_missing_values( X_sample, column_types ): categorical_features_with_no_missing_values = [] for feature in X_sample.columns: if column_types[feature] == consts.CATEGORICAL: no_nan_series = X_sample[feature].dropna( axis=0, how='any' ) categorical_features_with_no_missing_values.append( no_nan_series ) return (categorical_features_with_no_missing_values,) get_categorical_features_with_no_missing_values = ResourceComputer( get_categorical_features_with_no_missing_values, ["NoNaNCategoricalFeatures"], { "X_sample": "XSample" } ) def get_categorical_features_and_class_with_no_missing_values( X_sample, Y_sample, column_types ): categorical_features_and_class_with_no_missing_values = [] for feature in X_sample.columns: if column_types[feature] == consts.CATEGORICAL: df =
pd.concat([X_sample[feature],Y_sample], axis=1)
pandas.concat
# @name: ont_dict.py # @title: Creates an ontology dictionary for all terms in the NGLY1 graph network # @description: Main outer file does the merge and checks for missing values. # [Data sources](https://github.com/flaneuse/ntwk-explr/blob/master/datain/DATA_README.md) # [Data pipeline](https://docs.google.com/presentation/d/1dk_1lTGAhB1tJZuUH9yfJoAZwznedHM_DHrCVFBqeW8/edit#slide=id.g3303550b82_0_110) # @sources: Ontology structures via OLS (GO, HP, MP, FBcv, FBbt, WormBase); gene annotations via mygene.info; NGLY1 network primarily Monarch # @depends: clean_neo4j.py, annot_GENE.py, ont_struct.py # @author: <NAME> # @email: <EMAIL> # @date: 31 January 2018 # [0] Setup ---------------------------------------------------------------------- import numpy as np import pandas as pd import requests import os import warnings # -- Atom notebook path settings -- # output_dir = 'dataout/' # path within Atom notebook # import src.data_prep.clean_neo4j as neo4j # interface to query network # import src.data_prep.annot_GENE as gene # interface to get gene annotations # import src.data_prep.ont_struct as ont # functions to pull ontology data # -- commpand line prompt settings -- output_dir = '../../dataout/' # path from command line prompt import clean_neo4j as neo4j # interface to query network # import annot_GENE as gene # interface to get gene annotations import ont_struct as ont # functions to pull ontology data # [1] Pull unique nodes from Nuria's graph ----------------------------------------------------------------- # node_file = 'https://raw.githubusercontent.com/NuriaQueralt/ngly1/master/neo4j-community-3.0.3/import/ngly1/ngly1_concepts.tsv' # if want to pull directly from the input file to neo4j nodes = neo4j.get_nodes() # <<< pull_ontsource(id, sep = ':') >>> # @name: pull_ontsource # @title: grab node ID source type # @description: used to merge ids to ontology hierarhical levels from OLS; see `check_ontid_unique.py`) # @input: *id* string, *sep*: separator between id source and source-specific id # @output: stub containing the ont source for that particular id # @example: pull_ontsource('ZFIN:ZDB-GENE-051023-7') def pull_ontsource(id, sep = ':'): split_id = id.split(sep) if (len(split_id) > 1): return split_id[0] else: warnings.warn("Cannot find the source for the id. Need to change `sep`?") # (TEST): make sure I'm pulling all the ID types # nodes['ont_source'] = nodes.node_id.apply(pull_ontsource) # nodes.groupby('node_type').ont_source.value_counts() # <<< get_ontid(nodes, drop_source = True) >>> # @name: get_ontid # @title: map node ID type to ont_id from OLS # @description: used to merge ids to ontology hierarhical levels; see `check_ontid_unique.py`) # NOTE: GENE merging taken care of by merging to annotations (translated via mygene.info) (NCBIGene, ZFIN, MGI, RGD, WormBase, Xenbase, FlyBase, UniProt, InterPro) # NOTE: ignoring PHYS, GENO, VARI for now (PHYS requires too much work for the moment; GENO/VARI are low numbers and would require translating to genes then merging -- if that's even appropriate to lump mutation w/ original function) # Also ignoring, for now: # ANAT CL (only 7; not in UBERON) # DISO ZP (271; not in OLS); disease DB: DOID (17), OMIM (6), MESH (4) # TODO: revisit DISO when phenotypes/diseases are better delineated # TODO: revisit GENE when genes/proteins are better delineated # @input: *nodes*: dataframe containing node_id, *drop_source*: binary option to drop column containing the node ont_source # @output: *nodes* dataframe # @example: get_ontid(nodes) def get_ontid(nodes, drop_source = True): # ont_source (neo4j graph): ont_id (OLS ID) id2ontid = { # ANAT 'UBERON': 'UBERON', # CHEM 'CHEBI': 'CHEBI', # DISO 'MP': 'mp', 'FBbt': 'FBbt', 'HP': 'hp', 'WBPhenotype': 'wbphenotype', 'FBcv': 'FBcv' } nodes['ont_source'] = nodes.node_id.apply(pull_ontsource) nodes['ont_id'] = nodes['ont_source'].map(id2ontid) if (drop_source): return nodes.drop('ont_source', axis = 1) else: return nodes nodes = get_ontid(nodes) # [2] Pull gene annotations ----------------------------------------------------------------- # 2 purposes: 1) translate node_id (for genes) to standarized NCBI Entrez gene names # 2) for each gene, pull associated gene ontology (GO) terms # [3] Create ontology hierarchical levels for *all* possible terms in base ontologies ----------------------------------------------------------------- # Get ontology structures + hierarchy for all ontologies # OLS ids ont_ids = { 'ANAT': ['UBERON'], 'CHEM': ['CHEBI'], 'DISO': ['FBcv', 'wbphenotype', 'FBbt', 'mp', 'hp'], 'GENE': ['go'] } def create_ont_dict(ont_ids, output_dir, merge=False): files = sorted(os.listdir(output_dir)) # little helper to see if file has already been generated. def check_exists(files, ont_id, file_type): file_name = [file_name for idx, file_name in enumerate( files) if ont_id + '_' + file_type in file_name] if(len(file_name) == 1): return file_name[0] elif (len(file_name) > 1): return file_name[-1] else: return False # create placeholder for term dictionaries ont_terms = [] # create placeholder for term parents parents = {} # create placeholder for term ancestors ancestors = [] for ont_type, ont_ids in ont_ids.items(): print('\n\n---' + ont_type + '---') for ont_id in ont_ids: print('\n*' + ont_id + '*') # -- terms -- term_file = check_exists(files, ont_id, 'terms') if(term_file): # file already exists; read it in print('reading in term file') ont_term = pd.read_csv(output_dir + term_file, sep = '\t') else: # create file print('creating term file') ont_term = ont.get_terms(ont_id, save_terms=True, output_dir=output_dir) # either way, append info for merging w/ nodes. ont_term['ont_id'] = ont_id ont_term['node_type'] = ont_type ont_terms.append(ont_term) # -- parents -- parent_file = check_exists(files, ont_id, 'parents') if(parent_file): # file already exists; read it in print('reading in parents file') parents[ont_id] = pd.read_csv(output_dir + parent_file, sep='\t', index_col=0) else: # create file print('creating parents file') parents[ont_id] = ont.find_parents(ont_terms[ont_id], ont_id, save_terms=True, output_dir=output_dir) # -- ancestors -- hierarchy_file = check_exists(files, ont_id, 'ancestors') if(hierarchy_file): if (hierarchy_file.find('TEMP') > -1): start_idx = int(hierarchy_file.split('TEMPidx')[1].replace('.tsv', '')) # file already exists but is incomplete; read it in print('reading in partial ancestor hierarchical structure file') ancestor_partial = pd.read_csv(output_dir + hierarchy_file, sep='\t', index_col=0) print('creating the rest of the ancestor hierarchical structures, starting at index ' + str(start_idx)) ancestor = ont.find_ancestors( parents[ont_id], ont_id=ont_id, save_terms=True, output_dir=output_dir, start_idx = start_idx) # combine the two halves ancestor = pd.concat([ancestor, ancestor_partial], ignore_index=True) ancestor.to_csv(output_dir + str(pd.Timestamp.today().strftime('%F')) + '_' + ont_id + '_ancestors_all.tsv', sep='\t') else: # file already exists; read it in print('reading in ancestor hierarchical structure file') ancestor = pd.read_csv(output_dir + hierarchy_file, sep='\t', index_col=0) else: # create file print('creating hierarchical structure file') ancestor = ont.find_ancestors( parents[ont_id], ont_id=ont_id, save_terms=True, output_dir=output_dir) # either way, append info for merging w/ nodes. ancestor['ont_id'] = ont_id ancestor['node_type'] = ont_type ancestors.append(ancestor) ont_terms = pd.concat(ont_terms, ignore_index=True) # append the roots before converting to DataFrame roots = get_root_ancestors(ont_terms) ancestors.append(roots) ancestors = pd.concat(ancestors, ignore_index=True) if(merge): # merge together ontology terms + hierarhical levels merged =
pd.merge(ont_terms, ancestors, on=["node_type", "ont_id", "id"], how="outer", indicator=True)
pandas.merge
# LIBRARIES # set up backend for ssh -x11 figures import matplotlib matplotlib.use('Agg') # read and write import os import sys import glob import re import fnmatch import csv import shutil from datetime import datetime # maths import numpy as np import pandas as pd import math import random # miscellaneous import warnings import gc import timeit # sklearn from sklearn.utils import resample from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, log_loss, roc_auc_score, \ accuracy_score, f1_score, precision_score, recall_score, confusion_matrix, average_precision_score from sklearn.utils.validation import check_is_fitted from sklearn.model_selection import KFold, PredefinedSplit, cross_validate from sklearn.pipeline import Pipeline from sklearn.linear_model import LinearRegression, ElasticNet from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import StandardScaler # Statistics from scipy.stats import pearsonr, ttest_rel, norm # Other tools for ensemble models building (<NAME>'s InnerCV class) from hyperopt import fmin, tpe, space_eval, Trials, hp, STATUS_OK from xgboost import XGBRegressor from lightgbm import LGBMRegressor # CPUs from multiprocessing import Pool # GPUs from GPUtil import GPUtil # tensorflow import tensorflow as tf # keras from keras_preprocessing.image import ImageDataGenerator, Iterator from keras_preprocessing.image.utils import load_img, img_to_array, array_to_img from tensorflow.keras.utils import Sequence from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Flatten, Dense, Dropout, GlobalAveragePooling2D, concatenate from tensorflow.keras import regularizers from tensorflow.keras.optimizers import Adam, RMSprop, Adadelta from tensorflow.keras.callbacks import Callback, EarlyStopping, ReduceLROnPlateau, ModelCheckpoint, CSVLogger from tensorflow.keras.losses import MeanSquaredError, BinaryCrossentropy from tensorflow.keras.metrics import RootMeanSquaredError, MeanAbsoluteError, AUC, BinaryAccuracy, Precision, Recall, \ TruePositives, FalsePositives, FalseNegatives, TrueNegatives from tensorflow_addons.metrics import RSquare, F1Score # Plots import matplotlib.pyplot as plt import matplotlib.cm as cm from PIL import Image from bioinfokit import visuz # Model's attention from keract import get_activations, get_gradients_of_activations from scipy.ndimage.interpolation import zoom # Survival from lifelines.utils import concordance_index # Necessary to define MyCSVLogger import collections import csv import io import six from tensorflow.python.lib.io import file_io from tensorflow.python.util.compat import collections_abc from tensorflow.keras.backend import eval # Set display parameters pd.set_option('display.max_rows', 200) # CLASSES class Basics: """ Root class herited by most other class. Includes handy helper functions """ def __init__(self): # seeds for reproducibility self.seed = 0 os.environ['PYTHONHASHSEED'] = str(self.seed) np.random.seed(self.seed) random.seed(self.seed) # other parameters self.path_data = '../data/' self.folds = ['train', 'val', 'test'] self.n_CV_outer_folds = 10 self.outer_folds = [str(x) for x in list(range(self.n_CV_outer_folds))] self.modes = ['', '_sd', '_str'] self.id_vars = ['id', 'eid', 'instance', 'outer_fold'] self.instances = ['0', '1', '1.5', '1.51', '1.52', '1.53', '1.54', '2', '3'] self.ethnicities_vars_forgot_Other = \ ['Ethnicity.White', 'Ethnicity.British', 'Ethnicity.Irish', 'Ethnicity.White_Other', 'Ethnicity.Mixed', 'Ethnicity.White_and_Black_Caribbean', 'Ethnicity.White_and_Black_African', 'Ethnicity.White_and_Asian', 'Ethnicity.Mixed_Other', 'Ethnicity.Asian', 'Ethnicity.Indian', 'Ethnicity.Pakistani', 'Ethnicity.Bangladeshi', 'Ethnicity.Asian_Other', 'Ethnicity.Black', 'Ethnicity.Caribbean', 'Ethnicity.African', 'Ethnicity.Black_Other', 'Ethnicity.Chinese', 'Ethnicity.Other_ethnicity', 'Ethnicity.Do_not_know', 'Ethnicity.Prefer_not_to_answer', 'Ethnicity.NA'] self.ethnicities_vars = \ ['Ethnicity.White', 'Ethnicity.British', 'Ethnicity.Irish', 'Ethnicity.White_Other', 'Ethnicity.Mixed', 'Ethnicity.White_and_Black_Caribbean', 'Ethnicity.White_and_Black_African', 'Ethnicity.White_and_Asian', 'Ethnicity.Mixed_Other', 'Ethnicity.Asian', 'Ethnicity.Indian', 'Ethnicity.Pakistani', 'Ethnicity.Bangladeshi', 'Ethnicity.Asian_Other', 'Ethnicity.Black', 'Ethnicity.Caribbean', 'Ethnicity.African', 'Ethnicity.Black_Other', 'Ethnicity.Chinese', 'Ethnicity.Other', 'Ethnicity.Other_ethnicity', 'Ethnicity.Do_not_know', 'Ethnicity.Prefer_not_to_answer', 'Ethnicity.NA'] self.demographic_vars = ['Age', 'Sex'] + self.ethnicities_vars self.names_model_parameters = ['target', 'organ', 'view', 'transformation', 'architecture', 'n_fc_layers', 'n_fc_nodes', 'optimizer', 'learning_rate', 'weight_decay', 'dropout_rate', 'data_augmentation_factor'] self.targets_regression = ['Age'] self.targets_binary = ['Sex'] self.models_types = ['', '_bestmodels'] self.dict_prediction_types = {'Age': 'regression', 'Sex': 'binary'} self.dict_side_predictors = {'Age': ['Sex'] + self.ethnicities_vars_forgot_Other, 'Sex': ['Age'] + self.ethnicities_vars_forgot_Other} self.organs = ['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal'] self.left_right_organs_views = ['Eyes_Fundus', 'Eyes_OCT', 'Arterial_Carotids', 'Musculoskeletal_Hips', 'Musculoskeletal_Knees'] self.dict_organs_to_views = {'Brain': ['MRI'], 'Eyes': ['Fundus', 'OCT'], 'Arterial': ['Carotids'], 'Heart': ['MRI'], 'Abdomen': ['Liver', 'Pancreas'], 'Musculoskeletal': ['Spine', 'Hips', 'Knees', 'FullBody'], 'PhysicalActivity': ['FullWeek']} self.dict_organsviews_to_transformations = \ {'Brain_MRI': ['SagittalRaw', 'SagittalReference', 'CoronalRaw', 'CoronalReference', 'TransverseRaw', 'TransverseReference'], 'Arterial_Carotids': ['Mixed', 'LongAxis', 'CIMT120', 'CIMT150', 'ShortAxis'], 'Heart_MRI': ['2chambersRaw', '2chambersContrast', '3chambersRaw', '3chambersContrast', '4chambersRaw', '4chambersContrast'], 'Musculoskeletal_Spine': ['Sagittal', 'Coronal'], 'Musculoskeletal_FullBody': ['Mixed', 'Figure', 'Skeleton', 'Flesh'], 'PhysicalActivity_FullWeek': ['GramianAngularField1minDifference', 'GramianAngularField1minSummation', 'MarkovTransitionField1min', 'RecurrencePlots1min']} self.dict_organsviews_to_transformations.update(dict.fromkeys(['Eyes_Fundus', 'Eyes_OCT'], ['Raw'])) self.dict_organsviews_to_transformations.update( dict.fromkeys(['Abdomen_Liver', 'Abdomen_Pancreas'], ['Raw', 'Contrast'])) self.dict_organsviews_to_transformations.update( dict.fromkeys(['Musculoskeletal_Hips', 'Musculoskeletal_Knees'], ['MRI'])) self.organsviews_not_to_augment = [] self.organs_instances23 = ['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity'] self.organs_XWAS = \ ['*', '*instances01', '*instances1.5x', '*instances23', 'Brain', 'BrainCognitive', 'BrainMRI', 'Eyes', 'EyesFundus', 'EyesOCT', 'Hearing', 'Lungs', 'Arterial', 'ArterialPulseWaveAnalysis', 'ArterialCarotids', 'Heart', 'HeartECG', 'HeartMRI', 'Abdomen', 'AbdomenLiver', 'AbdomenPancreas', 'Musculoskeletal', 'MusculoskeletalSpine', 'MusculoskeletalHips', 'MusculoskeletalKnees', 'MusculoskeletalFullBody', 'MusculoskeletalScalars', 'PhysicalActivity', 'Biochemistry', 'BiochemistryUrine', 'BiochemistryBlood', 'ImmuneSystem'] # Others if '/Users/Alan/' in os.getcwd(): os.chdir('/Users/Alan/Desktop/Aging/Medical_Images/scripts/') else: os.chdir('/n/groups/patel/Alan/Aging/Medical_Images/scripts/') gc.enable() # garbage collector warnings.filterwarnings('ignore') def _version_to_parameters(self, model_name): parameters = {} parameters_list = model_name.split('_') for i, parameter in enumerate(self.names_model_parameters): parameters[parameter] = parameters_list[i] if len(parameters_list) > 11: parameters['outer_fold'] = parameters_list[11] return parameters @staticmethod def _parameters_to_version(parameters): return '_'.join(parameters.values()) @staticmethod def convert_string_to_boolean(string): if string == 'True': boolean = True elif string == 'False': boolean = False else: print('ERROR: string must be either \'True\' or \'False\'') sys.exit(1) return boolean class Metrics(Basics): """ Helper class defining dictionaries of metrics and custom metrics """ def __init__(self): # Parameters Basics.__init__(self) self.metrics_displayed_in_int = ['True-Positives', 'True-Negatives', 'False-Positives', 'False-Negatives'] self.metrics_needing_classpred = ['F1-Score', 'Binary-Accuracy', 'Precision', 'Recall'] self.dict_metrics_names_K = {'regression': ['RMSE'], # For now, R-Square is buggy. Try again in a few months. 'binary': ['ROC-AUC', 'PR-AUC', 'F1-Score', 'Binary-Accuracy', 'Precision', 'Recall', 'True-Positives', 'False-Positives', 'False-Negatives', 'True-Negatives'], 'multiclass': ['Categorical-Accuracy']} self.dict_metrics_names = {'regression': ['RMSE', 'MAE', 'R-Squared', 'Pearson-Correlation'], 'binary': ['ROC-AUC', 'F1-Score', 'PR-AUC', 'Binary-Accuracy', 'Sensitivity', 'Specificity', 'Precision', 'Recall', 'True-Positives', 'False-Positives', 'False-Negatives', 'True-Negatives'], 'multiclass': ['Categorical-Accuracy']} self.dict_losses_names = {'regression': 'MSE', 'binary': 'Binary-Crossentropy', 'multiclass': 'categorical_crossentropy'} self.dict_main_metrics_names_K = {'Age': 'MAE', 'Sex': 'PR-AUC', 'imbalanced_binary_placeholder': 'PR-AUC'} self.dict_main_metrics_names = {'Age': 'R-Squared', 'Sex': 'ROC-AUC', 'imbalanced_binary_placeholder': 'PR-AUC'} self.main_metrics_modes = {'loss': 'min', 'R-Squared': 'max', 'Pearson-Correlation': 'max', 'RMSE': 'min', 'MAE': 'min', 'ROC-AUC': 'max', 'PR-AUC': 'max', 'F1-Score': 'max', 'C-Index': 'max', 'C-Index-difference': 'max'} self.n_bootstrap_iterations = 1000 def rmse(y_true, y_pred): return math.sqrt(mean_squared_error(y_true, y_pred)) def sensitivity_score(y, pred): _, _, fn, tp = confusion_matrix(y, pred.round()).ravel() return tp / (tp + fn) def specificity_score(y, pred): tn, fp, _, _ = confusion_matrix(y, pred.round()).ravel() return tn / (tn + fp) def true_positives_score(y, pred): _, _, _, tp = confusion_matrix(y, pred.round()).ravel() return tp def false_positives_score(y, pred): _, fp, _, _ = confusion_matrix(y, pred.round()).ravel() return fp def false_negatives_score(y, pred): _, _, fn, _ = confusion_matrix(y, pred.round()).ravel() return fn def true_negatives_score(y, pred): tn, _, _, _ = confusion_matrix(y, pred.round()).ravel() return tn self.dict_metrics_sklearn = {'mean_squared_error': mean_squared_error, 'mean_absolute_error': mean_absolute_error, 'RMSE': rmse, 'Pearson-Correlation': pearsonr, 'R-Squared': r2_score, 'Binary-Crossentropy': log_loss, 'ROC-AUC': roc_auc_score, 'F1-Score': f1_score, 'PR-AUC': average_precision_score, 'Binary-Accuracy': accuracy_score, 'Sensitivity': sensitivity_score, 'Specificity': specificity_score, 'Precision': precision_score, 'Recall': recall_score, 'True-Positives': true_positives_score, 'False-Positives': false_positives_score, 'False-Negatives': false_negatives_score, 'True-Negatives': true_negatives_score} def _bootstrap(self, data, function): results = [] for i in range(self.n_bootstrap_iterations): data_i = resample(data, replace=True, n_samples=len(data.index)) results.append(function(data_i['y'], data_i['pred'])) return np.mean(results), np.std(results) class PreprocessingMain(Basics): """ This class executes the code for step 01. It preprocesses the main dataframe by: - reformating the rows and columns - splitting the dataset into folds for the future cross validations - imputing key missing data - adding a new UKB instance for physical activity data - formating the demographics columns (age, sex and ethnicity) - reformating the dataframe so that different instances of the same participant are treated as different rows - saving the dataframe """ def __init__(self): Basics.__init__(self) self.data_raw = None self.data_features = None self.data_features_eids = None def _add_outer_folds(self): outer_folds_split = pd.read_csv(self.path_data + 'All_eids.csv') outer_folds_split.rename(columns={'fold': 'outer_fold'}, inplace=True) outer_folds_split['eid'] = outer_folds_split['eid'].astype('str') outer_folds_split['outer_fold'] = outer_folds_split['outer_fold'].astype('str') outer_folds_split.set_index('eid', inplace=True) self.data_raw = self.data_raw.join(outer_folds_split) def _impute_missing_ecg_instances(self): data_ecgs = pd.read_csv('/n/groups/patel/Alan/Aging/TimeSeries/scripts/age_analysis/missing_samples.csv') data_ecgs['eid'] = data_ecgs['eid'].astype(str) data_ecgs['instance'] = data_ecgs['instance'].astype(str) for _, row in data_ecgs.iterrows(): self.data_raw.loc[row['eid'], 'Date_attended_center_' + row['instance']] = row['observation_date'] def _add_physicalactivity_instances(self): data_pa = pd.read_csv( '/n/groups/patel/Alan/Aging/TimeSeries/series/PhysicalActivity/90001/features/PA_visit_date.csv') data_pa['eid'] = data_pa['eid'].astype(str) data_pa.set_index('eid', drop=False, inplace=True) data_pa.index.name = 'column_names' self.data_raw = self.data_raw.merge(data_pa, on=['eid'], how='outer') self.data_raw.set_index('eid', drop=False, inplace=True) def _compute_sex(self): # Use genetic sex when available self.data_raw['Sex_genetic'][self.data_raw['Sex_genetic'].isna()] = \ self.data_raw['Sex'][self.data_raw['Sex_genetic'].isna()] self.data_raw.drop(['Sex'], axis=1, inplace=True) self.data_raw.rename(columns={'Sex_genetic': 'Sex'}, inplace=True) self.data_raw.dropna(subset=['Sex'], inplace=True) def _compute_age(self): # Recompute age with greater precision by leveraging the month of birth self.data_raw['Year_of_birth'] = self.data_raw['Year_of_birth'].astype(int) self.data_raw['Month_of_birth'] = self.data_raw['Month_of_birth'].astype(int) self.data_raw['Date_of_birth'] = self.data_raw.apply( lambda row: datetime(row.Year_of_birth, row.Month_of_birth, 15), axis=1) for i in self.instances: self.data_raw['Date_attended_center_' + i] = \ self.data_raw['Date_attended_center_' + i].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) self.data_raw['Age_' + i] = self.data_raw['Date_attended_center_' + i] - self.data_raw['Date_of_birth'] self.data_raw['Age_' + i] = self.data_raw['Age_' + i].dt.days / 365.25 self.data_raw.drop(['Date_attended_center_' + i], axis=1, inplace=True) self.data_raw.drop(['Year_of_birth', 'Month_of_birth', 'Date_of_birth'], axis=1, inplace=True) self.data_raw.dropna(how='all', subset=['Age_0', 'Age_1', 'Age_1.5', 'Age_1.51', 'Age_1.52', 'Age_1.53', 'Age_1.54', 'Age_2', 'Age_3'], inplace=True) def _encode_ethnicity(self): # Fill NAs for ethnicity on instance 0 if available in other instances eids_missing_ethnicity = self.data_raw['eid'][self.data_raw['Ethnicity'].isna()] for eid in eids_missing_ethnicity: sample = self.data_raw.loc[eid, :] if not math.isnan(sample['Ethnicity_1']): self.data_raw.loc[eid, 'Ethnicity'] = self.data_raw.loc[eid, 'Ethnicity_1'] elif not math.isnan(sample['Ethnicity_2']): self.data_raw.loc[eid, 'Ethnicity'] = self.data_raw.loc[eid, 'Ethnicity_2'] self.data_raw.drop(['Ethnicity_1', 'Ethnicity_2'], axis=1, inplace=True) # One hot encode ethnicity dict_ethnicity_codes = {'1': 'Ethnicity.White', '1001': 'Ethnicity.British', '1002': 'Ethnicity.Irish', '1003': 'Ethnicity.White_Other', '2': 'Ethnicity.Mixed', '2001': 'Ethnicity.White_and_Black_Caribbean', '2002': 'Ethnicity.White_and_Black_African', '2003': 'Ethnicity.White_and_Asian', '2004': 'Ethnicity.Mixed_Other', '3': 'Ethnicity.Asian', '3001': 'Ethnicity.Indian', '3002': 'Ethnicity.Pakistani', '3003': 'Ethnicity.Bangladeshi', '3004': 'Ethnicity.Asian_Other', '4': 'Ethnicity.Black', '4001': 'Ethnicity.Caribbean', '4002': 'Ethnicity.African', '4003': 'Ethnicity.Black_Other', '5': 'Ethnicity.Chinese', '6': 'Ethnicity.Other_ethnicity', '-1': 'Ethnicity.Do_not_know', '-3': 'Ethnicity.Prefer_not_to_answer', '-5': 'Ethnicity.NA'} self.data_raw['Ethnicity'] = self.data_raw['Ethnicity'].fillna(-5).astype(int).astype(str) ethnicities = pd.get_dummies(self.data_raw['Ethnicity']) self.data_raw.drop(['Ethnicity'], axis=1, inplace=True) ethnicities.rename(columns=dict_ethnicity_codes, inplace=True) ethnicities['Ethnicity.White'] = ethnicities['Ethnicity.White'] + ethnicities['Ethnicity.British'] + \ ethnicities['Ethnicity.Irish'] + ethnicities['Ethnicity.White_Other'] ethnicities['Ethnicity.Mixed'] = ethnicities['Ethnicity.Mixed'] + \ ethnicities['Ethnicity.White_and_Black_Caribbean'] + \ ethnicities['Ethnicity.White_and_Black_African'] + \ ethnicities['Ethnicity.White_and_Asian'] + \ ethnicities['Ethnicity.Mixed_Other'] ethnicities['Ethnicity.Asian'] = ethnicities['Ethnicity.Asian'] + ethnicities['Ethnicity.Indian'] + \ ethnicities['Ethnicity.Pakistani'] + ethnicities['Ethnicity.Bangladeshi'] + \ ethnicities['Ethnicity.Asian_Other'] ethnicities['Ethnicity.Black'] = ethnicities['Ethnicity.Black'] + ethnicities['Ethnicity.Caribbean'] + \ ethnicities['Ethnicity.African'] + ethnicities['Ethnicity.Black_Other'] ethnicities['Ethnicity.Other'] = ethnicities['Ethnicity.Other_ethnicity'] + \ ethnicities['Ethnicity.Do_not_know'] + \ ethnicities['Ethnicity.Prefer_not_to_answer'] + \ ethnicities['Ethnicity.NA'] self.data_raw = self.data_raw.join(ethnicities) def generate_data(self): # Preprocessing dict_UKB_fields_to_names = {'34-0.0': 'Year_of_birth', '52-0.0': 'Month_of_birth', '53-0.0': 'Date_attended_center_0', '53-1.0': 'Date_attended_center_1', '53-2.0': 'Date_attended_center_2', '53-3.0': 'Date_attended_center_3', '31-0.0': 'Sex', '22001-0.0': 'Sex_genetic', '21000-0.0': 'Ethnicity', '21000-1.0': 'Ethnicity_1', '21000-2.0': 'Ethnicity_2', '22414-2.0': 'Abdominal_images_quality'} self.data_raw = pd.read_csv('/n/groups/patel/uk_biobank/project_52887_41230/ukb41230.csv', usecols=['eid', '31-0.0', '22001-0.0', '21000-0.0', '21000-1.0', '21000-2.0', '34-0.0', '52-0.0', '53-0.0', '53-1.0', '53-2.0', '53-3.0', '22414-2.0']) # Formatting self.data_raw.rename(columns=dict_UKB_fields_to_names, inplace=True) self.data_raw['eid'] = self.data_raw['eid'].astype(str) self.data_raw.set_index('eid', drop=False, inplace=True) self.data_raw.index.name = 'column_names' self._add_outer_folds() self._impute_missing_ecg_instances() self._add_physicalactivity_instances() self._compute_sex() self._compute_age() self._encode_ethnicity() # Concatenate the data from the different instances self.data_features = None for i in self.instances: print('Preparing the samples for instance ' + i) df_i = self.data_raw[['eid', 'outer_fold', 'Age_' + i, 'Sex'] + self.ethnicities_vars + ['Abdominal_images_quality']].dropna(subset=['Age_' + i]) print(str(len(df_i.index)) + ' samples found in instance ' + i) df_i.rename(columns={'Age_' + i: 'Age'}, inplace=True) df_i['instance'] = i df_i['id'] = df_i['eid'] + '_' + df_i['instance'] df_i = df_i[self.id_vars + self.demographic_vars + ['Abdominal_images_quality']] if i != '2': df_i['Abdominal_images_quality'] = np.nan # not defined for instance 3, not relevant for instances 0, 1 if self.data_features is None: self.data_features = df_i else: self.data_features = self.data_features.append(df_i) print('The size of the full concatenated dataframe is now ' + str(len(self.data_features.index))) # Save age as a float32 instead of float64 self.data_features['Age'] = np.float32(self.data_features['Age']) # Shuffle the rows before saving the dataframe self.data_features = self.data_features.sample(frac=1) # Generate dataframe for eids pipeline as opposed to instances pipeline self.data_features_eids = self.data_features[self.data_features.instance == '0'] self.data_features_eids['instance'] = '*' self.data_features_eids['id'] = [ID.replace('_0', '_*') for ID in self.data_features_eids['id'].values] def save_data(self): self.data_features.to_csv(self.path_data + 'data-features_instances.csv', index=False) self.data_features_eids.to_csv(self.path_data + 'data-features_eids.csv', index=False) class PreprocessingImagesIDs(Basics): """ Splits the different images datasets into folds for the future cross validation """ def __init__(self): Basics.__init__(self) # Instances 2 and 3 datasets (most medical images, mostly medical images) self.instances23_eids = None self.HEART_EIDs = None self.heart_eids = None self.FOLDS_23_EIDS = None def _load_23_eids(self): data_features = pd.read_csv(self.path_data + 'data-features_instances.csv') images_eids = data_features['eid'][data_features['instance'].isin([2, 3])] self.images_eids = list(set(images_eids)) def _load_heart_eids(self): # IDs already used in Heart videos HEART_EIDS = {} heart_eids = [] for i in range(10): # Important: The i's data fold is used as *validation* fold for outer fold i. data_i = pd.read_csv( "/n/groups/patel/JbProst/Heart/Data/FoldsAugmented/data-features_Heart_20208_Augmented_Age_val_" + str( i) + ".csv") HEART_EIDS[i] = list(set([int(str(ID)[:7]) for ID in data_i['eid']])) heart_eids = heart_eids + HEART_EIDS[i] self.HEART_EIDS = HEART_EIDS self.heart_eids = heart_eids def _split_23_eids_folds(self): self._load_23_eids() self._load_heart_eids() # List extra images ids, and split them between the different folds. extra_eids = [eid for eid in self.images_eids if eid not in self.heart_eids] random.shuffle(extra_eids) n_samples = len(extra_eids) n_samples_by_fold = n_samples / self.n_CV_outer_folds FOLDS_EXTRAEIDS = {} FOLDS_EIDS = {} for outer_fold in self.outer_folds: FOLDS_EXTRAEIDS[outer_fold] = \ extra_eids[int((int(outer_fold)) * n_samples_by_fold):int((int(outer_fold) + 1) * n_samples_by_fold)] FOLDS_EIDS[outer_fold] = self.HEART_EIDS[int(outer_fold)] + FOLDS_EXTRAEIDS[outer_fold] self.FOLDS_23_EIDS = FOLDS_EIDS def _save_23_eids_folds(self): for outer_fold in self.outer_folds: with open(self.path_data + 'instances23_eids_' + outer_fold + '.csv', 'w', newline='') as myfile: wr = csv.writer(myfile, quoting=csv.QUOTE_ALL) wr.writerow(self.FOLDS_23_EIDS[outer_fold]) def generate_eids_splits(self): print("Generating eids split for organs on instances 2 and 3") self._split_23_eids_folds() self._save_23_eids_folds() class PreprocessingFolds(Metrics): """ Splits the data into training, validation and testing sets for all CV folds """ def __init__(self, target, organ, regenerate_data): Metrics.__init__(self) self.target = target self.organ = organ self.list_ids_per_view_transformation = None # Check if these folds have already been generated if not regenerate_data: if len(glob.glob(self.path_data + 'data-features_' + organ + '_*_' + target + '_*.csv')) > 0: print("Error: The files already exist! Either change regenerate_data to True or delete the previous" " version.") sys.exit(1) self.side_predictors = self.dict_side_predictors[target] self.variables_to_normalize = self.side_predictors if target in self.targets_regression: self.variables_to_normalize.append(target) self.dict_image_quality_col = {'Liver': 'Abdominal_images_quality'} self.dict_image_quality_col.update( dict.fromkeys(['Brain', 'Eyes', 'Arterial', 'Heart', 'Abdomen', 'Musculoskeletal', 'PhysicalActivity'], None)) self.image_quality_col = self.dict_image_quality_col[organ] self.views = self.dict_organs_to_views[organ] self.list_ids = None self.list_ids_per_view = {} self.data = None self.EIDS = None self.EIDS_per_view = {'train': {}, 'val': {}, 'test': {}} self.data_fold = None def _get_list_ids(self): self.list_ids_per_view_transformation = {} list_ids = [] # if different views are available, take the union of the ids for view in self.views: self.list_ids_per_view_transformation[view] = {} for transformation in self.dict_organsviews_to_transformations[self.organ + '_' + view]: list_ids_transformation = [] path = '../images/' + self.organ + '/' + view + '/' + transformation + '/' # for paired organs, take the unions of the ids available on the right and the left sides if self.organ + '_' + view in self.left_right_organs_views: for side in ['right', 'left']: list_ids_transformation += os.listdir(path + side + '/') list_ids_transformation = np.unique(list_ids_transformation).tolist() else: list_ids_transformation += os.listdir(path) self.list_ids_per_view_transformation[view][transformation] = \ [im.replace('.jpg', '') for im in list_ids_transformation] list_ids += self.list_ids_per_view_transformation[view][transformation] self.list_ids = np.unique(list_ids).tolist() self.list_ids.sort() def _filter_and_format_data(self): """ Clean the data before it can be split between the rows """ cols_data = self.id_vars + self.demographic_vars if self.image_quality_col is not None: cols_data.append(self.dict_image_quality_col[self.organ]) data = pd.read_csv(self.path_data + 'data-features_instances.csv', usecols=cols_data) data.rename(columns={self.dict_image_quality_col[self.organ]: 'Data_quality'}, inplace=True) for col_name in self.id_vars: data[col_name] = data[col_name].astype(str) data.set_index('id', drop=False, inplace=True) if self.image_quality_col is not None: data = data[data['Data_quality'] != np.nan] data.drop('Data_quality', axis=1, inplace=True) # get rid of samples with NAs data.dropna(inplace=True) # list the samples' ids for which images are available data = data.loc[self.list_ids] self.data = data def _split_data(self): # Generate the data for each outer_fold for i, outer_fold in enumerate(self.outer_folds): of_val = outer_fold of_test = str((int(outer_fold) + 1) % len(self.outer_folds)) DATA = { 'train': self.data[~self.data['outer_fold'].isin([of_val, of_test])], 'val': self.data[self.data['outer_fold'] == of_val], 'test': self.data[self.data['outer_fold'] == of_test] } # Generate the data for the different views and transformations for view in self.views: for transformation in self.dict_organsviews_to_transformations[self.organ + '_' + view]: print('Splitting data for view ' + view + ', and transformation ' + transformation) DF = {} for fold in self.folds: idx = DATA[fold]['id'].isin(self.list_ids_per_view_transformation[view][transformation]).values DF[fold] = DATA[fold].iloc[idx, :] # compute values for scaling of variables normalizing_values = {} for var in self.variables_to_normalize: var_mean = DF['train'][var].mean() if len(DF['train'][var].unique()) < 2: print('Variable ' + var + ' has a single value in fold ' + outer_fold + '. Using 1 as std for normalization.') var_std = 1 else: var_std = DF['train'][var].std() normalizing_values[var] = {'mean': var_mean, 'std': var_std} # normalize the variables for fold in self.folds: for var in self.variables_to_normalize: DF[fold][var + '_raw'] = DF[fold][var] DF[fold][var] = (DF[fold][var] - normalizing_values[var]['mean']) \ / normalizing_values[var]['std'] # report issue if NAs were detected (most likely comes from a sample whose id did not match) n_mismatching_samples = DF[fold].isna().sum().max() if n_mismatching_samples > 0: print(DF[fold][DF[fold].isna().any(axis=1)]) print('/!\\ WARNING! ' + str(n_mismatching_samples) + ' ' + fold + ' images ids out of ' + str(len(DF[fold].index)) + ' did not match the dataframe!') # save the data DF[fold].to_csv(self.path_data + 'data-features_' + self.organ + '_' + view + '_' + transformation + '_' + self.target + '_' + fold + '_' + outer_fold + '.csv', index=False) print('For outer_fold ' + outer_fold + ', the ' + fold + ' fold has a sample size of ' + str(len(DF[fold].index))) def generate_folds(self): self._get_list_ids() self._filter_and_format_data() self._split_data() class PreprocessingSurvival(Basics): """ Preprocesses the main dataframe for survival purposes. Mirrors the PreprocessingMain class, but computes Death time and FollowTime for the future survival analysis """ def __init__(self): Basics.__init__(self) self.data_raw = None self.data_features = None self.data_features_eids = None self.survival_vars = ['FollowUpTime', 'Death'] def _preprocessing(self): usecols = ['eid', '40000-0.0', '34-0.0', '52-0.0', '53-0.0', '53-1.0', '53-2.0', '53-3.0'] self.data_raw = pd.read_csv('/n/groups/patel/uk_biobank/project_52887_41230/ukb41230.csv', usecols=usecols) dict_UKB_fields_to_names = {'40000-0.0': 'FollowUpDate', '34-0.0': 'Year_of_birth', '52-0.0': 'Month_of_birth', '53-0.0': 'Date_attended_center_0', '53-1.0': 'Date_attended_center_1', '53-2.0': 'Date_attended_center_2', '53-3.0': 'Date_attended_center_3'} self.data_raw.rename(columns=dict_UKB_fields_to_names, inplace=True) self.data_raw['eid'] = self.data_raw['eid'].astype(str) self.data_raw.set_index('eid', drop=False, inplace=True) self.data_raw.index.name = 'column_names' # Format survival data self.data_raw['Death'] = ~self.data_raw['FollowUpDate'].isna() self.data_raw['FollowUpDate'][self.data_raw['FollowUpDate'].isna()] = '2020-04-27' self.data_raw['FollowUpDate'] = self.data_raw['FollowUpDate'].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) assert ('FollowUpDate.1' not in self.data_raw.columns) def _add_physicalactivity_instances(self): data_pa = pd.read_csv( '/n/groups/patel/Alan/Aging/TimeSeries/series/PhysicalActivity/90001/features/PA_visit_date.csv') data_pa['eid'] = data_pa['eid'].astype(str) data_pa.set_index('eid', drop=False, inplace=True) data_pa.index.name = 'column_names' self.data_raw = self.data_raw.merge(data_pa, on=['eid'], how='outer') self.data_raw.set_index('eid', drop=False, inplace=True) def _compute_age(self): # Recompute age with greater precision by leveraging the month of birth self.data_raw.dropna(subset=['Year_of_birth'], inplace=True) self.data_raw['Year_of_birth'] = self.data_raw['Year_of_birth'].astype(int) self.data_raw['Month_of_birth'] = self.data_raw['Month_of_birth'].astype(int) self.data_raw['Date_of_birth'] = self.data_raw.apply( lambda row: datetime(row.Year_of_birth, row.Month_of_birth, 15), axis=1) for i in self.instances: self.data_raw['Date_attended_center_' + i] = self.data_raw['Date_attended_center_' + i].apply( lambda x: pd.NaT if pd.isna(x) else datetime.strptime(x, '%Y-%m-%d')) self.data_raw['Age_' + i] = self.data_raw['Date_attended_center_' + i] - self.data_raw['Date_of_birth'] self.data_raw['Age_' + i] = self.data_raw['Age_' + i].dt.days / 365.25 self.data_raw['FollowUpTime_' + i] = self.data_raw['FollowUpDate'] - self.data_raw[ 'Date_attended_center_' + i] self.data_raw['FollowUpTime_' + i] = self.data_raw['FollowUpTime_' + i].dt.days / 365.25 self.data_raw.drop(['Date_attended_center_' + i], axis=1, inplace=True) self.data_raw.drop(['Year_of_birth', 'Month_of_birth', 'Date_of_birth', 'FollowUpDate'], axis=1, inplace=True) self.data_raw.dropna(how='all', subset=['Age_0', 'Age_1', 'Age_1.5', 'Age_1.51', 'Age_1.52', 'Age_1.53', 'Age_1.54', 'Age_2', 'Age_3'], inplace=True) def _concatenate_instances(self): self.data_features = None for i in self.instances: print('Preparing the samples for instance ' + i) df_i = self.data_raw.dropna(subset=['Age_' + i]) print(str(len(df_i.index)) + ' samples found in instance ' + i) dict_names = {} features = ['Age', 'FollowUpTime'] for feature in features: dict_names[feature + '_' + i] = feature self.dict_names = dict_names df_i.rename(columns=dict_names, inplace=True) df_i['instance'] = i df_i['id'] = df_i['eid'] + '_' + df_i['instance'] df_i = df_i[['id', 'eid', 'instance'] + self.survival_vars] if self.data_features is None: self.data_features = df_i else: self.data_features = self.data_features.append(df_i) print('The size of the full concatenated dataframe is now ' + str(len(self.data_features.index))) # Add * instance for eids survival_eids = self.data_features[self.data_features['instance'] == '0'] survival_eids['instance'] = '*' survival_eids['id'] = survival_eids['eid'] + '_' + survival_eids['instance'] self.data_features = self.data_features.append(survival_eids) def generate_data(self): # Formatting self._preprocessing() self._add_physicalactivity_instances() self._compute_age() self._concatenate_instances() # save data self.data_features.to_csv('../data/data_survival.csv', index=False) class MyImageDataGenerator(Basics, Sequence, ImageDataGenerator): """ Helper class: custom data generator for images. It handles several custom features such as: - provides batches of not only images, but also the scalar data (e.g demographics) that correspond to it - it performs random shuffling while making sure that no leftover data (the remainder of the modulo batch size) is being unused - it can handle paired data for paired organs (e.g left/right eyes) """ def __init__(self, target=None, organ=None, view=None, data_features=None, n_samples_per_subepoch=None, batch_size=None, training_mode=None, side_predictors=None, dir_images=None, images_width=None, images_height=None, data_augmentation=False, data_augmentation_factor=None, seed=None): # Parameters Basics.__init__(self) self.target = target if target in self.targets_regression: self.labels = data_features[target] else: self.labels = data_features[target + '_raw'] self.organ = organ self.view = view self.training_mode = training_mode self.data_features = data_features self.list_ids = data_features.index.values self.batch_size = batch_size # for paired organs, take twice fewer ids (two images for each id), and add organ_side as side predictor if organ + '_' + view in self.left_right_organs_views: self.data_features['organ_side'] = np.nan self.n_ids_batch = batch_size // 2 else: self.n_ids_batch = batch_size if self.training_mode & (n_samples_per_subepoch is not None): # during training, 1 epoch = number of samples self.steps = math.ceil(n_samples_per_subepoch / batch_size) else: # during prediction and other tasks, an epoch is defined as all the samples being seen once and only once self.steps = math.ceil(len(self.list_ids) / self.n_ids_batch) # learning_rate_patience if n_samples_per_subepoch is not None: self.n_subepochs_per_epoch = math.ceil(len(self.data_features.index) / n_samples_per_subepoch) # initiate the indices and shuffle the ids self.shuffle = training_mode # Only shuffle if the model is being trained. Otherwise no need. self.indices = np.arange(len(self.list_ids)) self.idx_end = 0 # Keep track of last indice to permute indices accordingly at the end of epoch. if self.shuffle: np.random.shuffle(self.indices) # Input for side NN and CNN self.side_predictors = side_predictors self.dir_images = dir_images self.images_width = images_width self.images_height = images_height # Data augmentation self.data_augmentation = data_augmentation self.data_augmentation_factor = data_augmentation_factor self.seed = seed # Parameters for data augmentation: (rotation range, width shift range, height shift range, zoom range) self.augmentation_parameters = \ pd.DataFrame(index=['Brain_MRI', 'Eyes_Fundus', 'Eyes_OCT', 'Arterial_Carotids', 'Heart_MRI', 'Abdomen_Liver', 'Abdomen_Pancreas', 'Musculoskeletal_Spine', 'Musculoskeletal_Hips', 'Musculoskeletal_Knees', 'Musculoskeletal_FullBody', 'PhysicalActivity_FullWeek', 'PhysicalActivity_Walking'], columns=['rotation', 'width_shift', 'height_shift', 'zoom']) self.augmentation_parameters.loc['Brain_MRI', :] = [10, 0.05, 0.1, 0.0] self.augmentation_parameters.loc['Eyes_Fundus', :] = [20, 0.02, 0.02, 0] self.augmentation_parameters.loc['Eyes_OCT', :] = [30, 0.1, 0.2, 0] self.augmentation_parameters.loc[['Arterial_Carotids'], :] = [0, 0.2, 0.0, 0.0] self.augmentation_parameters.loc[['Heart_MRI', 'Abdomen_Liver', 'Abdomen_Pancreas', 'Musculoskeletal_Spine'], :] = [10, 0.1, 0.1, 0.0] self.augmentation_parameters.loc[['Musculoskeletal_Hips', 'Musculoskeletal_Knees'], :] = [10, 0.1, 0.1, 0.1] self.augmentation_parameters.loc[['Musculoskeletal_FullBody'], :] = [10, 0.05, 0.02, 0.0] self.augmentation_parameters.loc[['PhysicalActivity_FullWeek'], :] = [0, 0, 0, 0.0] organ_view = organ + '_' + view ImageDataGenerator.__init__(self, rescale=1. / 255., rotation_range=self.augmentation_parameters.loc[organ_view, 'rotation'], width_shift_range=self.augmentation_parameters.loc[organ_view, 'width_shift'], height_shift_range=self.augmentation_parameters.loc[organ_view, 'height_shift'], zoom_range=self.augmentation_parameters.loc[organ_view, 'zoom']) def __len__(self): return self.steps def on_epoch_end(self): _ = gc.collect() self.indices = np.concatenate([self.indices[self.idx_end:], self.indices[:self.idx_end]]) def _generate_image(self, path_image): img = load_img(path_image, target_size=(self.images_width, self.images_height), color_mode='rgb') Xi = img_to_array(img) if hasattr(img, 'close'): img.close() if self.data_augmentation: params = self.get_random_transform(Xi.shape) Xi = self.apply_transform(Xi, params) Xi = self.standardize(Xi) return Xi def _data_generation(self, list_ids_batch): # initialize empty matrices n_samples_batch = min(len(list_ids_batch), self.batch_size) X = np.empty((n_samples_batch, self.images_width, self.images_height, 3)) * np.nan x = np.empty((n_samples_batch, len(self.side_predictors))) * np.nan y = np.empty((n_samples_batch, 1)) * np.nan # fill the matrices sample by sample for i, ID in enumerate(list_ids_batch): y[i] = self.labels[ID] x[i] = self.data_features.loc[ID, self.side_predictors] if self.organ + '_' + self.view in self.left_right_organs_views: if i % 2 == 0: path = self.dir_images + 'right/' x[i][-1] = 0 else: path = self.dir_images + 'left/' x[i][-1] = 1 if not os.path.exists(path + ID + '.jpg'): path = path.replace('/right/', '/left/') if i % 2 == 0 else path.replace('/left/', '/right/') x[i][-1] = 1 - x[i][-1] else: path = self.dir_images X[i, :, :, :] = self._generate_image(path_image=path + ID + '.jpg') return [X, x], y def __getitem__(self, index): # Select the indices idx_start = (index * self.n_ids_batch) % len(self.list_ids) idx_end = (((index + 1) * self.n_ids_batch) - 1) % len(self.list_ids) + 1 if idx_start > idx_end: # If this happens outside of training, that is a mistake if not self.training_mode: print('\nERROR: Outside of training, every sample should only be predicted once!') sys.exit(1) # Select part of the indices from the end of the epoch indices = self.indices[idx_start:] # Generate a new set of indices # print('\nThe end of the data was reached within this batch, looping.') if self.shuffle: np.random.shuffle(self.indices) # Complete the batch with samples from the new indices indices = np.concatenate([indices, self.indices[:idx_end]]) else: indices = self.indices[idx_start: idx_end] if idx_end == len(self.list_ids) & self.shuffle: # print('\nThe end of the data was reached. Shuffling for the next epoch.') np.random.shuffle(self.indices) # Keep track of last indice for end of subepoch self.idx_end = idx_end # Select the corresponding ids list_ids_batch = [self.list_ids[i] for i in indices] # For paired organs, two images (left, right eyes) are selected for each id. if self.organ + '_' + self.view in self.left_right_organs_views: list_ids_batch = [ID for ID in list_ids_batch for _ in ('right', 'left')] return self._data_generation(list_ids_batch) class MyCSVLogger(Callback): """ Custom CSV Logger callback class for Keras training: append to existing file if can be found. Allows to keep track of training over several jobs. """ def __init__(self, filename, separator=',', append=False): self.sep = separator self.filename = filename self.append = append self.writer = None self.keys = None self.append_header = True self.csv_file = None if six.PY2: self.file_flags = 'b' self._open_args = {} else: self.file_flags = '' self._open_args = {'newline': '\n'} Callback.__init__(self) def on_train_begin(self, logs=None): if self.append: if file_io.file_exists(self.filename): with open(self.filename, 'r' + self.file_flags) as f: self.append_header = not bool(len(f.readline())) mode = 'a' else: mode = 'w' self.csv_file = io.open(self.filename, mode + self.file_flags, **self._open_args) def on_epoch_end(self, epoch, logs=None): logs = logs or {} def handle_value(k): is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0 if isinstance(k, six.string_types): return k elif isinstance(k, collections_abc.Iterable) and not is_zero_dim_ndarray: return '"[%s]"' % (', '.join(map(str, k))) else: return k if self.keys is None: self.keys = sorted(logs.keys()) if self.model.stop_training: # We set NA so that csv parsers do not fail for this last epoch. logs = dict([(k, logs[k]) if k in logs else (k, 'NA') for k in self.keys]) if not self.writer: class CustomDialect(csv.excel): delimiter = self.sep fieldnames = ['epoch', 'learning_rate'] + self.keys if six.PY2: fieldnames = [unicode(x) for x in fieldnames] self.writer = csv.DictWriter( self.csv_file, fieldnames=fieldnames, dialect=CustomDialect) if self.append_header: self.writer.writeheader() row_dict = collections.OrderedDict({'epoch': epoch, 'learning_rate': eval(self.model.optimizer.lr)}) row_dict.update((key, handle_value(logs[key])) for key in self.keys) self.writer.writerow(row_dict) self.csv_file.flush() def on_train_end(self, logs=None): self.csv_file.close() self.writer = None class MyModelCheckpoint(ModelCheckpoint): """ Custom checkpoint callback class for Keras training. Handles a baseline performance. """ def __init__(self, filepath, monitor='val_loss', baseline=-np.Inf, verbose=0, save_best_only=False, save_weights_only=False, mode='auto', save_freq='epoch'): # Parameters ModelCheckpoint.__init__(self, filepath, monitor=monitor, verbose=verbose, save_best_only=save_best_only, save_weights_only=save_weights_only, mode=mode, save_freq=save_freq) if mode == 'min': self.monitor_op = np.less self.best = baseline elif mode == 'max': self.monitor_op = np.greater self.best = baseline else: print('Error. mode for metric must be either min or max') sys.exit(1) class DeepLearning(Metrics): """ Core helper class to train models. Used to: - build the data generators - generate the CNN architectures - load the weights """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, debug_mode=False): # Initialization Metrics.__init__(self) tf.random.set_seed(self.seed) # Model's version self.target = target self.organ = organ self.view = view self.transformation = transformation self.architecture = architecture self.n_fc_layers = int(n_fc_layers) self.n_fc_nodes = int(n_fc_nodes) self.optimizer = optimizer self.learning_rate = float(learning_rate) self.weight_decay = float(weight_decay) self.dropout_rate = float(dropout_rate) self.data_augmentation_factor = float(data_augmentation_factor) self.outer_fold = None self.version = target + '_' + organ + '_' + view + '_' + transformation + '_' + architecture + '_' + \ n_fc_layers + '_' + n_fc_nodes + '_' + optimizer + '_' + learning_rate + '_' + weight_decay + \ '_' + dropout_rate + '_' + data_augmentation_factor # NNet's architecture and weights self.side_predictors = self.dict_side_predictors[target] if self.organ + '_' + self.view in self.left_right_organs_views: self.side_predictors.append('organ_side') self.dict_final_activations = {'regression': 'linear', 'binary': 'sigmoid', 'multiclass': 'softmax', 'saliency': 'linear'} self.path_load_weights = None self.keras_weights = None # Generators self.debug_mode = debug_mode self.debug_fraction = 0.005 self.DATA_FEATURES = {} self.mode = None self.n_cpus = len(os.sched_getaffinity(0)) self.dir_images = '../images/' + organ + '/' + view + '/' + transformation + '/' # define dictionary to fit the architecture's input size to the images sizes (take min (height, width)) self.dict_organ_view_transformation_to_image_size = { 'Eyes_Fundus_Raw': (316, 316), # initial size (1388, 1388) 'Eyes_OCT_Raw': (312, 320), # initial size (500, 512) 'Musculoskeletal_Spine_Sagittal': (466, 211), # initial size (1513, 684) 'Musculoskeletal_Spine_Coronal': (315, 313), # initial size (724, 720) 'Musculoskeletal_Hips_MRI': (329, 303), # initial size (626, 680) 'Musculoskeletal_Knees_MRI': (347, 286) # initial size (851, 700) } self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Brain_MRI_SagittalRaw', 'Brain_MRI_SagittalReference', 'Brain_MRI_CoronalRaw', 'Brain_MRI_CoronalReference', 'Brain_MRI_TransverseRaw', 'Brain_MRI_TransverseReference'], (316, 316))) # initial size (88, 88) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Arterial_Carotids_Mixed', 'Arterial_Carotids_LongAxis', 'Arterial_Carotids_CIMT120', 'Arterial_Carotids_CIMT150', 'Arterial_Carotids_ShortAxis'], (337, 291))) # initial size (505, 436) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Heart_MRI_2chambersRaw', 'Heart_MRI_2chambersContrast', 'Heart_MRI_3chambersRaw', 'Heart_MRI_3chambersContrast', 'Heart_MRI_4chambersRaw', 'Heart_MRI_4chambersContrast'], (316, 316))) # initial size (200, 200) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Abdomen_Liver_Raw', 'Abdomen_Liver_Contrast'], (288, 364))) # initial size (288, 364) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Abdomen_Pancreas_Raw', 'Abdomen_Pancreas_Contrast'], (288, 350))) # initial size (288, 350) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['Musculoskeletal_FullBody_Figure', 'Musculoskeletal_FullBody_Skeleton', 'Musculoskeletal_FullBody_Flesh', 'Musculoskeletal_FullBody_Mixed'], (541, 181))) # initial size (811, 272) self.dict_organ_view_transformation_to_image_size.update( dict.fromkeys(['PhysicalActivity_FullWeek_GramianAngularField1minDifference', 'PhysicalActivity_FullWeek_GramianAngularField1minSummation', 'PhysicalActivity_FullWeek_MarkovTransitionField1min', 'PhysicalActivity_FullWeek_RecurrencePlots1min'], (316, 316))) # initial size (316, 316) self.dict_architecture_to_image_size = {'MobileNet': (224, 224), 'MobileNetV2': (224, 224), 'NASNetMobile': (224, 224), 'NASNetLarge': (331, 331)} if self.architecture in ['MobileNet', 'MobileNetV2', 'NASNetMobile', 'NASNetLarge']: self.image_width, self.image_height = self.dict_architecture_to_image_size[architecture] else: self.image_width, self.image_height = \ self.dict_organ_view_transformation_to_image_size[organ + '_' + view + '_' + transformation] # define dictionary of batch sizes to fit as many samples as the model's architecture allows self.dict_batch_sizes = { # Default, applies to all images with resized input ~100,000 pixels 'Default': {'VGG16': 32, 'VGG19': 32, 'DenseNet121': 16, 'DenseNet169': 16, 'DenseNet201': 16, 'Xception': 32, 'InceptionV3': 32, 'InceptionResNetV2': 8, 'ResNet50': 32, 'ResNet101': 16, 'ResNet152': 16, 'ResNet50V2': 32, 'ResNet101V2': 16, 'ResNet152V2': 16, 'ResNeXt50': 4, 'ResNeXt101': 8, 'EfficientNetB7': 4, 'MobileNet': 128, 'MobileNetV2': 64, 'NASNetMobile': 64, 'NASNetLarge': 4}} # Define batch size if organ + '_' + view in self.dict_batch_sizes.keys(): randoself.batch_size = self.dict_batch_sizes[organ + '_' + view][architecture] else: self.batch_size = self.dict_batch_sizes['Default'][architecture] # double the batch size for the teslaM40 cores that have bigger memory if len(GPUtil.getGPUs()) > 0: # make sure GPUs are available (not truesometimes for debugging) if GPUtil.getGPUs()[0].memoryTotal > 20000: self.batch_size *= 2 # Define number of ids per batch (twice fewer for paired organs, because left and right samples) self.n_ids_batch = self.batch_size if organ + '_' + view in self.left_right_organs_views: self.n_ids_batch //= 2 # Define number of samples per subepoch if debug_mode: self.n_samples_per_subepoch = self.batch_size * 4 else: self.n_samples_per_subepoch = 32768 if organ + '_' + view in self.left_right_organs_views: self.n_samples_per_subepoch //= 2 # dict to decide which field is used to generate the ids when several targets share the same ids self.dict_target_to_ids = dict.fromkeys(['Age', 'Sex'], 'Age') # Note: R-Squared and F1-Score are not available, because their batch based values are misleading. # For some reason, Sensitivity and Specificity are not available either. Might implement later. self.dict_losses_K = {'MSE': MeanSquaredError(name='MSE'), 'Binary-Crossentropy': BinaryCrossentropy(name='Binary-Crossentropy')} self.dict_metrics_K = {'R-Squared': RSquare(name='R-Squared', y_shape=(1,)), 'RMSE': RootMeanSquaredError(name='RMSE'), 'F1-Score': F1Score(name='F1-Score', num_classes=1, dtype=tf.float32), 'ROC-AUC': AUC(curve='ROC', name='ROC-AUC'), 'PR-AUC': AUC(curve='PR', name='PR-AUC'), 'Binary-Accuracy': BinaryAccuracy(name='Binary-Accuracy'), 'Precision': Precision(name='Precision'), 'Recall': Recall(name='Recall'), 'True-Positives': TruePositives(name='True-Positives'), 'False-Positives': FalsePositives(name='False-Positives'), 'False-Negatives': FalseNegatives(name='False-Negatives'), 'True-Negatives': TrueNegatives(name='True-Negatives')} # Metrics self.prediction_type = self.dict_prediction_types[target] self.loss_name = self.dict_losses_names[self.prediction_type] self.loss_function = self.dict_losses_K[self.loss_name] self.main_metric_name = self.dict_main_metrics_names_K[target] self.main_metric_mode = self.main_metrics_modes[self.main_metric_name] self.main_metric = self.dict_metrics_K[self.main_metric_name] self.metrics_names = [self.main_metric_name] self.metrics = [self.dict_metrics_K[metric_name] for metric_name in self.metrics_names] # Optimizers self.optimizers = {'Adam': Adam, 'RMSprop': RMSprop, 'Adadelta': Adadelta} # Model self.model = None @staticmethod def _append_ext(fn): return fn + ".jpg" def _load_data_features(self): for fold in self.folds: self.DATA_FEATURES[fold] = pd.read_csv( self.path_data + 'data-features_' + self.organ + '_' + self.view + '_' + self.transformation + '_' + self.dict_target_to_ids[self.target] + '_' + fold + '_' + self.outer_fold + '.csv') for col_name in self.id_vars: self.DATA_FEATURES[fold][col_name] = self.DATA_FEATURES[fold][col_name].astype(str) self.DATA_FEATURES[fold].set_index('id', drop=False, inplace=True) def _take_subset_to_debug(self): for fold in self.folds: # use +1 or +2 to test the leftovers pipeline leftovers_extra = {'train': 0, 'val': 1, 'test': 2} n_batches = 2 n_limit_fold = leftovers_extra[fold] + self.batch_size * n_batches self.DATA_FEATURES[fold] = self.DATA_FEATURES[fold].iloc[:n_limit_fold, :] def _generate_generators(self, DATA_FEATURES): GENERATORS = {} for fold in self.folds: # do not generate a generator if there are no samples (can happen for leftovers generators) if fold not in DATA_FEATURES.keys(): continue # parameters training_mode = True if self.mode == 'model_training' else False if (fold == 'train') & (self.mode == 'model_training') & \ (self.organ + '_' + self.view not in self.organsviews_not_to_augment): data_augmentation = True else: data_augmentation = False # define batch size for testing: data is split between a part that fits in batches, and leftovers if self.mode == 'model_testing': if self.organ + '_' + self.view in self.left_right_organs_views: n_samples = len(DATA_FEATURES[fold].index) * 2 else: n_samples = len(DATA_FEATURES[fold].index) batch_size_fold = min(self.batch_size, n_samples) else: batch_size_fold = self.batch_size if (fold == 'train') & (self.mode == 'model_training'): n_samples_per_subepoch = self.n_samples_per_subepoch else: n_samples_per_subepoch = None # generator GENERATORS[fold] = \ MyImageDataGenerator(target=self.target, organ=self.organ, view=self.view, data_features=DATA_FEATURES[fold], n_samples_per_subepoch=n_samples_per_subepoch, batch_size=batch_size_fold, training_mode=training_mode, side_predictors=self.side_predictors, dir_images=self.dir_images, images_width=self.image_width, images_height=self.image_height, data_augmentation=data_augmentation, data_augmentation_factor=self.data_augmentation_factor, seed=self.seed) return GENERATORS def _generate_class_weights(self): if self.dict_prediction_types[self.target] == 'binary': self.class_weights = {} counts = self.DATA_FEATURES['train'][self.target + '_raw'].value_counts() n_total = counts.sum() # weighting the samples for each class inversely proportional to their prevalence, with order of magnitude 1 for i in counts.index.values: self.class_weights[i] = n_total / (counts.loc[i] * len(counts.index)) def _generate_cnn(self): # define the arguments # take special initial weights for EfficientNetB7 (better) if (self.architecture == 'EfficientNetB7') & (self.keras_weights == 'imagenet'): w = 'noisy-student' else: w = self.keras_weights kwargs = {"include_top": False, "weights": w, "input_shape": (self.image_width, self.image_height, 3)} if self.architecture in ['ResNet50', 'ResNet101', 'ResNet152', 'ResNet50V2', 'ResNet101V2', 'ResNet152V2', 'ResNeXt50', 'ResNeXt101']: import tensorflow.keras kwargs.update( {"backend": tensorflow.keras.backend, "layers": tensorflow.keras.layers, "models": tensorflow.keras.models, "utils": tensorflow.keras.utils}) # load the architecture builder if self.architecture == 'VGG16': from tensorflow.keras.applications.vgg16 import VGG16 as ModelBuilder elif self.architecture == 'VGG19': from tensorflow.keras.applications.vgg19 import VGG19 as ModelBuilder elif self.architecture == 'DenseNet121': from tensorflow.keras.applications.densenet import DenseNet121 as ModelBuilder elif self.architecture == 'DenseNet169': from tensorflow.keras.applications.densenet import DenseNet169 as ModelBuilder elif self.architecture == 'DenseNet201': from tensorflow.keras.applications.densenet import DenseNet201 as ModelBuilder elif self.architecture == 'Xception': from tensorflow.keras.applications.xception import Xception as ModelBuilder elif self.architecture == 'InceptionV3': from tensorflow.keras.applications.inception_v3 import InceptionV3 as ModelBuilder elif self.architecture == 'InceptionResNetV2': from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2 as ModelBuilder elif self.architecture == 'ResNet50': from keras_applications.resnet import ResNet50 as ModelBuilder elif self.architecture == 'ResNet101': from keras_applications.resnet import ResNet101 as ModelBuilder elif self.architecture == 'ResNet152': from keras_applications.resnet import ResNet152 as ModelBuilder elif self.architecture == 'ResNet50V2': from keras_applications.resnet_v2 import ResNet50V2 as ModelBuilder elif self.architecture == 'ResNet101V2': from keras_applications.resnet_v2 import ResNet101V2 as ModelBuilder elif self.architecture == 'ResNet152V2': from keras_applications.resnet_v2 import ResNet152V2 as ModelBuilder elif self.architecture == 'ResNeXt50': from keras_applications.resnext import ResNeXt50 as ModelBuilder elif self.architecture == 'ResNeXt101': from keras_applications.resnext import ResNeXt101 as ModelBuilder elif self.architecture == 'EfficientNetB7': from efficientnet.tfkeras import EfficientNetB7 as ModelBuilder # The following model have a fixed input size requirement elif self.architecture == 'NASNetMobile': from tensorflow.keras.applications.nasnet import NASNetMobile as ModelBuilder elif self.architecture == 'NASNetLarge': from tensorflow.keras.applications.nasnet import NASNetLarge as ModelBuilder elif self.architecture == 'MobileNet': from tensorflow.keras.applications.mobilenet import MobileNet as ModelBuilder elif self.architecture == 'MobileNetV2': from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2 as ModelBuilder else: print('Architecture does not exist.') sys.exit(1) # build the model's base cnn = ModelBuilder(**kwargs) x = cnn.output # complete the model's base if self.architecture in ['VGG16', 'VGG19']: x = Flatten()(x) x = Dense(4096, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) x = Dropout(self.dropout_rate)(x) x = Dense(4096, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) x = Dropout(self.dropout_rate)(x) else: x = GlobalAveragePooling2D()(x) if self.architecture == 'EfficientNetB7': x = Dropout(self.dropout_rate)(x) cnn_output = x return cnn.input, cnn_output def _generate_side_nn(self): side_nn = Sequential() side_nn.add(Dense(16, input_dim=len(self.side_predictors), activation="relu", kernel_regularizer=regularizers.l2(self.weight_decay))) return side_nn.input, side_nn.output def _complete_architecture(self, cnn_input, cnn_output, side_nn_input, side_nn_output): x = concatenate([cnn_output, side_nn_output]) x = Dropout(self.dropout_rate)(x) for n in [int(self.n_fc_nodes * (2 ** (2 * (self.n_fc_layers - 1 - i)))) for i in range(self.n_fc_layers)]: x = Dense(n, activation='relu', kernel_regularizer=regularizers.l2(self.weight_decay))(x) # scale the dropout proportionally to the number of nodes in a layer. No dropout for the last layers if n > 16: x = Dropout(self.dropout_rate * n / 1024)(x) predictions = Dense(1, activation=self.dict_final_activations[self.prediction_type], kernel_regularizer=regularizers.l2(self.weight_decay))(x) self.model = Model(inputs=[cnn_input, side_nn_input], outputs=predictions) def _generate_architecture(self): cnn_input, cnn_output = self._generate_cnn() side_nn_input, side_nn_output = self._generate_side_nn() self._complete_architecture(cnn_input=cnn_input, cnn_output=cnn_output, side_nn_input=side_nn_input, side_nn_output=side_nn_output) def _load_model_weights(self): try: self.model.load_weights(self.path_load_weights) except (FileNotFoundError, TypeError): # load backup weights if the main weights are corrupted try: self.model.load_weights(self.path_load_weights.replace('model-weights', 'backup-model-weights')) except FileNotFoundError: print('Error. No file was found. imagenet weights should have been used. Bug somewhere.') sys.exit(1) @staticmethod def clean_exit(): # exit print('\nDone.\n') print('Killing JOB PID with kill...') os.system('touch ../eo/' + os.environ['SLURM_JOBID']) os.system('kill ' + str(os.getpid())) time.sleep(60) print('Escalating to kill JOB PID with kill -9...') os.system('kill -9 ' + str(os.getpid())) time.sleep(60) print('Escalating to kill JOB ID') os.system('scancel ' + os.environ['SLURM_JOBID']) time.sleep(60) print('Everything failed to kill the job. Hanging there until hitting walltime...') class Training(DeepLearning): """ Class to train CNN models: - Generates the architecture - Loads the best last weights so that a model can be trained over several jobs - Generates the callbacks - Compiles the model - Trains the model """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, outer_fold=None, debug_mode=False, transfer_learning=None, continue_training=True, display_full_metrics=True): # parameters DeepLearning.__init__(self, target, organ, view, transformation, architecture, n_fc_layers, n_fc_nodes, optimizer, learning_rate, weight_decay, dropout_rate, data_augmentation_factor, debug_mode) self.outer_fold = outer_fold self.version = self.version + '_' + str(outer_fold) # NNet's architecture's weights self.continue_training = continue_training self.transfer_learning = transfer_learning self.list_parameters_to_match = ['organ', 'transformation', 'view'] # dict to decide in which order targets should be used when trying to transfer weight from a similar model self.dict_alternative_targets_for_transfer_learning = {'Age': ['Age', 'Sex'], 'Sex': ['Sex', 'Age']} # Generators self.folds = ['train', 'val'] self.mode = 'model_training' self.class_weights = None self.GENERATORS = None # Metrics self.baseline_performance = None if display_full_metrics: self.metrics_names = self.dict_metrics_names_K[self.prediction_type] # Model self.path_load_weights = self.path_data + 'model-weights_' + self.version + '.h5' if debug_mode: self.path_save_weights = self.path_data + 'model-weights-debug.h5' else: self.path_save_weights = self.path_data + 'model-weights_' + self.version + '.h5' self.n_epochs_max = 100000 self.callbacks = None # Load and preprocess the data, build the generators def data_preprocessing(self): self._load_data_features() if self.debug_mode: self._take_subset_to_debug() self._generate_class_weights() self.GENERATORS = self._generate_generators(self.DATA_FEATURES) # Determine which weights to load, if any. def _weights_for_transfer_learning(self): print('Looking for models to transfer weights from...') # define parameters parameters = self._version_to_parameters(self.version) # continue training if possible if self.continue_training and os.path.exists(self.path_load_weights): print('Loading the weights from the model\'s previous training iteration.') return # Initialize the weights using other the weights from other successful hyperparameters combinations if self.transfer_learning == 'hyperparameters': # Check if the same model with other hyperparameters have already been trained. Pick the best for transfer. params = self.version.split('_') params_tl_idx = \ [i for i in range(len(names_model_parameters)) if any(names_model_parameters[i] == p for p in ['optimizer', 'learning_rate', 'weight_decay', 'dropout_rate', 'data_augmentation_factor'])] for idx in params_tl_idx: params[idx] = '*' versions = '../eo/MI02_' + '_'.join(params) + '.out' files = glob.glob(versions) if self.main_metric_mode == 'min': best_perf = np.Inf else: best_perf = -np.Inf for file in files: hand = open(file, 'r') # find best last performance final_improvement_line = None baseline_performance_line = None for line in hand: line = line.rstrip() if re.search('Baseline validation ' + self.main_metric_name + ' = ', line): baseline_performance_line = line if re.search('val_' + self.main_metric_name + ' improved from', line): final_improvement_line = line hand.close() if final_improvement_line is not None: perf = float(final_improvement_line.split(' ')[7].replace(',', '')) elif baseline_performance_line is not None: perf = float(baseline_performance_line.split(' ')[-1]) else: continue # Keep track of the file with the best performance if self.main_metric_mode == 'min': update = perf < best_perf else: update = perf > best_perf if update: best_perf = perf self.path_load_weights = \ file.replace('../eo/', self.path_data).replace('MI02', 'model-weights').replace('.out', '.h5') if best_perf not in [-np.Inf, np.Inf]: print('Transfering the weights from: ' + self.path_load_weights + ', with ' + self.main_metric_name + ' = ' + str(best_perf)) return # Initialize the weights based on models trained on different datasets, ranked by similarity if self.transfer_learning == 'datasets': while True: # print('Matching models for the following criterias:'); # print(['architecture', 'target'] + list_parameters_to_match) # start by looking for models trained on the same target, then move to other targets for target_to_load in self.dict_alternative_targets_for_transfer_learning[parameters['target']]: # print('Target used: ' + target_to_load) parameters_to_match = parameters.copy() parameters_to_match['target'] = target_to_load # load the ranked performances table to select the best performing model among the similar # models available path_performances_to_load = self.path_data + 'PERFORMANCES_ranked_' + \ parameters_to_match['target'] + '_' + 'val' + '.csv' try: Performances = pd.read_csv(path_performances_to_load) Performances['organ'] = Performances['organ'].astype(str) except FileNotFoundError: # print("Could not load the file: " + path_performances_to_load) break # iteratively get rid of models that are not similar enough, based on the list for parameter in ['architecture', 'target'] + self.list_parameters_to_match: Performances = Performances[Performances[parameter] == parameters_to_match[parameter]] # if at least one model is similar enough, load weights from the best of them if len(Performances.index) != 0: self.path_load_weights = self.path_data + 'model-weights_' + Performances['version'][0] + '.h5' self.keras_weights = None print('transfering the weights from: ' + self.path_load_weights) return # if no similar model was found, try again after getting rid of the last selection criteria if len(self.list_parameters_to_match) == 0: print('No model found for transfer learning.') break self.list_parameters_to_match.pop() # Otherwise use imagenet weights to initialize print('Using imagenet weights.') # using string instead of None for path to not ge self.path_load_weights = None self.keras_weights = 'imagenet' def _compile_model(self): # if learning rate was reduced with success according to logger, start with this reduced learning rate if self.path_load_weights is not None: path_logger = self.path_load_weights.replace('model-weights', 'logger').replace('.h5', '.csv') else: path_logger = self.path_data + 'logger_' + self.version + '.csv' if os.path.exists(path_logger): try: logger = pd.read_csv(path_logger) best_log = \ logger[logger['val_' + self.main_metric_name] == logger['val_' + self.main_metric_name].max()] lr = best_log['learning_rate'].values[0] except pd.errors.EmptyDataError: os.remove(path_logger) lr = self.learning_rate else: lr = self.learning_rate self.model.compile(optimizer=self.optimizers[self.optimizer](lr=lr, clipnorm=1.0), loss=self.loss_function, metrics=self.metrics) def _compute_baseline_performance(self): # calculate initial val_loss value if self.continue_training: idx_metric_name = ([self.loss_name] + self.metrics_names).index(self.main_metric_name) baseline_perfs = self.model.evaluate(self.GENERATORS['val'], steps=self.GENERATORS['val'].steps) self.baseline_performance = baseline_perfs[idx_metric_name] elif self.main_metric_mode == 'min': self.baseline_performance = np.Inf else: self.baseline_performance = -np.Inf print('Baseline validation ' + self.main_metric_name + ' = ' + str(self.baseline_performance)) def _define_callbacks(self): if self.debug_mode: path_logger = self.path_data + 'logger-debug.csv' append = False else: path_logger = self.path_data + 'logger_' + self.version + '.csv' append = self.continue_training csv_logger = MyCSVLogger(path_logger, separator=',', append=append) model_checkpoint_backup = MyModelCheckpoint(self.path_save_weights.replace('model-weights', 'backup-model-weights'), monitor='val_' + self.main_metric.name, baseline=self.baseline_performance, verbose=1, save_best_only=True, save_weights_only=True, mode=self.main_metric_mode, save_freq='epoch') model_checkpoint = MyModelCheckpoint(self.path_save_weights, monitor='val_' + self.main_metric.name, baseline=self.baseline_performance, verbose=1, save_best_only=True, save_weights_only=True, mode=self.main_metric_mode, save_freq='epoch') patience_reduce_lr = min(7, 3 * self.GENERATORS['train'].n_subepochs_per_epoch) reduce_lr_on_plateau = ReduceLROnPlateau(monitor='loss', factor=0.5, patience=patience_reduce_lr, verbose=1, mode='min', min_delta=0, cooldown=0, min_lr=0) early_stopping = EarlyStopping(monitor='val_' + self.main_metric.name, min_delta=0, patience=15, verbose=0, mode=self.main_metric_mode, baseline=self.baseline_performance, restore_best_weights=True) self.callbacks = [csv_logger, model_checkpoint_backup, model_checkpoint, early_stopping, reduce_lr_on_plateau] def build_model(self): self._weights_for_transfer_learning() self._generate_architecture() # Load weights if possible try: load_weights = True if os.path.exists(self.path_load_weights) else False except TypeError: load_weights = False if load_weights: self._load_model_weights() else: # save transferred weights as default, in case no better weights are found self.model.save_weights(self.path_save_weights.replace('model-weights', 'backup-model-weights')) self.model.save_weights(self.path_save_weights) self._compile_model() self._compute_baseline_performance() self._define_callbacks() def train_model(self): # garbage collector _ = gc.collect() # use more verbose when debugging verbose = 1 if self.debug_mode else 2 # train the model self.model.fit(self.GENERATORS['train'], steps_per_epoch=self.GENERATORS['train'].steps, validation_data=self.GENERATORS['val'], validation_steps=self.GENERATORS['val'].steps, shuffle=False, use_multiprocessing=False, workers=self.n_cpus, epochs=self.n_epochs_max, class_weight=self.class_weights, callbacks=self.callbacks, verbose=verbose) class PredictionsGenerate(DeepLearning): """ Generates the predictions for each model. Unscales the predictions. """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None, outer_fold=None, debug_mode=False): # Initialize parameters DeepLearning.__init__(self, target, organ, view, transformation, architecture, n_fc_layers, n_fc_nodes, optimizer, learning_rate, weight_decay, dropout_rate, data_augmentation_factor, debug_mode) self.outer_fold = outer_fold self.mode = 'model_testing' # Define dictionaries attributes for data, generators and predictions self.DATA_FEATURES_BATCH = {} self.DATA_FEATURES_LEFTOVERS = {} self.GENERATORS_BATCH = None self.GENERATORS_LEFTOVERS = None self.PREDICTIONS = {} def _split_batch_leftovers(self): # split the samples into two groups: what can fit into the batch size, and the leftovers. for fold in self.folds: n_leftovers = len(self.DATA_FEATURES[fold].index) % self.n_ids_batch if n_leftovers > 0: self.DATA_FEATURES_BATCH[fold] = self.DATA_FEATURES[fold].iloc[:-n_leftovers] self.DATA_FEATURES_LEFTOVERS[fold] = self.DATA_FEATURES[fold].tail(n_leftovers) else: self.DATA_FEATURES_BATCH[fold] = self.DATA_FEATURES[fold] # special case for syntax if no leftovers if fold in self.DATA_FEATURES_LEFTOVERS.keys(): del self.DATA_FEATURES_LEFTOVERS[fold] def _generate_outerfold_predictions(self): # prepare unscaling if self.target in self.targets_regression: mean_train = self.DATA_FEATURES['train'][self.target + '_raw'].mean() std_train = self.DATA_FEATURES['train'][self.target + '_raw'].std() else: mean_train, std_train = None, None # Generate predictions for fold in self.folds: print('Predicting samples from fold ' + fold + '.') print(str(len(self.DATA_FEATURES[fold].index)) + ' samples to predict.') print('Predicting batches: ' + str(len(self.DATA_FEATURES_BATCH[fold].index)) + ' samples.') pred_batch = self.model.predict(self.GENERATORS_BATCH[fold], steps=self.GENERATORS_BATCH[fold].steps, verbose=1) if fold in self.GENERATORS_LEFTOVERS.keys(): print('Predicting leftovers: ' + str(len(self.DATA_FEATURES_LEFTOVERS[fold].index)) + ' samples.') pred_leftovers = self.model.predict(self.GENERATORS_LEFTOVERS[fold], steps=self.GENERATORS_LEFTOVERS[fold].steps, verbose=1) pred_full = np.concatenate((pred_batch, pred_leftovers)).squeeze() else: pred_full = pred_batch.squeeze() print('Predicted a total of ' + str(len(pred_full)) + ' samples.') # take the average between left and right predictions for paired organs if self.organ + '_' + self.view in self.left_right_organs_views: pred_full = np.mean(pred_full.reshape(-1, 2), axis=1) # unscale predictions if self.target in self.targets_regression: pred_full = pred_full * std_train + mean_train # format the dataframe self.DATA_FEATURES[fold]['pred'] = pred_full self.PREDICTIONS[fold] = self.DATA_FEATURES[fold] self.PREDICTIONS[fold]['id'] = [ID.replace('.jpg', '') for ID in self.PREDICTIONS[fold]['id']] def _generate_predictions(self): self.path_load_weights = self.path_data + 'model-weights_' + self.version + '_' + self.outer_fold + '.h5' self._load_data_features() if self.debug_mode: self._take_subset_to_debug() self._load_model_weights() self._split_batch_leftovers() # generate the generators self.GENERATORS_BATCH = self._generate_generators(DATA_FEATURES=self.DATA_FEATURES_BATCH) if self.DATA_FEATURES_LEFTOVERS is not None: self.GENERATORS_LEFTOVERS = self._generate_generators(DATA_FEATURES=self.DATA_FEATURES_LEFTOVERS) self._generate_outerfold_predictions() def _format_predictions(self): for fold in self.folds: perf_fun = self.dict_metrics_sklearn[self.dict_main_metrics_names[self.target]] perf = perf_fun(self.PREDICTIONS[fold][self.target + '_raw'], self.PREDICTIONS[fold]['pred']) print('The ' + fold + ' performance is: ' + str(perf)) # format the predictions self.PREDICTIONS[fold].index.name = 'column_names' self.PREDICTIONS[fold] = self.PREDICTIONS[fold][['id', 'outer_fold', 'pred']] def generate_predictions(self): self._generate_architecture() self._generate_predictions() self._format_predictions() def save_predictions(self): for fold in self.folds: self.PREDICTIONS[fold].to_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '_' + self.outer_fold + '.csv', index=False) class PredictionsConcatenate(Basics): """ Concatenates the predictions coming from the different cross validation folds. """ def __init__(self, target=None, organ=None, view=None, transformation=None, architecture=None, n_fc_layers=None, n_fc_nodes=None, optimizer=None, learning_rate=None, weight_decay=None, dropout_rate=None, data_augmentation_factor=None): # Initialize parameters Basics.__init__(self) self.version = target + '_' + organ + '_' + view + '_' + transformation + '_' + architecture + '_' + \ n_fc_layers + '_' + n_fc_nodes + '_' + optimizer + '_' + learning_rate + '_' + weight_decay + \ '_' + dropout_rate + '_' + data_augmentation_factor # Define dictionaries attributes for data, generators and predictions self.PREDICTIONS = {} def concatenate_predictions(self): for fold in self.folds: for outer_fold in self.outer_folds: Predictions_fold = pd.read_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '_' + outer_fold + '.csv') if fold in self.PREDICTIONS.keys(): self.PREDICTIONS[fold] = pd.concat([self.PREDICTIONS[fold], Predictions_fold]) else: self.PREDICTIONS[fold] = Predictions_fold def save_predictions(self): for fold in self.folds: self.PREDICTIONS[fold].to_csv(self.path_data + 'Predictions_instances_' + self.version + '_' + fold + '.csv', index=False) class PredictionsMerge(Basics): """ Merges the predictions from all models into a unified dataframe. """ def __init__(self, target=None, fold=None): Basics.__init__(self) # Define dictionaries attributes for data, generators and predictions self.target = target self.fold = fold self.data_features = None self.list_models = None self.Predictions_df_previous = None self.Predictions_df = None def _load_data_features(self): self.data_features = pd.read_csv(self.path_data + 'data-features_instances.csv', usecols=self.id_vars + self.demographic_vars) for var in self.id_vars: self.data_features[var] = self.data_features[var].astype(str) self.data_features.set_index('id', drop=False, inplace=True) self.data_features.index.name = 'column_names' def _preprocess_data_features(self): # For the training set, each sample is predicted n_CV_outer_folds times, so prepare a larger dataframe if self.fold == 'train': df_all_folds = None for outer_fold in self.outer_folds: df_fold = self.data_features.copy() df_all_folds = df_fold if outer_fold == self.outer_folds[0] else df_all_folds.append(df_fold) self.data_features = df_all_folds def _load_previous_merged_predictions(self): if os.path.exists(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv'): self.Predictions_df_previous = pd.read_csv(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv') self.Predictions_df_previous.drop(columns=['eid', 'instance'] + self.demographic_vars, inplace=True) def _list_models(self): # generate list of predictions that will be integrated in the Predictions dataframe self.list_models = glob.glob(self.path_data + 'Predictions_instances_' + self.target + '_*_' + self.fold + '.csv') # get rid of ensemble models and models already merged self.list_models = [model for model in self.list_models if ('*' not in model)] if self.Predictions_df_previous is not None: self.list_models = \ [model for model in self.list_models if ('pred_' + '_'.join(model.split('_')[2:-1]) not in self.Predictions_df_previous.columns)] self.list_models.sort() def preprocessing(self): self._load_data_features() self._preprocess_data_features() self._load_previous_merged_predictions() self._list_models() def merge_predictions(self): # merge the predictions print('There are ' + str(len(self.list_models)) + ' models to merge.') i = 0 # define subgroups to accelerate merging process list_subgroups = list(set(['_'.join(model.split('_')[3:7]) for model in self.list_models])) for subgroup in list_subgroups: print('Merging models from the subgroup ' + subgroup) models_subgroup = [model for model in self.list_models if subgroup in model] Predictions_subgroup = None # merge the models one by one for file_name in models_subgroup: i += 1 version = '_'.join(file_name.split('_')[2:-1]) if self.Predictions_df_previous is not None and \ 'pred_' + version in self.Predictions_df_previous.columns: print('The model ' + version + ' has already been merged before.') else: print('Merging the ' + str(i) + 'th model: ' + version) # load csv and format the predictions prediction = pd.read_csv(self.path_data + file_name) print('raw prediction\'s shape: ' + str(prediction.shape)) for var in ['id', 'outer_fold']: prediction[var] = prediction[var].apply(str) prediction.rename(columns={'pred': 'pred_' + version}, inplace=True) # merge data frames if Predictions_subgroup is None: Predictions_subgroup = prediction elif self.fold == 'train': Predictions_subgroup = Predictions_subgroup.merge(prediction, how='outer', on=['id', 'outer_fold']) else: prediction.drop(['outer_fold'], axis=1, inplace=True) # not supported for panda version > 0.23.4 for now Predictions_subgroup = Predictions_subgroup.merge(prediction, how='outer', on=['id']) # merge group predictions data frames if self.fold != 'train': Predictions_subgroup.drop(['outer_fold'], axis=1, inplace=True) if Predictions_subgroup is not None: if self.Predictions_df is None: self.Predictions_df = Predictions_subgroup elif self.fold == 'train': self.Predictions_df = self.Predictions_df.merge(Predictions_subgroup, how='outer', on=['id', 'outer_fold']) else: # not supported for panda version > 0.23.4 for now self.Predictions_df = self.Predictions_df.merge(Predictions_subgroup, how='outer', on=['id']) print('Predictions_df\'s shape: ' + str(self.Predictions_df.shape)) # garbage collector gc.collect() # Merge with the previously merged predictions if (self.Predictions_df_previous is not None) & (self.Predictions_df is not None): if self.fold == 'train': self.Predictions_df = self.Predictions_df_previous.merge(self.Predictions_df, how='outer', on=['id', 'outer_fold']) else: self.Predictions_df.drop(columns=['outer_fold'], inplace=True) # not supported for panda version > 0.23.4 for now self.Predictions_df = self.Predictions_df_previous.merge(self.Predictions_df, how='outer', on=['id']) self.Predictions_df_previous = None elif self.Predictions_df is None: print('No new models to merge. Exiting.') print('Done.') sys.exit(0) # Reorder the columns alphabetically pred_versions = [col for col in self.Predictions_df.columns if 'pred_' in col] pred_versions.sort() id_cols = ['id', 'outer_fold'] if self.fold == 'train' else ['id'] self.Predictions_df = self.Predictions_df[id_cols + pred_versions] def postprocessing(self): # get rid of useless rows in data_features before merging to keep the memory requirements as low as possible self.data_features = self.data_features[self.data_features['id'].isin(self.Predictions_df['id'].values)] # merge data_features and predictions if self.fold == 'train': print('Starting to merge a massive dataframe') self.Predictions_df = self.data_features.merge(self.Predictions_df, how='outer', on=['id', 'outer_fold']) else: # not supported for panda version > 0.23.4 for now self.Predictions_df = self.data_features.merge(self.Predictions_df, how='outer', on=['id']) print('Merging done') # remove rows for which no prediction is available (should be none) subset_cols = [col for col in self.Predictions_df.columns if 'pred_' in col] self.Predictions_df.dropna(subset=subset_cols, how='all', inplace=True) # Displaying the R2s versions = [col.replace('pred_', '') for col in self.Predictions_df.columns if 'pred_' in col] r2s = [] for version in versions: df = self.Predictions_df[[self.target, 'pred_' + version]].dropna() r2s.append(r2_score(df[self.target], df['pred_' + version])) R2S = pd.DataFrame({'version': versions, 'R2': r2s}) R2S.sort_values(by='R2', ascending=False, inplace=True) print('R2 for each model: ') print(R2S) def save_merged_predictions(self): print('Writing the merged predictions...') self.Predictions_df.to_csv(self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv', index=False) class PredictionsEids(Basics): """ Computes the average age prediction across samples from different instances for every participant. (Scaled back to instance 0) """ def __init__(self, target=None, fold=None, debug_mode=None): Basics.__init__(self) # Define dictionaries attributes for data, generators and predictions self.target = target self.fold = fold self.debug_mode = debug_mode self.Predictions = None self.Predictions_chunk = None self.pred_versions = None self.res_versions = None self.target_0s = None self.Predictions_eids = None self.Predictions_eids_previous = None self.pred_versions_previous = None def preprocessing(self): # Load predictions self.Predictions = pd.read_csv( self.path_data + 'PREDICTIONS_withoutEnsembles_instances_' + self.target + '_' + self.fold + '.csv') self.Predictions.drop(columns=['id'], inplace=True) self.Predictions['eid'] = self.Predictions['eid'].astype(str) self.Predictions.index.name = 'column_names' self.pred_versions = [col for col in self.Predictions.columns.values if 'pred_' in col] # Prepare target values on instance 0 as a reference target_0s =
pd.read_csv(self.path_data + 'data-features_eids.csv', usecols=['eid', self.target])
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Nov 28 14:02:04 2021 @author: hk_nien """ import re import numpy as np import pandas as pd import scipy.interpolate import matplotlib.pyplot as plt from tools import set_xaxis_dateformat def load_tvt_data(): """Return DataFrame with index date (mid-week 12:00), num_test, num_pos, f_pos.""" records = [] with open('data/TvT.txt') as f: for li in f.readlines(): if li.startswith('#') or len(li) < 2: continue # typical line: "22-03-2021 - 28-03-2021 5081 16 0.3" fields = li.split() dates = [ pd.to_datetime(fields[i], format='%d-%m-%Y') for i in [0, 2] ] n_test = int(fields[3]) n_pos = int(fields[4]) date_mid = dates[0] + (dates[1]-dates[0])/2 + pd.Timedelta('12 h') records.append((date_mid, dates[0], dates[1], n_test, n_pos)) df = pd.DataFrame.from_records( records, columns=['Date_mid', 'Date_a', 'Date_b', 'num_test', 'num_pos'] ) if df.iloc[-1]['Date_b'] < pd.to_datetime('now') - pd.to_timedelta('9 d, 15:15:00'): print( '** Warning: TvT data may be outdated. Update data/TvT.txt from ' 'RIVM weekly report at ' 'https://www.rivm.nl/coronavirus-covid-19/actueel/' 'wekelijkse-update-epidemiologische-situatie-covid-19-in-nederland .' ) df = df.set_index('Date_mid') df['f_pos'] = df['num_pos'] / df['num_test'] return df def get_R_from_TvT(): """Return DataFrame with R estimate from TvT data. Return DataFrame: - index: datetime index (12:00) - R: R estimate (one per week) - R_err: estimated R error (2sigma), one per week. - R_interp: interpolated R values (daily) """ df = load_tvt_data() date0 = df.index[0] # ts: day number since start date ts = (df.index - date0) /
pd.Timedelta('1 d')
pandas.Timedelta
# -*- coding: utf-8 -*- """ Created on Tue Feb 23 11:50:49 2021 @author: peter """ import numpy as np import pandas as pd from base import BaseModel, GarchBase from stats import loglikelihood_normal, loglikelihood_student_t from weights import Beta from helper_functions import create_matrix from datetime import datetime, timedelta import time import scipy.stats as stats class MIDAS(BaseModel): def __init__(self, lag = 22, plot = True, *args): self.lag = lag self.plot = plot self.args = args def initialize_params(self, X): """ This function is about to create the initial parameters. Return a sequance of 1.0 value that has the necessary length. Parameters ---------- X : DataFrame Pandas dataframe that contains all the regressors. Returns ------- init_params: numpy.array Numpy array that contain the required amount of initial parameters. """ self.init_params = np.linspace(1.0, 1.0, int(1.0 + X.shape[1] * 2.0)) return self.init_params def model_filter(self, params, x): """ This function is about to create the model's equation. Parameters ---------- params : numpy.array Numpy array that contain the required amount of parameters. x : Dictionary Dictionary that contains all the lagged regressors. Returns ------- model : numpy.array Numpy array that return the values from the specification. """ model = params[0] for i in range(1, len(x) + 1): model += params[2 * i - 1] * Beta().x_weighted(x['X{num}'.format(num = i)], [1.0, params[2 * i]]) return model def loglikelihood(self, params, X, y): """ This function is about to calculate the negative loglikelihood function's value. Parameters ---------- params : numpy.array Numpy array that contain the required amount of parameters. X : DataFrame Pandas dataframe that contain all the regressors. y : pandas.Series or numpy.array Sequance that contains the dependent variable. Returns ------- TYPE DESCRIPTION. """ X = create_matrix(X, self.lag) return np.sum((y - self.model_filter(params, X)) ** 2) def predict(self, X): X = create_matrix(X, self.lag) return self.model_filter(self.optimized_params, X) def simulate(self, params = [2.0, 0.5, 5.0], lag = 12, num = 500): y = np.zeros(num) x = np.exp(np.cumsum(np.random.normal(0.5, 2, num) / 100)) alpha, beta, theta = params[0], params[1], params[2] for i in range(num): if i < lag: y[i] = alpha else: y[i] = alpha + beta * Beta().x_weighted(x[i - lag : i][::-1].reshape((1, lag)), [1.0, theta]) return x, y class MIDAS_sim(BaseModel): def __init__(self, lag = 22, plot = True, *args): self.lag = lag self.plot = plot self.args = args def initialize_params(self, X): self.init_params = np.linspace(1, 1, 3) return self.init_params def model_filter(self, params, X, y): if isinstance(y, int) or isinstance(y, float): T = y else: T = len(y) model = np.zeros(T) for i in range(T): model[i] = params[0] + params[1] * Beta().x_weighted(X[i * self.lag : (i + 1) * self.lag].reshape((1, self.lag)), [1.0, params[2]]) return model def loglikelihood(self, params, X, y): return np.sum((y - self.model_filter(params, X, y)) ** 2) def simulate(self, params = [0.1, 0.3, 4.0], num = 500, K = 22): X = np.zeros(num * K) y = np.zeros(num) for i in range(num * K): if i == 0: X[i] = np.random.normal() else: X[i] = 0.9 * X[i - 1] + np.random.normal() for i in range(num): y[i] = params[0] + params[1] * Beta().x_weighted(X[i * K : (i + 1) * K].reshape((1, K)), [1.0, params[2]]) + np.random.normal(scale = 0.7**2) return X, y def create_sims(self, number_of_sims = 500, length = 500, K = 22, params = [0.1, 0.3, 4.0]): lls, b0, b1, th, runtime = np.zeros(number_of_sims), np.zeros(number_of_sims), np.zeros(number_of_sims), np.zeros(number_of_sims), np.zeros(number_of_sims) for i in range(number_of_sims): np.random.seed(i) X, y = self.simulate(params = params, num = length, K = K) start = time.time() self.fit(['pos', 'pos', 'pos'], X, y) runtime[i] = time.time() - start lls[i] = self.opt.fun b0[i], b1[i], th[i] = self.optimized_params[0], self.optimized_params[1], self.optimized_params[2] return pd.DataFrame(data = {'LogLike': lls, 'Beta0': b0, 'Beta1': b1, 'Theta':th}) def forecasting(self, X, k = 10): X_n = np.zeros(k * 22) for i in range(k * 22): if i == 0: X_n[i] = 0.9 * X[-1] + np.random.normal() else: X_n[i] = 0.9 * X_n[i - 1] + np.random.normal() try: y_hat = self.model_filter(self.optimized_params, X_n, k) except: params = input('Please give the parameters:') return X_n, y_hat class GARCH(BaseModel): def __init__(self, plot = True, *args): self.plot = plot self.args = args def initialize_params(self, y): self.init_params = np.asarray([0.0, 0.05, 0.02, 0.95]) return self.init_params def model_filter(self, params, y): sigma2 = np.zeros(len(y)) resid = y - params[0] for i in range(len(y)): if i == 0: sigma2[i] = params[1] / (1 - params[2] - params[3]) else: sigma2[i] = params[1] + params[2] * resid[i - 1] ** 2 + params[3] * sigma2[i - 1] return sigma2 def loglikelihood(self, params, y): sigma2 = self.model_filter(params, y) resid = y - params[0] return loglikelihood_normal(resid, sigma2) def simulate(self, params = [0.0, 0.2, 0.2, 0.6], num = 500): y = np.zeros(num) state = np.zeros(num) for i in range(num): if i == 0: state[i] = params[1] / (1 - params[2] - params[3]) else: state[i] = params[1] + params[2] * y[i - 1] * y[i - 1] + params[3] * state[i - 1] y[i] = stats.norm.rvs(loc = params[0], scale = np.sqrt(state[i])) return y, state def predict(self, X): return self.model_filter(self.optimized_params, X) class T_GARCH(BaseModel): def __init__(self, plot = True, *args): self.plot = plot self.args = args def initialize_params(self, y): self.init_params = np.asarray([0.1, 0.02, 0.95, 3.75]) return self.init_params def model_filter(self, params, y): sigma2 = np.zeros(len(y)) resid = y - params[0] for i in range(len(y)): if i == 0: sigma2[i] = params[1] / (1 - params[2] - params[3]) else: sigma2[i] = params[1] + params[2] * resid[i - 1] ** 2 + params[3] * sigma2[i - 1] return sigma2 def loglikelihood(self, params, y): sigma2 = self.model_filter(params, y) resid = y - params[0] nu = params[4] return loglikelihood_student_t(resid, sigma2, nu) def simulate(self, params = [0.0, 0.2, 0.2, 0.6, 3.0], num = 500): y = np.zeros(num) state = np.zeros(num) for i in range(num): if i == 0: state[i] = params[1] / (1 - params[2] - params[3]) else: state[i] = params[1] + params[2] * y[i - 1] * y[i - 1] + params[3] * state[i - 1] y[i] = stats.t.rvs(params[4], loc = params[3], scale = np.sqrt(state[i])) return y, state def predict(self, X): return self.model_filter(self.optimized_params, X) class GARCH_MIDAS(BaseModel): def __init__(self, lag = 22, plot = True, *args): self.lag = lag self.plot = plot self.args = args def initialize_params(self, X): """ This function is about to create the initial parameters and collect the indexes of monthly and daily data columns. Parameters ---------- X : DataFrame Pandas dataframe that contains all the regressors Returns ------- init_params: numpy.array Numpy array that contain the required amount of initial parameters. """ # Empty array for the column indexes of daily regressors daily_index = np.array([]) # Empty array for the column indexes of monthly regressors monthly_index = np.array([]) # Initial GARCH parameters garch_params = np.array([0.05, 0.05, 0.02, 0.95]) # An array where there will be the required amount of parameter for the modeling. midas_params = np.array([1.0]) for i in range(X.shape[1]): # Calculate the ratio of unique observation divided by the number of whole observations ratio = X.iloc[:, i].unique().shape[0] / X.shape[0] # Let's assume that the ratio for monthly observation will be close to 12/365, # so I set the critial point to 0.05. if ratio <= 0.05: midas_params = np.append(midas_params, [1.0]) monthly_index = np.append(monthly_index, i) else: midas_params = np.append(midas_params, [1.0, 1.0]) daily_index = np.append(daily_index, i) self.monthly = monthly_index self.daily = daily_index self.init_params = np.append(garch_params, midas_params) return self.init_params def model_filter(self, params, X, y): """ This function is about to create the model's equation. The short-/long-term component will be calculated as well. Parameters ---------- params : numpy.array Numpy array that contain the required amount of parameters. X : DataFrame Pandas dataframe that contains all the regressors y : pandas.Series or numpy.array Sequance that contains the dependent variable. Returns ------- sigma2 : numpy.array Numpy array that return the values from the specification. """ # Array of zeros with length of the dependent variable self.g = np.zeros(len(y)) resid = y - params[0] sigma2 = np.zeros(len(y)) # Empty list to collect the ... plc = [] uncond_var = params[1] / (1 - params[2] - params[3]) # 'per' is an array of periods (monthly). For example [(2010, 1), ...] per = X.index.to_period('M') # 'uniq' contains the unique dates (monthly) uniq = np.asarray(per.unique()) # Array of zeros with length of the number of unique monthly dates self.tau = np.zeros(len(uniq)) for t in range(len(uniq)): if t == 0: plc.append(np.where((per >= uniq[t].strftime('%Y-%m')) & (per < uniq[t + 1].strftime('%Y-%m')))[0]) # 'new_d' is a empty array if t equal to zero. I will collect daily regressors in 'new_d' # so in the first month I assume didn't have any knowledge about the past. new_d = np.array([]) elif t != len(uniq) - 1: plc.append(np.where((per >= uniq[t].strftime('%Y-%m')) & (per < uniq[t + 1].strftime('%Y-%m')))[0]) # 'dd' contain the values of daily regressors from the previous period. dd = X.iloc[plc[t - 1], self.daily].values if len(dd) < self.lag: # I create 'pad' variable to build matrixes with the same size. It is a crutial step # because in january we have more observations than february, so I made an assumption, # that each month have a length is equal to the size of lag. pad = np.zeros((self.lag - len(dd), dd.shape[1])) new_d = np.vstack([dd[::-1], pad]).T else: # If we have more observation than lag, I dropped out the last (length - lag) new_d = dd[len(dd) - self.lag:][::-1].T else: plc.append(np.where(per >= uniq[t].strftime('%Y-%m'))[0]) dd = X.iloc[plc[t - 1], self.daily].values if len(dd) < self.lag: pad = np.zeros((self.lag - len(dd), dd.shape[1])) new_d = np.vstack([dd[::-1], pad]).T else: new_d = dd[len(dd) - self.lag:][::-1].T # First, I added monthly variables to tau and the intercept self.tau[t] = params[4] + np.dot(X.iloc[plc[t], self.monthly].values[0], params[5 : 5 + len(self.monthly)]) # Finally, I added daily observations from t-1 period specfied with Beta function for j in range(len(new_d)): x = new_d[j].reshape((1, self.lag)) self.tau[t] += params[5 + len(self.monthly) + j] * Beta().x_weighted(x, [1.0, params[(5 + len(self.monthly + self.daily) + j)]]) for i in plc[t]: if i == 0: self.g[i] = uncond_var sigma2[i] = self.g[i] * self.tau[t] else: self.g[i] = uncond_var * (1 - params[2] - params[3]) + params[2] * ((resid[i-1] ** 2) / self.tau[t]) + params[3] * self.g[i - 1] sigma2[i] = self.g[i] * self.tau[t] return sigma2 def loglikelihood(self, params, X, y): sigma2 = self.model_filter(params, X, y) resid = y - params[0] return loglikelihood_normal(resid, sigma2) def predict(self, X, y): return self.model_filter(self.optimized_params, X, y) class MGARCH(BaseModel): def __init__(self, lag = 12, plot = True, *args): self.lag = lag self.plot = plot self.args = args def initialize_params(self, X): try: X_len = X.shape[1] except: X_len = 1 garch_params = np.array([0.1, 0.85]) midas_params = np.linspace(1.0, 1.0, int(1.0 + X_len * 2.0)) self.init_params = np.append(garch_params, midas_params) return self.init_params def model_filter(self, params, X, y): self.g = np.zeros(len(y)) self.tau = np.zeros(len(X)) sigma2 = np.zeros(len(y)) try: X_len = X.shape[1] except: X_len = 1 alpha1, beta1 = params[0], params[1] resid = y uncond_var = np.mean(y ** 2) for t in range(len(X) - 1): if t == 0: m = np.where(y.index < X.index[t + 1])[0] else: m = np.where((y.index >= X.index[t]) & (y.index < X.index[t + 1]))[0] if t - self.lag < 0: self.tau[t] = params[2] for par in range(1, X_len + 1): self.tau[t] += params[2 * par + 1] * Beta().x_weighted(X.iloc[ : t, par - 1][::-1].values.reshape((1, X.iloc[ : t, par - 1].shape[0])), [1.0, params[2 * par + 2]]) else: self.tau[t] = params[2] for par in range(1, X_len + 1): self.tau[t] += params[2 * par + 1] * Beta().x_weighted(X.iloc[t - self.lag : t, par - 1][::-1].values.reshape((1, X.iloc[t - self.lag : t, par - 1].shape[0])), [1.0, params[2 * par + 2]]) for i in m: if i == 0: self.g[i] = uncond_var else: self.g[i] = uncond_var * (1 - alpha1 - beta1) + alpha1 * (resid[i - 1] ** 2) / self.tau[t] + beta1 * self.g[i - 1] sigma2[i] = self.g[i] * self.tau[t] return sigma2 def loglikelihood(self, params, X, y): sigma2 = self.model_filter(params, X, y) resid = y return loglikelihood_normal(resid, sigma2) def predict(self, X, y): return self.model_filter(self.optimized_params, X, y) def simulate(self, params = [0.0, 0.1, 0.2, 0.6, 0.4, 0.005, 5.0], lag = 12, num = 100): rv = np.zeros(num) tau = np.zeros(num) g = np.zeros(num * 22) sigma2 = np.zeros(num * 22) y = np.zeros(num * 22) mu, omega, alpha, beta, m, pszi, theta = params[0], params[1], params[2], params[3], params[4], params[5], params[6] uncond_var = omega / (1 - alpha - beta) for t in range(num): if t - lag < 0: rv[t] = np.sum(y[(t - 1 )* 22 : t * 22] ** 2) tau[t] = m + pszi * Beta().x_weighted(rv[:t][::-1].reshape((1, rv[:t].shape[0])), [1.0, theta]) else: rv[t] = np.sum(y[(t - 1 )* 22 : t * 22] ** 2) tau[t] = m + pszi * Beta().x_weighted(rv[t - lag : t][::-1].reshape((1, rv[t - lag : t].shape[0])), [1.0, theta]) for i in range(t * 22, (t + 1) * 22): if t == 0: if i == 0: g[i] = uncond_var else: g[i] = uncond_var * (1 - alpha - beta) + alpha * (y[i - 1] - mu) ** 2 + beta * g[i - 1] sigma2[i] = g[i] y[i] = stats.norm.rvs(loc = params[0], scale = np.sqrt(sigma2[i])) else: g[i] = uncond_var * (1 - alpha - beta) + alpha * ((y[i - 1] - mu) ** 2) / tau[t] + beta * g[i - 1] sigma2[i] = g[i] * tau[t] y[i] = stats.norm.rvs(loc = params[0], scale = np.sqrt(sigma2[i])) return rv, tau, g, sigma2, y class GARCH_MIDAS_sim(BaseModel): def __init__(self, lag = 36, plot = True, *args): self.lag = lag self.plot = plot self.args = args def initialize_params(self, X): self.init_params = np.array([0.05, 0.5, 0.5, 0.5, 0.5, 1.0]) return self.init_params def model_filter(self, params, X, y): self.tau = np.zeros(len(X)) self.g = np.zeros(len(y)) sigma2 = np.zeros(len(y)) I_t = int(len(y) / len(X)) mu = params[0] alpha1 = params[1] beta1 = params[2] m = params[3] theta = params[4] w = params[5] X_t = np.zeros((len(X), self.lag)) for t in range(len(X)): if t < self.lag: X_t[t] = np.hstack((X[ : t][::-1], np.zeros(self.lag - t))) else: X_t[t] = X[t - self.lag : t][::-1] self.tau = np.exp(m + theta * Beta().x_weighted(X_t, [1.0, w])) j = 0 for i in range(len(y)): if i % I_t == 0: j += 1 if i == 0: self.g[i] = 1 else: self.g[i] = (1 - alpha1 - beta1) + alpha1 * ((y[i - 1] - mu) ** 2) / self.tau[j - 1] + beta1 *self.g[i - 1] sigma2[i] = self.g[i] * self.tau[j - 1] return sigma2 def loglikelihood(self, params, X, y): sigma2 = self.model_filter(params, X, y) resid = y - params[0] return loglikelihood_normal(resid, sigma2) def simulate(self, params = [0.0, 0.06, 0.91, 0.1, 0.3, 4.0, 0.9, 0.09], num = 480, lag = 36, I_t = 22): X = np.zeros(num) tau = np.zeros(num) g = np.zeros(num * I_t) sigma2 = np.zeros(num * I_t) r = np.zeros(num * I_t) X_t = np.zeros((num, lag)) mu = params[0] alpha1 = params[1] beta1 = params[2] m = params[3] theta = params[4] w = params[5] fi = params[6] sigma_fi = params[7] j = 0 for i in range(num): if i == 0: X[i] = np.random.normal(0.0, sigma_fi) else: X[i] = fi * X[i - 1] + np.random.normal(0.0, sigma_fi) for i in range(num): if i < lag: X_t[i] = np.hstack((X[ : i][::-1], np.zeros(lag - i))) else: X_t[i] = X[i - lag : i][::-1] tau = np.exp(m + theta * Beta().x_weighted(X_t, [1.0, w])) for i in range(num * I_t): if i % I_t == 0: j += 1 if i == 0: g[i] = 1 else: g[i] = 1 - alpha1 - beta1 + alpha1 * (r[i - 1]) ** 2 / tau[j - 1] + beta1 * g[i - 1] sigma2[i] = g[i] * tau[j - 1] r[i] = stats.norm.rvs(loc = mu, scale = np.sqrt(sigma2[i])) return X, r, tau, g, sigma2 class Panel_GARCH(BaseModel): def __init__(self, plot = True, dist = 'normal', *args): self.plot = plot self.dist = dist self.args = args def initialize_params(self, X): if self.dist == 'normal': self.init_params = np.array([0.4, 0.4]) elif self.dist == 'student-t': self.init_params = np.array([0.4, 0.4, 4.0]) else: raise ValueError("ValueError exception thrown") return self.init_params def model_filter(self, params, X): sigma2 = np.zeros_like(X) alpha, beta = params[0], params[1] uncond_var = np.nanmean(X ** 2, axis = 0) nans = X.isna().sum().values X = X.values for i in range(sigma2.shape[0]): for j in range(sigma2.shape[1]): if nans[j] == i: sigma2[i][j] = uncond_var[j] elif nans[j] < i: sigma2[i][j] = uncond_var[j] * (1 - alpha - beta) + alpha * (X[i - 1][j] ** 2) + beta * sigma2[i - 1][j] else: pass return sigma2 def loglikelihood(self, params, X): sigma2 = self.model_filter(params, X) if self.dist == 'normal': lls = loglikelihood_normal(X, sigma2).sum() elif self.dist == 'student-t': lls = loglikelihood_student_t(X, sigma2, params[2]).sum() return lls def simulate(self, params = [0.06, 0.91], num = 100, length = 1000): sigma2 = np.zeros((length, num)) r = np.zeros((length, num)) alpha, beta = params[0], params[1] for t in range(length): if t == 0: sigma2[t] = 1.0 else: sigma2[t] = 1 - alpha - beta + alpha * (r[t - 1] ** 2) + beta * sigma2[t - 1] r[t] = np.random.normal(0.0, np.sqrt(sigma2[t])) return sigma2, r def forecast(self, X, H): X_new = X X_new.loc[X.shape[0]] = 0 sigma2 = self.model_filter(self.optimized_params, X_new) sigma2 = sigma2 * np.sqrt(H) return sigma2[-1] class Panel_GARCH_CSA(BaseModel): """ Panel GARCH with cross sectional adjustment $r_{it} = \sigma_{it} c_t \epsilon_{it}$ $\mu_i = \frac{1}{N} \sum_{i = 1}^N r_{it}^2$ $c_t = (1 - \phi) + \phi \sqrt{ \frac{1}{N} \sum_{i = 1}^N (\frac{r_{it-1}}{\sigma_{it-1} c_{t-1}} - \frac{1}{N} \sum_{i = 1}^N \frac{r_{it-1}}{\sigma_{it-1} c_{t-1}} )^2}$ $\sigma_{it}^2 = \mu_i (1 - \alpha - \beta) + \alpha \epsilon_{it-1}^2 + \beta \sigma_{it-1}^2$ """ def __init__(self, plot = True, dist = 'normal', *args): self.plot = plot self.dist = dist self.args = args def initialize_params(self, X): if self.dist == 'normal': self.init_params = np.array([0.1, 0.5, 0.5]) elif self.dist == 'student-t': self.init_params = np.array([0.1, 0.5, 0.5, 4.0]) return self.init_params def model_filter(self, params, y): c = np.zeros(y.shape[0]) sigma2 = np.zeros(y.shape) T, N = y.shape mu = np.nanmean(y ** 2, axis = 0) y = y.values phi, alpha, beta = params[0], params[1], params[2] for t in range(T): if t == 0: c[t] = 1.0 for i in range(N): if np.isnan(y[t][i]) == True: sigma2[t][i] = np.nan else: sigma2[t][i] = mu[i] else: c[t] = (1 - phi) + phi * np.nanstd(y[t - 1] / (np.sqrt(sigma2[t - 1]) * c[t - 1])) for i in range(N): if np.isnan(y[t][i]) == True: if np.isnan(y[t - 1][i]) == True: sigma2[t][i] = np.nan else: sigma2[t][i] = mu[i] else: if np.isnan(sigma2[t - 1][i]) == False: sigma2[t][i] = mu[i] * (1 - alpha - beta) + alpha * (y[t - 1][i] / (np.sqrt(sigma2[t - 1][i]) * c[t - 1])) ** 2 + beta * sigma2[t - 1][i] else: sigma2[t][i] = mu[i] return sigma2, c def loglikelihood(self, params, y): sigma2, _ = self.model_filter(params, y) lls = 0 sigma2 = sigma2.T for i in range(y.shape[1]): idx = np.where(np.isnan(sigma2[i]) == False)[0] sig = sigma2[i][idx] xx = y.iloc[idx, i].values if len(sig) == 0.0: lls += 0.0 else: if self.dist == 'normal': lls += loglikelihood_normal(xx, sig) elif self.dist == 'student-t': lls += loglikelihood_student_t(xx, sig, params[3]) return lls def simulate(self, params = [0.1, 0.2, 0.6], num = 100, length = 500): c = np.zeros(length) sigma2 = np.zeros((length, num)) ret = np.zeros((length, num)) phi, alpha, beta = params[0], params[1], params[2] for t in range(length): if t == 0: c[t] = 1.0 sigma2[t] = 1.0 else: c[t] = (1 - phi) + phi * np.std(ret[t - 1] / (sigma2[t - 1] * c[t - 1])) mu = np.mean(ret[ : t] ** 2, axis = 0) sigma2[t] = mu * (1 - alpha - beta) + alpha * (ret[t - 1] / (sigma2[t - 1] * c[t - 1])) ** 2 + beta * sigma2[t - 1] ret[t] = stats.norm.rvs(loc = 0.0, scale = np.sqrt(sigma2[t])) return ret, sigma2, c def forecast(self, y): row_nul = pd.DataFrame([[0]*y.shape[1]], columns = y.columns) y = y.append(row_nul) sigma2, _ = self.model_filter(self.optimized_params, y) forecast = sigma2[-1] forecast[np.where(forecast == 0)[0]] = np.nan return forecast class Panel_MIDAS(BaseModel): def __init__(self, lag = 12, plot = True, exp = True, *args): self.lag = lag self.plot = plot self.exp = exp self.args = args def initialize_params(self, X): self.init_params = np.linspace(1, 1, int(1.0 + X.shape[1] * 2.0)) return self.init_params def model_filter(self, params, X): X = create_matrix(X, self.lag) model = params[0] for i in range(1, len(X) + 1): model += params[2 * i - 1] * Beta().x_weighted(X['X{num}'.format(num = i)], [1.0, params[2 * i]]) if self.exp == True: return np.exp(model) else: return model def loglikelihood(self, params, X, y): try: y_len, y_col = y.shape except: y_len, y_col = y.shape[0], 1 y_nan = y.isna().sum().values self.tau_t = np.zeros(y_len) tau = self.model_filter(params, X) T = X.shape[0] j = 0 for i in range(T - 1): if i == 0: index = y[y.index < X.index[i + 1]].index else: index = y[(y.index >= X.index[i]) & (y.index < X.index[i + 1])].index mat = np.linspace(tau[i], tau[i], index.shape[0]) self.tau_t[j : j + index.shape[0]] = mat j += index.shape[0] lls = 0 for i in range(y_col): if y_nan[i] >= y_len: lls += 0 else: lls += loglikelihood_normal(y.iloc[y_nan[i]:, i].values, self.tau_t[y_nan[i]:]) return lls def simulate(self, params = [0.1, 0.3, 4.0], num = 500, K = 12, panel = 100): X = np.zeros(num) tau = np.zeros(num) r = np.zeros((num * 22, panel)) j = 0 month = [] m_dates = [] y_dates = [] for t in range(num): if t == 0: X[t] = np.random.normal() else: X[t] = 0.9 * X[t - 1] + np.random.normal() for t in range(1, num + 1): if t < K + 1: tau[t - 1] = np.exp(params[0] + params[1] * Beta().x_weighted(X[:t][::-1].reshape((1, X[:t].shape[0])), [1.0, params[2]])) else: tau[t - 1] = np.exp(params[0] + params[1] * Beta().x_weighted(X[t - K : t][::-1].reshape((1, K)), [1.0, params[2]])) r[(t - 1) * 22 : t * 22] = np.random.normal(scale = np.sqrt(tau[t - 1]), size = (22, panel)) for i in range(num): month.append(i % 12) for i in month: if i == 0: j += 1 m_dates.append(datetime(2010 + j, 1, 1)) else: m_dates.append(datetime(2010 + j, 1 + i, 1)) for i in m_dates[:-1]: for j in range(22): y_dates.append(i + timedelta(j)) y = pd.DataFrame(data = r[:-22], index = y_dates) X = pd.DataFrame(data = X, index = m_dates) return X, y, tau def create_sims(self, number_of_sims = 500, length = 100, K = 12, params = [0.1, 0.3, 4.0], panel = 200): lls, b0, b1, th, runtime = np.zeros(number_of_sims), np.zeros(number_of_sims), np.zeros(number_of_sims), np.zeros(number_of_sims), np.zeros(number_of_sims) for i in range(number_of_sims): np.random.seed(i) X, y, _ = self.simulate(params = params, num = length, K = K, panel = panel) start = time.time() self.fit(['pos', 'pos', 'pos'], X, y) runtime[i] = time.time() - start lls[i] = self.opt.fun b0[i], b1[i], th[i] = self.optimized_params[0], self.optimized_params[1], self.optimized_params[2] print("{}st iteration's runTime: {} sec.\n".format(i + 1, round(runtime[i], 4))) return pd.DataFrame(data = {'LogLike': lls, 'Beta0': b0, 'Beta1': b1, 'Theta':th}) class Panel_GARCH_MIDAS(object): def __init__(self, lag = 12, plot = True, exp = True, *args): self.lag = lag self.exp = exp self.plot = plot self.args = args def fit(self, restriction_midas, restriction_garch, X, y): self.midas = Panel_MIDAS(lag = self.lag, plot = self.plot, exp = self.exp) if self.plot == True: print('Estimated parameters for the MIDAS equation:\n') else: pass self.midas.fit(restriction_midas, X, y) y_hat = self.calculate_y_hat(y, self.midas.tau_t) self.garch = Panel_GARCH(plot = self.plot) if self.plot == True: print('\nEstimated parameters for the GARCH equation:\n') else: pass self.garch.fit(restriction_garch, y_hat) def calculate_y_hat(self, y, tau): y_hat = np.zeros_like(y) for i in range(y.shape[0]): for j in range(y.shape[1]): y_hat[i][j] = y.iloc[i, j] / np.sqrt(tau[i]) y_hat = pd.DataFrame(data = y_hat, index = y.index, columns = y.columns) return y_hat def simulate(self, midas_params = [0.1, 0.3, 4.0], garch_params = [0.06, 0.8], num = 500, K = 12, panel = 100): beta0, beta1, theta = midas_params[0], midas_params[1], midas_params[2] alpha, beta = garch_params[0], garch_params[1] X = np.zeros(num) tau = np.zeros(num) r = np.zeros((num * 22, panel)) g = np.zeros((num * 22, panel)) j = 0 month = [] m_dates = [] y_dates = [] for t in range(num): if t == 0: X[t] = np.random.normal() else: X[t] = 0.9 * X[t - 1] + np.random.normal() for t in range(1, num + 1): if t < K + 1: tau[t - 1] = np.exp(beta0 + beta1 * Beta().x_weighted(X[:t][::-1].reshape((1, X[:t].shape[0])), [1.0, theta])) else: tau[t - 1] = np.exp(beta0 + beta1 * Beta().x_weighted(X[t - K : t][::-1].reshape((1, K)), [1.0, theta])) for i in range((t - 1) * 22, t * 22): if i == 0: g[i] = np.ones(panel) else: g[i] = (1 - alpha - beta) + alpha * (r[i - 1] ** 2) / tau[t - 1] + beta * g[i - 1] r[i] = np.random.normal(scale = np.sqrt(g[i] * tau[t - 1]), size = panel) for i in range(num): month.append(i % 12) for i in month: if i == 0: j += 1 m_dates.append(datetime(2010 + j, 1, 1)) else: m_dates.append(datetime(2010 + j, 1 + i, 1)) for i in m_dates[:-1]: for j in range(22): y_dates.append(i + timedelta(j)) y = pd.DataFrame(data = r[:-22], index = y_dates) X = pd.DataFrame(data = X, index = m_dates) return X, y, tau, g def create_sims(self, number_of_sims = 500, length = 100, K = 12, midas_params = [0.1, 0.3, 4.0], garch_params = [0.06, 0.8]): b0, b1, th, al, bt, runtime = np.zeros(number_of_sims), np.zeros(number_of_sims), np.zeros(number_of_sims), np.zeros(number_of_sims), np.zeros(number_of_sims), np.zeros(number_of_sims) for i in range(number_of_sims): np.random.seed(i) X, y, _, _ = self.simulate(midas_params = midas_params, garch_params = garch_params, num = length, K = K, panel = 100) start = time.time() self.fit(['pos', 'pos', 'pos'], ['01', '01'], X, y) runtime[i] = time.time() - start b0[i], b1[i], th[i], al[i], bt[i] = self.midas.optimized_params[0], self.midas.optimized_params[1], self.midas.optimized_params[2], self.garch.optimized_params[0], self.garch.optimized_params[1] print("{}st iteration's runTime: {} sec.\n".format(i + 1, round(runtime[i], 4))) return pd.DataFrame(data = {'Beta0': b0, 'Beta1': b1, 'Theta':th, 'Alpha': al, 'Beta': bt}) def forecast(self, y, H = 5, plotting = True): from pandas.tseries.offsets import BDay import matplotlib.pyplot as plt forecast = np.zeros(H) mu = np.mean(y ** 2) alpha = self.garch.optimized_params[0] beta = self.garch.optimized_params[1] y_hat = y / self.midas.tau_t sigma2 = self.garch.model_filter(self.garch.optimized_params, y_hat) for i in range(1, H + 1): forecast[i - 1] = (mu * (1 - (alpha + beta) ** (i - 1)) + sigma2[-1] * (alpha + beta) ** (i - 1)) * self.midas.tau_t[-1] forc = np.zeros(len(y) + H) forc[:-H] = sigma2 * self.midas.tau_t forc[-H:] = forecast if isinstance(y, pd.core.series.Series) or isinstance(y, pd.core.frame.DataFrame): index = [] for i in range(len(y) + H): if i < len(y): index.append(y.index[i]) else: index.append(y.index[-1] + BDay(i - len(y.index) + 1)) forecasted_series = pd.Series(data = forc, index = index) if plotting == True: plt.figure(figsize = (15, 5)) plt.plot(forecasted_series[forecasted_series.index <=
pd.to_datetime(y.index[-1])
pandas.to_datetime
import pandas as pd import numpy as np from datetime import datetime from multiprocessing import Pool from functools import partial from pathos import pools as pp import pickle as pkl from UserCentricMeasurements import * from ContentCentricMeasurements import * from CommunityCentricMeasurements import * from TEMeasurements import * from collections import defaultdict import jpype import json import os basedir = os.path.dirname(__file__) class BaselineMeasurements(UserCentricMeasurements, ContentCentricMeasurements, TEMeasurements, CommunityCentricMeasurements): def __init__(self, dfLoc, content_node_ids=[], user_node_ids=[], metaContentData=False, metaUserData=False, contentActorsFile=os.path.join(basedir, './baseline_challenge_data/filtUsers-baseline.pkl'), contentFile=os.path.join(basedir, './baseline_challenge_data/filtRepos-baseline.pkl'), topNodes=[], topEdges=[], previousActionsFile='', community_dictionary='', # community_dictionary=os.path.join(basedir, './baseline_challenge_data/baseline_challenge_community_dict.pkl'), te_config=os.path.join(basedir, './baseline_challenge_data/te_params_baseline.json'), platform='github', use_java=True): super(BaselineMeasurements, self).__init__() self.platform = platform try: # check if input is a data frame dfLoc.columns df = dfLoc except: # if not it should be a csv file path df =
pd.read_csv(dfLoc)
pandas.read_csv
import os import pandas as pd import numpy as np from itertools import product, combinations from graphpype.utils_stats import (compute_oneway_anova_fwe, compute_pairwise_ttest_fdr) from graphpype.utils_cor import return_corres_correl_mat def isInAlphabeticalOrder(word): return list(word) == sorted(word) def return_all_iter_cormats(cormat_path, iterables, iternames, gm_mask_coords_file=0, gm_mask_labels_file=0, mapflow_iterables=0, mapflow_iternames=0, export_df=False): """ gm_mask_coords_file is the coords commun to all analyses """ print(product(*iterables)) all_iter_cormats = [] all_descriptors = [] assert isInAlphabeticalOrder(iternames), \ ("Warning, iternames are not in alphabetical oroder, check the \ iterables order as well") if gm_mask_coords_file != 0: gm_mask_coords = np.loadtxt(gm_mask_coords_file) print(gm_mask_coords) if export_df: writer = pd.ExcelWriter(os.path.join(cormat_path, "all_cormats.xls")) for iter_obj in product(*iterables): print(iter_obj) assert len(iter_obj) == len( iternames), "Error, different number of iternames and iterables" iter_dir = "".join(["_" + zip_iter[0].strip() + "_" + zip_iter[1].strip() for zip_iter in zip(iternames, iter_obj)]) print(iter_dir) if mapflow_iterables == 0: cormat_file = os.path.join( cormat_path, iter_dir, "compute_conf_cor_mat", "Z_cor_mat_resid_ts.npy") assert os.path.exists(cormat_file), \ ("Warning, file {} could not be found".format(cormat_file)) cormat = np.load(cormat_file) print(cormat.shape) if gm_mask_coords_file != 0: coords_file = os.path.join( cormat_path, iter_dir, "extract_mean_ROI_ts", "subj_coord_rois.txt") coords = np.loadtxt(coords_file) cormat, _ = return_corres_correl_mat( cormat, coords, gm_mask_coords) if export_df: if gm_mask_labels_file: labels = [line.strip() for line in open(gm_mask_labels_file)] else: labels = list(range(cormat.shape[0])) df =
pd.DataFrame(cormat, columns=labels, index=labels)
pandas.DataFrame
import os import glob import pandas as pd import datetime as dt from typing import Any, Iterator, Sequence, Optional, Union from ..logger import get_logger from .. import files, sql from . import connection logger = get_logger(__name__) def upload_csv( csv_path: str, schema: str, table: str, *, separator: str = ',', bucket: str = 'gismart-analytics', bucket_dir: str = 'dwh/temp', columns: Optional[Sequence] = None, delete_s3_after: bool = True, secret_id: str = 'prod/redshift/analytics', ) -> None: '''Upload csv file to S3 and copy to Redshift''' if not columns: columns = files.csv_columns(csv_path, separator=separator) table_columns = f'{schema}.{table} ({",".join(columns)})' with connection.get_redshift(secret_id) as redshift_locopy: redshift_locopy.load_and_copy( local_file=csv_path, s3_bucket=bucket, s3_folder=bucket_dir, table_name=table_columns, delim=separator, copy_options=['IGNOREHEADER AS 1', 'REMOVEQUOTES'], delete_s3_after=delete_s3_after, compress=False, ) filename = os.path.basename(csv_path) logger.info(f'{filename} is uploaded to db') def download_csv( query: str, data_dir: Optional[str] = None, *, separator: str = ',', bucket: str = 'gismart-analytics', bucket_dir: str = 'dwh/temp', delete_s3_after: bool = True, secret_id: str = 'prod/redshift/analytics', ) -> Sequence[str]: '''Copy data from RedShift to S3 and download csv files up to 6.2 GB''' if data_dir and not os.path.exists(data_dir): os.makedirs(data_dir) with connection.get_redshift(secret_id) as redshift_locopy: redshift_locopy.unload_and_copy( query=query, s3_bucket=bucket, s3_folder=bucket_dir, export_path=False, raw_unload_path=data_dir, delimiter=separator, delete_s3_after=delete_s3_after, parallel_off=False, unload_options=['CSV', 'HEADER', 'GZIP', 'PARALLEL ON', 'ALLOWOVERWRITE'], ) logger.info('Data is downloaded to csv files') filenames = glob.glob(os.path.join(data_dir or os.getcwd(), '*part_00.gz')) return filenames def upload_data( data: pd.DataFrame, csv_path: str, schema: str, table: str, *, separator: str = ',', bucket: str = 'gismart-analytics', bucket_dir: str = 'dwh/temp', columns: Optional[Sequence] = None, remove_csv: bool = False, secret_id: str = 'prod/redshift/analytics', ) -> None: '''Save data to csv and upload it to RedShift via S3''' filename = os.path.basename(csv_path) filedir = os.path.dirname(csv_path) if not os.path.exists(filedir): os.mkdir(filedir) data.to_csv(csv_path, index=False, columns=columns) logger.info(f'Data is saved to {filename}') upload_csv( csv_path=csv_path, schema=schema, table=table, separator=separator, bucket=bucket, bucket_dir=bucket_dir, columns=columns, secret_id=secret_id, ) if remove_csv: os.remove(csv_path) logger.info(f'{filename} is removed') def download_data( query: str, *, temp_dir: str = '/tmp', separator: str = ',', bucket: str = 'gismart-analytics', bucket_dir: str = 'dwh/temp', parse_dates: Optional[Sequence[str]] = None, parse_bools: Optional[Sequence[str]] = None, dtype: Optional[dict] = None, chunking: bool = False, secret_id: str = 'prod/redshift/analytics', ) -> Union[pd.DataFrame, Iterator[pd.DataFrame]]: '''Download data from Redshift via S3''' dtype = dtype or {} parse_bools = parse_bools or [] temp_path = os.path.join(temp_dir, str(dt.datetime.now())) filenames = download_csv( query=query, data_dir=temp_path, separator=separator, bucket=bucket, bucket_dir=bucket_dir, secret_id=secret_id, ) chunks = _read_chunks( filenames, separator=separator, parse_dates=parse_dates, parse_bools=parse_bools, dtype=dtype, ) if chunking: return chunks else: data =
pd.concat(chunks, ignore_index=True)
pandas.concat
""" @brief test tree node (time=2s) """ import unittest import pandas from pyquickhelper.pycode import ExtTestCase from pyquickhelper.pycode.pip_helper import ( get_packages_list, package2dict, get_package_info, PQPipError) class TestPipHelper(ExtTestCase): def test_exc(self): exc = PQPipError('cmd', 'out', 'err') msg = str(exc) self.assertEqual([msg.replace('\n', '')], [ 'CMD:cmdOUT:out[piperror]err']) def test_pip_list(self): li = get_packages_list() dt = package2dict(li[0]) avoid = {'py_version'} empty = [] for k, v in dt.items(): if k not in avoid: if k is None: empty.append(k) self.assertEmpty(empty) self.assertNotEmpty(li) def test_pip_show(self): info = get_package_info("pandas") if "version" not in str(info): raise AssertionError(str(info)) info = get_package_info("sphinx") if "version" not in str(info): raise Exception(str(info)) def test_pip_show_all(self): info = get_package_info(start=0, end=2) df = pandas.DataFrame(info) self.assertNotEmpty(info) if __name__ == "__main__": info = get_package_info() df =
pandas.DataFrame(info)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs =
Series(v2)
pandas.Series
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, date_range, offsets import pandas._testing as tm class TestDataFrameShift: def test_shift(self, datetime_frame, int_frame): # naive shift shiftedFrame = datetime_frame.shift(5) tm.assert_index_equal(shiftedFrame.index, datetime_frame.index) shiftedSeries = datetime_frame["A"].shift(5) tm.assert_series_equal(shiftedFrame["A"], shiftedSeries) shiftedFrame = datetime_frame.shift(-5) tm.assert_index_equal(shiftedFrame.index, datetime_frame.index) shiftedSeries = datetime_frame["A"].shift(-5) tm.assert_series_equal(shiftedFrame["A"], shiftedSeries) # shift by 0 unshifted = datetime_frame.shift(0) tm.assert_frame_equal(unshifted, datetime_frame) # shift by DateOffset shiftedFrame = datetime_frame.shift(5, freq=offsets.BDay()) assert len(shiftedFrame) == len(datetime_frame) shiftedFrame2 = datetime_frame.shift(5, freq="B") tm.assert_frame_equal(shiftedFrame, shiftedFrame2) d = datetime_frame.index[0] shifted_d = d + offsets.BDay(5) tm.assert_series_equal( datetime_frame.xs(d), shiftedFrame.xs(shifted_d), check_names=False ) # shift int frame int_shifted = int_frame.shift(1) # noqa # Shifting with PeriodIndex ps = tm.makePeriodFrame() shifted = ps.shift(1) unshifted = shifted.shift(-1) tm.assert_index_equal(shifted.index, ps.index) tm.assert_index_equal(unshifted.index, ps.index) tm.assert_numpy_array_equal( unshifted.iloc[:, 0].dropna().values, ps.iloc[:-1, 0].values ) shifted2 = ps.shift(1, "B") shifted3 = ps.shift(1, offsets.BDay()) tm.assert_frame_equal(shifted2, shifted3) tm.assert_frame_equal(ps, shifted2.shift(-1, "B")) msg = "does not match PeriodIndex freq" with pytest.raises(ValueError, match=msg): ps.shift(freq="D") # shift other axis # GH#6371 df = DataFrame(np.random.rand(10, 5)) expected = pd.concat( [DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1, ) result = df.shift(1, axis=1) tm.assert_frame_equal(result, expected) # shift named axis df = DataFrame(np.random.rand(10, 5)) expected = pd.concat( [DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1, ) result = df.shift(1, axis="columns")
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
# gather import pandas as pd import io import time import zipfile import zlib import urllib.request urllib.request.urlretrieve('http://geoportal1-ons.opendata.arcgis.com/datasets/48d0b49ff7ec4ad0a4f7f8188f6143e8_3.zip', 'constituencies_super_generalised_shapefile.zip') with zipfile.ZipFile('constituencies_super_generalised_shapefile.zip', 'r') as zip_ref: zip_ref.extractall('constituencies_super_generalised_shapefile') petition_list = pd.read_csv( 'https://petition.parliament.uk/archived/petitions.csv?parliament=1&state=published') url_list = petition_list['URL'].tolist() count, start = 0, time.time() signatures, mp, errors = [], [], [] for petition_url in url_list: try: response = pd.read_json(petition_url + '.json') response = pd.DataFrame.from_dict(response.iloc[0, 0], orient='index') created_at = response.loc['created_at', 0] response = pd.DataFrame.from_dict( response.loc['signatures_by_constituency', 0]) response['created'] = created_at signatures.extend( response[['ons_code', 'signature_count', 'created']].values.tolist()) mp.extend( response[['ons_code', 'name', 'mp']].values.tolist()) except: errors.append(petition_url) count += 1 if count % 250 == 0: print('{} files reached in {}s'.format(count, time.time() - start)) if len(errors) != 0: print(errors) signatures = pd.DataFrame( signatures, columns=['ons_code', 'signature_count', 'date']) signatures['date'] = pd.to_datetime(signatures['date']) signatures = signatures.set_index('date').groupby( [pd.TimeGrouper(freq='M'), 'ons_code']).sum().reset_index().sort_values(['ons_code', 'date']) signatures['date'] = signatures.date.dt.to_period('M') mp = pd.DataFrame(mp, columns=['ons_code', 'constituency', 'mp']).drop_duplicates( 'ons_code', keep='last') mp = mp.replace('Ynys M?n', 'Ynys Mon') population =
pd.read_excel( 'http://data.parliament.uk/resources/constituencystatistics/Population-by-age.xlsx', 'Data')
pandas.read_excel
import pandas as pd import os import re import numpy as np import pprint import logging ''' @Author: <NAME> This script extracts voting members using the minutes of FOMC meetings, and then appends a manual verification for certain values. ''' def main(): voter_df = get_voters() get_errors(voter_df) merge_error_correction(voter_df) #merge_voting_members_with_alternatives() def get_voters(): df = pd.read_excel("../data/fomc_dissents_data.xlsx",skiprows=3) df["Date"] = df["FOMC Meeting"].apply(lambda x:str(x).split(" ")[0]) df['FOMC Votes'] = df['FOMC Votes'].apply(lambda x:0 if np.isnan(x) else x) df['date'] = pd.to_datetime(df["Date"]) df['start_date'] = df['date'] - pd.Timedelta('1 days') df['start_date']=df['start_date'].dt.date df['date']=df['date'].dt.date df[['date','start_date']].head() voter_df = pd.DataFrame() for index,row in df.iterrows(): voters = [] num_voters = int(row['FOMC Votes']) date_path = '../../../collection/python/data/transcript_raw_text/{}.txt'.format(row['Date']) if not os.path.exists(date_path): print("Date not found") date_path = '../../../collection/python/data/transcript_raw_text/{}.txt'.format(row['start_date']) if not os.path.exists(date_path): print("Alternative date not found") continue else: print('Process alternative date') with open(date_path) as f: broken = False broken_starts = 0 broken_ends = 0 lines = f.readlines() '''First Check For Broken Title''' #print("CHECKING USING FRAGMENT HEURISTIC") for line in lines[:200]: if line.strip(): if broken_ends==0: title_frag = re.match(r'^(?:PRESENT: |PRESENT. )?(?:Mr.|Ms.|Mt.|Mrs. )$',line.strip()) if title_frag: if not broken: broken = True #print("Broken Begining") #print(title_frag.group(0)) title_frag_string = str(title_frag.group(0)).replace("PRESENT: ","") voters.append(title_frag_string) broken_starts+=1 continue if broken and broken_ends<len(voters): name_fragment = re.match('^[A-Z][a-z][A-Za-z]*',line.strip()) if name_fragment: voters[broken_ends] = voters[broken_ends]+" "+str(name_fragment.group(0)) broken_ends+=1 '''Check using Mr. Regex''' if len(voters)==0: #print("CHECKING TITLE REGEX") for line in lines[:200]: '''Then check for valid input''' voter_line = re.findall(r'(?:Mr.|Ms.|Mrs.) [A-Z][a-zA-Z]*',line.strip()) if voter_line: #print(voter_line) voters.append(voter_line[0]) if len(voters)>=num_voters: break '''Check Last Name Regex''' if len(voters) == 0: #print("Checking POST-PRESENT-NAME HEURISTIC") found_present = False for line in lines[:200]: if "PRESENT:" in line.strip() or "PRESENT." in line.strip(): found_present = True present_line = line.split(",")[0].strip().replace("PRESENT","") name_text = re.match('[A-Z][a-z]*\s?(?:[A-Z][a-z]*)?',present_line) if name_text: voters.append(name_text.group(0)) continue if found_present: #print(line) name_text = re.match('[A-Z][a-z]*\s?(?:[A-Z][a-z]*)?',line.split(",")[0].strip()) if name_text: voters.append(name_text.group(0)) if len(voters)>=num_voters: break #print('Date:{}'.format(row['Date'])) #print("Broken Status:{}".format(broken)) #print("Voter Number:{}".format(num_voters)) #print("Voters Found:{}".format(len(voters))) #pprint.pprint(voters) voter_df = voter_df.append({ "Date":row['FOMC Meeting'], "voters_expected":num_voters, "voters_observed":len(voters), "Voters":voters if num_voters==len(voters) else None, },ignore_index=True) #print("="*50) print(voter_df) return voter_df def get_errors(voter_df): print(len(voter_df[voter_df["Voters"].isna()])) voter_errors = voter_df[voter_df["Voters"].isna()].reset_index(drop=True) voter_errors.to_csv("../output/voter_errors.csv",index=False) def merge_error_correction(voter_df): correction_df = pd.read_csv("../data/voter_corrections.csv") correction_df['Date'] = pd.to_datetime(correction_df['Date']) voter_df['Date'] = pd.to_datetime(voter_df['Date']) voter_df = pd.concat([voter_df,correction_df]) voter_df = voter_df.drop_duplicates(['Date'], keep="last").sort_values(by="Date") voter_df = voter_df[(voter_df['Date'].dt.year>1987)&(voter_df['Date'].dt.year<2010)] voter_df.to_csv("../output/voting_members.csv",index=False) def merge_voting_members_with_alternatives(): voting_df = pd.read_csv("../output/voting_members.csv") alt_df =
pd.read_csv("../output/alternative_outcomes_and_corpus.csv")
pandas.read_csv
# This file is part of Patsy # Copyright (C) 2012-2013 <NAME> <<EMAIL>> # See file LICENSE.txt for license information. # Exhaustive end-to-end tests of the top-level API. import sys import __future__ import six import numpy as np from nose.tools import assert_raises from patsy import PatsyError from patsy.design_info import DesignMatrix, DesignInfo from patsy.eval import EvalEnvironment from patsy.desc import ModelDesc, Term, INTERCEPT from patsy.categorical import C from patsy.contrasts import Helmert from patsy.user_util import balanced, LookupFactor from patsy.build import (design_matrix_builders, build_design_matrices) from patsy.highlevel import * from patsy.util import (have_pandas, have_pandas_categorical, have_pandas_categorical_dtype, pandas_Categorical_from_codes) from patsy.origin import Origin if have_pandas: import pandas def check_result(expect_full_designs, lhs, rhs, data, expected_rhs_values, expected_rhs_names, expected_lhs_values, expected_lhs_names): # pragma: no cover assert np.allclose(rhs, expected_rhs_values) assert rhs.design_info.column_names == expected_rhs_names if lhs is not None: assert np.allclose(lhs, expected_lhs_values) assert lhs.design_info.column_names == expected_lhs_names else: assert expected_lhs_values is None assert expected_lhs_names is None if expect_full_designs: if lhs is None: new_rhs, = build_design_matrices([rhs.design_info], data) else: new_lhs, new_rhs = build_design_matrices([lhs.design_info, rhs.design_info], data) assert np.allclose(new_lhs, lhs) assert new_lhs.design_info.column_names == expected_lhs_names assert np.allclose(new_rhs, rhs) assert new_rhs.design_info.column_names == expected_rhs_names else: assert rhs.design_info.terms is None assert lhs is None or lhs.design_info.terms is None def dmatrix_pandas(formula_like, data={}, depth=0, return_type="matrix"): return_type = "dataframe" if isinstance(depth, int): depth += 1 return dmatrix(formula_like, data, depth, return_type=return_type) def dmatrices_pandas(formula_like, data={}, depth=0, return_type="matrix"): return_type = "dataframe" if isinstance(depth, int): depth += 1 return dmatrices(formula_like, data, depth, return_type=return_type) def t(formula_like, data, depth, expect_full_designs, expected_rhs_values, expected_rhs_names, expected_lhs_values=None, expected_lhs_names=None): # pragma: no cover if isinstance(depth, int): depth += 1 def data_iter_maker(): return iter([data]) if (isinstance(formula_like, six.string_types + (ModelDesc, DesignInfo)) or (isinstance(formula_like, tuple) and isinstance(formula_like[0], DesignInfo)) or hasattr(formula_like, "__patsy_get_model_desc__")): if expected_lhs_values is None: builder = incr_dbuilder(formula_like, data_iter_maker, depth) lhs = None (rhs,) = build_design_matrices([builder], data) else: builders = incr_dbuilders(formula_like, data_iter_maker, depth) lhs, rhs = build_design_matrices(builders, data) check_result(expect_full_designs, lhs, rhs, data, expected_rhs_values, expected_rhs_names, expected_lhs_values, expected_lhs_names) else: assert_raises(PatsyError, incr_dbuilders, formula_like, data_iter_maker) assert_raises(PatsyError, incr_dbuilder, formula_like, data_iter_maker) one_mat_fs = [dmatrix] two_mat_fs = [dmatrices] if have_pandas: one_mat_fs.append(dmatrix_pandas) two_mat_fs.append(dmatrices_pandas) if expected_lhs_values is None: for f in one_mat_fs: rhs = f(formula_like, data, depth) check_result(expect_full_designs, None, rhs, data, expected_rhs_values, expected_rhs_names, expected_lhs_values, expected_lhs_names) # We inline assert_raises here to avoid complications with the # depth argument. for f in two_mat_fs: try: f(formula_like, data, depth) except PatsyError: pass else: raise AssertionError else: for f in one_mat_fs: try: f(formula_like, data, depth) except PatsyError: pass else: raise AssertionError for f in two_mat_fs: (lhs, rhs) = f(formula_like, data, depth) check_result(expect_full_designs, lhs, rhs, data, expected_rhs_values, expected_rhs_names, expected_lhs_values, expected_lhs_names) def t_invalid(formula_like, data, depth, exc=PatsyError): # pragma: no cover if isinstance(depth, int): depth += 1 fs = [dmatrix, dmatrices] if have_pandas: fs += [dmatrix_pandas, dmatrices_pandas] for f in fs: try: f(formula_like, data, depth) except exc: pass else: raise AssertionError # Exercise all the different calling conventions for the high-level API def test_formula_likes(): # Plain array-like, rhs only t([[1, 2, 3], [4, 5, 6]], {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"]) t((None, [[1, 2, 3], [4, 5, 6]]), {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"]) t(np.asarray([[1, 2, 3], [4, 5, 6]]), {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"]) t((None, np.asarray([[1, 2, 3], [4, 5, 6]])), {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"]) dm = DesignMatrix([[1, 2, 3], [4, 5, 6]], default_column_prefix="foo") t(dm, {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["foo0", "foo1", "foo2"]) t((None, dm), {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["foo0", "foo1", "foo2"]) # Plain array-likes, lhs and rhs t(([1, 2], [[1, 2, 3], [4, 5, 6]]), {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"], [[1], [2]], ["y0"]) t(([[1], [2]], [[1, 2, 3], [4, 5, 6]]), {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"], [[1], [2]], ["y0"]) t((np.asarray([1, 2]), np.asarray([[1, 2, 3], [4, 5, 6]])), {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"], [[1], [2]], ["y0"]) t((np.asarray([[1], [2]]), np.asarray([[1, 2, 3], [4, 5, 6]])), {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["x0", "x1", "x2"], [[1], [2]], ["y0"]) x_dm = DesignMatrix([[1, 2, 3], [4, 5, 6]], default_column_prefix="foo") y_dm = DesignMatrix([1, 2], default_column_prefix="bar") t((y_dm, x_dm), {}, 0, False, [[1, 2, 3], [4, 5, 6]], ["foo0", "foo1", "foo2"], [[1], [2]], ["bar0"]) # number of rows must match t_invalid(([1, 2, 3], [[1, 2, 3], [4, 5, 6]]), {}, 0) # tuples must have the right size t_invalid(([[1, 2, 3]],), {}, 0) t_invalid(([[1, 2, 3]], [[1, 2, 3]], [[1, 2, 3]]), {}, 0) # plain Series and DataFrames if have_pandas: # Names are extracted t(pandas.DataFrame({"x": [1, 2, 3]}), {}, 0, False, [[1], [2], [3]], ["x"]) t(pandas.Series([1, 2, 3], name="asdf"), {}, 0, False, [[1], [2], [3]], ["asdf"]) t((
pandas.DataFrame({"y": [4, 5, 6]})
pandas.DataFrame
#!/usr/bin/env python # CREATE DATE: 11 March 2015 # AUTHOR: <NAME> # Derived from run-performance-test.sh. # This script runs a performance test on the crux toolkit. Its usage # and output are described in ./performance.html. The MS2 file comes # from the PAnDA paper by Hoopman et al. (JPR 2009). Extensive # documentation of this particular data set is available from # crux-projects/panda-data. import sys import subprocess import os import pandas as pd # The location of the crux binary. CRUX = "../../src/crux" # Input files. database = "worm+contaminants" ms2 = "051708-worm-ASMS-10.ms2" ############################################################################# # Run a command with error checking. def runCommand(command, outputFileName): # Skip the command if the output file already exists. if (outputFileName != "") and (os.path.exists(outputFileName)): sys.stderr.write("%s exists.\n" % outputFileName) return sys.stderr.write("RUN: %s\n" % command) try: returnCode = subprocess.call(command, shell=True) if (returnCode != 0): sys.stderr.write("Child was terminated by signal %d\n" % -returnCode) sys.exit(1) except OSError as e: sys.stderr.write("Execution failed: %s\n" % e) sys.exit(1) ############################################################################# def createParameterFile(parameterFileName): parameterFile = open(parameterFileName, "w") # Enzymatic digestion rules. parameterFile.write("enzyme=trypsin\n") parameterFile.write("search_enzyme_number=1\n") parameterFile.write("digestion=full-digest\n") parameterFile.write("num_enzyme_termini=2\n") parameterFile.write("missed-cleavages=0\n") parameterFile.write("allowed_missed_cleavage=0\n") # Minimums parameterFile.write("minimum_peaks=10\n") parameterFile.write("min-peaks=10\n") # Precursor selection rules. parameterFile.write("precursor-window=3\n") parameterFile.write("precursor-window-type=mass\n") parameterFile.write("peptide_mass_tolerance=3\n") parameterFile.write("peptide_mass_units=0\n") # 0=amu, 1=mmu, 2=ppm # Precursor mass type. parameterFile.write("isotopic-mass=mono\n") parameterFile.write("mass_type_parent=1\n") # 1=monoisotopic # Fragment mass type. Tides uses only monoisotopic. parameterFile.write("fragment-mass=mono\n") parameterFile.write("mass_type_fragment=1\n") # 1=monoisotopic # Decoys. parameterFile.write("decoy-format=peptide-reverse\n") parameterFile.write("decoy_search=1\n") # 1 = concatenated decoy search parameterFile.write("concat=T\n") parameterFile.write("keep-terminal-aminos=C\n") # No corresponding Comet param # Report the top 5 matches. parameterFile.write("top-match=5\n") parameterFile.write("num_results=6\n") parameterFile.write("num_output_lines=5\n") # Precursor removal. parameterFile.write("remove-precursor-peak=T\n") parameterFile.write("remove-precursor-tolerance=15\n") parameterFile.write("remove_precursor_peak=1\n") parameterFile.write("remove_precursor_tolerance=15\n") # Flanking peaks. parameterFile.write("use-flanking-peaks=F\n") parameterFile.write("theoretical_fragment_ions=1\n") # 0 = flanks; 1 = no flanks parameterFile.write("use-neutral-loss-peaks=F\n") # Fragment m/z discretization. parameterFile.write("mz-bin-offset=0.68\n") parameterFile.write("mz-bin-width=1.0005079\n") parameterFile.write("fragment_bin_offset=0.68\n") parameterFile.write("fragment_bin_tol=1.0005079\n") # Peptide mass range. parameterFile.write("min-mass=200\n") parameterFile.write("max-mass=7200\n") parameterFile.write("digest_mass_range=200 7200\n") # Other Crux parameters. parameterFile.write("compute-sp=T\n") parameterFile.write("overwrite=T\n") parameterFile.write("peptide-list=T\n") # Comet parameters parameterFile.write("output_pepxmlfile=0\n") parameterFile.write("add_C_cysteine=57.021464\n") # parameterFile.write("num_threads=1\n") # Multithreaded sometimes dumps core. parameterFile.write("max_fragment_charge=2\n") parameterFile.write("isotope_error=0\n") parameterFile.write("use_A_ions=0\n") parameterFile.write("use_B_ions=1\n") parameterFile.write("use_C_ions=0\n") parameterFile.write("use_X_ions=0\n") parameterFile.write("use_Y_ions=1\n") parameterFile.write("use_Z_ions=0\n") parameterFile.write("use_NL_ions=0\n") parameterFile.write("variable_mod01=0.0 X 0 3\n") parameterFile.write("variable_mod02=0.0 X 0 3\n") parameterFile.write("[COMET_ENZYME_INFO]\n") parameterFile.write("0. No_enzyme 0 - -\n") parameterFile.write("1. Trypsin 1 KR P\n") parameterFile.close() ############################################################################# def extractData(inputFileName, columnName, outputFileName): # dataset = pd.read_csv(inputFileName, sep='\t') # data_frame = pd.DataFrame(dataset) data_frame = pd.read_csv(inputFileName, sep='\t') data_frame = data_frame[[columnName]] data_frame.to_csv(outputFileName, sep='\t', index=False) ############################################################################# def runSearch(outputDirectory, searchName, searchParam, database, psmFile, scoreColumn, confidenceParam): runCommand("%s %s --output-dir %s --parameter-file %s %s %s %s" % (CRUX, searchName, outputDirectory, parameterFileName, searchParam, ms2, database), psmFile) confidenceFile = "%s/assign-confidence.target.txt" % outputDirectory runCommand("%s assign-confidence --output-dir %s %s %s" % (CRUX, outputDirectory, confidenceParam, psmFile), confidenceFile) qFile = "%s/%s.q.txt" % (outputDirectory, searchName) extractData(confidenceFile, "tdc q-value", qFile) percolatorFile = "%s/percolator.target.psms.txt" % outputDirectory runCommand("%s percolator --output-dir %s %s" % (CRUX, outputDirectory, psmFile), percolatorFile) qFile = "%s/%s.percolator.q.txt" % (outputDirectory, searchName) extractData(percolatorFile, "percolator q-value", qFile) fourColFile = "%s/%s.target.four-col.txt" % (outputDirectory, searchName) dataset =
pd.read_csv(psmFile, sep='\t')
pandas.read_csv
import pandas as pd import os import requests import json from requests.adapters import HTTPAdapter import uuid def get_boundary_by_uid(uid, bmap_key): bmap_boundary_url = 'https://map.baidu.com/?newmap=1&reqflag=pcmap&biz=1&from=webmap&da_par=direct&pcevaname=pc4.1&qt=ext&uid=' + uid + '&c=340&ext_ver=new&tn=B_NORMAL_MAP&nn=0&auth=fw9wVDQUyKS7%3DQ5eWeb5A21KZOG0NadNuxHNBxBBLBHtxjhNwzWWvy1uVt1GgvPUDZYOYIZuEt2gz4yYxGccZcuVtPWv3GuxNt%3DkVJ0IUvhgMZSguxzBEHLNRTVtlEeLZNz1%40Db17dDFC8zv7u%40ZPuxtfvSulnDjnCENTHEHH%40NXBvzXX3M%40J2mmiJ4Y&ie=utf-8&l=19&b=(12679382.095,2565580.38;12679884.095,2565907.38)&t=1573133634785' s = requests.Session() s.mount('http://', HTTPAdapter(max_retries=3)) s.mount('https://', HTTPAdapter(max_retries=3)) data = s.get(url=bmap_boundary_url, timeout=5, headers={"Connection": "close"}) data = data.text print(bmap_boundary_url, data) data = json.loads(data) content = data['content'] if not 'geo' in content: print('geo is not in content') return None geo = content['geo'] i = 0 strsss = '' for jj in str(geo).split('|')[2].split('-')[1].split(','): jj = str(jj).strip(';') if i % 2 == 0: strsss = strsss + str(jj) + ',' else: strsss = strsss + str(jj) + ';' i = i + 1 return strsss.strip(";") def transform_coordinate_batch(coordinates, bmap_key): req_url = 'http://api.map.baidu.com/geoconv/v1/?coords='+coordinates+'&from=6&to=5&ak=' + bmap_key s = requests.Session() s.mount('http://', HTTPAdapter(max_retries=3)) s.mount('https://', HTTPAdapter(max_retries=3)) data = s.get(req_url, timeout=5, headers={"Connection": "close"}) # , proxies=proxies data = data.text data = json.loads(data) coords = '' if data['status'] == 0: result = data['result'] if len(result) > 0: for res in result: lng = res['x'] lat = res['y'] coords = coords + ";" + str(lng) + "," + str(lat) return coords.strip(";") def get_boundary(csv_file_path, bmap_key): print('文件地址:', csv_file_path) csv_file = pd.read_csv(csv_file_path, encoding='utf_8_sig') data_csv = {} uids, boundarys = [], [] for i in range(len(csv_file)): uid = '' try: uid = csv_file['uid'][i] uids.append(uid) coordinates = get_boundary_by_uid(uid, bmap_key) if coordinates is not None: coords = transform_coordinate_batch(coordinates, bmap_key) print('成功返回边界:', uid + ',' + coords) boundarys.append(coords) else: boundarys.append(' ') except Exception: uids.append(uid) boundarys.append(' ') data_csv['uid'] = uids data_csv['boundary'] = boundarys df =
pd.DataFrame(data_csv)
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: queries.ipynb (unless otherwise specified). __all__ = ['optimize_floats', 'optimize_ints', 'optimize_objects', 'df_optimize', 'connect_db', 'update_radcom', 'update_stel', 'update_mosaico', 'update_base', 'read_stel', 'read_radcom', 'read_mosaico', 'read_base'] # Cell import requests from decimal import * from typing import * from gazpacho import Soup from rich.progress import track from pathlib import Path from unidecode import unidecode import pandas as pd import pandas_read_xml as pdx import pyodbc import re import xml.etree.ElementTree as et from zipfile import ZipFile import collections from fastcore.utils import listify from fastcore.foundation import L from fastcore.test import * from .constants import * from pyarrow import ArrowInvalid getcontext().prec = 5 # Cell def optimize_floats(df: pd.DataFrame, exclude = None) -> pd.DataFrame: floats = df.select_dtypes(include=["float64"]).columns.tolist() floats = [c for c in floats if c not in listify(exclude)] df[floats] = df[floats].apply(pd.to_numeric, downcast="float") return df def optimize_ints(df: pd.DataFrame, exclude=None) -> pd.DataFrame: ints = df.select_dtypes(include=["int64"]).columns.tolist() ints = [c for c in ints if c not in listify(exclude)] df[ints] = df[ints].apply(pd.to_numeric, downcast="integer") return df def optimize_objects(df: pd.DataFrame, datetime_features: List[str], exclude=None) -> pd.DataFrame: for col in df.select_dtypes(include=["object"]).columns.tolist(): if col not in datetime_features: if col in listify(exclude): continue num_unique_values = len(df[col].unique()) num_total_values = len(df[col]) if float(num_unique_values) / num_total_values < 0.5: dtype = "category" else: dtype = "string" df[col] = df[col].astype(dtype) else: df[col] = pd.to_datetime(df[col]).dt.date return df def df_optimize(df: pd.DataFrame, datetime_features: List[str] = [], exclude = None): return optimize_floats(optimize_ints(optimize_objects(df, datetime_features, exclude), exclude), exclude) # Cell def connect_db(): """Conecta ao Banco ANATELBDRO01 e retorna o 'cursor' (iterador) do Banco pronto para fazer iterações""" conn = pyodbc.connect( "Driver={ODBC Driver 17 for SQL Server};" "Server=ANATELBDRO01;" "Database=SITARWEB;" "Trusted_Connection=yes;" "MultipleActiveResultSets=True;", timeout=TIMEOUT, ) return conn # Internal Cell def row2dict(row): """Receives a json row and return the dictionary from it""" return {k: v for k, v in row.items()} def dict2cols(df, reject=()): """Recebe um dataframe com dicionários nas células e extrai os dicionários como colunas Opcionalmente ignora e exclue as colunas em reject """ for column in df.columns: if column in reject: df.drop(column, axis=1, inplace=True) continue if type(df[column].iloc[0]) == collections.OrderedDict: try: new_df = pd.DataFrame(df[column].apply(row2dict).tolist()) df = pd.concat([df, new_df], axis=1) df.drop(column, axis=1, inplace=True) except AttributeError: continue return df def parse_plano_basico(row, cols=COL_PB): """Receives a json row and filter the column in `cols`""" return {k: row[k] for k in cols} def scrape_dataframe(id_list): df = pd.DataFrame() for id_ in track(id_list, description="Baixando informações complementares da Web"): html = requests.get(ESTACAO.format(id_)) df = df.append(pd.read_html(Soup(html.text).find("table").html)[0]) df.rename(columns={'NumFistel': 'Fistel', 'Num Serviço': 'Num_Serviço'}, inplace=True) return df[["Status", "Entidade", "Fistel", "Frequência", "Classe", 'Num_Serviço', 'Município', 'UF']] # Internal Cell def clean_merge(pasta, df): df = df.copy() COLS = [c for c in df.columns if "_x" in c] for col in COLS: col_x = col col_y = col.split("_")[0] + "_y" if df[col_x].count() > df[col_y].count(): a, b = col_x, col_y else: a, b = col_y, col_x df.loc[df[a].isna(), a] = df.loc[df[a].isna(), b] df.drop(b, axis=1, inplace=True) df.rename({a: a[:-2]}, axis=1, inplace=True) df.loc[df.Latitude_Transmissor == "", "Latitude_Transmissor"] = df.loc[ df.Latitude_Transmissor == "", "Latitude_Estação" ] df.loc[df.Longitude_Transmissor == "", "Longitude_Transmissor"] = df.loc[ df.Longitude_Transmissor == "", "Longitude_Estação" ] df.loc[df.Latitude_Transmissor.isna(), "Latitude_Transmissor"] = df.loc[ df.Latitude_Transmissor.isna(), "Latitude_Estação" ] df.loc[df.Longitude_Transmissor.isna(), "Longitude_Transmissor"] = df.loc[ df.Longitude_Transmissor.isna(), "Longitude_Estação" ] df.drop(["Latitude_Estação", "Longitude_Estação"], axis=1, inplace=True) df.rename( columns={ "Latitude_Transmissor": "Latitude", "Longitude_Transmissor": "Longitude", }, inplace=True, ) municipios = Path(f"{pasta}/municípios.fth") if not municipios.exists(): municipios = Path(f"{pasta}/municípios.xlsx") if not municipios.exists(): raise FileNotFoundError(f"É necessario a tabela de municípios municípios.fth | municípios.xlsx na pasta {pasta}") m = pd.read_excel(municipios, engine='openpyxl') else: m = pd.read_feather(municipios) m.loc[ m.Município == "Sant'Ana do Livramento", "Município" ] = "Santana do Livramento" m["Município"] = ( m.Município.apply(unidecode).str.lower().str.replace("'", " ") ) m["UF"] = m.UF.str.lower() df["Coordenadas_do_Município"] = False df["Latitude"] = df.Latitude.str.replace(",", ".") df["Longitude"] = df.Longitude.str.replace(",", ".") df["Frequência"] = df.Frequência.str.replace(",", ".") df.loc[df["Município"] == "Poxoréo", "Município"] = "Poxoréu" df.loc[df["Município"] == "Couto de Magalhães", "Município"] = "Couto Magalhães" df['Município'] = df.Município.astype('string') criteria = ((df.Latitude == "") | (df.Latitude.isna()) | (df.Longitude == '') | (df.Longitude.isna())) & df.Município.isna() df = df[~criteria] for row in df[((df.Latitude == "") | (df.Latitude.isna()) | (df.Longitude == '') | (df.Longitude.isna()))].itertuples(): try: left = unidecode(row.Município).lower() m_coord = ( m.loc[ (m.Município == left) & (m.UF == row.UF.lower()), ["Latitude", "Longitude"], ] .values.flatten() .tolist() ) df.loc[row.Index, "Latitude"] = m_coord[0] df.loc[row.Index, "Longitude"] = m_coord[1] df.loc[row.Index, "Coordenadas_do_Município"] = True except ValueError: print(left, row.UF, m_coord) continue freq_nans = df[df.Frequência.isna()].Id.tolist() if freq_nans: complement_df = scrape_dataframe(freq_nans) df.loc[ df.Frequência.isna(), ["Status", "Entidade", "Fistel", "Frequência", "Classe", 'Num_Serviço', 'Município', 'UF'] ] = complement_df.values for r in df[(df.Entidade.isna()) | (df.Entidade == '')].itertuples(): df.loc[r.Index, 'Entidade'] = ENTIDADES.get(r.Fistel, '') df.loc[df["Número_da_Estação"] == "", "Número_da_Estação"] = -1 df["Latitude"] = df["Latitude"].astype("float") df["Longitude"] = df["Longitude"].astype("float") df["Frequência"] = df.Frequência.astype("float") df.loc[df.Serviço == 'OM', 'Frequência'] = df.loc[df.Serviço == 'OM', 'Frequência'].apply(lambda x: Decimal(x) / Decimal(1000)) df["Frequência"] = df.Frequência.astype("float") df['Validade_RF'] = df.Validade_RF.astype('string').str.slice(0,10) df.loc[df['Num_Ato'] == '', 'Num_Ato'] = -1 df['Num_Ato'] = df.Num_Ato.astype('string') df['Num_Serviço'] = df.Num_Serviço.astype('category') return df_optimize(df, exclude=['Frequência']) # Internal Cell def read_estações(path): def extrair_ato(row): if not isinstance(row, str): row = listify(row)[::-1] for d in row: if not isinstance(d, dict): continue if (d.get("@TipoDocumento") == "Ato") and ( d.get("@Razao") == "Autoriza o Uso de Radiofrequência" ): return d["@NumDocumento"], d["@DataDOU"][:10] else: return "", "" return "", "" es = pdx.read_xml(path, ["estacao_rd"]) dfs = [] for i in range(es.shape[0]): df = pd.DataFrame(es["row"][i]).replace("", pd.NA) df = dict2cols(df) df.columns = [unidecode(c).lower().replace("@", "") for c in df.columns] dfs.append(df) df = pd.concat(dfs) df = df[df.state.str.contains("-C1$|-C2$|-C3$|-C4$|-C7|-C98$")].reset_index(drop=True) docs = L(df.historico_documentos.apply(extrair_ato).tolist()) df = df.loc[:, COL_ESTACOES] df["Num_Ato"] = docs.itemgot(0).map(str) df["Data_Ato"] = docs.itemgot(1).map(str) df.columns = NEW_ESTACOES df['Validade_RF'] = df.Validade_RF.astype('string').str.slice(0,10) df["Data_Ato"] = df.Data_Ato.str.slice(0,10) for c in df.columns: df.loc[df[c] == '', c] = pd.NA return df def read_plano_basico(path): pb = pdx.read_xml(path, ["plano_basico"]) dfs = [] for i in range(pb.shape[0]): df = pd.DataFrame(pb["row"][i]).replace("", pd.NA) df = dict2cols(df) df.columns = [unidecode(c).lower().replace("@", "") for c in df.columns] dfs.append(df) df = pd.concat(dfs) df = df.loc[df.pais == "BRA", COL_PB].reset_index(drop=True) for c in df.columns: df.loc[df[c] == '', c] = pd.NA df.columns = NEW_PB df.sort_values(["Id", "Canal"], inplace=True) ENTIDADES.update({r.Fistel : r.Entidade for r in df.itertuples() if str(r.Entidade) == '<NA>'}) df = df.groupby("Id", as_index=False).first() # remove duplicated with NaNs df.dropna(subset=['Status'], inplace=True) df = df[df.Status.str.contains("-C1$|-C2$|-C3$|-C4$|-C7|-C98$")].reset_index(drop=True) return df #deprecated def read_historico(path): regex = r"\s([a-zA-Z]+)=\'{1}([\w\-\ :\.]*)\'{1}" with ZipFile(path) as xmlzip: with xmlzip.open("documento_historicos.xml", "r") as xml: xml_list = xml.read().decode().split("\n")[2:-1] dict_list = [] for item in xml_list: matches = re.finditer(regex, item, re.MULTILINE) dict_list.append(dict(match.groups() for match in matches)) df = pd.DataFrame(dict_list) df = df[ (df.tipoDocumento == "Ato") & (df.razao == "Autoriza o Uso de Radiofrequência") ].reset_index() df = df.loc[:, ["id", "numeroDocumento", "orgao", "dataDocumento"]] df.columns = ["Id", "Num_Ato", "Órgao", "Data_Ato"] df["Data_Ato"] = pd.to_datetime(df.Data_Ato) return df.sort_values("Data_Ato").groupby("Id").last().reset_index() # Cell def update_radcom(pasta): """Atualiza a tabela local retornada pela query `RADCOM`""" with console.status( "[cyan]Lendo o Banco de Dados de Radcom...", spinner="earth" ) as status: try: conn = connect_db() df = pd.read_sql_query(RADCOM, conn) df['Unidade'] = 'MHz' df.loc[df.Situação.isna(), 'Situação'] = 'M' df = df_optimize(df, exclude=['Frequência']) try: df.to_feather(f"{pasta}/radcom.fth") except ArrowInvalid: Path(f"{pasta}/radcom.fth").unlink() df.to_excel(f"{pasta}/radcom.xlsx", engine='openpyxl', index=False) except pyodbc.OperationalError: status.console.log( "Não foi possível abrir uma conexão com o SQL Server. Esta conexão somente funciona da rede cabeada!" ) def update_stel(pasta): """Atualiza a tabela local retornada pela query `STEL`""" with console.status( "[magenta]Lendo o Banco de Dados do STEL. Processo Lento, aguarde...", spinner="moon", ) as status: try: conn = connect_db() df = pd.read_sql_query(STEL, conn) df['Validade_RF'] = df.Validade_RF.astype('str').str.slice(0,10) df['Num_Serviço'] = df.Num_Serviço.astype('category') df.loc[df.Unidade == 'kHz', 'Frequência'] = df.loc[df.Unidade == 'kHz', 'Frequência'].apply(lambda x: Decimal(x) / Decimal(1000)) df.loc[df.Unidade == 'GHz', 'Frequência'] = df.loc[df.Unidade == 'GHz', 'Frequência'].apply(lambda x: Decimal(x) * Decimal(1000)) df['Frequência'] = df.Frequência.astype('float') df.loc[df.Unidade == 'kHz', 'Unidade'] = 'MHz' df = df_optimize(df, exclude=['Frequência']) try: df.to_feather(f"{pasta}/stel.fth") except ArrowInvalid: Path(f"{pasta}/stel.fth").unlink() df.to_excel(f"{pasta}/stel.xlsx", engine='openpyxl', index=False) except pyodbc.OperationalError: status.console.log( "Não foi possível abrir uma conexão com o SQL Server. Esta conexão somente funciona da rede cabeada!" ) def update_mosaico(pasta): """Atualiza a tabela local do Mosaico. É baixado e processado arquivos xml zipados da página pública do Spectrum E""" with console.status( "[blue]Baixando as Estações do Mosaico...", spinner="shark" ) as status: file = requests.get(ESTACOES) with open(f"{pasta}/estações.zip", "wb") as estações: estações.write(file.content) with console.status( "[blue]Baixando o Plano Básico das Estações...", spinner="weather" ) as status: file = requests.get(PLANO_BASICO) with open(f"{pasta}/Canais.zip", "wb") as plano_basico: plano_basico.write(file.content) console.print(":package: [blue]Consolidando as bases de dados...") estações = read_estações(f"{pasta}/estações.zip") plano_basico = read_plano_basico(f"{pasta}/Canais.zip") df = estações.merge(plano_basico, on="Id", how="left") df['Número_da_Estação'] = df['Número_da_Estação'].fillna(-1) df['Número_da_Estação'] = df['Número_da_Estação'].astype('int') df = clean_merge(pasta, df) try: df.reset_index(drop=True).to_feather(f"{pasta}/mosaico.fth") except ArrowInvalid: Path(f"{pasta}/mosaico.fth").unlink() with pd.ExcelWriter(f"{pasta}/mosaico.xlsx") as workbook: df.reset_index(drop=True).to_excel(workbook, sheet_name='Sheet1', engine="openpyxl", index=False) console.print("Kbô :vampire:") return df def update_base(pasta, up_stel=False, up_radcom=False, up_mosaico=False): """Wrapper que atualiza opcionalmente lê e atualiza as três bases indicadas anteriormente, as combina e salva o arquivo consolidado na pasta `pasta`""" stel = read_stel(pasta, up_stel).loc[:, TELECOM] radcom = read_radcom(pasta, up_radcom) radcom.rename(columns={"Número da Estação": "Número_da_Estação"}, inplace=True) mosaico = read_mosaico(pasta, up_mosaico) radcom["Num_Serviço"] = '231' radcom["Status"] = "RADCOM" radcom['Classe_Emissão'] = '' radcom['Largura_Emissão'] = '' radcom["Classe"] = radcom.Fase.str.strip() + "-" + radcom.Situação.str.strip() radcom["Entidade"] = radcom.Entidade.str.rstrip().str.lstrip() radcom["Num_Ato"] = '-1' radcom["Data_Ato"] = "" radcom["Validade_RF"] = "" radcom = radcom.loc[:, RADIODIFUSAO] radcom = df_optimize(radcom, exclude=['Frequência']) stel['Status'] = 'L' stel["Num_Ato"] = '-1' stel["Data_Ato"] = "" stel['Entidade'] = stel.Entidade.str.rstrip().str.lstrip() stel = df_optimize(stel, exclude=['Frequência']) mosaico = mosaico.loc[:, RADIODIFUSAO] mosaico['Classe_Emissão'] = '' mosaico['Largura_Emissão'] = '' mosaico = df_optimize(mosaico, exclude=['Frequência']) rd = mosaico.append(radcom) rd = rd.append(stel).sort_values("Frequência").reset_index(drop=True) rd['Num_Serviço'] = rd.Num_Serviço.astype('int') rd = df_optimize(rd, exclude=['Frequência']) console.print(":trophy: [green]Base Consolidada. Salvando os arquivos...") try: rd.to_feather(f"{pasta}/base.fth") except ArrowInvalid: Path(f"{pasta}/base.fth").unlink() with pd.ExcelWriter(f"{pasta}/base.xlsx") as workbook: rd.to_excel(workbook, sheet_name='Sheet1', engine="openpyxl", index=False) return rd # Cell def read_stel(pasta, update=False): """Lê o banco de dados salvo localmente do STEL. Opcionalmente o atualiza pelo Banco de Dados ANATELBDRO01 caso `update = True` ou não exista o arquivo local""" if update: update_stel(pasta) file = Path(f"{pasta}/stel.fth") try: stel = pd.read_feather(file) except (ArrowInvalid, FileNotFoundError): file = Path(f"{pasta}/stel.xlsx") try: stel = pd.read_excel(file, engine="openpyxl") except FileNotFoundError: read_stel(pasta, True) return stel def read_radcom(pasta, update=False): """Lê o banco de dados salvo localmente de RADCOM. Opcionalmente o atualiza pelo Banco de Dados ANATELBDRO01 caso `update = True` ou não exista o arquivo local""" if update: update_radcom(pasta) file = Path(f"{pasta}/radcom.fth") try: radcom = pd.read_feather(file) except (ArrowInvalid, FileNotFoundError): file = Path(f"{pasta}/radcom.xlsx") try: radcom =
pd.read_excel(file, engine="openpyxl")
pandas.read_excel
# -*- coding: utf-8 -*- import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.metrics import r2_score import statsmodels.api as sm from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression xtr = pd.read_csv('xtr.csv').values ytr = pd.read_csv('ytr.csv').values.reshape(len(xtr) ,) xte =
pd.read_csv('xte.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed May 03 15:01:31 2017 @author: jdkern """ import pandas as pd import numpy as np def setup(year,hist,hist_year,operating_horizon,perfect_foresight): # year = 0 # hist = 0 # hist_year = 2010 #read generator parameters into DataFrame df_gen = pd.read_csv('CA_data_file/generators.csv',header=0) #read transmission path parameters into DataFrame df_paths = pd.read_csv('CA_data_file/paths.csv',header=0) #calendar df_calendar = pd.read_excel('CA_data_file/calendar.xlsx',header=0) #list zones zones = ['PGE_valley', 'PGE_bay', 'SCE', 'SDGE'] ##time series of load for each zone df_load = pd.read_csv('../Stochastic_engine/Synthetic_demand_pathflows/Sim_hourly_load.csv',header=0) df_load = df_load[zones] df_load = df_load.loc[year*8760:year*8760+8759] df_load = df_load.reset_index(drop=True) ##time series of operational reserves for each zone rv= df_load.values reserves = np.zeros((len(rv),1)) for i in range(0,len(rv)): reserves[i] = np.sum(rv[i,:])*.04 df_reserves = pd.DataFrame(reserves) df_reserves.columns = ['reserves'] ##daily hydropower availability df_hydro_PGE = pd.read_csv('Hydro_setup/CA_dispatchable_PGE.csv',header=0) df_hydro_SCE = pd.read_csv('Hydro_setup/CA_dispatchable_SCE.csv',header=0) ##time series of wind generation for each zone df_wind = pd.read_csv('../Stochastic_engine/Synthetic_wind_power/wind_power_sim.csv',header=0) df_wind = df_wind.loc[:,'CAISO'] df_wind = df_wind.loc[year*8760:year*8760+8759] df_wind = df_wind.reset_index() wind_caps = pd.read_excel('CA_data_file/wind_caps.xlsx') ##time series solar for each TAC df_solar = pd.read_csv('../Stochastic_engine/Synthetic_solar_power/solar_power_sim.csv',header=0) df_solar = df_solar.loc[year*8760:year*8760+8759] df_solar = df_solar.reset_index() solar_caps = pd.read_excel('CA_data_file/solar_caps.xlsx') ##daily time series of dispatchable imports by path forecast_days = ['fd1','fd2','fd3','fd4','fd5','fd6','fd7'] df_imports66 = pd.read_csv('Path_setup/CA_dispatchable_66.csv',header=0) df_imports61 = pd.read_csv('Path_setup/CA_dispatchable_61.csv',header=0) df_imports45 = pd.read_csv('Path_setup/CA_dispatchable_45.csv',header=0) df_imports46 = pd.read_csv('Path_setup/CA_dispatchable_46.csv',header=0) df_imports42 = pd.read_csv('Path_setup/CA_dispatchable_42.csv',header=0) df_imports24 = pd.read_csv('Path_setup/CA_dispatchable_24.csv',header=0) ##hourly time series of exports by zone df_exports24 = pd.read_csv('Path_setup/CA_exports24.csv',header=0) df_exports42 = pd.read_csv('Path_setup/CA_exports42.csv',header=0) df_exports45 = pd.read_csv('Path_setup/CA_exports45.csv',header=0) df_exports66 = pd.read_csv('Path_setup/CA_exports66.csv',header=0) #must run resources (LFG,ag_waste,nuclear) df_must =
pd.read_excel('CA_data_file/must_run.xlsx',header=0)
pandas.read_excel
import pandas as pd import numpy as np import networkx as nx from sklearn.preprocessing import StandardScaler, normalize, MinMaxScaler import matplotlib.pyplot as plt from collections import defaultdict, Counter import urllib.request as request import json import os from scipy.sparse import csr_matrix as csr_matrix from matplotlib import cm from tempfile import TemporaryFile import torch import torch_geometric import argparse from utils import makepath ## Replace function to rename countries for uniformity def replace_(country_list, replace_dict): nnn = country_list.copy() #nnn[i] = a.replace('&','and') for k, v in replace_dict.items(): for i,a in enumerate(nnn): if a == k: nnn[i] = v return nnn def makeplot(edge_list, countries_attributes, country_dict, output_dir): G = nx.Graph() # Define Graph here G = G.to_undirected() G.add_weighted_edges_from(edge_list) pos = nx.spring_layout(G) A = nx.adjacency_matrix(G) A = A.todense() # attr_names = countries_profile.columns[2:] attr_dict = get_node_attributes(countries_attributes, country_dict) # attr_dict = set_node_attributes(scaled_data, attr_names) nx.set_node_attributes(G, attr_dict) plt.figure(figsize=(20, 12)) nx.draw(G, pos, node_size=400, with_labels=True, edge_color='#C0C0C0') plt.savefig(output_dir + 'graph_raw.png') plt.show() return # Import data between countries into tuples of countries and edges def make_directed_edges(data, compare_dict): data = data.copy() edges = [] for i in range(len(data)): c = (compare_dict[str(data.iloc[i,1])], compare_dict[str(data.iloc[i,2])], round(data.iloc[i,3],2)) edges.append(c) #edges = sorted(iedges) return edges def check_cyclic_edges(edge_list, remove_edges = False): self_edges = [] new_edge_list = [] idx = [] for i in range(len(edge_list)): if (edge_list[i][0] == edge_list[i][1]): #print(edge_list[i]) self_edges.append(edge_list[i]) idx.append(i) else: new_edge_list.append(edge_list[i]) if remove_edges: return new_edge_list, self_edges else: return edge_list, self_edges # Function to make a dictionary of nodes and attributes def get_node_attributes(attributes, dict_): attr_names = attributes.columns[1:] attr_dict = {} for i in range(len(attributes)): attr_dict[dict_[attributes.loc[i][0]]] = {attr_names[j]: k for j, k in enumerate(attributes.loc[i][1:])} return attr_dict def income_level_dict(income_grp, country_dict): groups = income_grp.iloc[:,1] classes = list(set(groups)) c_dict = {} for c in classes: l = income_grp[groups== c].iloc[:,0] c_dict[c] = [country_dict[a] for a in l] return c_dict # Function to make a dictionary of nod# Function to make a dictionary of nodes and attributes def get_node_attributes(attributes, dict_): attr_names = attributes.columns[1:] attr_dict = {} for i in range(len(attributes)): attr_dict[dict_[attributes.loc[i][0]]] = {attr_names[j]: k for j, k in enumerate(attributes.loc[i][1:])} return attr_dict ## Read data of countries import and exports with partner countries from directory def main(): parser = argparse.ArgumentParser() parser.add_argument("--raw_data_dir", default = '../data', type = str, required = False) parser.add_argument("--output_dir", default = '../data/processed', type = str, required = False) parser.add_argument("-makeplot", type = bool, default = True, help = "Plot graph") args = parser.parse_args() input_dir = args.raw_data_dir comtradeurl = os.path.join(input_dir, "comtrade_data") makepath(args.output_dir) print("Processing data...") replace_dict = np.load(input_dir + '/countries_rename.npy', allow_pickle=True).item() # Get dict items from npy file frames = [] for name in os.listdir(comtradeurl): a = pd.read_csv(os.path.join(comtradeurl, name)) a = a[['Trade Flow','Reporter','Partner','Trade Value (US$)']] frames.append(a) trade =
pd.concat(frames, ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Wed Mar 7 09:40:49 2018 @author: yuwei """ import pandas as pd import numpy as np import math import random import time import scipy as sp import xgboost as xgb def loadData(): "下载数据" trainSet = pd.read_table('round1_ijcai_18_train_20180301.txt',sep=' ') testSet = pd.read_table('round1_ijcai_18_test_a_20180301.txt',sep=' ') return trainSet,testSet def splitData(trainSet,testSet): "按时间划分验证集" #转化测试集时间戳为标准时间 time_local = testSet.context_timestamp.map(lambda x :time.localtime(x)) time_local = time_local.map(lambda x :time.strftime("%Y-%m-%d %H:%M:%S",x)) testSet['context_timestamp'] = time_local #转化训练集时间戳为标准时间 time_local = trainSet.context_timestamp.map(lambda x :time.localtime(x)) time_local = time_local.map(lambda x :time.strftime("%Y-%m-%d %H:%M:%S",x)) trainSet['context_timestamp'] = time_local del time_local #处理训练集item_category_list属性 trainSet['item_category_list'] = trainSet.item_category_list.map(lambda x :x.split(';')) trainSet['item_category_list_2'] = trainSet.item_category_list.map(lambda x :x[1]) trainSet['item_category_list_3'] = trainSet.item_category_list.map(lambda x :x[2] if len(x) >2 else -1) trainSet['item_category_list_2'] = list(map(lambda x,y : x if (y == -1) else y,trainSet['item_category_list_2'],trainSet['item_category_list_3'])) #处理测试集item_category_list属性 testSet['item_category_list'] = testSet.item_category_list.map(lambda x :x.split(';')) testSet['item_category_list_2'] = testSet.item_category_list.map(lambda x :x[1]) testSet['item_category_list_3'] = testSet.item_category_list.map(lambda x :x[2] if len(x) >2 else -1) testSet['item_category_list_2'] = list(map(lambda x,y : x if (y == -1) else y,testSet['item_category_list_2'],testSet['item_category_list_3'])) del trainSet['item_category_list_3'];del testSet['item_category_list_3']; #处理predict_category_property的排名 trainSet['predict_category'] = trainSet['predict_category_property'].map(lambda x :[y.split(':')[0] for y in x.split(';')]) trainSet['predict_category_property_rank'] = list(map(lambda x,y:y.index(x) if x in y else -1,trainSet['item_category_list_2'],trainSet['predict_category'])) testSet['predict_category'] = testSet['predict_category_property'].map(lambda x :[y.split(':')[0] for y in x.split(';')]) testSet['predict_category_property_rank'] = list(map(lambda x,y:y.index(x) if x in y else -1,testSet['item_category_list_2'],testSet['predict_category'])) #统计item_category_list中和predict_category共同的个数 trainSet['item_category_count'] = list(map(lambda x,y:len(set(x)&set(y)),trainSet.item_category_list,trainSet.predict_category)) testSet['item_category_count'] = list(map(lambda x,y:len(set(x)&set(y)),testSet.item_category_list,testSet.predict_category)) #不同个数 trainSet['item_category_count'] = list(map(lambda x,y:len(set(x)) - len(set(x)&set(y)),trainSet.item_category_list,trainSet.predict_category)) testSet['item_category_count'] = list(map(lambda x,y:len(set(x)) - len(set(x)&set(y)),testSet.item_category_list,testSet.predict_category)) del trainSet['predict_category']; del testSet['predict_category'] "划分数据集" #测试集 23-24号特征提取,25号打标 test = testSet testFeat = trainSet[trainSet['context_timestamp']>'2018-09-23'] #验证集 22-23号特征提取,24号打标 validate = trainSet[trainSet['context_timestamp']>'2018-09-24'] validateFeat = trainSet[(trainSet['context_timestamp']>'2018-09-22') & (trainSet['context_timestamp']<'2018-09-24')] #训练集 21-22号特征提取,23号打标;20-21号特征提取,22号打标;19-20号特征提取,21号打标;18-19号特征提取,20号打标 #标签区间 train1 = trainSet[(trainSet['context_timestamp']>'2018-09-23') & (trainSet['context_timestamp']<'2018-09-24')] train2 = trainSet[(trainSet['context_timestamp']>'2018-09-22') & (trainSet['context_timestamp']<'2018-09-23')] train3 = trainSet[(trainSet['context_timestamp']>'2018-09-21') & (trainSet['context_timestamp']<'2018-09-22')] train4 = trainSet[(trainSet['context_timestamp']>'2018-09-20') & (trainSet['context_timestamp']<'2018-09-21')] #特征区间 trainFeat1 = trainSet[(trainSet['context_timestamp']>'2018-09-21') & (trainSet['context_timestamp']<'2018-09-23')] trainFeat2 = trainSet[(trainSet['context_timestamp']>'2018-09-20') & (trainSet['context_timestamp']<'2018-09-22')] trainFeat3 = trainSet[(trainSet['context_timestamp']>'2018-09-19') & (trainSet['context_timestamp']<'2018-09-21')] trainFeat4 = trainSet[(trainSet['context_timestamp']>'2018-09-18') & (trainSet['context_timestamp']<'2018-09-20')] return test,testFeat,validate,validateFeat,train1,trainFeat1,train2,trainFeat2,train3,trainFeat3,train4,trainFeat4 def modelXgb(train,test): "xgb模型" train_y = train['is_trade'].values # train_x = train.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property','is_trade' # ],axis=1).values # test_x = test.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property','is_trade' # ],axis=1).values # test_x = test.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property' # ],axis=1).values #根据皮卡尔相关系数,drop相关系数低于-0.2的属性 train_x = train.drop(['item_brand_id', 'item_city_id','user_id','shop_id','context_id', 'instance_id', 'item_id','item_category_list', 'item_property_list', 'context_timestamp', 'predict_category_property','is_trade', 'item_price_level','user_rank_down', 'item_category_list_2_not_buy_count', 'item_category_list_2_count', 'user_first' # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service', ],axis=1).values # test_x = test.drop(['item_brand_id', # 'item_city_id','user_id','shop_id','context_id', # 'instance_id', 'item_id','item_category_list', # 'item_property_list', 'context_timestamp', # 'predict_category_property','is_trade', # 'item_price_level','user_rank_down', # 'item_category_list_2_not_buy_count', # 'item_category_list_2_count', # 'user_first', # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service' # ],axis=1).values test_x = test.drop(['item_brand_id', 'item_city_id','user_id','shop_id','context_id', 'instance_id', 'item_id','item_category_list', 'item_property_list', 'context_timestamp', 'predict_category_property', 'item_price_level','user_rank_down', 'item_category_list_2_not_buy_count', 'item_category_list_2_count', 'user_first', # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service' ],axis=1).values dtrain = xgb.DMatrix(train_x, label=train_y) dtest = xgb.DMatrix(test_x) # 模型参数 params = {'booster': 'gbtree', 'objective':'binary:logistic', 'eval_metric':'logloss', 'eta': 0.03, 'max_depth': 5, # 6 'colsample_bytree': 0.8,#0.8 'subsample': 0.8, 'scale_pos_weight': 1, 'min_child_weight': 18 # 2 } # 训练 watchlist = [(dtrain,'train')] bst = xgb.train(params, dtrain, num_boost_round=700,evals=watchlist) # 预测 predict = bst.predict(dtest) # test_xy = test[['instance_id','is_trade']] test_xy = test[['instance_id']] test_xy['predicted_score'] = predict return test_xy def get_item_feat(data,dataFeat): "item的特征提取" result = pd.DataFrame(dataFeat['item_id']) result = result.drop_duplicates(['item_id'],keep='first') "1.统计item出现次数" dataFeat['item_count'] = dataFeat['item_id'] feat = pd.pivot_table(dataFeat,index=['item_id'],values='item_count',aggfunc='count').reset_index() del dataFeat['item_count'] result = pd.merge(result,feat,on=['item_id'],how='left') "2.统计item历史被购买的次数" dataFeat['item_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_id'],values='item_buy_count',aggfunc='sum').reset_index() del dataFeat['item_buy_count'] result = pd.merge(result,feat,on=['item_id'],how='left') "3.统计item转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_buy_count,result.item_count)) result['item_buy_ratio'] = buy_ratio "4.统计item历史未被够买的次数" result['item_not_buy_count'] = result['item_count'] - result['item_buy_count'] return result def get_user_feat(data,dataFeat): "user的特征提取" result = pd.DataFrame(dataFeat['user_id']) result = result.drop_duplicates(['user_id'],keep='first') "1.统计user出现次数" dataFeat['user_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id'],values='user_count',aggfunc='count').reset_index() del dataFeat['user_count'] result = pd.merge(result,feat,on=['user_id'],how='left') "2.统计user历史被购买的次数" dataFeat['user_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id'],values='user_buy_count',aggfunc='sum').reset_index() del dataFeat['user_buy_count'] result = pd.merge(result,feat,on=['user_id'],how='left') "3.统计user转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_buy_count,result.user_count)) result['user_buy_ratio'] = buy_ratio "4.统计user历史未被够买的次数" result['user_not_buy_count'] = result['user_count'] - result['user_buy_count'] return result def get_context_feat(data,dataFeat): "context的特征提取" result = pd.DataFrame(dataFeat['context_id']) result = result.drop_duplicates(['context_id'],keep='first') "1.统计context出现次数" dataFeat['context_count'] = dataFeat['context_id'] feat = pd.pivot_table(dataFeat,index=['context_id'],values='context_count',aggfunc='count').reset_index() del dataFeat['context_count'] result = pd.merge(result,feat,on=['context_id'],how='left') "2.统计context历史被购买的次数" dataFeat['context_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_id'],values='context_buy_count',aggfunc='sum').reset_index() del dataFeat['context_buy_count'] result = pd.merge(result,feat,on=['context_id'],how='left') "3.统计context转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_buy_count,result.context_count)) result['context_buy_ratio'] = buy_ratio "4.统计context历史未被够买的次数" result['context_not_buy_count'] = result['context_count'] - result['context_buy_count'] return result def get_shop_feat(data,dataFeat): "shop的特征提取" result = pd.DataFrame(dataFeat['shop_id']) result = result.drop_duplicates(['shop_id'],keep='first') "1.统计shop出现次数" dataFeat['shop_count'] = dataFeat['shop_id'] feat = pd.pivot_table(dataFeat,index=['shop_id'],values='shop_count',aggfunc='count').reset_index() del dataFeat['shop_count'] result = pd.merge(result,feat,on=['shop_id'],how='left') "2.统计shop历史被购买的次数" dataFeat['shop_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['shop_id'],values='shop_buy_count',aggfunc='sum').reset_index() del dataFeat['shop_buy_count'] result = pd.merge(result,feat,on=['shop_id'],how='left') "3.统计shop转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.shop_buy_count,result.shop_count)) result['shop_buy_ratio'] = buy_ratio "4.统计shop历史未被够买的次数" result['shop_not_buy_count'] = result['shop_count'] - result['shop_buy_count'] return result def get_timestamp_feat(data,dataFeat): "context_timestamp的特征提取" result = pd.DataFrame(dataFeat['context_timestamp']) result = result.drop_duplicates(['context_timestamp'],keep='first') "1.统计context_timestamp出现次数" dataFeat['context_timestamp_count'] = dataFeat['context_timestamp'] feat = pd.pivot_table(dataFeat,index=['context_timestamp'],values='context_timestamp_count',aggfunc='count').reset_index() del dataFeat['context_timestamp_count'] result = pd.merge(result,feat,on=['context_timestamp'],how='left') "2.统计context_timestamp历史被购买的次数" dataFeat['context_timestamp_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_timestamp'],values='context_timestamp_buy_count',aggfunc='sum').reset_index() del dataFeat['context_timestamp_buy_count'] result = pd.merge(result,feat,on=['context_timestamp'],how='left') "3.统计context_timestamp转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_timestamp_buy_count,result.context_timestamp_count)) result['context_timestamp_buy_ratio'] = buy_ratio "4.统计context_timestamp历史未被够买的次数" result['context_timestamp_not_buy_count'] = result['context_timestamp_count'] - result['context_timestamp_buy_count'] return result def get_item_brand_feat(data,dataFeat): "item_brand的特征提取" result = pd.DataFrame(dataFeat['item_brand_id']) result = result.drop_duplicates(['item_brand_id'],keep='first') "1.统计item_brand出现次数" dataFeat['item_brand_count'] = dataFeat['item_brand_id'] feat = pd.pivot_table(dataFeat,index=['item_brand_id'],values='item_brand_count',aggfunc='count').reset_index() del dataFeat['item_brand_count'] result = pd.merge(result,feat,on=['item_brand_id'],how='left') "2.统计item_brand历史被购买的次数" dataFeat['item_brand_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_brand_id'],values='item_brand_buy_count',aggfunc='sum').reset_index() del dataFeat['item_brand_buy_count'] result = pd.merge(result,feat,on=['item_brand_id'],how='left') "3.统计item_brand转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_brand_buy_count,result.item_brand_count)) result['item_brand_buy_ratio'] = buy_ratio "4.统计item_brand历史未被够买的次数" result['item_brand_not_buy_count'] = result['item_brand_count'] - result['item_brand_buy_count'] return result def get_item_city_feat(data,dataFeat): "item_city的特征提取" result = pd.DataFrame(dataFeat['item_city_id']) result = result.drop_duplicates(['item_city_id'],keep='first') "1.统计item_city出现次数" dataFeat['item_city_count'] = dataFeat['item_city_id'] feat = pd.pivot_table(dataFeat,index=['item_city_id'],values='item_city_count',aggfunc='count').reset_index() del dataFeat['item_city_count'] result = pd.merge(result,feat,on=['item_city_id'],how='left') "2.统计item_city历史被购买的次数" dataFeat['item_city_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_city_id'],values='item_city_buy_count',aggfunc='sum').reset_index() del dataFeat['item_city_buy_count'] result = pd.merge(result,feat,on=['item_city_id'],how='left') "3.统计item_city转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_city_buy_count,result.item_city_count)) result['item_city_buy_ratio'] = buy_ratio "4.统计item_city历史未被够买的次数" result['item_city_not_buy_count'] = result['item_city_count'] - result['item_city_buy_count'] return result def get_user_gender_feat(data,dataFeat): "user_gender的特征提取" result = pd.DataFrame(dataFeat['user_gender_id']) result = result.drop_duplicates(['user_gender_id'],keep='first') "1.统计user_gender出现次数" dataFeat['user_gender_count'] = dataFeat['user_gender_id'] feat = pd.pivot_table(dataFeat,index=['user_gender_id'],values='user_gender_count',aggfunc='count').reset_index() del dataFeat['user_gender_count'] result = pd.merge(result,feat,on=['user_gender_id'],how='left') "2.统计user_gender历史被购买的次数" dataFeat['user_gender_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_gender_id'],values='user_gender_buy_count',aggfunc='sum').reset_index() del dataFeat['user_gender_buy_count'] result = pd.merge(result,feat,on=['user_gender_id'],how='left') "3.统计user_gender转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_gender_buy_count,result.user_gender_count)) result['user_gender_buy_ratio'] = buy_ratio "4.统计user_gender历史未被够买的次数" result['user_gender_not_buy_count'] = result['user_gender_count'] - result['user_gender_buy_count'] return result def get_user_occupation_feat(data,dataFeat): "user_occupation的特征提取" result = pd.DataFrame(dataFeat['user_occupation_id']) result = result.drop_duplicates(['user_occupation_id'],keep='first') "1.统计user_occupation出现次数" dataFeat['user_occupation_count'] = dataFeat['user_occupation_id'] feat = pd.pivot_table(dataFeat,index=['user_occupation_id'],values='user_occupation_count',aggfunc='count').reset_index() del dataFeat['user_occupation_count'] result = pd.merge(result,feat,on=['user_occupation_id'],how='left') "2.统计user_occupation历史被购买的次数" dataFeat['user_occupation_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_occupation_id'],values='user_occupation_buy_count',aggfunc='sum').reset_index() del dataFeat['user_occupation_buy_count'] result = pd.merge(result,feat,on=['user_occupation_id'],how='left') "3.统计user_occupation转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_occupation_buy_count,result.user_occupation_count)) result['user_occupation_buy_ratio'] = buy_ratio "4.统计user_occupation历史未被够买的次数" result['user_occupation_not_buy_count'] = result['user_occupation_count'] - result['user_occupation_buy_count'] return result def get_context_page_feat(data,dataFeat): "context_page的特征提取" result = pd.DataFrame(dataFeat['context_page_id']) result = result.drop_duplicates(['context_page_id'],keep='first') "1.统计context_page出现次数" dataFeat['context_page_count'] = dataFeat['context_page_id'] feat = pd.pivot_table(dataFeat,index=['context_page_id'],values='context_page_count',aggfunc='count').reset_index() del dataFeat['context_page_count'] result = pd.merge(result,feat,on=['context_page_id'],how='left') "2.统计context_page历史被购买的次数" dataFeat['context_page_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_page_id'],values='context_page_buy_count',aggfunc='sum').reset_index() del dataFeat['context_page_buy_count'] result = pd.merge(result,feat,on=['context_page_id'],how='left') "3.统计context_page转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_page_buy_count,result.context_page_count)) result['context_page_buy_ratio'] = buy_ratio "4.统计context_page历史未被够买的次数" result['context_page_not_buy_count'] = result['context_page_count'] - result['context_page_buy_count'] return result def get_shop_review_num_level_feat(data,dataFeat): "context_page的特征提取" result = pd.DataFrame(dataFeat['shop_review_num_level']) result = result.drop_duplicates(['shop_review_num_level'],keep='first') "1.统计shop_review_num_level出现次数" dataFeat['shop_review_num_level_count'] = dataFeat['shop_review_num_level'] feat = pd.pivot_table(dataFeat,index=['shop_review_num_level'],values='shop_review_num_level_count',aggfunc='count').reset_index() del dataFeat['shop_review_num_level_count'] result = pd.merge(result,feat,on=['shop_review_num_level'],how='left') "2.统计shop_review_num_level历史被购买的次数" dataFeat['shop_review_num_level_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['shop_review_num_level'],values='shop_review_num_level_buy_count',aggfunc='sum').reset_index() del dataFeat['shop_review_num_level_buy_count'] result = pd.merge(result,feat,on=['shop_review_num_level'],how='left') "3.统计shop_review_num_level转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.shop_review_num_level_buy_count,result.shop_review_num_level_count)) result['shop_review_num_level_buy_ratio'] = buy_ratio "4.统计shop_review_num_level历史未被够买的次数" result['shop_review_num_level_not_buy_count'] = result['shop_review_num_level_count'] - result['shop_review_num_level_buy_count'] return result def get_item_category_list_2_feat(data,dataFeat): "item_category_list_2的特征提取" result = pd.DataFrame(dataFeat['item_category_list_2']) result = result.drop_duplicates(['item_category_list_2'],keep='first') "1.统计item_category_list_2出现次数" dataFeat['item_category_list_2_count'] = dataFeat['item_category_list_2'] feat = pd.pivot_table(dataFeat,index=['item_category_list_2'],values='item_category_list_2_count',aggfunc='count').reset_index() del dataFeat['item_category_list_2_count'] result = pd.merge(result,feat,on=['item_category_list_2'],how='left') "2.统计item_category_list_2历史被购买的次数" dataFeat['item_category_list_2_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_category_list_2'],values='item_category_list_2_buy_count',aggfunc='sum').reset_index() del dataFeat['item_category_list_2_buy_count'] result = pd.merge(result,feat,on=['item_category_list_2'],how='left') "3.统计item_category_list_2转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_category_list_2_buy_count,result.item_category_list_2_count)) result['item_category_list_2_buy_ratio'] = buy_ratio "4.统计item_category_list_2历史未被够买的次数" result['item_category_list_2_not_buy_count'] = result['item_category_list_2_count'] - result['item_category_list_2_buy_count'] return result def get_user_item_feat(data,dataFeat): "user-item的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_id']]) result = result.drop_duplicates(['user_id','item_id'],keep='first') "1.统计user-item出现次数" dataFeat['user_item_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','item_id'],values='user_item_count',aggfunc='count').reset_index() del dataFeat['user_item_count'] result = pd.merge(result,feat,on=['user_id','item_id'],how='left') "2.统计user-item历史被购买的次数" dataFeat['user_item_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','item_id'],values='user_item_buy_count',aggfunc='sum').reset_index() del dataFeat['user_item_buy_count'] result = pd.merge(result,feat,on=['user_id','item_id'],how='left') "3.统计user-item转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_item_buy_count,result.user_item_count)) result['user_item_buy_ratio'] = buy_ratio "4.统计user-item历史未被够买的次数" result['user_item_not_buy_count'] = result['user_item_count'] - result['user_item_buy_count'] return result def get_user_shop_feat(data,dataFeat): "user-shop的特征提取" result = pd.DataFrame(dataFeat[['user_id','shop_id']]) result = result.drop_duplicates(['user_id','shop_id'],keep='first') "1.统计user-shop出现次数" dataFeat['user_shop_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_id'],values='user_shop_count',aggfunc='count').reset_index() del dataFeat['user_shop_count'] result = pd.merge(result,feat,on=['user_id','shop_id'],how='left') "2.统计user-shop历史被购买的次数" dataFeat['user_shop_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_id'],values='user_shop_buy_count',aggfunc='sum').reset_index() del dataFeat['user_shop_buy_count'] result = pd.merge(result,feat,on=['user_id','shop_id'],how='left') "3.统计user-shop转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_shop_buy_count,result.user_shop_count)) result['user_shop_buy_ratio'] = buy_ratio "4.统计user-shop历史未被够买的次数" result['user_shop_not_buy_count'] = result['user_shop_count'] - result['user_shop_buy_count'] return result def get_user_context_feat(data,dataFeat): "user-context的特征提取" result = pd.DataFrame(dataFeat[['user_id','context_id']]) result = result.drop_duplicates(['user_id','context_id'],keep='first') "1.统计user-context出现次数" dataFeat['user_context_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','context_id'],values='user_context_count',aggfunc='count').reset_index() del dataFeat['user_context_count'] result = pd.merge(result,feat,on=['user_id','context_id'],how='left') "2.统计user-context历史被购买的次数" dataFeat['user_context_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','context_id'],values='user_context_buy_count',aggfunc='sum').reset_index() del dataFeat['user_context_buy_count'] result = pd.merge(result,feat,on=['user_id','context_id'],how='left') "3.统计user-context转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_context_buy_count,result.user_context_count)) result['user_context_buy_ratio'] = buy_ratio "4.统计user-context历史未被够买的次数" result['user_context_not_buy_count'] = result['user_context_count'] - result['user_context_buy_count'] return result def get_user_timestamp_feat(data,dataFeat): "user-context_timestamp的特征提取" result = pd.DataFrame(dataFeat[['user_id','context_timestamp']]) result = result.drop_duplicates(['user_id','context_timestamp'],keep='first') "1.统计user-context_timestamp出现次数" dataFeat['user_context_timestamp_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','context_timestamp'],values='user_context_timestamp_count',aggfunc='count').reset_index() del dataFeat['user_context_timestamp_count'] result = pd.merge(result,feat,on=['user_id','context_timestamp'],how='left') "2.统计user-context_timestamp历史被购买的次数" dataFeat['user_context_timestamp_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','context_timestamp'],values='user_context_timestamp_buy_count',aggfunc='sum').reset_index() del dataFeat['user_context_timestamp_buy_count'] result = pd.merge(result,feat,on=['user_id','context_timestamp'],how='left') "3.统计user-context_timestamp转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_context_timestamp_buy_count,result.user_context_timestamp_count)) result['user_context_timestamp_buy_ratio'] = buy_ratio "4.统计user-context_timestamp历史未被够买的次数" result['user_context_timestamp_not_buy_count'] = result['user_context_timestamp_count'] - result['user_context_timestamp_buy_count'] return result def get_user_item_brand_feat(data,dataFeat): "user-item_brand的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_brand_id']]) result = result.drop_duplicates(['user_id','item_brand_id'],keep='first') "1.统计user-item_brand_id出现次数" dataFeat['user_item_brand_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','item_brand_id'],values='user_item_brand_id_count',aggfunc='count').reset_index() del dataFeat['user_item_brand_id_count'] result = pd.merge(result,feat,on=['user_id','item_brand_id'],how='left') "2.统计user-item_brand_id历史被购买的次数" dataFeat['user_item_brand_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','item_brand_id'],values='user_item_brand_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_item_brand_id_buy_count'] result = pd.merge(result,feat,on=['user_id','item_brand_id'],how='left') "3.统计user-item_brand_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_item_brand_id_buy_count,result.user_item_brand_id_count)) result['user_item_brand_id_buy_ratio'] = buy_ratio "4.统计user-item_brand_id历史未被够买的次数" result['user_item_brand_id_not_buy_count'] = result['user_item_brand_id_count'] - result['user_item_brand_id_buy_count'] return result def get_user_user_gender_feat(data,dataFeat): "user-user_gender的特征提取" result = pd.DataFrame(dataFeat[['user_id','user_gender_id']]) result = result.drop_duplicates(['user_id','user_gender_id'],keep='first') "1.统计user-user_gender_id出现次数" dataFeat['user_user_gender_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','user_gender_id'],values='user_user_gender_id_count',aggfunc='count').reset_index() del dataFeat['user_user_gender_id_count'] result = pd.merge(result,feat,on=['user_id','user_gender_id'],how='left') "2.统计user-user_gender_id历史被购买的次数" dataFeat['user_user_gender_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','user_gender_id'],values='user_user_gender_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_user_gender_id_buy_count'] result = pd.merge(result,feat,on=['user_id','user_gender_id'],how='left') "3.统计user-user_gender_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_user_gender_id_buy_count,result.user_user_gender_id_count)) result['user_user_gender_id_buy_ratio'] = buy_ratio "4.统计user-user_gender_id历史未被够买的次数" result['user_user_gender_id_not_buy_count'] = result['user_user_gender_id_count'] - result['user_user_gender_id_buy_count'] return result def get_user_item_city_feat(data,dataFeat): "user-item_city的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_city_id']]) result = result.drop_duplicates(['user_id','item_city_id'],keep='first') "1.统计user-item_city_id出现次数" dataFeat['user_item_city_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','item_city_id'],values='user_item_city_id_count',aggfunc='count').reset_index() del dataFeat['user_item_city_id_count'] result = pd.merge(result,feat,on=['user_id','item_city_id'],how='left') "2.统计user-item_city_id历史被购买的次数" dataFeat['user_item_city_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','item_city_id'],values='user_item_city_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_item_city_id_buy_count'] result = pd.merge(result,feat,on=['user_id','item_city_id'],how='left') "3.统计user-item_city_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_item_city_id_buy_count,result.user_item_city_id_count)) result['user_item_city_id_buy_ratio'] = buy_ratio "4.统计user-item_city_id历史未被够买的次数" result['user_item_city_id_not_buy_count'] = result['user_item_city_id_count'] - result['user_item_city_id_buy_count'] return result def get_user_context_page_feat(data,dataFeat): "user-context_page的特征提取" result = pd.DataFrame(dataFeat[['user_id','context_page_id']]) result = result.drop_duplicates(['user_id','context_page_id'],keep='first') "1.统计user-context_page_id出现次数" dataFeat['user_context_page_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','context_page_id'],values='user_context_page_id_count',aggfunc='count').reset_index() del dataFeat['user_context_page_id_count'] result = pd.merge(result,feat,on=['user_id','context_page_id'],how='left') "2.统计user-context_page_id历史被购买的次数" dataFeat['user_context_page_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','context_page_id'],values='user_context_page_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_context_page_id_buy_count'] result = pd.merge(result,feat,on=['user_id','context_page_id'],how='left') "3.统计user-context_page_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_context_page_id_buy_count,result.user_context_page_id_count)) result['user_context_page_id_buy_ratio'] = buy_ratio "4.统计user-context_page_id历史未被够买的次数" result['user_context_page_id_not_buy_count'] = result['user_context_page_id_count'] - result['user_context_page_id_buy_count'] return result def get_user_user_occupation_feat(data,dataFeat): "user-user_occupation的特征提取" result = pd.DataFrame(dataFeat[['user_id','user_occupation_id']]) result = result.drop_duplicates(['user_id','user_occupation_id'],keep='first') "1.统计user-user_occupation_id出现次数" dataFeat['user_user_occupation_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','user_occupation_id'],values='user_user_occupation_id_count',aggfunc='count').reset_index() del dataFeat['user_user_occupation_id_count'] result = pd.merge(result,feat,on=['user_id','user_occupation_id'],how='left') "2.统计user-user_occupation_id历史被购买的次数" dataFeat['user_user_occupation_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','user_occupation_id'],values='user_user_occupation_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_user_occupation_id_buy_count'] result = pd.merge(result,feat,on=['user_id','user_occupation_id'],how='left') "3.统计user-user_occupation_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_user_occupation_id_buy_count,result.user_user_occupation_id_count)) result['user_user_occupation_id_buy_ratio'] = buy_ratio "4.统计user-user_occupation_id历史未被够买的次数" result['user_user_occupation_id_not_buy_count'] = result['user_user_occupation_id_count'] - result['user_user_occupation_id_buy_count'] return result def get_user_shop_review_num_level_feat(data,dataFeat): "user-shop_review_num_level的特征提取" result = pd.DataFrame(dataFeat[['user_id','shop_review_num_level']]) result = result.drop_duplicates(['user_id','shop_review_num_level'],keep='first') "1.统计user-shop_review_num_level出现次数" dataFeat['user_shop_review_num_level_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_review_num_level'],values='user_shop_review_num_level_count',aggfunc='count').reset_index() del dataFeat['user_shop_review_num_level_count'] result = pd.merge(result,feat,on=['user_id','shop_review_num_level'],how='left') "2.统计user-shop_review_num_level历史被购买的次数" dataFeat['user_shop_review_num_level_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_review_num_level'],values='user_shop_review_num_level_buy_count',aggfunc='sum').reset_index() del dataFeat['user_shop_review_num_level_buy_count'] result = pd.merge(result,feat,on=['user_id','shop_review_num_level'],how='left') "3.统计user-shop_review_num_level转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_shop_review_num_level_buy_count,result.user_shop_review_num_level_count)) result['user_shop_review_num_level_buy_ratio'] = buy_ratio "4.统计user-shop_review_num_level历史未被够买的次数" result['user_shop_review_num_level_not_buy_count'] = result['user_shop_review_num_level_count'] - result['user_shop_review_num_level_buy_count'] return result def get_user_item_category_list_2_feat(data,dataFeat): "user-item_category_list_2的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_category_list_2']]) result = result.drop_duplicates(['user_id','item_category_list_2'],keep='first') "1.统计user-item_category_list_2出现次数" dataFeat['user_item_category_list_2_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','item_category_list_2'],values='user_item_category_list_2_count',aggfunc='count').reset_index() del dataFeat['user_item_category_list_2_count'] result = pd.merge(result,feat,on=['user_id','item_category_list_2'],how='left') "2.统计user-item_category_list_2历史被购买的次数" dataFeat['user_item_category_list_2_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','item_category_list_2'],values='user_item_category_list_2_buy_count',aggfunc='sum').reset_index() del dataFeat['user_item_category_list_2_buy_count'] result = pd.merge(result,feat,on=['user_id','item_category_list_2'],how='left') "3.统计user-item_category_list_2转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_item_category_list_2_buy_count,result.user_item_category_list_2_count)) result['user_item_category_list_2_buy_ratio'] = buy_ratio "4.统计user-item_category_list_2历史未被够买的次数" result['user_item_category_list_2_not_buy_count'] = result['user_item_category_list_2_count'] - result['user_item_category_list_2_buy_count'] return result def merge_feat(data,dataFeat): "特征的merge" #生成特征 item = get_item_feat(data,dataFeat) user = get_user_feat(data,dataFeat) context = get_context_feat(data,dataFeat) shop = get_shop_feat(data,dataFeat) timestamp = get_timestamp_feat(data,dataFeat) item_brand = get_item_brand_feat(data,dataFeat) user_gender = get_user_gender_feat(data,dataFeat) item_city = get_item_city_feat(data,dataFeat) context_page = get_context_page_feat(data,dataFeat) user_occupation = get_user_occupation_feat(data,dataFeat) shop_review_num_level = get_shop_review_num_level_feat(data,dataFeat) item_category_list_2 = get_item_category_list_2_feat(data,dataFeat) #交互特征 user_item = get_user_item_feat(data,dataFeat) user_shop = get_user_shop_feat(data,dataFeat) user_context = get_user_context_feat(data,dataFeat) user_timestamp = get_user_timestamp_feat(data,dataFeat) user_item_brand = get_user_item_brand_feat(data,dataFeat) user_user_gender = get_user_user_gender_feat(data,dataFeat) user_item_city = get_user_item_city_feat(data,dataFeat) user_context_page = get_user_context_page_feat(data,dataFeat) user_user_occupation = get_user_user_occupation_feat(data,dataFeat) user_shop_review_num_level = get_user_shop_review_num_level_feat(data,dataFeat) user_item_category_list_2 = get_user_item_category_list_2_feat(data,dataFeat) #merge特征 data = pd.merge(data,item,on='item_id',how='left') data = pd.merge(data,user,on='user_id',how='left') data = pd.merge(data,context,on='context_id',how='left') data = pd.merge(data,timestamp,on='context_timestamp',how='left') data = pd.merge(data,shop,on='shop_id',how='left') data = pd.merge(data,item_brand,on='item_brand_id',how='left') data =
pd.merge(data,user_gender,on='user_gender_id',how='left')
pandas.merge
import numpy as np import pandas as pd from rdt import get_demo def test_get_demo(): demo = get_demo() assert list(demo.columns) == [ 'last_login', 'email_optin', 'credit_card', 'age', 'dollars_spent' ] assert len(demo) == 5 assert list(demo.isna().sum(axis=0)) == [1, 1, 1, 0, 1] def test_get_demo_many_rows(): demo = get_demo(10) login_dates = pd.Series([ '2021-06-26', '2021-02-10', 'NaT', '2020-09-26', '2020-12-22', '2019-11-27', '2002-05-10', '2014-10-04', '2014-03-19', '2015-09-13' ], dtype='datetime64[ns]') email_optin = [False, False, False, True, np.nan, np.nan, False, True, False, False] credit_card = [ 'VISA', 'VISA', 'AMEX', np.nan, 'DISCOVER', 'AMEX', 'AMEX', 'DISCOVER', 'DISCOVER', 'VISA' ] age = [29, 18, 21, 45, 32, 50, 93, 75, 39, 66] dollars_spent = [99.99, np.nan, 2.50, 25.00, 19.99, 52.48, 39.99, 4.67, np.nan, 23.28] expected = pd.DataFrame({ 'last_login': login_dates, 'email_optin': email_optin, 'credit_card': credit_card, 'age': age, 'dollars_spent': dollars_spent })
pd.testing.assert_frame_equal(demo, expected)
pandas.testing.assert_frame_equal
import pandas as pd from tqdm import tqdm from ..binarize import to_binary from cana.boolean_node import BooleanNode # set up variables n_inputs = 2**2 n_rules = 2**(2**3) df_dict = [] for rule in tqdm(range(n_rules)): canal = {} # becomes row of dataframe # to_binary returns list of strings of binary digits arr = to_binary(rule, digits=8) # use CANA to compute canalization bn = BooleanNode.from_output_list(outputs=arr, name=rule) ks = bn.input_symmetry() kr = bn.input_redundancy() sym0, sym1, sym2 = bn.input_symmetry(mode='input') red0, red1, red2 = bn.input_redundancy(mode='input') # update the dictionary with the PI values canal['rule'] = rule canal['kr*'] = kr canal['ks*'] = ks canal['r(0)'] = red0 canal['r(1)'] = red1 canal['r(2)'] = red2 canal['s(0)'] = sym0 canal['s(1)'] = sym1 canal['s(2)'] = sym2 df_dict.append(canal) # write out the dataframe df =
pd.DataFrame(df_dict)
pandas.DataFrame
######################################################################################################## # data_sql.py - Data pull from json, clean it up and upload to SQL # by <NAME> # # This is Python script Pulls the metadata (link) from following three json data:- # 1. https://api.weather.gov/points/31.7276,-110.8754 # 2. https://api.weather.gov/points/32.395,-110.6911 # 3. https://api.weather.gov/points/32.4186,-110.7383 # # The Link pulled (json data) from the above three json data are # the grid data links that are use to pull all the weather related data for the three capmgrounds:- # 1. https://api.weather.gov/gridpoints/TWC/91,26 # 2. https://api.weather.gov/gridpoints/TWC/101,54 # 3. https://api.weather.gov/gridpoints/TWC/100,56 # # From the above grid data 4 dataframes are created. The challenge was pulling the data from the # above json links and then converting the date-time columns to the format (date-time) that can be used # to upload to SQL and creating the graphs. Also Temperatures need to be converted to degreeF and wind # speeds to Miles per hour:- # 1. Campgroud information dF with information like lat, lon, elevation, # meta url, grid url, forest url, campsite url fire danger and map code. # 2. One for each campground (bs_grid_df, rc_grid_df, sc_grid_df). These df # have columns (temp in degreeF, temp time, wind speed, wind speed time, wind gust, # wind gust time, prob precipitation, Prob precp time, qty precip, qty precip time). # # SQLalchemy was used to create 4 tables in postgres SQL and then the above 4 DataFrames were uploaded # Postgres SQL. The table names in SQL are: # 1. camp_wx # 2. cg_bog_spring # 3. cg_rose_canyon # 4. cg_spencer_canyon # # This script was converted from data_sql.ipynb ########################################################################################################## # %% # ------------------------ # Dependencies and Setup # ------------------------ import pandas as pd import json import requests import numpy as np import datetime from datetime import timedelta from splinter import Browser from bs4 import BeautifulSoup def update_db(uri): # %% # -------------------------------------------------------------------- # Bog Spring CAMPGROUND # -------------------------------------------------------------------- # --------------------------------------------- # Pull Grid Data URL From Metadata url for # --------------------------------------------- bs_url = "https://api.weather.gov/points/31.7276,-110.8754" response_bs = requests.get(bs_url) data_bs = response_bs.json() data_bs grid_data_bs = data_bs["properties"]["forecastGridData"] grid_data_bs # %% # ------------------------------------------------------------------------ # Pull latitude, Longitude and Elevation data for BogSprings Campground # ------------------------------------------------------------------------ bs_forcast_url = grid_data_bs response_bs_forecast = requests.get(bs_forcast_url) data_bs_forecast = response_bs_forecast.json() data_bs_forecast lat_bs = data_bs_forecast["geometry"]["coordinates"][0][0][1] lat_bs lng_bs = data_bs_forecast["geometry"]["coordinates"][0][0][0] lng_bs elevation_bs = data_bs_forecast["properties"]["elevation"]["value"] elevation_bs # --------------------------------------------------------------------------------- # Create a Dataframe with Latitude, Longitude Elevation and all other related URL # --------------------------------------------------------------------------------- bs_df = pd.DataFrame({"id": 1, "campground": "Bog Springs", "lat": [lat_bs], "lon": [lng_bs], "elevation": [elevation_bs], "nws_meta_url": [bs_url], "nws_grid_url": [grid_data_bs], "forest_url":"https://www.fs.usda.gov/recarea/coronado/recreation/camping-cabins/recarea/?recid=25732&actid=29", "campsite_url": "https://www.fs.usda.gov/Internet/FSE_MEDIA/fseprd746637.jpg", "fire_danger": "Very High", "map_code": '<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3393.5714340164473!2d-110.87758868361043!3d31.72759998130141!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x86d6970db0a5e44d%3A0x1b48084e4d6db970!2sBog%20Springs%20Campground!5e0!3m2!1sen!2sus!4v1626560932236!5m2!1sen!2sus" width="600" height="450" style="border:0;" allowfullscreen="" loading="lazy"></iframe>' }) bs_df # %% # ------------------------------------------------------------------------------------------------- # Pull temperate, Wind Speed, Wind Gust, Probability of Precipitation, Quantity or Precipitation # data along with the date and time for each. # ------------------------------------------------------------------------------------------------- # =================== Temperature Data ====================== temp = [] for i in data_bs_forecast["properties"]["temperature"]["values"]: temp.append(i) temp_df = pd.DataFrame(temp) temp_df # Temperature conversion to Degree Fahrenheit temp_df['degF'] = (temp_df['value'] * 9 / 5) + 32 temp_df # validTime Column split to date and time for Temperature date_temp = temp_df['validTime'].str.split('T', n=1, expand=True) time_temp = date_temp[1].str.split('+', n=1, expand=True) time_temp temp_df['date_temp'] = date_temp[0] temp_df['time_temp'] = time_temp[0] # Combine date and time with a space in between the two temp_df['date_time_temp'] = temp_df['date_temp'] + ' ' + temp_df['time_temp'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js # temp_df['date_time_temp'] = pd.to_datetime(temp_df['date_time_temp']) # Pull all the data for today + 3 days time_delta_temp = datetime.datetime.strptime(temp_df['date_temp'][0],"%Y-%m-%d") + timedelta(days = 4) temp_df['times_temp'] = time_delta_temp.strftime("%Y-%m-%d") temp_df = temp_df.loc[temp_df['date_temp'] < temp_df['times_temp']] temp_df # temp_df.dtypes # =================== Wind Speed Data ====================== wind_speed = [] for i in data_bs_forecast["properties"]["windSpeed"]["values"]: wind_speed.append(i) windSpeed_df = pd.DataFrame(wind_speed) windSpeed_df # Converting KM/hour to Miles/hour windSpeed_df['miles/hour'] = windSpeed_df['value'] * 0.621371 windSpeed_df # validTime Column split to date and time for Wind Speed date_ws = windSpeed_df['validTime'].str.split('T', n=1, expand=True) time_ws = date_ws[1].str.split('+', n=1, expand=True) time_ws windSpeed_df['date_ws'] = date_ws[0] windSpeed_df['time_ws'] = time_ws[0] # Combine date and time with a space in between the two windSpeed_df['date_time_ws'] = windSpeed_df['date_ws'] + ' ' + windSpeed_df['time_ws'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js # windSpeed_df['date_time_ws'] = pd.to_datetime(windSpeed_df['date_time_ws']) # Pull all the data for today + 3 days time_delta_ws = datetime.datetime.strptime(windSpeed_df['date_ws'][0],"%Y-%m-%d") + timedelta(days = 4) windSpeed_df['times_ws'] = time_delta_ws.strftime("%Y-%m-%d") windSpeed_df = windSpeed_df.loc[windSpeed_df['date_ws'] < windSpeed_df['times_ws']] windSpeed_df # windSpeed_df.dtypes # =================== Wind Gust Data ====================== wind_gust = [] for i in data_bs_forecast["properties"]["windGust"]["values"]: wind_gust.append(i) wind_gust_df = pd.DataFrame(wind_gust) wind_gust_df # Converting KM/hour to Miles/hour wind_gust_df['m/h'] = wind_gust_df['value'] * 0.621371 wind_gust_df # # validTime Column split to date and time for Wind Gusts date_wg = wind_gust_df['validTime'].str.split('T', n=1, expand=True) time_wg = date_wg[1].str.split('+', n=1, expand=True) time_wg wind_gust_df['date_wg'] = date_wg[0] wind_gust_df['time_wg'] = time_wg[0] # Combine date and time with a space in between the two wind_gust_df['date_time_wg'] = wind_gust_df['date_wg'] + ' ' + wind_gust_df['time_wg'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js # wind_gust_df['date_time_wg'] = pd.to_datetime(wind_gust_df['date_time_wg']) wind_gust_df # Pull all the data for today + 3 days time_delta_wg = datetime.datetime.strptime(wind_gust_df['date_wg'][0],"%Y-%m-%d") + timedelta(days = 4) wind_gust_df['times_wg'] = time_delta_wg.strftime("%Y-%m-%d") wind_gust_df = wind_gust_df.loc[wind_gust_df['date_wg'] < wind_gust_df['times_wg']] wind_gust_df # wind_gust_df.dtypes # =================== Probability of Precipitation Data ====================== prob_precip = [] for i in data_bs_forecast["properties"]["probabilityOfPrecipitation"]["values"]: prob_precip.append(i) prob_precip_df = pd.DataFrame(prob_precip) prob_precip_df # # validTime Column split to date and time for Probability Precipitation date_pp = prob_precip_df['validTime'].str.split('T', n=1, expand=True) time_pp = date_pp[1].str.split('+', n=1, expand=True) time_pp prob_precip_df['date_pp'] = date_pp[0] prob_precip_df['time_pp'] = time_pp[0] # Combine date and time with a space in between the two prob_precip_df['date_time_pp'] = prob_precip_df['date_pp'] + ' ' + prob_precip_df['time_pp'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js # prob_precip_df['date_time_pp'] = pd.to_datetime(prob_precip_df['date_time_pp']) prob_precip_df # Pull all the data for today + 3 days time_delta_pp = datetime.datetime.strptime(prob_precip_df['date_pp'][0],"%Y-%m-%d") + timedelta(days = 4) prob_precip_df['times_pp'] = time_delta_pp.strftime("%Y-%m-%d") prob_precip_df = prob_precip_df.loc[prob_precip_df['date_pp'] < prob_precip_df['times_pp']] prob_precip_df # prob_precip_df.dtypes # =================== Quantity of Precipitation Data ====================== qty_precip = [] for i in data_bs_forecast["properties"]["quantitativePrecipitation"]["values"]: qty_precip.append(i) qty_precip_df = pd.DataFrame(qty_precip) qty_precip_df # # validTime Column split to date and time for quantity Precipitation date_qp = qty_precip_df['validTime'].str.split('T', n=1, expand=True) time_qp = date_qp[1].str.split('+', n=1, expand=True) time_qp qty_precip_df['date_qp'] = date_qp[0] qty_precip_df['time_qp'] = time_qp[0] # Combine date and time with a space in between the two qty_precip_df['date_time_qp'] = qty_precip_df['date_qp'] + ' ' + qty_precip_df['time_qp'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js # qty_precip_df['date_time_qp'] = pd.to_datetime(qty_precip_df['date_time_qp']) qty_precip_df # Pull all the data for today + 3 days time_delta_qp = datetime.datetime.strptime(qty_precip_df['date_qp'][0],"%Y-%m-%d") + timedelta(days = 4) qty_precip_df['times_qp'] = time_delta_qp.strftime("%Y-%m-%d") qty_precip_df = qty_precip_df.loc[qty_precip_df['date_qp'] < qty_precip_df['times_qp']] qty_precip_df # qty_precip_df.dtypes # =================== Create DataFrame with all the above data for Bog Spring Campground ====================== bs_grid_df = pd.DataFrame({"id":1, "campground": "Bog Springs", "forecasted_temperature_degF": temp_df['degF'], "forecastTime_temperature": temp_df['date_time_temp'], "forecasted_windSpeed_miles_per_h": windSpeed_df['miles/hour'], "forecastTime_windSpeed": windSpeed_df['date_time_ws'], "forecasted_windGust_miles_per_h": wind_gust_df['m/h'], "forecastTime_windGust": wind_gust_df['date_time_wg'], "forecasted_probabilityOfPrecipitation": prob_precip_df['value'], "forecastTime_probabilityOfPrecipitation": prob_precip_df['date_time_pp'], "forecasted_quantityOfPrecipitation_mm": qty_precip_df['value'], "forecastTime_quantityOfPrecipitation": qty_precip_df['date_time_qp'], }) bs_grid_df # bs_grid_df.dtypes # %% # -------------------------------------------------------------------- # ROSE CANYON CAMPGROUND # -------------------------------------------------------------------- # ------------------------------------------- # Pull Grid Data URL From Metadata url # ------------------------------------------- rc_url = "https://api.weather.gov/points/32.395,-110.6911" response_rc = requests.get(rc_url) data_rc = response_rc.json() data_rc grid_data_rc = data_rc["properties"]["forecastGridData"] grid_data_rc # %% # ------------------------------------------------------------------------ # Pull latitude, Longitude and Elevation data for Rose Canyon Campground # ------------------------------------------------------------------------ rc_forcast_url = grid_data_rc response_rc_forecast = requests.get(rc_forcast_url) data_rc_forecast = response_rc_forecast.json() data_rc_forecast lat_rc = data_rc_forecast["geometry"]["coordinates"][0][0][1] lat_rc lng_rc = data_rc_forecast["geometry"]["coordinates"][0][0][0] lng_rc elevation_rc = data_rc_forecast["properties"]["elevation"]["value"] elevation_rc # --------------------------------------------------------------------------------- # Create a Dataframe with Latitude, Longitude Elevation and all other related URL # --------------------------------------------------------------------------------- rc_df = pd.DataFrame({"id": 2, "campground": "Rose Canyon", "lat": [lat_rc], "lon": [lng_rc], "elevation": [elevation_rc], "nws_meta_url": [rc_url], "nws_grid_url": [grid_data_rc], "forest_url":"https://www.fs.usda.gov/recarea/coronado/recreation/camping-cabins/recarea/?recid=25698&actid=29", "campsite_url": "https://cdn.recreation.gov/public/2019/06/20/00/19/232284_beeddff5-c966-49e2-93a8-c63c1cf21294_700.jpg", # "nws_meta_json":[data_rc], # "nws_grid_json": [data_rc_forecast], "fire_danger": "Very High", "map_code": '<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3368.97130566869!2d-110.70672358360277!3d32.39313088108983!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x86d6400421614087%3A0xb6cfb84a4b05c95b!2sRose%20Canyon%20Campground!5e0!3m2!1sen!2sus!4v1626560965073!5m2!1sen!2sus" width="600" height="450" style="border:0;" allowfullscreen="" loading="lazy"></iframe>' }) rc_df # %% # ------------------------------------------------------------------------------------------------- # Pull temperate, Wind Speed, Wind Gust, Probability of Precipitation, Quantity or Precipitation # data along with the date and time for each. # ------------------------------------------------------------------------------------------------- # =================== Temperature Data ====================== temp_rc = [] for i in data_rc_forecast["properties"]["temperature"]["values"]: temp_rc.append(i) temp_rc_df = pd.DataFrame(temp_rc) temp_rc_df # Temperature conversion to Degree Fahrenheit temp_rc_df['degF_rc'] = (temp_rc_df['value'] * 9 / 5) + 32 temp_rc_df # validTime Column split to date and time for Temperature date_temp_rc = temp_rc_df['validTime'].str.split('T', n=1, expand=True) time_temp_rc = date_temp_rc[1].str.split('+', n=1, expand=True) time_temp_rc temp_rc_df['date_temp_rc'] = date_temp_rc[0] temp_rc_df['time_temp_rc'] = time_temp_rc[0] # Combine date and time with a space in between the two temp_rc_df['date_time_temp_rc'] = temp_rc_df['date_temp_rc'] + ' ' + temp_rc_df['time_temp_rc'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js # temp_rc_df['date_time_temp_rc'] = pd.to_datetime(temp_rc_df['date_time_temp_rc']) # Pull all the data for today + 3 days time_delta_temp_rc = datetime.datetime.strptime(temp_rc_df['date_temp_rc'][0],"%Y-%m-%d") + timedelta(days = 4) temp_rc_df['times_temp_rc'] = time_delta_temp_rc.strftime("%Y-%m-%d") temp_rc_df = temp_rc_df.loc[temp_rc_df['date_temp_rc'] < temp_rc_df['times_temp_rc']] temp_rc_df temp_rc_df.dtypes # =================== Wind Speed Data ====================== wind_speed_rc = [] for i in data_rc_forecast["properties"]["windSpeed"]["values"]: wind_speed_rc.append(i) windSpeed_rc_df = pd.DataFrame(wind_speed_rc) windSpeed_rc_df # Converting KM/hour to Miles/hour windSpeed_rc_df['miles/hour_rc'] = windSpeed_rc_df['value'] * 0.621371 windSpeed_rc_df # validTime Column split to date and time for wind Speed date_ws_rc = windSpeed_rc_df['validTime'].str.split('T', n=1, expand=True) time_ws_rc = date_ws_rc[1].str.split('+', n=1, expand=True) time_ws_rc windSpeed_rc_df['date_ws_rc'] = date_ws_rc[0] windSpeed_rc_df['time_ws_rc'] = time_ws_rc[0] # Combine date and time with a space in between the two windSpeed_rc_df['date_time_ws_rc'] = windSpeed_rc_df['date_ws_rc'] + ' ' + windSpeed_rc_df['time_ws_rc'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js # windSpeed_rc_df['date_time_ws_rc'] = pd.to_datetime(windSpeed_rc_df['date_time_ws_rc']) # Pull all the data for today + 3 days time_delta_ws = datetime.datetime.strptime(windSpeed_rc_df['date_ws_rc'][0],"%Y-%m-%d") + timedelta(days = 4) windSpeed_rc_df['times_ws_rc'] = time_delta_ws.strftime("%Y-%m-%d") windSpeed_rc_df = windSpeed_rc_df.loc[windSpeed_rc_df['date_ws_rc'] < windSpeed_rc_df['times_ws_rc']] windSpeed_rc_df # windSpeed_rc_df.dtypes # =================== Wind Gust Data ====================== wind_gust_rc = [] for i in data_rc_forecast["properties"]["windGust"]["values"]: wind_gust_rc.append(i) wind_gust_rc_df =
pd.DataFrame(wind_gust_rc)
pandas.DataFrame
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """ Module contains class PandasDataframe. PandasDataframe is a parent abstract class for any dataframe class for pandas storage format. """ from collections import OrderedDict import numpy as np import pandas import datetime from pandas.core.indexes.api import ensure_index, Index, RangeIndex from pandas.core.dtypes.common import is_numeric_dtype, is_list_like from pandas._libs.lib import no_default from typing import List, Hashable, Optional, Callable, Union, Dict from modin.core.storage_formats.pandas.query_compiler import PandasQueryCompiler from modin.error_message import ErrorMessage from modin.core.storage_formats.pandas.parsers import ( find_common_type_cat as find_common_type, ) from modin.core.dataframe.base.dataframe.dataframe import ModinDataframe from modin.core.dataframe.base.dataframe.utils import ( Axis, JoinType, ) from modin.pandas.indexing import is_range_like from modin.pandas.utils import is_full_grab_slice, check_both_not_none from modin.logging import LoggerMetaClass def lazy_metadata_decorator(apply_axis=None, axis_arg=-1, transpose=False): """ Lazily propagate metadata for the ``PandasDataframe``. This decorator first adds the minimum required reindexing operations to each partition's queue of functions to be lazily applied for each PandasDataframe in the arguments by applying the function run_f_on_minimally_updated_metadata. The decorator also sets the flags for deferred metadata synchronization on the function result if necessary. Parameters ---------- apply_axis : str, default: None The axes on which to apply the reindexing operations to the `self._partitions` lazily. Case None: No lazy metadata propagation. Case "both": Add reindexing operations on both axes to partition queue. Case "opposite": Add reindexing operations complementary to given axis. Case "rows": Add reindexing operations on row axis to partition queue. axis_arg : int, default: -1 The index or column axis. transpose : bool, default: False Boolean for if a transpose operation is being used. Returns ------- Wrapped Function. """ def decorator(f): from functools import wraps @wraps(f) def run_f_on_minimally_updated_metadata(self, *args, **kwargs): for obj in ( [self] + [o for o in args if isinstance(o, PandasDataframe)] + [v for v in kwargs.values() if isinstance(v, PandasDataframe)] + [ d for o in args if isinstance(o, list) for d in o if isinstance(d, PandasDataframe) ] + [ d for _, o in kwargs.items() if isinstance(o, list) for d in o if isinstance(d, PandasDataframe) ] ): if apply_axis == "both": if obj._deferred_index and obj._deferred_column: obj._propagate_index_objs(axis=None) elif obj._deferred_index: obj._propagate_index_objs(axis=0) elif obj._deferred_column: obj._propagate_index_objs(axis=1) elif apply_axis == "opposite": if "axis" not in kwargs: axis = args[axis_arg] else: axis = kwargs["axis"] if axis == 0 and obj._deferred_column: obj._propagate_index_objs(axis=1) elif axis == 1 and obj._deferred_index: obj._propagate_index_objs(axis=0) elif apply_axis == "rows": obj._propagate_index_objs(axis=0) result = f(self, *args, **kwargs) if apply_axis is None and not transpose: result._deferred_index = self._deferred_index result._deferred_column = self._deferred_column elif apply_axis is None and transpose: result._deferred_index = self._deferred_column result._deferred_column = self._deferred_index elif apply_axis == "opposite": if axis == 0: result._deferred_index = self._deferred_index else: result._deferred_column = self._deferred_column elif apply_axis == "rows": result._deferred_column = self._deferred_column return result return run_f_on_minimally_updated_metadata return decorator class PandasDataframe(object, metaclass=LoggerMetaClass): """ An abstract class that represents the parent class for any pandas storage format dataframe class. This class provides interfaces to run operations on dataframe partitions. Parameters ---------- partitions : np.ndarray A 2D NumPy array of partitions. index : sequence The index for the dataframe. Converted to a ``pandas.Index``. columns : sequence The columns object for the dataframe. Converted to a ``pandas.Index``. row_lengths : list, optional The length of each partition in the rows. The "height" of each of the block partitions. Is computed if not provided. column_widths : list, optional The width of each partition in the columns. The "width" of each of the block partitions. Is computed if not provided. dtypes : pandas.Series, optional The data types for the dataframe columns. """ _partition_mgr_cls = None _query_compiler_cls = PandasQueryCompiler # These properties flag whether or not we are deferring the metadata synchronization _deferred_index = False _deferred_column = False @property def __constructor__(self): """ Create a new instance of this object. Returns ------- PandasDataframe """ return type(self) def __init__( self, partitions, index, columns, row_lengths=None, column_widths=None, dtypes=None, ): self._partitions = partitions self._index_cache = ensure_index(index) self._columns_cache = ensure_index(columns) if row_lengths is not None and len(self.index) > 0: # An empty frame can have 0 rows but a nonempty index. If the frame # does have rows, the number of rows must equal the size of the # index. num_rows = sum(row_lengths) if num_rows > 0: ErrorMessage.catch_bugs_and_request_email( num_rows != len(self._index_cache), "Row lengths: {} != {}".format(num_rows, len(self._index_cache)), ) ErrorMessage.catch_bugs_and_request_email( any(val < 0 for val in row_lengths), "Row lengths cannot be negative: {}".format(row_lengths), ) self._row_lengths_cache = row_lengths if column_widths is not None and len(self.columns) > 0: # An empty frame can have 0 column but a nonempty column index. If # the frame does have columns, the number of columns must equal the # size of the columns. num_columns = sum(column_widths) if num_columns > 0: ErrorMessage.catch_bugs_and_request_email( num_columns != len(self._columns_cache), "Column widths: {} != {}".format( num_columns, len(self._columns_cache) ), ) ErrorMessage.catch_bugs_and_request_email( any(val < 0 for val in column_widths), "Column widths cannot be negative: {}".format(column_widths), ) self._column_widths_cache = column_widths self._dtypes = dtypes self._filter_empties() @property def _row_lengths(self): """ Compute the row partitions lengths if they are not cached. Returns ------- list A list of row partitions lengths. """ if self._row_lengths_cache is None: if len(self._partitions.T) > 0: self._row_lengths_cache = [ obj.length() for obj in self._partitions.T[0] ] else: self._row_lengths_cache = [] return self._row_lengths_cache @property def _column_widths(self): """ Compute the column partitions widths if they are not cached. Returns ------- list A list of column partitions widths. """ if self._column_widths_cache is None: if len(self._partitions) > 0: self._column_widths_cache = [obj.width() for obj in self._partitions[0]] else: self._column_widths_cache = [] return self._column_widths_cache @property def _axes_lengths(self): """ Get a pair of row partitions lengths and column partitions widths. Returns ------- list The pair of row partitions lengths and column partitions widths. """ return [self._row_lengths, self._column_widths] @property def dtypes(self): """ Compute the data types if they are not cached. Returns ------- pandas.Series A pandas Series containing the data types for this dataframe. """ if self._dtypes is None: self._dtypes = self._compute_dtypes() return self._dtypes def _compute_dtypes(self): """ Compute the data types via TreeReduce pattern. Returns ------- pandas.Series A pandas Series containing the data types for this dataframe. """ def dtype_builder(df): return df.apply(lambda col: find_common_type(col.values), axis=0) map_func = self._build_treereduce_func(0, lambda df: df.dtypes) reduce_func = self._build_treereduce_func(0, dtype_builder) # For now we will use a pandas Series for the dtypes. if len(self.columns) > 0: dtypes = self.tree_reduce(0, map_func, reduce_func).to_pandas().iloc[0] else: dtypes = pandas.Series([]) # reset name to None because we use "__reduced__" internally dtypes.name = None return dtypes _index_cache = None _columns_cache = None def _validate_set_axis(self, new_labels, old_labels): """ Validate the possibility of replacement of old labels with the new labels. Parameters ---------- new_labels : list-like The labels to replace with. old_labels : list-like The labels to replace. Returns ------- list-like The validated labels. """ new_labels = ensure_index(new_labels) old_len = len(old_labels) new_len = len(new_labels) if old_len != new_len: raise ValueError( f"Length mismatch: Expected axis has {old_len} elements, " + f"new values have {new_len} elements" ) return new_labels def _get_index(self): """ Get the index from the cache object. Returns ------- pandas.Index An index object containing the row labels. """ return self._index_cache def _get_columns(self): """ Get the columns from the cache object. Returns ------- pandas.Index An index object containing the column labels. """ return self._columns_cache def _set_index(self, new_index): """ Replace the current row labels with new labels. Parameters ---------- new_index : list-like The new row labels. """ if self._index_cache is None: self._index_cache = ensure_index(new_index) else: new_index = self._validate_set_axis(new_index, self._index_cache) self._index_cache = new_index self.synchronize_labels(axis=0) def _set_columns(self, new_columns): """ Replace the current column labels with new labels. Parameters ---------- new_columns : list-like The new column labels. """ if self._columns_cache is None: self._columns_cache = ensure_index(new_columns) else: new_columns = self._validate_set_axis(new_columns, self._columns_cache) self._columns_cache = new_columns if self._dtypes is not None: self._dtypes.index = new_columns self.synchronize_labels(axis=1) columns = property(_get_columns, _set_columns) index = property(_get_index, _set_index) @property def axes(self): """ Get index and columns that can be accessed with an `axis` integer. Returns ------- list List with two values: index and columns. """ return [self.index, self.columns] def _compute_axis_labels(self, axis: int, partitions=None): """ Compute the labels for specific `axis`. Parameters ---------- axis : int Axis to compute labels along. partitions : np.ndarray, optional A 2D NumPy array of partitions from which labels will be grabbed. If not specified, partitions will be taken from `self._partitions`. Returns ------- pandas.Index Labels for the specified `axis`. """ if partitions is None: partitions = self._partitions return self._partition_mgr_cls.get_indices( axis, partitions, lambda df: df.axes[axis] ) def _filter_empties(self): """Remove empty partitions from `self._partitions` to avoid triggering excess computation.""" if len(self.axes[0]) == 0 or len(self.axes[1]) == 0: # This is the case for an empty frame. We don't want to completely remove # all metadata and partitions so for the moment, we won't prune if the frame # is empty. # TODO: Handle empty dataframes better return self._partitions = np.array( [ [ self._partitions[i][j] for j in range(len(self._partitions[i])) if j < len(self._column_widths) and self._column_widths[j] != 0 ] for i in range(len(self._partitions)) if i < len(self._row_lengths) and self._row_lengths[i] != 0 ] ) self._column_widths_cache = [w for w in self._column_widths if w != 0] self._row_lengths_cache = [r for r in self._row_lengths if r != 0] def synchronize_labels(self, axis=None): """ Set the deferred axes variables for the ``PandasDataframe``. Parameters ---------- axis : int, default: None The deferred axis. 0 for the index, 1 for the columns. """ if axis is None: self._deferred_index = True self._deferred_column = True elif axis == 0: self._deferred_index = True else: self._deferred_column = True def _propagate_index_objs(self, axis=None): """ Synchronize labels by applying the index object for specific `axis` to the `self._partitions` lazily. Adds `set_axis` function to call-queue of each partition from `self._partitions` to apply new axis. Parameters ---------- axis : int, default: None The axis to apply to. If it's None applies to both axes. """ self._filter_empties() if axis is None or axis == 0: cum_row_lengths = np.cumsum([0] + self._row_lengths) if axis is None or axis == 1: cum_col_widths = np.cumsum([0] + self._column_widths) if axis is None: def apply_idx_objs(df, idx, cols): return df.set_axis(idx, axis="index", inplace=False).set_axis( cols, axis="columns", inplace=False ) self._partitions = np.array( [ [ self._partitions[i][j].add_to_apply_calls( apply_idx_objs, idx=self.index[ slice(cum_row_lengths[i], cum_row_lengths[i + 1]) ], cols=self.columns[ slice(cum_col_widths[j], cum_col_widths[j + 1]) ], ) for j in range(len(self._partitions[i])) ] for i in range(len(self._partitions)) ] ) self._deferred_index = False self._deferred_column = False elif axis == 0: def apply_idx_objs(df, idx): return df.set_axis(idx, axis="index", inplace=False) self._partitions = np.array( [ [ self._partitions[i][j].add_to_apply_calls( apply_idx_objs, idx=self.index[ slice(cum_row_lengths[i], cum_row_lengths[i + 1]) ], ) for j in range(len(self._partitions[i])) ] for i in range(len(self._partitions)) ] ) self._deferred_index = False elif axis == 1: def apply_idx_objs(df, cols): return df.set_axis(cols, axis="columns", inplace=False) self._partitions = np.array( [ [ self._partitions[i][j].add_to_apply_calls( apply_idx_objs, cols=self.columns[ slice(cum_col_widths[j], cum_col_widths[j + 1]) ], ) for j in range(len(self._partitions[i])) ] for i in range(len(self._partitions)) ] ) self._deferred_column = False else: ErrorMessage.catch_bugs_and_request_email( axis is not None and axis not in [0, 1] ) @lazy_metadata_decorator(apply_axis=None) def mask( self, row_labels: Optional[List[Hashable]] = None, row_positions: Optional[List[int]] = None, col_labels: Optional[List[Hashable]] = None, col_positions: Optional[List[int]] = None, ) -> "PandasDataframe": """ Lazily select columns or rows from given indices. Parameters ---------- row_labels : list of hashable, optional The row labels to extract. row_positions : list-like of ints, optional The row positions to extract. col_labels : list of hashable, optional The column labels to extract. col_positions : list-like of ints, optional The column positions to extract. Returns ------- PandasDataframe A new PandasDataframe from the mask provided. Notes ----- If both `row_labels` and `row_positions` are provided, a ValueError is raised. The same rule applies for `col_labels` and `col_positions`. """ if check_both_not_none(row_labels, row_positions): raise ValueError( "Both row_labels and row_positions were provided - please provide only one of row_labels and row_positions." ) if check_both_not_none(col_labels, col_positions): raise ValueError( "Both col_labels and col_positions were provided - please provide only one of col_labels and col_positions." ) indexers = [] for axis, indexer in enumerate((row_positions, col_positions)): if is_range_like(indexer): if indexer.step == 1 and len(indexer) == len(self.axes[axis]): # By this function semantics, `None` indexer is a full-axis access indexer = None elif indexer is not None and not isinstance(indexer, pandas.RangeIndex): # Pure python's range is not fully compatible with a list of ints, # converting it to ``pandas.RangeIndex``` that is compatible. indexer = pandas.RangeIndex( indexer.start, indexer.stop, indexer.step ) else: ErrorMessage.catch_bugs_and_request_email( failure_condition=not (indexer is None or
is_list_like(indexer)
pandas.core.dtypes.common.is_list_like
import os import subprocess from multiprocessing import Process import time import pandas as pd import prctl import resource import logging logger = logging.getLogger(__name__) qlogger = logging.getLogger("QEMU-" + __name__) class Trigger: def __init__(self, trigger_address, trigger_hitcounter): """ Define attributes for trigger """ self.address = trigger_address self.hitcounter = trigger_hitcounter class Fault: def __init__(self, fault_address: int, fault_type: int, fault_model: int, fault_lifespan: int, fault_mask: int, trigger_address: int, trigger_hitcounter: int): """ Define attributes for fault types """ self.trigger = Trigger(trigger_address, trigger_hitcounter) self.address = fault_address self.type = fault_type self.model = fault_model self.lifespan = fault_lifespan self.mask = fault_mask def write_to_fifo(self, fifo): "Write data to the config fifo, which sends binary data" numbytes = fifo.write(self.address.to_bytes(8, byteorder='big')) numbytes = numbytes + fifo.write(self.type.to_bytes(8, byteorder='big')) numbytes = numbytes + fifo.write(self.model.to_bytes(8, byteorder='big')) numbytes = numbytes + fifo.write(self.lifespan.to_bytes(8, byteorder='big')) numbytes = numbytes + fifo.write(self.mask.to_bytes(16, byteorder='big')) numbytes = numbytes + fifo.write(self.trigger.address.to_bytes(8, byteorder='big')) numbytes = numbytes + fifo.write(self.trigger.hitcounter.to_bytes(8, byteorder='big')) fifo.flush() return numbytes def write_to_fifo_new(self, fifo): out = "\n$$[Fault]\n" out = out + "% {:d} | {:d} | {:d} | {:d} | {:d} | {:d} | ".format(self.address, self.type, self.model, self.lifespan, self.trigger.address, self.trigger.hitcounter) tmp = self.mask - pow(2, 64) if tmp < 0: tmp = 0 out = out + " {:d} {:d} \n".format(tmp, self.mask - tmp) out = out + "$$[Fault_Ende]\n" tmp = fifo.write(out) fifo.flush() return tmp def run_qemu(controll, config, data, qemu_monitor_fifo, qemu_path, kernel_path, plugin_path, machine, qemu_output, index, qemu_custom_paths=None): """ This function calls qemu with the required arguments. """ ps = None try: prctl.set_name("qemu{}".format(index)) prctl.set_proctitle("qemu_for_{}".format(index)) t0 = time.time() qlogger.debug("start qemu for exp {}".format(index)) if qemu_output is True: output = "-d plugin" else: output = " " if qemu_custom_paths is None: qemu_custom_paths = " " qemustring = "{3!s} -plugin {5!s},arg=\"{0!s}\",arg=\"{1!s}\",arg=\"{2!s}\" {6!s} {7!s} -M {8!s} -monitor none -kernel {4!s}".format(controll, config, data, qemu_path, kernel_path, plugin_path, output, qemu_custom_paths, machine) ps = subprocess.Popen(qemustring, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) while ps.poll() is None: tmp = ps.stdout.read() if qemu_output is True: f = open("log_{}.txt".format(index), 'wt', encoding='utf-8') f.write(tmp.decode('utf-8')) qlogger.debug(tmp.decode('utf-8')) qlogger.info("Ended qemu for exp {}! Took {}".format(index, time.time()-t0) ) except KeyboardInterrupt: ps.kill() logger.warning("Terminate QEMU {}".format(index)) def readout_tbinfo(line): """ Builds the dict for tb info from line provided by qemu """ split = line.split('|') tb = {} tb['id'] = int(split[0], 0) tb['size'] = int(split[1], 0) tb['ins_count'] = int(split[2], 0) tb['num_exec'] = int(split[3], 0) tb['assembler'] = split[4].replace('!!', '\n') return tb def diff_tbinfo(tblist, goldenrun_tblist): """ Diff tblist with golden runs tblist. Convert to pandas data frame for performance reasons. Naive implementation is too slow for larger datasets. Also added two times golden run concat to cancel it out and only find diff to df1 """ df1 = pd.DataFrame(tblist) df2 = goldenrun_tblist diff = pd.concat([df1, df2, df2]).drop_duplicates(keep=False) tblist_dif = diff.to_dict('records') return tblist_dif def readout_tbexec(line, tbexeclist, tbinfo, goldenrun): """ Builds the dict for tb exec from line provided by qemu """ split = line.split('|') # generate list element execdic = {} execdic['tb'] = int(split[0], 0) execdic['pos'] = int(split[1], 0) return execdic def build_filters(tbinfogolden): """ Build for each tb in tbinfo a filter """ filter_return = [] """Each assembler string""" for tb in tbinfogolden['assembler']: tb_filter = [] """remove first split, as it is empty""" split = tb.split('[ ') """For each line""" for sp in split[1:]: """select address""" s = sp.split(']') """Add to filter""" tb_filter.append(int("0x"+s[0].strip(), 0)) """Sort addresses""" tb_filter.sort() """Reverse list so that last element is first""" tb_filter.reverse() """Append to filter list""" filter_return.append(tb_filter) """Filter list for length of filter, so that the longest one is tested first""" filter_return.sort(key=len) filter_return.reverse() return filter_return def recursive_filter(tbexecpd, tbinfopd, index, filt): """ Search if each element in filt exists in tbexec after index """ """Make sure we do not leave Pandas frame""" if not ((index >= 0) and index < len(tbexecpd)): return [False, tbexecpd, tbinfopd] """Select element to test""" tb = tbexecpd.loc[index] """Make sure it is part of filter""" if (tb['tb'] == filt[0]): if len(filt) == 1: """Reached start of original tb""" return [True, tbexecpd, tbinfopd] else: """pop filter element and increase index in tbexec pandas frame""" fi = filt.pop(0) index = index + 1 """Call recursively""" [flag, tbexecpd, tbinfopd] = recursive_filter(tbexecpd, tbinfopd, index, filt) index = index - 1 """If true, we have a match""" if flag is True: """Invalidate element in tb exec list""" tbexecpd.at[index, 'tb'] = -1 tbexecpd.at[index, 'tb-1'] = -1 """Search tb in tb info""" idx = tbinfopd.index[tbinfopd['id'] == fi] for ind in idx: """Only invalidate if tb only contains one element, as these are artefacts of singlestep""" if tbinfopd.at[ind, 'ins_count'] == 1: tbinfopd.at[ind, 'num_exec'] = tbinfopd.at[ind, 'num_exec'] - 1 return [flag, tbexecpd, tbinfopd] else: return [False, tbexecpd, tbinfopd] def decrese_tb_info_element(tb_id, number, tbinfopd): """Find all matches to the tb id""" idx = tbinfopd.index[tbinfopd['id'] == tb_id] """Decrement all matches by number of occurrence in tb exec""" for i in idx: tbinfopd.at[i, 'num_exec'] = tbinfopd.at[i, 'num_exec'] - number def filter_function(tbexecpd, filt, tbinfopd): """Find all possible matches for first element of filter""" idx = tbexecpd.index[(tbexecpd['tb'] == filt[0])] for f in filt[1:]: """Increment to next possible match position""" idx = idx + 1 """Find all possible matches for next filter value""" tmp = tbexecpd.index[(tbexecpd['tb']) == f] """Find matching indexes between both indexes""" idx = idx.intersection(tmp) """We now will step through the filter backwards""" filt.reverse() for f in filt[1:]: """Decrement positions""" idx = idx - 1 for i in idx: """Invalidate all positions""" tbexecpd.at[i, 'tb'] = -1 tbexecpd.at[i, 'tb-1'] = -1 """Decrement artefacts in tb info list""" decrese_tb_info_element(f, len(idx), tbinfopd) def filter_tb(tbexeclist, tbinfo, tbexecgolden, tbinfogolden, id_num): """ First create filter list, then find start of filter, then call recursive filter """ filters = build_filters(tbinfogolden) tbexecpd = tbexeclist """Sort and re-index tb exec list""" tbexecpd.sort_values(by=['pos'], ascending=False, inplace=True) tbexecpd.reset_index(drop=True, inplace=True) tbexecpd['tb-1'] = tbexecpd['tb'].shift(periods=-1, fill_value=0) """Generate pandas frame for tbinfo""" tbinfopd = pd.DataFrame(tbinfo) for filt in filters: """Only if filter has more than one element""" if len(filt) > 1: """Perform search and invalidation of found matches""" filter_function(tbexecpd, filt, tbinfopd) diff = len(tbexecpd) """ Search found filter matches """ idx = tbexecpd.index[tbexecpd['tb-1'] == -1] """Drop them from table""" tbexecpd.drop(idx, inplace=True) """Drop temporary column""" tbexecpd.drop(columns=['tb-1'], inplace=True) """Reverse list, because it is given reversed from qemu""" tbexecpd.sort_values(by=['pos'], inplace=True) """ Fix broken position index""" tbexecpd.reset_index(drop=True, inplace=True) tbexecpd['pos'] = tbexecpd.index """Again reverse list to go back to original orientation""" tbexecpd = tbexecpd.iloc[::-1] logger.debug("worker {} length diff of tbexec {}".format(id_num, diff - len(tbexecpd))) diff = len(tbinfopd) """Search each tb info, that was completely removed from tbexec list""" idx = tbinfopd.index[tbinfopd['num_exec'] <= 0] """Drop the now not relevant tbinfo elements""" tbinfopd.drop(idx, inplace=True) logger.debug("worker {} Length diff of tbinfo {}".format(id_num, diff - len(tbinfopd))) return [tbexecpd, tbinfopd.to_dict('records')] def diff_tbexec(tbexeclist, goldenrun_tbexeclist): """ Diff tbexeclist with golden runs tbexeclist. Convert to pandas dataframe for performance reasons. Naive implementation is too slow for larger datasets. Also added two times golden run concat to cancel it out and only find diff to df1 """ df1 = tbexeclist df2 = goldenrun_tbexeclist diff = pd.concat([df1, df2, df2]).drop_duplicates(keep=False) tbexeclist_diff = diff.to_dict('records') return tbexeclist_diff def readout_meminfo(line): """ Builds the dict for memory info from line provided by qemu """ split = line.split('|') mem = {} mem['ins'] = int(split[0], 0) mem['size'] = int(split[1], 0) mem['address'] = int(split[2], 0) mem['direction'] = int(split[3], 0) mem['counter'] = int(split[4], 0) mem['tbid'] = 0 return mem def diff_meminfo(meminfolist, goldenrun_meminfolist): """ Diff meminfo with golden runs meminfo. Convert to pandas dataframe for performance reasons. Naive implementation is too slow for larger datasets. Also added two times golden run concat to cancel it out and only find diff to df1 """ df1 = pd.DataFrame(meminfolist) df2 = goldenrun_meminfolist diff = pd.concat([df1, df2, df2]).drop_duplicates(keep=False) meminfolist_diff = diff.to_dict('records') return meminfolist_diff def connect_meminfo_tb(meminfolist, tblist): for meminfo in meminfolist: for tbinfo in tblist: if meminfo['ins'] > tbinfo['id'] and meminfo['ins'] < tbinfo['id'] + tbinfo['size']: meminfo['tbid'] = tbinfo['id'] break def readout_memdump(line, memdumplist, memdumpdict, memdumptmp): """ This function will readout the lines. If it receives memorydump, it means a new configured dump will be transmitted. Therefore the dictionary is initialised. If only B: is received, Binary data is transmitted. If Dump end is received, the dump is finished and needs to be appended to the dic, as multiple dumps are possible. If memorydump end is received, the current memorydump is finished and is added to the memdumplist """ if '[memorydump]' in line: split = line.split(']:') info = split[1] split = info.split('|') memdumpdict['address'] = int(split[0], 0) memdumpdict['len'] = int(split[1], 0) memdumpdict['numdumps'] = int(split[2], 0) memdumpdict['dumps'] = [] if 'B:' in line: split = line.split('B: ') binary = split[1].split(' ') for b in binary: memdumptmp.append(int(b, 0)) if '[Dump end]' in line: memdumpdict['dumps'].append(memdumptmp) memdumptmp = [] if '[memorydump end]' in line: memdumplist.append(memdumpdict) memdumpdict = {} return [memdumplist, memdumpdict, memdumptmp] def readout_arm_registers(line): split = line.split('|') armregisters = {} armregisters['pc'] = int(split[0]) armregisters['tbcounter'] = int(split[1]) armregisters['r0'] = int(split[2]) armregisters['r1'] = int(split[3]) armregisters['r2'] = int(split[4]) armregisters['r3'] = int(split[5]) armregisters['r4'] = int(split[6]) armregisters['r5'] = int(split[7]) armregisters['r6'] = int(split[8]) armregisters['r7'] = int(split[9]) armregisters['r8'] = int(split[10]) armregisters['r9'] = int(split[11]) armregisters['r10'] = int(split[12]) armregisters['r11'] = int(split[13]) armregisters['r12'] = int(split[14]) armregisters['r13'] = int(split[15]) armregisters['r14'] = int(split[16]) armregisters['r15'] = int(split[17]) armregisters['xpsr'] = int(split[18]) return armregisters def readout_riscv_registers(line): split = line.split('|') riscvregister = {} riscvregister['pc'] = int(split[0]) riscvregister['tbcounter'] = int(split[1]) riscvregister['x0'] = int(split[2]) riscvregister['x1'] = int(split[3]) riscvregister['x2'] = int(split[4]) riscvregister['x3'] = int(split[5]) riscvregister['x4'] = int(split[6]) riscvregister['x5'] = int(split[7]) riscvregister['x6'] = int(split[8]) riscvregister['x7'] = int(split[9]) riscvregister['x8'] = int(split[10]) riscvregister['x9'] = int(split[11]) riscvregister['x10'] = int(split[12]) riscvregister['x11'] = int(split[13]) riscvregister['x12'] = int(split[14]) riscvregister['x13'] = int(split[15]) riscvregister['x14'] = int(split[16]) riscvregister['x15'] = int(split[17]) riscvregister['x16'] = int(split[18]) riscvregister['x17'] = int(split[19]) riscvregister['x18'] = int(split[20]) riscvregister['x19'] = int(split[21]) riscvregister['x20'] = int(split[22]) riscvregister['x21'] = int(split[23]) riscvregister['x22'] = int(split[24]) riscvregister['x23'] = int(split[25]) riscvregister['x24'] = int(split[26]) riscvregister['x25'] = int(split[27]) riscvregister['x26'] = int(split[28]) riscvregister['x27'] = int(split[29]) riscvregister['x28'] = int(split[30]) riscvregister['x29'] = int(split[31]) riscvregister['x30'] = int(split[32]) riscvregister['x31'] = int(split[33]) riscvregister['x32'] = int(split[34]) return riscvregister def readout_tb_faulted(line): split = line.split('|') tbfaulted = {} tbfaulted['faultaddress'] = int(split[0], 0) tbfaulted['assembly'] = (split[1].replace('!!', '\n')) return tbfaulted def diff_arm_registers(armregisterlist, goldenarmregisterlist): df1 = pd.DataFrame(armregisterlist) df2 = goldenarmregisterlist diff = pd.concat([df1, df2, df2]).drop_duplicates(keep=False) armregister_diff = diff.to_dict('records') return armregister_diff def diff_tables(table, goldentable): """ This function expects a table and its golden table as pandas dataframe """ return pd.concat([table, goldentable, goldentable]).drop_duplicates(keep=False) def convert_pd_frame_to_list(table): return table.to_dict('records') def readout_data(pipe, index, q, faultlist, goldenrun_data, q2=None, qemu_post=None, qemu_pre_data=None): """ This function will permanently try to read data from data pipe Furthermore it then builds the internal representation, which is collected by the process writing to hdf 5 file """ state = 'None' tblist = [] tbexeclist = [] pdtbexeclist = None memlist = [] memdumpdict = {} memdumplist = [] memdumptmp = [] registerlist = [] tbfaultedlist = [] tbinfo = 0 tbexec = 0 meminfo = 0 memdump = 0 endpoint = 0 mem = 0 regtype = None tbfaulted = 0 while(1): line = pipe.readline() if '$$$' in line: line = line[3:] if '[Endpoint]' in line: split = line.split(']:') endpoint = int(split[1], 0) elif '[TB Information]' in line: state = 'tbinfo' tbinfo = 1 elif '[TB Exec]' in line: state = 'tbexec' tbexec = 1 elif '[Mem Information]' in line: tbexeclist.reverse() state = 'meminfo' meminfo = 1 elif '[Memdump]' in line: state = 'memdump' memdump = 1 elif '[END]' in line: state = 'none' logger.info("Data received now on post processing for Experiment {}".format(index)) tmp = 0 if tbexec == 1: if pdtbexeclist is not None: tmp = pd.DataFrame(tbexeclist) pdtbexeclist = pd.concat([pdtbexeclist, tmp], ignore_index=True) else: pdtbexeclist = pd.DataFrame(tbexeclist) tmp = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss if q2 is not None: q2.put(tmp) if goldenrun_data is not None: [pdtbexeclist, tblist] = filter_tb(pdtbexeclist, tblist, goldenrun_data['tbexec'], goldenrun_data['tbinfo'], index) if tbinfo == 1 and meminfo == 1: connect_meminfo_tb(memlist, tblist) output = {} mem = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss if q2 is not None: q2.put(tmp) if tmp > mem: mem = tmp if tbinfo == 1: if goldenrun_data is not None: output['tbinfo'] = diff_tbinfo(tblist, goldenrun_data['tbinfo']) else: output['tbinfo'] = tblist if tbexec == 1: if goldenrun_data is not None: output['tbexec'] = diff_tbexec(pdtbexeclist, goldenrun_data['tbexec']) else: output['tbexec'] = convert_pd_frame_to_list(pdtbexeclist) if meminfo == 1: if goldenrun_data is not None: output['meminfo'] = diff_meminfo(memlist, goldenrun_data['meminfo']) else: output['meminfo'] = memlist if goldenrun_data is not None: if regtype == 'arm': output['armregisters'] = diff_arm_registers(registerlist, goldenrun_data['armregisters']) if regtype == 'riscv': output['riscvregisters'] = diff_arm_registers(registerlist, goldenrun_data['riscvregisters']) else: if regtype == 'arm': output['armregisters'] = registerlist if regtype == 'riscv': output['riscvregisters'] = registerlist if tbfaulted == 1: output['tbfaulted'] = tbfaultedlist output['index'] = index output['faultlist'] = faultlist output['endpoint'] = endpoint if memdump == 1: output['memdumplist'] = memdumplist tmp = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss if q2 is not None: q2.put(tmp) if tmp > mem: mem = tmp if callable(qemu_post): output = qemu_post(qemu_pre_data, output) q.put(output) tmp = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss if q2 is not None: q2.put(tmp) if tmp > mem: mem = tmp break elif '[Arm Registers]' in line: state = 'armregisters' regtype = 'arm' elif '[RiscV Registers]' in line: state = 'riscvregisters' regtype = 'riscv' elif '[TB Faulted]' in line: state = 'tbfaulted' tbfaulted = 1 else: logger.warning("Command in exp {} not understood {}".format(index, line)) state = 'None' elif '$$' in line: line = line[2:] if 'tbinfo' in state: tblist.append(readout_tbinfo(line)) elif 'tbexec' in state: tbexeclist.append(readout_tbexec(line, tbexeclist, tblist, goldenrun_data)) if len(tbexeclist) > 10000: if pdtbexeclist is None: pdtbexeclist =
pd.DataFrame(tbexeclist)
pandas.DataFrame
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series, Timestamp, date_range, option_context from pandas.core import common as com from pandas.util import testing as tm class TestCaching: def test_slice_consolidate_invalidate_item_cache(self): # this is chained assignment, but will 'work' with option_context('chained_assignment', None): # #3970 df = DataFrame({"aa": np.arange(5), "bb": [2.2] * 5}) # Creates a second float block df["cc"] = 0.0 # caches a reference to the 'bb' series df["bb"] # repr machinery triggers consolidation repr(df) # Assignment to wrong series df['bb'].iloc[0] = 0.17 df._clear_item_cache() tm.assert_almost_equal(df['bb'][0], 0.17) def test_setitem_cache_updating(self): # GH 5424 cont = ['one', 'two', 'three', 'four', 'five', 'six', 'seven'] for do_ref in [False, False]: df = DataFrame({'a': cont, "b": cont[3:] + cont[:3], 'c': np.arange(7)}) # ref the cache if do_ref: df.loc[0, "c"] # set it df.loc[7, 'c'] = 1 assert df.loc[0, 'c'] == 0.0 assert df.loc[7, 'c'] == 1.0 # GH 7084 # not updating cache on series setting with slices expected = DataFrame({'A': [600, 600, 600]}, index=date_range('5/7/2014', '5/9/2014')) out = DataFrame({'A': [0, 0, 0]}, index=date_range('5/7/2014', '5/9/2014')) df = DataFrame({'C': ['A', 'A', 'A'], 'D': [100, 200, 300]}) # loop through df to update out six = Timestamp('5/7/2014') eix = Timestamp('5/9/2014') for ix, row in df.iterrows(): out.loc[six:eix, row['C']] = out.loc[six:eix, row['C']] + row['D'] tm.assert_frame_equal(out, expected) tm.assert_series_equal(out['A'], expected['A']) # try via a chain indexing # this actually works out = DataFrame({'A': [0, 0, 0]}, index=date_range('5/7/2014', '5/9/2014')) for ix, row in df.iterrows(): v = out[row['C']][six:eix] + row['D'] out[row['C']][six:eix] = v tm.assert_frame_equal(out, expected)
tm.assert_series_equal(out['A'], expected['A'])
pandas.util.testing.assert_series_equal
"""Main module # Resources - Reference google sheets: - Source data: https://docs.google.com/spreadsheets/d/1jzGrVELQz5L4B_-DqPflPIcpBaTfJOUTrVJT5nS_j18/edit#gid=1335629675 - Source data (old): https://docs.google.com/spreadsheets/d/17hHiqc6GKWv9trcW-lRnv-MhZL8Swrx2/edit#gid=1335629675 - Output example: https://docs.google.com/spreadsheets/d/1uroJbhMmOTJqRkTddlSNYleSKxw4i2216syGUSK7ZuU/edit?userstoinvite=<EMAIL>&actionButton=1#gid=435465078 """ import json import os import pickle import sys from copy import copy from datetime import datetime, timezone from pathlib import Path from typing import Dict, List, OrderedDict from uuid import uuid4 import pandas as pd try: import ArgumentParser except ModuleNotFoundError: from argparse import ArgumentParser from vsac_wrangler.config import CACHE_DIR, DATA_DIR, PROJECT_ROOT from vsac_wrangler.definitions.constants import FHIR_JSON_TEMPLATE from vsac_wrangler.google_sheets import get_sheets_data from vsac_wrangler.vsac_api import get_ticket_granting_ticket, get_value_sets from vsac_wrangler.interfaces._cli import get_parser # USER1: This is an actual ID to a valid user in palantir, who works on our BIDS team. PROJECT_NAME = 'RP-4A9E27' PALANTIR_ENCLAVE_USER_ID_1 = 'a39723f3-dc9c-48ce-90ff-06891c29114f' PARSE_ARGS = get_parser().parse_args() # for convenient access later OUTPUT_NAME ='palantir-three-file' # currently this is the only value used SOURCE_NAME ='vsac' def get_runtime_provenance() -> str: """Get provenance info related to this runtime operation""" return f'oids from {PARSE_ARGS.input_path} => VSAC trad API => 3-file dir {get_out_dir()}' def format_label(label, verbose_prefix=False) -> str: """Adds prefix and trims whitespace""" label = label.strip() prefix = 'VSAC' if not verbose_prefix else get_runtime_provenance() return f'[{prefix}] {label}' def get_out_dir(output_name=OUTPUT_NAME, source_name=SOURCE_NAME) -> str: date_str = datetime.now().strftime('%Y.%m.%d') out_dir = os.path.join(DATA_DIR, output_name, source_name, date_str, 'output') return out_dir # to-do: Shared lib for this stuff? # noinspection DuplicatedCode def _save_csv(df: pd.DataFrame, filename, output_name=OUTPUT_NAME, source_name=SOURCE_NAME, field_delimiter=','): """Side effects: Save CSV""" out_dir = get_out_dir(output_name=output_name, source_name=source_name) os.makedirs(out_dir, exist_ok=True) output_format = 'csv' if field_delimiter == ',' else 'tsv' if field_delimiter == '\t' else 'txt' outpath = os.path.join(out_dir, f'{filename}.{output_format}') df.to_csv(outpath, sep=field_delimiter, index=False) def _datetime_palantir_format() -> str: """Returns datetime str in format used by palantir data enclave e.g. 2021-03-03T13:24:48.000Z (milliseconds allowed, but not common in observed table)""" return datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%S.%fZ")[:-4] + 'Z' def save_json(value_sets, output_structure, json_indent=4) -> List[Dict]: """Save JSON""" # Populate JSON objs d_list: List[Dict] = [] for value_set in value_sets: value_set2 = {} if output_structure == 'fhir': value_set2 = vsac_to_fhir(value_set) elif output_structure == 'vsac': value_set2 = vsac_to_vsac(value_set) elif output_structure == 'atlas': raise NotImplementedError('For "atlas" output-structure, output-format "json" not yet implemented.') d_list.append(value_set2) # Save file for d in d_list: if 'name' in d: valueset_name = d['name'] else: valueset_name = d['Concept Set Name'] valueset_name = valueset_name.replace('/', '|') filename = valueset_name + '.json' filepath = os.path.join(DATA_DIR, filename) with open(filepath, 'w') as fp: if json_indent: json.dump(d, fp, indent=json_indent) else: json.dump(d, fp) return d_list # TODO: repurpose this to use VSAC format # noinspection DuplicatedCode def vsac_to_fhir(value_set: Dict) -> Dict: """Convert VSAC JSON dict to FHIR JSON dict""" # TODO: cop/paste FHIR_JSON_TEMPLATE literally here instead and use like other func d: Dict = copy(FHIR_JSON_TEMPLATE) d['id'] = int(value_set['valueSet.id'][0]) d['text']['div'] = d['text']['div'].format(value_set['valueSet.description'][0]) d['url'] = d['url'].format(str(value_set['valueSet.id'][0])) d['name'] = value_set['valueSet.name'][0] d['title'] = value_set['valueSet.name'][0] d['status'] = value_set['valueSet.status'][0] d['description'] = value_set['valueSet.description'][0] d['compose']['include'][0]['system'] = value_set['valueSet.codeSystem'][0] d['compose']['include'][0]['version'] = value_set['valueSet.codeSystemVersion'][0] concepts = [] d['compose']['include'][0]['concept'] = concepts return d # TODO: def vsac_to_vsac(v: Dict, depth=2) -> Dict: """Convert VSAC JSON dict to OMOP JSON dict This is the format @DaveraGabriel specified by looking at the VSAC web interface.""" # Attempt at regexp # Clinical Focus: Asthma conditions which suggest applicability of NHLBI NAEPP EPR3 Guidelines for the Diagnosis and # Management of Asthma (2007) and the 2020 Focused Updates to the Asthma Management Guidelines),(Data Element Scope: # FHIR Condition.code),(Inclusion Criteria: SNOMEDCT concepts in "Asthma SCT" and ICD10CM concepts in "Asthma # ICD10CM" valuesets.),(Exclusion Criteria: none) # import re # regexer = re.compile('\((.+): (.+)\)') # fail # regexer = re.compile('\((.+): (.+)\)[,$]') # found = regexer.match(value_sets['ns0:Purpose']) # x1 = found.groups()[0] purposes = v['ns0:Purpose'].split('),') d = { "Concept Set Name": v['@displayName'], "Created At": 'vsacToOmopConversion:{}; vsacRevision:{}'.format( datetime.now().strftime('%Y/%m/%d'), v['ns0:RevisionDate']), "Created By": v['ns0:Source'], # "Created By": "https://github.com/HOT-Ecosystem/ValueSet-Converters", "Intention": { "Clinical Focus": purposes[0].split('(Clinical Focus: ')[1], "Inclusion Criteria": purposes[2].split('(Inclusion Criteria: ')[1], "Data Element Scope": purposes[1].split('(Data Element Scope: ')[1], "Exclusion Criteria": purposes[3].split('(Exclusion Criteria: ')[1], }, "Limitations": { "Exclusion Criteria": "", "VSAC Note": None, # VSAC Note: (exclude if null) }, "Provenance": { "Steward": "", "OID": "", "Code System(s)": [], "Definition Type": "", "Definition Version": "", } } # TODO: use depth to make this either nested JSON, or, if depth=1, concatenate # ... all intention sub-fields into a single string, etc. if depth == 1: d['Intention'] = '' elif depth < 1 or depth > 2: raise RuntimeError(f'vsac_to_vsac: depth parameter valid range: 1-2, but depth of {depth} was requested.') return d def get_vsac_csv( value_sets: List[OrderedDict], google_sheet_name=None, field_delimiter=',', code_delimiter='|', filename='vsac_csv' ) -> pd.DataFrame: """Convert VSAC hiearchical XML in a VSAC-oriented tabular file""" rows = [] for value_set in value_sets: code_system_codes = {} name = value_set['@displayName'] purposes = value_set['ns0:Purpose'].split('),') purposes2 = [] for p in purposes: i1 = 1 if p.startswith('(') else 0 i2 = -1 if p[len(p) - 1] == ')' else len(p) purposes2.append(p[i1:i2]) concepts = value_set['ns0:ConceptList']['ns0:Concept'] concepts = concepts if type(concepts) == list else [concepts] for concept in concepts: code = concept['@code'] code_system = concept['@codeSystemName'] if code_system not in code_system_codes: code_system_codes[code_system] = [] code_system_codes[code_system].append(code) for code_system, codes in code_system_codes.items(): row = { 'name': name, 'nameVSAC': '[VSAC] ' + name, 'oid': value_set['@ID'], 'codeSystem': code_system, 'limitations': purposes2[3], 'intention': '; '.join(purposes2[0:3]), 'provenance': '; '.join([ 'Steward: ' + value_set['ns0:Source'], 'OID: ' + value_set['@ID'], 'Code System(s): ' + ','.join(list(code_system_codes.keys())), 'Definition Type: ' + value_set['ns0:Type'], 'Definition Version: ' + value_set['@version'], 'Accessed: ' + str(datetime.now())[0:-7] ]), } if len(codes) < 2000: row['codes'] = code_delimiter.join(codes) else: row['codes'] = code_delimiter.join(codes[0:1999]) if len(codes) < 4000: row['codes2'] = code_delimiter.join(codes[2000:]) else: row['codes2'] = code_delimiter.join(codes[2000:3999]) row['codes3'] = code_delimiter.join(codes[4000:]) row2 = {} for k, v in row.items(): row2[k] = v.replace('\n', ' - ') if type(v) == str else v row = row2 rows.append(row) # Create/Return DF & Save CSV df = pd.DataFrame(rows) _save_csv(df, filename=filename, source_name=google_sheet_name, field_delimiter=field_delimiter) return df def get_ids_for_palantir3file(value_sets: pd.DataFrame) -> Dict[str, int]: oid_enclave_code_set_id_map_csv_path = os.path.join(PROJECT_ROOT, 'data', 'cset.csv') oid_enclave_code_set_id_df = pd.read_csv(oid_enclave_code_set_id_map_csv_path) missing_oids = set(value_sets['@ID']) - set(oid_enclave_code_set_id_df['oid']) if len(missing_oids) > 0: google_sheet_url = PARSE_ARGS.google_sheet_url new_ids = [ id for id in oid_enclave_code_set_id_df.internal_id.max() + 1 + range(0, len(missing_oids))] missing_recs = pd.DataFrame(data={ 'source_id_field': ['oid' for i in range(0, len(missing_oids))], 'oid': [oid for oid in missing_oids], 'ccsr_code': [None for i in range(0, len(missing_oids))], 'internal_id': new_ids, 'internal_source': [google_sheet_url for i in range(0, len(missing_oids))], 'cset_source': ['VSAC' for i in range(0, len(missing_oids))], 'grouped_by_bids': [None for i in range(0, len(missing_oids))], 'concept_id': [None for i in range(0, len(missing_oids))], }) oid_enclave_code_set_id_df =
pd.concat([oid_enclave_code_set_id_df, missing_recs])
pandas.concat
import pandas as pd import pickle alter_list =
pd.read_pickle("../input/alter_lists.pkl")
pandas.read_pickle
# -*- coding: utf-8 -*- """ Created on Fri Nov 30 13:16:48 2018 @author: cenv0574 """ import os import pandas as pd import numpy as np import atra.utils from ras_method import ras_method import subprocess import warnings warnings.filterwarnings('ignore') data_path= atra.utils.load_config()['paths']['data'] def change_name(x): if x in sectors: return 'sec'+x elif x == 'other1': return 'other11' else: return 'other21' def est_trade_value(x,output_new,sector): if (sector is not 'other1') & (sector is not 'other2'): sec_output = output_new.sum(axis=1).loc[output_new.sum(axis=1).index.get_level_values(1) == sector].reset_index() else: sec_output = output_new.sum(axis=1).loc[output_new.sum(axis=1).index.get_level_values(1) == 'VA'].reset_index() x['gdp'] = x.gdp*min(sec_output.loc[sec_output.region==x.reg1].values[0][2],sec_output.loc[sec_output.region==x.reg2].values[0][2]) # x['gdp'] = x.gdp*(sec_output.loc[sec_output.region==x.reg1].values[0][2]) return x def indind_iotable(sup_table,use_table,sectors): # GET VARIABLES x = np.array(sup_table.sum(axis=0)) # total production on industry level g = np.array(sup_table.sum(axis=1)) # total production on product level F = use_table.iloc[:16,16:].sum(axis=1) #Numpify Sup_array = np.asarray(sup_table.iloc[:len(sectors),:len(sectors)]) # numpy array if supply matrix Use_array = np.asarray(use_table.iloc[:len(sectors),:len(sectors)]) # numpy array of use matrix g_diag_inv = np.linalg.inv(np.diag(g)) # inverse of g (and diagolinized) x_diag_inv = np.linalg.inv(np.diag(x)) # inverse of x (and diagolinized) # Calculate the matrices B = np.dot(Use_array,x_diag_inv) # B matrix (U*x^-1) D = np.dot(Sup_array.T,g_diag_inv) # D matrix (V*g^-1) I_i = np.identity((len(x))) # Identity matrix for industry-to-industry # Inverse for industry-to-industry A_ii = np.dot(D,B) F_ii = np.dot(D,F)/1e6 IDB_inv = np.linalg.inv((I_i-np.dot(D,B))) # (I-DB)^-1 # And canclulate sum of industries ind = np.dot(IDB_inv,np.dot(D,F)/1e6) # (I-DB)^-1 * DF IO = pd.concat([pd.DataFrame(np.dot(A_ii,np.diag(ind))),pd.DataFrame(F_ii)],axis=1) IO.columns = list(use_table.columns[:17]) IO.index = list(use_table.columns[:16]) VA = np.array(list(ind)+[0])-np.array(IO.sum(axis=0)) VA[-1] = 0 IO.loc['ValueA'] = VA return IO,VA # ============================================================================= # # Load mapper functions to aggregate tables # ============================================================================= ind_mapper = pd.read_excel(os.path.join(data_path,'economic_IO_tables','input','sh_cou_06_16.xls'), sheet_name='ind_mapper',header=None) ind_mapper = dict(zip(ind_mapper[0],ind_mapper[1])) com_mapper = pd.read_excel(os.path.join(data_path,'economic_IO_tables','input','sh_cou_06_16.xls'), sheet_name='com_mapper',header=None) com_mapper = dict(zip(com_mapper[0],['P_'+x for x in com_mapper[1]])) reg_mapper = pd.read_excel(os.path.join(data_path,'economic_IO_tables','input','sh_cou_06_16.xls'), sheet_name='reg_mapper',header=None) reg_mapper = dict(zip(reg_mapper[0], reg_mapper[1])) sectors = [chr(i) for i in range(ord('A'),ord('P')+1)] # ============================================================================= # Load supply table and aggregate # ============================================================================= sup_table_in = pd.read_excel(os.path.join(data_path,'economic_IO_tables','input','sh_cou_06_16.xls'), sheet_name='Mat Oferta pb',skiprows=2,header=[0,1],index_col=[0,1],nrows=271) sup_table_in = sup_table_in.drop('Total',level=0,axis=1) sup_table = sup_table_in.copy() sup_table.columns = sup_table.columns.get_level_values(0) sup_table.columns = sup_table.columns.map(ind_mapper) sup_table = sup_table.T.groupby(level=0,axis=0).sum() sup_table.columns = sup_table.columns.get_level_values(0) sup_table.columns = sup_table.columns.map(com_mapper) sup_table = sup_table.T.groupby(level=0,axis=0).sum() # ============================================================================= # Load use table and aggregate # ============================================================================= use_table = pd.read_excel(os.path.join(data_path,'economic_IO_tables','input','sh_cou_06_16.xls'), sheet_name='Mat Utilizacion pc',skiprows=2,header=[0,1],index_col=[0,1],nrows=271) basic_prod_prices = use_table[['IMPORTACIONES (CIF a nivel de producto y FOB a nivel total)', 'AJUSTE CIF/FOB DE LAS IMPORTACIONES','DERECHOS DE IMPORTACION', 'IMPUESTOS A LOS PRODUCTOS NETOS DE SUBSIDIOS','MARGENES DE COMERCIO', 'MARGENES DE TRANSPORTE','IMPUESTO AL VALOR AGREGADO NO DEDUCIBLE', ]]*-1 use_table = use_table.drop(['PRODUCCION NACIONAL A PRECIOS BASICOS', 'IMPORTACIONES (CIF a nivel de producto y FOB a nivel total)', 'AJUSTE CIF/FOB DE LAS IMPORTACIONES','DERECHOS DE IMPORTACION', 'IMPUESTOS A LOS PRODUCTOS NETOS DE SUBSIDIOS','MARGENES DE COMERCIO', 'MARGENES DE TRANSPORTE','IMPUESTO AL VALOR AGREGADO NO DEDUCIBLE', 'OFERTA TOTAL A PRECIOS DE COMPRADOR','UTILIZACION INTERMEDIA', 'UTILIZACION FINAL','DEMANDA TOTAL'],level=0,axis=1) basic_prod_prices.columns = basic_prod_prices.columns.get_level_values(0) basic_prod_prices = basic_prod_prices.T.groupby(level=0,axis=0).sum() basic_prod_prices.columns = basic_prod_prices.columns.get_level_values(0) basic_prod_prices.columns = basic_prod_prices.columns.map(com_mapper) basic_prod_prices = basic_prod_prices.T.groupby(level=0,axis=0).sum() basic_prod_prices = basic_prod_prices.astype(int) use_table.columns = use_table.columns.get_level_values(0) use_table.columns = use_table.columns.map(ind_mapper) use_table = use_table.T.groupby(level=0,axis=0).sum() use_table.columns = use_table.columns.get_level_values(0) use_table.columns = use_table.columns.map(com_mapper) use_table = use_table.T.groupby(level=0,axis=0).sum() use_table= pd.concat([use_table,basic_prod_prices],axis=1) # ============================================================================= # Create IO table and translate to 2016 values # ============================================================================= IO_ARG,VA = indind_iotable(sup_table,use_table,sectors) va_new = [498.319,21.986,264.674,1113.747,123.094,315.363,1076.121,168.899,441.293,321.376,750.356,647.929,448.372,426.642,235.624,58.837] u = ((((np.array(IO_ARG.sum(axis=0)))/VA)[:16])*va_new) new_fd = (np.array(IO_ARG.iloc[:,16]/(np.array(IO_ARG.sum(axis=0))))*np.array(list(u)+[0])) new_IO = ras_method(np.array(IO_ARG)[:16,:17],np.array((u)),np.array(list(u-np.array(va_new))+[sum(va_new)]), eps=1e-5) NEW_IO = pd.DataFrame(new_IO,columns=sectors+['FD'],index=sectors) NEW_IO.loc['ValueA'] = np.array(list(va_new)+[0]) # ============================================================================= # Save 2016 table and the indices to prepare disaggregation # ============================================================================= NEW_IO.to_csv(os.path.join(data_path,'mrio_analysis','basetable.csv'),index=False,header=False) pd.DataFrame([len(sectors+['other1'])*['ARG'],sectors+['other']]).T.to_csv(os.path.join(data_path,'mrio_analysis','indices.csv'),index=False,header=False) ''' First iteration, no trade to determine total regional input and output ''' # ============================================================================= # Load provincial data # ============================================================================= prov_data = pd.read_excel(os.path.join(data_path,'economic_IO_tables','input','PIB_provincial_06_17.xls'),sheet_name='VBP', skiprows=3,index_col=[0],header=[0],nrows=71) prov_data = prov_data.loc[[x.isupper() for x in prov_data.index],:] prov_data.columns = ['Ciudad de Buenos Aires', 'Buenos Aires', 'Catamarca', 'Cordoba', 'Corrientes', 'Chaco', 'Chubut', 'Entre Rios', 'Formosa', 'Jujuy', 'La Pampa', 'La Rioja', 'Mendoza', 'Misiones', 'Neuquen', 'Rio Negro', 'Salta', 'San Juan', 'San Luis', 'Santa Cruz', 'Santa Fe', 'Santiago del Estero', 'Tucuman', 'Tierra del Fuego', 'No distribuido', 'Total'] region_names = list(prov_data.columns)[:-2] prov_data.index = sectors+['TOTAL'] # ============================================================================= # Create proxy data for first iteration # ============================================================================= # proxy level 2 proxy_reg_arg = pd.DataFrame(prov_data.iloc[-1,:24]/prov_data.iloc[-1,:24].sum()).reset_index() proxy_reg_arg['year'] = 2016 proxy_reg_arg = proxy_reg_arg[['year','index','TOTAL']] proxy_reg_arg.columns = ['year','id','gdp'] proxy_reg_arg.to_csv(os.path.join(data_path,'mrio_analysis','proxy_reg_arg.csv'),index=False) # proxy level 4 for iter_,sector in enumerate(sectors+['other1','other2']): if (sector is not 'other1') & (sector is not 'other2'): proxy_sector = pd.DataFrame(prov_data.iloc[iter_,:24]/prov_data.iloc[iter_,:24].sum()).reset_index() proxy_sector['year'] = 2016 proxy_sector['sector'] = 'sec{}'.format(sector) proxy_sector = proxy_sector[['year','sector','index',sector]] proxy_sector.columns = ['year','sector','region','gdp'] proxy_sector.to_csv(os.path.join(data_path,'mrio_analysis','proxy_sec{}.csv'.format(sector)),index=False) else: proxy_sector = pd.DataFrame(prov_data.iloc[-1,:24]/prov_data.iloc[-1,:24].sum()).reset_index() proxy_sector['year'] = 2016 proxy_sector['sector'] = sector+'1' proxy_sector = proxy_sector[['year','sector','index','TOTAL']] proxy_sector.columns = ['year','sector','region','gdp'] proxy_sector.to_csv(os.path.join(data_path,'mrio_analysis','proxy_{}.csv'.format(sector)),index=False) # proxy level 18 mi_index = pd.MultiIndex.from_product([sectors+['other1','other2'], region_names, sectors+['other1','other2'], region_names], names=['sec1', 'reg1','sec2','reg2']) for iter_,sector in enumerate(sectors+['other1','other2']): if (sector is not 'other1') & (sector is not 'other2'): proxy_trade = pd.DataFrame(columns=['year','gdp'],index= mi_index).reset_index() proxy_trade['year'] = 2016 proxy_trade['gdp'] = 0 proxy_trade = proxy_trade.query("reg1 != reg2") proxy_trade = proxy_trade.loc[proxy_trade.sec1 == sector] proxy_trade['sec1'] = proxy_trade.sec1.apply(change_name) proxy_trade['sec2'] = proxy_trade.sec2.apply(change_name) proxy_trade = proxy_trade[['year','sec1','reg1','sec2','reg2','gdp']] proxy_trade.columns = ['year','sector','region','sector','region','gdp'] proxy_trade.to_csv(os.path.join(data_path,'mrio_analysis','proxy_trade_sec{}.csv'.format(sector)),index=False) else: proxy_trade =
pd.DataFrame(columns=['year','gdp'],index= mi_index)
pandas.DataFrame
import json import numpy as np from sklearn.model_selection import train_test_split import tensorflow.keras as keras import pandas as pd from datetime import datetime from termcolor import colored # Timer. startTime = datetime.now() # Path to created json file from mel preprocess and feature extraction script. DATA_PATH = ".../mel_pitch_shift_9.0.json" # Path to save model. MODEL_SAVE = '.../model_1.h5' # Path to save training history and model accuracy performance at end of training. HISTORY_SAVE = ".../history_1.csv" ACC_SAVE = ".../models_acc_1.json" def load_data(data_path): """Loads training dataset from json file. :param data_path (str): Path to json file containing data :return X (ndarray): Inputs :return y (ndarray): Targets """ with open(data_path, "r") as fp: data = json.load(fp) # Convert lists to numpy arrays. X = np.array(data["mel"]) # The name in brackets is changed to "mfccs" if MFCC features are used to train. y = np.array(data["labels"]) return X, y def prepare_datasets(test_size, validation_size): # Load extracted features and labels data. X, y = load_data(DATA_PATH) # Create train/test split. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) # Create train/validation split. X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size) # 3D array. X_train = X_train[..., np.newaxis] # 4-dim array: (# samples, # time steps, # coefficients, 1) X_validation = X_validation[..., np.newaxis] X_test = X_test[..., np.newaxis] return X_train, X_validation, X_test, y_train, y_validation, y_test def build_model(input_shape): # Create model. model = keras.Sequential() # 1st convolutional layer. model.add(keras.layers.Conv2D(16, (5, 5), activation='relu', input_shape=input_shape)) # 16 kernels, and 5x5 grid size of kernel. model.add(keras.layers.MaxPool2D((5, 5), strides=(2, 2), padding='same')) # Pooling size 5x5. model.add(keras.layers.BatchNormalization()) # Batch Normalization allows model to be more accurate and computations are faster. # Resize for RNN part. resize_shape = model.output_shape[2] * model.output_shape[3] model.add(keras.layers.Reshape((model.output_shape[1], resize_shape))) # RNN layer. model.add(keras.layers.LSTM(32, input_shape=input_shape, return_sequences=True)) # Flatten the output and feed into dense layer. model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(32, activation='relu')) # 32 neurons. model.add(keras.layers.Dropout(0.3)) # Reduces chances of over fitting. # Output layer that uses softmax activation. model.add(keras.layers.Dense(2, activation='softmax')) # 2 neurons --> depends on how many categories we want to predict. return model def predict(model, X, y): # Random prediction post-training. X = X[np.newaxis, ...] prediction = model.predict(X) # Extract index with max value. predicted_index = np.argmax(prediction, axis=1) print("Expected index: {}, Predicted index: {}".format(y, predicted_index)) if __name__ == "__main__": # Create train, validation and test sets. X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets(0.25, 0.2) # (test size, val size) # Early stopping. callback = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) # Checkpoint. checkpoint = keras.callbacks.ModelCheckpoint(MODEL_SAVE, monitor='val_loss', mode='min', save_best_only=True, verbose=1) # Build the CRNN network. input_shape = (X_train.shape[1], X_train.shape[2], X_train.shape[3]) model = build_model(input_shape) # Compile the network. optimizer = keras.optimizers.Adam(learning_rate=0.0001) model.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=['accuracy']) model.summary() # Train the CRNN. history = model.fit(X_train, y_train, validation_data=(X_validation, y_validation), batch_size=16, epochs=1000, callbacks=[callback, checkpoint]) # Save history. hist =
pd.DataFrame(history.history)
pandas.DataFrame
from .Data import Data from .Zemberek import Zemberek from .Esanlam import Esanlam import pandas as pd import re import json from collections import OrderedDict from operator import itemgetter import os from .Config import dirs as dirs from .Stops import Stops from .ITUNLPTools import ITUNLPTools class Main(): stats = [] num = 1 def __init__(self): print(dirs._path) if not os.path.exists(dirs._path + dirs._datapath): os.makedirs(dirs._path + dirs._datapath) if not os.path.exists(dirs._path + dirs._datapath + "\\" + dirs._processdir): os.makedirs(dirs._path + dirs._datapath + "\\" + dirs._processdir) self.Zemberek = Zemberek() self.Data = Data() self.Esanlam = Esanlam() self.Stops = Stops() self.ITUNLPTools = ITUNLPTools() def is_str(self, v): return type(v) is str def while_replace(self, string, neddle, haystack): while neddle in string: string = string.replace(neddle, haystack) return string def Tokenize(self, area, newarea=False): if (newarea == False): newarea = area self.Data.datafrm[newarea] = self.Data.datafrm[area].apply(lambda x: self.Zemberek.TurkishTextToken(x)) def jsonunicode(self, data): if isinstance(data, str): return json.dumps(json.loads(data), ensure_ascii=False) else: return "" def fixUnicode(self, area, newarea=False): if (newarea == False): newarea = area if (area != newarea): self.Data.datafrm[newarea] = pd.Series() self.Data.datafrm[newarea] = self.Data.datafrm[area].apply(lambda x: self.jsonunicode(x)) def fixChars(self, area, newarea=False): if (newarea == False): newarea = area if (area != newarea): self.Data.datafrm[newarea] = pd.Series() self.Data.datafrm[newarea] = self.Data.datafrm[area].apply(lambda x: self.__fixcharsworker(x)) def __fixcharsworker(self, x): if isinstance(x, list): x = " ".join(x) newtext = "" length = 0 charbefore = "" i = 0 for char in x: if char == charbefore: length += 1 if length < 2: newtext += char else: newtext += char length = 0 i += 1 charbefore = char if (x != newtext): print(x, newtext) return self.Zemberek.TurkishTextToken(newtext) def Clean(self, area, newarea=False): if (newarea == False): newarea = area if (area != newarea): self.Data.datafrm[newarea] = pd.Series() self.Data.datafrm[newarea] = self.Data.datafrm[area].apply(lambda x: self.__cleanerworker(x)) def __cleanerworker(self, x): if isinstance(x, list): x = " ".join(x) x = x.replace('-', '') x = x.replace("'", '') x = x.replace("â", 'a') x = x.replace("İ", "i") x = x.replace("î", 'i') x = x.replace("î", 'i') x = re.sub(re.compile(r"[-'\"]"), '', x) x = re.sub(re.compile(r"[\\][ntrv]"), ' ', x) x = re.sub(re.compile(r'[^a-zA-ZçığöüşÇİĞÖÜŞ ]'), ' ', x) x = self.while_replace(x, " ", " ") x = x.lower() x = self.Zemberek.TurkishTextToken(x) return x def __cleanword(self, x): if isinstance(x, list): x = " ".join(x) x = x.replace('-', '') x = x.replace("'", '') x = x.replace("â", 'a') x = x.replace("İ", "i") x = x.replace("î", 'i') x = x.replace("î", 'i') x = re.sub(re.compile(r"[-'\"]"), '', x) x = re.sub(re.compile(r"[\\][ntrv]"), ' ', x) x = re.sub(re.compile(r'[^a-zA-ZçığöüşÇİĞÖÜŞ ]'), ' ', x) x = self.while_replace(x, " ", "") x = x.lower() return x def lower(self, area, newarea=False): if (newarea == False): newarea = area if (area != newarea): self.Data.datafrm[newarea] = pd.Series() self.Data.datafrm[newarea] = self.Data.datafrm[area].apply(lambda x: self._lowerworker(x)) def _lowerworker(self, text): if isinstance(text, str): tokens = self.Zemberek.TurkishTextToken(text) else: tokens = text newtext = [] for token in tokens: token = token.replace('İ', 'i') token = token.replace("ardunio", 'arduino') token = token.replace("nardunio", 'arduino') token = token.lower() newtext.append(token) return newtext def Normalize(self, area, newarea): if (newarea == False): newarea = area if (area != newarea): self.Data.datafrm[newarea] = pd.Series() self.Data.datafrm[newarea] = self.Data.datafrm[area].apply(lambda x: self.Zemberek.TurkishNormalizer(x)) def NormalizeWords(self, area, newarea): if (newarea == False): newarea = area if (area != newarea): self.Data.datafrm[newarea] = pd.Series() self.Data.datafrm[newarea] = self.Data.datafrm[area].apply(lambda x: self.Zemberek.TurkishWordNormalizer(x)) def sorguBirlestir(self, x, sifirla=False): if sifirla == True: self.sorgumetni = "" self.sorgumetni += "\n\n" + " ".join(x) def ITUNormalize(self, area, newarea): if (newarea == False): newarea = area if (area != newarea): self.Data.datafrm[newarea] = pd.Series() self.sorguBirlestir("", True) self.Data.datafrm[newarea] = self.Data.datafrm[area].apply(lambda x: self.sorguBirlestir(x)) print(self.sorgumetni) print(self.ITUNLPTools.ask("normalize", self.sorgumetni)) def NormWithCorr(self, area, newarea): if (newarea == False): newarea = area if (area != newarea): self.Data.datafrm[newarea] =
pd.Series()
pandas.Series
''' Tests for bipartitepandas DATE: March 2021 ''' import pytest import numpy as np import pandas as pd import bipartitepandas as bpd import pickle ################################### ##### Tests for BipartiteBase ##### ################################### def test_refactor_1(): # 2 movers between firms 0 and 1, and 1 stayer at firm 2. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 0 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 2}) # Firm 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_refactor_2(): # 2 movers between firms 0 and 1, and 1 stayer at firm 2. Time has jumps. worker_data = [] # Firm 0 -> 1 # Time 1 -> 3 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 3}) # Firm 1 -> 0 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 2}) # Firm 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_refactor_3(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 2 assert movers.iloc[2]['j1'] == 2 assert movers.iloc[2]['j2'] == 1 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 2 def test_refactor_4(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. worker_data = [] # Firm 0 -> 1 -> 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 3}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_5(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 1 -> 0 # Time 1 -> 2 -> 4 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 4}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_6(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 2 -> 3 -> 5 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 2}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 3}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 5}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_7(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 3 -> 4 -> 6 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 3}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 4}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 6}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_8(): # 2 movers between firms 0 and 1, and 1 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 3 -> 4 -> 6 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 3}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 4}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 6}) # Firm 0 -> 1 worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 0 assert movers.iloc[2]['j2'] == 1 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_9(): # 2 movers between firms 0 and 1, and 1 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 3 -> 4 -> 6 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 3}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 4}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 6}) # Firm 1 -> 0 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([
pd.DataFrame(worker, index=[i])
pandas.DataFrame
from os import error import os import re from flask import Flask, render_template, session, request, redirect, send_from_directory from flask.helpers import url_for from flask_sqlalchemy import SQLAlchemy from sqlalchemy.sql.operators import distinct_op from PIL import Image import random import pandas as pd import numpy as np from sklearn.decomposition import TruncatedSVD import pickle from collections import Counter from datetime import datetime # Flask app configs app=Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///user-data.sqlite3' app.secret_key = 'soverysecret' #Database db = SQLAlchemy(app) class users(db.Model): id = db.Column('user_id', db.Integer, primary_key = True) name = db.Column(db.String(100)) email = db.Column(db.String(100)) password = db.Column(db.String(100)) interests = db.Column(db.String(200)) class images(db.Model): id = db.Column('image_id', db.Integer, primary_key=True) title = db.Column(db.String(100)) fields = db.Column(db.String(300)) description = db.Column(db.String(1000)) links = db.Column(db.String(200)) user_id = db.Column(db.Integer) class user_slugs(db.Model): id = db.Column('slug_id', db.Integer, primary_key = True) user_id = db.Column(db.Integer) bio = db.Column(db.String(1000)) website = db.Column(db.String(100)) class pin_category(db.Model): id = db.Column('category_id', db.Integer, primary_key=True) name = db.Column(db.String(200)) class track_visits(db.Model): id = db.Column('visit_id', db.Integer, primary_key=True) user_id = db.Column(db.Integer) img_id = db.Column(db.Integer) class admin_post(db.Model): id = db.Column('admin_id', db.Integer, primary_key=True) advertisement_title = db.Column(db.String(100)) thought_title = db.Column(db.String(100)) advertisement_link = db.Column(db.String(100)) thought_link = db.Column(db.String(100)) date = db.Column(db.String(100)) class follow_user(db.Model): id = db.Column('follow_id', db.Integer, primary_key=True) user_email = db.Column(db.String(100)) follower_email = db.Column(db.String(100)) class saved_pins(db.Model): id = db.Column('save_id', db.Integer, primary_key=True) user_id = db.Column(db.Integer) img_id = db.Column(db.Integer) #Run only to create initial .sqlite database #db.create_all() #Data extractors def extract_users(): records=users.query.all() id,email,interests=[],[],[] for rec in records: var_id,var_name=rec.id,rec.email for interest in rec.interests.split(","): id.append(var_id) email.append(var_name) interests.append(interest) df=pd.DataFrame({"user_id":pd.Series(id),"name":pd.Series(email),"category":pd.Series(interests),"flag":pd.Series(np.ones(len(email)))}) return df def extract_images(): records=images.query.all() id,title,fields,user_ids=[],[],[],[] for rec in records: id.append(rec.id) title.append(rec.title) fields.append(rec.fields) user_ids.append(rec.user_id) df=pd.DataFrame({"img_id":pd.Series(id),"title":pd.Series(title),"category":pd.Series(fields),"user_id":
pd.Series(user_ids)
pandas.Series
from sklearn.base import BaseEstimator import pandas as pd from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from itertools import product import numpy as np def generate_x_y(data, real_col, cat_col, y): data_real = data[real_col] data_cat = data[cat_col] data_cat =
pd.get_dummies(data_cat)
pandas.get_dummies
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from datetime import datetime, timedelta import numpy as np from scipy.stats import pearsonr # from mpl_toolkits.axes_grid1 import host_subplot # import mpl_toolkits.axisartist as AA # import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as tck import matplotlib.font_manager as fm import math as m import matplotlib.dates as mdates import netCDF4 as nc from netCDF4 import Dataset id import itertools import datetime from scipy.stats import ks_2samp Estacion = '6001' df1 = pd.read_table('/home/nacorreasa/Maestria/Datos_Tesis/Piranometro/6001Historico.txt', parse_dates=[2]) Theoric_rad_method = 'GIS_Model' ##-->> PARA QUE USE EL MODELO DE Gis DEBE SER 'GIS_Model' resolucion = 'diaria' ##-->> LAS OPCIONES SON 'diaria' U 'horaria' #----------------------------------------------------------------------------- # Rutas para las fuentes ----------------------------------------------------- prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ## ---CALCULO DE LA RADIACIÓN TEORICA--- ## def daterange(start_date, end_date): 'Para el ajuste de las fechas en el modelo de Kumar cada 10 min. Las fechas final e inicial son en str: %Y-%m-%d' start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d') end_date = datetime.datetime.strptime(end_date, '%Y-%m-%d') delta = timedelta(minutes=10) while start_date <= end_date: yield start_date start_date += delta def serie_Kumar_Model_hora(estacion): 'Retorna un dataframe horario con la radiacion teórico con las recomendacione de Kumar elaborado por <NAME> ' \ 'para el AMVA y su tesis. El dataframe original se le ordenan los datos a 12 meses ascendentes (2018), aunque pueden ' \ 'pertencer a años difernetes. El resultado es para el punto seleccionado y con el archivo de Total_Timeseries.csv' data_Model = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Radiacion_GIS/Teoricos_nati/Total_Timeseries.csv', sep=',') fecha_hora = [pd.to_datetime(data_Model['Unnamed: 0'], format="%Y-%m-%d %H:%M:%S")[i].to_pydatetime() for i in range(len(data_Model['Unnamed: 0']))] data_Model.index = fecha_hora data_Model = data_Model.sort_index() data_Model['Month'] = np.array(data_Model.index.month) data_Model = data_Model.sort_values(by="Month") fechas = [] for i in daterange('2018-01-01', '2019-01-01'): fechas.append(i) fechas = fechas[0:-1] if estacion == '6001': punto = data_Model['TS_kumar'] elif estacion == '6002': punto = data_Model['CI_kumar'] elif estacion == '6003': punto = data_Model['JV_kumar'] Rad_teorica = [] for i in range(len(fechas)): mes = fechas[i].month hora = fechas[i].hour mint = fechas[i].minute rad = \ np.where((data_Model.index.month == mes) & (data_Model.index.hour == hora) & (data_Model.index.minute == mint))[ 0] if len(rad) == 0: Rad_teorica.append(np.nan) else: Rad_teorica.append(punto.iloc[rad].values[0]) data_Theorical = pd.DataFrame() data_Theorical['fecha_hora'] = fechas data_Theorical['Radiacion_Teo'] = Rad_teorica data_Theorical.index = data_Theorical['fecha_hora'] df_hourly_theoric = data_Theorical.groupby(pd.Grouper(freq="H")).mean() df_hourly_theoric = df_hourly_theoric[df_hourly_theoric['Radiacion_Teo'] > 0] return df_hourly_theoric def Elevation_RadiationTA(n, lat, lon, start): 'Para obtener la radiación en W/m2 y el ángulo de elevación del sol en grados horariamente para un número "n" de ' \ 'días aun punto en una latitud y longitud determinada ( "lat-lon"como flotantes) a partir de una fecha de inicio ' \ '"start" como por ejemplo datetime.datetime(2018, 1, 1, 8).' import pysolar import pytz import datetime timezone = pytz.timezone("America/Bogota") start_aware = timezone.localize(start) # Calculate radiation every hour for 365 days nhr = 24*n dates, altitudes_deg, radiations = list(), list(), list() for ihr in range(nhr): date = start_aware + datetime.timedelta(hours=ihr) altitude_deg = pysolar.solar.get_altitude(lat, lon, date) if altitude_deg <= 0: radiation = 0. else: radiation = pysolar.radiation.get_radiation_direct(date, altitude_deg) dates.append(date) altitudes_deg.append(altitude_deg) radiations.append(radiation) days = [ihr/24 for ihr in range(nhr)] return days, altitudes_deg, radiations if Theoric_rad_method != 'GIS_Model' and Estacion == '6001': days, altitudes_deg, Io_hora = Elevation_RadiationTA(365, 6.259, -75.588, datetime.datetime(2018, 1, 1, 0)) print('Teorica con pysolar') elif Theoric_rad_method != 'GIS_Model' and Estacion == '6002': days, altitudes_deg, Io_hora = Elevation_RadiationTA(365, 6.168, -75.644, datetime.datetime(2018, 1, 1, 0)) print('Teorica con pysolar') elif Theoric_rad_method != 'GIS_Model' and Estacion == '6003': days, altitudes_deg, Io_hora = Elevation_RadiationTA(365, 6.255, -75.542, datetime.datetime(2018, 1, 1, 0)) print('Teorica con pysolar') elif Theoric_rad_method == 'GIS_Model': Io_hora = serie_Kumar_Model_hora(Estacion) print('Teorica con el modelo de KUMAR') ############################################################################### ##--------------EFICIENCIAS TEORICAS COMO PROXI DE TRANSPARENCIA-------------## ############################################################################### 'Calculo de la eficiencias teorica como proxi de la transparencia de la atmosfera' 'Para esto se hace uso de la información del piranometro y de la radiación teórica' 'de <NAME>, con esto se prentenden obtener las caracteristicas que deriven' 'del análisis estocastico, similar al de <NAME> en su tesis de doctorado.' ##------------------LECTURA DE LOS DATOS DEL EXPERIMENTO----------------------## df_P975 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel975.txt', sep=',', index_col =0) df_P350 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel350.txt', sep=',', index_col =0) df_P348 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel348.txt', sep=',', index_col =0) df_P975['Fecha_hora'] = df_P975.index df_P350['Fecha_hora'] = df_P350.index df_P348['Fecha_hora'] = df_P348.index df_P975.index = pd.to_datetime(df_P975.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') df_P350.index = pd.to_datetime(df_P350.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') df_P348.index = pd.to_datetime(df_P348.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') ## ----------------ACOTANDO LOS DATOS A VALORES VÁLIDOS---------------- ## 'Como en este caso lo que interesa es la radiacion, para la filtración de los datos, se' 'considerarán los datos de potencia mayores o iguales a 0, los que parecen generarse una' 'hora despues de cuando empieza a incidir la radiación.' df_P975 = df_P975[(df_P975['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P350 = df_P350[(df_P350['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P348 = df_P348[(df_P348['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P975_h = df_P975.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P350_h = df_P350.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P348_h = df_P348.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P975_h = df_P975_h.between_time('06:00', '17:00') df_P350_h = df_P350_h.between_time('06:00', '17:00') df_P348_h = df_P348_h.between_time('06:00', '17:00') ##----AJUSTE DE LOS DATOS DE RADIACIÓN TEORICA AL RANGO DE FECHAS DESEADO-----## def daterange(start_date, end_date): 'Para el ajuste de las fechas en el modelo de Kumar cada hora. Las fechas' 'final e inicial son en str: %Y-%m-%d' start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d') end_date = datetime.datetime.strptime(end_date, '%Y-%m-%d') delta = timedelta(minutes=60) while start_date <= end_date: yield start_date start_date += delta Io_hora_975 = serie_Kumar_Model_hora('6001') Io_hora_350 = serie_Kumar_Model_hora('6002') Io_hora_348 = serie_Kumar_Model_hora('6003') fechas_975 = [] for i in daterange(df_P975.index[0].date().strftime("%Y-%m-%d"), (df_P975.index[-1].date() + timedelta(days=1)).strftime("%Y-%m-%d")): fechas_975.append(i) fechas_350 = [] for i in daterange(df_P350.index[0].date().strftime("%Y-%m-%d"), (df_P350.index[-1].date() + timedelta(days=1)).strftime("%Y-%m-%d")): fechas_350.append(i) fechas_348 = [] for i in daterange(df_P348.index[0].date().strftime("%Y-%m-%d"), (df_P348.index[-1].date() + timedelta(days=1)).strftime("%Y-%m-%d")): fechas_348.append(i) Io_hora_975 = Io_hora_975.loc[(Io_hora_975.index >= '2018-03-20') & (Io_hora_975.index <= '2018-'+str(df_P975.index[-1].month)+'-'+str(df_P975.index[-1].day+1))] Io_hora_350 = Io_hora_350.loc[(Io_hora_350.index >= '2018-03-22') & (Io_hora_350.index <= '2018-'+str(df_P350.index[-1].month)+'-'+str(df_P350.index[-1].day+1))] Io_hora_348 = Io_hora_348.loc[(Io_hora_348.index >= '2018-03-23') & (Io_hora_348.index <= '2018-'+str(df_P348.index[-1].month)+'-'+str(df_P348.index[-1].day+1))] Io_hora_975 = Io_hora_975.between_time('06:00', '17:00') Io_hora_975.index = [Io_hora_975.index[i].replace(year=2019) for i in range(len(Io_hora_975.index))] Io_hora_350 = Io_hora_350.between_time('06:00', '17:00') Io_hora_350.index = [Io_hora_350.index[i].replace(year=2019) for i in range(len(Io_hora_350.index))] Io_hora_348 = Io_hora_348.between_time('06:00', '17:00') Io_hora_348.index = [Io_hora_348.index[i].replace(year=2019) for i in range(len(Io_hora_348.index))] df_Rad_P975 = pd.concat([Io_hora_975, df_P975_h], axis = 1) df_Rad_P350 = pd.concat([Io_hora_350, df_P350_h], axis = 1) df_Rad_P348 = pd.concat([Io_hora_348, df_P348_h], axis = 1) df_Rad_P975 = df_Rad_P975.drop(['NI','strength'], axis=1) df_Rad_P350 = df_Rad_P350.drop(['NI','strength'], axis=1) df_Rad_P348 = df_Rad_P348.drop(['NI','strength'], axis=1) ##--------------------EFICIANCIA REAL PROXI DE TRANSPARENCIA-----------------## df_Rad_P975['Efi_Transp'] = df_Rad_P975['radiacion'] / df_Rad_P975['Radiacion_Teo'] df_Rad_P350['Efi_Transp'] = df_Rad_P350['radiacion'] / df_Rad_P350['Radiacion_Teo'] df_Rad_P348['Efi_Transp'] = df_Rad_P348['radiacion'] / df_Rad_P348['Radiacion_Teo'] ##-----------------HORAS EN LA QUE SE PRODUCE LA MAYOR EFICIENCIA Y SU HISTOGRAMA-------------## 'La frecuencia de las horas que excedieron el máximo de la eficiencia (1), se presenta en el hisograma' 'a continuación. El resultado muestra que las mayores frecuencias se presentan a als 6 y las 7 de la ma-' 'ñana, y esto es atribuible a falencias en el modelo de radiacion en condiciones de cierlo despejado' 'en esos puntos.' Hour_Max_Efi_975 = df_Rad_P975[df_Rad_P975['Efi_Transp']>1].index.hour Hour_Max_Efi_350 = df_Rad_P350[df_Rad_P350['Efi_Transp']>1].index.hour Hour_Max_Efi_348 = df_Rad_P348[df_Rad_P348['Efi_Transp']>1].index.hour fig = plt.figure(figsize=[10, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1, 3, 1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.hist(Hour_Max_Efi_348, bins='auto', alpha = 0.5) ax1.set_title(u'Distribución horas de excedencia \n de la eficiencia en JV', fontproperties=prop, fontsize = 8) ax1.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax1.set_xlabel(u'Horas', fontproperties=prop_1) ax1.legend() ax2 = fig.add_subplot(1, 3, 2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.hist(Hour_Max_Efi_350, bins='auto', alpha = 0.5) ax2.set_title(u'Distribución horas de excedencia \n de la eficiencia en CI', fontproperties=prop, fontsize = 8) ax2.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax2.set_xlabel(u'Horas', fontproperties=prop_1) ax2.legend() ax3 = fig.add_subplot(1, 3, 3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.hist(Hour_Max_Efi_975, bins='auto', alpha = 0.5) ax3.set_title(u'Distribución horas de excedencia \n de la eficiencia en TS', fontproperties=prop, fontsize = 8) ax3.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax3.set_xlabel(u'Horas', fontproperties=prop_1) ax3.legend() plt.savefig('/home/nacorreasa/Escritorio/Figuras/HistoHoraExceEfi.png') plt.show() ##-------DISCRIMINACION ENTRE DIAS LLUVIOSOS Y SECOS POR PERCENTILES DE RADIACION--------## 'Para lidiar cno la situación en que pueden haber dias en los que los piranometros solo midieron' 'durante una fracción del día por posibles daños y alteraciones, se deben considerar los dias que' 'al menos tuvieron 6 horas de medicion.' df_Rad_P975_count_h_pira = df_Rad_P975.groupby(pd.Grouper(freq="D")).count()['radiacion']>6 df_Rad_P350_count_h_pira = df_Rad_P350.groupby(pd.Grouper(freq="D")).count()['radiacion']>6 df_Rad_P348_count_h_pira = df_Rad_P348.groupby(pd.Grouper(freq="D")).count()['radiacion']>6 days_P975_count_h_pira = df_Rad_P975_count_h_pira.index[df_Rad_P975_count_h_pira == True] days_P350_count_h_pira = df_Rad_P350_count_h_pira.index[df_Rad_P350_count_h_pira == True] days_P348_count_h_pira = df_Rad_P348_count_h_pira.index[df_Rad_P348_count_h_pira == True] 'Se establecieron umbrales empiricamente para la seleccion de los dias marcadamente nubados y' 'marcadamente despejados dentro el periodo de registro, de acuerdo a los procedimentos en el' 'programa Umbrales_Radiacion_Piranometro.py' Sum_df_Rad_P975 = df_Rad_P975.groupby(pd.Grouper(freq='1D')).sum() Sum_df_Rad_P350 = df_Rad_P350.groupby(pd.Grouper(freq='1D')).sum() Sum_df_Rad_P348 = df_Rad_P348.groupby(pd.Grouper(freq='1D')).sum() Sum_df_Rad_P975 = Sum_df_Rad_P975[Sum_df_Rad_P975['radiacion']>0] Sum_df_Rad_P350 = Sum_df_Rad_P350[Sum_df_Rad_P350['radiacion']>0] Sum_df_Rad_P348 = Sum_df_Rad_P348[Sum_df_Rad_P348['radiacion']>0] lista_days_975 = [] for i in range(len(Sum_df_Rad_P975)): if Sum_df_Rad_P975.index[i] in days_P975_count_h_pira: lista_days_975.append(1) else: lista_days_975.append(0) Sum_df_Rad_P975['days'] = lista_days_975 Sum_df_Rad_P975 = Sum_df_Rad_P975[Sum_df_Rad_P975['days'] == 1] Sum_df_Rad_P975 = Sum_df_Rad_P975.drop(['days'], axis = 1) lista_days_350 = [] for i in range(len(Sum_df_Rad_P350)): if Sum_df_Rad_P350.index[i] in days_P350_count_h_pira: lista_days_350.append(1) else: lista_days_350.append(0) Sum_df_Rad_P350['days'] = lista_days_350 Sum_df_Rad_P350 = Sum_df_Rad_P350[Sum_df_Rad_P350['days'] == 1] Sum_df_Rad_P350 = Sum_df_Rad_P350.drop(['days'], axis = 1) lista_days_348 = [] for i in range(len(Sum_df_Rad_P348)): if Sum_df_Rad_P348.index[i] in days_P348_count_h_pira: lista_days_348.append(1) else: lista_days_348.append(0) Sum_df_Rad_P348['days'] = lista_days_348 Sum_df_Rad_P348 = Sum_df_Rad_P348[Sum_df_Rad_P348['days'] == 1] Sum_df_Rad_P348 = Sum_df_Rad_P348.drop(['days'], axis = 1) Desp_Pira_975 = Sum_df_Rad_P975[Sum_df_Rad_P975.radiacion>=(Sum_df_Rad_P975.Radiacion_Teo)*0.85] Desp_Pira_350 = Sum_df_Rad_P350[Sum_df_Rad_P350.radiacion>=(Sum_df_Rad_P350.Radiacion_Teo)*0.78] Desp_Pira_348 = Sum_df_Rad_P348[Sum_df_Rad_P348.radiacion>=(Sum_df_Rad_P348.Radiacion_Teo)*0.80] Nuba_Pira_975 = Sum_df_Rad_P975[Sum_df_Rad_P975.radiacion<=(Sum_df_Rad_P975.Radiacion_Teo)*0.25] Nuba_Pira_350 = Sum_df_Rad_P350[Sum_df_Rad_P350.radiacion<=(Sum_df_Rad_P350.Radiacion_Teo)*0.25] Nuba_Pira_348 = Sum_df_Rad_P348[Sum_df_Rad_P348.radiacion<=(Sum_df_Rad_P348.Radiacion_Teo)*0.22] Appended_data_desp_975 = [] for i in range(len(Desp_Pira_975.index.values)): Appended_data_desp_975.append(df_P975_h[df_P975_h.index.date == Desp_Pira_975.index.date[i]]) Appended_data_desp_975 = pd.concat(Appended_data_desp_975) Appended_data_desp_350 = [] for i in range(len(Desp_Pira_350.index.values)): Appended_data_desp_350.append(df_P350_h[df_P350_h.index.date == Desp_Pira_350.index.date[i]]) Appended_data_desp_350 = pd.concat(Appended_data_desp_350) Appended_data_desp_348 = [] for i in range(len(Desp_Pira_348.index.values)): Appended_data_desp_348.append(df_P348_h[df_P348_h.index.date == Desp_Pira_348.index.date[i]]) Appended_data_desp_348 = pd.concat(Appended_data_desp_348) Appended_data_nuba_975 = [] for i in range(len(Nuba_Pira_975.index.values)): Appended_data_nuba_975.append(df_P975_h[df_P975_h.index.date == Nuba_Pira_975.index.date[i]]) Appended_data_nuba_975 = pd.concat(Appended_data_nuba_975) Appended_data_nuba_350 = [] for i in range(len(Nuba_Pira_350.index.values)): Appended_data_nuba_350.append(df_P350_h[df_P350_h.index.date == Nuba_Pira_350.index.date[i]]) Appended_data_nuba_350 = pd.concat(Appended_data_nuba_350) Appended_data_nuba_348 = [] for i in range(len(Nuba_Pira_348.index.values)): Appended_data_nuba_348.append(df_P348_h[df_P348_h.index.date == Nuba_Pira_348.index.date[i]]) Appended_data_nuba_348 = pd.concat(Appended_data_nuba_348) #------------------HISTOGRAMAS DE RADIACION PARA CADA PUNTO EN LOS DOS CASOS----------------## fig = plt.figure(figsize=[10, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1, 3, 1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.hist(Appended_data_desp_348['radiacion'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax1.hist(Appended_data_nuba_348['radiacion'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax1.set_title(u'Distribución de la radiación \n en dias dispejados y nublados en JV', fontproperties=prop, fontsize = 8) ax1.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax1.set_xlabel(u'Radiación $[W/m^{2}]$', fontproperties=prop_1) ax1.legend() ax2 = fig.add_subplot(1, 3, 2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.hist(Appended_data_desp_350['radiacion'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax2.hist(Appended_data_nuba_350['radiacion'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax2.set_title(u'Distribución de la radiación \n en dias dispejados y nublados en CI', fontproperties=prop, fontsize = 8) ax2.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax2.set_xlabel(u'Radiación $[W/m^{2}]$', fontproperties=prop_1) ax2.legend() ax3 = fig.add_subplot(1, 3, 3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.hist(Appended_data_desp_975['radiacion'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax3.hist(Appended_data_nuba_975['radiacion'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax3.set_title(u'Distribución de la radiación \n en dias dispejados y nublados en TS', fontproperties=prop, fontsize = 8) ax3.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax3.set_xlabel(u'Radiación $[W/m^{2}]$', fontproperties=prop_1) ax3.legend() plt.savefig('/home/nacorreasa/Escritorio/Figuras/HistoRadiacionNubaDespTotal.png') plt.show() #------------------PRUEBA DE KOLMOGOROV-SMIRNOV PARA LA BONDAD DE AJUSTE ----------------## 'Se aplica la prueba de bondad KOLMOGOROV-SMIRNOV sobre los datos de los dias nublados y los' 'despejados con respecto a la serie general de los datos, para evaluar si pertenecen a la ' 'funcion de distribución de probabilidad. Se usa un nivel de significancia del 5%. Esta prueba es' 'mas sensible a los valores cercanos a la media que a los extremos, por lo que en general puede' 'usarse para evitar los outliers. La hipotesis nula, será que los datos de ambas series siguen' 'una misma distribución. La hipotesis alternativa sugiere que no sigen la misma distribución.' Significancia = 0.05 SK_desp_348 = ks_2samp(Appended_data_desp_348['radiacion'].values,df_P348_h['radiacion'].values) stat_348_desp = SK_desp_348[0] pvalue_348_desp = SK_desp_348[1] SK_nuba_348 = ks_2samp(Appended_data_nuba_348['radiacion'].values,df_P348_h['radiacion'].values) stat_348_nuba = SK_nuba_348[0] pvalue_348_nuba = SK_nuba_348[1] if pvalue_348_nuba <= Significancia: print ('los dias nublados en JV no pertenecen a la misma distribución') else: print ('los dias nublados en JV pertenecen a la misma distribución') if pvalue_348_desp <= Significancia: print ('los dias despejados en JV no pertenecen a la misma distribución') else: print ('los dias despejados en JV pertenecen a la misma distribución') SK_desp_350 = ks_2samp(Appended_data_desp_350['radiacion'].values,df_P350_h['radiacion'].values) stat_350_desp = SK_desp_350[0] pvalue_350_desp = SK_desp_350[1] SK_nuba_350 = ks_2samp(Appended_data_nuba_350['radiacion'].values,df_P350_h['radiacion'].values) stat_350_nuba = SK_nuba_350[0] pvalue_350_nuba = SK_nuba_350[1] if pvalue_350_nuba <= Significancia: print ('los dias nublados en CI no pertenecen a la misma distribución') else: print ('los dias nublados en CI pertenecen a la misma distribución') if pvalue_350_desp <= Significancia: print ('los dias despejados en CI no pertenecen a la misma distribución') else: print ('los dias despejados en CI pertenecen a la misma distribución') SK_desp_975 = ks_2samp(Appended_data_desp_975['radiacion'].values,df_P975_h['radiacion'].values) stat_975_desp = SK_desp_975[0] pvalue_975_desp = SK_desp_975[1] SK_nuba_975 = ks_2samp(Appended_data_nuba_975['radiacion'].values,df_P975_h['radiacion'].values) stat_975_nuba = SK_nuba_975[0] pvalue_975_nuba = SK_nuba_975[1] if pvalue_975_nuba <= Significancia: print ('los dias nublados en TS no pertenecen a la misma distribución') else: print ('los dias nublados en TS pertenecen a la misma distribución') if pvalue_975_desp <= Significancia: print ('los dias despejados en TS no pertenecen a la misma distribución') else: print ('los dias despejados en TS pertenecen a la misma distribución') #------------------HISTOGRAMAS DE EFICIENCIA PARA CADA PUNTO EN LOS DOS CASOS----------------## Desp_Efi_348 = [] for i in range(len(Desp_Pira_348.index.values)): Desp_Efi_348.append(df_Rad_P348[df_Rad_P348.index.date == Desp_Pira_348.index.date[i]]) Desp_Efi_348 = pd.concat(Desp_Efi_348) Desp_Efi_350 = [] for i in range(len(Desp_Pira_350.index.values)): Desp_Efi_350.append(df_Rad_P350[df_Rad_P350.index.date == Desp_Pira_350.index.date[i]]) Desp_Efi_350 = pd.concat(Desp_Efi_350) Desp_Efi_975 = [] for i in range(len(Desp_Pira_975.index.values)): Desp_Efi_975.append(df_Rad_P975[df_Rad_P975.index.date == Desp_Pira_975.index.date[i]]) Desp_Efi_975 = pd.concat(Desp_Efi_975) Nuba_Efi_348 = [] for i in range(len(Nuba_Pira_348.index.values)): Nuba_Efi_348.append(df_Rad_P348[df_Rad_P348.index.date == Nuba_Pira_348.index.date[i]]) Nuba_Efi_348 = pd.concat(Nuba_Efi_348) Nuba_Efi_350 = [] for i in range(len(Nuba_Pira_350.index.values)): Nuba_Efi_350.append(df_Rad_P350[df_Rad_P350.index.date == Nuba_Pira_350.index.date[i]]) Nuba_Efi_350 = pd.concat(Nuba_Efi_350) Nuba_Efi_975 = [] for i in range(len(Nuba_Pira_975.index.values)): Nuba_Efi_975.append(df_Rad_P975[df_Rad_P975.index.date == Nuba_Pira_975.index.date[i]]) Nuba_Efi_975 = pd.concat(Nuba_Efi_975) fig = plt.figure(figsize=[10, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1, 3, 1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.hist(Desp_Efi_348['Efi_Transp'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax1.hist(Nuba_Efi_348['Efi_Transp'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax1.set_title(u'Distribución de la eficiencia \n en dias despejados y nublados en JV', fontproperties=prop, fontsize = 8) ax1.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax1.set_xlabel(u'Eficiencia', fontproperties=prop_1) ax1.legend() ax2 = fig.add_subplot(1, 3, 2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.hist(Desp_Efi_350['Efi_Transp'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax2.hist(Nuba_Efi_350['Efi_Transp'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax2.set_title(u'Distribución de la eficiencia \n en dias despejados y nublados en CI', fontproperties=prop, fontsize = 8) ax2.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax2.set_xlabel(u'Eficiencia', fontproperties=prop_1) ax2.legend() ax3 = fig.add_subplot(1, 3, 3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.hist(Desp_Efi_975['Efi_Transp'], bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax3.hist(Nuba_Efi_975['Efi_Transp'], bins='auto', alpha = 0.5, color = 'blue', label = 'Nub') ax3.set_title(u'Distribución de la eficiencia \n en dias despejados y nublados en TS', fontproperties=prop, fontsize = 8) ax3.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax3.set_xlabel(u'Eficiencia', fontproperties=prop_1) ax3.legend() plt.savefig('/home/nacorreasa/Escritorio/Figuras/HistoEficiencianNubaDespTotal.png') plt.show() SK_desp_Efi_348 = ks_2samp(Desp_Efi_348['radiacion'].values,df_P348_h['radiacion'].values) Efi_348_desp = SK_desp_Efi_348[0] Efi_348_desp = SK_desp_Efi_348[1] SK_nuba_Efi_348 = ks_2samp(Nuba_Efi_348['radiacion'].values,df_P348_h['radiacion'].values) Efi_348_nuba = SK_nuba_Efi_348[0] Efi_348_nuba = SK_nuba_Efi_348[1] if Efi_348_nuba <= Significancia: print ('los dias nublados en JV no pertenecen a la misma distribución') else: print ('los dias nublados en JV pertenecen a la misma distribución') if Efi_348_desp <= Significancia: print ('los dias despejados en JV no pertenecen a la misma distribución') else: print ('los dias despejados en JV pertenecen a la misma distribución') SK_desp_Efi_350 = ks_2samp(Desp_Efi_350['radiacion'].values,df_P350_h['radiacion'].values) Efi_350_desp = SK_desp_Efi_350[0] Efi_350_desp = SK_desp_Efi_350[1] SK_nuba_Efi_350 = ks_2samp(Nuba_Efi_350['radiacion'].values,df_P350_h['radiacion'].values) Efi_350_nuba = SK_nuba_Efi_350[0] Efi_350_nuba = SK_nuba_Efi_350[1] if Efi_350_nuba <= Significancia: print ('los dias nublados en CI no pertenecen a la misma distribución') else: print ('los dias nublados en CI pertenecen a la misma distribución') if Efi_350_desp <= Significancia: print ('los dias despejados en CI no pertenecen a la misma distribución') else: print ('los dias despejados en CI pertenecen a la misma distribución') SK_desp_Efi_975 = ks_2samp(Desp_Efi_975['radiacion'].values,df_P975_h['radiacion'].values) Efi_975_desp = SK_desp_Efi_975[0] Efi_975_desp = SK_desp_Efi_975[1] SK_nuba_Efi_975 = ks_2samp(Nuba_Efi_975['radiacion'].values,df_P975_h['radiacion'].values) Efi_975_nuba = SK_nuba_Efi_975[0] Efi_975_nuba = SK_nuba_Efi_975[1] if Efi_975_nuba <= Significancia: print ('los dias nublados en TS no pertenecen a la misma distribución') else: print ('los dias nublados en TS pertenecen a la misma distribución') if Efi_975_desp <= Significancia: print ('los dias despejados en TS no pertenecen a la misma distribución') else: print ('los dias despejados en TS pertenecen a la misma distribución') #------------------ESTIMACIÓN DE LA AUTOCORRELACIÓN EN CADA PUNTO----------------## def estimated_autocorrelation(x): """ http://stackoverflow.com/q/14297012/190597 http://en.wikipedia.org/wiki/Autocorrelation#Estimation """ n = len(x) variance = x.var() x = x-x.mean() r = np.correlate(x, x, mode = 'full')[-n:] assert np.allclose(r, np.array([(x[:n-k]*x[-(n-k):]).sum() for k in range(n)])) result = r/(variance*(np.arange(n, 0, -1))) return result Auto_corr_975 = estimated_autocorrelation(df_P975_h['radiacion'].values) X = df_P975_h[df_P975_h['radiacion'].values>0]['radiacion'].values lag = [1, 6, 12, 24] AutoCorr_lag = [] for j in range(1, len(lag)+1): print(j) c = [] for i in range(0,len(X)-j, j): c.append(pearsonr(X[i:], X[:-(i -len(X))])[1]) AutoCorr_lag.append(sum(c)) ############################################################################### ##-------------------RADIACION TEORICA PARA UN AÑO DE DATOS------------------## ############################################################################### 'Se espera encontrar con una año de datos de radiacion teorica para el estable-' 'cimiento de los escenario de prediccion y de los rendimentos teoricos. Pensado' 'para los datos de 2018.' ## ---LECTURA DE DATOS DE PIRANÓMETRO --- ## df1 = df1.set_index(["fecha_hora"]) df1.index = df1.index.tz_localize('UTC').tz_convert('America/Bogota') df1.index = df1.index.tz_localize(None) ## ---AGRUPACION DE LOS DATOS HORARIOS A UN AÑO--- ## df1_hora = df1.groupby(pd.Grouper(freq="H")).mean() df1_hora = df1_hora[(df1_hora.index >= '2018-01-01 00:00:00') & (df1_hora.index <= '2018-12-31 23:59:00')] df1_hora = df1_hora.between_time('06:00', '17:00') ##--> Seleccionar solo los datos de horas del dia ## ---CREACIÓN DE LA RADIACIÓN EN SUPERFICIE POR DIA Y AGRUPACION DE LOS DATOS DIARIOS A UN AÑO--- ## Io_dia = Io.groupby(pd.Grouper(freq="D")).mean() df1_dia = df1.groupby(pd.Grouper(freq="D")).mean() df1_dia = df1_dia[(df1_dia.index >= '2018-01-01') & (df1_dia.index <= '2018-12-31')] ## ---CONDICIONANDO LA RESOLUCIÓN TEMPORAL CON LA QUE SE TRABAJARÁ--- ## if resolucion == 'diaria': Io = Io_dia df1_rad = df1_dia elif resolucion == 'horaria': Io = Io_hora df1_rad = df1_hora ## ---CREACIÓN DE LOS ESCENARIOS DE ANÁLISIS EFICIENCIA TEÓRICA--- ## if len(Io)==len(df1_rad): df1_rad['TAR'] = Io df1_rad = df1_rad.drop([u'Unnamed: 0', u'idestacion'], axis=1) df1_rad['Efi_Teorica'] = df1_rad[u'radiacion']/df1_rad[u'TAR'] else: print (u'No hay un año de datos con el piranometro') ## --Máximo absosluto df1_radr_max = df1_rad.loc[lambda df_hora: df_hora['Efi_Teorica'] == np.nanmax(df1_rad.Efi_Teorica)] ## -- Percentil 90 absoluto df1_rad90 = df1_rad.quantile(0.90) ## -- Percentil 50 absoluto df1_rad50 = df1_rad.quantile(0.50) ## -- Percentil 10 absoluto df1_rad10 = df1_rad.quantile(0.10) ## -----MENSUAL----- ## df1_hm_mean = df1_rad.Efi_Teorica.groupby(pd.Grouper(freq="M")).mean() df1_hm_mean_90 = df1_hm_mean.loc[lambda df1_hm_mean: df1_hm_mean.round(3) >= round(df1_hm_mean.quantile(0.90), 2)] df1_hm_mean_50 = df1_hm_mean.loc[lambda df1_hm_mean: df1_hm_mean.round(3) >= round(df1_hm_mean.quantile(0.50), 2)] df1_hm_mean_10 = df1_hm_mean.loc[lambda df1_hm_mean: df1_hm_mean.round(3) >= round(df1_hm_mean.quantile(0.10), 2)] ## -- Percentil 90 de cada mes df1_hm_quantile90 = df1_rad.Efi_Teorica.groupby(pd.Grouper(freq="M")).quantile(0.90) ## -- Percentil 50 de cada mes df1_hm_quantile50 = df1_rad.Efi_Teorica.groupby(
pd.Grouper(freq="M")
pandas.Grouper
# -*- coding: utf-8 -*- """ Created on Fri Dec 13 15:21:55 2019 @author: raryapratama """ #%% #Step (1): Import Python libraries, set land conversion scenarios general parameters import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad import seaborn as sns import pandas as pd #RIL Scenario ##Set parameters #Parameters for primary forest initAGB = 233 #source: van Beijma et al. (2018) initAGB_min = 233-72 initAGB_max = 233 + 72 tf = 201 #Parameters for residue decomposition (Source: De Rosa et al., 2017) a = 0.082 b = 2.53 #%% #Step (2_1): C loss from the harvesting/clear cut #df1 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_StLF.xlsx', 'RIL_S1') df2 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_StLF.xlsx', 'RIL_S2') dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_StLF.xlsx', 'RIL_E') t = range(0,tf,1) #c_loss_S1 = df1['C_loss'].values c_firewood_energy_S2 = df2['Firewood_other_energy_use'].values c_firewood_energy_E = dfE['Firewood_other_energy_use'].values #%% #Step (2_2): C loss from the harvesting/clear cut as wood pellets dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_StLF.xlsx', 'RIL_E') c_pellets_E = dfE['Wood_pellets'].values #%% #Step (3): Aboveground biomass (AGB) decomposition #S2 df = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_StLF.xlsx', 'RIL_S2') tf = 201 t = np.arange(tf) def decomp_S2(t,remainAGB_S2): return (1-(1-np.exp(-a*t))**b)*remainAGB_S2 #set zero matrix output_decomp_S2 = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_S2 in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_S2[i:,i] = decomp_S2(t[:len(t)-i],remain_part_S2) print(output_decomp_S2[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_S2 = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_S2[:,i] = np.diff(output_decomp_S2[:,i]) i = i + 1 print(subs_matrix_S2[:,:4]) print(len(subs_matrix_S2)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_S2 = subs_matrix_S2.clip(max=0) print(subs_matrix_S2[:,:4]) #make the results as absolute values subs_matrix_S2 = abs(subs_matrix_S2) print(subs_matrix_S2[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_S2 = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_S2) subs_matrix_S2 = np.vstack((zero_matrix_S2, subs_matrix_S2)) print(subs_matrix_S2[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_S2 = (tf,1) decomp_tot_S2 = np.zeros(matrix_tot_S2) i = 0 while i < tf: decomp_tot_S2[:,0] = decomp_tot_S2[:,0] + subs_matrix_S2[:,i] i = i + 1 print(decomp_tot_S2[:,0]) #S2_C df = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_StLF.xlsx', 'RIL_C_S2') tf = 201 t = np.arange(tf) def decomp_S2_C(t,remainAGB_S2_C): return (1-(1-np.exp(-a*t))**b)*remainAGB_S2_C #set zero matrix output_decomp_S2_C = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_S2_C in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_S2_C[i:,i] = decomp_S2_C(t[:len(t)-i],remain_part_S2_C) print(output_decomp_S2_C[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_S2_C = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_S2_C[:,i] = np.diff(output_decomp_S2_C[:,i]) i = i + 1 print(subs_matrix_S2_C[:,:4]) print(len(subs_matrix_S2_C)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_S2_C = subs_matrix_S2_C.clip(max=0) print(subs_matrix_S2_C[:,:4]) #make the results as absolute values subs_matrix_S2_C = abs(subs_matrix_S2_C) print(subs_matrix_S2_C[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_S2_C = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_S2_C) subs_matrix_S2_C = np.vstack((zero_matrix_S2_C, subs_matrix_S2_C)) print(subs_matrix_S2_C[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_S2_C = (tf,1) decomp_tot_S2_C = np.zeros(matrix_tot_S2_C) i = 0 while i < tf: decomp_tot_S2_C[:,0] = decomp_tot_S2_C[:,0] + subs_matrix_S2_C[:,i] i = i + 1 print(decomp_tot_S2_C[:,0]) #E df = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_StLF.xlsx', 'RIL_E') tf = 201 t = np.arange(tf) def decomp_E(t,remainAGB_E): return (1-(1-np.exp(-a*t))**b)*remainAGB_E #set zero matrix output_decomp_E = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_E in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_E[i:,i] = decomp_E(t[:len(t)-i],remain_part_E) print(output_decomp_E[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_E = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_E[:,i] = np.diff(output_decomp_E[:,i]) i = i + 1 print(subs_matrix_E[:,:4]) print(len(subs_matrix_E)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_E = subs_matrix_E.clip(max=0) print(subs_matrix_E[:,:4]) #make the results as absolute values subs_matrix_E = abs(subs_matrix_E) print(subs_matrix_E[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_E = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_E) subs_matrix_E = np.vstack((zero_matrix_E, subs_matrix_E)) print(subs_matrix_E[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_E = (tf,1) decomp_tot_E = np.zeros(matrix_tot_E) i = 0 while i < tf: decomp_tot_E[:,0] = decomp_tot_E[:,0] + subs_matrix_E[:,i] i = i + 1 print(decomp_tot_E[:,0]) #E_C df =
pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_StLF.xlsx', 'RIL_C_E')
pandas.read_excel
""" Porfolio models and calculations """ from collections import OrderedDict from scipy import stats import numpy as np import pandas as pd import empyrical as emp import portfolioopt as pfopt # calculating portfolio performance class PortfolioModels(): def __init__(self, datafolder): self.datafolder = datafolder self._daily = None self._calculate_daily() return None def _merge_market_with_orders(self, df_ord, mkt): """ Helper for merging orders with panel frame with market data """ # initialize columns mkt['cum_size'] = 0 mkt['cum_cost_basis'] = 0 mkt['cum_realized_gain'] = 0 # loop over tickers, except the last one, which is market for _symbol in mkt.index.get_level_values(0).unique()[:-1]: df1 = mkt.loc[_symbol] df2 = df_ord[df_ord['symbol'] == _symbol].copy() df2.set_index('date', inplace=True) df = pd.merge( df1, df2[['cum_size', 'cum_cost_basis', 'cum_realized_gain']], left_index=True, right_index=True, how='left') df.rename(columns={ 'cum_size_y': 'cum_size', 'cum_cost_basis_y': 'cum_cost_basis', 'cum_realized_gain_y': 'cum_realized_gain'}, inplace=True) df.drop('cum_size_x', axis=1, inplace=True) df.drop('cum_cost_basis_x', axis=1, inplace=True) df.drop('cum_realized_gain_x', axis=1, inplace=True) # propagate values from last observed df.fillna(method='ffill', inplace=True) df.fillna(0, inplace=True) mkt.loc[_symbol] = df.values return mkt def _merge_market_with_dividends(self, df_div, mkt): """ Helper to merge the market frame with dividends """ # initialize columns mkt['cum_dividends'] = 0 mkt['dividend_rate'] = 0 # loop over tickers, except the last one, which is market for _symbol in mkt.index.get_level_values(0).unique()[:-1]: df1 = mkt.loc[_symbol] df2 = df_div[df_div['symbol'] == _symbol].copy() df2.set_index('date', inplace=True) df = pd.merge( df1, df2[['cum_dividends', 'rate']], left_index=True, right_index=True, how='left') df.drop('cum_dividends_x', axis=1, inplace=True) df.drop('dividend_rate', axis=1, inplace=True) df.rename(columns={ 'cum_dividends_y': 'cum_dividends', 'rate': 'dividend_rate'}, inplace=True) # propagate values from last observed df['cum_dividends'].fillna(method='ffill', inplace=True) df['cum_dividends'].fillna(0, inplace=True) mkt.loc[_symbol] = df.values return mkt def _calculate_daily(self): """ Calculate daily prices, cost-basis, ratios, returns, etc. Used for plotting and also showing the final snapshot of the portfolio ------------- Parameters: - None Return: - Multiindex dataframe with daily values """ # read frames for internal use market = pd.read_pickle(self.datafolder + "/market.pkl") # recreate orders from open and closed pos df = pd.concat([ pd.read_pickle(self.datafolder + "/open.pkl"), pd.read_pickle(self.datafolder + "/closed.pkl")]).sort_index() # calculate cumulative size and cost basis df['cum_size'] =\ df.groupby('symbol').signed_size.cumsum() # cost basis for closed orders is equal to the one for original open # position, so cumulative does not include any gains or losses from # closing orders df['cum_cost_basis'] =\ df.groupby('symbol').current_cost_basis.cumsum() # aggregate orders on the same day func = { 'average_price': np.mean, 'current_cost_basis': np.sum, 'current_size': np.sum, 'fees': np.sum, 'final_cost_basis': np.sum, 'final_size': np.sum, 'signed_size': np.sum, 'cum_size': np.sum, 'cum_cost_basis': np.sum, 'realized_gains': np.sum} df = df.groupby(['date', 'symbol'], as_index=False).agg(func) # df = pd.pivot_table(df, # values=func.keys(), # index=['symbol', 'date'], # aggfunc=func).reset_index() # calculate cumulative size and cost basis df['cum_size'] =\ df.groupby('symbol').signed_size.cumsum() df['cum_cost_basis'] =\ df.groupby('symbol').current_cost_basis.cumsum() df['cum_realized_gain'] =\ df.groupby('symbol').realized_gains.cumsum() # fix the average price, so it is weighted mean df['average_price'] =\ df['cum_cost_basis'] / df['cum_size'] # merge orders with market pf = self._merge_market_with_orders(df, market) df = pd.read_pickle(self.datafolder + "/dividends.pkl") # calculate cumulative dividends df['cum_dividends'] = df.groupby('symbol').amount.cumsum() # merge orders with market pf = self._merge_market_with_dividends(df, pf) # replace null stock prices using backfill to avoid issues with # daily_change and beta calculations close_price = pf['close'] close_price.values[close_price.values == 0] = np.nan close_price.fillna(method='bfill', inplace=True) pf['close'] = close_price # Main daily portfolio properties # dividend yield pf['dividend_yield'] = pf['dividend_rate'] / pf['close'] * 100 # cumulative current value of the position for the given security # at the start and end of the day pf['cum_value_close'] = pf['cum_size'] * pf['close'] pf['cum_value_open'] = pf['cum_size'] * pf['open'] # current weight of the given security in the portfolio - matrix # based on the close price pf['current_weight'] =\ (pf['cum_value_close'].T / pf.groupby(level='date')['cum_value_close'].sum()).T # unrealized gain on open positions at the end of day pf['cum_unrealized_gain'] =\ pf['cum_value_close'] - pf['cum_cost_basis'] # investment return without dividends pf['cum_investment_return'] = pf['cum_unrealized_gain'] + \ pf['cum_realized_gain'] # total return pf['cum_total_return'] = pf['cum_unrealized_gain'] +\ pf['cum_dividends'] + pf['cum_realized_gain'] # return from price change only pf['cum_price_return'] = pf['cum_unrealized_gain'] # calculate ROI pf['current_return_rate'] =\ (pf['cum_total_return'] / pf['cum_cost_basis'] * 100).\ where(pf['cum_size'] != 0).fillna(method='ffill') # assign to panelframe self._daily = pf return self def _observed_period_portfolio_return(self, _): """ Calculate actual portfolio return over observed period """ pf = self._daily res = pf.reset_index().pivot( index='date', columns='symbol', values='cum_total_return').sum(axis=1) / \ pf.reset_index().pivot( index='date', columns='symbol', values='cum_cost_basis').sum(axis=1) return res[-1] def _observed_period_market_return(self, _): """ Calculate actual market return over observed period """ pf = self._daily return (pf.loc['SPY']['close'][-1] - pf.loc['SPY']['close'][0]) / \ pf.loc['SPY']['close'][0] def _stock_daily_returns(self): """ Estimate daily noncumulative returns for empyrical """ pf = self._daily daily = pf.groupby(level='symbol')['close'].\ transform(lambda x: (x-x.shift(1))/abs(x)) daily.fillna(0, inplace=True) daily = daily.reset_index().pivot( index='date', columns='symbol', values='close') return daily def _stock_monthly_returns(self): """ Monthly returns = capital gain + dividend yields for all symbols ------------- Parameters: - none Returns: - dataframe with monthly returns in % by symbol """ pf = self._daily # monthly changes in stock_prices prices # stock_prices = pf['close'] stock_prices = pf.reset_index().pivot( index='date', columns='symbol', values='close') stock_month_start = stock_prices.groupby([ lambda x: x.year, lambda x: x.month]).first() stock_month_end = stock_prices.groupby([ lambda x: x.year, lambda x: x.month]).last() stock_monthly_return = (stock_month_end - stock_month_start) /\ stock_month_start * 100 stock_monthly_div_yield = pf.reset_index().pivot( index='date', columns='symbol', values='dividend_yield').groupby([ lambda x: x.year, lambda x: x.month]).mean() stock_monthly_div_yield.fillna(0, inplace=True) return stock_monthly_return + stock_monthly_div_yield def _ptf_monthly_returns(self): """ monthly changes in portfolio value using indirect calculation with mean ratios TODO - implement a more accurate method ------------- Parameters: - none - Using stock prices, portfolio weights on every day and div yield Returns: - dataframe with monthly returns in % by symbol """ stock_monthly_change = self._stock_monthly_returns() ptf_monthly_ratio = self._daily.reset_index().pivot( index='date', columns='symbol', values='current_weight').groupby([ lambda x: x.year, lambda x: x.month]).mean() ptf_monthly_returns = ( stock_monthly_change * ptf_monthly_ratio).sum(1) return ptf_monthly_returns def _one_pfopt_case(self, stock_returns, market, weights, name): case = {} case['name'] = name case['weights'] = weights returns = np.dot(stock_returns, weights.values.reshape(-1, 1)) returns = pd.Series(returns.flatten(), index=market.index) simple_stat_funcs = [ emp.annual_return, emp.annual_volatility, emp.sharpe_ratio, emp.stability_of_timeseries, emp.max_drawdown, emp.omega_ratio, emp.calmar_ratio, emp.sortino_ratio, emp.value_at_risk, ] factor_stat_funcs = [ emp.alpha, emp.beta, ] stat_func_names = { 'annual_return': 'Annual return', 'annual_volatility': 'Annual volatility', 'alpha': 'Alpha', 'beta': 'Beta', 'sharpe_ratio': 'Sharpe ratio', 'calmar_ratio': 'Calmar ratio', 'stability_of_timeseries': 'Stability', 'max_drawdown': 'Max drawdown', 'omega_ratio': 'Omega ratio', 'sortino_ratio': 'Sortino ratio', 'value_at_risk': 'Daily value at risk', } ptf_stats = pd.Series() for stat_func in simple_stat_funcs: ptf_stats[stat_func_names[stat_func.__name__]] = stat_func(returns) for stat_func in factor_stat_funcs: res = stat_func(returns, market) ptf_stats[stat_func_names[stat_func.__name__]] = res case['stats'] = ptf_stats return case def stocks_risk(self): """ Calculate risk properties for every security in the portfolio using `empyrical` library. Results are consistent with self-written routine References: 1. p. 137 of Modern Portfolio Theory and Investment Analysis edition 9 2. faculty.washington.edu/ezivot/econ424/portfolioTheoryMatrix.pdf ------------- Parameters: - If include risk_free_return or not - Using stock prices, weight ratios and div yield Return: - Dataframe of properties for each security in portfolio """ daily = self._stock_daily_returns() # # construct resulting dataframe df = pd.DataFrame({ 'means': daily.mean(axis=0), }) simple_stat_funcs = [ emp.annual_return, emp.annual_volatility, emp.sharpe_ratio, emp.calmar_ratio, emp.stability_of_timeseries, emp.max_drawdown, emp.omega_ratio, emp.sortino_ratio, stats.skew, stats.kurtosis, emp.tail_ratio, emp.value_at_risk, ] factor_stat_funcs = [ emp.alpha, emp.beta, ] stat_func_names = { 'annual_return': 'Annual return', 'cum_returns_final': 'Cumulative returns', 'annual_volatility': 'Annual volatility', 'alpha': 'Alpha', 'beta': 'Beta', 'sharpe_ratio': 'Sharpe ratio', 'calmar_ratio': 'Calmar ratio', 'stability_of_timeseries': 'Stability', 'max_drawdown': 'Max drawdown', 'omega_ratio': 'Omega ratio', 'sortino_ratio': 'Sortino ratio', 'tail_ratio': 'Tail ratio', 'value_at_risk': 'Daily value at risk', 'skew': 'Skew', 'kurtosis': 'Kurtosis' } for stat_func in simple_stat_funcs: df[stat_func_names[stat_func.__name__]] =\ daily.apply(lambda x: stat_func(x)).apply(pd.Series) for stat_func in factor_stat_funcs: df[stat_func_names[stat_func.__name__]] =\ daily.apply(lambda x: stat_func( x, daily['SPY'])).apply(pd.Series) del df['means'] # assign for markowitz use self.stocks_daily = daily return df def stocks_correlation(self): """ Calculate stock correlation matrix References: 1. p. 137 of Modern Portfolio Theory and Investment Analysis edition 9 2. faculty.washington.edu/ezivot/econ424/portfolioTheoryMatrix.pdf ------------- Parameters: - None - Use stock prices, div yields and portfolio weights Return: - Correlation dataframe """ # get monthly changes for all stocks stock_returns = self._stock_monthly_returns() stock_returns['portfolio'] = self._ptf_monthly_returns() # get mean values and std by security returns_mean = stock_returns.mean(axis=0) returns_std = stock_returns.std(axis=0) # get covariance matrix returns_covar = np.cov( stock_returns.values, rowvar=False, ddof=1) # get correlation matrix std_products = np.dot( returns_std.values.reshape(-1, 1), returns_std.values.reshape(1, -1)) returns_corr = returns_covar / std_products df_covar = pd.DataFrame( returns_covar, columns=returns_mean.keys(), index=returns_mean.keys()) df_covar = df_covar.iloc[:-1, :-1] df_corr = pd.DataFrame( returns_corr, columns=returns_mean.keys(), index=returns_mean.keys()) # assign for markowitz use self.stocks_covar = df_covar return df_corr, df_covar def portfolio_returns(self): """ Calculate portfolio evolution total stocks value investment returns dividend returns total returns """ pf = self._daily cum_investment_returns = pf.reset_index().pivot( index='date', columns='symbol', values='cum_investment_return').sum(axis=1) cum_dividends = pf.reset_index().pivot( index='date', columns='symbol', values='cum_dividends').sum(axis=1) return cum_investment_returns, cum_dividends def portfolio_summary(self): """ Calculate portfolio composition and summary by stock """ df = self._daily df = df.groupby(level='symbol').last() columns_to_names = OrderedDict([ ('cum_size', ['Shares', '{:,.0f}']), ('current_weight', ['Portfolio weight', '{:.2f}%']), ('cum_cost_basis', ['Current cost basis', '{:,.2f}']), ('cum_value_close', ['Current value', '{:,.2f}']), ('cum_realized_gain', ['Realized P/L', '{:,.2f}']), ('cum_dividends', ['Dividends', '{:,.2f}']), ('cum_unrealized_gain', ['Unrealized P/L', '{:,.2f}']), ('cum_total_return', ['Total return', '{:,.2f}']), ('current_return_rate', ['Total return rate', '{:,.2f}%']) ]) # convert ratios to percent df['current_weight'] = df['current_weight'] * 100 # add total row df = df.copy() # avoid chained assignment warning df.loc['Portfolio', :] = df.sum(axis=0) df.loc['Portfolio', 'current_return_rate'] =\ df.loc['Portfolio', 'cum_total_return'] /\ df.loc['Portfolio', 'cum_cost_basis'] * 100 # re-order df = df[list(columns_to_names.keys())] # format df = df.apply( lambda x: x.map(columns_to_names[x.name][1].format), axis=0) # rename columns df.columns =\ df.columns.to_series().apply(lambda x: columns_to_names[x][0]) return df def portfolio_stats(self): """ Calculate actual portfolio stats based on panelframe with daily changes ------------- Parameters: - None - Uses daily panelframe Return: - Series with portfolio stats TODO: daily returns or returns over cost_basis? """ pf = self._daily # capital gains `cum_investment_return` or # total return `cum_total_return` return_to_use = 'cum_investment_return' # cum_return = pf.reset_index().pivot( # index='date', # columns='symbol', # values='cum_investment_return').sum(axis=1) # cum_return_D1 = pf[return_to_use].sum(1).shift(1) # cum_return_D2 = pf[return_to_use].sum(1) # cost_basis = pf['cum_cost_basis'].sum(1) # returns = (cum_return_D2 - cum_return_D1) / cost_basis # returns.fillna(0, inplace=True) # portfolio return over cost_basis returns = pf.reset_index().pivot( index='date', columns='symbol', values=return_to_use).sum(axis=1)\ .transform(lambda x: x-x.shift(1))/pf.reset_index().pivot( index='date', columns='symbol', values='cum_cost_basis').sum(axis=1) returns.fillna(0, inplace=True) # return of just 100% SPY portfolio # m_D1 = pf['close', :, 'market'].shift(1) # m_D2 = pf['close', :, 'market'] # market = (m_D2 - m_D1) / pf['close', :, 'market'].iloc[0] market = pf.reset_index().pivot( index='date', columns='symbol', values='close')['SPY'].transform(lambda x: (x-x.shift(1))/x[0]) market.fillna(0, inplace=True) """ Using empyrical functions and re-using code from pyfolio """ simple_stat_funcs = [ self._observed_period_portfolio_return, self._observed_period_market_return, emp.annual_return, emp.annual_volatility, emp.sharpe_ratio, emp.calmar_ratio, emp.stability_of_timeseries, emp.max_drawdown, emp.omega_ratio, emp.sortino_ratio, stats.skew, stats.kurtosis, emp.tail_ratio, emp.value_at_risk, ] factor_stat_funcs = [ emp.alpha, emp.beta, ] stat_func_names = { '_observed_period_portfolio_return': 'Total return', '_observed_period_market_return': 'Market return', 'annual_return': 'Annual return', 'cum_returns_final': 'Cumulative returns', 'annual_volatility': 'Annual volatility', 'alpha': 'Alpha', 'beta': 'Beta', 'sharpe_ratio': 'Sharpe ratio', 'calmar_ratio': 'Calmar ratio', 'stability_of_timeseries': 'Stability', 'max_drawdown': 'Max drawdown', 'omega_ratio': 'Omega ratio', 'sortino_ratio': 'Sortino ratio', 'tail_ratio': 'Tail ratio', 'value_at_risk': 'Daily value at risk', 'skew': 'Skew', 'kurtosis': 'Kurtosis' } ptf_stats =
pd.Series()
pandas.Series
# -*- coding: utf-8 -*- # """@author: Elie""" # run locally on python 3.8.5('dec1st_py38_xgboostetal':conda) # %% # Libraries # ============================================================================= import pandas as pd import numpy as np import datetime from functools import partial, reduce from joblib import load, dump import os import sys #plotting from matplotlib import pyplot as plt import matplotlib.lines as mlines from matplotlib import cm import seaborn as sns import matplotlib as mpl #ML/Stats from sklearn.metrics import roc_curve, auc,precision_recall_curve, f1_score from sklearn.metrics import roc_curve, precision_recall_curve, auc import xgboost from xgboost import XGBClassifier pd.options.mode.chained_assignment = None mpl.rcParams['savefig.transparent'] = "False" mpl.rcParams['axes.facecolor'] = "white" mpl.rcParams['figure.facecolor'] = "white" mpl.rcParams['font.size'] = "5" plt.rcParams["font.size"] = "4" plt.rcParams['savefig.transparent'] = "False" plt.rcParams['axes.facecolor'] = "white" plt.rcParams['figure.facecolor'] = "white" #%% ========================================================== # define these feature/headers here in case the headers # are out of order in input files (often the case) # ============================================================ snv_categories = ["sample", "A[C>A]A", "A[C>A]C", "A[C>A]G", "A[C>A]T", "C[C>A]A", "C[C>A]C", "C[C>A]G", "C[C>A]T", "G[C>A]A", "G[C>A]C", "G[C>A]G", "G[C>A]T", "T[C>A]A", "T[C>A]C", "T[C>A]G", "T[C>A]T", "A[C>G]A", "A[C>G]C", "A[C>G]G", "A[C>G]T", "C[C>G]A", "C[C>G]C", "C[C>G]G", "C[C>G]T", "G[C>G]A", "G[C>G]C", "G[C>G]G", "G[C>G]T", "T[C>G]A", "T[C>G]C", "T[C>G]G", "T[C>G]T", "A[C>T]A", "A[C>T]C", "A[C>T]G", "A[C>T]T", "C[C>T]A", "C[C>T]C", "C[C>T]G", "C[C>T]T", "G[C>T]A", "G[C>T]C", "G[C>T]G", "G[C>T]T", "T[C>T]A", "T[C>T]C", "T[C>T]G", "T[C>T]T", "A[T>A]A", "A[T>A]C", "A[T>A]G", "A[T>A]T", "C[T>A]A", "C[T>A]C", "C[T>A]G", "C[T>A]T", "G[T>A]A", "G[T>A]C", "G[T>A]G", "G[T>A]T", "T[T>A]A", "T[T>A]C", "T[T>A]G", "T[T>A]T", "A[T>C]A", "A[T>C]C", "A[T>C]G", "A[T>C]T", "C[T>C]A", "C[T>C]C", "C[T>C]G", "C[T>C]T", "G[T>C]A", "G[T>C]C", "G[T>C]G", "G[T>C]T", "T[T>C]A", "T[T>C]C", "T[T>C]G", "T[T>C]T", "A[T>G]A", "A[T>G]C", "A[T>G]G", "A[T>G]T", "C[T>G]A", "C[T>G]C", "C[T>G]G", "C[T>G]T", "G[T>G]A", "G[T>G]C", "G[T>G]G", "G[T>G]T", "T[T>G]A", "T[T>G]C", "T[T>G]G", "T[T>G]T"] indel_categories = ["sample", "1:Del:C:0", "1:Del:C:1", "1:Del:C:2", "1:Del:C:3", "1:Del:C:4", "1:Del:C:5", "1:Del:T:0", "1:Del:T:1", "1:Del:T:2", "1:Del:T:3", "1:Del:T:4", "1:Del:T:5", "1:Ins:C:0", "1:Ins:C:1", "1:Ins:C:2", "1:Ins:C:3", "1:Ins:C:4", "1:Ins:C:5", "1:Ins:T:0", "1:Ins:T:1", "1:Ins:T:2", "1:Ins:T:3", "1:Ins:T:4", "1:Ins:T:5", "2:Del:R:0", "2:Del:R:1", "2:Del:R:2", "2:Del:R:3", "2:Del:R:4", "2:Del:R:5", "3:Del:R:0", "3:Del:R:1", "3:Del:R:2", "3:Del:R:3", "3:Del:R:4", "3:Del:R:5", "4:Del:R:0", "4:Del:R:1", "4:Del:R:2", "4:Del:R:3", "4:Del:R:4", "4:Del:R:5", "5:Del:R:0", "5:Del:R:1", "5:Del:R:2", "5:Del:R:3", "5:Del:R:4", "5:Del:R:5", "2:Ins:R:0", "2:Ins:R:1", "2:Ins:R:2", "2:Ins:R:3", "2:Ins:R:4", "2:Ins:R:5", "3:Ins:R:0", "3:Ins:R:1", "3:Ins:R:2", "3:Ins:R:3", "3:Ins:R:4", "3:Ins:R:5", "4:Ins:R:0", "4:Ins:R:1", "4:Ins:R:2", "4:Ins:R:3", "4:Ins:R:4", "4:Ins:R:5", "5:Ins:R:0", "5:Ins:R:1", "5:Ins:R:2", "5:Ins:R:3", "5:Ins:R:4", "5:Ins:R:5", "2:Del:M:1", "3:Del:M:1", "3:Del:M:2", "4:Del:M:1", "4:Del:M:2", "4:Del:M:3", "5:Del:M:1", "5:Del:M:2", "5:Del:M:3", "5:Del:M:4", "5:Del:M:5"] cnv_categories = ["sample", "BCper10mb_0", "BCper10mb_1", "BCper10mb_2", "BCper10mb_3", "CN_0", "CN_1", "CN_2", "CN_3", "CN_4", "CN_5", "CN_6", "CN_7", "CN_8", "CNCP_0", "CNCP_1", "CNCP_2", "CNCP_3", "CNCP_4", "CNCP_5", "CNCP_6", "CNCP_7", "BCperCA_0", "BCperCA_1", "BCperCA_2", "BCperCA_3", "BCperCA_4", "BCperCA_5", "SegSize_0", "SegSize_1", "SegSize_2", "SegSize_3", "SegSize_4", "SegSize_5", "SegSize_6", "SegSize_7", "SegSize_8", "SegSize_9", "SegSize_10", "CopyFraction_0", "CopyFraction_1", "CopyFraction_2", "CopyFraction_3", "CopyFraction_4", "CopyFraction_5", "CopyFraction_6"] #%% ========================================================== # make concat sig dataframe # ============================================================ def load_data(snv_counts_path, indel_counts_path, cnv_counts_path): df_snv = pd.read_csv(snv_counts_path, sep='\t', low_memory=False) df_snv = df_snv[snv_categories] df_snv["sample"] = df_snv["sample"].astype(str) df_indel =
pd.read_csv(indel_counts_path, sep='\t', low_memory=False)
pandas.read_csv
import ast import pandas as pd import matplotlib.pyplot as plt from matplotlib.lines import Line2D import math import numpy as np import json import os import os.path as path directory = '.' with open('config.json') as json_file: config = json.load(json_file) config['checkerboard_medium'] = { 'classes': 2, 'sota': 0.00 } factor = None #factor = 0.75 if factor: for dataset in config.keys(): config[dataset]['sota'] = config[dataset]['sota']*factor # Prepare df_results df_results =
pd.read_csv("results.csv")
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Script that collects RAMD data and determines what extra Replicas/ensembles need to be run/rerun. Created on Fri Jan 31 14:44:55 2020 @author: andrewpotterton """ ###Libraries import numpy as np from os import path import pandas as pd ###Functions def get_end_point(filename : str) -> int: ''' Args: filename = is the RAMDLOG file. Returns: Endpoint of simulations or np.nan if did not finish. ''' end_point = np.nan #sets default returned value as np.nan value (so if the end of the file is not EXIT line then np.nan is returned) with open(filename, 'r') as f: #gets the last line of the RAMDLOG file lines = f.read().splitlines() last_line = lines[-1] last_line = last_line.split(' ') #split last line by spaces if last_line[0] == 'EXIT:': #if line starts with EXIT, must be the exit line. Therefore simulation finished. end_point = int(last_line[1]) #assigns the end point as the frame number. return end_point def get_pandas_DF(ligand_name : str): ''' Args: is the ligand name as a string (name of RAMDLOG_[CGS].log) Returns: pandas DataFrame of Ensemble and replica data for each ligand ''' globals()['column_names'] = ['Ensemble1', 'Ensemble2', 'Ensemble3', 'Ensemble4', 'Ensemble5', 'Ensemble6', 'Ensemble7', 'Ensemble8'] globals()['row_names'] = ['Rep1','Rep2','Rep3','Rep4','Rep5','Rep6','Rep7','Rep8','Rep9','Rep10','Rep11','Rep12','Rep13','Rep14','Rep15','Rep16','Rep17','Rep18','Rep19','Rep20','Rep21','Rep22','Rep23','Rep24','Rep25'] Ensemble_values =[] for Ensemble_no in range(1,9): Replica_values =[] for Rep in range(1,26): if path.exists('Ensemble'+str(Ensemble_no)+'/Rep'+str(Rep)+'/RAMDLOG_'+ligand_name+'.log'): rep_value = get_end_point('Ensemble'+str(Ensemble_no)+'/Rep'+str(Rep)+'/RAMDLOG_'+ligand_name+'.log') Replica_values.append(rep_value) else: Replica_values.append(np.nan) Ensemble_values.append(Replica_values) #Transforms Ensemble_values list of lists to DataFrame. columns and index are inversed as in the next step, the dataframe is transposed DataFrame =
pd.DataFrame(Ensemble_values,columns=row_names, index=column_names)
pandas.DataFrame
from __future__ import print_function from datetime import datetime import pandas as pd import numpy as np from pandas.testing import assert_frame_equal import ulmo import test_util message_test_sets = [ { 'dcp_address': 'C5149430', 'parser': 'twdb_stevens', 'message_timestamp': "/Date(1559316497303)/", }, { 'dcp_address': 'C514D73A', 'parser': 'twdb_sutron', 'message_timestamp': "/Date(1559158095000)/", }, { 'dcp_address': 'C516C1B8', 'parser': 'stevens', 'message_timestamp': "/Date(1559569431753)/", } ] def test_parse_dcp_message_timestamp(): for test_set in message_test_sets: dcp_data_file = 'noaa/goes/' + test_set['dcp_address'] + '.txt' with test_util.mocked_urls(dcp_data_file, force=True): data = ulmo.noaa.goes.get_data(test_set['dcp_address'], hours=12) assert data['message_timestamp_utc'][-1] == datetime.fromtimestamp( int(test_set['message_timestamp'].strip('/Date()'))/1000 ) assert data['message_timestamp_utc'][-1] == datetime.fromtimestamp( int(test_set['message_timestamp'].strip('/Date()'))/1000 ) twdb_stevens_test_sets = [ { 'message_timestamp_utc': datetime(2013, 10, 30, 15, 28, 18), 'dcp_message': '"BV:11.9 193.76$ 193.70$ 193.62$ 193.54$ 193.49$ 193.43$ 193.37$ 199.62$ 200.51$ 200.98$ 195.00$ 194.33$ ', 'dcp_address': '', 'return_value': [ ['2013-10-30 15:00:00', 'bv', 11.90], ['2013-10-30 15:00:00', 'wl', 193.76], ['2013-10-30 14:00:00', 'wl', 193.70], ['2013-10-30 13:00:00', 'wl', 193.62], ['2013-10-30 12:00:00', 'wl', 193.54], ['2013-10-30 11:00:00', 'wl', 193.49], ['2013-10-30 10:00:00', 'wl', 193.43], ['2013-10-30 09:00:00', 'wl', 193.37], ['2013-10-30 08:00:00', 'wl', 199.62], ['2013-10-30 07:00:00', 'wl', 200.51], ['2013-10-30 06:00:00', 'wl', 200.98], ['2013-10-30 05:00:00', 'wl', 195.00], ['2013-10-30 04:00:00', 'wl', 194.33], ], }, { 'message_timestamp_utc': datetime(2013, 10, 30, 15, 28, 18), 'dcp_message': '"BV:12.6 Channel:5 Time:28 +304.63 +304.63 +304.63 +304.56 +304.63 +304.63 +304.63 +304.63 +304.63 +304.63 +304.63 +304.71 Channel:6 Time:28 +310.51 +310.66 +310.59 +310.51 +310.51 +310.59 +310.59 +310.51 +310.66 +310.51 +310.66 +310.59 ', 'dcp_address': '', 'return_value': [ ['2013-10-30 15:00:00', 'bv', 12.60], ['2013-10-30 15:00:00', 'time', 28.00], ['2013-10-30 15:00:00', 'time', 28.00], ['2013-10-30 15:00:00', '5', 304.63], ['2013-10-30 14:00:00', '5', 304.63], ['2013-10-30 13:00:00', '5', 304.63], ['2013-10-30 12:00:00', '5', 304.56], ['2013-10-30 11:00:00', '5', 304.63], ['2013-10-30 10:00:00', '5', 304.63], ['2013-10-30 09:00:00', '5', 304.63], ['2013-10-30 08:00:00', '5', 304.63], ['2013-10-30 07:00:00', '5', 304.63], ['2013-10-30 06:00:00', '5', 304.63], ['2013-10-30 05:00:00', '5', 304.63], ['2013-10-30 04:00:00', '5', 304.71], ['2013-10-30 15:00:00', '6', 310.51], ['2013-10-30 14:00:00', '6', 310.66], ['2013-10-30 13:00:00', '6', 310.59], ['2013-10-30 12:00:00', '6', 310.51], ['2013-10-30 11:00:00', '6', 310.51], ['2013-10-30 10:00:00', '6', 310.59], ['2013-10-30 09:00:00', '6', 310.59], ['2013-10-30 08:00:00', '6', 310.51], ['2013-10-30 07:00:00', '6', 310.66], ['2013-10-30 06:00:00', '6', 310.51], ['2013-10-30 05:00:00', '6', 310.66], ['2013-10-30 04:00:00', '6', 310.59], ] }, { 'message_timestamp_utc': datetime(2013, 10, 30, 15, 28, 18), 'dcp_message': '"BV:12.6 ', 'dcp_address': '', 'return_value': [ ['2013-10-30 15:00:00', 'bv', 12.60], ] }, { 'message_timestamp_utc': datetime(2013, 10, 30, 15, 28, 18), 'dcp_message': """ 79."$}X^pZBF8iB~i>>Xmj[bvr^Zv%JXl,DU=l{uu[ time(|@2q^sjS!""", 'dcp_address': '', 'return_value': pd.DataFrame() }, ] def test_parser_twdb_stevens(): for test_set in twdb_stevens_test_sets: print('testing twdb_stevens parser') if isinstance(test_set['return_value'], pd.DataFrame): parser = getattr(ulmo.noaa.goes.parsers, 'twdb_stevens') assert_frame_equal(
pd.DataFrame()
pandas.DataFrame
import requests as req import json import pandas as pd import matplotlib.pyplot as plt import seaborn as sb import networkx as nx import re import os, time, math from gensim.models import Word2Vec sb.set() # data folder path data_filepath = "static/data/tags.csv" def file_update_time(): """ returns true if tags file is not updated for more than 2 days""" filepath = "static/data/update_time.txt" # file of interests two_days_in_seconds = 172800 # file reupdates in two days with open(filepath, "r+") as file: modification_time = file.read() modified_time = int(modification_time.split()[-1]) time_difference = time.time() - modified_time return time_difference >= two_days_in_seconds def convert_to_json(json_data): """convert json to python list format""" list_data = [] dict_data = json.loads(json_data) for item in dict_data["items"]: list_data.append([item["tags"]]) list_data_flatten = [item for item in list_data] return list_data_flatten def get_stackexg_data(): """get json-format data from stackexg pages""" number_of_pages = 120 # how many web pages wants to scrape number_of_records = 10000 # number of rows of tags wanted tags = [] for page_number in range(1, number_of_pages + 1): data_science_url = "https://api.stackexchange.com/2.2/questions?page={}&pagesize=100&order=desc&sort=activity&site=datascience".format( page_number ) if len(tags) == number_of_records: break req_json_data = req.get(data_science_url) # check if stackexg api blocks request from the the ip address if not file_update_time(): break # break the loop if it is before update time if ( req_json_data.status_code == 200 ): # check request is successful before parsing webpage data rows_list_data = convert_to_json(req_json_data.text) for row in rows_list_data: tags.append(row) else: print("error due to many requests from this ip address.") if len(tags) >= number_of_records: # initialize an empty dataframe, write the tags into dataframe. df =
pd.DataFrame(tags, columns=["tags"])
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import logging import os import time import mshoot # Random seed np.random.seed(12345) # Paths ms_file = os.path.join('examples', 'bs2019', 'measurements.csv') fmu_dir = os.path.join('examples', 'bs2019', 'case1', 'models') # FMU list fmus = os.listdir(fmu_dir) # Simulation period t0 = '2018-04-05 00:00:00' t1 = '2018-04-08 00:00:00' # Read measurements ms = pd.read_csv(ms_file) ms['datetime'] =
pd.to_datetime(ms['datetime'])
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Thu Jun 30 10:34:37 2016 @author: slauniai """ import numpy as np import pandas as pd import os import matplotlib.pyplot as plt eps = np.finfo(float).eps # machine epsilon def clear_console(): """ clears Spyder console window - does not affect namespace """ import os clear = lambda: os.system('cls') clear() return None """ ******* Get forcing data for FIHy and FICage sites ******** """ def read_HydeDaily(filename): cols=['time','doy','NEE','GPP','TER','ET','H','NEEflag','ETflag','Hflag','Par','Rnet','Ta','VPD','CO2','PrecSmear','Prec','U','Pamb', 'SWE0','SWCh','SWCa','SWCb','SWCc', 'Tsh','Tsa','Tsb','Tsc','RnetFlag','Trfall','Snowdepth','Snowdepthstd','SWE','SWEstd','Roff1','Roff2'] dat=pd.read_csv(filename,sep='\s+',header=None, names=None, parse_dates=[[0,1,2]], keep_date_col=False) dat.columns=cols dat.index=dat['time']; dat=dat.drop(['time','SWE0'],axis=1) forc=dat[['doy','Ta','VPD','Prec','Par','U']]; forc['Par']= 1/4.6*forc['Par']; forc['Rg']=2.0*forc['Par'] forc['VPD'][forc['VPD']<=0]=eps #relatively extractable water, Hyde A-horizon #poros = 0.45 fc = 0.30 wp = 0.10 Wliq = dat['SWCa'] Rew = np.maximum( 0.0, np.minimum( (Wliq-wp)/(fc - wp + eps), 1.0) ) forc['Rew'] = Rew forc['CO2'] = 380.0 # beta, soil evaporation parameter #forc['beta'] = Wliq / fc return dat, forc def read_CageDaily(filepath): cols=['time','doy','NEE','GPP','TER','ET','H','NEEflag','ETflag','Hflag','Par','Rnet','Ta','VPD','CO2','SWCa','PrecSmear','Prec','U','Pamb'] dat1=
pd.read_csv(filepath + 'HydeCage4yr-2000.txt',sep='\s+',header=None, names=None, parse_dates=[[0,1,2]], keep_date_col=False)
pandas.read_csv
from kfp.v2.dsl import (Dataset, Input, Output) def calc_market_watch( date_ref: str, # comp_result : str, ): import pandas as pd import numpy as np import pandas_gbq # type: ignore import time from trading_calendars import get_calendar cal_krx = get_calendar('XKRX') from pandas.tseries.offsets import CustomBusinessDay cbday = CustomBusinessDay(holidays=cal_krx.adhoc_holidays) def get_df_market(date_ref, n_before): date_ref_ = pd.Timestamp(date_ref).strftime('%Y-%m-%d') date_ref_b = (pd.Timestamp(date_ref) - pd.Timedelta(n_before, 'd')).strftime('%Y-%m-%d') sql = f''' SELECT * FROM `dots-stock.red_lion.df_markets_clust_parti` WHERE date between "{date_ref_b}" and "{date_ref_}" ''' PROJECT_ID = 'dots-stock' df = pandas_gbq.read_gbq(sql, project_id=PROJECT_ID, use_bqstorage_api=True) df = df.drop_duplicates() return df df_markets_1 =get_df_market(date_ref, 20) def get_n_day_straight_up(NN): df_markets_ = (df_markets_1 [lambda df: df.date >= pd.Timestamp(date_ref) - (NN-1) * cbday ] .sort_values('date', ascending=True) ) l_N_d_up = (df_markets_ [lambda df: df.Open != 0] # Open 가격이 0 인 경우 그날 거래 없었던 것 .assign( oc=lambda df: (df.Close - df.Open)/df.Open, ) [lambda df: df.oc > 0] [lambda df: df.ChagesRatio > 0] .groupby(['Name']) [['Code']].agg('count') .rename(columns={'Code':'count_Nd_up'}) [lambda df: df.count_Nd_up == NN] ).index.to_list() return l_N_d_up def get_n_day_straight_dn(NN): df_markets_ = (df_markets_1 [lambda df: df.date >= pd.Timestamp(date_ref) - (NN-1) * cbday ] .sort_values('date', ascending=True) ) l_N_d_up = (df_markets_ [lambda df: df.Open != 0] # Open 가격이 0 인 경우 그날 거래 없었던 것 .assign( oc=lambda df: (df.Close - df.Open)/df.Open, ) [lambda df: df.oc < 0] [lambda df: df.ChagesRatio < 0] .groupby(['Name']) [['Code']].agg('count') .rename(columns={'Code':'count_Nd_up'}) [lambda df: df.count_Nd_up == NN] ).index.to_list() return l_N_d_up def get_n_day_straight_up_last_dn(NN): '''연속 몇일 오르고 마지막 내린 종목 Return : list 종목명 ''' df_markets_ = (df_markets_1 [lambda df: df.date >= pd.Timestamp(date_ref) - (NN-1) * cbday ] .sort_values('date', ascending=True) ) l_Nd_dn_last_up = (df_markets_ [lambda df: df.Open != 0] # Open 가격이 0 인 경우 그날 거래 없었던 것 .assign( oc=lambda df: (df.Close - df.Open)/df.Open, last_day=lambda df: df['date'] == pd.Timestamp(date_ref), last_day_down = lambda df: (df.last_day == True) & (df.oc < 0), rest_day_up = lambda df: (df.last_day == False) & (df.oc > 0), both_met = lambda df: (df.last_day_down | df.rest_day_up), ) # filter 조건 맞는 경우만 .loc[lambda df: df.both_met == True] # groupby 해서 조건맞는 경우가 종목당 6개 인지 확인 .groupby('Name') [['Code']].agg('count') .rename(columns={'Code':'count_Nd_up'}) [lambda df: df.count_Nd_up == NN] # [lambda df: df['Code'] == NN] ).index.to_list() return l_Nd_dn_last_up def get_n_day_straight_dn_last_up(NN): '''연속 몇일 내리고 마지막 오른 종목 Return : list 종목명 ''' df_markets_ = (df_markets_1 [lambda df: df.date >=
pd.Timestamp(date_ref)
pandas.Timestamp
#!/usr/bin/python """script to generate stimuli """ import numpy as np from matplotlib import pyplot as plt import itertools import pandas as pd import scipy.io as sio import seaborn as sns import os import argparse import json def bytescale_func(data, cmin=None, cmax=None, high=254, low=0): """ Byte scales an array (image). Byte scaling means converting the input image to uint8 dtype and scaling the range to ``(low, high)`` (default 0-254, so that mid is 127). If the input image already has dtype uint8, no scaling is done. This is copied from scipy.misc, where it is deprecated Parameters ---------- data : ndarray PIL image data array. cmin : scalar, optional Bias scaling of small values. Default is ``data.min()``. cmax : scalar, optional Bias scaling of large values. Default is ``data.max()``. high : scalar, optional Scale max value to `high`. Default is 254. low : scalar, optional Scale min value to `low`. Default is 0. Returns ------- img_array : uint8 ndarray The byte-scaled array. Examples -------- >>> import numpy as np >>> from sfp.utils import bytescale >>> img = np.array([[ 91.06794177, 3.39058326, 84.4221549 ], ... [ 73.88003259, 80.91433048, 4.88878881], ... [ 51.53875334, 34.45808177, 27.5873488 ]]) >>> bytescale(img) array([[255, 0, 236], [205, 225, 4], [140, 90, 70]], dtype=uint8) >>> bytescale(img, high=200, low=100) array([[200, 100, 192], [180, 188, 102], [155, 135, 128]], dtype=uint8) >>> bytescale(img, cmin=0, cmax=255) array([[91, 3, 84], [74, 81, 5], [52, 34, 28]], dtype=uint8) """ if data.dtype == np.uint8: return data if high > 255: raise ValueError("`high` should be less than or equal to 255.") if low < 0: raise ValueError("`low` should be greater than or equal to 0.") if high < low: raise ValueError("`high` should be greater than or equal to `low`.") if cmin is None: cmin = data.min() if cmax is None: cmax = data.max() cscale = cmax - cmin if cscale < 0: raise ValueError("`cmax` should be larger than `cmin`.") elif cscale == 0: cscale = 1 scale = float(high - low) / cscale bytedata = (data - cmin) * scale + low return (bytedata.clip(low, high) + 0.5).astype(np.uint8) def mkR(size, exponent=1, origin=None): '''make distance-from-origin (r) matrix Compute a matrix of dimension SIZE (a [Y X] list/tuple, or a scalar) containing samples of a radial ramp function, raised to power EXPONENT (default = 1), with given ORIGIN (default = (size+1)//2, (0, 0) = upper left). NOTE: the origin is not rounded to the nearest int ''' if not hasattr(size, '__iter__'): size = (size, size) if origin is None: origin = ((size[0]+1)/2., (size[1]+1)/2.) elif not hasattr(origin, '__iter__'): origin = (origin, origin) xramp, yramp = np.meshgrid(np.arange(1, size[1]+1)-origin[1], np.arange(1, size[0]+1)-origin[0]) if exponent <= 0: # zero to a negative exponent raises: # ZeroDivisionError: 0.0 cannot be raised to a negative power r = xramp ** 2 + yramp ** 2 res = np.power(r, exponent / 2.0, where=(r != 0)) else: res = (xramp ** 2 + yramp ** 2) ** (exponent / 2.0) return res def mkAngle(size, phase=0, origin=None): '''make polar angle matrix (in radians) Compute a matrix of dimension SIZE (a [Y X] list/tuple, or a scalar) containing samples of the polar angle (in radians, CW from the X-axis, ranging from -pi to pi), relative to angle PHASE (default = 0), about ORIGIN pixel (default = (size+1)/2). NOTE: the origin is not rounded to the nearest int ''' if not hasattr(size, '__iter__'): size = (size, size) if origin is None: origin = ((size[0]+1)/2., (size[1]+1)/2.) elif not hasattr(origin, '__iter__'): origin = (origin, origin) xramp, yramp = np.meshgrid(np.arange(1, size[1]+1)-origin[1], np.arange(1, size[0]+1)-origin[0]) xramp = np.array(xramp) yramp = np.array(yramp) res = np.arctan2(yramp, xramp) res = ((res+(np.pi-phase)) % (2*np.pi)) - np.pi return res def log_polar_grating(size, w_r=0, w_a=0, phi=0, ampl=1, origin=None, scale_factor=1): """Make a sinusoidal grating in logPolar space. this allows for the easy creation of stimuli whose spatial frequency decreases with eccentricity, as the peak spatial frequency of neurons in the early visual cortex does. Examples ============ radial: `log_polar_grating(512, 4, 10)` angular: `log_polar_grating(512, 4, w_a=10)` spiral: `log_polar_grating(512, 4, 10, 10)` plaid: `log_polar_grating(512, 4, 10) + log_polar_grating(512, 4, w_a=10)` Parameters ============= size: scalar. size of the image (only square images permitted). w_r: int, logRadial frequency. Units are matched to those of the angular frequency (`w_a`). w_a: int, angular frequency. Units are cycles per revolution around the origin. phi: int, phase (in radians). ampl: int, amplitude origin: 2-tuple of floats, the origin of the image, from which all distances will be measured and angles will be relative to. By default, the center of the image scale_factor: int or float. how to scale the distance from the origin before computing the grating. this is most often done for checking aliasing; e.g., set size_2 = 100*size_1 and scale_factor_2 = 100*scale_factor_1. then the two gratings will have the same pattern, just sampled differently """ assert not hasattr(size, '__iter__'), "Only square images permitted, size must be a scalar!" rad = mkR(size, origin=origin)/scale_factor # if the origin is set such that it lies directly on a pixel, then one of the pixels will have # distance 0, that means we'll have a -inf out of np.log2 and thus a nan from the cosine. this # little hack avoids that issue. if 0 in rad: rad += 1e-12 lrad = np.log2(rad**2) theta = mkAngle(size, origin=origin) return ampl * np.cos(((w_r * np.log(2))/2) * lrad + w_a * theta + phi) def _create_better_sampled_grating(orig_size, w_r=0, w_a=0, phi=0, ampl=1, orig_origin=None, orig_scale_factor=1, check_scale_factor=99): if check_scale_factor % 2 == 0: raise Exception("For this aliasing check to work, the check_scale_factor must be odd!") if orig_origin is None: origin = None else: # this preserves origin's shape, regardless of whether it's an iterable or a scalar origin = np.array(orig_origin) * check_scale_factor - (check_scale_factor - 1)/2 return log_polar_grating(orig_size*check_scale_factor, w_r, w_a, phi, ampl, origin, orig_scale_factor*check_scale_factor) def aliasing_plot(better_sampled_stim, stim, slices_to_check=None, axes=None, **kwargs): """Plot to to check aliasing. This does not create the stimuli, only plots them (see `check_aliasing` or `check_aliasing_with mask` for functions that create the stimuli and then call this to plot them) to add to an existing figure, pass axes (else a new one will be created) """ size = stim.shape[0] check_scale_factor = better_sampled_stim.shape[0] // size if slices_to_check is None: slices_to_check = [(size+1)//2] elif not hasattr(slices_to_check, '__iter__'): slices_to_check = [slices_to_check] if axes is None: fig, axes = plt.subplots(ncols=len(slices_to_check), squeeze=False, figsize=(5*len(slices_to_check), 5), **kwargs) # with squeeze=False, this will always be a 2d array, but because we only set ncols, it # will only have axes in one dimension axes = axes[0] x0 = np.array(list(range(size))) / float(size) + 1./(size*2) x1 = (np.array(list(range(better_sampled_stim.shape[0]))) / float(better_sampled_stim.shape[0]) + 1./(better_sampled_stim.shape[0]*2)) for i, ax in enumerate(axes): ax.plot(x1, better_sampled_stim[:, check_scale_factor*slices_to_check[i] + (check_scale_factor - 1)//2]) ax.plot(x0, stim[:, slices_to_check[i]], 'o:') def check_aliasing(size, w_r=0, w_a=0, phi=0, ampl=1, origin=None, scale_factor=1, slices_to_check=None, check_scale_factor=99): """Create a simple plot to visualize aliasing arguments are mostly the same as for log_polar_grating. this creates both the specified stimulus, `orig_stim`, and a `better_sampled_stim`, which has `check_scale_factor` more points in each direction. both gratings are returned and a quick plot is generated. NOTE that because this requires creating a much larger gradient, it can take a while. Reduce `check_scale_factor` to speed it up (at the risk of your "ground truth" becoming aliased) slices_to_check: list, None, or int. slices of the stimulus to plot. if None, will plot center """ orig_stim = log_polar_grating(size, w_r, w_a, phi, ampl, origin, scale_factor) better_sampled_stim = _create_better_sampled_grating(size, w_r, w_a, phi, ampl, origin, scale_factor, check_scale_factor) aliasing_plot(better_sampled_stim, orig_stim, slices_to_check) return orig_stim, better_sampled_stim def _fade_mask(mask, inner_number_of_fade_pixels, outer_number_of_fade_pixels, origin=None): """note that mask must contain 0s where you want to mask out, 1s elsewhere """ # if there's no False in mask, then we don't need to mask anything out. and if there's only # False, we don't need to fade anything. and if there's no fade pixels, then we don't fade # anything if False not in mask or True not in mask or (inner_number_of_fade_pixels == 0 and outer_number_of_fade_pixels == 0): return mask size = mask.shape[0] rad = mkR(size, origin=origin) inner_rad = (mask*rad)[(mask*rad).nonzero()].min() # in this case, there really isn't an inner radius, just an outer one, so we ignore this if inner_rad == rad.min(): inner_rad = 0 inner_number_of_fade_pixels = 0 outer_rad = (mask*rad).max() # in order to get the right number of pixels to act as transition, we set the frequency based # on the specified number_of_fade_pixels def inner_fade(x): if inner_number_of_fade_pixels == 0: return (-np.cos(2*np.pi*(x-inner_rad) / (size/2.))+1)/2 inner_fade_freq = (size/2.) / (2*inner_number_of_fade_pixels) return (-np.cos(inner_fade_freq*2*np.pi*(x-inner_rad) / (size/2.))+1)/2 def outer_fade(x): if outer_number_of_fade_pixels == 0: return (-np.cos(2*np.pi*(x-outer_rad) / (size/2.))+1)/2 outer_fade_freq = (size/2.) / (2*outer_number_of_fade_pixels) return (-np.cos(outer_fade_freq*2*np.pi*(x-outer_rad) / (size/2.))+1)/2 faded_mask = np.piecewise(rad, [rad < inner_rad, (rad >= inner_rad) & (rad <= (inner_rad + inner_number_of_fade_pixels)), (rad > (inner_rad + inner_number_of_fade_pixels)) & (rad < outer_rad - outer_number_of_fade_pixels), (rad >= outer_rad - outer_number_of_fade_pixels) & (rad <= (outer_rad)), (rad > (outer_rad))], [0, inner_fade, 1, outer_fade, 0]) return faded_mask def _calc_sf_analytically(x, y, stim_type='logpolar', w_r=None, w_a=None, w_x=None, w_y=None): """helper function that calculates spatial frequency (in cpp) this should NOT be called directly. it is the function that gets called by `sf_cpp` and `create_sf_maps_cpp`. """ if stim_type == 'logpolar': if w_r is None or w_a is None or w_x is not None or w_y is not None: raise Exception("When stim_type is %s, w_r / w_a must be set and w_x / w_y must be" " None!" % stim_type) elif stim_type == 'constant': if w_r is not None or w_a is not None or w_x is None or w_y is None: raise Exception("When stim_type is constant, w_x / w_y must be set and w_a / w_r must" " be None!") else: raise Exception("Don't know how to handle stim_type %s!" % stim_type) # we want to approximate the spatial frequency of our log polar gratings. We can do that using # the first two terms of the Taylor series. Since our gratings are of the form cos(g(X)) (where # X contains both x and y values), then to approximate them at location X_0, we'll use # cos(g(X_0) + g'(X_0)(X-X_0)), where g'(X_0) is the derivative of g at X_0 (with separate x # and y components). g(X_0) is the phase of the approximation and so not important here, but # that g'(X_0) is the local spatial frequency that we're interested in. Thus we take the # derivative of our log polar grating function with respect to x and y in order to get dx and # dy, respectively (after some re-arranging and cleaning up). the constant stimuli, by # definition, have a constant spatial frequency every where in the image. if stim_type == 'logpolar': dy = (y * w_r + w_a * x) / (x**2 + y**2) dx = (x * w_r - w_a * y) / (x**2 + y**2) elif stim_type == 'constant': try: size = x.shape dy = w_y * np.ones((size, size)) dx = w_x * np.ones((size, size)) # if x is an int, this will raise a SyntaxError; if it's a float, it will raise an # AttributeError; if it's an array with a single value (e.g., np.array(1), not # np.array([1])), then it will raise a TypeError except (SyntaxError, TypeError, AttributeError): dy = w_y dx = w_x if stim_type == 'logpolar': # Since x, y are in pixels (and so run from ~0 to ~size/2), dx and dy need to be divided by # 2*pi in order to get the frequency in cycles / pixel. This is analogous to the 1d case: # if x runs from 0 to 1 and f(x) = cos(w * x), then the number of cycles in f(x) is w / # 2*pi. (the values for the constant stimuli are given in cycles per pixel already) dy /= 2*np.pi dx /= 2*np.pi # I want this to lie between 0 and 2*pi, because otherwise it's confusing direction = np.mod(np.arctan2(dy, dx), 2*np.pi) return dx, dy, np.sqrt(dx**2 + dy**2), direction def sf_cpp(eccen, angle, stim_type='logpolar', w_r=None, w_a=None, w_x=None, w_y=None): """calculate the spatial frequency in cycles per pixel. this function returns spatial frequency values; it returns values that give the spatial frequency at the point specified by x, y (if you instead want a map showing the spatial frequency everywhere in the specified stimulus, use `create_sf_maps_cpp`). returns four values: the spatial frequency in the x direction (dx), the spatial frequency in the y direction (dy), the magnitude (sqrt(dx**2 + dy**2)) and the direction (arctan2(dy, dx)) In most cases, you want the magnitude, as this is the local spatial frequency of the specified grating at that point. NOTE: for this to work, the zero for the angle you're passing in must correspond to the right horizontal meridian, angle should lie between 0 and 2*pi, and you should move clockwise as angle increases. This is all so it corresponds to the values for the direction of the spatial frequency. eccen, angle: floats. The location you want to find the spatial frequency for, in polar coordinates. eccen should be in pixels, NOT degrees. angle should be in radians. stim_type: {'logpolar', 'constant'}. which type of stimuli to generate the spatial frequency map for. This matters because we determine the spatial frequency maps analytically and so *cannot* do so in a stimulus-driven manner. if 'logpolar', the log-polar gratings created by log_polar_grating. if 'constant', the constant gratings created by create_sin_cpp (and gen_constant_stim_set). If 'constant', then w_x and w_y must be set, w_r and w_a must be None; if 'logpolar', then the opposite. """ x = eccen * np.cos(angle) y = eccen * np.sin(angle) if x == 0: x += 1e-12 if y == 0: y += 1e-12 return _calc_sf_analytically(x, y, stim_type, w_r, w_a, w_x, w_y) def sf_cpd(eccen, angle, pixel_diameter=714, degree_diameter=8.4, stim_type='logpolar', w_r=None, w_a=None, w_x=None, w_y=None): """calculate the spatial frequency in cycles per degree. this function returns spatial frequency values; it returns values that give the spatial frequency at the point specified by x, y (if you instead want a map showing the spatial frequency everywhere in the specified stimulus, use `create_sf_maps_cpp`). returns four values: the spatial frequency in the x direction (dx), the spatial frequency in the y direction (dy), the magnitude (sqrt(dx**2 + dy**2)) and the direction (arctan2(dy, dx)) In most cases, you want the magnitude, as this is the local spatial frequency of the specified grating at that point. NOTE: for this to work, the zero for the angle you're passing in must correspond to the right horizontal meridian, angle should lie between 0 and 2*pi, and you should move clockwise as angle increases. This is all so it corresponds to the values for the direction of the spatial frequency. degree_diameter: int, the visual angle (in degrees) corresponding to the diameter of the full image eccen, angle: floats. The location you want to find the spatial frequency for, in polar coordinates. eccen should be in degrees (NOT pixels). angle should be in radians. stim_type: {'logpolar', 'constant'}. which type of stimuli to generate the spatial frequency map for. This matters because we determine the spatial frequency maps analytically and so *cannot* do so in a stimulus-driven manner. if 'logpolar', the log-polar gratings created by log_polar_grating. if 'constant', the constant gratings created by create_sin_cpp (and gen_constant_stim_set). If 'constant', then w_x and w_y must be set, w_r and w_a must be None; if 'logpolar', the opposite. """ conversion_factor = degree_diameter / pixel_diameter # this is in degrees, so we divide it by deg/pix to get the eccen in pix eccen /= conversion_factor dx, dy, magnitude, direction = sf_cpp(eccen, angle, stim_type, w_r, w_a, w_x, w_y) # these are all in cyc/pix, so we divide them by deg/pix to get them in cyc/deg dx /= conversion_factor dy /= conversion_factor magnitude /= conversion_factor return dx, dy, magnitude, direction def sf_origin_polar_cpd(eccen, angle, pixel_diameter=714, degree_diameter=8.4, stim_type='logpolar', w_r=None, w_a=None, w_x=None, w_y=None): """calculate the local origin-referenced polar spatial frequency (radial/angular) in cpd returns the local spatial frequency with respect to the radial and angular directions. NOTE: for this to work, the zero for the angle you're passing in must correspond to the right horizontal meridian, angle should lie between 0 and 2*pi, and you should move clockwise as angle increases. This is all so it corresponds to the values for the direction of the spatial frequency. pixel_diameter: int, the visual angle (in degrees) corresponding to the diameter of the full image eccen, angle: floats. The location you want to find the spatial frequency for, in polar coordinates. eccen should be in degrees (NOT pixels). angle should be in radians. stim_type: {'logpolar', 'constant'}. which type of stimuli to generate the spatial frequency map for. This matters because we determine the spatial frequency maps analytically and so *cannot* do so in a stimulus-driven manner. if 'logpolar', the log-polar gratings created by log_polar_grating. if 'constant', the constant gratings created by create_sin_cpp (and gen_constant_stim_set). If 'constant', then w_x and w_y must be set, w_r and w_a must be None; if 'logpolar', then the opposite. """ _, _, mag, direc = sf_cpd(eccen, angle, pixel_diameter, degree_diameter, stim_type, w_r, w_a, w_x, w_y) new_angle = np.mod(direc - angle, 2*np.pi) dr = mag * np.cos(new_angle) da = mag * np.sin(new_angle) return dr, da, new_angle def create_sf_maps_cpp(pixel_diameter=714, origin=None, scale_factor=1, stim_type='logpolar', w_r=None, w_a=None, w_x=None, w_y=None): """Create maps of spatial frequency in cycles per pixel. this function creates spatial frequency maps; that is, it returns images that show the spatial frequency everywhere in the specified stimulus (if you instead want the spatial frequency at a specific point, use `sf_cpp`). returns four maps: the spatial frequency in the x direction (dx), the spatial frequency in the y direction (dy), the magnitude (sqrt(dx**2 + dy**2)) and the direction (arctan2(dy, dx)) In most cases, you want the magnitude, as this is the local spatial frequency of the corresponding log polar grating at that point. stim_type: {'logpolar', 'constant'}. which type of stimuli to generate the spatial frequency map for. This matters because we determine the spatial frequency maps analytically and so *cannot* do so in a stimulus-driven manner. if 'logpolar', the log-polar gratings created by log_polar_grating. if 'constant', the constant gratings created by create_sin_cpp (and gen_constant_stim_set). If 'constant', then w_x and w_y must be set, w_r and w_a must be None; if 'logpolar', then the opposite. """ assert not hasattr(pixel_diameter, '__iter__'), "Only square images permitted, pixel_diameter must be a scalar!" pixel_diameter = int(pixel_diameter) if origin is None: origin = ((pixel_diameter+1) / 2., (pixel_diameter+1) / 2.) # we do this in terms of x and y x, y = np.divide(np.meshgrid(np.array(list(range(1, pixel_diameter+1))) - origin[0], np.array(list(range(1, pixel_diameter+1))) - origin[1]), scale_factor) # if the origin is set such that it lies directly on a pixel, then one of the pixels will have # distance 0 and that means we'll have a divide by zero coming up. this little hack avoids that # issue. if 0 in x: x += 1e-12 if 0 in y: y += 1e-12 return _calc_sf_analytically(x, y, stim_type, w_r, w_a, w_x, w_y) def create_sf_maps_cpd(pixel_diameter=714, degree_diameter=7.4, origin=None, scale_factor=1, stim_type='logpolar', w_r=None, w_a=None, w_x=None, w_y=None): """Create map of the spatial frequency in cycles per degree of visual angle this function creates spatial frequency maps; that is, it returns images that show the spatial frequency everywhere in the specified stimulus (if you instead want the spatial frequency at a specific point, use `sf_cpp`). returns four maps: the spatial frequency in the x direction (dx), the spatial frequency in the y direction (dy), the magnitude (sqrt(dx**2 + dy**2)) and the direction (arctan2(dy, dx)) In most cases, you want the magnitude, as this is the local spatial frequency of the corresponding log polar grating at that point """ conversion_factor = degree_diameter / pixel_diameter dx, dy, mag, direc = create_sf_maps_cpp(pixel_diameter, origin, scale_factor, stim_type, w_r, w_a, w_x, w_y) dx /= conversion_factor dy /= conversion_factor mag /= conversion_factor return dx, dy, mag, direc def create_sf_origin_polar_maps_cpd(pixel_diameter=714, degree_diameter=8.4, origin=None, scale_factor=1, stim_type='logpolar', w_r=None, w_a=None, w_x=None, w_y=None): """create map of the origin-referenced polar spatial frequency (radial/angular) in cpd returns maps of the spatial frequency with respect to the radial and angular directions. degree_diameter: int, the visual angle (in degrees) corresponding to the diameter of the full image stim_type: {'logpolar', 'constant'}. which type of stimuli to generate the spatial frequency map for. This matters because we determine the spatial frequency maps analytically and so *cannot* do so in a stimulus-driven manner. if 'logpolar', the log-polar gratings created by log_polar_grating. if 'constant', the constant gratings created by create_sin_cpp (and gen_constant_stim_set).If 'constant', then w_x and w_y must be set, w_r and w_a must be None; if 'logpolar', then the opposite. """ _, _, mag, direc = create_sf_maps_cpd(pixel_diameter, degree_diameter, origin, scale_factor, stim_type, w_r, w_a, w_x, w_y) angle = mkAngle(pixel_diameter, origin=origin) new_angle = np.mod(direc - angle, 2*np.pi) dr = mag * np.cos(new_angle) da = mag * np.sin(new_angle) return dr, da, new_angle def create_antialiasing_mask(size, w_r=0, w_a=0, origin=None, number_of_fade_pixels=3, scale_factor=1): """Create mask to hide aliasing Because of how our stimuli are created, they have higher spatial frequency at the origin (probably center of the image) than at the edge of the image. This makes it a little harder to determine where aliasing will happen. for the specified arguments, this will create the mask that will hide the aliasing of the grating(s) with these arguments. the mask will not be strictly binary, there will a `number_of_fade_pixels` where it transitions from 0 to 1. this transition is half of a cosine. returns both the faded_mask and the binary mask. """ _, _, mag, _ = create_sf_maps_cpp(size, origin, scale_factor, w_r=w_r, w_a=w_a) # the nyquist frequency is .5 cycle per pixel, but we make it a lower to give ourselves a # little fudge factor nyq_freq = .475 mask = mag < nyq_freq faded_mask = _fade_mask(mask, number_of_fade_pixels, 0, origin) return faded_mask, mask def create_outer_mask(size, origin, radius=None, number_of_fade_pixels=3): """Create mask around the outside of the image this gets us a window that creates a circular (or some subset of circular) edge. this returns both the faded and the unfaded versions. radius: float or None. the radius, in pixels, of the mask. Everything farther away from the origin than this will be masked out. If None, we pick radius such that it's the distance to the edge of the square image. If horizontal and vertical have different distances, we will take the shorter of the two. If the distance from the origin to the horizontal edge is not identical in both directions, we'll take the longer of the two (similar for vertical). To combine this with the antialiasing mask, call np.logical_and on the two unfaded masks (and then fade that if you want to fade it) """ rad = mkR(size, origin=origin) assert not hasattr(size, "__iter__"), "size must be a scalar!" if radius is None: radius = min(rad[:, size//2].max(), rad[size//2, :].max()) mask = rad < radius return _fade_mask(mask, 0, number_of_fade_pixels, origin), mask def check_aliasing_with_mask(size, w_r=0, w_a=0, phi=0, ampl=1, origin=None, scale_factor=1, number_of_fade_pixels=3, slices_to_check=None, check_scale_factor=99): """check the aliasing when mask is applied """ stim = log_polar_grating(size, w_r, w_a, phi, ampl, origin, scale_factor) fmask, mask = create_antialiasing_mask(size, w_r, w_a, origin) better_sampled_stim = _create_better_sampled_grating(size, w_r, w_a, phi, ampl, origin, scale_factor, check_scale_factor) big_fmask = fmask.repeat(check_scale_factor, 0).repeat(check_scale_factor, 1) big_mask = mask.repeat(check_scale_factor, 0).repeat(check_scale_factor, 1) if slices_to_check is None: slices_to_check = [(size+1)//2] fig, axes = plt.subplots(ncols=3, nrows=len(slices_to_check), squeeze=False, figsize=(15, 5*len(slices_to_check))) aliasing_plot(better_sampled_stim, stim, slices_to_check, axes[:, 0]) aliasing_plot(big_fmask*better_sampled_stim, fmask*stim, slices_to_check, axes[:, 1]) aliasing_plot(big_mask*better_sampled_stim, mask*stim, slices_to_check, axes[:, 2]) axes[0, 0].set_title("Slices of un-masked stimulus") axes[0, 1].set_title("Slices of fade-masked stimulus") axes[0, 2].set_title("Slices of binary-masked stimulus") return stim, fmask, mask, better_sampled_stim, big_fmask, big_mask def find_ecc_range_in_pixels(stim, mid_val=127): """find the min and max eccentricity of the stimulus, in pixels all of our stimuli have a central aperture where nothing is presented and an outside limit, beyond which nothing is presented. this assumes the fixation is in the center of the stimulus, will have to re-think things if it's not. returns min, max """ if stim.ndim == 3: stim = stim[0, :, :] R = mkR(stim.shape) x, y = np.where(stim != mid_val) return R[x, y].min(), R[x, y].max() def find_ecc_range_in_degrees(stim, degree_radius, mid_val=127): """find the min and max eccentricity of the stimulus, in degrees all of our stimuli have a central aperture where nothing is presented and an outside limit, beyond which nothing is presented. In order to make sure we're not looking at voxels whose pRFs lie outside the stimulus, we want to know the extent of the stimulus annulus, in degrees this assumes the fixation is in the center of the stimulus, will have to re-think things if it's not. stim_rad_deg: int or float, the radius of the stimulus, in degrees. returns min, max """ if stim.ndim == 3: stim = stim[0, :, :] Rmin, Rmax = find_ecc_range_in_pixels(stim, mid_val) R = mkR(stim.shape) # if stim_rad_deg corresponds to the max vertical/horizontal extent, the actual max will be # np.sqrt(2*stim_rad_deg**2) (this corresponds to the far corner). this should be the radius of # the screen, because R starts from the center and goes to the edge factor = R.max() / np.sqrt(2*degree_radius**2) return Rmin / factor, Rmax / factor def calculate_stim_local_sf(stim, w_1, w_2, stim_type, eccens, angles, degree_radius=4.2, plot_flag=False, mid_val=127): """calculate the local spatial frequency for a specified stimulus and screen size stim: 2d array of floats. an example stimulus. used to determine where the stimuli are masked (and thus where the spatial frequency is zero). w_1, w_2: ints or floats. the first and second components of the stimulus's spatial frequency. if stim_type is 'logarpolar', this should be the radial and angular components (in that order!); if stim_type is 'constant', this should be the x and y components (in that order!) stim_type: {'logpolar', 'constant'}. which type of stimuli were used in the session we're analyzing. This matters because it changes the local spatial frequency and, since that is determined analytically and not directly from the stimuli, we have no way of telling otherwise. eccens, angles: lists of floats. these are the eccentricities and angles we want to find local spatial frequency for. degree_radius: float, the radius of the stimulus, in degrees of visual angle plot_flag: boolean, optional, default False. Whether to create a plot showing the local spatial frequency vs eccentricity for the specified stimulus mid_val: int. the value of mid-grey in the stimuli, should be 127 or 128 """ eccen_min, eccen_max = find_ecc_range_in_degrees(stim, degree_radius, mid_val) eccen_local_freqs = [] for i, (e, a) in enumerate(zip(eccens, angles)): if stim_type == 'logpolar': dx, dy, mag, direc = sf_cpd(e, a, stim.shape[0], degree_radius*2, stim_type=stim_type, w_r=w_1, w_a=w_2) dr, da, new_angle = sf_origin_polar_cpd(e, a, stim.shape[0], degree_radius*2, stim_type=stim_type, w_r=w_1, w_a=w_2) elif stim_type == 'constant': dx, dy, mag, direc = sf_cpd(e, a, stim.shape[0], degree_radius*2, stim_type=stim_type, w_x=w_1, w_y=w_2) dr, da, new_angle = sf_origin_polar_cpd(e, a, stim.shape[0], degree_radius*2, stim_type=stim_type, w_x=w_1, w_y=w_2) eccen_local_freqs.append(pd.DataFrame( {'local_w_x': dx, 'local_w_y': dy, 'local_w_r': dr, 'local_w_a': da, 'eccen': e, 'angle': a, 'local_sf_magnitude': mag, 'local_sf_xy_direction': direc, 'local_sf_ra_direction': new_angle}, [i])) eccen_local_freqs = pd.concat(eccen_local_freqs) if plot_flag: plt.plot(eccen_local_freqs['eccen'], eccen_local_freqs['local_sf_magnitude']) ax = plt.gca() ax.set_title('Spatial frequency vs eccentricity') ax.set_xlabel('Eccentricity (degrees)') ax.set_ylabel('Local spatial frequency (cpd)') return eccen_local_freqs def check_stim_properties(pixel_diameter=714, origin=None, degree_diameter=8.4, w_r=0, w_a=range(10), eccen_range=(1, 4.2)): """Creates a dataframe with data on several stimulus properties, based on the specified arguments the properties examined are: - mask radius in pixels - mask radius in degrees - max frequency in cycles per pixel - min frequency in cycles per pixel - max frequency in cycles per degree - min frequency in cycles per degree - max masked frequency in cycles per pixel - max masked frequency in cycles per degree we also return a second dataframe, sf_df, which contains the local spatial frequency of each (unmasked) stimulus at each eccentricity, in cycles per pixel and cycles per degree. we only examine the eccentricities within eccen_range, and we bin by degree, averaging within each bin. that is, with eccen_range=(1, 5), we calculate the average local spatial frequency of a given stimulus from 1 to 2 degrees, 2 to 3 degrees, ..., 4 to 5 degrees. Note that we don't calculate the min masked frequency because that will always be zero (because we zero out the center of the image, where the frequency is at its highest). note that pixel_diameter, origin, and degree_diameter must have only one value, w_r and w_a can be lists or single values (and all combinations of them will be checked) """ if hasattr(pixel_diameter, '__iter__'): raise Exception("pixel_diameter must *not* be iterable! All generated stimuli must be the same pixel_diameter") if hasattr(origin, '__iter__'): raise Exception("only one value of origin at a time!") if hasattr(degree_diameter, '__iter__'): raise Exception("only one value of degree_diameter at a time!") if not hasattr(w_r, '__iter__'): w_r = [w_r] if not hasattr(w_a, '__iter__'): w_a = [w_a] rad = mkR(pixel_diameter, origin=origin) mask_df = [] sf_df = [] eccens = [(i+i+1)/2 for i in np.linspace(*eccen_range, 10)] angles = [0 for i in eccens] for i, (f_r, f_a) in enumerate(itertools.product(w_r, w_a)): fmask, mask = create_antialiasing_mask(pixel_diameter, f_r, f_a, origin, 0) _, _, mag_cpp, _ = create_sf_maps_cpp(pixel_diameter, origin, w_r=f_r, w_a=f_a) _, _, mag_cpd, _ = create_sf_maps_cpd(pixel_diameter, degree_diameter, origin, w_r=f_r, w_a=f_a) data = {'mask_radius_pix': (~mask*rad).max(), 'w_r': f_r, 'w_a': f_a, 'freq_distance': np.sqrt(f_r**2 + f_a**2)} data['mask_radius_deg'] = data['mask_radius_pix'] / (rad.max() / np.sqrt(2*(degree_diameter/2.)**2)) for name, mag in zip(['cpp', 'cpd'], [mag_cpp, mag_cpd]): data[name + "_max"] = mag.max() data[name + "_min"] = mag.min() data[name + "_masked_max"] = (fmask * mag).max() mask_df.append(pd.DataFrame(data, index=[i])) sf = calculate_stim_local_sf(np.ones((pixel_diameter, pixel_diameter)), f_r, f_a, 'logpolar', eccens, angles, degree_diameter/2) sf = sf.rename(columns={'local_sf_magnitude': 'local_freq_cpd'}) sf['w_r'] = f_r sf['w_a'] = f_a sf['local_freq_cpp'] = sf['local_freq_cpd'] / (rad.max() / np.sqrt(2*(degree_diameter/2.)**2)) # period is easier to think about sf['local_period_ppc'] = 1. / sf['local_freq_cpp'] sf['local_period_dpc'] = 1. / sf['local_freq_cpd'] sf_df.append(sf.reset_index()) return pd.concat(mask_df), pd.concat(sf_df).reset_index(drop=True) def _set_ticklabels(datashape): xticklabels = datashape[1]//10 if xticklabels == 0 or xticklabels == 1: xticklabels = True yticklabels = datashape[0]//10 if yticklabels == 0 or yticklabels == 1: yticklabels = True return xticklabels, yticklabels def plot_stim_properties(mask_df, x='w_a', y='w_r', data_label='mask_radius_pix', title_text="Mask radius in pixels", fancy_labels={"w_a": r"$\omega_a$", "w_r": r"$\omega_r$"}, **kwargs): """plot the mask_df created by check_mask_radius, to visualize how mask radius depends on args. fancy_labels is a dict of mask_df columns to nice (latex) ways of labeling them on the plot. """ def facet_heatmap(x, y, data_label, **kwargs): data = kwargs.pop('data').pivot(y, x, data_label) xticks, yticks = _set_ticklabels(data.shape) sns.heatmap(data, xticklabels=xticks, yticklabels=yticks, **kwargs).invert_yaxis() cmap = kwargs.pop('cmap', 'Blues') font_scale = kwargs.pop('font_scale', 1.5) plotting_context = kwargs.pop('plotting_context', 'notebook') size = kwargs.pop('size', 3) with sns.plotting_context(plotting_context, font_scale=font_scale): g = sns.FacetGrid(mask_df, size=size) cbar_ax = g.fig.add_axes([.92, .3, .02, .4]) g.map_dataframe(facet_heatmap, x, y, data_label, vmin=0, vmax=mask_df[data_label].max(), cmap=cmap, cbar_ax=cbar_ax, **kwargs) g.fig.suptitle(title_text) g.fig.tight_layout(rect=[0, 0, .9, .95]) g.set_axis_labels(fancy_labels[x], fancy_labels[y]) def gen_log_polar_stim_set(size, freqs_ra=[(0, 0)], phi=[0], ampl=[1], origin=None, number_of_fade_pixels=3, combo_stimuli_type=['spiral'], bytescale=True): """Generate the specified set of log-polar stimuli and apply the anti-aliasing mask this function creates the specified log-polar stimuli, calculates what their anti-aliasing masks should be, and applies the largest of those masks to all stimuli. It also applies an outer mask so each of them is surrounded by faded, circular mask. Note that this function should be run *last*, after you've determined your parameters and checked to make sure the aliasing is taken care of. Parameters ============= freqs_ra: list of tuples of floats. the frequencies (radial and angular, in that order) of the stimuli to create. Each entry in the list corresponds to one stimuli, which will use the specified (w_r, w_a). combo_stimuli_type: list with possible elements {'spiral', 'plaid'}. type of stimuli to create when both w_r and w_a are nonzero, as described in the docstring for log_polar_grating (to create radial and angular stimuli, just include 0 in w_a or w_r, respectively). bytescale: boolean, default True. if True, calls bytescale(cmin=-1, cmax=1) on image to rescale it to between 0 and 254 (mid-value is 127), with dtype uint8. this is done because this is probably sufficient for displays and takes up much less space. Returns ============= masked stimuli, unmasked stimuli, and the mask used to mask the stimuli """ # we need to make sure that size, origin, and number_of_fade_pixels are not iterable and the # other arguments are if hasattr(size, '__iter__'): raise Exception("size must *not* be iterable! All generated stimuli must be the same size") if hasattr(origin, '__iter__'): raise Exception("origin must *not* be iterable! All generated stimuli must have the same " " origin") if hasattr(number_of_fade_pixels, '__iter__'): raise Exception("number_of_fade_pixels must *not* be iterable! It's a property of the mask" " and we want to apply the same mask to all stimuli.") # this isn't a typo: we want to make sure that freqs_ra is a list of tuples; an easy way to # check is to make sure the *entries* of freqs_ra are iterable if not hasattr(freqs_ra[0], '__iter__'): freqs_ra = [freqs_ra] if not hasattr(phi, '__iter__'): phi = [phi] if not hasattr(ampl, '__iter__'): ampl = [ampl] if not hasattr(combo_stimuli_type, '__iter__'): combo_stimuli_type = [combo_stimuli_type] stimuli = [] masked_stimuli = [] mask = [] for w_r, w_a in freqs_ra: _, tmp_mask = create_antialiasing_mask(size, w_r, w_a, origin, number_of_fade_pixels) mask.append(tmp_mask) mask.append(create_outer_mask(size, origin, None, number_of_fade_pixels)[1]) if len(mask) > 1: mask = np.logical_and.reduce(mask) else: mask = mask[0] mask = _fade_mask(mask, number_of_fade_pixels, number_of_fade_pixels, origin) for (w_r, w_a), A in itertools.product(freqs_ra, ampl): stimuli.append([]) masked_stimuli.append([]) for p in phi: if w_r == 0 and w_a == 0: # this is the empty stimulus continue if 0 in [w_r, w_a] or 'spiral' in combo_stimuli_type: tmp_stimuli = log_polar_grating(size, w_r, w_a, p, A, origin) if bytescale: masked_stimuli[-1].append(bytescale_func(tmp_stimuli*mask, cmin=-1, cmax=1)) stimuli[-1].append(bytescale_func(tmp_stimuli, cmin=-1, cmax=1)) else: masked_stimuli[-1].append(tmp_stimuli*mask) stimuli[-1].append(tmp_stimuli) if 'plaid' in combo_stimuli_type and 0 not in [w_r, w_a]: tmp_stimuli = (log_polar_grating(size, w_r, 0, p, A, origin) + log_polar_grating(size, 0, w_a, p, A, origin)) if bytescale: masked_stimuli[-1].append(bytescale_func(tmp_stimuli*mask, cmin=-1, cmax=1)) stimuli[-1].append(bytescale_func(tmp_stimuli, cmin=-1, cmax=1)) else: masked_stimuli[-1].append(tmp_stimuli*mask) stimuli[-1].append(tmp_stimuli) return masked_stimuli, stimuli, mask def create_sin_cpp(size, w_x, w_y, phase=0, origin=None): """create a full 2d sine wave, with frequency in cycles / pixel """ if origin is None: origin = [(size+1) / 2., (size+1) / 2.] x = np.array(range(1, size+1)) x, y = np.meshgrid(x - origin[0], x - origin[1]) return np.cos(2*np.pi*x*w_x + 2*np.pi*y*w_y + phase) def gen_constant_stim_set(size, mask, freqs_xy=[(0, 0)], phi=[0], ampl=[1], origin=None, bytescale=True): """Generate the specified set of constant grating stimuli and apply the supplied mask this function creates the specified constant grating stimuli and applies the supplied mask to all stimuli. It also applies an outer mask so each of them is surrounded by faded, circular mask. Note that this function should be run *last*, after you've determined your parameters and checked to make sure the aliasing is taken care of. Parameters ============= freqs_xy: list of tuples of floats. the frequencies (x and y, in that order) of the stimuli to create. Each entry in the list corresponds to one stimuli, which will use the specified (w_x, w_y). They sould be in cycles per pixel. bytescale: boolean, default True. if True, calls bytescale(cmin=-1, cmax=1) on image to rescale it to between 0 and 254 (mid-value is 127), with dtype uint8. this is done because this is probably sufficient for displays and takes up much less space. Returns ============= masked stimuli and unmasked stimuli """ # we need to make sure that size, origin, and number_of_fade_pixels are not iterable and the # other arguments are if hasattr(size, '__iter__'): raise Exception("size must *not* be iterable! All generated stimuli must be the same size") if hasattr(origin, '__iter__'): raise Exception("origin must *not* be iterable! All generated stimuli must have the same " " origin") # this isn't a typo: we want to make sure that freqs_xy is a list of tuples; an easy way to # check is to make sure the *entries* of freqs_xy are iterable if not hasattr(freqs_xy[0], '__iter__'): freqs_xy = [freqs_xy] if not hasattr(phi, '__iter__'): phi = [phi] if not hasattr(ampl, '__iter__'): ampl = [ampl] stimuli = [] masked_stimuli = [] for (w_x, w_y), A in itertools.product(freqs_xy, ampl): stimuli.append([]) masked_stimuli.append([]) for p in phi: if w_x == 0 and w_y == 0: # this is the empty stimulus continue else: tmp_stimuli = A * create_sin_cpp(size, w_x, w_y, p, origin=origin) if bytescale: masked_stimuli[-1].append(bytescale_func(tmp_stimuli*mask, cmin=-1, cmax=1)) stimuli[-1].append(bytescale_func(tmp_stimuli, cmin=-1, cmax=1)) else: masked_stimuli[-1].append(tmp_stimuli*mask) stimuli[-1].append(tmp_stimuli) return masked_stimuli, stimuli def _gen_freqs(base_freqs, n_orientations=4, n_intermed_samples=2, round_flag=True): """turn the base frequencies into the full set. base frequencies are the distance from the center of frequency space. n_orientations: int, the number of "canonical orientations". That is, the number of orientations that should use the base_freqs. We will equally sample orientation space, so that if n_orientations==4, then we'll use angles 0, pi/4, pi/2, 3*pi/4 n_intermed_samples: int, the number of samples at the intermediate frequency. In order to sample some more orientations, we pick the middle frequency out of base_freqs and then sample n_intermed_samples times between the canonical orientations at that frequency. For example, if this is 2 and n_orientations is 4, we will sample the intermediate frequency at pi/12, 2*pi/12, 4*pi/12, 5*pi/12, 7*pi/12, 8*pi/12, 10*pi/12, 11*pi/12. """ intermed_freq = base_freqs[len(base_freqs)//2] ori_angles = [np.pi*1/n_orientations*i for i in range(n_orientations)] # the following determines how to step through the angles so to get n_intermed_angles different # intermediary angles n_intermed_steps = int(n_orientations * (n_intermed_samples+1)) intermed_locs = [i for i in range(n_intermed_steps) if i % (n_intermed_steps/n_orientations) != 0] intermed_angles = [np.pi*1/n_intermed_steps*i for i in intermed_locs] # these are the canonical orientations freqs = [(f*np.sin(a), f*np.cos(a)) for a, f in itertools.product(ori_angles, base_freqs)] # arc, where distance from the origin is half the max (in log space) # skip those values which we've already gotten: 0, pi/4, pi/2, 3*pi/4, and pi freqs.extend([(intermed_freq*np.sin(i), intermed_freq*np.cos(i)) for i in intermed_angles]) if round_flag: freqs = np.round(freqs) return freqs def _create_stim(pixel_diameter, freqs, phi, n_exemplars, output_dir, stimuli_name, stimuli_description_csv_name, col_names, stim_type, mask=None): """helper function to create the stimuli and and stimuli description csv stim_type: {'logpolar', 'constant'}. which type of stimuli to make. determines which function to call, gen_log_polar_stim_set or gen_constant_stim_set. if constant, mask must be set """ if stim_type == 'logpolar': masked_stim, stim, mask = gen_log_polar_stim_set(pixel_diameter, freqs, phi) elif stim_type == 'constant': masked_stim, stim = gen_constant_stim_set(pixel_diameter, mask, freqs, phi) # in order to get this the right shape stim = np.array(stim).transpose(2, 3, 0, 1) np.save(os.path.join(output_dir, stimuli_name), stim) df = [] for i, (w_1, w_2) in enumerate(freqs): for j, p in enumerate(phi): df.append((w_1, w_2, p, pixel_diameter, i, j)) df =
pd.DataFrame(df, columns=col_names)
pandas.DataFrame
''' Library for Google Sheets functions. ''' from constants import * from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request import pickle import os import pandas as pd import re def read_values(sheetid, range_, config): # returns values read from a google sheet, as is. SCOPES = ['https://www.googleapis.com/auth/spreadsheets.readonly'] TOKEN = config['token'] CREDENTIALS = config['credentials'] creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists(TOKEN): with open(TOKEN, 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( CREDENTIALS, SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open(TOKEN, 'wb') as token: pickle.dump(creds, token) service = build('sheets', 'v4', credentials=creds) # Call the Sheets API sheet = service.spreadsheets() values = sheet.values().get(spreadsheetId=sheetid, range=range_).execute().get('values', []) if not values: raise ValueError('Sheet data not found') else: return values def insert_values(sheetid, body, config, **kwargs): ''' Insert values into spreadsheet. range should be included in body. example body: body = { 'range': 'SheetName!A1:A3', 'majorDimension': 'ROWS', 'values': [[1], [2], [3]] } ''' SCOPES = ['https://www.googleapis.com/auth/spreadsheets'] TOKEN = config['token'] CREDENTIALS = config['credentials'] INPUTOPTION = kwargs['inputoption'] if 'inputoption' in kwargs.keys() else 'USER_ENTERED' # values = list # placement = A1 notation range. creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists(TOKEN): with open(TOKEN, 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( CREDENTIALS, SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open(TOKEN, 'wb') as token: pickle.dump(creds, token) service = build('sheets', 'v4', credentials=creds) # Call the Sheets API sheet = service.spreadsheets() request = sheet.values().update(spreadsheetId=sheetid, range=body['range'], body=body, valueInputOption=INPUTOPTION) response = request.execute() return response def values2dataframe(values): ''' Convert raw values as retrieved from read_values to a pandas dataframe Adds a "row" number going off the assumption that we are reading from the top. ''' columns = values[0] ncols = len(columns) data = values[1:] for d in data: if len(d) < ncols: extension = ['']*(ncols-len(d)) d.extend(extension) data = pd.DataFrame(data=data, columns=columns) data['row'] = list(range(2, len(data)+2)) # keeping row number (+1 for 1 indexing +1 for column headers in sheet) data['row'] = data['row'].astype(str) return data def index2A1(num): if 0 <= num <= 25: return alpha[num] elif 26 <= num <= 51: return 'A{}'.format(alpha[num%26]) elif 52 <= num <= 77: return 'B{}'.format(alpha[num%26]) else: raise ValueError('Could not convert index "{}" to A1 notation'.format(num)) def get_trailing_spaces(data): ''' Generate error table for trailing whitespaces (front and back). return: error_table[row, ID, column_name, value]. ''' # fix trailing spaces. This applies to all columns except "row" df = data.copy() error_table = pd.DataFrame(columns=['row', 'ID', 'column', 'value', 'fix']) for c in df.columns: if c == 'row': continue else: stripped = df[c].str.strip() invalid_bool = stripped != df[c] invalid = df[invalid_bool][['row', 'ID']].copy() invalid['column'] = c invalid['value'] = df[c][invalid_bool].copy() invalid['fix'] = stripped[invalid_bool] error_table = error_table.append(invalid, ignore_index=True, sort=True) return error_table def get_NA_errors(data): ''' Generate error table for mispelled NA values. We chose to write them as "NA", and so far we only replace "N/A" with "NA" return error_table[row, ID, column, value, fix ''' df = data.copy() table = pd.DataFrame(columns=['row', 'ID', 'column', 'value', 'fix']) for c in df.columns: if c == 'row': continue else: test = df[c].str.match('N/A') errors = df[test][['row', 'ID']] errors['column'] = c errors['value'] = df[test][c] errors['fix'] = df[test][c].replace('N/A', 'NA') table = table.append(errors, ignore_index=True, sort=True) return table def ErrorTest(data, columns, rgx, table): ''' Test a regex pattern on passed columns, generate error table for things that did not pass the test. Note this does not generate the fix. We do this after. ''' df = data.copy() for c in columns: test = df[c].str.match(rgx) invalid = df[~test][['row', "ID"]].copy() invalid['column'] = c invalid['value'] = df[~test][c] table = table.append(invalid, ignore_index=True, sort=False) return table def fix_cells(sheetid, sheetname, error_table, column_dict, config): ''' Fix specific cells on the private sheet, based on error table. Error table also needs to provide the "fix" column which is what we are replacing the current value with. :column_dict: map from 'column_name' to A1 notation. ''' assert 'fix' in error_table.columns assert 'value' in error_table.columns fixed = 0 for i,error in error_table.iterrows(): row = error['row'] a1 = column_dict[error['column']] + row range_ = '{}!{}'.format(sheetname, a1) try: fetch = read_values(sheetid, f'{sheetname}!A{row}', config) # fetch ID to ensure that it is the same. assert error['ID'] == fetch[0][0] body = { 'range': range_, 'majorDimension': 'ROWS', 'values': [[error['fix']]] } insert_values(sheetid, body, config) fixed += 1 except Exception as E: print(error) print(fetch) raise E return fixed def generate_error_tables(data): ''' Generate table for fields that don't pass the rgex tests. For easy fixes (e.g. spacing) we can do it automatically, for tricker ones we save the table (fixed ones are omitted in error_report) ''' table = pd.DataFrame(columns=['row', 'ID', 'value']) table = ErrorTest(data, ['age'], rgx_age, table) table = ErrorTest(data, ['sex'], rgx_sex, table) table = ErrorTest(data, ['city', 'province', 'country'], rgx_country, table) table = ErrorTest(data, ['latitude', 'longitude'], rgx_latlong, table) table = ErrorTest(data, ['geo_resolution'], rgx_geo_res, table) table = ErrorTest(data, date_columns, rgx_date, table) table = ErrorTest(data, ['lives_in_Wuhan'], rgx_lives_in_wuhan, table) fixable_errors =
pd.DataFrame(columns=['row', 'ID', 'column', 'value', 'fix'])
pandas.DataFrame
#!/usr/bin/env python3.8 # Copyright [2020] EMBL-European Bioinformatics Institute # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse, hashlib, os, subprocess, sys, time import sys import shlex import subprocess import requests, sys import re import requests import json from datetime import datetime import cx_Oracle from getpass import getpass import collections import numpy as np import pandas as pd parser = argparse.ArgumentParser(prog='data_analysis_script.py', formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" + ============================================================ + | European Nucleotide Archive (ENA) data flow monitoring Tool | | | | Tool to to analyse and compare data from NCBI or ENA | + =========================================================== + This script is used to analyse the data from NCBI and ENA that been produced by data_fetch_script.py. """) parser.add_argument('-f', '--file', help='path for the input files', type=str, required=True) args = parser.parse_args() """ Request username and password for databases """ def get_oracle_usr_pwd(): if database == 'reads': return ['era_reader', 'reader'] elif database == 'sequences': return ['ena_reader', 'reader'] """ Setup the connection to ENAPRO and ERAPRO. """ def setup_connection(): oracle_usr, oracle_pwd = get_oracle_usr_pwd() client_lib_dir = os.getenv('ORACLE_CLIENT_LIB') if database == 'sequences': if not client_lib_dir or not os.path.isdir(client_lib_dir): sys.stderr.write("ERROR: Environment variable $ORACLE_CLIENT_LIB must point at a valid directory\n") exit(1) cx_Oracle.init_oracle_client(lib_dir=client_lib_dir) connection = None try: dsn = cx_Oracle.makedsn("ora-vm5-008.ebi.ac.uk", 1531, service_name="ENAPRO") connection = cx_Oracle.connect(oracle_usr, oracle_pwd, dsn, encoding="UTF-8") return connection except cx_Oracle.Error as error: print(error) else: if not client_lib_dir or not os.path.isdir(client_lib_dir): sys.stderr.write("ERROR: Environment variable $ORACLE_CLIENT_LIB must point at a valid directory\n") exit(1) cx_Oracle.init_oracle_client(lib_dir=client_lib_dir) connection = None try: dsn = cx_Oracle.makedsn("ora-vm-009.ebi.ac.uk", 1541, service_name="ERAPRO") connection = cx_Oracle.connect(oracle_usr, oracle_pwd, dsn, encoding="UTF-8") return connection except cx_Oracle.Error as error: print(error) """ Query ENAPRO dataset, process the data and fetching release date from NCBI nucleotide database. Print to a file. """ def fetch_and_filter_seq(connection, output): # This Part is for querying ENAPRO c = connection.cursor() f = open(f"{args.file}/analysis.inENAPRO.sequences.log.txt", "w") header = "\t".join(['Accession', 'First_public', 'Last_public', 'status_id' ]) f.write(str(header) + "\n") accession_list_seq = [] for accession in output: c.execute(f"select TRUNC(first_public), TRUNC(last_public), statusid from dbentry where primaryacc# in ('{accession}')") for row in c: f.write(str(accession) + "\t" + str(row[0]) + "\t" + str(row[1]) + "\t" + str(row[2]) + "\n" ) accession_list_seq.append(accession) f.close() # Data analysis, to retrive the data that missing from ENAPRO print('Data Processing............') noENAPRO_f = open(f"{args.file}/analysis.noENAPRO.sequences.log.txt", "w") accession_set_seq=set(accession_list_seq) accession_set_seq_diff = output.difference(accession_set_seq) no_enapro_list= [acc for acc in accession_set_seq_diff ] # To fetch the release date from NCBI ( nucleotide database) for the data that missing from ENAPRO ( This command uses 'esearch', 'xtract' and 'efetch' functions, entrez-direct is needed) release_date_list = [] for i in range(0, len(no_enapro_list), 100): stripped_list = ', '.join(no_enapro_list[i:i + 100]) command = 'esearch -db nucleotide -query "{}" | efetch -format docsum |xtract -pattern DocumentSummary -element Caption, UpdateDate'.format(stripped_list) sp = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = sp.communicate() if "command not found" in err.decode(): sys.stderr.write(err.decode() + "\n This command uses 'esearch', 'xtract' and 'efetch' functions.\n " "You might need to download and install 'entrez-direct' to fetch any data from NCBI. " "\n Please follow the instructions in the link provided below. " "\n https://www.ncbi.nlm.nih.gov/books/NBK179288/ \n " "Please note that 'entrez-direct' only runs on Unix and Macintosh environments or under the Cygwin Unix-emulation environment on Windows \n ") exit(1) else: sys.stderr.write(err.decode()) stdoutOrigin = sys.stdout release_date = out.decode().strip("\n").split("\n") for obj in release_date: release_date_list.append(obj) sys.stdout = stdoutOrigin noENAPRO_f.write("\n".join(release_date_list) + "\n") noENAPRO_f.close() # conn.close() """ Query ERAPRO dataset and processing the data. Print to a file. """ def fetch_and_filter_reads(connection, output): # This Part is for querying ERAPRO c = connection.cursor() f = open(f"{args.file}/analysis.inERAPRO.reads.log.txt", "w") header = "\t".join(['Accession', 'Status_id' 'First_public', 'Last_updated']) f.write(str(header) + "\n") accession_list_reads = [] for accession in output: c.execute( f"select status_id, first_public, last_updated from experiment where experiment_id in ('{accession}')") for row in c: f.write(str(accession) + "\t" + str(row[0]) + "\t" + str(row[1]) + "\t" + str(row[2]) + "\n") accession_list_reads.append(accession) f.close() # Data analysis, to retrive the data that missing from ERAPRO print('Data Processing...........') accession_set_reads=set(accession_list_reads) accession_set_reads_diff = output.difference(accession_set_reads) noERAPRO_df= pd.DataFrame({'accession': list(accession_set_reads_diff)}, columns=['accession']) inner_join = pd.merge(noERAPRO_df, sra_df, on='accession', how='inner') inner_join.to_csv(f"{args.file}/analysis.noERAPRO.reads.log.txt") """ getting the difference between reads in NCBI and ENA advanced search. Print to a file. """ def reads_dataset_difference (): output = set(sra_df.accession).difference(set(ena_read_df.accession)) length_read_set = len(output) f = open(f"{args.file}/NCBI_vs_ENA_{database}.log.txt", "w") values = "\n".join(map(str, list(output))) f.write(values) f.close() print('Number of data found in NCBI ( SRA database) but missing in ENA advanced search is: ', length_read_set) return output """ getting the difference between sequences in NCBI and ENA advanced search. Print to a file. """ def sequence_dataset_difference (): output = ncbivirus_set.difference(set(ena_seq_df.accession)) length_seq_set = len(output) f = open(f"{args.file}/NCBI_vs_ENA_{database}.log.txt", "w") f.write("\n".join(output) + "\n") f.close() print('Number of data found in NCBI ( NCBIVirus database) but missing in ENA advanced search is: ', length_seq_set) return output """ getting the difference between sequences in COVID-19 portal and ENA advanced search. Print to a file. """ def covid_advanced_search_difference (ena_dataset, covid_reads_portal_df): # Obtain the reads difference between Advanced search and COVID-19 Portal covid_portal_output = set(ena_dataset.accession).difference(set(covid_reads_portal_df.accession)) covid_diff_leng_set = len(covid_portal_output) covid_portal_output_df = pd.DataFrame({'accession': list(covid_portal_output)}, columns=['accession']) covid_inner_join = pd.merge(covid_portal_output_df, ena_dataset, on='accession', how='inner') covid_inner_join.to_csv(f"{args.file}/Covid19Portal.vs.ENA.advanced.{database}.log.txt",sep="\t", index = None) print(f"Number of {database} found in ENA advanced search but missing in COVID-19 data portal is: ", covid_diff_leng_set) # to create a list of reads duplicates if present in COVID-19 data Portal f_duplicates = open(f"{args.file}/Duplicates.Covid19Portal.{database}.log.txt", "w") covid_duplicate_list= [] for item, count in collections.Counter(covid_reads_portal_df).items(): if count > 1: f_duplicates.write(str(item) + "\n") covid_duplicate_list.append(item) f_duplicates.close() length_covid_duplicate = len(covid_duplicate_list) print(f"Number of {database} found duplicated in COVID-19 data portal is: ", length_covid_duplicate) def advanced_search_ebi_search_difference(ebi_df, ena_df): # For data found in EBI search but missing in ENA advanced search output_1 = set(ebi_df.accession).difference(set(ena_df.accession)) setLength_1 = len(output_1) ebi_output1_df = pd.DataFrame({'accession': list(output_1)}, columns=['accession']) ebi1_inner_join = pd.merge(ebi_output1_df, ebi_df, on='accession', how='inner') print(f'Number of {database} found in EBI search but missing in ENA advanced search is: ', setLength_1) ebi1_inner_join.to_csv(f"{args.file}/EBIsearch_vs_ENAadvanced_{database}.log.txt", sep="\t", index = None) # For data found in ENA advanced search but missing in EBI search output_2 = set(ena_df.accession).difference(set(ebi_df.accession)) setLength_2 = len(output_2) ebi_output2_df = pd.DataFrame({'accession': list(output_2)}, columns=['accession']) ebi2_inner_join = pd.merge(ebi_output2_df, ena_df, on='accession', how='inner') print(f'Number of {database} found in ENA advanced search but missing in EBI search is: ', setLength_2) ebi2_inner_join.to_csv(f"{args.file}/ENAadvanced_vs_EBIsearch_{database}.log.txt", sep="\t", index = None) ############# ## MAIN ## ############# database = input("please indicate the dataset type, ex: sequences or reads: ").lower() if database == 'reads': #Connecting to ERAPRO sys.stderr.write("Connecting to ERAPRO...\n") db_conn = setup_connection() #Uploading Files from NCBI, ENA, ebisearch sra_df =pd.read_csv(f"{args.file}/NCBI.sra.log.txt", sep="\t", header=None, names =['run_id', 'accession', 'release_date']) print ('Number of Reads in NCBI (SRA database) is: ', len(sra_df)) ena_read_df = pd.read_csv(f"{args.file}/ENA.read_experiment.log.txt", sep="\t", header=None, names =['accession', 'date']) print('Number of Reads in ENA Advanced Search is: ', len(ena_read_df)) ebi_read_df= pd.read_csv(f"{args.file}/EBIsearch.sra-experiment-covid19.log.txt", sep="\t", header=None, names =['accession', 'date']) print('Number of Reads in EBI Search is: ', len(ebi_read_df)) #Uploading files from COVID-19 data Portal covid_reads_portal_df = pd.read_csv(f"{args.file}/Covid19DataPortal.raw-reads.log.txt", sep="\t", header=None, names=['accession']) print('Number of Reads in COVID-19 data portal is: ', len(covid_reads_portal_df)) #Obtain the difference between the data in NCBI and ENA output = reads_dataset_difference() #Obtain the reads difference between Advanced search and COVID-19 Portal, and duplicates if present covid_advanced_search_difference(ena_read_df, covid_reads_portal_df) # Obtain the reads difference between Advanced search and EBI search advanced_search_ebi_search_difference(ebi_read_df, ena_read_df) #Querying ERAPRO sys.stderr.write("Querying ERAPRO ..........\n") fetch_and_filter_reads(db_conn, output) elif database == 'sequences': #Connecting to ENAPRO sys.stderr.write("Connecting to ENAPRO...\n") db_conn = setup_connection() # Uploading Files from NCBI and ENA ncbivirus_set = set(open(f"{args.file}/NCBI.ncbivirus.log.txt").read().split()) print('Number of Sequences in NCBI (NCBIVirus database) is: ', len(ncbivirus_set)) ena_seq_df =
pd.read_csv(f"{args.file}/ENA.sequence.log.txt", sep="\t", header=None, names=['accession', 'date'])
pandas.read_csv
from collections import defaultdict import pandas as pd import numpy as np import pickle from sklearn.metrics import f1_score def save_obj(obj, name): with open(name + '.pkl', 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def load_obj(name): with open(name + '.pkl', 'rb') as f: return pickle.load(f) def split_labeled(data): is_labeled = (data['label'] != -1) return data[is_labeled], data[~is_labeled] # def split_dataset(raw_dataset_path, new_dataset_path): # # 主要是方便EDA # item_cols = [f'i{i}' for i in range(1, 72+1)] # user_cols = [f'u{i}' for i in range(1, 80+1)] # try: # with open(raw_dataset_path, 'r', encoding='utf-8') as rf: # with open(new_dataset_path, 'w+', encoding='utf-8') as wf: # if "train" in raw_dataset_path: # header = f"""uuid,visit_time,user_id,item_id,{str(item_cols+user_cols)[2:-2].replace("'", "").replace(" ","")},label""" # else: # "predict" # header = f"""uuid,visit_time,user_id,item_id,{str(item_cols+user_cols)[2:-2].replace("'", "").replace(" ","")}""" # wf.write(header+'\n') # for line in rf: # if "features" in line: # continue # line = str(line[:].split(" ")).replace("'", "")[1:-3] # wf.write(line+'\n') # except FileNotFoundError: # print(f'{raw_dataset_path} 文件不存在!') # def read_split_data(path, nrows=1000000): # df_chunk = pd.read_csv(path, chunksize=1e6, iterator=True, nrows=nrows) # data = pd.concat([chunk for chunk in df_chunk]) # data = reduce_mem_usage(data) # return data def read_data(path='/tcdata/train0.csv', nrows=1000000): if "train" in path: df_chunk = pd.read_csv(path, chunksize=1e6, iterator=True, names=["uuid", "visit_time", "user_id", "item_id", "features", "label"], nrows=nrows) data = pd.concat([chunk for chunk in df_chunk]) data = reduce_mem_usage(data) elif "predict" in path: df_chunk = pd.read_csv(path, chunksize=5e5, iterator=True, names=["uuid", "visit_time", "user_id", "item_id", "features"], nrows=nrows) data = pd.concat([chunk for chunk in df_chunk]) data = reduce_mem_usage(data) else: # "truth" data = pd.read_csv(path, names=["uuid", "label"], nrows=nrows) return data def label_user_item_via_blacklist(data): data_labeled, data_no_labeled = split_labeled(data) data_spam = data_labeled[data_labeled.label == 1] data_norm = data_labeled[data_labeled.label == 0] try: user_spam_dict = load_obj("user_black_dict") item_spam_dict = load_obj("item_black_dict") print("更新 user 和 item 黑名单") except: user_spam_dict = defaultdict(int) item_spam_dict = defaultdict(int) print("新建 user 和 item 黑名单") for _, row in data_spam[['user_id', 'item_id']].iterrows(): u, i = row['user_id'], row['item_id'] user_spam_dict[u] += 1 # 记录次数 item_spam_dict[i] += 1 # 记录次数 save_obj(user_spam_dict, "user_black_dict") save_obj(item_spam_dict, "item_black_dict") # 1、根据label=1确定绝对无误的用户黑名单和商品黑名单 # 2、根据label=0 以及用户黑名单 确定当前用户是恶意的 则当前商品是正常的,将当前商品更新进商品白名单 # 根据label=0 以及商品黑名单 确定当前商品是恶意的 则当前用户是正常的,将当前用户更新进用户白名单 # 3、根据用户白名单 以及label=0 确定当前用户是正常的 则当前商品是(正常或潜在恶意的) # 根据商品白名单 以及label=0 确定当前商品是正常的 则当前用户是(正常或潜在恶意的) # 4、根据label=-1 以及 更新完毕的黑白名单 确定用户和商品的标签 # 可以忽略步骤3 try: user_norm_dict = load_obj("user_white_dict") item_norm_dict = load_obj("item_white_dict") print("更新 user 和 item 白名单") except: user_norm_dict = defaultdict(int) item_norm_dict = defaultdict(int) print("新建 user 和 item 白名单") for _, row in data_norm[['user_id', 'item_id']].iterrows(): u, i = row['user_id'], row['item_id'] if i in item_spam_dict.keys(): # 如果当前商品是恶意的 user_norm_dict[u] = 0 # 用户则是正常的,加入白名单 # else: #当前商品可能正常或潜在恶意 if u in user_spam_dict.keys(): # 如果当前用户是恶意的 item_norm_dict[i] = 0 # 商品则是正常的,加入白名单 # else: #当前用户可能正常或潜在恶意 # user_unknown_dict[u] = 0 #潜在的 save_obj(user_norm_dict, "user_white_dict") save_obj(item_norm_dict, "item_white_dict") print("基于黑名单和白名单,给未知样本打上标签") def black_white_dict(ui, black_dict, white_dict): if ui in black_dict.keys(): return 1 elif ui in white_dict.keys(): return 0 else: return -1 data_no_labeled['user_label'] = data_no_labeled['user_id'].apply( lambda u: black_white_dict(u, user_spam_dict, user_norm_dict)) data_no_labeled['item_label'] = data_no_labeled['item_id'].apply( lambda i: black_white_dict(i, item_spam_dict, item_norm_dict)) def ui_label2label(u, i): if u == 1 and i == 1: return 1 elif ((u == 1 and i == 0) or (u == 0 and i == 1) or (u == 0 and i == 0)): return 0 else: return -1 data_no_labeled['label'] = list(map(lambda u, i: ui_label2label( u, i), data_no_labeled['user_label'], data_no_labeled['item_label'])) data_labeled['user_label'] = data_labeled['user_id'].apply( lambda u: black_white_dict(u, user_spam_dict, user_norm_dict)) data_labeled['item_label'] = data_labeled['item_id'].apply( lambda i: black_white_dict(i, item_spam_dict, item_norm_dict)) data =
pd.concat([data_no_labeled, data_labeled], axis=0)
pandas.concat
from tokenize import String from typing import Dict import flask from flask import request, jsonify from flask import Flask, render_template import json from os import path import yaml import pandas as pd server_config_file = "config.json" with open(server_config_file, "r") as f: server_config = json.load(f) IP_ADDR = server_config["ip"] PORT = server_config["port"] app = flask.Flask(__name__) # app.config["DEBUG"] = True class Leaderboard: """A single leaderboard page""" @staticmethod def config_file(id): return f"{server_config['data_path']}/{id}-config.yml" @staticmethod def data_file(id): return f"{server_config['data_path']}/{id}.csv" @classmethod def check(cls, id): """Checks whether the leaderboard exists""" return path.exists(cls.config_file(id)) and path.exists(cls.data_file(id)) def __init__(self, id): self.id = id self.title = None self.results: Dict[String,pd.DataFrame] = None self.table_name_column = None self.sort_cols = [] self.table_names = {} self.default_sort_col = None def load_config(self): with open(self.config_file(self.id), "r") as f: config = yaml.safe_load(f) self.title = config['title'] self.sort_cols = [] self.cols_config = {} try: self.default_sort_col = config['default_sort_col'] except: self.default_sort_col = None try: self.legend = config['legend'] except: self.legend = None for i, col in enumerate(config['sort_cols']): if isinstance(col, str): self.sort_cols.append(col) self.cols_config[col] = {} else: key = list(col.keys())[0] self.sort_cols.append(key) self.cols_config[key] = config['sort_cols'][i][key] print(self.cols_config) print(f'Sort cols: {self.sort_cols}') if "table_name_column" in config: self.table_name_column = config['table_name_column'] self.table_names = config['table_names'] def load_data(self): self.results = {} try: table = pd.read_csv(Leaderboard.data_file(self.id)).round(2) except: table =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import requests import time pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
pandas.set_option
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, np.NaN, 0.05, 0.1, np.NaN, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, np.NaN], [0.075, np.NaN], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_non_unique_columns(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL1']) with pytest.raises(ValueError): util.calc_rets(rets, weights) def test_calc_rets_two_generics_two_asts(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets1 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5')]) rets2 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.4], index=idx) rets = {"CL": rets1, "CO": rets2} vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL0", "CL1"]) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5') ]) weights2 = pd.DataFrame(vals, index=widx, columns=["CO0", "CO1"]) weights = {"CL": weights1, "CO": weights2} wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15, 0.1, 0.15], [0.075, 0.45, 0.075, 0.25], [-0.5, 0.2, pd.np.NaN, pd.np.NaN]], index=weights["CL"].index.levels[0], columns=['CL0', 'CL1', 'CO0', 'CO1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_instr_rets_key_error(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5')]) irets = pd.Series([0.02, 0.01, 0.012], index=idx) vals = [1, 1/2, 1/2, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(KeyError): util.calc_rets(irets, weights) def test_calc_rets_nan_instr_rets(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([pd.np.NaN, pd.np.NaN, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([pd.np.NaN, pd.np.NaN, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_weight(): # see https://github.com/matthewgilbert/mapping/issues/8 # missing weight for return idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) rets = pd.Series([0.02, -0.03, 0.06], index=idx) vals = [1, 1] widx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(ValueError): util.calc_rets(rets, weights) # extra instrument idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights1 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-03'), 'CLH5'), # extra day for no weight instrument (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLH5') ]) rets = pd.Series([0.02, -0.03, 0.06, 0.05, 0.01], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights1) # leading / trailing returns idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights2 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-05'), 'CLF5')]) rets = pd.Series([0.02, -0.03, 0.06, 0.05], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights2) def test_to_notional_empty(): instrs = pd.Series() prices = pd.Series() multipliers = pd.Series() res_exp = pd.Series() res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_same_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_extra_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2, 13.1], index=['CLZ6', 'COZ6', 'GCZ6', 'extra']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_missing_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, pd.np.NaN], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_different_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) res_exp = pd.Series([-30.20, 2 * 30.5 / 1.32, 10.2 * 0.8], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) assert_series_equal(res, res_exp) def test_to_notional_duplicates(): instrs = pd.Series([1, 1], index=['A', 'A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37, 200.37], index=['A', 'A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100, 100], index=['A', 'A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD', 'USD'], index=['A', 'A']) fx_rate = pd.Series([1.32], index=['USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD'], index=['A']) fx_rate = pd.Series([1.32, 1.32], index=['USDCAD', 'USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) def test_to_notional_bad_fx(): instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) instr_fx = pd.Series(['JPY'], index=['A']) fx_rates = pd.Series([1.32], index=['GBPCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) def test_to_contracts_rounder(): prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) multipliers = pd.Series([1, 1], index=['CLZ6', 'COZ6']) # 30.19 / 30.20 is slightly less than 1 so will round to 0 notional = pd.Series([30.19, 2 * 30.5], index=['CLZ6', 'COZ6']) res = util.to_contracts(notional, prices, multipliers, rounder=pd.np.floor) res_exp = pd.Series([0, 2], index=['CLZ6', 'COZ6']) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier(): notionals = pd.Series([-30.20, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier_rounding(): # won't work out to integer number of contracts so this tests rounding notionals = pd.Series([-30.21, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_trade_with_zero_amount(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, 0], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) + 0 * 0.5 / (50.41*100) - 1, # 0 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 19], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_trade_all_zero_amount_return_empty(): wts = pd.DataFrame([1], index=["CLX16"], columns=[0]) desired_holdings = pd.Series([13], index=[0]) current_contracts = 0 prices = pd.Series([50.32], index=['CLX16']) multiplier = pd.Series([100], index=['CLX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) exp_trades = pd.Series(dtype="int64") assert_series_equal(trades, exp_trades) def test_trade_one_asset(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_multi_asset(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=["CL0", "CL1"]) wts2 = pd.DataFrame([1], index=["COX16"], columns=["CO0"]) wts = {"CL": wts1, "CO": wts2} desired_holdings = pd.Series([200000, -50000, 100000], index=["CL0", "CL1", "CO0"]) current_contracts = pd.Series([0, 1, 0, 5], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) prices = pd.Series([50.32, 50.41, 50.48, 49.50], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) multiplier = pd.Series([100, 100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, # 100000 * 1 / (49.50*100) - 5, exp_trades = pd.Series([20, 14, -5, 15], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_extra_desired_holdings_without_weights(): wts = pd.DataFrame([0], index=["CLX16"], columns=["CL0"]) desired_holdings = pd.Series([200000, 10000], index=["CL0", "CL1"]) current_contracts = pd.Series([0], index=['CLX16']) prices = pd.Series([50.32], index=['CLX16']) multipliers = pd.Series([1], index=['CLX16']) with pytest.raises(ValueError): util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers) def test_trade_extra_desired_holdings_without_current_contracts(): # this should treat the missing holdings as 0, since this would often # happen when adding new positions without any current holdings wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() # non existent contract holdings result in fill value being a float, # which casts to float64 assert_series_equal(trades, exp_trades, check_dtype=False) def test_trade_extra_weights(): # extra weights should be ignored wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000], index=[0]) current_contracts = pd.Series([0, 2], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41], index=['CLX16', 'CLZ16']) multiplier = pd.Series([100, 100], index=['CLX16', 'CLZ16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 2, exp_trades = pd.Series([20, 18], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_get_multiplier_dataframe_weights(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000], index=["CL"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dict_weights(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) wts2 = pd.DataFrame([0.5, 0.5], index=["COX16", "COZ16"], columns=[0]) wts = {"CL": wts1, "CO": wts2} ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16", "COX16", "COZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dataframe_weights_multiplier_asts_error(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) with pytest.raises(ValueError): util.get_multiplier(wts, ast_mult) def test_weighted_expiration_two_generics(): vals = [[1, 0, 1/2, 1/2, 0, 1, 0], [0, 1, 0, 1/2, 1/2, 0, 1]] idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF15'), (TS('2015-01-03'), 'CLG15'), (TS('2015-01-04'), 'CLF15'), (TS('2015-01-04'), 'CLG15'), (TS('2015-01-04'), 'CLH15'), (TS('2015-01-05'), 'CLG15'), (TS('2015-01-05'), 'CLH15')]) weights = pd.DataFrame({"CL1": vals[0], "CL2": vals[1]}, index=idx) contract_dates = pd.Series([TS('2015-01-20'), TS('2015-02-21'),
TS('2015-03-20')
pandas.Timestamp
from nose.tools import assert_equal from mock import patch from records_mover.records.schema.field import RecordsSchemaField from records_mover.records.schema.field.constraints import ( RecordsSchemaFieldIntegerConstraints, RecordsSchemaFieldDecimalConstraints, ) import numpy as np import pandas as pd def with_nullable(nullable: bool, fn): def wrapfn(*args, **kwargs): with patch( "records_mover.records.schema.field.pandas.supports_nullable_ints", return_value=nullable, ): fn(*args, **kwargs) return wrapfn def check_dtype(field_type, constraints, expectation): field = RecordsSchemaField( name="test", field_type=field_type, constraints=constraints, statistics=None, representations=None, ) out = field.cast_series_type(pd.Series(1, dtype=np.int8)) assert_equal(out.dtype, expectation) def test_to_pandas_dtype_integer_no_nullable(): expectations = { (-100, 100): np.int8, (0, 240): np.uint8, (-10000, 10000): np.int16, (500, 40000): np.uint16, (-200000000, 200000000): np.int32, (25, 4000000000): np.uint32, (-9000000000000000000, 2000000000): np.int64, (25, 10000000000000000000): np.uint64, (25, 1000000000000000000000000000): np.float128, (None, None): np.int64, } for (min_, max_), expected_pandas_type in expectations.items(): constraints = RecordsSchemaFieldIntegerConstraints( required=True, unique=None, min_=min_, max_=max_ ) yield with_nullable( False, check_dtype ), "integer", constraints, expected_pandas_type def test_to_pandas_dtype_integer_nullable(): expectations = { (-100, 100): pd.Int8Dtype(), (0, 240): pd.UInt8Dtype(), (-10000, 10000): pd.Int16Dtype(), (500, 40000): pd.UInt16Dtype(), (-200000000, 200000000):
pd.Int32Dtype()
pandas.Int32Dtype
import spacy import pandas as pd from collections import Counter from tqdm import tqdm import json nlp = spacy.load("en_core_sci_sm") #################### # Process entities and relations for a given abstract. def get_entities_in_sent(sent, entities): start, end = sent.start_char, sent.end_char start_ok = entities["char_start"] >= start end_ok = entities["char_end"] <= end keep = start_ok & end_ok res = entities[keep] return res def align_one(sent, row): # Don't distinguish b/w genes that can and can't be looked up in database. lookup = {"GENE-Y": "GENE", "GENE-N": "GENE", "CHEMICAL": "CHEMICAL"} start_tok = None end_tok = None for tok in sent: if tok.idx == row["char_start"]: start_tok = tok if tok.idx + len(tok) == row["char_end"]: end_tok = tok if start_tok is None or end_tok is None: return None else: expected = sent[start_tok.i - sent.start:end_tok.i - sent.start + 1] if expected.text != row.text: raise Exception("Entity mismatch") return (start_tok.i, end_tok.i, lookup[row["label"]]) def align_entities(sent, entities_sent): aligned_entities = {} missed_entities = {} for _, row in entities_sent.iterrows(): aligned = align_one(sent, row) if aligned is not None: aligned_entities[row["entity_id"]] = aligned else: missed_entities[row["entity_id"]] = None return aligned_entities, missed_entities def format_relations(relations): # Convert to dict. res = {} for _, row in relations.iterrows(): ent1 = row["arg1"].replace("Arg1:", "") ent2 = row["arg2"].replace("Arg2:", "") key = (ent1, ent2) res[key] = row["label"] return res def get_relations_in_sent(aligned, relations): res = [] keys = set() # Loop over the relations, and keep the ones relating entities in this sentences. for ents, label in relations.items(): if ents[0] in aligned and ents[1] in aligned: keys.add(ents) ent1 = aligned[ents[0]] ent2 = aligned[ents[1]] to_append = ent1[:2] + ent2[:2] + (label,) res.append(to_append) return res, keys #################### # Manage a single document and a single fold. def one_abstract(row, df_entities, df_relations): doc = row["title"] + " " + row["abstract"] doc_key = row["doc_key"] entities = df_entities.query(f"doc_key == '{doc_key}'") relations = format_relations(df_relations.query(f"doc_key == '{doc_key}'")) processed = nlp(doc) entities_seen = set() entities_alignment = set() entities_no_alignment = set() relations_found = set() scierc_format = {"doc_key": doc_key, "dataset": "chemprot", "sentences": [], "ner": [], "relations": []} for sent in processed.sents: # Get the tokens. toks = [tok.text for tok in sent] # Align entities. entities_sent = get_entities_in_sent(sent, entities) aligned, missed = align_entities(sent, entities_sent) # Align relations. relations_sent, keys_found = get_relations_in_sent(aligned, relations) # Append to result list scierc_format["sentences"].append(toks) entities_to_scierc = [list(x) for x in aligned.values()] scierc_format["ner"].append(entities_to_scierc) scierc_format["relations"].append(relations_sent) # Keep track of which entities and relations we've found and which we haven't. entities_seen |= set(entities_sent["entity_id"]) entities_alignment |= set(aligned.keys()) entities_no_alignment |= set(missed.keys()) relations_found |= keys_found # Update counts. entities_missed = set(entities["entity_id"]) - entities_seen relations_missed = set(relations.keys()) - relations_found COUNTS["entities_correct"] += len(entities_alignment) COUNTS["entities_misaligned"] += len(entities_no_alignment) COUNTS["entities_missed"] += len(entities_missed) COUNTS["entities_total"] += len(entities) COUNTS["relations_found"] += len(relations_found) COUNTS["relations_missed"] += len(relations_missed) COUNTS['relations_total'] += len(relations) return scierc_format def one_fold(fold): directory = "data/chemprot" print(f"Processing fold {fold}.") raw_subdirectory = "raw_data/ChemProt_Corpus" df_abstracts = pd.read_table(f"{directory}/{raw_subdirectory}/chemprot_{fold}/chemprot_{fold}_abstracts.tsv", header=None, keep_default_na=False, names=["doc_key", "title", "abstract"]) df_entities = pd.read_table(f"{directory}/{raw_subdirectory}/chemprot_{fold}/chemprot_{fold}_entities.tsv", header=None, keep_default_na=False, names=["doc_key", "entity_id", "label", "char_start", "char_end", "text"]) df_relations = pd.read_table(f"{directory}/{raw_subdirectory}/chemprot_{fold}/chemprot_{fold}_relations.tsv", header=None, keep_default_na=False, names=["doc_key", "cpr_group", "eval_type", "label", "arg1", "arg2"]) res = [] for _, abstract in tqdm(df_abstracts.iterrows(), total=len(df_abstracts)): to_append = one_abstract(abstract, df_entities, df_relations) res.append(to_append) # Write to file. name_out = f"{directory}/processed_data/{fold}.jsonl" with open(name_out, "w") as f_out: for line in res: print(json.dumps(line), file=f_out) #################### # Driver COUNTS = Counter() for fold in ["training", "development", "test"]: one_fold(fold) counts =
pd.Series(COUNTS)
pandas.Series
import torch import numpy as np import pandas as pd import os.path as osp from torchfm.dataset.avazu import AvazuDataset from torchfm.dataset.criteo import CriteoDataset from torchfm.dataset.movielens import MovieLens1MDataset, MovieLens20MDataset class MovieLens1MAugmentedDataset(torch.utils.data.Dataset): def __init__(self, dataset_path, user_path, movie_path, sep='::'): rating_columns = ['UserID', 'MovieID', 'Rating', 'Timestamp'] user_columns = ['UserID', 'Gender', 'Age', 'Occupation', 'Zipcode'] movie_columns = ['MovieID', 'Title', 'Genres'] # data = pd.read_csv(dataset_path, sep=sep, engine=engine, header=header).to_numpy()[:, :3] rating = pd.read_csv(dataset_path, sep=sep, engine='python', header=0, names=rating_columns) user =
pd.read_csv(user_path, sep=sep, engine='python', header=0, names=user_columns)
pandas.read_csv
""" Helper functions specifically for the profile asimilation coupled with Obs study """ import os, sys import numpy as np import pandas as pd import xarray from scipy.interpolate import interp1d # manually add a2e-mmc repos to PYTHONPATH if needed module_path = os.path.join(os.environ['HOME'],'tools','a2e-mmc') if module_path not in sys.path: sys.path.append(module_path) from mmctools.helper_functions import calc_wind, covariance, power_spectral_density, theta # manually add NWTC/datatools repo to PYTHONPATH module_path = os.path.join(os.environ['HOME'],'tools') if module_path not in sys.path: sys.path.append(module_path) from datatools.SOWFA6.postProcessing.averaging import PlanarAverages from datatools.SOWFA6.postProcessing.probes import Probe from datatools.SOWFA6.postProcessing.sourceHistory import SourceHistory from datatools import openfoam_util # ---------------------- # Loading reference data # ---------------------- def load_wrf_reference_data(fpath): """ Load WRF reference data """ # Load data with xarray xa = xarray.open_dataset(fpath) # Convert to pandas dataframe wrf = xa.to_dataframe() # Convert to standard names wrf.rename({'U':'u','V':'v','W':'w','UST':'u*'}, axis='columns',inplace=True) # Compute wind speed and wind direction wrf['wspd'], wrf['wdir'] = calc_wind(wrf) return wrf def load_radar_reference_data(fpath): """ Load TTU radar reference data """ radar = pd.read_csv(fpath,parse_dates=True,index_col=['datetime','height']) # Extract scan types 0 and 1 radar_scan0 = radar.loc[radar['scan_type']==0].copy() radar_scan1 = radar.loc[radar['scan_type']==1].copy() return radar_scan0, radar_scan1 def load_tower_reference_data(fpath): """ Load TTU tower 10-min reference data """ return pd.read_csv(fpath,parse_dates=True,index_col=['datetime','height']) def load_tower_reference_spectra(fpath,times,heights,interval,window_size): """ Load TTU tower 1-Hz data and compute spectra """ # Load data tower = pd.read_csv(fpath,parse_dates=True,index_col=['datetime','height']) # Calculate some QoI tower['wspd'], tower['wdir'] = calc_wind(tower) tower['theta'] = theta(tower['Ts'],tower['p']) # Interpolate data to specified heights tower_hgt = interpolate_to_heights(tower,heights) # Reindex if needed tower_hgt = reindex_if_needed(tower_hgt) # Compute spectra tower_spectra = calc_spectra(tower_hgt,times,heights,interval,window_size) return tower_spectra # ------------------------------------------------- # Calculating statistics and quantities of interest # ------------------------------------------------- def calc_QOIs(df): """ Calculate derived quantities (IN PLACE) """ df['wspd'],df['wdir'] = calc_wind(df) df['u*'] = (df['uw']**2 + df['vw']**2)**0.25 df['TKE'] = 0.5*(df['uu'] + df['vv'] + df['ww']) ang = np.arctan2(df['v'],df['u']) df['TI'] = df['uu']*np.cos(ang)**2 + 2*df['uv']*np.sin(ang)*np.cos(ang) + df['vv']*np.sin(ang)**2 df['TI'] = np.sqrt(df['TI']) / df['wspd'] # ------------------------------ # Calculating turbulence spectra # ------------------------------ def interpolate_to_heights(df,heights): """ Interpolate data in dataframe to specified heights and return a new dataframe """ # Unstack to single height index (= most time-consuming operation) unstacked = df.unstack(level='datetime') # Interpolate to specified heights f = interp1d(unstacked.index,unstacked,axis=0,fill_value='extrapolate') for hgt in heights: unstacked.loc[hgt] = f(hgt) # Restack and set index df_out = unstacked.loc[heights].stack().reset_index().set_index(['datetime','height']).sort_index() return df_out def reindex_if_needed(df,dt=None): """ Check whether timestamps are equidistant with step dt (in seconds). If dt is not specified, dt is equal to the minimal timestep in the dataframe. If timestamps are not equidistant, interpolate to equidistant time grid with step dt. """ dts = np.diff(df.index.get_level_values(0).unique())/pd.to_timedelta(1,'s') # If dt not specified, take dt as the minimal timestep if dt is None: dt = np.min(dts) if not np.allclose(dts,dt): # df is missing some timestamps, which will cause a problem when computing spectra. # therefore, we first reindex the dataframe start = df.index.levels[0][0] end = df.index.levels[0][-1] new_index = pd.date_range(start,end,freq=pd.to_timedelta(dt,'s'),name='datetime') return df.unstack().reindex(new_index).interpolate(method='index').stack() else: return df def calc_spectra(df,times,heights,interval,window_size): """ Calculate spectra for a given number of times and heights and return a new dataframe """ dflist = [] for tstart in times: for height in heights: spectra = power_spectral_density(df.xs(height,level='height'), tstart=
pd.to_datetime(tstart)
pandas.to_datetime
from itertools import groupby from collections import defaultdict import pysam import pandas as pd import celescope.tools.utils as utils from celescope.tools.count import Count, get_opts_count class Count_capture_rna(Count): def bam2table(self): """ read probe file """ probe_gene_count_dict = utils.genDict(dim=4, valType=int) samfile = pysam.AlignmentFile(self.bam, "rb") with open(self.count_detail_file, 'wt') as fh1: fh1.write('\t'.join(['Barcode', 'geneID', 'UMI', 'count']) + '\n') def keyfunc(x): return x.query_name.split('_', 1)[0] for _, g in groupby(samfile, keyfunc): gene_umi_dict = defaultdict(lambda: defaultdict(int)) for seg in g: (barcode, umi, probe) = seg.query_name.split('_')[:3] if probe != 'None': probe_gene_count_dict[probe]['total'][barcode][umi] += 1 if seg.has_tag('XT'): geneID = seg.get_tag('XT') geneName = self.id_name[geneID] probe_gene_count_dict[probe][geneName][barcode][umi] += 1 else: probe_gene_count_dict[probe]['None'][barcode][umi] += 1 if not seg.has_tag('XT'): continue geneID = seg.get_tag('XT') gene_umi_dict[geneID][umi] += 1 for gene_id in gene_umi_dict: Count.correct_umi(gene_umi_dict[gene_id]) # output for gene_id in gene_umi_dict: for umi in gene_umi_dict[gene_id]: fh1.write('%s\t%s\t%s\t%s\n' % (barcode, gene_id, umi, gene_umi_dict[gene_id][umi])) # out probe row_list = [] for probe in probe_gene_count_dict: for geneName in probe_gene_count_dict[probe]: barcode_count = len(probe_gene_count_dict[probe][geneName]) umi_count = 0 read_count = 0 for barcode in probe_gene_count_dict[probe][geneName]: for umi in probe_gene_count_dict[probe][geneName][barcode]: umi_count += len( probe_gene_count_dict[probe][geneName][barcode]) read_count += probe_gene_count_dict[probe][geneName][barcode][umi] row_list.append({ 'probe': probe, 'gene': geneName, 'barcode_count': barcode_count, 'read_count': read_count, 'UMI_count': umi_count }) df_probe = pd.DataFrame(row_list, columns=['probe', 'gene', 'barcode_count', 'read_count', 'UMI_count']) df_probe = df_probe.groupby(['probe']).apply( lambda x: x.sort_values('UMI_count', ascending=False) ) return df_probe def run(self): df_probe = self.bam2table() df_probe.to_csv(f'{self.outdir}/{self.sample}_probe_gene_count.tsv', sep='\t', index=False) df =
pd.read_table(self.count_detail_file, header=0)
pandas.read_table
""" By <NAME> nickc1.github.io Functions to query the NDBC (http://www.ndbc.noaa.gov/). The realtime data for all of their buoys can be found at: http://www.ndbc.noaa.gov/data/realtime2/ Info about all of noaa data can be found at: http://www.ndbc.noaa.gov/docs/ndbc_web_data_guide.pdf What all the values mean: http://www.ndbc.noaa.gov/measdes.shtml Each buoy has the data: File Parameters ---- ---------- .data_spec Raw Spectral Wave Data .ocean Oceanographic Data .spec Spectral Wave Summary Data .supl Supplemental Measurements Data .swdir Spectral Wave Data (alpha1) .swdir2 Spectral Wave Data (alpha2) .swr1 Spectral Wave Data (r1) .swr2 Spectral Wave Data (r2) .txt Standard Meteorological Data Example: import buoypy as bp # Get the last 45 days of data rt = bp.realtime(41013) #frying pan shoals buoy ocean_data = rt.get_ocean() #get Oceanographic data wave_data.head() Out[7]: WVHT SwH SwP WWH WWP SwD WWD STEEPNESS APD MWD 2016-02-04 17:42:00 1.6 1.3 7.1 0.9 4.5 S S STEEP 5.3 169 2016-02-04 16:42:00 1.7 1.5 7.7 0.9 5.0 S S STEEP 5.4 174 2016-02-04 15:41:00 2.0 0.0 NaN 2.0 7.1 NaN S STEEP 5.3 174 2016-02-04 14:41:00 2.0 1.2 7.7 1.5 5.9 SSE SSE STEEP 5.5 167 2016-02-04 13:41:00 2.0 1.7 7.1 0.9 4.8 S SSE STEEP 5.7 175 TODO: Make functions with except statements always spit out the same column headings. """ import pandas as pd import numpy as np import datetime class realtime: def __init__(self, buoy): self.link = 'http://www.ndbc.noaa.gov/data/realtime2/{}'.format(buoy) def data_spec(self): """ Get the raw spectral wave data from the buoy. The seperation frequency is dropped to keep the data clean. Parameters ---------- buoy : string Buoy number ex: '41013' is off wilmington, nc Returns ------- df : pandas dataframe (date, frequency) data frame containing the raw spectral data. index is the date and the columns are each of the frequencies """ link = "{}.{}".format(self.link, 'data_spec') #combine the first five date columns YY MM DD hh mm and make index df = pd.read_csv(link, delim_whitespace=True, skiprows=1, header=None, parse_dates=[[0,1,2,3,4]], index_col=0) #convert the dates to datetimes df.index = pd.to_datetime(df.index,format="%Y %m %d %H %M") specs = df.iloc[:,1::2] freqs = df.iloc[0,2::2] specs.columns=freqs #remove the parenthesis from the column index specs.columns = [cname.replace('(','').replace(')','') for cname in specs.columns] return specs def ocean(self): """ Retrieve oceanic data. For the buoys explored, O2%, O2PPM, CLCON, TURB, PH, EH were always NaNs Returns ------- df : pandas dataframe Index is the date and columns are: DEPTH m OTMP degc COND mS/cm SAL PSU O2% % 02PPM ppm CLCON ug/l TURB FTU PH - EH mv """ link = "{}.{}".format(self.link, 'ocean') #combine the first five date columns YY MM DD hh mm and make index df = pd.read_csv(link, delim_whitespace=True, na_values='MM', parse_dates=[[0,1,2,3,4]], index_col=0) #units are in the second row drop them df.drop(df.index[0], inplace=True) #convert the dates to datetimes df.index = pd.to_datetime(df.index,format="%Y %m %d %H %M") #convert to floats cols = ['DEPTH','OTMP','COND','SAL'] df[cols] = df[cols].astype(float) return df def spec(self): """ Get the spectral wave data from the ndbc. Something is wrong with the data for this parameter. The columns seem to change randomly. Refreshing the data page will yield different column names from minute to minute. parameters ---------- buoy : string Buoy number ex: '41013' is off wilmington, nc Returns ------- df : pandas dataframe data frame containing the spectral data. index is the date and the columns are: HO, SwH, SwP, WWH, WWP, SwD, WWD, STEEPNESS, AVP, MWD OR WVHT SwH SwP WWH WWP SwD WWD STEEPNESS APD MWD """ link = "{}.{}".format(self.link, 'spec') #combine the first five date columns YY MM DD hh mm and make index df = pd.read_csv(link, delim_whitespace=True, na_values='MM', parse_dates=[[0,1,2,3,4]], index_col=0) try: #units are in the second row drop them #df.columns = df.columns + '('+ df.iloc[0] + ')' df.drop(df.index[0], inplace=True) #convert the dates to datetimes df.index = pd.to_datetime(df.index,format="%Y %m %d %H %M") #convert to floats cols = ['WVHT','SwH','SwP','WWH','WWP','APD','MWD'] df[cols] = df[cols].astype(float) except: #convert the dates to datetimes df.index = pd.to_datetime(df.index,format="%Y %m %d %H %M") #convert to floats cols = ['H0','SwH','SwP','WWH','WWP','AVP','MWD'] df[cols] = df[cols].astype(float) return df def supl(self): """ Get supplemental data Returns ------- data frame containing the spectral data. index is the date and the columns are: PRES hpa PTIME hhmm WSPD m/s WDIR degT WTIME hhmm """ link = "{}.{}".format(self.link, 'supl') #combine the first five date columns YY MM DD hh mm and make index df = pd.read_csv(link, delim_whitespace=True, na_values='MM', parse_dates=[[0,1,2,3,4]], index_col=0) #units are in the second row drop them df.drop(df.index[0], inplace=True) #convert the dates to datetimes df.index = pd.to_datetime(df.index,format="%Y %m %d %H %M") #convert to floats cols = ['PRES','PTIME','WSPD','WDIR','WTIME'] df[cols] = df[cols].astype(float) return df def swdir(self): """ Spectral wave data for alpha 1. Returns ------- specs : pandas dataframe Index is the date and the columns are the spectrum. Values in the table indicate how much energy is at each spectrum. """ link = "{}.{}".format(self.link, 'swdir') #combine the first five date columns YY MM DD hh mm and make index df = pd.read_csv(link,delim_whitespace=True,skiprows=1,na_values=999, header=None, parse_dates=[[0,1,2,3,4]], index_col=0) #convert the dates to datetimes df.index = pd.to_datetime(df.index,format="%Y %m %d %H %M") specs = df.iloc[:,0::2] freqs = df.iloc[0,1::2] specs.columns=freqs #remove the parenthesis from the column index specs.columns = [cname.replace('(','').replace(')','') for cname in specs.columns] return specs def swdir2(self): """ Spectral wave data for alpha 2. Returns ------- specs : pandas dataframe Index is the date and the columns are the spectrum. Values in the table indicate how much energy is at each spectrum. """ link = "{}.{}".format(self.link, 'swdir2') #combine the first five date columns YY MM DD hh mm and make index df = pd.read_csv(link,delim_whitespace=True,skiprows=1, header=None, parse_dates=[[0,1,2,3,4]], index_col=0) #convert the dates to datetimes df.index = pd.to_datetime(df.index,format="%Y %m %d %H %M") specs = df.iloc[:,0::2] freqs = df.iloc[0,1::2] specs.columns=freqs #remove the parenthesis from the column index specs.columns = [cname.replace('(','').replace(')','') for cname in specs.columns] return specs def swr1(self): """ Spectral wave data for r1. Returns ------- specs : pandas dataframe Index is the date and the columns are the spectrum. Values in the table indicate how much energy is at each spectrum. """ link = "{}.{}".format(self.link, 'swr1') #combine the first five date columns YY MM DD hh mm and make index df = pd.read_csv(link,delim_whitespace=True,skiprows=1, header=None, parse_dates=[[0,1,2,3,4]], index_col=0) #convert the dates to datetimes df.index = pd.to_datetime(df.index,format="%Y %m %d %H %M") specs = df.iloc[:,0::2] freqs = df.iloc[0,1::2] specs.columns=freqs #remove the parenthesis from the column index specs.columns = [cname.replace('(','').replace(')','') for cname in specs.columns] return specs def swr2(self): """ Spectral wave data for r2. Returns ------- specs : pandas dataframe Index is the date and the columns are the spectrum. Values in the table indicate how much energy is at each spectrum. """ link = "{}.{}".format(self.link, 'swr2') #combine the first five date columns YY MM DD hh mm and make index df = pd.read_csv(link,delim_whitespace=True,skiprows=1, header=None, parse_dates=[[0,1,2,3,4]], index_col=0) #convert the dates to datetimes df.index = pd.to_datetime(df.index,format="%Y %m %d %H %M") specs = df.iloc[:,0::2] freqs = df.iloc[0,1::2] specs.columns=freqs #remove the parenthesis from the column index specs.columns = [cname.replace('(','').replace(')','') for cname in specs.columns] return specs def txt(self): """ Retrieve standard Meteorological data. NDBC seems to be updating the data with different column names, so this metric can return two possible data frames with different column names: Returns ------- df : pandas dataframe Index is the date and the columns can be: ['WDIR','WSPD','GST','WVHT','DPD','APD','MWD', 'PRES','ATMP','WTMP','DEWP','VIS','PTDY','TIDE'] or ['WD','WSPD','GST','WVHT','DPD','APD','MWD','BARO', 'ATMP','WTMP','DEWP','VIS','PTDY','TIDE'] """ link = "{}.{}".format(self.link, 'txt') #combine the first five date columns YY MM DD hh mm and make index df = pd.read_csv(link, delim_whitespace=True, na_values='MM', parse_dates=[[0,1,2,3,4]], index_col=0) try: #first column is units, so drop it df.drop(df.index[0], inplace=True) #convert the dates to datetimes df.index = pd.to_datetime(df.index,format="%Y %m %d %H %M") #convert to floats cols = ['WDIR','WSPD','GST','WVHT','DPD','APD','MWD', 'PRES','ATMP','WTMP','DEWP','VIS','PTDY','TIDE'] df[cols] = df[cols].astype(float) except: #convert the dates to datetimes df.index = pd.to_datetime(df.index,format="%Y %m %d %H %M") #convert to floats cols = ['WD','WSPD','GST','WVHT','DPD','APD','MWD','BARO', 'ATMP','WTMP','DEWP','VIS','PTDY','TIDE'] df[cols] = df[cols].astype(float) df.index.name='Date' return df ################################################ ################################################ class historic_data: def __init__(self, buoy, year, year_range=None): link = 'http://www.ndbc.noaa.gov/view_text_file.php?filename=' link += '{}h{}.txt.gz&dir=data/historical/'.format(buoy, year) self.link = link def get_stand_meteo(self,link = None): ''' Standard Meteorological Data. Data header was changed in 2007. Thus the need for the if statement below. WDIR Wind direction (degrees clockwise from true N) WSPD Wind speed (m/s) averaged over an eight-minute period GST Peak 5 or 8 second gust speed (m/s) WVHT Significant wave height (meters) is calculated as the average of the highest one-third of all of the wave heights during the 20-minute sampling period. DPD Dominant wave period (seconds) is the period with the maximum wave energy. APD Average wave period (seconds) of all waves during the 20-minute period. MWD The direction from which the waves at the dominant period (DPD) are coming. (degrees clockwise from true N) PRES Sea level pressure (hPa). ATMP Air temperature (Celsius). WTMP Sea surface temperature (Celsius). DEWP Dewpoint temperature VIS Station visibility (nautical miles). PTDY Pressure Tendency TIDE The water level in feet above or below Mean Lower Low Water (MLLW). ''' link = self.link + 'stdmet/' #combine the first five date columns YY MM DD hh and make index df = pd.read_csv(link, header=0, delim_whitespace=True, dtype=object, na_values=[99,999,9999,99.,999.,9999.]) #2007 and on format if df.iloc[0,0] =='#yr': df = df.rename(columns={'#YY': 'YY'}) #get rid of hash #make the indices df.drop(0, inplace=True) #first row is units, so drop them d = df.YY + ' ' + df.MM+ ' ' + df.DD + ' ' + df.hh + ' ' + df.mm ind = pd.to_datetime(d, format="%Y %m %d %H %M") df.index = ind #drop useless columns and rename the ones we want df.drop(['YY','MM','DD','hh','mm'], axis=1, inplace=True) df.columns = ['WDIR', 'WSPD', 'GST', 'WVHT', 'DPD', 'APD', 'MWD', 'PRES', 'ATMP', 'WTMP', 'DEWP', 'VIS', 'TIDE'] #before 2006 to 2000 else: date_str = df.YYYY + ' ' + df.MM + ' ' + df.DD + ' ' + df.hh ind = pd.to_datetime(date_str,format="%Y %m %d %H") df.index = ind #some data has a minute column. Some doesn't. if 'mm' in df.columns: df.drop(['YYYY','MM','DD','hh','mm'], axis=1, inplace=True) else: df.drop(['YYYY','MM','DD','hh'], axis=1, inplace=True) df.columns = ['WDIR', 'WSPD', 'GST', 'WVHT', 'DPD', 'APD', 'MWD', 'PRES', 'ATMP', 'WTMP', 'DEWP', 'VIS', 'TIDE'] # all data should be floats df = df.astype('float') return df def get_all_stand_meteo(self): """ Retrieves all the standard meterological data. Calls get_stand_meteo. It also checks to make sure that the years that were requested are available. Data is not available for the same years at all the buoys. Returns ------- df : pandas dataframe Contains all the data from all the years that were specified in year_range. """ start,stop = self.year_range #see what is on the NDBC so we only pull the years that are available links = [] for ii in range(start,stop+1): base = 'http://www.ndbc.noaa.gov/view_text_file.php?filename=' end = '.txt.gz&dir=data/historical/stdmet/' link = base + str(self.buoy) + 'h' + str(ii) + end try: urllib2.urlopen(link) links.append(link) except: print(str(ii) + ' not in records') #need to also retrieve jan, feb, march, etc. month = ['Jan','Feb','Mar','Apr','May','Jun', 'Jul','Aug','Sep','Oct','Nov','Dec'] k = [1,2,3,4,5,6,7,8,9,'a','b','c'] #for the links for ii in range(len(month)): mid = '.txt.gz&dir=data/stdmet/' link = base + str(self.buoy) + str(k[ii]) + '2016' + mid + str(month[ii]) +'/' try: urllib2.urlopen(link) links.append(link) except: print(str(month[ii]) + '2016' + ' not in records') print(link) # start grabbing some data df=
pd.DataFrame()
pandas.DataFrame
import pytest import numpy as np import pandas as pd EXP_IDX = pd.MultiIndex(levels=[['model_a'], ['scen_a', 'scen_b']], labels=[[0, 0], [0, 1]], names=['model', 'scenario']) def test_set_meta_no_name(meta_df): idx = pd.MultiIndex(levels=[['a_scenario'], ['a_model'], ['some_region']], labels=[[0], [0], [0]], names=['scenario', 'model', 'region']) s = pd.Series(data=[0.3], index=idx) pytest.raises(ValueError, meta_df.set_meta, s) def test_set_meta_as_named_series(meta_df): idx = pd.MultiIndex(levels=[['scen_a'], ['model_a'], ['some_region']], labels=[[0], [0], [0]], names=['scenario', 'model', 'region']) s = pd.Series(data=[0.3], index=idx, name='meta_values') meta_df.set_meta(s) exp = pd.Series(data=[0.3, np.nan], index=EXP_IDX, name='meta_values') pd.testing.assert_series_equal(meta_df['meta_values'], exp) def test_set_meta_as_unnamed_series(meta_df): idx = pd.MultiIndex(levels=[['scen_a'], ['model_a'], ['some_region']], labels=[[0], [0], [0]], names=['scenario', 'model', 'region']) s = pd.Series(data=[0.3], index=idx) meta_df.set_meta(s, name='meta_values') exp = pd.Series(data=[0.3, np.nan], index=EXP_IDX, name='meta_values') pd.testing.assert_series_equal(meta_df['meta_values'], exp) def test_set_meta_non_unique_index_fail(meta_df): idx = pd.MultiIndex(levels=[['model_a'], ['scen_a'], ['reg_a', 'reg_b']], labels=[[0, 0], [0, 0], [0, 1]], names=['model', 'scenario', 'region']) s = pd.Series([0.4, 0.5], idx) pytest.raises(ValueError, meta_df.set_meta, s) def test_set_meta_non_existing_index_fail(meta_df): idx = pd.MultiIndex(levels=[['model_a', 'fail_model'], ['scen_a', 'fail_scenario']], labels=[[0, 1], [0, 1]], names=['model', 'scenario']) s = pd.Series([0.4, 0.5], idx) pytest.raises(ValueError, meta_df.set_meta, s) def test_set_meta_by_df(meta_df): df = pd.DataFrame([ ['model_a', 'scen_a', 'some_region', 1], ], columns=['model', 'scenario', 'region', 'col']) meta_df.set_meta(meta=0.3, name='meta_values', index=df) exp = pd.Series(data=[0.3, np.nan], index=EXP_IDX, name='meta_values') pd.testing.assert_series_equal(meta_df['meta_values'], exp) def test_set_meta_as_series(meta_df): s = pd.Series([0.3, 0.4]) meta_df.set_meta(s, 'meta_series') exp = pd.Series(data=[0.3, 0.4], index=EXP_IDX, name='meta_series') pd.testing.assert_series_equal(meta_df['meta_series'], exp) def test_set_meta_as_int(meta_df): meta_df.set_meta(3.2, 'meta_int') exp =
pd.Series(data=[3.2, 3.2], index=EXP_IDX, name='meta_int')
pandas.Series
import os import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm from pandas.io.sas.sasreader import read_sas # CSV versions of test xpt files were obtained using the R foreign library # Numbers in a SAS xport file are always float64, so need to convert # before making comparisons. def numeric_as_float(data): for v in data.columns: if data[v].dtype is np.dtype("int64"): data[v] = data[v].astype(np.float64) class TestXport: @pytest.fixture(autouse=True) def setup_method(self, datapath): self.dirpath = datapath("io", "sas", "data") self.file01 = os.path.join(self.dirpath, "DEMO_G.xpt") self.file02 = os.path.join(self.dirpath, "SSHSV1_A.xpt") self.file03 = os.path.join(self.dirpath, "DRXFCD_G.xpt") self.file04 = os.path.join(self.dirpath, "paxraw_d_short.xpt") with td.file_leak_context(): yield @pytest.mark.slow def test1_basic(self): # Tests with DEMO_G.xpt (all numeric file) # Compare to this data_csv = pd.read_csv(self.file01.replace(".xpt", ".csv")) numeric_as_float(data_csv) # Read full file data = read_sas(self.file01, format="xport") tm.assert_frame_equal(data, data_csv) num_rows = data.shape[0] # Test reading beyond end of file with read_sas(self.file01, format="xport", iterator=True) as reader: data = reader.read(num_rows + 100) assert data.shape[0] == num_rows # Test incremental read with `read` method. with read_sas(self.file01, format="xport", iterator=True) as reader: data = reader.read(10) tm.assert_frame_equal(data, data_csv.iloc[0:10, :]) # Test incremental read with `get_chunk` method. with read_sas(self.file01, format="xport", chunksize=10) as reader: data = reader.get_chunk()
tm.assert_frame_equal(data, data_csv.iloc[0:10, :])
pandas._testing.assert_frame_equal
# -*- coding: utf-8 -*- """ Created on Tue Oct 27 12:59:05 2020 @author: <NAME> Explanation: To change from categorical variable to 0/1 columns. """ import pandas as pd df_train =
pd.read_csv("train.csv")
pandas.read_csv
""" Construct dataset """ import sys import math import pandas as pd import numpy as np import csv def calc_gaps(station): """Calculate gaps in time series""" df = pd.read_csv('../data/all_clean/{0}-clean.txt'.format(station), parse_dates=['Date']) df = df.set_index(['Date']) df.index = pd.to_datetime(df.index) dates = df.index.values first_date = dates[0] last_date = dates[-1] print('Data from {0} to {1}'.format(first_date, last_date)) total_range = last_date - first_date total_range_seconds = total_range / np.timedelta64(1, 's') last_read_date = first_date gaps = [] total_gap = 0; for d in dates: diff = d - last_read_date seconds = diff / np.timedelta64(1, 's') hours = diff / np.timedelta64(1, 'h') if hours > 72: # met stations # if hours > 24: # flow stations total_gap = total_gap + seconds gaps.append(seconds) last_read_date = d print('Number of gaps {0}'.format(len(gaps))) years = math.floor(total_gap / 3600 / 24 / 365.25) days = math.floor((total_gap / 3600 / 24 % 365.25)) print('Total gap {0} years'.format(total_gap / 3600 / 24 / 365.25)) print('Total gap {0} years {1} days'.format(years, days)) total_left = total_range_seconds - total_gap years_left = math.floor(total_left / 3600 / 24 / 365.25) days_left = math.floor((total_left / 3600 / 24 % 365.25)) print('Total left {0} years'.format(total_left / 3600 / 24 / 365.25)) print('Total left {0} years {1} days'.format(years_left, days_left)) # gap_file = '{0}-gaps.txt'.format(station) # np.savetxt(gap_file, gaps, delimiter=',', fmt="%s") def calc_histogram(station): """Get histogram""" raw = pd.read_csv('../data/all_clean/{0}-clean.txt'.format(station), parse_dates=['Date']) raw = raw.set_index(['Date']) raw.index = pd.to_datetime(raw.index) df = raw.resample('1H').mean() total_count = df.count() i0 = df[(df['Value'] == 0)].count() i1 = df[(df['Value'] > 0) & (df['Value'] <= 10)].count() i2 = df[(df['Value'] > 10) & (df['Value'] <= 50)].count() i3 = df[(df['Value'] > 50) & (df['Value'] <= 100)].count() i4 = df[(df['Value'] > 100) & (df['Value'] <= 200)].count() i5 = df[(df['Value'] > 200) & (df['Value'] <= 300)].count() i6 = df[(df['Value'] > 300) & (df['Value'] <= 400)].count() i7 = df[(df['Value'] > 400) & (df['Value'] <= 500)].count() i8 = df[(df['Value'] > 500) & (df['Value'] <= 1000)].count() i9 = df[(df['Value'] > 1000)].count() print('Total count: {0}'.format(total_count['Value'])) print(' 0: {0}'.format(i0['Value']/total_count['Value'])) print(' 0 - 10: {0}'.format(i1['Value']/total_count['Value'])) print(' 10 - 50: {0}'.format(i2['Value']/total_count['Value'])) print(' 50 - 100: {0}'.format(i3['Value']/total_count['Value'])) print('100 - 200: {0}'.format(i4['Value']/total_count['Value'])) print('200 - 300: {0}'.format(i5['Value']/total_count['Value'])) print('300 - 400: {0}'.format(i6['Value']/total_count['Value'])) print('400 - 500: {0}'.format(i7['Value']/total_count['Value'])) print('500 - 1000: {0}'.format(i8['Value']/total_count['Value'])) print(' > 1000: {0}'.format(i9['Value']/total_count['Value'])) def calc_histogram4(station1, station2): """Get histogram""" raw1 = pd.read_csv('../data/all_clean/{0}-clean.txt'.format(station1), parse_dates=['Date']) raw1 = raw1.set_index(['Date']) raw1.index = pd.to_datetime(raw1.index) df1 = raw1.resample('1H').mean() raw2 = pd.read_csv('../data/all_clean/{0}-clean.txt'.format(station2), parse_dates=['Date']) raw2 = raw2.set_index(['Date']) raw2.index = pd.to_datetime(raw2.index) df2 = raw2.resample('1H').mean() df1['Total'] = df1['Value'] + df2['Value'] total_count = df1.count() i0 = df1[(df1['Total'] == 0)].count() i1 = df1[(df1['Total'] > 0) & (df1['Total'] <= 10)].count() i2 = df1[(df1['Total'] > 10) & (df1['Total'] <= 50)].count() i3 = df1[(df1['Total'] > 50) & (df1['Total'] <= 100)].count() i4 = df1[(df1['Total'] > 100) & (df1['Total'] <= 200)].count() i5 = df1[(df1['Total'] > 200) & (df1['Total'] <= 300)].count() i6 = df1[(df1['Total'] > 300) & (df1['Total'] <= 400)].count() i7 = df1[(df1['Total'] > 400) & (df1['Total'] <= 500)].count() i8 = df1[(df1['Total'] > 500) & (df1['Total'] <= 1000)].count() i9 = df1[(df1['Total'] > 1000)].count() print('Total count: {0}'.format(total_count['Total'])) print(' 0: {0}'.format(i0['Total']/total_count['Total'])) print(' 0 - 10: {0}'.format(i1['Total']/total_count['Total'])) print(' 10 - 50: {0}'.format(i2['Total']/total_count['Total'])) print(' 50 - 100: {0}'.format(i3['Total']/total_count['Total'])) print('100 - 200: {0}'.format(i4['Total']/total_count['Total'])) print('200 - 300: {0}'.format(i5['Total']/total_count['Total'])) print('300 - 400: {0}'.format(i6['Total']/total_count['Total'])) print('400 - 500: {0}'.format(i7['Total']/total_count['Total'])) print('500 - 1000: {0}'.format(i8['Total']/total_count['Total'])) print(' > 1000: {0}'.format(i9['Total']/total_count['Total'])) def calc_histogram3(station1, station2, station3): """Get histogram""" raw1 = pd.read_csv('../data/all_clean/{0}-clean.txt'.format(station1), parse_dates=['Date']) raw1 = raw1.set_index(['Date']) raw1.index = pd.to_datetime(raw1.index) df1 = raw1.resample('1H').mean() raw2 = pd.read_csv('../data/all_clean/{0}-clean.txt'.format(station2), parse_dates=['Date']) raw2 = raw2.set_index(['Date']) raw2.index =
pd.to_datetime(raw2.index)
pandas.to_datetime
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.3 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/schools8_pymc3.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + [markdown] id="W_0ED20uQKha" # In this notebook, we fit a hierarchical Bayesian model to the "8 schools" dataset. # See also https://github.com/probml/pyprobml/blob/master/scripts/schools8_pymc3.py # + id="HXRokZL1QPvB" # %matplotlib inline import sklearn import scipy.stats as stats import scipy.optimize import matplotlib.pyplot as plt import seaborn as sns import time import numpy as np import os import pandas as pd # + id="C5EHDB-rQSIa" colab={"base_uri": "https://localhost:8080/"} outputId="d6d8b024-96ba-4014-97d9-ddef6d88349e" # !pip install -U pymc3>=3.8 import pymc3 as pm print(pm.__version__) import theano.tensor as tt import theano # #!pip install arviz import arviz as az # + id="sKlvHNY6RUaP" # !mkdir ../figures # + [markdown] id="-jby_J17HqBT" # # Data # + id="8pNC3UANQjeO" colab={"base_uri": "https://localhost:8080/", "height": 297} outputId="8f91ec2e-e81b-452b-dcf7-8c9f6ddda82a" # https://github.com/probml/pyprobml/blob/master/scripts/schools8_pymc3.py # Data of the Eight Schools Model J = 8 y = np.array([28., 8., -3., 7., -1., 1., 18., 12.]) sigma = np.array([15., 10., 16., 11., 9., 11., 10., 18.]) print(np.mean(y)) print(np.median(y)) names=[]; for t in range(8): names.append('{}'.format(t)); # Plot raw data fig, ax = plt.subplots() y_pos = np.arange(8) ax.errorbar(y,y_pos, xerr=sigma, fmt='o') ax.set_yticks(y_pos) ax.set_yticklabels(names) ax.invert_yaxis() # labels read top-to-bottom plt.title('8 schools') plt.savefig('../figures/schools8_data.png') plt.show() # + [markdown] id="vcAdKbnXHsKE" # # Centered model # + id="-Lxa_JgfQmAI" colab={"base_uri": "https://localhost:8080/", "height": 723} outputId="573cdde1-a178-4949-de75-af036d02f6dd" # Centered model with pm.Model() as Centered_eight: mu_alpha = pm.Normal('mu_alpha', mu=0, sigma=5) sigma_alpha = pm.HalfCauchy('sigma_alpha', beta=5) alpha = pm.Normal('alpha', mu=mu_alpha, sigma=sigma_alpha, shape=J) obs = pm.Normal('obs', mu=alpha, sigma=sigma, observed=y) log_sigma_alpha = pm.Deterministic('log_sigma_alpha', tt.log(sigma_alpha)) np.random.seed(0) with Centered_eight: trace_centered = pm.sample(1000, chains=4, return_inferencedata=False) pm.summary(trace_centered).round(2) # PyMC3 gives multiple warnings about divergences # Also, see r_hat ~ 1.01, ESS << nchains*1000, especially for sigma_alpha # We can solve these problems below by using a non-centered parameterization. # In practice, for this model, the results are very similar. # + id="pOrDPo_lQob_" colab={"base_uri": "https://localhost:8080/"} outputId="0cbd7421-2754-43c2-a468-7250ae30b8d1" # Display the total number and percentage of divergent chains diverging = trace_centered['diverging'] print('Number of Divergent Chains: {}'.format(diverging.nonzero()[0].size)) diverging_pct = diverging.nonzero()[0].size / len(trace_centered) * 100 print('Percentage of Divergent Chains: {:.1f}'.format(diverging_pct)) # + id="bYbhbC-kT8GV" outputId="77b27048-57ad-456c-f6ea-7bbeee7d1d94" colab={"base_uri": "https://localhost:8080/"} dir(trace_centered) # + id="9ODVo7cLUKs8" outputId="505c9b7c-6b7f-4b12-be22-c67809d19641" colab={"base_uri": "https://localhost:8080/"} trace_centered.varnames # + id="gClLFgqHVuW1" outputId="7447a76c-0e85-4d11-ca0a-fd24babe57dd" colab={"base_uri": "https://localhost:8080/", "height": 356} with Centered_eight: #fig, ax = plt.subplots() az.plot_autocorr(trace_centered, var_names=['mu_alpha', 'sigma_alpha'], combined=True); plt.savefig('schools8_centered_acf_combined.png', dpi=300) # + id="uWPD88BxTkMj" outputId="ed94b053-2ebc-41f1-91c3-12f0d7eec423" colab={"base_uri": "https://localhost:8080/", "height": 452} with Centered_eight: #fig, ax = plt.subplots() az.plot_autocorr(trace_centered, var_names=['mu_alpha', 'sigma_alpha']); plt.savefig('schools8_centered_acf.png', dpi=300) # + id="Uv1QEiQOQtGc" colab={"base_uri": "https://localhost:8080/", "height": 370} outputId="7ce96252-9002-4f18-a64c-c55046f5415d" with Centered_eight: az.plot_forest(trace_centered, var_names="alpha", hdi_prob=0.95, combined=True); plt.savefig('schools8_centered_forest_combined.png', dpi=300) # + id="cgzmwxVGZxub" outputId="8979ca4c-d9df-43bb-847e-bad33b2258bb" colab={"base_uri": "https://localhost:8080/", "height": 542} with Centered_eight: az.plot_forest(trace_centered, var_names="alpha", hdi_prob=0.95, combined=False); plt.savefig('schools8_centered_forest.png', dpi=300) # + [markdown] id="BkphbYr_HxOj" # # Non-centered # + id="jLFiQS0ZQvR4" colab={"base_uri": "https://localhost:8080/", "height": 905} outputId="8c0caa4b-4aa4-4685-f8ef-ef23ba60b82c" # Non-centered parameterization with pm.Model() as NonCentered_eight: mu_alpha = pm.Normal('mu_alpha', mu=0, sigma=5) sigma_alpha = pm.HalfCauchy('sigma_alpha', beta=5) alpha_offset = pm.Normal('alpha_offset', mu=0, sigma=1, shape=J) alpha = pm.Deterministic('alpha', mu_alpha + sigma_alpha * alpha_offset) #alpha = pm.Normal('alpha', mu=mu_alpha, sigma=sigma_alpha, shape=J) obs = pm.Normal('obs', mu=alpha, sigma=sigma, observed=y) log_sigma_alpha = pm.Deterministic('log_sigma_alpha', tt.log(sigma_alpha)) np.random.seed(0) with NonCentered_eight: trace_noncentered = pm.sample(1000, chains=4) pm.summary(trace_noncentered).round(2) # Samples look good: r_hat = 1, ESS ~= nchains*1000 # + id="RyB5Qu-MQxuM" colab={"base_uri": "https://localhost:8080/", "height": 356} outputId="4a21b628-5b80-4ae4-a148-a208f33d6d43" with NonCentered_eight: az.plot_autocorr(trace_noncentered, var_names=['mu_alpha', 'sigma_alpha'], combined=True); plt.savefig('schools8_noncentered_acf_combined.png', dpi=300) # + id="JHmvYgsAQzuK" colab={"base_uri": "https://localhost:8080/", "height": 370} outputId="5ed95cc6-49b8-4bc6-acca-59f7c5f5c06b" with NonCentered_eight: az.plot_forest(trace_noncentered, var_names="alpha", combined=True, hdi_prob=0.95); plt.savefig('schools8_noncentered_forest_combined.png', dpi=300) # + id="vb8tzwUhXlW0" colab={"base_uri": "https://localhost:8080/", "height": 568} outputId="efad1751-55c1-4d1d-97b8-198f67af8935" az.plot_forest([trace_centered, trace_noncentered], model_names=['centered', 'noncentered'], var_names="alpha", combined=True, hdi_prob=0.95); plt.axvline(np.mean(y), color='k', linestyle='--') # + id="JETMmNSuZUV7" colab={"base_uri": "https://localhost:8080/", "height": 647} outputId="835e3d2c-7874-41b5-d22e-d64e18fae9ab" az.plot_forest([trace_centered, trace_noncentered], model_names=['centered', 'noncentered'], var_names="alpha", kind='ridgeplot', combined=True, hdi_prob=0.95); # + [markdown] id="Q_SYYgL0H13G" # # Funnel of hell # + id="E3CtP2kcT4s5" colab={"base_uri": "https://localhost:8080/", "height": 295} outputId="17af872c-3d56-48e6-be05-a5aab0b4aa39" # Plot the "funnel of hell" # Based on # https://github.com/twiecki/WhileMyMCMCGentlySamples/blob/master/content/downloads/notebooks/GLM_hierarchical_non_centered.ipynb fig, axs = plt.subplots(ncols=2, sharex=True, sharey=True) x = pd.Series(trace_centered['mu_alpha'], name='mu_alpha') y = pd.Series(trace_centered['log_sigma_alpha'], name='log_sigma_alpha') axs[0].plot(x, y, '.'); axs[0].set(title='Centered', xlabel='µ', ylabel='log(sigma)'); #axs[0].axhline(0.01) x = pd.Series(trace_noncentered['mu_alpha'], name='mu') y =
pd.Series(trace_noncentered['log_sigma_alpha'], name='log_sigma_alpha')
pandas.Series
__version__ = '0.1.0' # TODO: # - automatic credential fetching. Renew stale creds. # - change all to_exclude parameters to to_keep, so is explicit / can use in docs. # - general handling of a name query versus URI (e.g. via a decorator) # - need to remove albums artists are only contributers to, or add field? import pandas as pd from functools import partial from itertools import chain CONFIG_PATH = '~/.tidyspotify.yml' COLS_EXCLUDE_TRACKS = ('artists', 'available_markets', 'external_urls', 'is_local', 'disc_number') # Features that may be useful for analyses ---- FEATURES_TRACK = ( 'acousticness', 'danceability', 'energy', 'instrumentalness', 'liveness', 'loudness', 'speechiness', 'valence', 'tempo', 'key', 'time_signature' ) FEATURES_ALBUM = ( 'album_popularity', 'release_date' ) # Utils --------------------------------------------------------------------------------- def is_uri(s): return True def exclude_fields(to_exclude, d): return {k: v for k, v in d.items() if k not in to_exclude} def keep_fields(to_keep, d): return {k: d[k] for k in to_keep if k in d} def row_filter(fields, exclude = True): f = exclude_fields if exclude else keep_fields return partial(f, frozenset(fields)) def prefix_merge(left, right, prefix, *args, **kwargs): """Merge two dataframes, but prefix rather than suffix shared cols""" shared = set(left.columns).intersection(set(right.columns)) new_left = left.rename(columns = {x: prefix[0] + x for x in shared}) new_right = right.rename(columns = {x: prefix[1] + x for x in shared}) return new_left.merge(new_right, *args, **kwargs) # Client -------------------------------------------------------------------------------- # note: this currently takes the hacky approach of having all functions use the # client (sp) defined here import spotipy from spotipy import SpotifyException from spotipy.oauth2 import SpotifyClientCredentials from functools import wraps from pathlib import Path import yaml import os default_client = None class FileCredentialManager(SpotifyClientCredentials): def __init__(self, client_id=None, client_secret=None, proxies=None): """Try Authenticating in this order: 1. client_id and secret args 2. SPOTIPY_CLIENT_ID and SPOTIPY_CLIENT_SECRET enivronment variables 3. ~/.tidyspotify.yml config file """ p = Path(CONFIG_PATH).expanduser() if client_id or client_secret or os.environ.get('SPOTIPY_CLIENT_ID'): return super().__init__(client_id, client_secret, proxies) elif p.exists(): config = yaml.load(p.open()) return super().__init__(proxies = proxies, **config) else: return super().__init__() def save_credentials(verify = True): """Login to spotify api. Saves credentials to file.""" config = { 'client_id': input('client id: '), 'client_secret': input('client secret: ') } if verify: sp = spotipy.Spotify(client_credentials_manager = SpotifyClientCredentials(**config)) try: sp.search("The Beatles") except SpotifyException as e: # TODO: informative message raise path = Path(CONFIG_PATH).expanduser() print("Writing credentials to %s" % path.absolute()) yaml.dump(config, path.open('w'), default_flow_style = False) def default_login(): global default_client client_credentials_manager = FileCredentialManager() default_client = spotipy.Spotify(client_credentials_manager=client_credentials_manager) return default_client def login(f): @wraps(f) def wrapper(*args, client = None, **kwargs): if client is None: client = default_login() if default_client is None else default_client return f(*args, client = default_client, **kwargs) return wrapper # API Main Entrypoints ------------------------------------------------------------------- @login def get_artist_audio_features(q, interactive = False, genre_delimiter = '-!!-', to_file = '', client = None): """Return DataFrame with artist, album, and track data. Parameters: q: An artist to retrieve data for. interactive: If true, prompts you to choose between similar artists. genre_delimiter: Collapse genre column into strings like "genre1-!!-genre2". If set to None, keeps genres as a list for each row. """ query = client.search(q = q, type = "artist") items = query['artists']['items'] if not items: raise Exception("No artists found") if interactive: print("Select the artist to use...") print("\n".join("[{}]: {}".format(ii, entry['name']) for ii, entry in enumerate(items))) artist_indx = int(input("artist number: ").strip()) if artist_indx > len(items): raise IndexError("Selected number higher than options available") artist = items[artist_indx] else: artist = items[0] # get artist genres artist_genres = genre_delimiter.join(artist['genres']) if genre_delimiter else None # get artist albums albums = get_artist_albums(artist['id']) albums['artist_genres'] = artist_genres # get album popularity album_popularity = get_album_popularity(albums.id) # get album tracks tracks = get_album_tracks(albums.id) # get track audio features features = get_track_features(tracks.id) # get track popularity popularity = get_track_popularity(tracks.id) album_data = albums.merge(album_popularity, 'left', 'id') track_data = tracks \ .drop(columns = ['type']) \ .merge(popularity, 'left', 'id') \ .merge(features.drop(columns = ['uri', 'type', 'duration_ms']), 'left', 'id') merged = prefix_merge(album_data, track_data, ['album_', 'track_'], how = 'left', on = 'album_id') if to_file: merged.to_csv(to_file) return merged @login def get_recommendations(artists = tuple(), genres = tuple(), limit = 20, features = True, client = None): """Return DataFrame of recommended tracks. Arguments: artists: an optional sequence of artists to seed recommendation genres: an optional sequence of genres to seed recommendation limit: number of tracks to return features: whether to include track features in output """ recs = client.recommendations(seed_artists = artists, seed_genres = genres, limit = limit) tracks = recs['tracks'] # TODO: need a compose function... to_keep = ( 'album_name', 'artist_name', 'name', 'popularity', 'duration_ms', 'explicit', 'id' ) rows = list(map(row_filter(to_keep, False), map(_hoist_track_info, tracks))) out = pd.DataFrame(rows) track_ids = [row['id'] for row in rows] if features: extra_cols = ['uri', 'type', 'duration_ms', 'analysis_url', 'track_href'] return out.merge( get_track_features(track_ids).drop(columns = extra_cols), on = "id" ) return out def _hoist_track_info(track): """Mutates track with artist and album info at top level.""" track['album_name'] = track['album']['name'] artist = track['artists'][0] track['artist_name'] = artist['name'] return track @login def get_recommendation_genre_seeds(client = None): """Return genres that can be used in get_recommendations""" return client.recommendation_genre_seeds()['genres'] # API Functions ------------------------------------------------------------------------- @login def get_artist_albums( artist_id, to_exclude = ('available_markets', 'artists', 'external_urls', 'href', 'images', 'type', 'uri', 'release_date_precision', 'album_group', 'total_tracks'), to_df = True, client = None): """Return albums belonging to an artist. Arguments: artist_id: artist uri or an artist name to search to_exclude: fields to exclude from each row of data to_df: return a DataFrame rather than a list """ # artist_name artist_uri album_uri album_name album_img album_type is_collaboration if not is_uri(artist_id): query = client.search(q = artist_id, type = "artist") items = query['artists']['items'] if not items: raise Exception("No artist matching search: %s" %artist_id) artist_id = items[0]['id'] # TODO: pass args? albums = client.artist_albums(artist_id) row_filter(['id']) items = albums['items'] for entry in items: artist = entry['artists'][0] entry['artist_name'] = artist['name'] entry['artist_uri'] = artist['uri'] data = list(map(row_filter(to_exclude), items)) return pd.DataFrame(data) if to_df else data @login def get_album_popularity(album_ids, to_df = True, client = None): query = client.albums(album_ids) data = list(map(row_filter(['id','popularity'], exclude = False), query['albums'])) return pd.DataFrame(data) if to_df else data @login def get_album_tracks( album_ids, to_exclude = COLS_EXCLUDE_TRACKS, to_df = True, client = None ): items = chain.from_iterable(map(lambda x: _get_album_tracks(x, client), album_ids)) rows = list(map(row_filter(to_exclude), items)) return pd.DataFrame(rows) if to_df else rows def _get_album_tracks(album_id, client): items = client.album_tracks(album_id)['items'] for item in items: item['album_id'] = album_id yield item @login def get_track_features(track_ids, to_df = True, client = None): tracks = [] for ii in range(0, len(track_ids), 99): tracks.extend(client.audio_features(track_ids[ii:ii+99])) return
pd.DataFrame(tracks)
pandas.DataFrame
""" Tests for CBMonthEnd CBMonthBegin, SemiMonthEnd, and SemiMonthBegin in offsets """ from datetime import ( date, datetime, ) import numpy as np import pytest from pandas._libs.tslibs import Timestamp from pandas._libs.tslibs.offsets import ( CBMonthBegin, CBMonthEnd, CDay, SemiMonthBegin, SemiMonthEnd, ) from pandas import ( DatetimeIndex, Series, _testing as tm, date_range, ) from pandas.tests.tseries.offsets.common import ( Base, assert_is_on_offset, assert_offset_equal, ) from pandas.tests.tseries.offsets.test_offsets import _ApplyCases from pandas.tseries import offsets as offsets from pandas.tseries.holiday import USFederalHolidayCalendar class CustomBusinessMonthBase: def setup_method(self, method): self.d = datetime(2008, 1, 1) self.offset = self._offset() self.offset1 = self.offset self.offset2 = self._offset(2) def test_eq(self): assert self.offset2 == self.offset2 def test_mul(self): pass def test_hash(self): assert hash(self.offset2) == hash(self.offset2) def test_roundtrip_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) assert unpickled == obj _check_roundtrip(self._offset()) _check_roundtrip(self._offset(2)) _check_roundtrip(self._offset() * 2) def test_copy(self): # GH 17452 off = self._offset(weekmask="Mon Wed Fri") assert off == off.copy() class TestCustomBusinessMonthEnd(CustomBusinessMonthBase, Base): _offset = CBMonthEnd def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` does not match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == "<CustomBusinessMonthEnd>" assert repr(self.offset2) == "<2 * CustomBusinessMonthEnds>" def test_call(self): with
tm.assert_produces_warning(FutureWarning)
pandas._testing.assert_produces_warning
# Copyright 2020 QuantRocket - All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import six import json import requests from quantrocket.houston import houston from quantrocket.cli.utils.output import json_to_cli from quantrocket.cli.utils.stream import to_bytes from quantrocket.cli.utils.files import write_response_to_filepath_or_buffer from quantrocket.exceptions import ParameterError, NoMasterData def list_ibkr_exchanges(regions=None, sec_types=None): """ List exchanges by security type and country as found on the IBKR website. Parameters ---------- regions : list of str, optional limit to these regions. Possible choices: north_america, europe, asia, global sec_types : list of str, optional limit to these securitiy types. Possible choices: STK, ETF, FUT, CASH, IND Returns ------- dict """ params = {} if sec_types: params["sec_types"] = sec_types if regions: params["regions"] = regions response = houston.get("/master/exchanges/ibkr", params=params, timeout=180) houston.raise_for_status_with_json(response) return response.json() def _cli_list_ibkr_exchanges(*args, **kwargs): return json_to_cli(list_ibkr_exchanges, *args, **kwargs) def collect_alpaca_listings(): """ Collect securities listings from Alpaca and store in securities master database. Returns ------- dict status message """ response = houston.post("/master/securities/alpaca") houston.raise_for_status_with_json(response) return response.json() def _cli_collect_alpaca_listings(*args, **kwargs): return json_to_cli(collect_alpaca_listings, *args, **kwargs) def collect_edi_listings(exchanges=None): """ Collect securities listings from EDI and store in securities master database. Parameters ---------- exchanges : list or str, required collect listings for these exchanges (identified by MICs) Returns ------- dict status message Examples -------- Collect sample listings: >>> collect_edi_listings(exchanges="FREE") Collect listings for all permitted exchanges: >>> collect_edi_listings() Collect all Chinese stock listings: >>> collect_edi_listings(exchanges=["XSHG", "XSHE"]) """ params = {} if exchanges: params["exchanges"] = exchanges response = houston.post("/master/securities/edi", params=params) houston.raise_for_status_with_json(response) return response.json() def _cli_collect_edi_listings(*args, **kwargs): return json_to_cli(collect_edi_listings, *args, **kwargs) def collect_figi_listings(): """ Collect securities listings from Bloomberg OpenFIGI and store in securities master database. OpenFIGI provides several useful security attributes including market sector, a detailed security type, and share class-level FIGI identifier. The collected data fields show up in the master file with the prefix "figi_*". This function does not directly query the OpenFIGI API but rather downloads a dump of all FIGIs which QuantRocket has previously mapped to securities from other vendors. Returns ------- dict status message Examples -------- Collect all available FIGI listings: >>> collect_figi_listings() """ response = houston.post("/master/securities/figi") houston.raise_for_status_with_json(response) return response.json() def _cli_collect_figi_listings(*args, **kwargs): return json_to_cli(collect_figi_listings, *args, **kwargs) def collect_ibkr_listings(exchanges=None, sec_types=None, currencies=None, symbols=None, universes=None, sids=None): """ Collect securities listings from Interactive Brokers and store in securities master database. Specify an exchange (optionally filtering by security type, currency, and/or symbol) to collect listings from the IBKR website and collect associated contract details from the IBKR API. Or, specify universes or sids to collect details from the IBKR API, bypassing the website. Parameters ---------- exchanges : list or str one or more IBKR exchange codes to collect listings for (required unless providing universes or sids). For sample data use exchange code 'FREE' sec_types : list of str, optional limit to these security types. Possible choices: STK, ETF, FUT, CASH, IND currencies : list of str, optional limit to these currencies symbols : list of str, optional limit to these symbols universes : list of str, optional limit to these universes sids : list of str, optional limit to these sids Returns ------- dict status message Examples -------- Collect free sample listings: >>> collect_ibkr_listings(exchanges="FREE") Collect all Toronto Stock Exchange stock listings: >>> collect_ibkr_listings(exchanges="TSE", sec_types="STK") Collect all NYSE ARCA ETF listings: >>> collect_ibkr_listings(exchanges="ARCA", sec_types="ETF") Collect specific symbols from Nasdaq: >>> collect_ibkr_listings(exchanges="NASDAQ", symbols=["AAPL", "GOOG", "NFLX"]) Re-collect contract details for an existing universe called "japan-fin": >>> collect_ibkr_listings(universes="japan-fin") """ params = {} if exchanges: params["exchanges"] = exchanges if sec_types: params["sec_types"] = sec_types if currencies: params["currencies"] = currencies if symbols: params["symbols"] = symbols if universes: params["universes"] = universes if sids: params["sids"] = sids response = houston.post("/master/securities/ibkr", params=params) houston.raise_for_status_with_json(response) return response.json() def _cli_collect_ibkr_listings(*args, **kwargs): return json_to_cli(collect_ibkr_listings, *args, **kwargs) def collect_sharadar_listings(countries="US"): """ Collect securities listings from Sharadar and store in securities master database. Parameters ---------- countries : list of str, required countries to collect listings for. Possible choices: US, FREE Returns ------- dict status message """ params = {} if countries: params["countries"] = countries response = houston.post("/master/securities/sharadar", params=params) houston.raise_for_status_with_json(response) return response.json() def _cli_collect_sharadar_listings(*args, **kwargs): return json_to_cli(collect_sharadar_listings, *args, **kwargs) def collect_usstock_listings(): """ Collect US stock listings from QuantRocket and store in securities master database. Returns ------- dict status message """ response = houston.post("/master/securities/usstock") houston.raise_for_status_with_json(response) return response.json() def _cli_collect_usstock_listings(*args, **kwargs): return json_to_cli(collect_usstock_listings, *args, **kwargs) def collect_ibkr_option_chains(universes=None, sids=None, infilepath_or_buffer=None): """ Collect IBKR option chains for underlying securities. Note: option chains often consist of hundreds, sometimes thousands of options per underlying security. Be aware that requesting option chains for large universes of underlying securities, such as all stocks on the NYSE, can take numerous hours to complete. Parameters ---------- universes : list of str, optional collect options for these universes of underlying securities sids : list of str, optional collect options for these underlying sids infilepath_or_buffer : str or file-like object, optional collect options for the sids in this file (specify '-' to read file from stdin) Returns ------- dict status message """ params = {} if universes: params["universes"] = universes if sids: params["sids"] = sids if infilepath_or_buffer == "-": response = houston.post("/master/options/ibkr", params=params, data=to_bytes(sys.stdin)) elif infilepath_or_buffer and hasattr(infilepath_or_buffer, "read"): if infilepath_or_buffer.seekable(): infilepath_or_buffer.seek(0) response = houston.post("/master/options/ibkr", params=params, data=to_bytes(infilepath_or_buffer)) elif infilepath_or_buffer: with open(infilepath_or_buffer, "rb") as f: response = houston.post("/master/options/ibkr", params=params, data=f) else: response = houston.post("/master/options/ibkr", params=params) houston.raise_for_status_with_json(response) return response.json() def _cli_collect_ibkr_option_chains(*args, **kwargs): return json_to_cli(collect_ibkr_option_chains, *args, **kwargs) def diff_ibkr_securities(universes=None, sids=None, infilepath_or_buffer=None, fields=None, delist_missing=False, delist_exchanges=None, wait=False): """ Flag security details that have changed in IBKR's system since the time they were last collected into the securities master database. Diff can be run synchronously or asynchronously (asynchronous is the default and is recommended if diffing more than a handful of securities). Parameters ---------- universes : list of str, optional limit to these universes sids : list of str, optional limit to these sids infilepath_or_buffer : str or file-like object, optional limit to the sids in this file (specify '-' to read file from stdin) fields : list of str, optional only diff these fields (field name should start with "ibkr") delist_missing : bool auto-delist securities that are no longer available from IBKR delist_exchanges : list of str, optional auto-delist securities that are associated with these exchanges wait : bool run the diff synchronously and return the diff (otherwise run asynchronously and log the results, if any, to flightlog) Returns ------- dict dict of sids and fields that have changed (if wait), or status message """ params = {} if universes: params["universes"] = universes if sids: params["sids"] = sids if fields: params["fields"] = fields if delist_missing: params["delist_missing"] = delist_missing if delist_exchanges: params["delist_exchanges"] = delist_exchanges if wait: params["wait"] = wait # if run synchronously use a high timeout timeout = 60*60*10 if wait else None if infilepath_or_buffer == "-": response = houston.get("/master/diff/ibkr", params=params, data=to_bytes(sys.stdin), timeout=timeout) elif infilepath_or_buffer and hasattr(infilepath_or_buffer, "read"): if infilepath_or_buffer.seekable(): infilepath_or_buffer.seek(0) response = houston.get("/master/diff/ibkr", params=params, data=to_bytes(infilepath_or_buffer), timeout=timeout) elif infilepath_or_buffer: with open(infilepath_or_buffer, "rb") as f: response = houston.get("/master/diff/ibkr", params=params, data=f, timeout=timeout) else: response = houston.get("/master/diff/ibkr", params=params, timeout=timeout) houston.raise_for_status_with_json(response) return response.json() def _cli_diff_ibkr_securities(*args, **kwargs): return json_to_cli(diff_ibkr_securities, *args, **kwargs) def download_master_file(filepath_or_buffer=None, output="csv", exchanges=None, sec_types=None, currencies=None, universes=None, symbols=None, sids=None, exclude_universes=None, exclude_sids=None, exclude_delisted=False, exclude_expired=False, frontmonth=False, vendors=None, fields=None): """ Query security details from the securities master database and download to file. Parameters ---------- filepath_or_buffer : str or file-like object filepath to write the data to, or file-like object (defaults to stdout) output : str output format (csv or json, default is csv) exchanges : list of str, optional limit to these exchanges. You can specify exchanges using the MIC or the vendor's exchange code. sec_types : list of str, optional limit to these security types. Possible choices: STK, ETF, FUT, CASH, IND, OPT, FOP, BAG currencies : list of str, optional limit to these currencies universes : list of str, optional limit to these universes symbols : list of str, optional limit to these symbols sids : list of str, optional limit to these sids exclude_universes : list of str, optional exclude these universes exclude_sids : list of str, optional exclude these sids exclude_delisted : bool exclude delisted securities (default is to include them) exclude_expired : bool exclude expired contracts (default is to include them) frontmonth : bool exclude backmonth and expired futures contracts (default False) vendors : list of str, optional limit to these vendors. Possible choices: alpaca, edi, ibkr, sharadar, usstock fields : list of str, optional Return specific fields. By default a core set of fields is returned, but additional vendor-specific fields are also available. To return non-core fields, you can reference them by name, or pass "*" to return all available fields. To return all fields for a specific vendor, pass the vendor prefix followed by "*", for example "edi*" for all EDI fields. Pass "?*" (or any invalid vendor prefix plus "*") to see available vendor prefixes. Pass "?" or any invalid fieldname to see all available fields. Returns ------- None Notes ----- Parameters for filtering query results are combined according to the following rules. First, the master service determines what to include in the result set, based on the inclusion filters: `exchanges`, `sec_types`, `currencies`, `universes`, `symbols`, and `sids`. With the exception of `sids`, these parameters are ANDed together. That is, securities must satisfy all of the parameters to be included. If `vendors` is provided, only those vendors are searched for the purpose of determining matches. The `sids` parameter is treated differently. Securities matching `sids` are always included, regardless of whether they meet the other inclusion criteria. After determining what to include, the master service then applies the exclusion filters (`exclude_sids`, `exclude_universes`, `exclude_delisted`, `exclude_expired`, and `frontmonth`) to determine what (if anything) should be removed from the result set. Exclusion filters are ORed, that is, securities are excluded if they match any of the exclusion criteria. Examples -------- Download NYSE and NASDAQ securities to file, using MICs to specify the exchanges: >>> download_master_file("securities.csv", exchanges=["XNYS","XNAS"]) Download NYSE and NASDAQ securities to file, using IBKR exchange codes to specify the exchanges, and include all IBKR fields: >>> download_master_file("securities.csv", exchanges=["NYSE","NASDAQ"], fields="ibkr*") Download securities for a particular universe to in-memory file, including all possible fields, and load the CSV into pandas. >>> f = io.StringIO() >>> download_master_file(f, fields="*", universes="my-universe") >>> securities = pd.read_csv(f) See Also -------- quantrocket.master.get_securities : load securities into a DataFrame """ params = {} if exchanges: params["exchanges"] = exchanges if sec_types: params["sec_types"] = sec_types if currencies: params["currencies"] = currencies if universes: params["universes"] = universes if symbols: params["symbols"] = symbols if sids: params["sids"] = sids if exclude_universes: params["exclude_universes"] = exclude_universes if exclude_sids: params["exclude_sids"] = exclude_sids if exclude_delisted: params["exclude_delisted"] = exclude_delisted if exclude_expired: params["exclude_expired"] = exclude_expired if frontmonth: params["frontmonth"] = frontmonth if vendors: params["vendors"] = vendors if fields: params["fields"] = fields output = output or "csv" url = "/master/securities.{0}".format(output) if output not in ("csv", "json"): raise ValueError("Invalid ouput: {0}".format(output)) response = houston.get(url, params=params) try: houston.raise_for_status_with_json(response) except requests.HTTPError as e: # Raise a dedicated exception if "no securities match the query parameters" in repr(e).lower(): raise NoMasterData(e) raise filepath_or_buffer = filepath_or_buffer or sys.stdout write_response_to_filepath_or_buffer(filepath_or_buffer, response) def _cli_download_master_file(*args, **kwargs): return json_to_cli(download_master_file, *args, **kwargs) def get_securities(symbols=None, exchanges=None, sec_types=None, currencies=None, universes=None, sids=None, exclude_universes=None, exclude_sids=None, exclude_delisted=False, exclude_expired=False, frontmonth=False, vendors=None, fields=None): """ Return a DataFrame of security details from the securities master database. Parameters ---------- symbols : list of str, optional limit to these symbols exchanges : list of str, optional limit to these exchanges. You can specify exchanges using the MIC or the vendor's exchange code. sec_types : list of str, optional limit to these security types. Possible choices: STK, ETF, FUT, CASH, IND, OPT, FOP, BAG currencies : list of str, optional limit to these currencies universes : list of str, optional limit to these universes sids : list of str, optional limit to these sids exclude_universes : list of str, optional exclude these universes exclude_sids : list of str, optional exclude these sids exclude_delisted : bool exclude delisted securities (default is to include them) exclude_expired : bool exclude expired contracts (default is to include them) frontmonth : bool exclude backmonth and expired futures contracts (default False) vendors : list of str, optional limit to these vendors. Possible choices: alpaca, edi, ibkr, sharadar, usstock fields : list of str, optional Return specific fields. By default a core set of fields is returned, but additional vendor-specific fields are also available. To return non-core fields, you can reference them by name, or pass "*" to return all available fields. To return all fields for a specific vendor, pass the vendor prefix followed by "*", for example "edi*" for all EDI fields. Pass "?*" (or any invalid vendor prefix plus "*") to see available vendor prefixes. Pass "?" or any invalid fieldname to see all available fields. Returns ------- DataFrame a DataFrame of securities, with Sids as the index Notes ----- Parameters for filtering query results are combined according to the following rules. First, the master service determines what to include in the result set, based on the inclusion filters: `exchanges`, `sec_types`, `currencies`, `universes`, `symbols`, and `sids`. With the exception of `sids`, these parameters are ANDed together. That is, securities must satisfy all of the parameters to be included. If `vendors` is provided, only those vendors are searched for the purpose of determining matches. The `sids` parameter is treated differently. Securities matching `sids` are always included, regardless of whether they meet the other inclusion criteria. After determining what to include, the master service then applies the exclusion filters (`exclude_sids`, `exclude_universes`, `exclude_delisted`, `exclude_expired`, and `frontmonth`) to determine what (if anything) should be removed from the result set. Exclusion filters are ORed, that is, securities are excluded if they match any of the exclusion criteria. Examples -------- Load default fields for NYSE and NASDAQ securities, using MICs to specify the exchanges: >>> securities = get_securities(exchanges=["XNYS","XNAS"]) Load sids for MSFT and AAPL: >>> sids = get_securities(symbols=["MSFT", "AAPL"]).index.tolist() Load NYSE and NASDAQ securities, using IBKR exchange codes to specify the exchanges, and include all IBKR fields: >>> securities = get_securities(exchanges=["NYSE","NASDAQ"], fields="ibkr*") """ try: import pandas as pd except ImportError: raise ImportError("pandas must be installed to use this function") f = six.StringIO() download_master_file( f, exchanges=exchanges, sec_types=sec_types, currencies=currencies, universes=universes, symbols=symbols, sids=sids, exclude_universes=exclude_universes, exclude_sids=exclude_sids, exclude_delisted=exclude_delisted, exclude_expired=exclude_expired, frontmonth=frontmonth, vendors=vendors, fields=fields) securities = pd.read_csv(f, index_col="Sid") for col in securities.columns: col_without_vendor_prefix = col.split("_")[-1] if col_without_vendor_prefix in ( "Delisted", "Etf", "EasyToBorrow", "Marginable", "Tradable", "Shortable", "IsPrimaryListing"): securities[col] = securities[col].fillna(0).astype(bool) elif ( col_without_vendor_prefix.endswith("Date") or col_without_vendor_prefix.startswith("Date") or col_without_vendor_prefix in ( "FirstAdded", "LastAdded", "RecordCreated", "RecordModified", "LastUpdated", "FirstQuarter", "LastQuarter")): # pd.to_datetime handles NaNs in earlier pandas versions (0.22) # while .astype("datetime64[ns]") does not securities[col] = pd.to_datetime(securities[col]) return securities def get_securities_reindexed_like(reindex_like, fields=None): """ Return a multiindex DataFrame of securities master data, reindexed to match the index and columns (sids) of `reindex_like`. Parameters ---------- reindex_like : DataFrame, required a DataFrame (usually of prices) with dates for the index and sids for the columns, to which the shape of the resulting DataFrame will be conformed fields : list of str a list of fields to include in the resulting DataFrame. By default a core set of fields is returned, but additional vendor-specific fields are also available. To return non-core fields, you can reference them by name, or pass "*" to return all available fields. To return all fields for a specific vendor, pass the vendor prefix followed by "*", for example "edi*" for all EDI fields. Pass "?*" (or any invalid vendor prefix plus "*") to see available vendor prefixes. Pass "?" or any invalid fieldname to see all available fields. Returns ------- DataFrame a multiindex (Field, Date) DataFrame of securities master data, shaped like the input DataFrame Examples -------- Get exchanges (MICs) using a DataFrame of prices: >>> closes = prices.loc["Close"] >>> securities = get_securities_reindexed_like( closes, fields=["Exchange"]) >>> exchanges = securities.loc["Exchange"] >>> nyse_closes = closes.where(exchanges == "XNYS") """ try: import pandas as pd except ImportError: raise ImportError("pandas must be installed to use this function") sids = list(reindex_like.columns) securities = get_securities(sids=sids, fields=fields) if "Sid" in fields: securities["Sid"] = securities.index all_master_fields = {} for col in sorted(securities.columns): this_col = securities[col] all_master_fields[col] = reindex_like.apply(lambda x: this_col, axis=1) names = list(reindex_like.index.names) names.insert(0, "Field") securities = pd.concat(all_master_fields, names=names) securities = securities.reindex(columns=reindex_like.columns) return securities def get_contract_nums_reindexed_like(reindex_like, limit=5): """ From a DataFrame of futures (with dates as the index and sids as columns), return a DataFrame of integers representing each sid's sequence in the futures chain as of each date, where 1 is the front contract, 2 is the second nearest contract, etc. Sequences are based on the RolloverDate field in the securities master file, which is based on configurable rollover rules. Parameters ---------- reindex_like : DataFrame, required a DataFrame (usually of prices) with dates for the index and sids for the columns, to which the shape of the resulting DataFrame will be conformed limit : int how many contracts ahead to sequence. For example, assuming quarterly contracts, a limit of 5 will sequence 5 quarters out. Default 5. Returns ------- DataFrame a DataFrame of futures chain sequence numbers, shaped like the input DataFrame Examples -------- Get a Boolean mask of front-month contracts: >>> closes = prices.loc["Close"] >>> contract_nums = get_contract_nums_reindexed_like(closes) >>> are_front_months = contract_nums == 1 """ try: import pandas as pd except ImportError: raise ImportError("pandas must be installed to use this function") index_levels = reindex_like.index.names if "Date" not in index_levels: raise ParameterError( "reindex_like must have index called 'Date', but has {0}".format( ",".join([str(name) for name in index_levels]))) reindex_like_dt_index = reindex_like.index.get_level_values("Date") if not hasattr(reindex_like_dt_index, "date"): raise ParameterError("reindex_like must have a DatetimeIndex") f = six.StringIO() download_master_file(f, sids=list(reindex_like.columns), fields=["RolloverDate","ibkr_UnderConId","SecType"]) rollover_dates = pd.read_csv(f, parse_dates=["RolloverDate"]) rollover_dates = rollover_dates[rollover_dates.SecType=="FUT"].drop("SecType", axis=1) if rollover_dates.empty: raise ParameterError("input DataFrame does not appear to contain any futures contracts") if reindex_like_dt_index.tz: rollover_dates.loc[:, "RolloverDate"] = rollover_dates.RolloverDate.dt.tz_localize(reindex_like_dt_index.tz.zone) min_date = reindex_like_dt_index.min() max_date = max([rollover_dates.RolloverDate.max(), reindex_like_dt_index.max()]) # Stack sids by underlying (1 column per underlying) rollover_dates = rollover_dates.set_index(["RolloverDate","ibkr_UnderConId"]).Sid.unstack() contract_nums = None for i in range(limit): # backshift conids _rollover_dates = rollover_dates.apply(lambda col: col.dropna().shift(-i)) # Reindex to daily frequency _rollover_dates = _rollover_dates.reindex( index=pd.date_range(start=min_date, end=max_date)) # RolloverDate is when we roll out of the contract, hence we backfill _rollover_dates = _rollover_dates.fillna(method="bfill") # Stack to Series of Date, nth sid _rollover_dates = _rollover_dates.stack() _rollover_dates.index = _rollover_dates.index.droplevel("ibkr_UnderConId") _rollover_dates.index.name = "Date" # Pivot Series to DataFrame _rollover_dates = _rollover_dates.reset_index(name="Sid") _rollover_dates["ContractNum"] = i + 1 _rollover_dates = _rollover_dates.set_index(["Date","Sid"]) _contract_nums = _rollover_dates.ContractNum.unstack() # If MultiIndex input, broadcast across Time level if len(index_levels) > 1: _contract_nums = _contract_nums.reindex(index=reindex_like.index, level="Date") _contract_nums = _contract_nums.reindex(columns=reindex_like.columns) else: _contract_nums = _contract_nums.reindex(index=reindex_like_dt_index, columns=reindex_like.columns) if contract_nums is None: contract_nums = _contract_nums else: contract_nums = contract_nums.fillna(_contract_nums) return contract_nums def create_universe(code, infilepath_or_buffer=None, sids=None, from_universes=None, exclude_delisted=False, append=False, replace=False): """ Create a universe of securities. Parameters ---------- code : str, required the code to assign to the universe (lowercase alphanumerics and hyphens only) infilepath_or_buffer : str or file-like object, optional create the universe from the sids in this file (specify '-' to read file from stdin) sids : list of str, optional create the universe from these sids from_universes : list of str, optional create the universe from these existing universes exclude_delisted : bool exclude delisted securities and expired contracts that would otherwise be included (default is not to exclude them) append : bool append to universe if universe already exists (default False) replace : bool replace universe if universe already exists (default False) Returns ------- dict status message Examples -------- Create a universe called 'nyse-stk' from a CSV file: >>> create_universe("usa-stk", "nyse_securities.csv") Create a universe from a DataFrame of securities: >>> securities = get_securities(exchanges="TSEJ") >>> create_universe("japan-stk", sids=securities.index.tolist()) """ if append and replace: raise ValueError("append and replace are mutually exclusive") params = {} if from_universes: params["from_universes"] = from_universes if exclude_delisted: params["exclude_delisted"] = exclude_delisted if replace: params["replace"] = replace if sids: params["sids"] = sids url = "/master/universes/{0}".format(code) if append: method = "PATCH" else: method = "PUT" if infilepath_or_buffer == "-": response = houston.request(method, url, params=params, data=to_bytes(sys.stdin)) elif infilepath_or_buffer and hasattr(infilepath_or_buffer, "read"): if infilepath_or_buffer.seekable(): infilepath_or_buffer.seek(0) response = houston.request(method, url, params=params, data=to_bytes(infilepath_or_buffer)) elif infilepath_or_buffer: with open(infilepath_or_buffer, "rb") as f: response = houston.request(method, url, params=params, data=f) else: response = houston.request(method, url, params=params) houston.raise_for_status_with_json(response) return response.json() def _cli_create_universe(*args, **kwargs): return json_to_cli(create_universe, *args, **kwargs) def delete_universe(code): """ Delete a universe. The listings details of the member securities won't be deleted, only their grouping as a universe. Parameters ---------- code : str, required the universe code Returns ------- dict status message """ url = "/master/universes/{0}".format(code) response = houston.delete(url) houston.raise_for_status_with_json(response) return response.json() def _cli_delete_universe(*args, **kwargs): return json_to_cli(delete_universe, *args, **kwargs) def list_universes(): """ List universes and their size. Returns ------- dict dict of universe:size """ response = houston.get("/master/universes") houston.raise_for_status_with_json(response) return response.json() def _cli_list_universes(*args, **kwargs): return json_to_cli(list_universes, *args, **kwargs) def delist_ibkr_security(sid=None, symbol=None, exchange=None, currency=None, sec_type=None): """ Mark an IBKR security as delisted. This does not remove any data but simply marks the security as delisted so that data services won't attempt to collect data for the security and so that the security can be optionally excluded from query results. The security can be specified by sid or a combination of other parameters (for example, symbol + exchange). As a precaution, the request will fail if the parameters match more than one security. Parameters ---------- sid : str, optional the sid of the security to be delisted symbol : str, optional the symbol to be delisted (if sid not provided) exchange : str, optional the exchange of the security to be delisted (if needed to disambiguate) currency : str, optional the currency of the security to be delisted (if needed to disambiguate) sec_type : str, optional the security type of the security to be delisted (if needed to disambiguate). Possible choices: STK, ETF, FUT, CASH, IND Returns ------- dict status message """ params = {} if sid: params["sids"] = sid if symbol: params["symbols"] = symbol if exchange: params["exchanges"] = exchange if currency: params["currencies"] = currency if sec_type: params["sec_types"] = sec_type response = houston.delete("/master/securities/ibkr", params=params) houston.raise_for_status_with_json(response) return response.json() def _cli_delist_ibkr_security(*args, **kwargs): return json_to_cli(delist_ibkr_security, *args, **kwargs) def create_ibkr_combo(combo_legs): """ Create an IBKR combo (aka spread), which is a composite instrument consisting of two or more individual instruments (legs) that are traded as a single instrument. Each user-defined combo is stored in the securities master database with a SecType of "BAG". The combo legs are stored in the ComboLegs field as a JSON array. QuantRocket assigns a sid for the combo consisting of a prefix 'IC' followed by an autoincrementing digit, for example: IC1, IC2, IC3, ... If the combo already exists, its sid will be returned instead of creating a duplicate record. Parameters ---------- combo_legs : list, required a list of the combo legs, where each leg is a list specifying action, ratio, and sid Returns ------- dict returns a dict containing the generated sid of the combo, and whether a new record was created Examples -------- To create a calendar spread on VX, first retrieve the sids of the legs: >>> from quantrocket.master import download_master_file >>> download_master_file("vx.csv", symbols="VIX", exchanges="CFE", sec_types="FUT") >>> vx_sids = pd.read_csv("vx.csv", index_col="Symbol").Sid.to_dict() Then create the combo: >>> create_ibkr_combo([ ["BUY", 1, vx_sids["VXV9"]], ["SELL", 1, vx_sids["VXQ9"]] ]) {"sid": IC1, "created": True} """ f = six.StringIO() json.dump(combo_legs, f) f.seek(0) response = houston.put("/master/combos/ibkr", data=f) houston.raise_for_status_with_json(response) return response.json() def _cli_create_ibkr_combo(combo_filepath): with open(combo_filepath) as f: combo_legs = json.load(f) return json_to_cli(create_ibkr_combo, combo_legs) def load_rollrules_config(filename): """ Upload a new rollover rules config. Parameters ---------- filename : str, required the rollover rules YAML config file to upload Returns ------- dict status message """ with open(filename) as file: response = houston.put("/master/config/rollover", data=file.read()) houston.raise_for_status_with_json(response) return response.json() def get_rollrules_config(): """ Returns the current rollover rules config. Returns ------- dict the config as a dict """ response = houston.get("/master/config/rollover") houston.raise_for_status_with_json(response) # It's possible to get a 204 empty response if not response.content: return {} return response.json() def _cli_load_or_show_rollrules(filename=None): if filename: return json_to_cli(load_rollrules_config, filename) else: return json_to_cli(get_rollrules_config) def collect_ibkr_calendar(exchanges=None): """ Collect upcoming trading hours from IBKR for exchanges and save to securities master database. Parameters ---------- exchanges : list of str, optional limit to these exchanges Returns ------- dict status message """ params = {} if exchanges: params["exchanges"] = exchanges response = houston.post("/master/calendar/ibkr", params=params) houston.raise_for_status_with_json(response) return response.json() def _cli_collect_ibkr_calendar(*args, **kwargs): return json_to_cli(collect_ibkr_calendar, *args, **kwargs) def list_calendar_statuses(exchanges, sec_type=None, in_=None, ago=None, outside_rth=False): """ Check whether exchanges are open or closed. Parameters ---------- exchanges : list of str, required the exchange(s) to check sec_type : str, optional the security type, if needed to disambiguate for exchanges that trade multiple security types. Possible choices: STK, FUT, CASH, OPT in_ : str, optional check whether exchanges will be open or closed at this point in the future (use Pandas timedelta string, e.g. 2h or 30min or 1d) ago : str, optional check whether exchanges were open or closed this long ago (use Pandas timedelta string, e.g. 2h or 30min or 1d) outside_rth : bool check extended hours calendar (default is to check regular trading hours calendar) Returns ------- dict exchange calendar status """ params = {} if exchanges: params["exchanges"] = exchanges if sec_type: params["sec_type"] = sec_type if in_: params["in"] = in_ if ago: params["ago"] = ago if outside_rth: params["outside_rth"] = outside_rth response = houston.get("/master/calendar", params=params) houston.raise_for_status_with_json(response) return response.json() def _cli_list_calendar_statuses(*args, **kwargs): return json_to_cli(list_calendar_statuses, *args, **kwargs) def _cli_in_status_since(status, since=None, in_=None, ago=None): try: import pandas as pd except ImportError: raise ImportError("pandas must be installed to use this command") dt = pd.Timestamp.now(status["timezone"]) if in_: dt += pd.Timedelta(in_) elif ago: dt -= pd.Timedelta(ago) dt = dt.tz_localize(None) required_since = pd.date_range(periods=5, end=dt, freq=since, normalize=False) # For >1D freq, normalize to midnight if required_since.freq.is_anchored() or required_since.freq.rule_code == "D": required_since = pd.date_range(periods=5, end=dt, freq=since, normalize=True) required_since = required_since[-1] else: # If not normalized, the last value is dt, so use the penultimate value required_since = required_since[-2] actual_since = pd.Timestamp(status["since"]) return actual_since <= required_since def _cli_in_status_until(status, until=None, in_=None, ago=None): try: import pandas as pd except ImportError: raise ImportError("pandas must be installed to use this command") dt = pd.Timestamp.now(status["timezone"]) if in_: dt += pd.Timedelta(in_) elif ago: dt -= pd.Timedelta(ago) dt = dt.tz_localize(None) required_until = pd.date_range(start=dt, periods=5, freq=until, normalize=False) # For >1D freq, normalize to midnight if required_until.freq.is_anchored() or required_until.freq.rule_code == "D": required_until = pd.date_range(start=dt, periods=5, freq=until, normalize=True) # due to normalize=True, the date range might include a time before the # start dt; filter it out required_until = required_until[required_until > dt] required_until = required_until[0] else: # If not normalized, the first value is dt, so use the second value required_until = required_until[1] actual_until =
pd.Timestamp(status["until"])
pandas.Timestamp
import dash from dash.dependencies import Input, Output, State import dash_core_components as dcc import dash_html_components as html import dash_table_experiments as dt import pandas as pd from dlib import masternode_tax_calc import os from json import JSONDecodeError app = dash.Dash() # app.scripts.config.serve_locally = True # app.css.config.serve_locally = True app.layout = html.Div([ html.H4('Calculate Dash Taxes!'), html.H6('Sometimes it does crash... Working on adding features.'), html.Br(), html.Br(), html.H5('Enter Dash address below'), html.Div([ dcc.Input( id='address', placeholder='XxVpWcsE92qWTrZWfmGTqrCzpBaKhRf2tX', value='', size=40, type='text', pattern='^X[1-9A-HJ-NP-Za-km-z]{33}' )], className='address-bar' ), html.Button('Calculate', id='calc-but', n_clicks=0), dcc.Graph( id='tax-graph', ), html.Br(), dt.DataTable( # Initialise the rows rows=[{}], filterable=True, sortable=True, selected_row_indices=[], id='tx_table' ), html.Br(), html.Br(), ], className='container') @app.callback( Output('tx_table', 'rows'), [Input('calc-but', 'n_clicks')], [State('address', 'value')]) def get_address_info(n_clicks, value): try: cost_basis = masternode_tax_calc.generate_cost_basis(value) except JSONDecodeError: cost_basis = { 'amount': 0, 'time': 15223753709, 'date': '2018-01-01', 'type': 'normal', 'cost_basis': '0', } df = pd.DataFrame.from_records(cost_basis).sort_values(by=['date'], ascending=False) """ For user selections, return the relevant in-memory data frame. """ df = df.to_dict('records') return df @app.callback( Output('tax-graph', 'figure'), [Input('tx_table', 'rows')]) def update_figure(rows): dff =
pd.DataFrame(rows)
pandas.DataFrame